
 

Master’s Thesis 2023    30 ECTS  

Faculty of Science and Technology 

 

Indirect Forecasting of Power 

Generation From a PV Power Plant 

Through Data-Driven and Physical 

Methods 

Sigrid Vøllo 

M.Sc. Environmental Physics and Renewable Energy 





Preface

In this thesis, I have made forecasts of solar power production for a large-scale
power plant with the use of machine learning. This has been done using what I have
learned in the past five years as a student in Environmental Physics and Renewable

Energy. The process has included many weeks of preprocessing of the data to
understand the underlying connections in the data, several weeks to make a method
for forecasting using various techniques, and finally much time now in the end to

analyze and understand the outputs of the forecasts.

All of this would have been impossible without the help of my wonderful supervisors.
I would therefore like to thank Jo Gjessing from Scatec for providing me with data
as well as improving my understanding of how utility-scale PV work, Magnus Moe
Nyg̊ard from IFE for helping me with building my methods and understanding

substantially more of how academic work is done, and Heidi S. Nyg̊ard for helping
me make it all come together as a scientific work and for all good advice along the
way. I would also like to thank Leonardo Rydin Gorjão for helping me with all the

minor and major issues I faced with my code and writing along the way.

As I am writing this, I am slowly starting to realize that my five years as a student
here at NMBU are coming to an end. There have been so many people here at the
university along the way helping us through difficult times and concepts. My family
has also been a great support and motivator in these years. I also feel the need to
thank my teachers at Numedal Videreg̊aende Skole, who inspired me to make the
choice I did five years ago and are part of the reason I have had these great years.
And lastly, my amazing fellow students, at the university as a whole and at our

study program, but especially the amazing people in GRUS. You have made these
years wonderfully memorable both as great study buddies and amazing friends.

Sigrid Vøllo
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Abstract

Most people are familiar with the fact that the weather conditions are neither
constant nor controllable. The power generation from photovoltaic (PV) technologies
are highly dependent on the weather, thus accurate power generation forecasts are
necessary if one wants knowledge about power generation hours and days ahead for
PV power plants. Understanding and accurately forecasting PV power generation is
also central to ensuring the stability of the electrical power system.

In this thesis, two methods, Method 1 and 2, were developed to forecast power
generation with a 24-hour horizon and a 1-hour resolution for a PV power plant. In
the development of the methods, three years of measurement data from a utility-scale
PV power plant with an installed capacity above 100 MW were utilized. Weather
forecasts from the weather forecasting service Yr and empirical data generated with
the Python library pvlib were used. These data were concatenated and preprocessed
with outlier detection, missing values imputation, and min-max scaling. After this,
the forecasting methods were developed. These were compared to forecasts by the
commercial power generation forecast provider Solargis.

Both methods in this thesis used an indirect approach where the initial step of
forecasting Global Horizontal Irradiance (GHI) was equal in both methods. The GHI
was forecasted with a machine learning method using Random Forest Regression
(RFR). For this forecast, the input features were forecasted ambient temperature,
clouds, low clouds, medium-height clouds, and precipitation, local measurements
of GHI from the previous day, and historic measurements of ambient temperature
and wind direction. To forecast the power generation Method 1 used the same
RFR method that was used to forecast the GHI. This time, the input features were
forecasts for medium clouds, wind direction, and humidity, clear sky irradiance, the
GHI measurements from the previous day, and the forecasts for the GHI made in the
initial step. Method 2 used a series of physical and empirical operations to calculate
a forecast for power generation based on the GHI forecasts.

From the evaluation of the results, Method 1 produced the forecast with the highest
skill score of 0.200. Solargis received a score of 0.122 and Method 2 0.004. In general,
it was observed that Method 1 had a tendency to underestimate power generation,
and Method 2 and Solargis overestimated it. It was generally seen that Method
1 had difficulties forecasting the peak generation hours. Some of the bias in the
results might partially be a result of power curtailment. Because of conditions in the
electrical power grid, the power generation from the PV power plant was reduced
with curtailment, this was not evident in the weather data used to make the forecast
in this thesis.

It was concluded that Method 1 is a viable method for power generation forecasts for
PV power plants and that it has an accuracy enabling it to compete with commercial
solutions. With more time to refine the method, it could become a precise and reliable
tool. An accurate power generation forecast is beneficial for both the Transmission
System Operator (TSO) and power plant operators for them to get better control of
their operations, which can potentially result in more efficient operations for both
parties.
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Sammendrag

At værforhold verken er konstante eller kontrollerbare er noe de fleste er kjent med.
Effekten fra PV-teknologi er svært avhengig av været, og nøyaktige effektprognoser er
derfor nødvendig dersom man ønsker kunnskap om generert effekt fra et PV-kraftverk.
En evne til å kunne nøyaktig predikere den genererte effekten fra et PV-kraftverk er
ogs̊a sentralt for å sikre stabilitet i det elektriske kraftsystemet.

I denne oppgaven ble to metoder, metode 1 og 2, utviklet for å predikere effekten
til et PV-kraftverk med 24 timers horisont og én times oppløsning. I utviklingen av
metodene ble det benyttet tre år med måledata fra et storskala PV-kraftverk med
installert effekt over 100 MW. Værmeldinger fra værvarslingstjenesten Yr og empiriske
data generert med Python-biblioteket pvlib ble brukt. Disse dataene ble satt sammen
og preprosessert med avviksdeteksjon, imputering av manglende verdier og min-maks-
skalering. Etter dette ble prediksjonsmetodene utviklet. Disse ble sammenlignet med
prediksjoner fra den kommersielle leverandøren av effektprediksjoner, Solargis.

Begge metodene i denne oppgaven brukte en indirekte fremgangsmåte hvor frem-
gangsmåten for å predikere global horisontal innstr̊aling (GHI) var lik i begge
metodene. GHI ble predikert med en maskinlæringsmetode ved bruk av ”Random
Forest Regression” (RFR). I denne modelen ble værmeldingsverdier omgivelsestem-
peratur, skyer, lave skyer, middels høye skyer og nedbør, sammen med lokale m̊alinger
av GHI fra forrige dag, og historiske m̊alinger av omgivelsestemperatur og vindretning
bruk som variabler. For å forutsi den genererte effekten brukte metode 1 den samme
RFR-metoden som ble brukt til å predikere GHI. Her ble værmeldingsverdier for
middels høye skyer, vindretning og luft fuktighet, sammen med irradians ved klar
himmel, GHI-m̊alingene fra forrige dag og prediksjonene for GHI brukt som variabler.
Metode 2 brukte en rekke fysiske og empiriske operasjoner for å lage en prediksjon
for den genererte effekten basert p̊a GHI-prediksjonene.

Fra evalueringen av resultatene produserte metode 1 prediksjoner med høyest ”skill
score” p̊a 0, 200. Solargis fikk en verdi p̊a 0, 122 og metode 2 fikk verdien 0, 004.
Generelt ble det observert at metode 1 hadde en tendens til å underestimere
den genererte effekten, mens metode 2 og Solargis overestimerte den. Det ble
generelt observert at metode 1 hadde problemer med å predikere i timene hvor
effektgenereringen fra PV-kraftverket var p̊a det høyeste. Deler av feilene i resultatene
kan delvis være et resultat av ”curtailment”. P̊a grunn av forhold i kraftnettet kan
kraftgenereringen fra PV-kraftverket bli redusert med ”curtailment”. N̊ar dette
forekom ble den genererte effekten redusert mens værdataene som er brukt for å lage
prediksjonene i denne oppgaven derimot ikke ble p̊avirket av dette.

Denne oppgaven konkluderte med at metode 1 er en brukbar metode for prediksjon
av effekt fra PV-kraftverk og at den har en nøyaktighet som gjør at den er i stand
til å konkurrere med kommersielle løsninger. Med mer tid til å forbedre metoden
kan metoden bli et presist og p̊alitelig verktøy. Nøyaktige prediksjoner av effekt er
gunstig for b̊ade operatøren av transmissjonssytemet (TSO) og kraftverksoperatørene
for at de skal f̊a bedre kontroll over driften, noe som potensielt kan resultere i mer
effektiv drift for begge parter.
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Nomenclature

AC Alternating Current

aFRR automatic Frequency Restoration Reserve

AM Air Mass Ratio

ANN Artificial Neural Network

DC Direct Current

DHI Direct Horizontal Irraiance

DSO Distribution System Operator

ECMWF European Centre for Medium-Range Weather Forecasts

EU European Union

FCR Frequency Containment Reserves

FFR Fast Frequency Reserve

GHI Global Horizontal Irradiance

GTI Global Tilted Irradiance

IEA International Energy Agency

IFE Institute for Energy Technology

MBE Mean Bias Error

mFRR manual Frequency Restoration Reserve

MPP Maximum Power Point

MPPT Maximum Power Point Tracker

MSE Mean Squared Error

NMBU Norwegian University of Life Sciences

NWP Numerical Weather Prediction

PAPE Peak Absolute Percentage Error
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POA Plane of Array

PV photovoltaic

RFR Random Forest Regression

RMSE Root Mean Squared Error

STC Standard Testing Conditions

TSO Transmission System Operator
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Chapter 1

Introduction

1.1 Motivation

150 years of human CO2 emissions have resulted in a new set of challenges that
needs to be solved by the population of the entire world [1, 2]. The emission of CO2

and other greenhouse gasses has led to an increase in the greenhouse effect, causing
global warming with generally higher temperatures of the earth’s surface [2]. It is not
only temperature rise in itself that is troubling, changes in local and global weather
patterns in the earth’s climate patterns are also becoming evident [2]. The changes
in climate will eventually affect the entire world when problems with growing food,
rising waters, and natural catastrophes become more frequent [1].

The rise of global temperatures started with CO2 emission, but it can also be stopped
through a reduction in CO2 emissions according to the United Nations [2, 1]. As
84% of today’s energy production stems from CO2-intensive fossil fuels, a large part
of the solution is to switch from fossil coal, oil, and gas, to cleaner renewable energy
sources like wind-, solar-, and hydropower [3].

In addition to having to replace much of today’s energy production, the world’s total
energy consumption is increasing, which means even more new renewable energy
production is needed in the future [3]. On the positive side, renewable energy can
be generated almost anywhere [4]. Since sun, wind, and water is available to some
degree in most places around the world, there is no dependency on costly fuels from
other countries [4]. The backside, however, is that natural resources are dependent
on factors outside human control. Solar power needs sunlight, wind power needs
wind and hydropower is dependent on enough water in the river or dam. Without
knowing how power production is affected by these uncontrollable conditions, it is
difficult to know how much power is being sent out on the electrical power grid.

The electrical power grid is an extremely complex system, with loads and generators
varying in size, location, and operation [5]. For the power grid to function optimally
for all its consumers and generators, it is important that there is a balance between
generation and consumption [5]. This balance is carefully controlled by the transmis-
sion system operators [5]. With the increasing penetration of renewable energy in
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the power grid, it is becoming increasingly important to be able to have accurate
forecasts of the power generation from these renewable energy resources to report to
the TSO [6].

1.2 Objective

Many publications have had good results in forecasting power generation and solar
irradiance. Beanli et al., Babar et al., and El-Baz et al. all achieved good results
with their method and beat their set reference model [7, 8, 9]. This thesis will be a
part of this academic work to make accurate power forecasts for power plants using
PV technology. For this thesis, a utility-scale PV power plant has been chosen with
three full years of data. This site was chosen because of its varying cloud condition
that makes power and irradiance forecasting challenging.

The objective of the thesis is to make 24-hour forecasts with a 1-hour resolution for
the power generation at the chosen site. In this thesis, this will be done with an
indirect approach in two steps, where the first step is to forecast the GHI with a
machine learning model using RFR. In the second step, the power generation will be
forecasted using the GHI from the first step.

For the forecast of power generation, two methods will be used and compared with
each other. The first method uses the same approach as was used to forecast the
solar irradiance with RFR. In the second model, the generated power is calculated
from the forecasted GHI through physical and empirical methods in several steps.
These methods will be compared with a forecast done by the commercial forecast
provider Solargis and a smart persistence model, as well as some results from the
literature. Several metrics are used to compare the forecasts, however, the skill is
chosen as the main metric of evaluation.
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Chapter 2

Theory

The concepts and theory presented in the following sections will give a good fundament
before the method and results are presented later. First, some factors affecting solar
irradiance on Earth are presented in Section 2.1, then the basics of power generation
from PV technology are described in 2.2. Next, an introduction to the electrical
power system is given in Section 2.3. In Section 2.4, machine learning and some
important concepts surrounding the field of machine learning are presented before
some preprocessing steps are presented in Section 2.5.

2.1 Solar irradiance

The Sun is the largest energy resource we have, every second the Sun emits 3.8 ·1026J
of energy, of which the Earth receives 1.7 · 1018J [10]. To compare, the entire world
consumed 6.35 · 1018J in all of 2021 according to ”Our World in Data” [3]. Even
though these astonishingly high numbers, when estimating the solar energy that
might be used for electric energy consumption, they might not be too accurate. The
irradiance on ground level on Earth is dependent on several aspects, some of these
will be explained in the following sections. The effects of the orbit and tilt of the
Earth will be explained in Section 2.1.1, the effects of the atmosphere in Section
2.1.2, and a brief review of the effects of clouds will be given in Section 2.1.3.

2.1.1 Earth tilt and rotation

It is common knowledge today that the Earth both revolves around the Sun and its
own axis. The Sun is the main source of energy on Earth, and the Earth’s movements
will have an effect on the energy the Earth receives [10]. Firstly, the orbit in which
the Earth revolves around the Sun is slightly elliptical. However, this has such a
small effect on the received energy that it can be neglected for the purpose of this
thesis. The effect of the tilt of the Earth in relation to the Sun is a big contributor
to giving the Earth seasons. The tilt of the Earth is 23.5◦, which means that the
Earth’s rotation axis is deviating 23.5◦ from the plane in which the Earth orbits the
Sun. This is shown with the diagonal red axis in Figure 2.1. This axis is fixed in
one direction, and because of this, the Earth experiences the seasons. The tilt both
affect the length of the day and the peak irradiance [10].
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Figure 2.1: The Figure shows Earth in two positions in relation to the sun and the tilt
angle, α, of the Earth’s axis (diagonal red lines) in relation to the vertical (vertical black
lines). On the red point on the northern hemisphere in the right Earth position, it is winter,
and the zenith angle between the solar irradiance and the zenith is θz. The left position
shows the irradiance on the same point but in summer, here the zenith angle is 0. Figure
adapted from Camacho [11].

Figure 2.2: Representation of the relevant angles used. The solar zenith angle is the angle
between the solar ray and the zenith. The solar elevation angle is the angle between the
solar ray and the plane. Lastly, the solar azimuth angle is the angle of orientation from
North in a clockwise direction, i.e. 0◦ is north, 90◦ is east, 180◦ is south and 270◦ is west.

The reason for the larger peak irradiance is also evident from Figure 2.1. The peak
irradiance is dependent on the zenith angle and the solar constant [11]. The zenith
angle (θz) is the angle between the Sun’s rays and the zenith, e.i. the normal of
the plane. This is shown in Figure 2.2, together with the solar azimuth and solar
elevation angle. The solar constant (G) is the total solar irradiance on a plane
perpendicular to the Sun rays outside the atmosphere with an average distance
between the Sun and Earth of 149.6 ·109 m. The value varies slightly, but a constant
of 1361 W/m2 is often used.
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The irradiance (P ) outside the atmosphere can be estimated with the formula

P = G cos θz (2.1)

where G is the solar constant and θz is the solar zenith angle. This is the maximum
irradiance possible to obtain on a horizontal plane on the Earth’s surface with the
same solar zenith angle. From Figure 2.1, the right earth experiences winter in
the northern hemisphere. There, the solar zenith angle is large thus making the
irradiance in Equation 1 small. On the left Earth, there is summer at that point and
the solar zenith angle is 0, the irradiance outside the atmosphere is, therefore, equal
to the solar constant [11].

2.1.2 The atmosphere

The rotation and tilt of the Earth decide the seasons and the irradiance on the Earth
[12]. However, the Earth is covered by an atmosphere that also interacts with the
radiation from the Sun, and is a substantial obstacle the Sun’s radiation meets on
its way to the surface of the Earth. A lot of the radiation is either absorbed or
reflected here, as can be seen from Figure 2.3. The first, smooth, spectrum shows
the black body irradiance of a body with a temperature of 5900 K. The Sun’s mean
surface temperature is approximately 6000 K [10]. The next spectrum represents the
radiation at the top of the atmosphere, and the lower spectrum is the radiation that
reaches Earth. Some atmospheric gasses like H2O, CO2, O2 and O3 absorb certain
wavelengths causing the dips in the lower spectrum in Figure 2.3 [12].

Figure 2.3: Solar spectrum at ground level (AM1.5), outside the atmosphere (AM0) and
the black body radiation of a mass with a temperature of 5900 K. Figure by Degreen under
CC BY-SA 2.0 DE license [13].

Solar radiation is also subject to scattering on its way through the atmosphere
[14]. This happens when an interaction with a particle in the atmosphere causes
solar radiation to change direction. Rayleigh and Mie scattering are two kinds of
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scattering that often are used to describe the interaction. Rayleigh scattering occurs
when particles the radiation are small, i.e. when interacting with the atmospheric
gases N2, O2, and CO2, and will scatter shorter wavelengths much more than longer
wavelengths. That is, blue light is much more likely to be scattered than red light
[14]. Mie scattering does not differentiate between the wavelengths like Rayleigh
scattering does [15]. This form of scattering occurs with larger particles like water
droplets, and scatter all wavelengths equally [15].

The intensity of radiation of the wavelengths that reach Earth in Figure 2.3 is
for a given Air Mass Ratio (AM) of 1.5. AM is a measure of how much atmosphere
the radiation is passing through [10]. At the top of the atmosphere, the radiation
has not yet passed through any atmosphere and has a AM0 spectrum as shown in
the middle orange plot in Figure 2.3. The irradiance at AM0 will be equal to the
solar constant of 1361 W/m2, this means that the integral over all the wavelengths of
the middle orange curve in Figure 2.3 is equal to the solar constant. On the surface
of the Earth, the AM will vary throughout the day, depending on the solar zenith
angle(θz), and is given by the equation

AM =
1

cos(θz)
(2.2)

where θz is the solar zenith angle [10]. This formula states that the AM will be
lowest under clear sky conditions when the solar zenith angle is 0◦, e.i., when the
Sun is directly overhead [10].

The radiation that is scattered but reaches the ground, is called diffuse radiation
[10]. Together with the direct unscattered radiation from the Sun, this forms the
GHI. This is the total irradiance on a horizontal surface on Earth [10].

2.1.3 Clouds

Many of the effects listed above are somewhat possible to calculate just by knowing
the local time and location on Earth. The weather, on the other hand, is much more
unreliable, but will also affect the irradiance on the surface greatly. More specifically,
the weather phenomena of clouds can have a large impact on solar radiation [12].

Clouds have an average albedo of 0.6, e.i. 60% of the incident irradiance is reflected
back to space [12]. The cloud albedo will vary with varying cloud thickness, where
thin clouds will reflect less of the irradiance than thick clouds. The darker the
underside of the cloud is, the more of the Sun’s irradiance is reflected by the cloud
[12]. The irradiance that is not reflected is scattered with Mie scattering by the
cloud droplets, thus making the cloud look white [15].

It is normal to separate the clouds depending on how high in the atmosphere
the base of the clouds are [12]. For the mid-latitude regions, low clouds are typically
below 2000 m, medium-height clouds are between 2000 m and 5000 m, and high
clouds are above 5000 meters. Some clouds, like larger thunderclouds, will cover all
heights. Depending on where the clouds are located, they will also have different
properties, Figure 2.4 show how clouds at different heights can look [12].

6



The clouds in the highest region in Figure 2.4 are thin and look white or sometimes
transparent [12]. These clouds form in a part of the atmosphere where the air is
relatively cold and dry and they consist mainly of ice crystals. The medium-height
clouds are white or gray and consist of water droplets, however, when the temperature
is low, there can also be some ice crystals. Precipitation can form in the altostratus
clouds from Figure 2.4 if they are sufficiently thick. When this happens the base
of the cloud usually lowers and if the precipitation reaches all the way down to the
ground, the cloud is reclassified as a nimbostratus cloud in the lower region. The
clouds in the lower region are almost always consisting of droplets, but also these
clouds can consist of ice crystals if it is cold enough. The precipitation that reaches
the ground is mainly from these clouds which can range from white to dark grey in
color depending on cloud type and thickness. Some clouds can also cover all the
height regions as cumulonimbus in Figure 2.4. These are dark thunderclouds that
can cause heavy precipitation [12].

Figure 2.4: Clouds at low, medium, and high altitudes in the atmosphere. Figure
from UCAR - center for science education by L.S. Gardiner under CC Attribution 4.0
International license [16]

Different cloud types will affect the GHI, however, so will the time of day and location
on the globe. Only knowing the irradiance is therefore not enough to describe how
much the clouds or other atmospheric effects affect the irradiance. The clearness
index (Kt) is a measure of global horizontal transmittance through the atmosphere
and is given by

Kt =
GHI

G cos(θz)
(2.3)

where G is the solar constant outside the atmosphere and θz is the solar zenith
angle [17]. Since the equation is dependent on the solar zenith angle, the clearness
index will be relatively independent of the time of day, thus making it possible to
compare cloud conditions throughout a day based on this index. A clearness index of
0 indicates no atmospheric transmittance, whereas 1 represents 100% transmittance
[17].
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2.2 Solar energy generation with photovoltaic (PV)

Today, solar energy is the fastest-growing source of energy in the European Union
(EU) [18]. PV technology is a way of directly utilizing solar energy as electric energy,
and with a price decrease for PV power from 5.55 $/W in the year 2000 to 0.27 $/W in
2021, it is a highly competitive source of energy in the EU [18, 19]. In 2022, 6.2% of
the world’s electricity demand was covered by power from PV power plants according
to International Energy Agency (IEA) [20]. This might seem small, but in 2011,
solar energy accounted for 0.3% of the total electricity generation [3].

It is evident that solar energy and more specifically, PV is an important part of
future energy generation. It is therefore important to understand the technology and
infrastructure that is necessary. In the following section, the fundamental physics in
PV technology is presented in Section 2.2.1, basic concepts of the PV module will
be introduced in Section 2.2.2, the function of solar tracking will be explained in
Section 2.2.3, and finally inverters as a connection to the power grid in Section 2.2.4.
The theory in this Section is based on the textbook ”Solar energy - The physics and
engineering of photovoltaic conversion, technologies and systems” by Smets et al.
unless stated otherwise [10].

2.2.1 The fundaments of PV thecnoology

The fundaments of PV technology date back to Alexandre-Edmund Becquerel’s
discovery of the photovoltaic effect in 1839. The photovoltaic effect is described
as a generation of an electric field at the junction between two materials when
they are exposed to light. This happens because the energy in the light excites
electrons in the illuminated material from the valence band up to the conductive
band. The free electrons will move to the other material, thus making a negative
charge in that material and a positive charge in the illuminated material which
causes an electrical field [21]. In solar cells, these two materials are two layers of
semiconductors where one layer is doped with an element with more valence electrons
than the semiconductor, and the other layer is doped with an element with fewer
electrons. When this junction, called a p-n junction, is made into a closed circuit, it
can generate electrical energy when illuminated with solar radiation.

Solar radiation consists of energy quanta called photons, with energy (E) given by

E = h
c

λ
(2.4)

where h is the Planck constant, c is the speed of light and λ is the wavelength of the
photon. From this equation, one can see that the lower the wavelength, the higher
the energy of the photon is.

The energy difference between the valence band and the conductive band is called the
bandgap, and the electrons need that exact energy to be exited. If there is too little
energy, the electron will not be exited, if there is too much, the difference between
the received energy and the bandgap will be deposited in the material as thermal
energy. For crystalline silicon, the most common semiconductor material used in
PV technology, the bandgap is 1.12 eV which, through equation 2.4 translates to a
wavelength of 1107 nm.

8



From Figure 2.3 one can see that all the visible light has a smaller wavelength than
1100 nm. The energy from photons with a wavelength larger than 1100 nm is lost,
as well as the difference in energy between the bandgap energy and photons with a
wavelength smaller than 1100 nm. These are the two major loss mechanisms taken
into account when calculating the Shockley-Queisser limit which is a theoretical
upper efficiency limit for single junction solar cells. For crystalline silicon, the
Shockley-Queisser limit is not directly applicable because of its indirect bandgap
(which this thesis will explore in further detail), however, a limit of 29.43% has been
derived by Richer et al [22].

2.2.2 The PV module

Figure 2.5: Example of how the layers in a solar cell can be arranged and connected to
an external circuit [10].

One semiconductor junction makes the power-generating component of a solar cell.
Figure 2.5 shows the layers of a crystalline silicon solar cell, which is the most used
semiconductor material in PV modules. The middle portions of the Figure represent
the p-n junction. When sunlight is shining on this junction, the photovoltaic effect
sets up an electric field making the electrons move into the front contact grid, through
the circuit, and back through the back contact. The amount of current flowing
will depend on the intensity of the irradiance. PV modules are typically capable
of converting between 16% and 24% of the irradiance to electric power [23]. The
Figure also shows an anti-reflective coating, this is to reduce the reflection from the
cell, thus increasing the amount of absorbed energy by the solar cell. Note that the
current will only move in one direction through the solar cell, thus producing Direct
Current (DC).

The relation between the current (I) and voltage (V ) is shown as the full red curve
in Figure 2.6. The power (P ) is related to the voltage through the equation

P = IV. (2.5)

The Maximum Power Point (MPP) is marked with a circle, the product of the current
and voltage at this point generates the highest power. These curves are often made
with values derived from the solar cell under Standard Testing Conditions (STC)
when the irradiance on the solar cell is 1000 W/m2 with an AM1.5 spectrum and a
cell temperature of 25◦C. However, under normal operation, these conditions will
not be met most of the time because of the Sun’s movement and varying weather.
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Lower irradiance will cause the maximum current in the solar cell to fall, thus
decreasing power generation as seen from the dotted green line in Figure 2.6. In
Figure 2.6, the curve for increased cell temperature is also shown with a dashed blue
line. Increased temperature causes the maximum voltage to fall and the maximum
current to increase slightly which leads to an overall fall in maximum power. It
can therefore be beneficial to use PV technology in areas with some wind and low
temperatures to cool down the solar cells.

Figure 2.6: Relationship between current and voltage from a PV cell with STC, reduced
irradiance, and increased temperature. The MPP for each curve is marked with a circle.
Figure plotted with functions and data from pvlib [24]

When used in a module, many solar cells are connected in series as in Figure 2.7.
At the top of the Figure, there are three bypass diodes, one for each of the three
substrings in the series. These are in place to reduce the effects of shading of single
strings or cells. When a single cell in a substring does not receive solar energy, there
will be no energy generation in the cell. As the solar cells are connected in series, the
current in the rest of the string drops to the same level. The bypass diode ensures
that the shading of one solar cell will only affect one string and not the entire module,
thus reducing generation loss.

Figure 2.7: Solar module with three substrings with solar cells connected in series with
bypass diodes connected in parallel over each substring [10].

10



2.2.3 Tracking

As noted earlier, the Sun’s place in the sky varies, both with the time of day and
seasons of the year. Figure 2.1 and Equation 2.1 also demonstrate how a larger angle
of incidence gives a lower irradiance on a surface. Looking at a horizontal surface on
Earth, the surface will get a high irradiance in the middle of the day when the solar
zenith angle is at its lowest, i.e. when the Sun is at its peak position in the sky, and
a lower irradiance in the mornings and evenings when the solar zenith angle is larger.

A way of minimizing the angle of incidence on the PV modules’ surfaces is by using
a mounting system with tracking for the modules [11]. This can be done with single
or dual-axis tracking, where dual-axis tracking regulates both the module’s azimuth
angle and the module’s tilt angle, and the single-axis only regulates the tilt angle.
The tilt angle is the angle of the module plane in relation to the horizontal plane.
This kind of modification to the mounting system can greatly enhance generation in
the morning and evening, thus increasing the overall efficiency of the power plant
and making it possible to generate more energy[11].

When the modules are placed in several rows, there is a possibility of module-on-
module shading in the mornings and evenings [25]. This is solved by backtracking,
which decreases the tilt angle at times with low solar elevation angles Even though
this makes the irradiance on the modules lower, this is often less than the losses one
would have had from partial shading of a module. Figure 2.8 demonstrates how the
tracker uses backtracking as well as maximum tilt angle to make sure there is no
module-on-module shadowing [25]. The dotted green line shows how backtracking
makes the tilt angle gradually increase up to the maximum tilt angle in the morning,
compared to how the full, red line without any regulation starts the day with a high
tilt angle. The dashed blue line show how tracking looks with only a maximum
tracking angle without backtracking.

Figure 2.8: Tracking angle for solar modules with only single-axis tracking, tracking
and maximum tilt angle, and tracking, maximum tilt angle, and backtracking. The plot is
generated with pvlib [26].

2.2.4 Inverting the power

Since the energy generated by the solar power plant is in DC, the energy needs to
be converted to Alternating Current (AC) before it is transferred to the power grid.
This is done with an inverter. The inverter is equipped with an Maximum Power
Point Tracker (MPPT) that will adjust the current drawn from the solar modules so
that it operates at the MPP. The relation between current and voltage can be seen
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in Figure 2.6. This relationship will depend on the power the modules receive from
the Sun, therefore the MPPT must adapt throughout the day.

There are several system architectures to choose from when implementing an inverter
to a PV system. Three possible architectures are central, string, and micro-inverter.
With a micro-inverter, one or several modules are connected to one inverter. In a
system with string inverters, the modules are connected in series to form strings.
Each string is connected to a string inverter. When a central inverter is used, there
is one large inverter for several parallel connected strings with PV modules. Which
architecture is used, depends on the park’s design as well as costs. Generally, the
more inverters are used, the less one will be affected by shading or loss of generation
in some parts of the architecture. Since each inverter has its own MPPT, only the
inverter with the shadowed modules will experience a loss in power. However, since
inverters can be expensive, this tradeoff must be considered for each architecture.

2.3 The electrical power system

The electrical power system is a vast network of generators, loads, and power lines
often spanning over several countries [5]. The system is traditionally built up roughly
as shown in Figure 2.9. The power from generation units is transformed up to a
high voltage to be transmitted over large areas on the transmission system to the
distribution system [5, 27]. In the distribution system power is distributed from the
transmission system to consumers like industries, residential housing, and institutions
on a lower voltage [27]. The distribution system is controlled by a local Distribution
System Operator (DSO) and the transmission system by a regional or national
TSO [28, 29]. In this thesis, the main focus is on the TSO which is responsible for
transporting the generated power from the power plants to the distribution system
as well as maintaining the balance between power generation and consumption in
the transmission system [29]. In this section, the importance of power balance will
be introduced in Section 2.3.1 followed by the workings of the power market in
Section 2.3.2, Section 2.3.3 introduces the solution the balancing market provides
with curtailment as an example in Section 2.3.4.

Figure 2.9: Simple schematic representation of the electrical power system [27].
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2.3.1 Power balance

When discussing power systems, the balance between generation and consumption
is very important [30]. The power grid connecting the loads and generators in the
power system does not have any storage capacity. This means that the consumption
(and losses) must be equal to the generation at any given time [5].

However, the power system consists of many rotating generators in i.e. hydro, nuclear,
and gas power plants [5]. These provide the system with some degree of slack because
of their rotating property, and they rotate with the same synchronous frequency of
50 Hz (in Europe). When the system load exceeds the system generation, energy
from the rotational kinetic energy of the generators will be used to balance out this
difference. This leads to the generators losing rotational energy, thus slowing down
the frequency. The opposite happens when the generation exceeds the loads, leading
to an increase in frequency [5].

The frequency of the power grid at normal conditions fluctuates between 49.9 and
50.1Hz without it causing any harm to the system components [31]. However, larger
deviations could lead to a potential breakdown of the grid. If the frequency drop for
a generator is sufficient, this will eventually lead to the generator powering down,
thus leading to a further drop in frequency. This kind of event could lead to the
entire system collapsing and cause a power outage [31].

2.3.2 The power marked

The power generation is scheduled every day to match up with the anticipated load
as well as possible [5]. The scheduling is on a daily and hourly basis and tries to
choose the mix of generation units that gives the lowest cost. Power generation
units can be split into three categories based on their role in the generation mix;
baseload, load-following, and peaking units. The baseload units are the cheapest
power generators that can give a constant and steady flow of power, like coal or
nuclear power plants. The next unit follows the load, and when demand increases,
the generation unit can ramp up generation to follow, like in a hydroelectric power
plant. Finally, the peak units are used for demand peaks and are relatively expensive.
For these cases, gas turbines can be used [5]. This is the traditional generation mix,
however, with a higher penetration of renewable energy like solar and wind, a fourth
unit is added to the mix; must-take units [27]. These units only generate when the
weather conditions are right and can not be stored easily and must therefore be
deployed when available [27].

The scheduling is based on the prices of the power market [32]. The participants
in the power market are the power generators, brokers, energy companies, large
industrial customers, and power suppliers trading on behalf of small and medium size
consumers and industries. Bids are given on generation and the prices are set based
on demand in three organized markets. These are the day-ahead, intra-day, and
balancing markets. On the day-ahead market, power for each hour the following day
is traded. In the Nordic market Nord Pool, all trading must be done between 0800
and 1200. On the day of generation, from the time of clearing the day-ahead market
until one hour before the hour of operation, trading can be done at the intra-day
market. This is to account for changes in anticipated load and generation due to
for example changes in the weather forecast which can affect the power generation
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from renewable energy sources. The balancing markets are used within the hour of
generation and will be described in more detail in the following section [32].

2.3.3 The balancing market

To prevent frequency-caused power outages to happen, the TSO uses the balancing
market [31]. The balancing market is a marketplace that enables both generators and
large consumers to get paid by the TSO to alter their generation or consumption. The
types of balancing products can be categorized by their response time and duration,
i.e., how quickly they can be connected and how long they can be connected. In
Norway these categories as defined by the Norwegian TSO, Statnett, are [31]:

• Fast Frequency Reserve (FFR)

– 0.7-1.3 seconds response time; 5-30 seconds duration.
– Slows down the change in frequency.

• Primary reserve - Frequency Containment Reserves (FCR)

– 30 seconds response time; minimum 15 minutes duration.
– Stops the change in frequency and stabilizes the frequency at a new level.

• Secondary reserve - automatic Frequency Restoration Reserve (aFRR)

– Full response within 2 minutes; duration as long as the bid period lasts.
– Brings the frequency back to the normal frequencies (49,9-50,1 Hz).

• Tertiary reserve - manual Frequency Restoration Reserve (mFRR)

– Full response within 12.5 minutes; duration as long as the bid period lasts.
– Releases aFRR and maintains balance until a new balance is reached in

the energy market.

2.3.4 Curtailment

One way of regulating power generation is by using curtailment [33]. Curtailment can
be used both on power consumption and generation to achieve balance in the system
by reducing consumption or generation depending on whether the grid frequency is
too low or too high. It is however much more common to curtail power generation
than consumption. In particular, renewable energy sources are often the subject of
curtailment. The curtailment can be used to solve congestion problems caused by
bottlenecks in the grid or to control the frequency in cases of overgeneration in the
system [33].

2.4 Machine learning

The following Section about machine learning is mainly based on the textbook
”Python Machine Learning” by Raschka unless otherwise specified [34]. Machine
learning is a way humans have made computers learn connections and patterns in
data through different algorithms in a similar fashion as humans learn. The algorithm
runs many times with increasing accuracy [35]. As humans, machine learning is able
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to extract knowledge from data. Through machine learning the world has gotten
technologies like reliable spam filters, voice recognition software, search engines as
well as cancer detection software. There are endless possibilities yet unexplored for
the application of machine learning.

There are many different kinds of machine learning. One common way of grouping
different algorithms is supervised, unsupervised, or reinforced learning. When the
algorithm is supervised, it is trained with labeled data. That means that it is trained
towards a specific predetermined solution and evaluated on how well it performs
compared to this solution. In unsupervised machine learning the algorithm is trained
with unlabeled data. This is often used to find hidden connections within the data.
Lastly, reinforcement learning is implemented by rewarding desired behavior, thus
making the model learn the rules itself. In this section, the focus will be on supervised
learning since the GHI and power generation that are the targets of the predictions
are known in the data set that is used. First, an introduction to some basic machine
learning models will be given in sections 1 and 2, before moving on to the ensemble
model in Section 3, and at the end one of the most common problems in machine
learning, the problem with over and under fitting will be explained in Section 4.

2.4.1 Artificial Neural Network (ANN)

Figure 2.10: Schematical representation of an ANN network with an input layer, two
hidden layers, and an output layer. Nodes are represented by circles, the arrows between
show how the output from one node is multiplied with a weight before entering the next
node [34].

One subfield of machine learning is ANN. As the name implies, these algorithms
mimic the way neurons signal each other in the brain’s neural network. An ANN
is built up of layers of nodes, one input layer, one or more hidden layers, and one
output layer. The nodes are connected to the other nodes in the previous and next
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layers as shown in Figure 2.10. The number of nodes in the input layer is the number
of features in the dataset. If the problem is a classification problem, the number of
output nodes is the number of classes that are to be classified, and if it is a regression
problem as in Figure 2.10, there is only one output node that can take on continuous
values.

All the nodes from one layer are multiplied with weights before entering the next
node, the arrows in Figure 2.10 show where the weights are added. In the nodes in
the hidden layers and output layer, the node values multiplied with the weights are
summarized and sent through an activation function. The weights decide how much
to emphasize the information from the previous nodes, and the activation function
adds nonlinearity to the result by sending the result through a nonlinear function like
a logarithm, hyperbolic tangent function, or other functions. With each iteration,
the weights are updated based on a given optimization criteria so that the output is
as close as possible to the true value.

There are many kinds of ANN models from small single-layer networks to large
ANN networks that have intricate connections. However, no matter what kind of
model, hyperparameters are used to make the model generate the best possible
results. For ANNs hyperparameters decide things like how much to update the
weights after each iteration, the regularization (this will be explained in Section
2.4.4), the type of activation function, and much more.

2.4.2 Decision tree

Figure 2.11: Illustration of a decision tree. The brown boxes represent internal nodes
with thresholds or questions, and the green circles represent leaf nodes [34].

Another learning algorithm is the decision tree. The decision tree is a supervised
learning algorithm that, instead of weights, uses questions or threshold nodes to
separate the data into smaller and smaller nodes. As the name implies, this model
architecture resembles that of a tree. Figure 2.11 shows how the data start at the
stem of the tree and is divided by decisions made in the internal nodes of the tree.
The internal nodes decide where the data go by a question or threshold in the node,
these are the brown squares in Figure 2.11. If there are no more nodes coming out
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of a node, it is called a leaf node as seen as the green ovals in Figure 2.11, and
the structure now looks like an upside-down tree. Since this tree can grow very
deep with a large training set, it is normal to prune it. This is done by altering the
hyperparameters that decide the depth of the tree, the deeper the tree, the more
complex the algorithm is.

Decision trees can be used for both classification and regression and will, therefore,
have different measures of success depending on the purpose. The regression model
uses the within-node variance, which looks at how much the data deviates from the
mean of the data in each node. The sequence of splits that minimize this variance
will be chosen as the best model.

2.4.3 Ensemble learning

Decision trees are so-called weak learners. That means simple models that often are
only slightly better than random guessing. A commonly used practice is to use an
ensemble of weak learners to create a strong learner. A random forest is an example
of an ensemble model using bagging. The model uses the mean of an ensemble of
different deep decision trees. In each decision tree in the ensemble, a random set of
data is selected from the full data to train the tree, and at each node in the tree, a
random set of features are selected to make the split. Since the model uses the mean
of many trees it is not much affected by noise from one single tree, therefore, it is
often not necessary to prune the trees. This means that the hyperparameters that
prune the decision trees are less important. One hyperparameter that is important
for RFR is the number of trees in the random forest. More trees often lead to better
performance and more computation time.

2.4.4 Over-and underfitting

Figure 2.12: Graphs showing overfitting, underfitting, and a good tradeoff to the plotted
points [34].

A common problem with designing machine learning models is that they might adapt
too much from the training data. By doing so, the algorithm will predict or classify
perfectly or really well within the training data, but it loses its ability to adapt to
new unseen data, this is called overfitting. In order to manage this, regularization
is used. This is a method to generalize the algorithm so that it is able to adapt to
new data. However, one must be careful to not regularize too much, so that it will
lose its ability to find patterns in both the training and the test data. The trade-off
between overfitting and underfitting is visualized in Figure 2.12 where the left graph
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shows overfitting to the plotted points, the center shows underfitting and the right
plot shows a good tradeoff between over and underfitting to the points.

2.5 Preprosessing

No matter what one does in the model-building step, the result will always depend
on the data that is put into the model [34]. In the following section, a few important
aspects of the prepossessing of the data will be explained starting with missing data
in Section 2.5.1, outliers in Section 2.5.2, the use of feature selection in Section 2.5.3,
and finally, some evaluation metrics in Section 2.5.4.

2.5.1 Missing data

Missing data is a normal problem in data analysis [34]. There can be different sources
for the missing data, whether it is equipment error, computer error, or human error.
As with the sources of the missing data, there are also several different ways to deal
with them. One method is to delete the row or column with the missing values. This
is a simple technique that does not add estimates to the data, however, it can lead to
large amounts of missing data and loss of valuable information. Another technique is
imputation, this can potentially give a complete dataset which can be beneficial for
several machine learning techniques. Some commonly used imputation methods are
mean imputation, rolling mean, interpolation, modeled data, and using data from
other sources [34][36]. Imputing missing data can lead to a bias in the data and
change in variance and should only be used if necessary [37]

2.5.2 Outliers

Another normal problem one can face when investigating the data is outliers. An
outlier is a data point that deviates significantly from its expected behavior [38].
Replacing or removing abnormal values without understanding the reason for their
abnormality might remove important information from the data. Therefore, it is
important to understand why these values deviate from the rest of the data. If it is
reasonable that the deviation is because of errors in the data, it is considered safe to
take action against the outliers [38].

Handling outliers can be done by replacing the outliers with missing values or
a value that follow the data more closely [38]. If one chooses to replace an outlier
with a value, the missing data methods in the previous section can be applied.

2.5.3 Feature selection

With a large number of features, it can sometimes be beneficial to extract the most
relevant ones [39]. This can reduce both noise in the data and the computational
time of the machine learning model [39]. This can be done with a variety of different
feature selection algorithms that use different techniques [40].

One simple feature selection method is using the Pearson correlation matrix [41].
The correlation is a measure of the linear relationship between two features where -1
is a total negative correlation, 1 i is a total positive correlation and 0 is no correlation
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at all. When using this method, a cutoff value is set so that the features with a
correlation to the target with an absolute value lower than the cutoff, are not seen
as a relevant feature [41].

Another method is the Boruta method [39]. Boruta is a RFR based algorithm that
removes features that are proven to be less relevant than random noise [39]. This is
done by replacing one of the features with a shadow attribute containing the shuffled
data for the feature and then doing a test to see if the predictive capabilities of the
RFR model change. If it does not change, the feature does not give any relevant
information and is therefore removed. This is done for all the features in the data
[39].

2.5.4 Evaluation metrics

There are many metrics for evaluating the accuracy of a model. In table 2.1 five
metrics will be explained.
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Table 2.1: Evaluation criteria with their symbols, formulas, and explanations.

Symbol Formula Explanation

MBE
1

n

n∑
i=0

yi − y′i Mean bias error gives an estimate on the
average bias of the model, positive MBE means
the model on average underestimates the truth,
negative values mean the model overestimate
on average [42]. It is not usually a measure
of fit since large over and underestimating can
cancel each other out and also give the desired
0 value. MBE is in the same unit as the results.
In the equation, yi is the truth, y

′
i is the model

formula, and n is the number of samples [42].

MSE
1

n

n∑
i=0

(yi − y′i)
2 Mean squared error is the mean of the

squared difference between the model estimate
and truth [42]. Because of the squaring of
the errors, large errors are penalized more and
small errors less. In the formula, yi is the truth,
y′i is the model estimate, and n is the number
of samples [42].

RMSE
1

n

n∑
i=0

√
(yi − y′i)

2 Root mean squared error is the squared
rood of Mean Squared Error (MSE), which
leaves this metrics with the same qualities as
the Mean Squared Error (MSE) [42]. Because
of the squared root, it penalizes large errors
less. This metric will be in the same unit as
the results. In the formula, yi is the truth, y′i
is the model estimate, and n is the number of
samples [42].

PAPE
100%

N

N∑
i=0

√
(yi − y′i)

2 Peak absolute percentage error is a mea-
sure of how well the peak value in each period
is estimated. The output is the percentage
difference between the model’s peak value and
the true peak value [43]. This metric is scale
independent. In the formula, yi is the period
peak of the truth, y′i is the period truth of
the model estimate, and N is the number of
periods [43].

SS 1− RMSEforecast

RMSEreference

Skill score is a measure of how well a models
estimate is compared to a reference model [44,
45]. If the output is less than 0, the model
is worse than the reference, the output is 0,
the models are equal. Finally, if the output is
between 0 and 1, the model estimate is better
than the reference model [45].
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Chapter 3

Method

In this chapter, the method used to forecast power generation is explained. The
proposed method is summarized in the flow chart in Figure 3.1. Before starting on
the description of the method, a short literature review stating how others have
approached similar problems will be given in Section 3.1. Next, the case for this
thesis will be presented in Section 3.2, and an introduction to the software used is
given in Section 3.2.1. Then the presentation of the proposed method starts with
presenting the available data in Section 3.3, followed by the steps to preprocess the
data in Section 3.4. This includes missing data and outlier handling, scaling, and
data splitting. The process of feature selection is then explained in Section 3.5. After
this, the two different forecast methods are introduced in Section 3.6. Finally, the
evaluation is presented in Section 3.7.

Figure 3.1: Flow chart of the method used to preprocess the data, make the models and
evaluate the results.

3.1 State of the art

With the increase in renewable power generation from PV technology, there has also
been an increase in scientific work concerning PV power forecasting [46]. Gupta et
al. and Antonanzas et al. collected and summarized various works in their review
publications in 2021 and 2016 [46, 45]. In these reviews, forecasting of solar power
is divided into direct and indirect forecasting methods. Direct forecasting methods
forecast the power generation directly whereas indirect forecasting methods forecast
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solar irradiance first, then power generation is forecasted based on the solar irradiance
forecast. Many works focus solely on solar irradiance, as this in itself is the most
difficult element to forecast. The works done about irradiance forecast are also
relevant for power forecasts, as many of the same methods are used [45]. Gupta
et al. also divides the forecast methods into two groups: data-driven and physical
models. The data-driven methods extract useful information from the features in
the given training data and use that to make a forecast model, whereas the physical
model uses numerical methods and physical formulas to calculate the forecasts [46].
In this thesis, both these methods will be examined. However, first, a short review
of solutions for similar problems will be presented.

Babar et al. used RFR in their publication from 2020 to forecast solar irradiance at
high latitudes in Norway and Sweeden [8]. There was a need for better irradiance
forecasts than the ones provided by a satellite-driven method and reanalysis data.
The satellite-driven forecasts had a large number of missing values as well as a
tendency to underestimate the irradiance, and the reanalysis data had a tendency
to overestimate for high latitudes. A RFR model with the satellite-driven data and
reanalysis as input was tested, and proved to be better than both the satellite-driven
data and the reanalysis data as well as outperforming a linear regression model [8].

Another solar radiation forecast was performed by Benali et al. in 2018 for a location
in France [7]. They compared the performance of smart persistence, ANN and RFR
on forecasts of GHI, beam normal irradiance, and diffuse horizontal irradiance. The
forecasts from these models had a 1-hour resolution and 6 different time horizons,
with time horizons from 1 to 6 hours ahead. RFR had the lowest Root Mean Squared
Error (RMSE) for all time horizons, with the lowest RMSE being for the shortest
horizon and the highest for the longest horizon. Smart persistence scored better than
the ANN model for the shortest time horizon but scored worst on all longer horizons
[7].

The oldest article reviewed in this thesis is by Bacher et al. from 2009 [47]. They
forecasted PV power generation from rooftop systems in a village in Denmark with a
typical peak capacity between 1 and 4 kW. Before forecasting future power generation,
the power generation values were normalized with a clear sky model. The power was
then forecasted using a statistical autoregression model with three different variations.
One with only historical power generation as input, one with only Numerical Weather
Prediction (NWP) for solar irradiance, and one with both. It was found that for
longer horizons (day ahead forecasts), the two last methods were superior two the
first [47].

Larson et al. also used NWP to forecast power generation. In their case, they used
fixed-axis rooftop PV on two American schools with a peak installed capacity of 1
MW [48]. They used an indirect approach with physical methods. For the calculation
of GHI, two methods were used. The first used the GHI provided by one of two
NWP providers directly. The other used the cloud coverage index provided by the
NWP providers and clear sky irradiance to calculate GHI through a deterministic
model. Power generation was found through a linear relationship between power and
GHI for both methods. The authors found that their method could reduce errors in
forecasts of PV generation in the day-ahead market [48].
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In the article by El-Baz et al. from 2018 in Germany, power generation from a
rooftop PV system with a fixed axis and an installed capacity of 3 kW was forecasted
[9]. An indirect approach was used where the first step entailed tuning a clear-sky
model for power generation which took shading from nearby buildings into account.
In the second step a data-driven method with bagging regression trees with data
from NWP. Bagging regression trees is closely related to RFR, where both use an
ensemble of decision trees for regression [49]. The input features provided by the
NWP were temperatures, wind direction, wind speed, cloudiness, and humidity [9].

Riise et al. researched forecasting of solar irradiance on two sites in Norway using
RFR with data from the weather forecasting service Yr in 2023 [50]. The data
that were found to be most influential were lagged GHI measurements, clear sky
irradiance, low, medium, and total cloud cover, and relative humidity. These features
were used to forecast GHI with 1-hour resolution and horizons between 1 hour and 48
hours. The models were tested on data from the sites it was trained on, in addition,
one of the models was tested on the other site. All skill scores for the tests gave
positive values, meaning all models performed better than smart persistence [50].

3.2 Case

For this thesis, the site chosen as the case is a utility-scale PV plant using crystalline
silicon modules [51]. The modules are installed on mounting systems with single-axis
tracking using backtracking and maximum tilt angle. The site has an installed
generation capacity above 100 MW and uses several central inverters to convert the
power from DC to AC. These inverters are connected to smaller transformers which
transform up the voltage before sending it to a central transformer station. In the
central transformer station, the voltage is transformed to a high level to be connected
to the transmission grid [51].

Figure 3.2: Total measured rainfall for each month of the period 2020 to 2022 at the site.

The site is also equipped with various sensors monitoring the weather conditions
spread over the site. These measurements will be presented in Section 3.3. The site
lies close to the equator and experiences a rainy season and a dry season. This can
be seen in Figure 3.2, which shows the monthly precipitation on the site for the three
years of data used in the thesis. Most of the precipitation falls in the period between
January and July. Any forecasting model for PV generation needs to be developed
to fit the conditions of the PV plant location. Riise et al. demonstrate this in their
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article concerning PV forecasting models [50]. Models trained with data from the
site got skill scores close to 0.3, whereas models trained on data from a different site
got a skill score of less than 0.05 [50]. Therefore, some general knowledge about the
weather on the site is beneficial.

3.2.1 Software

When dealing with large data sets it is important to have good tools to do so. Python
is one of those tools. Python is a programming language with a large collection
of libraries, enabling it to solve a wide spectrum of problems [52]. In this thesis,
focusing on solar energy and machine learning, there are especially three important
libraries that are used:

• pvlib is a library containing functions and methods enabling the user to simulate
PV systems and solar trajectories [26].

• scikit-learn provides a variety of machine learning algorithms and data analysis
tools [53].

• Darts is a library specialized in time series, focusing on anomaly detection and
forecasting [54].

Most of the programming has been done with Python on a regular laptop, however,
the grid search described in Section 3.6 was too computationally demanding and
time-consuming for a regular computer. Therefore the Orion High Performance
Computing system at the Norwegian University of Life Sciences (NMBU) was used
[55]. This made it possible to run several computations in parallel, thus significantly
decreasing the total computation time [55].

3.3 The data

The data used in the forecast process came from four sources:

• On-site measurements of weather parameters

• Meteorological forecasts from the weather forecasting service Yr

• Matemathical features from pvlib

• Estimates from the commercial company Solargis

Together, the first three sources formed the basis for the forecasts. The data from
Solargis was used as a reference as well as for imputations of some features. In
the following section, an overview of the data and its features will be given. A full
overview of the data is given in Figure 3.1
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Table 3.1: Overview of data used from the different sources. Data that were not used in
any steps of the process are not listed in the table.

On site Solargis Yr pvlib

Module tempera-
ture

Ambient tempera-
ture

Humidity Clear sky irradi-
ance

Ambient tempera-
ture

GHI forecasted Ambient tempera-
ture

Solar elevation an-
gle

Wind direction GHI estimated Wind direction Module tracking
angle

Wind speed Generation
forecasted

Wind speed Estimated module
temperature

Precipitation Generation
estimated

Precipitation

Pressure Pressure
Plane of Array ir-
radiance

Total cloud cover

GHI High clouds
Power generation Medium clouds

Low clouds

3.3.1 On-site measurements

The measurements on site were made by various sensors placed across the site. The
median value was taken across all measuring sensors for each feature and was used
as data in this thesis. Table 3.2 lists the measurements taken on the site, and the
total number of measurement points. All the sensors register measurements every
15 minutes. These measurements were resampled to 1 measurement per hour by
averaging.

Smart persistence for both power generation and GHI is made based on the measure-
ment data and added as a feature to the data. This feature was used to produce the
skill scores for the results and was made by shifting the GHI and generation features
24 hours forward [45]. Since one of the simplest forecast models for forecasts with a
24-hour horizon is stating that yesterday’s events will be repeated today, this is a
good reference to compare the results to [45].

Table 3.2: Number of sensors N for on-site measurements

Data measured N

Module temperature 12
Ambient temperature 13
Wind direction 13
Wind speed 13
Precipitation 1
Pressure 1
Plane of Array irradiance 23
GHI 25
Power generation 1
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3.3.2 Yr

As Riise et al., this thesis also uses meteorological data from the publicly available
weather forecast service Yr in the forecasts [50]. Yr provides weather forecasts
and other meteorological information from NWPs [56]. From their webpage yr.no,
one can access forecasts 48 hours into the future with a one-hour resolution. Yr
has its main focus on the Nordics but also provides weather forecasts for the rest
of the world by using the weather forecasting model from the European Centre
for Medium-Range Weather Forecasts (ECMWF) [56]. This model has a spatial
resolution of approximately 9 km2 and is updated every 4 hours [56]. To use forecasts
made in the past, Institute for Energy Technology (IFE) has logged 48-hour forecasts
from Yr ’s webpage every hour from 2018 to 2022. This has given a data set of 48
hours with forecasts for each hour between 2018 and 2022.

For the purpose of 24-hour irradiance forecasts, only the 24-hour weather forecasts
issued at midnight were used for the years 2020 to 2022. This made a continuous
forecast that equals checking the weather forecast every midnight. This is beneficial
for the purpose of this thesis, where the forecasts for the following day were issued
at midnight.

3.3.3 pvlib

pvlib is a library in Python that provides tools for simulations of PV systems [26].
For this thesis, version 0.9.4 was used. Tools form pvlib make it possible to for
instance simulate the steps between clear sky irradiance and AC power output. These
steps will be explained in further detail in Section 5. As well as providing functions
to calculate result time series based on input time series, the library also provides
mathematical simulations of useful features based on a few input values. Given the
latitude, longitude, altitude, and time of day, a pvlib function will return the Sun’s
elevation angle or clear sky irradiance. With some more input, one can also get the
solar panel’s tracker angle. These functions were being used as potential features
for the machine learning process as well as in the prepossessing of the measurement
data [26].

3.3.4 Solargis

Solargis provides historic, recent, and forecast data for solar power generation [57].
These data consist of Direct Horizontal Irraiance (DHI), Global Tilted Irradiance
(GTI), GHI, power generation data, as well as weather data for a given site. Satellite
data is used in a semi-empirical solar radiation model for historic and recent radiation
data. The forecasts use NWP models that are dynamically improved with data
from the satellite model [58]. For the meteorological data, NWP models are used.
To get better accuracy and homogeneity for temperature, the temperature data
is post-processed to make its spacial resolution smaller [59]. As with the on-site
measurements, the Solargis data also provide one measurement every 15 minutes,
these data were therefore also resampled.
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3.4 Data prepossessing

3.4.1 Outliers

For most of the features, no large outliers or deviations that needed to be removed
were found. The pressure data did contain a lot of outliers where the pressure
was significantly lower than in the rest of the distribution, however, because of the
generally low quality of this feature, this feature was not imputed. Also in the
generation data, there were occasional deviations like the ones shown in Figure 3.3.
The value of the spike on the first day in Figure 3.3 is about 80% of the median daily
generation for the entire three-year period. Therefore, it is reasonable to consider
that the events are the cumulated generation logged into the system after some
time without logging. As well as large positive outliers, there were also periods
with curtailment where the generation was much lower than the measured irradiance
indicates because of excess power in the electrical grid [33]. Since the curtailment
losses happen due to factors outside the power plant, the most extreme generation
reductions due to curtailment were also removed.

Figure 3.3: Plot showing the normalized measured power generation for four days in March
2022. The plot shows an anomaly on the first day where the measurement is significantly
larger than for the following days.

Table 3.3: Percentage of missing and removed values for the target features where the full
data set consists of 26256 hourly measurements.

GHI Power generation

Missing 0.29% 0.23%
Removed - 0.11%

Total missing 0.29% 0.34%

As a means to efficiently remove the most extreme outliers, a z-score was used with
a cut-off value of 4. To be able to take the daily periodicity into account, the data
were grouped by the solar elevation angle and the z-score was calculated for every
single group. The recommended cut-off value when using z-scores is normally 3 [60].
However, since the z-scores for each elevation group were not perfectly normally
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distributed, a higher z-score made sure no normal values were cut off. The portion
of the data removed with this process was 0.11% as shown in Table 3.3.

3.4.2 Missing data

As with most datasets, all the datasets used in this thesis also have some degree of
missing data. For the target features, i.e., GHI and power generation, no imputations
were made except for filling out 0 values when the solar elevation angle was less than 0.
At these times there will never be any irradiance or power generation. Some different
methods of imputation were used for the explanatory features, this is explained in
the following paragraphs and summarized in Table 3.4

No strong seasonality was found in the wind speed measurement. However, the rest
of the measurement data have a strong daily seasonality. Since the wind speed does
not depend directly on any of the other features, a simple linear interpolation was
used. For wind direction and ambient temperature, a rolling seasonal mean of the
last five days was used to impute missing data. The amount of missing data for
precipitation and pressure was so large that these features were dropped instead of
imputed. Even though no missing values were imputed in irradiance, they were filled
in the smart persistence model. This was done to have a complete set of explanatory
features with few missing values, thus giving the model more to train on. The missing
smart persistence values were filled with the estimated GHI from Solargis.

Table 3.4: Percentage of imputed values for measurement data and technique used. The
measurement data had a total of 105120 15-minute measurements, whereas the Yr data
had 26256 hourly measurements

Measurement Method Missing Imputed

Ambient temperature Solargis. 0.64% 0.52%
Rolling mean 0.12%

Module temperature Ambient temperature transformed
with pvlib

1.78% 1.78%

Wind direction Rolling mean 0.42% 0.42%
Wind speed Interpolation 0.64% 0.64%
Pressure 3.6%
Precipitation 1.6%
Smart persistence Solargis 0.52 % 0.42%

Yr data Filled with forecasts done 25 to 48
hours ahead for the same timestamps.

23% 2.6%

Mean value if elevation < 0 6.6%

The Yr data had several long segments of missing data spanning several days as well
as occasional missing values. As only the first 24 hours of the 48-hour forecasts were
used as features, the 25 to 48 hours ahead forecasts were used to impute if there
were missing values. If there were missing values in the 24-hour forecast for one day,
the 48-hour forecasts made the day before were used to impute. This technique had
relatively good accuracy with a RMSE of 0.7◦C for the temperature forecasts and 0.6
mm for the precipitation. The nighttime values when the Sun’s elevation is less than
0◦ were imputed with mean values. This will not contribute to the GHI or power
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forecasts, however, since the model needed days with no missing values, this will
could increase the number of days used for forecasting.

The design of the method does not allow any missing data in either the features or
targets for the 24-hour forecast horizon. That means that was is not possible to do
forecasts on days with one or more missing values. Therefore, the true portion of
missing data would be the percentage of days with at least one missing value. The
distribution of the days with no missing values is shown in Figure 3.4. In the total
preprocessed dataset, 26.3% of the days had one or more missing values for the GHI
forecasts and 32.1% for the power forecasts.

Figure 3.4: Missing days for the GHI forecast in dark blue and for the power generation
forecast in light blue.

3.4.3 Scaling

There are many ways to scale the data before initiating the learning process. For
these data min-max normalization was chosen. The equation for the scaling is given
by

xscaled =
x−min(x)

max(x)−min(x)
(3.1)

where x is the feature, and xscaled is the scaled feature [61]. This scaling sets the
range of the data to [0,1] with 0 being the smallest and 1 the largest value for each
feature in the training set [61]. For the targets, this scaling would set the maximum
values to 1 and no irradiance or power generation to 0. This makes the results easy
to read even in their scaled form. However, this method can be highly influenced
by outliers, and should not be used without preprocessing or good knowledge of the
data [61]. Of the features used in this thesis, the power generation values were the
ones with outliers, and these were removed before scaling.

3.4.4 Splitting the data

The data were split into three smaller datasets for training, validation, and testing.
There is no set truth for what the best data split is, but for this thesis, 1/3 splits were
used, to get one full year of data with all seasons represented for testing [62]. 1/3 of
the data was set aside for the final test of the data, and 1/3 of the remaining data
was used to validate the models made with the training data. This gave the split
44% of the data for training, 22% for validation, and 33% for testing. With this split
the training data was raging from 01/01/2020 to 06/05/2021, the validation data
from 07/05/2021 to 23/12/2021, and the test data from 24/12/2021 to 31/12/2022.

When splitting the data for the GHI forecasts, the splits were made to the full
dataset, meaning all of 2022 would be used for testing. For the forecasts of the power
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generation, a new approach was used due to a large amount of missing data in the
first two year as is evident from Figure 3.4. Therefore the fractions were based on the
days without any missing values, leading to the test set starting at the 7th of May
2022. This resulted in less than a full year of testing. However, this approach did
leave more data for training and validating the model properly. With this new split,
the interval for the training data was ranging from 01/01/2020 to 28/11/2021, the
validation data from 29/11/2022 to 06/05/2022, and the test data from 07/05/2022
to 31/12/2022.

3.5 Feature selection

When features from all sources were added together, there were 20 features that could
be used to forecast GHI and 21 that could forecast power generation. As it would
take too long to check all the feature combinations with this number of features,
a feature selection using the Boruta method was carried out. This method was
chosen because of its speed and ease of implementation [39]. As with the forecasting
model used in this thesis, Boruta is also based on RFR [39]. In Degenhart et al.’s
comparison of feature selection methods for RFR, the Boruta model is seen as the
most powerful feature selection method with good stability in the feature selection
[40]. As Boruta is part of the library BorutaPy that is based on scikit-learn, it was
also easy to implement to a scikit-learn RFR [39].

To avoid being overly affected by the randomness of the RFR model and to make
sure all potentially influential features are included, the model was run repeatedly
10 times. The results of these iterations are shown in the appendix Figure 5.1 and
Figure 5.2 in the Appendix. All features that passed the test at least once, i.e. gets
ranked 1 at least once, were selected for further processing.

3.6 The forecasting methods

For this thesis, RFR was chosen as the forecasting model. RFRs have been used
with good results by Benali et al. for intra-day forecasts (1-6 hours) in France and
Babar et al. for locations at high latitudes in Norway and Sweeden [7, 8]. In the
literature review by Gupta et al., the ensemble learning techniques (as RFR is a part
of) also outperforms ANN and other machine learning techniques [46].

The main goal of this thesis was to forecast power generation from a PV power plant.
This was done through two different methods, one data-driven, and one physical
method. The flow chart in Figure 3.5 demonstrates the two different ways the power
generation was forecasted. The top chart is the data-driven model hereby referred to
as Method 1, and the physical method in the bottom chart is Method 2. A review of
both methods will be given after the introduction of the general RFR model that is
used initially in both models.
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Figure 3.5: Flow chart showing the proposed methods, with Method 1 in the top chart
and Method 2 in the bottom chart.

3.6.1 General Random Forest Regression (RFR) method

The method for optimizing the RFR models is shown in Figure 3.6. First, a grid
search over a large number of different combinations of features was performed. Here
the feature combinations were the only hyperparameter that was changed in each
iteration. This would give the best combination of features as well as the number of
features necessary.

Because the RFR model is a random model, even with the same parameters, it will
produce a slightly different model each time it is called. Therefore, the 100 best
feature combinations were run once more with 10 reiterations of each model. The
feature combination with the best average Mean Squared Error (MSE) after this
process was considered the best and selected for further optimization.

The next step was to find the optimal combination of hyperparameters. This was done
by searching over all combinations of different values for the selected hyperparameters
combined with the 5 best feature combinations. As with the feature combination
search, also here the 100 models with the lowest was MSE run 10 times to get the
model with the best average MSE value after 10 iterations.

Figure 3.6: Flowchart showing the proposed RFR optimization method.

3.6.2 Method 1

Method 1 is a completely data-driven method that uses the RFR method described
above first to estimate the GHI. The RFR method was used again on the estimated
GHI together with all the other features selected by the Boruta feature selection to
directly output a forecast for power generation.
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3.6.3 Method 2

Method 2 is a partial physical method that consists of a series of operations to get
from GHI to power generation. The first step towards a power forecast was to forecast
the GHI. This was done with the data-driven method using RFR described above.
The data produced from these forecasts were put through several pvlib functions
as shown in Figure 3.5 (the pvlib functions used for each operation are listed in
footnotes). The forecasted GHI data was transformed to Plane of Array (POA)
irradiance1, which, together with the forecast module temperature 2 and wind speed
was used to calculate DC power 3 which was transformed to AC power 4. POA
and forecast ambient temperature were used to get an estimate of forecast module
temperature.

3.7 Evaluation criteria

To evaluate the performance of the models, the evaluation metrics listed in Table 2.1
in Chapter 2.5.4 were used. MSE was used as the objective function, e.i. the value
that was minimized when evaluating which model performs the best in the feature
and hyperparameter combination selection in the RFR models.

As well as using MSE to select the best performing RFR model, the rest of the
metrics in Table 2.1 were used to compare the results from Methods 1 and 2 with
each other as well as with the model from Solargis. Skill score was used as the main
metric for comparison and this metric was also used to compare the results with
results from literature.

1pvlib.irradiance.get total irradiance(surface tilt,surface azimuth, solar zenith, solar azimuth,
dni, ghi, dhi)

2pvlib.temperature.faiman(poa global, temp air, wind speed, u0, u1)
3pvlib.pvsystem.pvwatts dc(g poa effective, temp cell, pdc0, gamma pdc, temp ref
4pvlib.pvsystem.PVSystem(inverter parameters).get ac(model, p dc)
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Chapter 4

Results and discussion

In this section, the results will be presented and discussed. First, the measured
data from the site and the forecast from Yr are examined to show the quality and
correlation in Section 4.1.1. Next, the results from the GHI forecast are evaluated in
Section 4.1.2 and the results from the power forecast are evaluated and discussed in
Section 4.1.3. In the following three sections parts of the method are discussed with
feature selection in Section 4.1.4, missing data in 4.1.5, and the train test split in
Section 4.1.6. Then the effects curtailment might have had on the results is discussed
in Section 4.1.7. After this, the results are compared to similar methods from the
literature in Section 4.1.8. Lastly, in Section 4.2, the implications and applications
of the results are discussed briefly.

4.1 Results

4.1.1 The data

To make any model or forecast, one first needs to understand the data that is being
utilized in the model. In Figure 4.1 some of the data from the on-site measurements
and weather forecasts for the site for the first week of August 2022 is plotted. Figure
4.2 show the correlation between all features during daytime for the entire time
period.

From the on-site measurements, one can see a correlation between the GHI and
the ambient and module temperatures. On days 6 and 7, when the irradiance is
consistently high throughout the day, there are also consistent smooth curves for
the temperatures with a high maximum. The same relationship can be seen for the
days with low irradiance. Those days have more inconsistent temperature curves
with a much lower maximum temperature, e.i. on days 3 and 4. One can also see a
connection between the days with precipitation and GHI, where the irradiance is
reduced on days with precipitation. However, not all days with reduced irradiance
have any precipitation as can be seen from day two. For the other measured features,
it is difficult to see any clear correlation in both Figure 4.1 and 4.2, which underlines
the importance of deeper analysis with machine learning to see the connections that
might be hidden from the human eye.

Looking at the weather forecast in Figure 4.1 there are relationships between the
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Figure 4.1: Measurement data (solid blue lines) and weather forecasts (dashed black lines
and multicolored lines) from the first week in August 2022 for the site.

forecasted and measured values. The forecasted ambient temperature has values that
highly resemble the measurement values with only slight deviations around midday
from day 3 onward, the correlation between these features for the entire dataset is
also high at 90%. For the precipitation, the weather forecast is spread out over a
larger time period of two days, whereas the measured precipitation is more intense
over two short time periods of a few hours. This is reflected in the low correlation
of 16% between the forecasted and measured precipitation. Wind direction, with a
correlation of 67%, shows a good forecast where the general trend in wind direction
is well covered by the forecast.
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Figure 4.2: Correlation plot for all measured and forecasted features at daytime hours
when the solar elevation angle is larger than 0. All feature names ending with pred are
forecasts from yr. The feature ”horizontal” is the GHI and the ”produced fixed” is the
power generation.

The forecast for wind speed and pressure is consistently higher than the measured
values. For the pressure, the forecast follows the measurement trend quite well, the
wind speed forecast also follows the measurement trend well for the first four days.
On the last two clear sky days, there is more difficult to see similarities between the
trend in the forecasts and measurements. The correlation between the measured
and forecasted wind speed and pressure are 44% and 3%. The low correlation for
measured and forecasted pressure is likely related to the outliers in the measured
data. Finally, the forecasted cloud cover for low and medium-height clouds seems to
correlate well with the reduced irradiance on days 1 to 5. Days 6 and 7 also have
some cloud cover, but mainly by high clouds.

From the matrix in figure 4.2, the highest correlation to the GHI is from temper-
ature features, where ambient, module, and forecasted ambient temperature had
correlations of 64%, 81%, and 54% respectively. It should however be noted that
correlation is a measure of linear relationships and will not give a good score for
non-linear relationships like sinusoidal or quadratic relationships [63].

4.1.2 The Global Horizontal Irradiance (GHI) forecast

Table 4.1 shows the evaluation metrics for the forecast of GHI for Solargis, the data-
driven RFR model, and smart persistence for the same days as in Figure 4.1. The
data-driven model has a better score on the MSE based metrics MSE, RMSE, and
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Table 4.1: Summary statistics for the forecasts of normalized GHI from Solargis and a
data-driven RFR method for the test set spanning from 24/12/2021 to 31/12/2022.The
best score for each metric is marked in bold. The scores for the data-driven method are the
mean after 10 iterations.

Metric Solargis Data-driven Smart persistence

MBE -0.0174 0.00631 -0.0008
MSE 0.00823 0.00791 0.01337
RMSE 0.0907 0.0896 0.1156
PAPE 18.4% 22.2% 22.8%
SS 0.216 0.231 -

Figure 4.3: In the top plot, the true normalized GHI is plotted together with normalized
forecasts from smart persistence, Solargis, and the data-driven method. The middle plot
shows the bias between the forecasts and the true values. In the bottom plot, the daily skill
score is plotted for Solargis and the data-driven method.

skill score. The solargis model does however have a lower Peak Absolute Percentage
Error (PAPE), and the Mean Bias Error (MBE) for smart persistence is the one
closest to zero. The MBE also shows that the Solargis model has a tendency to
overestimate the results, whereas the data-driven model tends to underestimate them.
Smart persistence seems to overestimate and underestimate roughly equally. All
three models also have a comparable high PAPE, suggesting that all models have
problems with forecasting the days’ peak irradiance.
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On the clear sky days on days 6 and 7 in figure 4.3, the skill score for the data-driven
model is relatively low compared to the total skill score in Table 4.1. For day 6, the
model forecasts a lower peak GHI, resulting in a low skill score. On the next, the
data-driven model returns a good forecast with a bias close to zero, however, here
the smart persistence is very good because of the two consecutive clear-sky days,
resulting in a low skill score for the data-driven model. However, over the full test
set, the data-driven model and Solargis score better than the smart persistence. The
skill scores in table 4.1 indicate that in terms of RMSE, the forecast from Solargis
is 21.6% better than the smart persistence, and the data-driven model produces a
forecast that is 23.1% better.

4.1.3 The power forecast

In Table 4.2 the evaluation metrics for the power forecasts are presented. This show
that Method 1 scores best on the MSE-based metrics, e.i., MSE, RMSE, and skill
score, and the smart persistence model has the lowest PAPE and the MBE closest
to 0.

Table 4.2: Summary statistics for the forecasts of normalized power generation from
Solargis, Method 1 and Method 2 for the test set spanning from 07/05/2022 to 31/12/2022.
The best score for each metric is marked in boldface. The scores for Method 1 are the mean
after 10 iterations.

Metric Solargis Method 1 Method 2 Smart persistence

MBE -0.0525 0.0156 -0.0182 0.0006
MSE 0.0187 0.0155 0.0240 0.0242
RMSE 0.137 0.124 0.155 0.156
PAPE 11.4% 15.2% 12.7% 10.9%
SS 0.122 0.200 0.004 -

The MBE values for Solargis and Method 2 are negative while Method 1 and smart
persistence have positive MBE values. This means that Solargis and Method 2 have
a tendency to overestimate the power, whereas Method 1 and smart persistence tend
to underestimate it. However, as the MBE is almost zero for smart persistence, its
underestimation and overestimation are roughly equal. The MBE scores correlate
well with the results from the GHI forecast. The underestimating tendency did
increase for Method 1 and decreased for Method 2. Thus, the underestimation is
increased by the RFR and decreased by the physical connections.

From the plotted results in Figure 4.4, one can see that Method 1 is not able to forecast
the clear-sky days at the end of the plotted week well because of underestimations.
It is also evident that Solargis generally has negative forecast errors from looking at
the second plot. This is even more evident in Figure 4.5 where the majority of the
power forecasts made by Solargis are larger than the actual power measurements. For
Method 1 it is evident that the forecasts underestimate the higher power generation
values in the upper left corner of the third plot in Figure 4.5. In the bottom of the
right plot in Figure 4.5, there is a linear correlation between Method 2 and the true
values, indicating some pattern in the underestimations from Method 2. This could
be an interesting connection causing this, however, this is not investigated further in
this thesis.
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Figure 4.4: In the top plot, the true normalized power generation is plotted together with
normalized forecasts from smart persistence, Solargis, Method 1, and Method 2. The middle
plot shows the bias between the forecasts and the true values. In the bottom plot the daily
skill score is plotted for Solargis, Method 1, and Method 2.

Figure 4.5: Forecasted power generation plotted against the actual power generation for
the three methods. The black diagonal in each plot represents where the forecast is equal to
the true value.

The PAPE values are generally lower for the power forecasts than for the GHI
forecasts, indicating that the models are better at forecasting peak generation than
peak GHI. The difference in PAPE between Method 1 and Method 2 shows that
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Method 2 might have a higher ability to correct the peak estimation errors from the
GHI forecast than Method 1. Alternatively, Method 2 might be inherently optimistic
in its forecasting, thus making up for the errors in the GHI forecasts with opposite
errors in the power forecasts. The upper right corners in the two middle plots in
Figure 4.5 show well how Method 2 is better at forecasting the peak power generation
than Method 1.

From the positive skill scores, it is evident that all of the methods are better than
smart persistence in terms of RMSE. Looking at Figure 4.4, the skill scores of Method
1 are best on the three first overcast days and the Solargis model scores best when it
is a higher irradiance in the three last days. This also correlates well with Solargis
being prone to overestimate and Method 1 to underestimate.

Figure 4.6 shows a density plot for the daily skill scores in the test period. Method 1
has the highest density above 0 with a relatively sharp peak around 0.25. To the
right in the plot, one can see that Solargis is the one with the highest skill scores,
however, the total skill score is dragged down by the higher density of skill scores
below 0. Method 2 has its peak just below 0 and a relatively even distribution
on both sides of 0. Looking at the minimum values, both Method 1 and 2 have a
minimum skill score of about −11 whereas the minimum skill score for the Solargis
model is at −4.4. These minima typically happen when two perfect clear-sky days
follow each other. On these days smart persistence will get a very low RMSE value,
resulting in a highly negative skill score for small errors in the modeled forecast.

Figure 4.6: The Figure shows the distribution of daily skill scores for the three models in
the range −3 to 1. Outside the bounds of the plot, the Solargis, Method 1, and Method 2
have 2, 4, and 4 days outside the index of the plot respectively. Their minimum skill score
are −4.4, −11.6, and −11.3, respectively.
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Looking at the general shape of the forecasts, the data-driven models for both the
power and GHI produce smooth curves and are not able to capture much of the
hour-to-hour variability. This is also transferred to Method 2 which is built on the
data-driven GHI model. Looking at the Solargis model, this has more hour-to-hour
variability, however, it does not necessarily improve the forecasts for the days plotted
in Figures 4.3 and 4.4. In the same Figures, it is also evident that the daily power
generation curves from Method 1 have a relatively small variation compared to both
the other two power generation models and the data-driven GHI model. It does
seem like the data-driven model smooths out the variations in the data, applying this
twice, as is done in Method 1, might enhance this smoothing effect on the results.

4.1.4 Feature selection

For the first RFR model that forecasts the GHI, eight features were chosen as
forecaster features. Those were Yr forecasts for ambient temperature, clouds, low
clouds, medium height clouds, and precipitation, local measurements of GHI for the
previous day, and historic measurements of ambient temperature and wind direction.

It seems like the model chose features that directly impact the irradiance. From
Figure 4.1 and 4.2, the temperatures highly resemble the irradiance curves and have
a high correlation. The days with significantly high coverage for low and medium
height clouds and days with forecast precipitation were also the days with reduced
irradiance, as seen from the first four to five days in Figure 4.1. For the entire dataset
these do, however, have low correlations with the GHI in the correlation matrix in
figure 4.2.

For the power forecast with Method 1, seven features were chosen. Those were
medium clouds, wind direction, humidity, clear sky irradiance, the GHI for the
previous day, and the forecasts for the GHI. Of these, the three first are forecasted
values from Yr, the clear sky irradiance is generated with pvlib, the GHI from the
previous day’s measurement data from the site, and finally, the forecasted GHI which
is the forecasts made in the previous step.

This model has some overlap in the feature choice with the model for irradiance
as both models use medium height clouds and GHI from the previous day. A new
feature is the wind direction. This feature could have been chosen since the wind
has a cooling effect on the effect leading to an increase in power generation [10]. The
overlapping features with the irradiance model, as well as other irradiance features
like clear sky irradiance and humidity, could indicate that the irradiance forecast
does not capture enough of the variations in the measured irradiance.

4.1.5 Missing data

As stated in Section 3.4.2, there is a large amount of missing data, with up to 32%
for the power generation forecasts. This is in part because of the missing data in
the Yr forecast and targets, but some of it also comes due to the need to have a
full day of data to be able to do the forecasts for that day. Since days with only
one missing value were discarded, a lot of useful information is lost. An alternative
to this would be to build the RFR model differently so that it could do day-ahead
forecasts one hour at a time and make it able to skip hours with missing values. This
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should be possible when basing the model on scikit-learn’s RFR model and might
also be possible with the Darts RFR model given more time.

4.1.6 The train-test split

In the method, two different splits of the data were used in the method for forecasting
of GHI and power generation. Because of the uneven distribution of missing data,
the split securing 33% of the data for testing of the GHI forecasts lead to 42% of the
data being used for testing. This was altered in the forecasts of power generation
so that 33% of the actual data was used for testing. However, this led to there no
longer being a full year of data for testing. That means that all the seasons were not
represented when testing the model.

To check this, the clearness index was plotted for the training, validation, and testing
set as well as for the entire data set in Figure 4.7. This shows that the test set has
some more hours with a higher clearness index, except for that, the test set has a
roughly equal clearness index distribution as the full data set. However, the validation
set differs from the other data sets by having a lower density at higher clearness
indexes and a higher density at lower indexes. Looking at the yearly precipitation
graph in figure 3.2 and the train test splits presented in section 3.4.4, this does make
sense. The test set, raging from May to December of 2022 does not cover much of
the rainy season. However, the validation set, raging from December 2021 to May
2022, mainly covers months with large amounts of rainfall. As the validation data
was used when selecting the features and hyperparameters, this could have had a
notable impact on the results. This should therefore be taken into account in later
attempts working with these data by using techniques like k-fold validation where
the model is validated on different validation sets [62].

Figure 4.7: Density plot of the clearness index for the train, validation, and test set as
well as for the entire full data set.

4.1.7 Curtailment

One of the factors making power forecasts difficult for the site chosen for this thesis
is the amount of curtailment. The site experiences generation curtailment in 11.4%
of the power plant’s generation hours. The curtailment of the power is based on
the state of the power grid [33]. Therefore, when the forecasts are made based on
mainly the weather conditions on the site, the models have difficulties catching the
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sudden drop in power generation. This problem will affect the results of all the
models presented here, but not in the same way.

Method 1 has input data with what seems like random drops in the generation data.
The RFR model in Method 1 will try to learn the pattern in these data based on the
input features. Since the selected hyperparameters and features are the ones that
gave the lowest MSE on the validation data, the selected model could be the one
that safely underestimates so that the random curtailment losses give minimal effect
on the MSE. That would be a possible explanation of why Method 1 has a positive
MBE and a large PAPE.

On the other hand, Method 2 does not see any of the curtailment losses when the
model is being built. It is purely based on the forecasted irradiance as well as
physical relations to transform the irradiance forecasts into power forecasts. On days
with curtailment losses, the model will therefore forecast as if the power plant was
unaffected by curtailment. This is a possible explanation for why the model tends
to overestimate, and it might also be an explanation for why is generally better at
forecasting the daily peak generation. If the curtailment losses are sufficiently large,
this could also be an explanation for the low skill score found for Method 2.

4.1.8 Literature

In the publications by Larson et al., Bacher et al., and El-Baz et al., the results
were also evaluated with skill scores [48, 47, 9]. The skill scores from selected results
from the publications are listed together with the results from the methods from this
thesis in Table 4.3. In the publication from Larson et al. two methods were used to
obtain the GHI used to calculate the power generation: using cloud cover from a
NWP to calculate GHI (CC) and using GHI directly from a NWP (GHI) [48]. The
best results from each method are shown in the table. Bacher et al. used different
input features in their statistical model [47]. They made one model using historic
power generation (P) as input, one using forecasted GHI from a NWP (GHI), and
one using both as input (P + GHI) [47]. El-Baz et al. only used one method in their
bagged decision tree method [9].

Table 4.3: Overview of the skill scores for the methods in this thesis and from methods
used in literature. For skill scores, a larger value is better and the highest possible value is
1 [45].

Method Skill score (RMSE)

Solargis 0.12
Method 1 0.20
Method 2 0.00
Larson et al. [48] (2009) CC 0.23
Larson et al. [48] (2009) GHI 0.25
Bacher et al. [47] (2016) P 0.17
Bacher et al. [47] (2016) GHI 0.36
Bacher et al. [47] (2016) GHI + P 0.36
El-Baz et al. [9] (2018) 0.49
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Table 4.3 shows that the latest method by El-Baz et al. provides the highest skill
score. Compared to the results in this thesis, all but one of the methods presented
here from other publications are superior. However, the case for these methods is
not exactly equal, as they are all for small-scale rooftop PV systems and the case in
this thesis is a utility-scale power plant. The large PV system used in this thesis is
more complex with more inverters, tracking, and curtailment losses. Because of the
size of the rooftop systems, they are likely not subject to power curtailment, making
the power only dependent on weather conditions. This could partially explain why
the skill scores from this thesis are lower than the methods presented here.

Riise et al. made forecasts for GHI at locations in Norway [50]. They also used skill
score, however, in their publication, they based the score on MSE instead of RMSE
as in this thesis. This highlights the difficulty in comparing forecasting methods
with other publications as there is no set way of evaluating the results from the
forecasts. Riise et al. obtained a MSE skill score of 0.31 when forecasting with a
24-hour horizon. From Table 4.1 a MSE skill score of 0.41 can be calculated for
Method 1. This shows that the method used in this thesis is comparable to other
results using a similar approach.

4.2 Implications and potential applications

The results presented in this thesis demonstrate that it is possible to make power
generation forecasts with the same level of accuracy as commercial solutions with
relatively simple methods and freely available weather forecasts. With much focus
on the field of power generation, one can start to look at how good power forecasts
can potentially change how solar power is used as a more flexible resource. This
discussion is presented with no consideration of the various regulations of different
nations’ power grids.

As mentioned in Section 2.3, the power grid needs stability, that is, the generated
power must at all times equal the consumed power in the grid [5]. This has proven
more challenging with the increasing penetration of renewable energy resources
in the generation mix [6, 64]. The ability to generate reliable power generation
forecasts is therefore important. In Richter et al.’s 2021 publication, they highlight
the importance of reliable power generation forecasts for the TSO for several of their
functions of planning, maintaining, and running the power grid [6]. The contribution
of this thesis can potentially help with day-ahead forecasts that the TSO can use to
better plan the power generation mix for the coming day. The method used in this
thesis is also easy to implement on small-scale power plants as the main input data
is taken from the open weather forecast service Yr. With some improvements to the
method to increase the accuracy, this method could be useful for small and large PV
generators as well as the TSO.

Another useful application would be to reduce the use of curtailment. As stated
in Section 2.3.4, curtailment of power generation is used when there is too much
power generation in a system [33]. A better knowledge of when power is generated
from sources that are dependent on uncontrollable weather conditions is therefore
beneficial to avoid discarding large amounts of renewable energy. In an article by
Kraiczy et al., the benefits of forecasts are discussed in regard to congestion and
reactive power management at the distribution level [64]. They found that accurate
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power forecasts would give good congestion forecasts that in turn could lead to a
reduction in the use of curtailment [64].

A last possible application with good knowledge about tomorrow’s power generation
could be to sell flexibility to the grid. Combining this with battery storage could
mean the PV power plant could provide flexibility when there is too much generation
by charging the batteries instead of discarding the power. Power from the batteries
could be delivered to the grid when there is a need for more power generation in the
system. For a power plant to be able to sell the generation, it must have reliable
forecasts both to report the forecasted generation and the available flexibility.
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Chapter 5

Conclusion and further work

The main objective of this thesis was to forecast power generation from a PV power
plant. The forecast should forecast the generation 24 hours ahead and have a 1-hour
resolution. In this thesis, this was solved with two methods, Method 1 and Method
2, which both used an indirect approach. The first step in the indirect approach
for both methods entailed forecasting the GHI with a RFR model using on-site
measurements and forecasts from yr as input. In method 1 the power generation was
obtained using the RFR model again with the forecasted GHI together with on-site
measurements and yr forecasts as input. Method 2 used the forecasted GHI and
a series of physical and empirical operations to obtain the generated power. Both
methods were compared to forecasts obtained by the commercial forecast provider
Solargis for the same site.

Skill score was chosen as the main metric of evaluation in this thesis. Based on this
metric, Method 1 performed best with a skill score of 0.200. Solargis and Method 2
received a score of 0.122 and 0.004 respectively. The positive skill scores indicate
that all methods produce forecasts with better RMSE than the smart persistence
method.

The results also show that Method 1 had a tendency to underestimate power
generation and was unable to correctly forecast the peak production hours. This was
reflected in the method’s positive MBE of 0.0156 as well as the PAPE score of 15.2%
which is the highest for methods used in this thesis. It was found that curtailment
of power generation might be the cause of the positive MBE in the forecast from
Method 1. This is because the target feature, power generation, has several drops
caused by curtailment that can not be explained by the input features. Method 2
got a PAPE of 12.7% and MBE of −0.0182, for Solargis, these scores were 11.4%
and −0.0525 respectively. However, on these two metrics, none of the more advanced
methods above were able to beat smart persistence which got a PAPE of 10.9% and
MSE of 0.0006.

Given the good skill score for Method 1, it is possible to conclude that this is a viable
method for power forecasting, especially given more time to refine the method to
make it more precise and reliable. With better forecasts, it will be easier for the TSO
to operate the electrical power grid with renewable energy on a day-to-day basis. It
can also be beneficial for the power plant operators since better grid operation can
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lead to less power curtailment. Lastly, it can potentially be a tool that can help the
power plant operators sell flexibility to the grid. However, there is much room for
further work in this field.

5.1 Further work

There are countless angles to approach the topic of power production, and there are
also a large variety of paths to take the work in this thesis onwards. Some interesting
paths that will be discussed here are:

• Different time horizons

• Different climate zones

• Account for curtailment

5.1.1 Different time horizons

Different time horizons on the forecast will have different accuracies, as is evident
from the report of Banali et al. [7]. They show that shorter horizons (1 hour) have
better accuracy than longer (6 hours) [7]. Richter et al. demonstrate how forecasts of
different horizons serve different processes that the TSO is responsible for, they look
at horizons of 25 minutes up to 1 week ahead [6]. It could, therefore, be interesting
to test how the methods used in this thesis would respond to shorter time horizons.
With shorter time horizons, one could also expect better weather forecasts, thus
better input data to the model. These shorter, more accurate forecasts could then
be used to update the power production to the TSO at the intra-day market, giving
them a better overview of the production in their grid. There is also possible to
test longer horizons. Yr only issues 1-hour forecasts up to 48 hours ahead, however,
they do have up to 9 days ahead with a 6-hour resolution. This could give a rough
estimate of next week’s power production.

In relation to the forecast horizons, there are also varying practices for when the
forecasts are being issued. In this thesis, the forecasts are issued at midnight and for
the following day. If the forecasts made in this forecast are going to be reported to
a TSO, it needs to be made in time for their deadline. So if the TSO has set the
deadline at 18:00, the forecast for the following day must be made by 18:00.

5.1.2 Different climate zones

Another aspect is to look at how the model would work in different climate zones.
As Riise et al. demonstrated in their report, there are differences in accuracy if
a model is trained in one region of Norway and applied to another region within
Norway [50]. Thus, changing climate zone will likely also make an impact on the
result. Training the model in Norway and applying it in the deserts in Egypt, might
be challenging because of the large difference in the climate. However, finding the
best model parameters and features for the site in this thesis and doing the training
on another site might be possible. If this is viable, it could greatly reduce the time
needed to make optimize the model for every single site. Alternatively, one could
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train the model on several time series from different climate zones initially, thus
making the model familiar to all relevant climate zones.

5.1.3 Account for curtailment

Lastly, in future work, it would also be natural to look at the problems following
curtailment. The methods in this thesis are not able to forecast the curtailment or
differentiate between days with and without curtailment. Three possible approaches
to reduce the effects of curtailment could be:

• only train the model on days without any curtailment losses,

• add a boolean variable stating when there were losses in the training data,

• add an estimate of the lost power generation to the actual generation on times
with curtailment.

However, these approaches do not come without problems of their own. The first
approach could end up cutting out a lot of the data. 30% of the data is already
lost because of missing values, so this would reduce the data available to build the
model even more. This would not be a problem with the second approach. Catching
the effect of curtailment with a boolean variable, could, however, be difficult. With
a boolean variable indicating when the curtailment losses are, there is no way of
knowing how much power production is lost. The model might be adaptable enough
to figure it out, however, that must be tested in a future project. The last approach
would give a time series of generation data that seems unaffected by curtailment
losses and has a good potential of giving a good basis for training the model. However,
with 11.4% curtailment loss, a significant portion of the data the model is trained on
would have to be estimated instead of using true measurement values. This could
lead to replacing one bias in the data caused by curtailment losses with a new bias
caused by estimated values. These three options demonstrate that accounting for
curtailment in future methods is attainable, however, all these approaches will have
some drawbacks that must be taken into account.

It is evident that there are many ways of making the power system more efficient
through the use of machine learning models.
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Appendix

The code used in this thesis can be accessed on GitLab on:

https://gitlab.com/sigridvo/master thesis
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Figure 5.1: The results after 10 iterations with the Boruta algorithm for the GHI forecasts.
All features receiving rank 1 at least once were used in the forecasts.
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Figure 5.2: The results after 10 iterations with the Boruta algorithm for the power
generation forecasts. All features receiving rank 1 at least once were used in the forecasts.
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