

Master’s Thesis 2023 30 ECTS

Faculty of Science and Technology

Kristin Tøndel

Estimating posterior distributions of

synaptic strengths in a neural

network using Approximate

Bayesian Computation and

Sequential Neural Posterior

Estimation

Håkon Strand

Data Science

Abstract

In computational neuroscience, it is common to represent natural phenomena through mathe-
matical models in the form of coupled differential equations. These models allow us to study
neural networks in the brain by simulating and measuring neural activity, specifically spiking
activity. This thesis examines a two-population neural network, consisting of one inhibitory and
one excitatory population, to estimate the posterior distributions of four synaptic strength pa-
rameters. By varying these parameters in our simulations, we can analyze differences in spiking
activity.

From the spiking data, represented by histograms, we computed four summary statistics per
population (eight in total): mean firing rate, Fano factor, mean interspike interval and coeffi-
cient of variation. We then construct three likelihood-free methods in order to create posterior
distributions of the synaptic strength parameters based on either the summary statistics or
the raw output data. The posteriors are constructed using Approximate Bayesian Computation
(ABC) and Sequential Neural Posterior Estimation (SNPE) methods. One rejection-based ABC
method, with included linear regression adjustment, is constructed, as well as two SNPE meth-
ods: one using the summary statistics and the other using an embedding network (consisting
of a convolutional neural network) to extract it’s own metrics based on the raw output data.

Furthermore, we aim to evaluate the findings to best replicate the values of an observation. The
observation is randomly selected from the simulated data, and then simulated an additional 100
times with fixed parameter values to account for the stochastic properties of the network model.
The mean of these additional simulations served as the observed summary statistics values, and
the sample closest to this mean was selected as the raw output observation.

To evaluate the posteriors, we examine the extent to which the methods are capable of restricting
the synaptic strength parameters, comparing this with the observation’s output in terms of both
summary statistics and raw output data. The SNPE method using an embedding network is the
least capable of restricting the parameter domain and replicating the observation results. The
linear regression adjusted ABC method shows some improvement over this, while the SNPE
method without an embedding network appears to be the most successful in both restricting
the parameter domain and replicating the observation output.

Acknowledgements

This thesis concludes the final work of my two-year Master’s degree in Data Science at the
Faculty of Science and Technology, NMBU.

First of all, I would like to thank my supervisor Kristin Tøndel for continuous support through
meetings, feedback and discussions throughout the semester. A special thank you to Jan-Eirik
Welle Skaar and Nicolai Haug for both technical and theoretical assistance and discussions. A
thank you to Alexander Stasik for constructive suggestions and input. To Gaute T. Einevoll
for both valuable input and introducing me to the field of neuroscience.

A big thank you to the students at ”Studentenes hus” TF6-206. Your technical and theoretical
contributions, proofreading, and even your not-so-productive talks have made this experience
much more enjoyable.

Lastly, thank you to family members for your support and proofreading efforts.

Abbreviations

ABC Approximate Bayesian Computation

ANN Artificial Neural Network

AP Action Potential

CNN Convolutional Neural Network

CV Coefficient of Variation

ISI InsterSpike Interval

LFI Likelihood-Free Inference

LIF Leaky Integrate-and-Fire (neurons)

MAF Masked Autoregressive Flow

PSD Power Spectral Density

PDF Probability Density Function

SNPE Sequential Neural Posterior Estimation

SR Synchronous Regular

Contents

1 Introduction 1
1.1 Background . 1
1.2 Objective . 3

2 Theory 4
2.1 Neurons . 4

2.1.1 Action potential . 5
2.2 Cellular models . 6

2.2.1 Leaky Integrate-and-Fire neurons . 7
2.3 Models of biological neural networks . 7

2.3.1 The Brunel network . 7
2.3.2 The Potjans-Diesmann network . 8

2.4 Bayesian inference . 8
2.4.1 Summary statistics . 9
2.4.2 Approximate Bayesian Computation . 9
2.4.3 Sequential Neural Posterior Estimation 10

3 Data 14
3.1 Introduction to the dataset . 14
3.2 Summary statistics of spike trains . 17
3.3 Observation . 18

4 Methods 21
4.1 Estimating posteriors . 22

4.1.1 ABC with regression adjustment . 22
4.1.2 Neural posterior estimation . 22

4.2 Optimization . 24

5 Results 25
5.1 Inspecting the posterior distribution . 25
5.2 Summary statistic comparison . 29
5.3 Power spectral density . 31

6 Discussion 33
6.1 Future Work . 34

A Appendix 35
A.1 Python packages . 35

i

CONTENTS CONTENTS

A.2 GitHub files . 36
A.3 Hardware specifications . 36

ii

List of Figures

1.1 Classical modelling vs. inverse modelling . 2

2.1 Neuron model . 4
2.2 Action potential . 5
2.3 Hodgkin-Huxley model . 6
2.4 Artificial neural network . 11

3.1 Activity plot of neurons . 15
3.2 Prior distribution . 16
3.3 Summary statistic histograms of observation . 19
3.4 Summary statistic histogram of initial simulation 19
3.5 Observed spike count histogram . 20

5.1 Posterior distributions . 26
5.2 Joint distribution and correlation plot of final posterior 27
5.3 ABC posterior outlier . 29
5.4 Summary statistics compared to observed sample 30
5.5 PSD plot . 31

iii

List of Tables

2.1 ABC rejection algorithm . 10

3.1 Synaptic parameter description . 15
3.2 Network and neuron parameters of biological neural network 17

4.1 Hyperparameter values of SNPE without an embedding network 23
4.2 Hyperparameter values of SNPE with an embedding network 23
4.3 CNN architecture . 24
4.4 Hyperparameter optimization . 24

A.1 Python packages . 35
A.2 GitHub files . 36
A.3 Hardware specifications . 36

iv

Chapter 1
Introduction

The human brain is a complex and dynamic system that, despite decades of research, still holds
many unanswered questions. It is comprised of numerous specialized regions responsible for
controlling various aspects of human behaviour. Central to the brain’s function are neurons,
which form intricate networks in order to communicate. Studying these neurons, and ultimately
the networks they form, is a critical and fascinating area of research.

1.1 Background

The exploration of the brain’s complex mechanisms often requires the use of models to repre-
sent its biological characteristics. In this context, a model refers to mathematical descriptions
of the biophysical properties of, for example, neurons or interconnected networks of neurons.
In the field of computational neuroscience, this implies the ability to represent biological pro-
cesses within computational models, essentially serving as virtual laboratories. These virtual
laboratories enable scientists to simulate behaviour under diverse conditions in more controlled
environments, thus proving to be an invaluable asset. However, the construction of these mod-
els can be difficult as they need to accurately represent the natural behaviour they intend to
emulate.

Over the last few decades, a diversity of different models has been developed, ranging from
the highly simplified abstractions to the more complex mechanistic models trying to emulate
the precise behaviour of neurons. At the lower levels, when examining individual neurons, it
is common to use more detailed mathematical representations. This ensures that all relevant
information is considered, but also involves less relevant information. While this is feasible
for single neurons, it becomes increasingly challenging when combining neurons into larger
networks. To manage the escalating complexity of interacting neurons, researchers often simplify
individual neuron models in order to focus on their most essential features. This creates a trade-
off between simulation power and complexity, as more simulations can be performed on simpler
mathematical models, but the output must still retain relevant information.

There are various ways of representing the input parameters and output data for these simula-
tions, whether they represent single neurons or interconnected networks. The input parameters
ultimately shape the behaviour and interactions in the system, and are, in the context of this
thesis, broadly categorized as either fixed or varying. The fixed parameters are typically related
to the core attributes of the neuron model and the network architecture. On the other hand,
varying parameters are dynamically changed in order to alter the system’s behaviour. The
varying parameters considered in this thesis are the synaptic strengths between the neurons,

1

essentially a parameter responsible for how much influence neuron A has on neuron B.

The output is then produced by inserting both the fixed and varying parameters to sets of cou-
pled differential equations. In our case, the output is measured by spiking activity, one of several
metrics to quantify the level of activity within a network. In order to use the computational
models to understand how the brain works, we have to fit our models to experimental data.
This means that we have to find the parameter values that allow our model to produce output
data that resembles the experimentally measured data. To achieve this, we need to analyse the
relationships between the input parameters and the model output, e.g., which input parameters
have the largest effects on which model outputs (i.e., which outputs should we measure in order
to find the most suitable values for which parameters).

A powerful approach to understand the relationships between input parameters and output of
a neural network is Bayesian inference. This method enables researchers to update their beliefs
about a system’s parameters by adding more data. Bayesian inference is a framework which
combines prior knowledge with simulated output in order to derive posterior distributions of
parameters of interest. These posteriors are essentially probability distributions of parameters
given a certain model output. For instance, given a certain set of weather data, the probability
distribution of temperature would then yield values probable during such conditions. Simi-
larly could output from a neural network, when combined with posterior distributions of input
parameters, provide insights into which values are probable given the output.

ModelInput Output

Output = f(input)

Input = f(output)

Classical

Inverse

Figure 1.1: Illustration of classical mod-
elling versus inverse modelling, specif-
ically in the context of making pre-
dictions using statistical models (e.g.,
machine learning models). In classical
modelling, the output is a function of
the input, while in inverse modelling,
the input is a function of the output.

The trained posterior could subsequently be used to
predict new spiking activity. Under normal circum-
stances, we would compare these predictions with
experimental data. If the predicted output closely
matches the experimental data, it would serve as a
validation of our predictive model. Furthermore, if
the posterior distribution accurately captures the ex-
perimental data, it can be used to perform inverse
modelling. This would reverse the process: instead
of predicting the spiking activity based on given pa-
rameter values, we would use observed spiking ac-
tivity to infer the likely parameter values, as shown
in Figure 1.1. Such findings could provide valuable
insights into the interactions of parameter values re-
sponsible for specific patterns of neural activity.

A challenge when simulating neural networks is the
incorporation of stochastic variables. These repre-
sentations are commonly referred to as probabilistic,
resulting in different outputs for the same parameter
inputs. These variations are intended, as probabilis-
tic models by definition are based on probabilities.
However, the opposite could also happen, i.e., that
different parameter input produces the same output, which could be a manifestation of model
sloppiness. Model sloppiness refers to the phenomenon where certain mathematical models
are insensitive to variations in parameter inputs, in turn producing the same output despite
variations in input parameters. Addressing such inconsistencies adds complexity to the already
difficult task of mapping parameter spaces.

In recent years, to address the problem of mapping posteriors, a variety of statistical methods
have emerged, ranging from the established Approximate Bayesian Inference (ABC) to more
recently introduced machine learning techniques like Sequential Neural Posterior Estimation

Page 2 of 40

(SNPE). These methods are so-called likelihood-free inference (LFI) methods, meaning that
the later discussed likelihood function (Chapter 2.4) of a Bayesian inference approach does not
need to be present.

1.2 Objective

The primary objective of this thesis is to build posteriors of synaptic strength parameters used
in the simulation of a two-population neural network by applying the aforementioned methods.
This is done by extracting a single observation, as opposed to the true posterior itself, and then
attempting to replicate the results of the parameters from the observation. The implementation
is done using the Python programming language, an extensive list of the packages and their
purpose can be seen in the appendix Table A.1.

More concretely, the following question is asked: to what extent can implementations of the
likelihood-free methods ABC and SNPE accurately estimate the posterior distribution of synap-
tic strength parameters of a two-population neural network? Further, the thesis seeks to evaluate
the trade-offs between computational efficiency and accuracy of the resulting posterior param-
eter estimations, ultimately providing insight into the most efficient strategies.

Page 3 of 40

Chapter 2
Theory

In this chapter, we will delve into the theoretical foundations from which the datasets are
created, as well as the methods employed to analyze them. We will begin by examining the
biological neurons and their interconnected networks, followed by an examination of the various
analytical techniques and approaches used for the analysis. This chapter, together with Chapter
3, aims to give the context needed for the reader to understand the approaches and results later
discussed in Chapter 4 and Chapter 5.

2.1 Neurons

There is a large number of neurons in the human brain, roughly estimated to be 86 billion,
according to a 2009 study by Azevedo et al. [1]. They consist of mainly three parts, namely
the soma, axon and dendrites, as seen in Figure 2.1. The soma, or cell body, houses the
nucleus where the neuron’s DNA is stored and where proteins related to neurotransmission
are made. The axon is responsible for propagating electrical signals in order to communicate
with other neurons, which receive these signals through the dendrites. The cell responsible
for sending the signal is referred to as the presynaptic cell, while the neuron receiving the
signal is the postsynaptic cell. When a signal is sent through the axon, the presynaptic cell
releases neurotransmitters into the gap junctions between itself and the postsynaptic cell. These
neurotransmitters bind to the receptors on the postsynaptic cell and determine whether the
postsynaptic cell will send signals to other neurons it is connected to or not.

Dendrite

Cell body

Node of
Ranvier

Axon Terminal

Schwann cell

Myelin sheath

Axon

Nucleus

Figure 2.1: Neuron model illustration. Electrical signals are sent through the axon, to the axon
terminal. Connected neurons receive the information in the form of released neurotransmitters
binding to their dendrites, which in turn is processed throughout the cell body. The image is
used under the Creative Commons license [2]

4

2.1.1 Action potential

The electrical signals described above are called action potentials (AP) or spikes. Spikes happen
when the membrane potential of a neuron reaches a certain threshold. The membrane potential
refers to the difference in electrical charge between the outside and inside of the cell membrane.
The outside has a reference value of 0 and the difference between that and the charge inside the
neuron determines its potential. When the neuron is inactive it will have a somewhat constant
membrane potential called a resting membrane potential. As a stimulus occurs, the membrane
potential will shift and once the threshold is passed, the neuron spikes. This is a so-called all or
nothing phenomenon, meaning that the spike either happens or not. It does not matter whether
the threshold is barely passed or surpassed by a large margin, the effect will essentially be the
same.

This is because gated ion channels open or close depending on which state the membrane
potential is in. Ions are atoms or molecules with either a net positive or negative charge,
meaning they either have lost or gained electrons. The most prominent ions responsible for
spikes in a neuron are sodium (Na+), potassium (K+) and chloride (Cl-). Once the threshold
is passed, voltage-gated ion channels in the membrane activate causing an influx of sodium.
This in turn depolarizes the cell (increasing electric potential) further causing the membrane
potential to be more positively charged compared with the outside. To repolarize the cell
(decrease electric potential), potassium, and sometimes chloride, ion channels open making
positively charged potassium ions leave the cell while negatively charged chloride ions enter.
The repolarization process hyperpolarizes the neuron making the membrane potential go below
the resting potential. The effect of this is a lower chance of spiking multiple times in a row as
the membrane potential has a brief period of time below its resting potential [3]. An example
curve of how an action potential could look like is shown in Figure 2.2.

Figure 2.2: Propagation of a neuron action potential. Extracellular stimuli cause depolariza-
tion and rapid influx of Na+ ions into the cell. At its peak, K+ ions leave the cell while Cl-

ions enter. The hyperpolarization phase, which undershoots the resting potential, creates a
refractory period during which the neuron is less likely to spike. The image is used under the
Creative Commons license [4]

Page 5 of 40

2.2 Cellular models

Scientists have discovered that mathematical models can be used to describe these above de-
scribed phenomena. Typically, these models are created using coupled differential equations
and is commonly known as cellular models. A cellular model describes various characteristics
of a cell, enabling computational simulations.

The breakthrough in mathematical modelling of cellular processes was achieved by A. L.
Hodgkin and A. F. Huxley in 1952 [5]. By measuring the activity of an axon found in a giant
squid, they were able to mathematically model how an action potential propagates within the
axon. This was accomplished by translating the axon into an electrical equivalent circuit, focus-
ing primarily on three properties: capacitance, conductance and leaky currents. The capacitance
describes the amount of electrical charge stored in the membrane, while the conductance and
leaky currents describe ion channel permeability and ion leakage in the membrane, respectively.

Figure 2.3: Illustration of the Hodgkin-Huxley
RC circuit model. Represented by capaci-
tance (CM), input currents (INa, K), resis-
tance (RNa, K) (reciprocal of conductance,
typically denoted g) and reversal potential
(ENa, K) (equilibrium potential of ion). In-
cluded is also the leak channels (i.e., IL, RL,
EL). The image is used under the Creative
Commons license [6]

Since then, a wide variety of cellular mod-
els have emerged, differing in complexity and
thereby use case. While more complex cellular
models, such as multi-compartmental mod-
els, provide more accurate representations of
a cell’s morphology, they are also more com-
putationally expensive to simulate. Multi-
compartmental models attempt to emulate
the cell’s morphology by dividing the neu-
ron model into compartments. For example,
imagine dividing the neuron model in Figure
2.1 into 10 equal compartments and then con-
verting each compartment into an electrical
equivalent circuit, as the one illustrated in
Figure 2.3. This allows for a more realistic
propagation of the electric potential through
the cell. However, the individual simulation
costs of such models are high, resulting in
fewer simulations performed within the same
time frame. Alternative approaches to neu-
ron simulations, such as compressing the cell’s
morphology into a single point (point neu-
rons), could therefore be beneficial.

In addition, scientists would need a way to
induce spikes in neurons. In single-cell exper-
iments, this could be done by introducing an
artificial current into the neuron. When neu-
rons are connected to other neurons, however,
the synapse must be mathematically mod-
elled. A straightforward approach is to treat each spike the same way, using a constant value
transferred to the postsynaptic neuron given that the presynaptic neuron spikes. More complex
methods typically involve stochastic modelling. In biological neurons there are vesicles at the
end of the axon containing various neurotransmitters. These vesicles have a chance to open and
release its content into the synapse, directly depending on the present concentration of calcium
(Ca2+) [7]. The released neurotransmitters that bind to the postsynaptic cell will either cause
depolarization or hyperpolarization, determining whether it spikes.

Page 6 of 40

2.2.1 Leaky Integrate-and-Fire neurons

While the the Hodgkin-Huxley model make use of a detailed resistor-capacitor (RC) circuit to
simulate the biological neuron, this thesis utilizes a simpler model, namely the leaky integrate-
and-fire (LIF) point neuron. As previously described, the generation of spikes in neurons involve
intricate interactions of ion channels, processes which are not incorporated in the LIF model.

In LIF neuron models the spike generation process is done by integrating the input from con-
nected neurons over time, while simultaneously taking into account a leaky component, hence
the term ”leaky”. When the predefined threshold is surpassed, a spike is said to occur. It is
then important to note that the LIF model does not simulate the spike’s propagation or the
underlying factors leading to its generation, but merely notes the occurrence of the spike, before
instantiating a relatively short refractory period (i.e., where the neuron is incapable of spiking).

Mathematically, the subthreshold dynamics (i.e., before the occurrence of a spike) of a LIF
model can be expressed by the following differential equation:

τm
dV

dt
= −V (t) +RmI(t) (2.1)

In this equation, τm represents the membrane time constant, V the time-dependent membrane
potential, Rm the membrane resistance and I the time-dependent input current. This creates
a model that balances a passive ”leak” of the membrane potential towards its resting sate, and
input currents that drive the membrane potential away from said state, towards the threshold.

2.3 Models of biological neural networks

When large numbers of individual neurons form synaptic connections they are referred to as
neural networks. As stated in Section 2.2, some neuron models are computationally costly
to simulate, and this only increases as more neurons are introduced into a network of neuron
models. Typically, simulating these networks often involve numerical integration of thousands
of coupled differential equations [8]. Therefore, the number of neurons in a network and the
mathematical representation of their characteristics, are of importance for the scientist.

Biological neurons form synaptic connections through a process of axonal and dendritic growth
[9]. Both axons and dendrites are extensions of the cell’s body and form connections from the
axon of one neuron to the dendrite of another. As this process is hard to emulate, the approach
of the model used in this thesis is to represent the synaptic connections through probabilities.

When modelling networks of neurons it is common to divide the neurons into groups based on
their characteristics, referred to as populations. In the context of this thesis, these characteristics
are excitatory and inhibitory. Excitatory neuron populations are groups of neurons that have a
positive impact on neurons they are connected to. In essence, a presynaptic excitatory neuron
increases the likelihood of the postsynaptic neuron to generate a spike, while a presynaptic
inhibitory neuron decreases the likelihood.

There are several neural network models that is described by using such population dynamics,
two of which will be introduced in the following sections.

2.3.1 The Brunel network

The Brunel network is a spiking neural network model proposed by Nicolas Brunel in the year
2000 [10]. It is a well-known network in computational neuroscience due to its simplicity and
capability of accurately reproducing neural behaviour. The network consists of N LIF neurons,
with a distribution of 80% excitatory and 20% inhibitory neurons.

Page 7 of 40

It is efficient to simulate due to the simplicity of the LIF neuron model, as well as the sparse
connectivity of the neurons. The network is set up in such a way that each neuron has C
connections, with C << N , i.e., the average synaptic connectivity between neurons is relatively
low.

Consider an example where neuron A is connected to C other neurons from both excitatory
and inhibitory populations. When these connected neurons spike, their respective synaptic
output are processed by neuron A. If a connected neuron is excitatory, it causes an increase in
membrane potential of neuron A. Conversely, if a connected neuron is inhibitory, the membrane
potential of neuron A decreases. In addition to this, all neurons receive inputs from external
synapses that are activated independently according to a Poisson process with a rate of vext
[10]. The final output of neuron A is then decided by the total input, from both the local and
external sources.

2.3.2 The Potjans-Diesmann network

Introduced in 2014, the Potjans-Diesmann network is another popular network model used as
basis for analysis in computational neuroscience [11]. Rather than using two populations of
excitatory and inhibitory neurons, like the Brunel network, this network incorporates a total
of eight populations distributed across various layers of the neocortex. These layers include a
combined L2/3 layer, as well as distinct L4, L5 and L6 layers, each with their own associated
population of inhibitory and excitatory neurons.

The proposed network consists of N = 80 000 neurons, interconnected through roughly 0.3 bil-
lion synaptic connections, corresponding to 217 million excitatory and 82 million inhibitory [11].
Despite the complexity introduced with additional neuron populations, the Potjans-Diesmann
network share similarities with the previously mentioned Brunel network. Notably, it uses the
LIF neuron model and connects populations to external synaptic sources, which generate spike
trains following the same Poisson process as described earlier. The excitatory and inhibitory
synaptic strengths in this network are designed as positive for the excitatory and negative for
inhibitory populations. For the inhibitory population, an additional factor, g, is multiplied with
the reference value to adjust the synapse strength. The g parameter resembles the one used in
this thesis, although our g parameter relates to both populations, and have varying strength
metrics based on which population it connects to (in total four since it can connect to the same
population).

In the remaining sections of this chapter, we shift our focus to the various methodologies that
can be used for estimating the posterior distribution of parameters such as g.

2.4 Bayesian inference

As briefly mentioned in the introduction, Bayesian inference is a framework for updating be-
liefs about a system by adding additional information. The Bayesian approach to posterior
estimation is based on Bayes’ theorem, which is shown in Eq. 2.2. The theorem describes the
conditional probability of event A given event B (p(A|B)) as equal to the conditional probabil-
ity of event B given event A (p(B|A)) times the probability of event A (p(A)), divided by the
probability of event B (p(B)). For example, events A and B could represent specific weather
conditions such as rain and cloudiness, respectively. Using Bayes’ theorem we can then derive
the probability of rain given cloudy weather, assuming the probability functions are known.

p(A|B) =
p(B|A)p(A)

p(B)
(2.2)

Page 8 of 40

However, in the real world, we are often interested in variables that can be described by prob-
ability distributions. The Bayesian approach to posterior estimation takes this into account
by using probability distributions instead of point probabilities. To make the example more
relevant for this thesis, Eq. 2.3 introduces θ, synaptic strength parameters, and y, the data
produced by simulating a neural network with these parameter values.

p(θ|y) = p(y|θ)p(θ)
p(y)

(2.3)

Here, p(θ) is the prior distribution of θ, p(y|θ) is the likelihood of observing the data y given
the parameters θ, and p(θ|y) is the posterior distribution of the parameters given the observed
data y. The marginal probability p(y) is the integral of the likelihood function p(y|θ) over all
possible values of θ, i.e., p(y) =

∫
p(y|θ)p(θ)dθ for continuous values of θ or

∑
θ p(y|θ)p(θ) for

discrete values of θ [12]. This is used to normalize the posterior, ensuring that it integrates to
1, a requirement for a probability distribution. A commonly used informal representation of
this formula, excluding the normalizing parameter, is the following:

Posterior ∝ Likelihood ∗ Prior (2.4)

What is needed to calculate the posterior is then broken down to a likelihood function and
a prior distribution. The prior can either be informative, meaning that the prior is based on
domain knowledge about the topic at hand and the distribution is biased towards more probable
values, or uninformative, meaning that the prior is a uniform distribution over a given parameter
space. If we then know the likelihood function, we can calculate the posteriors. This function,
however, is often unknown or intractable, such as parameter posteriors for biological neural
networks, and one would need to approximate it. In the next sections, we will look into some
methods one could use in order to approximate the posterior when the likelihood function is
unknown or intractable.

2.4.1 Summary statistics

Before diving deeper into the methods, a crucial part of estimating posteriors in this thesis
rely on summary statistics. In many instances, the output data can be complex and high-
dimensional, making the comparison between observed and simulated data difficult. The pri-
mary objective of using summary statistics is then to capture the essential features of the output
while simultaneously reducing its dimensionality.

For instance, when simulating behaviour of a biological neural network, the output data could
be high-dimensional time series of spike counts. Comparing individual spike counts between
samples could be difficult. Instead, using summary statistics that capture essential information,
such as firing rates and interspike intervals (time between spikes), can yield more stable and
meaningful comparisons.

There are essentially endless ways of computing these summary statistics, and choosing the
correct number, and quality thereof, can be challenging. One of the approaches in this thesis
uses the later introduced convolutional neural network (Section 2.4.3) as an embedding network
to extract summary statistics, as an attempt to deal with this problem.

2.4.2 Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is known as a likelihood-free inference (LFI) method,
meaning that it is used in the aforementioned case of difficult or intractable likelihood func-
tions. Within the framework there are several approaches, one of which uses a rejection based

Page 9 of 40

algorithm. By drawing parameter values (θ) from a prior distribution and using a model M,
we get our simulated data (p(y|θ)). The summary statistics calculated from these simulations
are compared with those of the observed data. Samples, with their corresponding θ values, are
subsequently rejected based on ∥y − yobs∥ < h [13]. Here h is some specified tolerance.

Table 2.1: The rejection algorithm of ABC.

Step Description

1 Draw θ values from a prior distribution.
2 Generate y based on θ.
3 Calculate the distance between simulated and observed data: ∥y − yobs∥.
4 Reject θ values given ∥y − yobs∥ < h for a specified value of h.

Linear regression adjustment

In general, machine learning is the process of complex algorithms learning patterns of a given
dataset. There are mainly three subcategories within the field, namely supervised learning, un-
supervised learning and reinforcement learning [14]. Within the scope of this thesis, supervised
and unsupervised learning are the most relevant. In supervised learning, we provide both a
dataset of features and the true outcomes for the individual feature combinations to the ma-
chine learning model. The model then attempts to learn a relationship between input and
output to predict future outcomes from new input. In unsupervised learning, we do not have
a dataset containing the true outcomes. Instead, we rely on the model to extract underlying
patterns from the data and group them accordingly.

Linear regression is a statistical method used in machine learning, where independent variables
are utilized in order to map a linear relationship with one or more dependent variables. Mathe-
matically, this can be written as Ax+ b = y where A represents a matrix of parameter values, x
the corresponding coefficients, b the intercept, and y the outcome. The goal is then to estimate
the values of the coefficients in order to best fit the observed y given the values of A.

This method can be incorporated as an additional step to the ABC algorithm, occurring after
the rejection process. In this case, θ becomes the dependent variable, and y the independent
variable trying to predict θ. Later, in Chapter 4, a more detailed explanation of how this further
impacts our output will be discussed in relation to the dataset used in the thesis.

2.4.3 Sequential Neural Posterior Estimation

Another LFI method is Sequential Neural Posterior Estimation (SNPE). The method relies on
training a deep neural density estimator to estimate the posterior distribution of the varying
parameters [15]. This is either done by explicitly passing a simulation model, M, as an argument
or appending pre-simulated data, of which the latter is done in this work.

Artificial neural networks

The process of associating simulated data with a posterior parameter distribution in SNPE is
done through an artificial neural network (ANN). ANNs are loosely based on the functionality
of biological neurons, where input and weights from one layer of artificial neurons determine the
output of the next layer of artificial neurons. In Figure 2.4 we can see that input parameters
are connected to the individual nodes of the hidden layer. The activation of the node in the
hidden layer is dependent of the dot product of the input feature values and their corresponding
weights, z =

∑
j wjxj (excluding bias, which would add a term b to the equation). This value is

Page 10 of 40

then passed to an activation function, with typical choices being Rectified Linear Units (ReLu),
Eq. 2.5, or the sigmoid function, Eq. 2.6. The latter is a less modern choice as activation
functions in the hidden layers but a popular choice in the output layer of binary problems, as
it compresses the output between 0 and 1, mimicking confidence of output value in terms of
percentage. ReLu, on the other hand, better addresses the vanishing gradient problem, which
is related to larger neural networks where small gradients are constantly multiplied as one
moves backward in the network, rendering artificial neurons closer to the input layer incapable
of updating weights. Further, the same process is applied between the hidden layer and the
output layer, or between hidden layers if there are more.

f(x) =

{
x, if x > 0

0, otherwise
(2.5)

f(x) =
1

1 + e−x
(2.6)

This procedure is known as the feedforward process of an ANN, but assuming we are using
the popular backpropagation algorithm, the learning primarily happens during the backward
iteration process. Here the derivative of a user-specified cost function, C(ŷ, y), is utilized,
where ŷ and y is the predicted and true output of a given node in the output layer, respectively.
Specifically, the algorithm computes the gradient of the cost function with respect to the weights,
applying the chain rule as it propagates through the network. The weights corresponding to
connections from nodes between layers are then updated appropriately. Finally, if the specified
number of epochs (i.e., training iterations) are completed, the output layer produces the final
prediction.

x1

x2

x3

x4

Input
layer

Hidden
layer

Output
layer

Figure 2.4: An artificial neural network with an input layer consisting of four input features, a
hidden layer with five artificial neurons (nodes) and an output layer with two artificial neurons.
Input data passes through the layers, where each node employs an activation function to
generate an output based on the dot product of the values from the previous nodes and their
corresponding weights.

Page 11 of 40

Convolutional neural network

Another method that falls under the ANN umbrella term is the convolutional neural network
(CNN). This type of network architecture has become particularly popular in dealing with pixel-
related processes, such as image recognition [16], due to its ability to intelligently reduce the
number of parameters that need to be trained. Traditional ANN models, as the one previously
mentioned, use fully connected layers where every neuron between the layers share connections.
An increase in the number of neurons, layers and feature parameters leads to a substantial
growth in the number of trainable parameters in the network. This is especially true for im-
ages, where individual pixels are considered as features. CNNs can also be used as embedding
networks, learning relevant information while simultaneously reducing the dimensional space.

There are various ways of building CNNs, but it generally involves the use of convolutional
layers, max pooling layers and fully connected layers. Convolutional layers consist of filters, or
kernels, that move across all the input data, creating what is called a feature map as output.
The number of filters determines how many feature maps to use, which in turn is passed as the
channel argument in the subsequent layer.

Max pooling layers also move filters across the input, extracting the maximum value within the
filter iteration and mapping it to the output layer. This does not change the channel output
in terms of number of feature maps, but is a common technique for reducing the size of each
feature map, achieved in conjunction with stride (i.e., the steps taken by the filter between
calculations).

Fully connected layers often serve as the endpoint for the network. By converting the channels
and feature space into a single vector, the fully connected layers can transform the information
into a final output. For instance, when training a model to distinguish images of cats and dogs,
the output could be an array of two numbers asserting the model’s confidence in each animal
respectively. In other words, the spatial component is lost during transformations, and the
model is no longer able to determine where the animal is on the original image. To address this
issue, other CNN techniques, such as the U-Net [17], have been developed, demonstrating that
the abovementioned method is just one of many potential implementations.

Masked Autoregressive Flow

In 2018, scientists of the University of Edinburgh published a paper discussing a new method for
density estimation, namely the Masked Autoregressive Flow (MAF) [18]. The method is a type
of normalizing flow designed to transform simple distributions, e.g., a multivariate Gaussian
(N), into more complex ones.

This is achieved by stringing together a sequence of invertible transformation functions, as is the
typical approach of normalizing flows, learned by a neural network. Moreover, it incorporates
autoregressive properties by only allowing certain dependencies between variables, i.e., p(x) =∏

i p(xi|x1:i−1).

An important thing to consider when transforming one distribution to another, is the change
in density. By calculating the Jacobian determinant and incorporating it in the equation, this
change is appropriately accounted for. The masking of the MAF method ensures that the
Jacobian matrix of the transformation function is triangular, in turn making the determinant
trivial to compute as the product of the diagonal entries. Formally, mapping from the simple
distribution p(u) to the learned complex distribution p(x) is written as

p(x) = pu(f
−1(x))

∣∣∣∣det(∂f−1

∂x

)∣∣∣∣ (2.7)

Page 12 of 40

and the other way around, from p(x) to p(u)

p(u) = px(f(u))

∣∣∣∣det(∂f

∂u

)∣∣∣∣ (2.8)

In the above equations, f represents the learned transformation function parameterized by the
neural network, and f−1 its invertible counterpart. After the training is complete, which involves
maximizing the log probability, we can sample values from the simple Gaussian distribution and
transform them into the domain of the complex distribution.

Page 13 of 40

Chapter 3
Data

This chapter aims to provide the reader with an understanding of the dataset used in the thesis,
as well as to offer insights into the transformations and modifications done in order to enable
the analytical methods proposed in the next chapter.

3.1 Introduction to the dataset

The dataset consists of a two-population biological neural network, featuring one excitatory and
one inhibitory population, simulated over 2 500 ms. The simulations are conducted using the
NEST simulator version 3.4 [19], with computations performed on supercomputers provided by
the Jülich Supercomuting Center (JSC). To account for the large number of spikes occurring at
the beginning of the simulation, the relevant time frame is further reduced to start at 500 ms,
resulting in a period from 500 ms to 2 500 ms. Further, the simulation output consists of spike
counts per 0.1 ms, which are converted to per 1 ms for improved readability and size reduction.

In principle, the network is a reduced and modified version of the Potjans-Diesmann eight
population network, extracting the fourth layer of inhibitory and excitatory populations, L4I
and L4E. Our network consists of a total of 27 394 leaky integrate-and-fire (LIF) neurons, with
approximately 80/20 percentage split between the populations, resulting in 21 915 excitatory
and 5 479 inhibitory.

To provide an initial understanding of the data we are working with, Figure 3.1 presents the
spiking activity of 100 inhibitory and excitatory neurons from a randomly drawn sample of the
dataset. In the uppermost portion of the figure, individual dots represent the spiking activity
of a neuron at that given line. The two histograms displayed beneath the spiking activity plot
illustrate the density of the neuron spikes over the course of the simulation interval. These
histograms are derived from the same set of neurons depicted in the spiking activity plot above.

14

N
eu

ro
ns

Inhibitory neurosA1 Excitatory neuronsB1

500 1000 1500 2000 2500
Time (ms)

0
5

10
15
20

A2

500 1000 1500 2000 2500
Time (ms)

B2

Figure 3.1: A1-B1: Raster plot of the spiking activity of 100 inhibitory and excitatory neu-
rons respectively. A2-B2: Histogram showing the density of spikes at a given time period.
Calculations are based on the same number of neurons illustrated in A1 and B1.

To construct the connections of the network, the predefined number of neurons are assigned to
their respective population, be it excitatory or inhibitory. Each neuron within a population has
a probability of connecting to others, denoted as, CY X (see Table 3.2). This could either be of
the same population (if Y = X) or a different population (if Y ̸= X). Here, Y represents the
postsynaptic population, while X represent the presynaptic population, and their connection
probability is defined as the probability of forming at least one synaptic connection with a
neuron of the postsynaptic population [11].

Table 3.1: Synaptic strength parameters for the two-population model. The format of param-
eter names is given by gpostsynaptic, presynaptic.

Parameter Description

gee Connection from excitatory to excitatory

gei Connection from inhibitory to excitatory

gie Connection from excitatory to inhibitory

gii Connection from inhibitory to inhibitory

The varying parameters of the network are the synaptic strengths between the neurons of each
population, denoted as gee, gie, gei and gii (refer to Table 3.1). The notation is such that
the postsynaptic neuron is denoted first, followed by the presynaptic neuron. For instance, gie
signifies the relative synaptic strength of an excitatory cell when connecting to a neuron from the

Page 15 of 40

inhibitory population. To calculate the synaptic weight, each of the respective synaptic strength
parameters are multiplied with J (see Table 3.2), a reference metric of the synaptic strength
value. The synaptic strengths (gyx) are drawn from a uniform distribution, as illustrated by
Figure 3.2, making it an uninformed prior. The uninformed prior offers a neutral starting point
for the analysis and is intended to be updated as the methods discussed in Chapter 4 are applied.

0.5 1.0 1.5 2.0
g_ee

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

true: 1.09

17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0
g_ei

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07 true: -5.91

0.5 1.0 1.5 2.0
g_ie

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

true: 1.03

17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0
g_ii

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07 true: -7.79

Figure 3.2: The prior distribution of the synaptic strength parameters. The dashed black
line in each respective plot represents the observed parameter value. The observation value is
extracted as a random sample from the initial set of simulations.

As the network is a reduced and modified version of the original Potjans-Diesmann eight popu-
lation network, readers interested in further technical details about the network are encouraged
to read the previously cited Potjans-Diesmann paper ([11]), as well Romaro et al. [20] and Ha-
gen et al. [21]. For the remaining network and neuron parameters used in this thesis, refer to
Table 3.2.

Page 16 of 40

Table 3.2: Network and neuron parameters used for the simulation of the two-population
model. Simulations are done with the NEST simulator version 3.4, and computations are
performed on supercomputers provided by the Jülich Supercomuting Center (JSC). C YX:
The parameter C YX follows the logic of connecting a neuron from population X onto popu-
lation Y. C[0, 0] is the connection from excitatory to excitatory, C[0, 1] is from inhibitory to
excitatory, C[1, 0] is from excitatory to inhibitory and C[1, 1] is from inhibitory to inhibitory.

Network parameters

Parameter Value Description

N_E 21 915 Number of excitatory neurons

N_I 5 479 Number of inhibitory neurons

k_ext_E 2 100 External input to the excitatory population

k_ext_I 1 900 Extrnal input to the inhibitory population

C_YX 0.050, 0.135 Connection probabilities between neurons

0.079, 0.160
d_E 1.5 Synaptic delay for the excitatory population (ms)

d_I 0.75 Synaptic delay for the inhibitory poulation (ms)

J 87.81 Refernce synaptic strength (pA)

Neuron parameters

tau_m 10.0 Membrane time constant (ms)

t_ref 2.0 Refractory period (ms)

C_m 250.0 Membrane capacitance (pF)

E_L −65.0 Resting membrane potential (mV)

V_th −50.0 Threshold potential (mV)

V_reset −65.0 Reset potential (mV)

tau_syn_ex 0.5 Excitatory synaptic time constant (ms)

tau_syn_in 0.5 Inhibitory synaptic time constant (ms)

3.2 Summary statistics of spike trains

To capture essential information of the network, and reducing the output dimensionality, several
summary statistics are generated, specifically mean firing rate, Fano factor, mean interspike
interval and mean coefficient of variation. These summary statistics are calculated separately
for the two populations, resulting in a total of eight statistics. The calculations are based on
spike trains of 100 neurons from each population, which helps save disk space and computation
time. It is important to note that numerous other summary statistics could have been developed
to better capture the essence of the output data. However, given constraints of the python
Elephant package [22] (used to generate the statistics) and the use of an embedding net as an
alternative approach to summary statistic gathering (covered more extensively in Section 4.1.2),
these eight were chosen.

In certain simulations, when the inhibitory activity become too large, the excitatory neurons
cease firing. This issue creates problems for certain summary statistic calculations, such as the
interspike interval, a measure on the length between spike times. If a neuron fires one time or less
during the simulated interval, the interspike interval value is returned as nan (not a number).
Most statistical models have a difficult time interpreting nan-values, and simulation samples that
produce these values are therefore dropped. An alternative approach to address this issue is to
merge the two populations and calculate summary statistics based on the combined populations
instead. However, this method is not employed, as it is believed that compressing the summary

Page 17 of 40

statistics into four dimensions instead of eight would result in a greater loss of information
than dropping a limited number of samples containing nan-values. A third, yet unexplored,
method could involve using interpolation or clustering techniques to more intelligently compute
the missing values.

The summary statistics are calculated as shown by the equations below. To adjust for the
summary statistics with mean values, all values are appended to a list and averaged over the
total number of neurons belonging to the relevant population. The firing rate (FR), as shown
in Eq. 3.1, is the average number of times a neuron spikes per ms. Here, n denotes the total
number of spikes from a neuron, and T represents time.

FR =
n

T
(3.1)

The Fano factor (F), Eq. 3.2, quantifies how much a neuron variate around its mean spike ratio
[23]. It is calculated by grouping all spike trains (st) and dividing the variance (σ2) by the mean
(µ).

F =
σ2(st)

µ(st)
(3.2)

The interspike interval (ISI) is the time between occurrences of spikes (Eq. 3.3). Depending
on the number of spike occurences, we can end up with a long list of numbers. These are then
averaged per neuron, before taking the total average of the population.

ISI = ti+1 − ti (3.3)

Here, ti+1 and ti denotes the spike time of spike i + 1 and i, respectively. The coefficient
of variation (CV) uses the ISI to calculate the variability of the distribution, by dividing the
standard deviation (σ) of the individual ISI by the mean of the ISI, as shown in Eq. 3.4

CV =
σ(ISI)

µ(ISI)
(3.4)

3.3 Observation

In order to capture the target posterior distribution, we need an observation that reflects the
output values from a specific data point. The observation is chosen randomly as one of the
samples generated from the initial simulation iteration, with the details on the number of
simulations per iteration discussed further in Chapter 4. Since this is a probabilistic model,
the output generated from the same synaptic parameters may vary. To obtain a more accurate
estimate of the output given a set of parameter values, we keep the synaptic strengths fixed
and do 100 additional simulations based on these parameter values. The final observation
output is then the average of these 100 simulations. The variations of the observed summary
statistics are illustrated in Figure 3.3. The dashed orange line represents the base, i.e., the
values corresponding to the sample drawn from the initial simulation, while the dashed black
line represents the final value as the mean of the 100 simulations.

For reference, the distribution of summary statistics from the first simulation is also displayed
(refer to Figure 3.4). The figure provides a basis for comparison between the simulation results
and the observation later in Chapter 5. However, certain simulations exhibit synchronous regular
(SR) activity, meaning that the neurons fire synchronously and with much higher frequency

Page 18 of 40

0.014 0.015 0.016
Mean firing rate (inhibitory)

0

5

10

15

20

0.034 0.036 0.038
Mean firing rate (excitatory)

0

10

20

Base value Mean value Histogram value

2.0 2.5 3.0 3.5 4.0
Fano factor (inhibitory)

0

5

10

15

20

0.8 1.0 1.2 1.4
Fano factor (excitatory)

0

5

10

15

20

65 70 75
Mean interspike interval (inhibitory)

0

5

10

15

20

26 28 30
Mean interspike interval (excitatory)

0

10

20

30

1.45 1.50 1.55 1.60
Mean CV (inhibitory)

0

5

10

15

20

0.86 0.88 0.90 0.92 0.94
Mean CV (Excitatory)

0

5

10

15

20

Figure 3.3: Histograms illustrating the distribution of each summary statistic metric. The
values corresponding to the original observation from the initial simulation are shown with
a dashed orange line. The dashed black line is the mean value, used as the metric for the
observation. The green dashed line indicates the individual sample (out of the 100) closest to
the mean, and is the sample used for the spike count histogram observation.

compared to the rest. Consequently, this increases the summary statistics domain for a few
set of samples, making the visual representation hard to interpret. To make the graph more
readable and facilitate comparison with the observation, values with a z-scores above 2 or below
-2 (which includes values not in the SR regime) are removed from the plot, accounting for
approximately 10% of the dataset.

0.00 0.01 0.02 0.03
Mean firing rate (inhbitory)

0

1000

2000

3000

4000

0.000 0.025 0.050 0.075
Mean firing rate (excitatory)

0

1000

2000

3000

4000

2.5 5.0 7.5
Fano factor (inhibitory)

0

2000

4000

1 2 3
Fano factor (excitatory)

0

1000

2000

3000

4000

200 400
Mean interspike interval (inhibitory)

0

250

500

750

1000

0 200 400 600
Mean interspike interval (excitatory)

0

1000

2000

0.5 1.0 1.5 2.0
Mean CV (inhibitory)

0

1000

2000

3000

0.0 0.5 1.0
Mean CV (Excitatory)

0

1000

2000

3000

Figure 3.4: Histogram illustrating the distribution of each summary statistic metric from the
initial sequence of simulations. Samples with z-scores above 2 and below -2 have been removed
for readability (approximately 10% of the dataset). The dashed black line represents the value
of the observation.

As previously mentioned, an embedding network is used as an alternative approach to learning
summary statistics based on the spike count histogram. However, constructing the final observed
histogram by taking the mean spike count from each bin (ms) turned out to be suboptimal.

Page 19 of 40

There are large variations in spike counts in each bin across the 100 simulations, but the average
value is approximately the same. This results in bins all containing approximately the same
value, even though the individual simulations show significant variation in spike counts between
bins. In fact, the intricate correlation between excitatory and inhibitory neurons, as well as
their oscillation, is challenging to replicate. To address this issue, the dataset containing the
100 observed simulations was used to extract the sample closest to the mean. The summary
statistics were scaled to ease comparison, and the sample with the shortest total Euclidean
distance from the mean was chosen, shown in Figure 3.3 as the dotted green line. Figure
3.5 gives a visual representation of the network’s oscillation. The opaque blue line at the
forefront represents the final histograms used as the observation, contrasted against the other
99 histogram lines depicted in transparent green.

0 500 1000 1500 2000

0

500

1000

1500

2000
Inhibitory

0 500 1000 1500 2000

0

2000

4000

6000

8000

10000

12000

Excitatory

Figure 3.5: Oscillations of the various spike count histograms given by the 100 samples simu-
lated on fixed parameter values from the observed sample. The opaque blue color represents
the histogram chosen to represent the observed value. The transparent green color in the
background shows the variation in spike counts for the other 99 samples.

Page 20 of 40

Chapter 4
Methods

This chapter aims to provide a comprehensive explanation of the various methods employed to
construct parameter posteriors that match the output from the observed data point. Essentially,
this involves implementing practical versions of the theoretical Bayesian inference methods
introduced in Chapter 2. The procedure consists of the following steps:

1. Simulate 1× 10 000 samples of a two-population neural network model for 2 500 ms using
NEST, drawing synapse parameters (gyx) from a uniform distribution. Reduce the interval
to 500ms:2500ms (as discussed in Chapter 3).

2. Drop nan-values to end up with a total of 8 793 samples.

3. Extract a random sample to be used as observed data point, while considering the re-
maining samples as simulated data.

4. Create a more robust observed sample by simulating 1 × 100 samples and performing
relevant calculations (as discussed in Chapter 3).

5. Construct a posterior distribution based on the following methods:

• ABC with linear regression adjustment

• SNPE using MAF and handcrafted summary statistics

• SNPE using MAF and an embedding network for summary statistic extraction

6. Simulate 3×1 500 samples of the same network, drawing parameters from each respective
posterior obtained in the previous step.

7. Repeat step 5.

8. Simulate 3× 100 samples of the same network, drawing parameters from each respective
posterior of the previous step.

9. Evaluate the findings from step 8 against the observed data point.

As briefly mentioned in the introduction, the programming related to this project has been
carried out using the Python programming language. The publicly available GitHub repository
can be found at github.com/strandxd/masteroppgave-data-2023, while an overview of the most
important folders can be found in Table A.2.

21

https://github.com/strandxd/masteroppgave-data-2023

4.1 Estimating posteriors

In this thesis, three distinct approaches are constructed: the ABC path with linear regression
adjustment, the SNPE path using MAF as a neural density estimator without an embedding
net, and the SNPE path using MAF as neural density estimator with an embedding net. These
methods all vary in complexity and, consequently, computational cost, with ABC being the
least complex and SNPE with an embedding net being the most complex. This contributes
to the interest in comparing the methods, as it enables us to ascertain whether augmenting
complexity enhances quality, or if such augmentation is wasteful.

4.1.1 ABC with regression adjustment

The initial step involves constructing a general rejection ABC algorithm that compares the
summary statistics of the simulated and observed data. Due to differences in scale and the
sensitivity of distance metrics to range variations, it is necessary to standardize the data. This
is achieved by subtracting the mean and dividing by the standard deviation, like so: z = x−µ

σ .
The standardized summary statistics can then be compared between variables.

Subsequently, the Euclidean distance between each simulated sample and the observed sample is
calculated based on the previously computed standardized output. A quantile of the distances
closest to the observed sample is then chosen, which determines the acceptance threshold of
the algorithm. In this work, a quantile of 10% is chosen, resulting in a dataset of 880 samples
after applying the rejection ABC algorithm to the initial set of 8 793 samples (after droppping
nan-values from the set of 10 000).

The quantile-based approach used in this method can make it challenging to obtain the true pos-
terior, as the algorithm may not always select samples that accurately represent the underlying
distribution. To account for this, we apply linear regression on the newly constructed dataset.
In this case, the simulated summary statistics serve as the regressor (independent variable), and
the parameter values act as the response variables (dependent variable). The resulting linear
model is then used to adjust the parameters obtained by the previous ABC algorithm based
on the difference in predicted output between the observed and simulated summary statistics,
informally as follows:

Adjusted parameters = linear model.predict(Xobs)− linear model.predict(X) + y (4.1)

where X represents the standardized summary statistics in the simulated dataset, Xobs denotes
the standardized summary statistics for the observed data, and y is a matrix containing param-
eter values, with yi representing each individual parameter value. The linear model refers to
the linear regression model that predicts the parameter values. Finally, to calculate the prob-
ability density function (PDF) we make use of gaussian kde from the Python SciPy package
[24], which also normalizes the output for us. This package is used throughout the project to
construct PDFs where needed.

4.1.2 Neural posterior estimation

In this work, two neural posterior estimators are implemented to learn posterior mappings
from a prior parameter distribution. Both of these estimators make use of the SBI Python
package [15] and, specifically, the SNPE algorithm. However, they differ in their approaches:
one employs handcrafted summary statistics, while the other takes the spike count histogram
as input and attempts to learn its own summary statistics through an embedding network.

Page 22 of 40

The initial step in the SNPE implementation without an embedding network is to define a
neural network architecture. In this case, the MAF is used as a neural density estimator.
Additionally, the number of hidden features, number of transformations, and learning rate are
specified. Furthermore, the data is standardized independently for each column, which involves
calculating a z-score for each value within its respective column. The optimization process is
discussed in detail in Section 4.2, but the final hyperparameter values for the different simulation
iterations can be found in Table 4.1. The iterations are distributed as follows: 8 793 for the first
iteration (after dropping nan-values of the 10 000 samples), 1 500 for the second iteration. The
third iteration, containing 100, only uses the raw output and are not considered as part of this.

Table 4.1: The final hyperparameter values of SNPE without an embedding network after
optimizing the network.

Name Value iteration 1 Value iteration 2

Hidden features 172 185

Transformations 14 2

Learning rate 0.000481 0.000439

In the SNPE implementation, there is an option to include the simulation model in the process
(in our case the NEST implementation). However, as this work relies on an external super-
computer to perform the simulations, the simulated dataset is instead appended to the SNPE
object along with the relevant parameter values. In the end, the observed summary statistics
are passed as arguments to obtain a posterior distribution. As previously mentioned, for the
first iteration, the prior is a uniform distribution, but for the subsequent simulation iterations,
the prior is updated to be the posterior estimation found from simulation i− 1.

The alternative SNPE implementation utilizes a CNN as an embedding network to summarize
the raw output data, specifically the spike count histogram. The details of the CNN network
architecture can be found in Table 4.3. This approach introduces a new hyperparameter to
optimize: the number of summary statistics to use. The final hyperparameter values can be
viewed in Table 4.2. As for the standardization of parameters, the varying synapse strengths are
standardized independently, like the SNPE method described above. However, the spike count
histogram is standardized using a structured approach. This involves calculating z-scores based
on the entire histogram from both channels, i.e., both populations, in order to encapsulate the
relationships between the populations.

Table 4.2: The final hyperparameter values of SNPE with an embedding network after opti-
mizing the network.

Name Value iteration 1 Value iteration 2

Hidden features 152 254

Transformations 6 6

Learning rate 0.000036 0.000091

Summary statistics 52 7

In this approach, we pass the parameter values together with their spike count histogram as
training data instead of the summary statistics. The histograms are processed by the embedding
network, which in turn outputs summary statistic values. To obtain the posterior, we pass the
observed spike count histogram to the model. The subsequent simulations follow the same
pattern of prior updates as the methods discussed earlier.

Page 23 of 40

Table 4.3: Summary of the CNN embedding network. Num sumstats (number of summary
statistics) is the parameter to optimize.

From layer To layer Output Shape

Input Conv1 (256, 4, 2000)

Conv1 MaxPool1 (256, 4, 1000)

MaxPool1 Conv2 (256, 8, 1000)

Conv2 MaxPool2 (256, 8, 500)

MaxPool2 Flatten (256, 4000)

Flatten FC1 (256, 350)

FC1 FC2 (256, num sumstats)

4.2 Optimization

There are various methods of optimizing hyperparameters, ranging from brute force approaches
such as grid search to random searches over a given hyperparameter space and combinations
of the two. Although these methods are popular and straightforward to implement, they lack
the ability to intelligently narrow in on promising areas to limit the search space. Optuna
[25], an optimization software introduced in 2019, implements a Bayesian algorithm known as
Tree-Structured Parzen Estimator (TPE), which enables dynamic hyperparameter optimization.
Since this thesis focuses on Bayesian statistics, the choice of Optuna seems fitting, and its
Python package allows for easy compatibility with PyTorch, which is also required for SNPE
implementation using SBI.

The Bayesian aspect of the algorithm refers to the fact that we start with an initial belief, our
entire hyperparameter search space, and iteratively update this belief as we gather information
on how the hyperparameter combinations impact performance [26]. The initial hyperparameter
values are chosen randomly, before grouping the results of these combinations into either a
good or bad distribution, l(x) and g(x) respectively. The next iteration is then chosen as the

maximum of g(x)
l(x) [27]. This ensures that we draw hyperparameters from a distribution more

likely to perform well, thereby increasing the likelihood of faster convergence in the optimization
process.

The hyperparameter space used in this thesis can be viewed in Table 4.4. As previously men-
tioned, summary statistics as a hyperparameter are only applicable to the version implementing
an embedding network, but the remaining hyperparameters are used for both variations.

Table 4.4: Values assosiated with hyperparameter optimization for both methods of the im-
plemented SNPE algorithm.
*Summary statistics are only used as a hyperparameter during the SNPE implementation us-
ing an embedding network.

Name Lower bound Upper bound Scale

Hidden features 32 256 Linear

Transformations 2 14 Linear

Learning rate 0.00001 0.01 Logarithmic

Summary statistics* 15 70 Linear

Page 24 of 40

Chapter 5
Results

Evaluating the estimated posterior is challenging, as we do not have the true posterior for
comparison. As a result, the evaluation process relies less on objective metrics and more on
analyzing the output. In this chapter, we present the findings from the previously described
methods.

5.1 Inspecting the posterior distribution

While not certain, it is reasonable to assume that values closer to the observed parameters have
a higher likelihood of reproducing similar output. However, it is essential to consider this as a
four-dimensional problem rather than a one-dimensional one, where the joint interaction of all
four parameters is what produces the output.

Figure 5.1 shows the density estimations of the various parameter spaces throughout the simu-
lated iterations. The base simulation, further referenced as simulation 0, serves as the founda-
tion for further work. The equal probability of drawing parameters within the space results in
a significant variation in simulated output. Given our randomly chosen observation, we aim to
narrow this output to replicate what the observation yields.

Posterior 1 is the result of applying the Bayesian inference methods on simulation 0, with 8 793
samples (after dropping nan-values from the original 10 000). All applied methods manage to
narrow the parameter space down closer to the observed parameter value, though to varying
degrees between them and the individual parameters. gee and gei appear to be the most con-
strained by all methods, while the other two parameters display more varying results between
the methods and are generally less constrained. SNPE without an embedding network, further
referred to as novel SNPE, seems to be the most effective, with high densities either on or close
to the observed parameters. SNPE with an embedding network, further referred to as embed-
ding SNPE, has similar maximum densities close to the observed parameters but is generally
less restrictive, meaning that the distribution curve is flatter overall. The regression-adjusted
ABC method (ABC for short) highly overlaps the others on parameters gee and gei but shifts
further to the right and left for gie and gii, respectively. This is not necessarily an indication
of a poor posterior estimation, but given the simpler nature of this method compared to the
others and the fact that it is the outlier of the three, it is reasonable to be wary of the results.

Posterior 2 is constructed by drawing parameters from posterior 1, with 1 500 samples. It is
expected that the different methods should continue to optimize the posterior distribution by
narrowing it down. This is indeed what happens for the ABC and the novel SNPE method.
However, the embedding SNPE approach shows less improvement, as its distribution curves

25

0.5 1.0 1.5 2.0
g_ee

0.0

0.2

0.4

0.6

Prior

0.5 1.0 1.5 2.0
g_ee

0

2

4

6

8

Posterior 1

ABC w/ reg. adj. SNPE w/o embedding net SNPE w/ embedding net true

0.5 1.0 1.5 2.0
g_ee

0.0

2.5

5.0

7.5

10.0

12.5

Posterior 2

0.5 1.0 1.5 2.0
g_ie

0.0

0.2

0.4

0.6

0.5 1.0 1.5 2.0
g_ie

0

1

2

3

4

0.5 1.0 1.5 2.0
g_ie

0

2

4

6

8

15 10 5 0
g_ei

0.00

0.02

0.04

0.06

15 10 5 0
g_ei

0.00

0.25

0.50

0.75

1.00

1.25

1.50

15 10 5 0
g_ei

0.0

0.5

1.0

1.5

2.0

2.5

15 10 5 0
g_ii

0.00

0.02

0.04

0.06

15 10 5 0
g_ii

0.0

0.1

0.2

0.3

0.4

0.5

0.6

15 10 5 0
g_ii

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.1: Plot showing the posterior distributions of each method, related to the prior
(leftmost column), color coded as shown by label. The leftmost column shows the prior, the
middle column shows the posterior (posterior 1) generated from the prior (8 793 samples),
and the rightmost column shows the posterior (posterior 2) generated from posterior 1 (1 500
samples).

appear very similar to those in posterior 1. This could suggest that the method with an
embedding net has already found a good estimation of the posterior, but further examination
is needed to draw any conclusions. It is worth noting that since the two remaining methods
continue to further constrain the parameter space, it might not be the case that the embedding
net method has found the optimal constraint. Instead, it could be failing to extract the relevant
information needed for further improvement. To better understand the performance of the
embedding SNPE method, additional iterations could be implemented. This possibility, along
with other potential improvements, is discussed further in the future work section of Chapter
6.

Figure 5.2 illustrates 2D plots of the parameters plotted against each other as a result of
posterior 2, with the black marker representing the observed sample’s parameter values. The
color scheme is the same as in Figure 5.1: ABC is blue, novel SNPE is orange and embedding

Page 26 of 40

SNPE is green. This color scheme holds true for the remainder of the text. Each of the six plots
(e.g., A1) has a correlation matrix displaying how the different parameters correlate (e.g., A2).
The most notable difference is that the ABC method shows different correlations between the
parameters than the two SNPE methods, which are much more similar. The exception is the
correlation between gie and gii as well as between gee and gei, which is highly similar between
all three methods.

1.0 1.1 1.2
g_ee

1.00

1.25

1.50

g_
ie

A1

1.0 1.1 1.2
g_ee

7.0

6.5

6.0

5.5
g_

ei

1.0 1.1 1.2
g_ee

10

8

6

g_
ii

1.00 1.25 1.50
g_ie

7.0

6.5

6.0

5.5

g_
ei

1.00 1.25 1.50
g_ie

10

8

6

g_
ii

7.0 6.5 6.0 5.5
g_ei

10

8

6

g_
ii

1.0 1.1 1.2
g_ee

1.0

1.2

g_
ie

B1

1.0 1.1 1.2
g_ee

6.5

6.0

5.5

5.0

g_
ei

1.0 1.1 1.2
g_ee

8

6

g_
ii

1.0 1.2
g_ie

6.5

6.0

5.5

5.0

g_
ei

1.0 1.2
g_ie

8

6

g_
ii

6.5 6.0 5.5 5.0
g_ei

8

6

g_
ii

0.8 1.0 1.2
g_ee

1.0

1.5

g_
ie

C1

0.8 1.0 1.2
g_ee

6

5

4

g_
ei

0.8 1.0 1.2
g_ee

10

8

6

g_
ii

1.0 1.5
g_ie

6

5

4

g_
ei

1.0 1.5
g_ie

10

8

6

g_
ii

6 5 4
g_ei

10

8

6

g_
ii

g_ee g_ie g_ei g_ii

g_
ee

g_
ie

g_
ei

g_
ii

0.27

-0.75 -0.13

-0.24 -0.92 0.36

A2

g_ee g_ie g_ei g_ii
g_

ee
g_

ie
g_

ei
g_

ii

0.63

-0.63 -0.61

-0.41 -0.86 0.82

B2

g_ee g_ie g_ei g_ii

g_
ee

g_
ie

g_
ei

g_
ii

0.73

-0.78 -0.74

-0.70 -0.92 0.80

C2

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

Figure 5.2: Plot illustrating the joint distribution between pairwise parameter combinations,
where the densities are from the final posterior (posterior 2). A1-A2: The joint distribution
of parameters (A1) of the linearly adjusted ABC method and a corresponding correlation
matrix between these parameters (A2). B1-B2: The joint distribution of parameters (B1)
of the SNPE method without an embedding network and a corresponding correlation matrix
between these parameters (B2). C1-C2: The joint distribution between parameters (C1) of
the SNPE method with an embedding network and a corresponding correlation matrix between
these parameters (C2)

Additionally, we can see that the darkest area (where the highest densities of values are cen-

Page 27 of 40

tered) is closer to the observed data point for the ABC method and the novel SNPE method.
The embedding SNPE (green) is less effective in capturing areas around the observed target,
which is consistent with what was shown in Figure 5.1. The method with the highest num-
ber of samples closest to the observed data point is the novel SNPE method (orange). It also
displays high correlations between the variables, very similar to that of the embedding SNPE
method, emphasizing the importance of drawing from the joint distribution to account for their
dependencies. On the other hand, the ABC method reveals relatively weaker overall correla-
tions between the variables. This might suggest that it is not capturing the linear dependencies
between the variables as effectively as the SNPE methods. However, it is essential to note that
the parameter correlations of the ABC method are not negligible, but comparatively lower than
the other two.

The similarities of the correlation in the novel SNPE and embedding SNPE produces 2D plots
that are very similar in shape. Their most significant variability lies between gee and gii, where
the correlation value of the novel SNPE method indicates much less correlation compared to
the embedding SNPE. However, as previously mentioned, the novel SNPE approach focuses
more on the areas surrounding the observed data point. With probabilistic models, there is the
chance that the output produced by parameters related to the observed data point is unlikely to
occur, although this chance is lowered by conducting multiple simulations with fixed parameter
values. It is possible that the true posterior is not centered around the observed parameters,
but further away in the 4D space. An option then becomes to analyze how well the methods
can reproduce the distribution of summary statistics.

Page 28 of 40

5.2 Summary statistic comparison

From the final posterior, posterior 2, we can draw parameter values and see how well they
resonate with the observed samples’ summary statistic distribution. However, one value simu-
lated by drawing parameter values from ABC posterior 2 exhibits SR activity and is therefore
dropped, as its values excessively stretch the graphs and hinder interpretability. The red circles
from Figure 5.3 show the dropped value and its associated parameter combinations, while the
black round circle represents the observation. The novel SNPE method generates no such values,
and it would make little sense to drop values from the evenly distributed flat curve produced
by the embedding SNPE method, as these values are not definite outliers inconsistent with the
remaining data.

1.00 1.05 1.10 1.15 1.20
g_ee

0.9

1.0

1.1

1.2

1.3

1.4

g_
ie

6.6 6.4 6.2 6.0 5.8 5.6 5.4
g_ei

11

10

9

8

7

g_
ii

Mean firing rate excitatory
0.03
0.04
0.05
0.06
0.07
0.08

Figure 5.3: Scatter plot showing the distribution of parameters and a corresponding arbitrary
summary statistic for the ABC method. The red circle symbolises the sample to be dropped,
while the black circle represents the observation for reference.

Figure section A of Figure 5.4 presents the ABC method’s produced summary statistics (blue)
in comparison with the observed summary statistics distribution (purple). While metrics such
as the Fano factor for both populations heavily overlap, there is more spread in mean firing rate
and interspike interval, two heavily correlated metrics. High firing rates typically involve short
interspike intervals and vice versa. Despite these variations, even after removing the outlier,
most of the data points seem to revolve around the same ranges as the observed metrics.

As seen in figure section B of Figure 5.4, the novel SNPE method seem to overlap the most of
the three methods. As this is based on 100 samples, the possibility of it being due to chance has
to be considered, so making any definite conclusions is unwise. However, the method presents
few values outside the range of the observed summary statistics, and the general distribution
curve for the Fano factor is nearly identical, with minimal deviation. The previous section
(Section 5.1) revealed that this method is also the most restrictive of the three. These findings
further suggest that the posterior distribution is indeed centered around a tight distribution
with focus around the observation.

The final figure section, section C of Figure 5.4, illustrates the embedding SNPE method. This
curve is flatter than the others, producing a broader range of summary statistics. The 2D plot in
figure 5.2 illustrated that the joint distribution of parameter combinations resembled the novel
SNPE method’s shape, although it was less constrained around the observed value. This may
indicate that the model successfully captures the underlying interactions between the variables
but fails to produce the correct combinations of values. Since this method is not trained on the
summary statistics themselves but rather on the raw output data in the form of spike count
histograms, the lack of results in this regard may not be all that surprising. It is possible

Page 29 of 40

that the summary statistics produced by the embedding net are more capable of tracking the
actual oscillations of the raw output data, which is arguably more important than being able
to replicate the handcrafted summary statistics. In the next section, we will look further into
this possibility.

0.014 0.016 0.018
Mean firing rate (inhibitory)

0

200

400

600

800

A

0.03 0.04 0.05
Mean firing rate (excitatory)

0

100

200

300

ABC w/ reg. adj. Observation

2 3 4
Fano factor (inhibitory)

0.0

0.5

1.0

0.5 1.0 1.5 2.0
Fano factor (excitatory)

0

1

2

3

60 70 80
Mean interspike interval (inhibitory)

0.00

0.05

0.10

0.15

20 25 30
Mean interspike interval (excitatory)

0.0

0.2

0.4

1.4 1.6 1.8
Mean CV (inhibitory)

0.0

2.5

5.0

7.5

10.0

0.8 0.9 1.0
Mean CV (excitatory)

0

5

10

15

20

0.014 0.016
Mean firing rate (inhibitory)

0

200

400

600

800

B

0.035 0.040
Mean firing rate (excitatory)

0

100

200

300

400

SNPE w/o embedding net Observation

2 3 4
Fano factor (inhibitory)

0.0

0.5

1.0

0.75 1.00 1.25 1.50
Fano factor (excitatory)

0

1

2

3

4

60 70
Mean interspike interval (inhibitory)

0.00

0.05

0.10

0.15

25.0 27.5 30.0 32.5
Mean interspike interval (excitatory)

0.0

0.2

0.4

1.4 1.5 1.6
Mean CV (inhibitory)

0

5

10

0.85 0.90 0.95
Mean CV (excitatory)

0

10

20

0.01 0.02 0.03 0.04 0.05
Mean firing rate (inhibitory)

0

100

200

C

0.025 0.050 0.075 0.100
Mean firing rate (excitatory)

0

50

100

SNPE with embedding net Observation

5 10 15
Fano factor (inhibitory)

0.0

0.2

0.4

0.6

2 4
Fano factor (excitatory)

0.0

0.5

1.0

1.5

2.0

50 100
Mean interspike interval (inhibitory)

0.000

0.025

0.050

0.075

0.100

10 20 30 40
Mean interspike interval (excitatory)

0.0

0.1

0.2

0.3

1 2 3
Mean CV (inhibitory)

0

2

4

0.8 1.0 1.2 1.4
Mean CV (excitatory)

0

5

10

15

Figure 5.4: Density (y-axis) of summary statistics (x-axis) compared to the observation. Based
on 100 simulations from posterior 2 from each respective method. A: ABC with regression
adjustment (blue) compared to the observation (purple). B: SNPE without an embedding net
(orange). C: SNPE with an embedding net (green).

Page 30 of 40

5.3 Power spectral density

The power spectral density (PSD) is a measure of the distribution of power over various fre-
quency components in a signal. Again, we use the 100 samples created by drawing parameters
from posterior 2 of each respective method. We can then transform the time series histograms
into a range of frequency values, thereby allowing the identification of the frequency components
with the most power (i.e., the most activity). Analyzing the PSD can provide insight into how
well our summary statistics are able to summarize the raw output data of the simulations.

Figure 5.5 shows the PSD plots for the three methods: ABC in blue, novel SNPE in orange and
embedding SNPE in green. The yellow line represents the observation, and the colored stipples
lines indicate values within one (red), two (black) and three (magenta) standard deviations,
respectively.

10
2

10
3

10
4

10
5

10
6

InhibitoryA1

Observation 1 SD 2 SD 3 SD

10
5

10
6

10
7

10
8

ExcitatoryA2

10
3

10
4

10
5

B1

10
5

10
6

10
7

B2

0.0 0.1 0.2 0.3 0.4 0.5
Frequency

10
2

10
4

10
6

10
8

C1

0.0 0.1 0.2 0.3 0.4 0.5
Frequency

10
4

10
6

10
8

10
10

C2

Figure 5.5: A1-A2: ABC with regression adjustment (blue). B1-B2: SNPE without an
embedding net (orange). C1-C2: SNPE with an embedding net (green). Power spectral
density plot of all three methods, with inhibitory and excitatory population as indicated by
the titles, plotting frequency (x-axis) against power (y-axis). The yellow line represents the
observation, the red dotted line represents one standard deviation away from the mean of the
given method’s PSD. The dotted black and magenta lines indicated two and three standard
deviations away from the mean, respectively.

The ABC and novel SNPE methods exhibit the most stable oscillations, as evidenced by their
narrow standard deviations, few samples outside the third standard deviations, and most sam-
ples centered around the observed PSD. Among the two, the novel SNPE method appears to
have the least variability and is best able to replicate the observation curve.

Page 31 of 40

In contrast, the embedding SNPE method demonstrates greater variability, which consequently
increases the standard deviation. Although most of the values follow the observation curve,
they are centered above it, rather than around it, as seen with the other two methods, although
it is mostly within the range of one standard deviation. Most of the values that significantly
deviate from the observation pattern are found outside the third standard deviation, indicating
a few, but large, misses. As these are, by definition, not common occurrences, they pose less of
a problem when evaluating the overall performance of the method.

Page 32 of 40

Chapter 6
Discussion

The goal of this thesis has been to explore and compare various LFI methods to estimate a
posterior distribution of synaptic parameters in a two-population neural network based on a
single set of parameter values, used as observation. The summary statistics of the observed
sample were obtained from the mean output of 100 simulations. In total, three methods were
constructed: an ABC method with linear regression adjusted parameters, and two SNPE meth-
ods using MAF as neural density estimator, one with the use of an embedding net and one
without.

As previously mentioned, there is no definite metric to validate such a process. However, the
findings in Chapter 5 provide some valuable insights into the performance of these methods.
The more restrictive the posterior is around the observed parameter values, the better it seems
to reproduce the observed output. This might seem trivial, but given the probabilistic and
highly complex nature of the simulation model, one might expect that a wider range of pa-
rameter combinations would reproduce the same output. After all, the true posterior might be
multimodal and involve parameters outside the investigated parameter space.

Reproducing the summary statistics, as shown in Figure 5.4 of the previous chapter, is also not
necessarily trivial to interpret. There is an argument to be made that the true posterior would
not reproduce the identical summary statistics distribution, again because of the probabilistic
neural model. However, the observed summary statistics seem to have a clear pattern where
some values are more likely to be produced. We only compare 100 samples, so expecting an
identical match would not be realistic. The argument is still that given simulated samples mov-
ing towards infinity of both the observation and posterior, the true posterior would reproduce
the same distribution of summary statistics. Given that argument, the more overlapping the
100 samples are, the better. Out of the three methods, the novel SNPE method seems to overlap
the most.

One potential limitation of the thesis is choosing the correct summary statistics. It is possible
that the chosen metrics may not fully capture the complexity of the model used for the sim-
ulations. The compact and highly similar patterns of the PSD plot of the ABC method, and
particularly the novel SNPE method, compared to the observation does however indicate that
the summary statistics are likely sufficient to compute the underlying structure of the neural
model. The embedding SNPE uses a CNN to produce the summary statistics, and these appear
to be less informative than the handcrafted ones. This could be attributed to various factors,
such as the number of simulated data points, the number of iterations we perform the simula-
tions (i.e., how many sequences of simulations we do), and the quality of the CNN architecture
itself. Initially, it was assumed that letting a computer handle the summary statistic gathering

33

would be the better choice, but the results suggest otherwise.

The trade-off in computational efficiency was also an area of interest, not taking into account
the simulations, as they were handled by a supercomputer and are considered a separate aspect
entirely. The contrast in runtime quickly became clear as the ABC method is computationally
inexpensive compared to the two SNPE methods, as it does not require any optimization, but
its performance is also less accurate than the novel SNPE method. On the other hand, the
embedding SNPE method has a relatively long optimization time, but its performance does not
justify the additional computational cost as of now. However, it is important to note that the
runtime on a trained model is low, and given more time to optimize the method, it might yield
better results. The CNN part of the embedding SNPE method has generally received little
optimization focus, so the potential for improvement is especially high for this method.

In conclusion, the novel SNPE method appears to capture the posterior distribution the best,
based on its ability to replicate results. The ABC method is also able to replicate at a rea-
sonably satisfactory level, while the embedding SNPE method seems to produce less accurate
results. However, there is potential for future optimization improvements of the embedding
SNPE method, as it shows similar correlation patterns to that of the novel SNPE, indicating
high capability of capturing joint parameter dynamics.

6.1 Future Work

As part of the work for this thesis, some work has also been done on a four-population biological
neural network. This network adds two additional layers of the original Potjans-Diesmann
network, specifically the combined L2/3 excitatory and L2/3 inhibitory. With an increased
network size, there are a number of increased synaptic connection parameters, 16 in total. The
realization of the number of simulations needed to obtain reasonable results, combined with
limited available CPU hours and the fact that the process would essentially be the same, made
the priority shift fully towards the two-population network. It would still be interesting to see
whether it would be possible to produce reasonable posteriors of such a network, where the
problem is 16-dimensional instead of 4.

Further, it would be interesting to continue improving the work discussed in this thesis. For
example, one could look at another parameter space entirely, or expand on the existing one.
There is also a chance that the characteristics of our observed sample were particularly easy, or
hard, to replicate. Choosing different observations and performing the same process to see how
it works would be beneficial in testing the robustness.

Improvements in optimization are also worth exploring, as this is never truly finished. There is
also the option of improving the way the final observed spike count histogram is chosen. As of
now, this is chosen as the sample whose combined summary statistic distance is closest to the
final observation (mean). Training neural networks, either recurrent or convolutional, would
most likely require way more than the 100 samples used in this thesis, but could potentially
further optimize the path involving the embedding net.

Exploring nonlinear regression adjustment techniques, instead of linear, might also be a valuable
improvement to the ABCmethod. The interactions of the synaptic parameters and the summary
statistics are generally nonlinear, so incorporating such techniques could help capture these
interactions at a better degree, leading to more accurate and reliable results.

Page 34 of 40

Appendix A
Appendix

A.1 Python packages

Table A.1: Python packages with their respective version and main purpose of use.

Name Version Purpose of use

NEST 3.4 Simulating neural networks

Numpy 1.22.1 Calculations and array manipulation

Pandas 1.4.1 Data frame manipulation

Scipy 1.7.3 Calculations

Matplotlib 3.5.1 Plotting

Seaborn 0.11.2 Plotting

SciKit learn 1.0.2 Linear regression and scaling

PyTorch 1.13.1+cpu CNN network

SBI 0.21.0 SNPE with MAF implementation

Neo 0.11.1 Spike train type conversion

Elephant 0.11.2 Summary statistics of spike trains

Optuna 3.1.1 Optimization

35

A.2 GitHub files

Table A.2: Overview of the folder structure representing the most important files used in the
project. The ”data” folder is primarily used to transform the raw data (from the simulations)
into accessible datasets. The ”ABC” and ”SBI” folders focus on implementing ABC and
SNPE (both variations) respectively. The ”figures” folder contains files related to plotting,
and additional utility functions can be found in the ”helpers” folder. The GitHub page can
be found here.

File Description Git hash

2pop/data/* Data extraction from simulations fc3cf8c

2pop/abc/* Implementation of ABC methods fc3cf8c

2pop/sbi/* Implementation of SBI methods fc3cf8c

figures/* Plotting fc3cf8c

helpers/* Helper functions fc3cf8c

A.3 Hardware specifications

Table A.3: Hardware specifications for the desktop computer used to run all files except sim-
ulations. Simulations were run on supercomputers provided by Jülich Supercomuting Center.

Name Version

Processor Intel(R) Core(TM) i5-8600K CPU @ 3.60GHz

RAM 8.00 GB

OS Windows 10

Page 36 of 40

https://github.com/strandxd/masteroppgave-data-2023

Bibliography

[1] F. A. Azevedo et al. “Equal numbers of neuronal and nonneuronal cells make the human
brain an isometrically scaled-up primate brain”. In: The Journal of comparative neurology
513.5 (2009), pp. 532–541. url: https://pubmed.ncbi.nlm.nih.gov/19226510/.

[2] Wikimedia Commons. File:Neuron.svg — Wikimedia Commons, the free media repository.
2022. url: https://commons.wikimedia.org/w/index.php?title=File:Neuron.svg&
oldid=648452462.

[3] P.J. Duncan and M.J. Shipston. Chapter Nine - BK Channels and the Control of the Pi-
tuitary. Ed. by Candice Contet. 2016. url: https://www.sciencedirect.com/science/
article/pii/S0074774216300241.

[4] Wikimedia Commons. File:ActionPotential.png — Wikimedia Commons, the free media
repository. 2022. url: https://commons.wikimedia.org/w/index.php?title=File:
ActionPotential.png&oldid=628255538.

[5] A. L. Hodgkin and A. F. Huxley. “A quantitative description of membrane current and
its application to conduction and excitation in nerve”. In: The Journal of physiology
117.4 (1952), pp. 500–44. eprint: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC1392413/pdf/jphysiol01442-0106.pdf. url: https://physoc.onlinelibrary.
wiley.com/doi/10.1113/jphysiol.1952.sp004764.

[6] Wikimedia Commons. File:Hodgkin-Huxley-model.svg — Wikimedia Commons, the free
media repository. 2022. url: https://commons.wikimedia.org/w/index.php?title=
File:Hodgkin-Huxley-model.svg&oldid=665450513.

[7] Südhof T. C. “Calcium control of neurotransmitter release”. In: Cold Spring Harbor per-
spectives in biology 4.1 (2012). doi: https://doi.org/10.1101/cshperspect.a011353.
url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249630/.

[8] T. P. Vogels, K. Rajan, and L. F. Abbott. “Neural network dynamics”. In: Annual review
of neuroscience 28 (2005), pp. 357–376. doi: https://doi.org/10.1146/annurev.
neuro.28.061604.135637. url: https://pubmed.ncbi.nlm.nih.gov/16022600/.

[9] T. C. Südhof. “The cell biology of synapse formation”. In: The Journal of cell biology
220.7 (2021). doi: https://doi.org/10.1083/jcb.202103052.

[10] N. Brunel. “Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spik-
ing Neurons”. In: J Comput Neurosci 8 (2000), pp. 183–208. doi: https://doi.org/10.
1023/A:1008925309027.

[11] T. C. Potjans and M. Diesmann. “The Cell-Type Specific Cortical Microcircuit: Relating
Structure and Activity in a Full-Scale Spiking Network Model”. In: Cerebral Cortex 24.3

37

https://pubmed.ncbi.nlm.nih.gov/19226510/
https://commons.wikimedia.org/w/index.php?title=File:Neuron.svg&oldid=648452462
https://commons.wikimedia.org/w/index.php?title=File:Neuron.svg&oldid=648452462
https://www.sciencedirect.com/science/article/pii/S0074774216300241
https://www.sciencedirect.com/science/article/pii/S0074774216300241
https://commons.wikimedia.org/w/index.php?title=File:ActionPotential.png&oldid=628255538
https://commons.wikimedia.org/w/index.php?title=File:ActionPotential.png&oldid=628255538
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/pdf/jphysiol01442-0106.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/pdf/jphysiol01442-0106.pdf
https://physoc.onlinelibrary.wiley.com/doi/10.1113/jphysiol.1952.sp004764
https://physoc.onlinelibrary.wiley.com/doi/10.1113/jphysiol.1952.sp004764
https://commons.wikimedia.org/w/index.php?title=File:Hodgkin-Huxley-model.svg&oldid=665450513
https://commons.wikimedia.org/w/index.php?title=File:Hodgkin-Huxley-model.svg&oldid=665450513
https://doi.org/https://doi.org/10.1101/cshperspect.a011353
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249630/
https://doi.org/https://doi.org/10.1146/annurev.neuro.28.061604.135637
https://doi.org/https://doi.org/10.1146/annurev.neuro.28.061604.135637
https://pubmed.ncbi.nlm.nih.gov/16022600/
https://doi.org/https://doi.org/10.1083/jcb.202103052
https://doi.org/https://doi.org/10.1023/A:1008925309027
https://doi.org/https://doi.org/10.1023/A:1008925309027

(Dec. 2012), pp. 785–806. issn: 1047-3211. doi: https://doi.org/10.1093/cercor/
bhs358.

[12] A. Gelman et al. “Bayesian Data Analysis”. In: Chapman and Hall/CRC, 2013. Chap. 1:
Probability and Inference.

[13] S. A. Sisson, F. Yanan, and M. A. Beaumont. “Handbook of Approximate Bayesian Com-
putation”. In: Chapman and Hall/CRC, 2018. Chap. 1: Overview of ABC.

[14] L. Serafeim. What is Machine Learning: Supervised, Unsupervised, Semi-Supervised and
Reinforcement learning methods. 2020. url: https://towardsdatascience.com/what-
is-machine-learning-a-short-note-on-supervised-unsupervised-semi-supervised-

and-aed1573ae9bb.

[15] Alvaro Tejero-Cantero et al. “sbi: A toolkit for simulation-based inference”. In: Journal
of Open Source Software 5.52 (2020), p. 2505. doi: 10.21105/joss.02505. url: https:
//doi.org/10.21105/joss.02505.

[16] Samer L. Hijazi, Rishi Kumar, and Chris Rowen. “Using Convolutional Neural Networks
for Image Recognition By”. In: (2015). url: http://www.multimediadocs.com/assets/
cadence_emea/documents/using_convolutional_neural_networks_for_image_

recognition.pdf.

[17] O. Ronneberger, P Fischer, and T. Brox. “U-Net: Convolutional Networks for Biomedical
Image Segmentation”. In: CoRR abs/1505.04597 (2015). url: http://arxiv.org/abs/
1505.04597.

[18] George Papamakarios, Theo Pavlakou, and Iain Murray. “Masked Autoregressive Flow
for Density Estimation”. In: (2018). url: https://arxiv.org/abs/1705.07057.

[19] Ankur Sinha et al. NEST 3.4. Version 3.4. Feb. 2023. doi: 10.5281/zenodo.6867800.
url: https://doi.org/10.5281/zenodo.6867800.

[20] C. Romaro et al. “NetPyNE Implementation and Scaling of the Potjans-Diesmann Cortical
Microcircuit Model”. In: Neural computation 33.7 (2021), pp. 1993–2032. doi: https:
//doi.org/10.1162/neco_a_01400.

[21] E. Hagen et al. “Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron
Networks”. In: Cerebral Cortex 26.12 (2016), pp. 4461–4496. doi: https://doi.org/10.
1093/cercor/bhw237.

[22] M. Denker et al. Elephant 0.11.2. Version v0.11.2. Nov. 2022. doi: https://doi.org/
10.5281/zenodo.7307401.

[23] K. Rajdl, P. Lansky, and L. Kostal. “Fano Factor: A Potentially Useful Information”. In:
Frontiers in computational neuroscience 14 (2020). doi: https://doi.org/10.3389/
fncom.2020.569049.

[24] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-0686-
2.

[25] Takuya Akiba et al. “Optuna: A Next-Generation Hyperparameter Optimization Frame-
work”. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery: Data Mining. KDD ’19. Anchorage, AK, USA: Association for Computing
Machinery, 2019, pp. 2623–2631. isbn: 9781450362016. doi: 10.1145/3292500.3330701.
url: https://doi.org/10.1145/3292500.3330701.

Page 38 of 40

https://doi.org/https://doi.org/10.1093/cercor/bhs358
https://doi.org/https://doi.org/10.1093/cercor/bhs358
https://towardsdatascience.com/what-is-machine-learning-a-short-note-on-supervised-unsupervised-semi-supervised-and-aed1573ae9bb
https://towardsdatascience.com/what-is-machine-learning-a-short-note-on-supervised-unsupervised-semi-supervised-and-aed1573ae9bb
https://towardsdatascience.com/what-is-machine-learning-a-short-note-on-supervised-unsupervised-semi-supervised-and-aed1573ae9bb
https://doi.org/10.21105/joss.02505
https://doi.org/10.21105/joss.02505
https://doi.org/10.21105/joss.02505
http://www.multimediadocs.com/assets/cadence_emea/documents/using_convolutional_neural_networks_for_image_recognition.pdf
http://www.multimediadocs.com/assets/cadence_emea/documents/using_convolutional_neural_networks_for_image_recognition.pdf
http://www.multimediadocs.com/assets/cadence_emea/documents/using_convolutional_neural_networks_for_image_recognition.pdf
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1705.07057
https://doi.org/10.5281/zenodo.6867800
https://doi.org/10.5281/zenodo.6867800
https://doi.org/https://doi.org/10.1162/neco_a_01400
https://doi.org/https://doi.org/10.1162/neco_a_01400
https://doi.org/https://doi.org/10.1093/cercor/bhw237
https://doi.org/https://doi.org/10.1093/cercor/bhw237
https://doi.org/https://doi.org/10.5281/zenodo.7307401
https://doi.org/https://doi.org/10.5281/zenodo.7307401
https://doi.org/https://doi.org/10.3389/fncom.2020.569049
https://doi.org/https://doi.org/10.3389/fncom.2020.569049
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701

[26] H. Colin. Building a Tree-Structured Parzen Estimator from Scratch (Kind Of). 2023.
url: https://towardsdatascience.com/building- a- tree- structured- parzen-
estimator-from-scratch-kind-of-20ed31770478.

[27] James Bergstra et al. “Algorithms for Hyper-Parameter Optimization”. In: Proceedings of
the 24th International Conference on Neural Information Processing Systems. NIPS’11.
Granada, Spain: Curran Associates Inc., 2011, pp. 2546–2554. isbn: 9781618395993.

Page 39 of 40

https://towardsdatascience.com/building-a-tree-structured-parzen-estimator-from-scratch-kind-of-20ed31770478
https://towardsdatascience.com/building-a-tree-structured-parzen-estimator-from-scratch-kind-of-20ed31770478

	Introduction
	Background
	Objective

	Theory
	Neurons
	Action potential

	Cellular models
	Leaky Integrate-and-Fire neurons

	Models of biological neural networks
	The Brunel network
	The Potjans-Diesmann network

	Bayesian inference
	Summary statistics
	Approximate Bayesian Computation
	Sequential Neural Posterior Estimation

	Data
	Introduction to the dataset
	Summary statistics of spike trains
	Observation

	Methods
	Estimating posteriors
	ABC with regression adjustment
	Neural posterior estimation

	Optimization

	Results
	Inspecting the posterior distribution
	Summary statistic comparison
	Power spectral density

	Discussion
	Future Work

	Appendix
	Python packages
	GitHub files
	Hardware specifications

