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Abstract

Depth to Bedrock (DTB) is a critical parameter in several fields of study, including ge-
ology, hydrology, soil sciences, and civil engineering. However, obtaining this parameter
through near-surface geophysical methods can be challenging and expensive, particularly
in difficult terrain. Fortunately, high-quality borehole data from previous geotechnical
investigations can be used to estimate the DTB in areas where no boreholes have yet
been created.

This thesis presents a machine learning framework for estimating the DTB value in areas
of interest using Gaussian Process models. The performance of different kernel functions,
including Radial Basis Function (RBF), Matérn 3/2 kernels, and combined linear and
RBF kernels, is evaluated, along with the impact of implementing anisotropy in the mod-
els.

The results show that the Matérn 3/2 kernel with anisotropic implementation performs
the best in estimating DTB. However, challenges in hyperparameter optimization, non-
Gaussian target variables, and model selection are highlighted, and further investigation
into these areas is recommended. The framework presented here provides practical im-
plications for geotechnical engineering. Further, it provides a basis for future research in
this area, where the incorporation of additional geological and remotely sensed data could
potentially improve the quality of DTB estimation.
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Chapter 1
Introduction

1.1 Background

Bedrock is the solid rock that appears as outcrops on the earth’s surface or concealed
beneath numerous layers of soil [9]. Fields of study such as hydrology, geology, soil sci-
ences, and civil engineering, use Depth to Bedrock (DTB) as a crucial parameter for,
among other things, modelling ground-water flow and movement in chemicals and soils
[45], landslide risk management [84], and construction of infrastructure [64]. Knowledge
about DTB can be acquired from geotechnical investigations such as Total Sounding (TS),
rotary pressure sounding, and other near-surface geophysical methods [69]. Despite pro-
viding data of high accuracy, tests of this type are economically costly, time-consuming,
and challenging to execute in difficult terrains, thus resulting in limited information about
DTB at various locations.

The relationship between the underlying bedrock topography and the overlying surface
topography is often correlated with each other, especially in shallow areas such as glacial
uplands and lowlands [65]. With the availability of high-quality remote sensing data and
data acquired from geotechnical investigations, geostatistical methods can be applied to
estimate DTB values in areas of interest.

Kriging [43] is a well-established spatial interpolation method that for the past decades has
been widely used within the field of geostatistics. Through kriging, values at unsampled
locations can be predicted by considering the spatial correlation between neighbouring
sample points [21]. This technique also produces estimations of the uncertainty associ-
ated with the predictions, which can be important for decision-making in geotechnical
engineering applications [95].

The fundamental form of kriging is computationally demanding when working with large
datasets. Through the implementation of Gaussian Process (GP) models in machine
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CHAPTER 1. INTRODUCTION

learning, the kriging method can be scaled to handle larger datasets [77]. In machine
learning, GPs can be adapted to solve classification, prediction, and regression problems
[83], where Gaussian Process for Regression (GPR) [68] is a technique that is closely re-
lated to the kriging method.

GPR is a non-linear approach that uses a covariance function (or kernel), as its key com-
ponent. The purpose of the kernel is to capture the underlying structure and relationship
within the data, with different kernels being able to capture different patterns of correla-
tion, such as periodicity, smoothness, and non-stationarity [18]. The correlation structure
of data can exhibit anisotropy, indicating that the underlying pattern varies depending
on the direction of measurement [38]. To model anisotropy in GPs, an anisotropic kernel
can be used to define the correlation function in multiple directions. By defining the co-
variance between pairs of data points, the kernel enables the GPR to infer the underlying
pattern of the data and make predictions for new input values [60].

The purpose of this thesis is to study how GPR and different kernel functions can be used
to estimate the DTB values at areas of interest. By applying methods from geostatistics
and machine learning, we aim to construct a framework that can be used to help engineers
achieve better knowledge about the DTB parameter and be less dependent on manual
testing.

1.2 Related Works

There are currently several studies available on using geostatistical methods to estimate
parameters in geotechnical data. Li et al. [47] use kriging to identify the soil profile at
unsampled locations. They use data from Cone Penetration Test (CPT) and calculate the
measurement uncertainties related to the soil classification from the tests. The method
they developed works well in a 2D plane, and the performance of the method is evalu-
ated based on how well the results are consistent with the CPTs. Li, Hicks, and Vardon
[48] also extended their work so the method could be applied to 3D data. However, this
method did not take changes in spatial dependence in different directions, i.e. anisotropy,
into account.

A study conducted by Shen and Gelfand [79] explored the potential benefits of using
anisotropic kernel functions within a Bayesian framework for modelling spatial corre-
lation. The study focused on the Matérn kernel and exponential kernel functions and
incorporated anisotropy into the models using linear transformations of coordinates. The
objective was to compare the predictive performance of anisotropic models to isotropic
models in geostatistical settings. The results showed that anisotropic models outper-
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CHAPTER 1. INTRODUCTION

formed isotropic models when the data significantly departed from isotropy, the spatial
variance was much greater than the pure error variance, and the sample size was fairly
large. Both anisotropic-generated data (100 and 500 samples) and real data (546 samples)
were used to test the models. Given the increasing amount of data generated today, more
computational resources and efficient methods for modelling and analyzing larger datasets
are required. In this context, incorporating frameworks that use machine learning can be
a valuable approach.

Machine learning can handle large datasets and provide faster computation times com-
pared to traditional statistical methods. There are several studies that have applied
machine learning methods for spatial data analysis, including estimating DTB. For in-
stance, Shangguan et al. [78] applied two tree-based ensemble methods, namely Random
Forests and Gradient Boosting Tree, to predict the global DTB at a spatial resolution
of 250 meters. They used a combination of soil profile and borehole data, as well as
additional features derived from remote sensing, such as lithology maps, hydrological and
morphological derivatives based on Digital Elevation Model (DEM), and satellite-based
sensor data, among others. The resulting models achieved moderate performance, ex-
plaining 59% of the variance for absolute DTB and 34% for censored DTB.

A later study by Yan et al. [94] presents a method to produce high-resolution (100 me-
ters) DTB maps of China. The maps were created using two sets of data, one based on
ensemble predictions from Random Forests and Gradient Boosting Tree models and the
other based on Quantile Regression Forests. Although the results showed higher accu-
racy compared to the maps in Shangguan et al. [78], the accuracy of the models was just
above 50%, indicating that they are performing only slightly better than random guessing.

In general, while machine learning models can provide faster computation times and
handle large datasets, it can be challenging to understand why the model makes the pre-
dictions it does. This is particularly true when it comes to uncertainty quantification,
where standard machine learning models may not provide clear indications of how con-
fident the model is in each of its predictions [85]. Therefore, more advanced techniques,
such as Gaussian Processes (GPs) combined with machine learning frameworks, may be
required to better understand and quantify the uncertainty associated with predictions.

1.3 Approach

The primary goal of this thesis is to develop a framework that applies GP models and
explore the use of different kernel functions to estimate the DTB at unsampled locations.
To achieve this objective, we will first study the theoretical background of geotechnics,
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geostatistics, and machine learning.

We will then apply GP models using Python [89] and TensorFlow [52], to two datasets
from different locations: Oslo East and a highway (E18) in Bærum. The datasets exhibit
varying degrees of anisotropy in their structure. To investigate the ability of the models
to detect anisotropy in the data, we will test the models using both modified anisotropic
kernels and standard (isotropic) kernels.

The models will be trained on a subset of the datasets and then tested on the remaining
subset. To assess their performance, we will compare the predicted values with the actual
values measured in the interpolated field. Finally, we will apply the models to a larger
field that includes the measured observations from both datasets to determine their gen-
eralization beyond the specific locations used for training and testing.

The results of this project will provide insights into the use of GPs for predicting DTB
values in different locations with varying degrees of anisotropy. It will also demonstrate
the importance of selecting appropriate kernel functions for modelling anisotropic data.
Ultimately, this framework can be utilized for estimating other geotechnical parameters at
unsampled locations using other geotechnical datasets, which can be valuable for geotech-
nical engineering and construction projects.

1.4 Objectives

The main objectives of this thesis are:

(i) Develop a framework that combines geostatistical methods and machine learning to
estimate DTB values in areas of interest, using data from geotechnical investigations.

(ii) Investigate the use of GPs in combination with different kernel functions to estimate
DTB.

(iii) Evaluate the performance of the proposed framework in terms of accuracy, efficiency,
and computational scalability for large datasets.

(iv) Assess the potential benefits of incorporating anisotropic kernel functions within the
framework for modelling spatial correlation in the models.

(v) Investigate the impact of different kernel functions on the performance of the models
and select the most suitable kernel function(s) for estimating DTB values.
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1.5 Thesis Structure

The thesis is divided into seven chapters, starting with Chapter 1 which provides an
introduction to the thesis’ background, related works, and objectives. Chapter 2 presents
the theoretical concepts and principles of the methodology employed in this study. In
Chapter 3, the description, exploration and analysis of the data used in this study are
described. Chapter 4 explains the research methods and techniques used to address the
objectives of this thesis. The findings and outcomes of the study are presented in Chapter
5. Chapter 6 discusses the results in the context of the research objectives and presents
possible implications for future research. Finally, Chapter 7 summarizes the main findings,
provides recommendations for future work, and concludes the thesis. Appendix A includes
the source code and software used to construct the framework, Appendix B contains all
interpolation results for the Oslo East dataset, and Appendix C contains all interpolation
results for the Bærum E18 dataset.
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Chapter 2
Theory

This chapter covers several important topics that form the basis of the methods used in
this study. The chapter begins with an overview of geotechnics and the significance of the
Depth to Bedrock parameter in geotechnical investigations. Then, remote sensing and its
various applications in geology and geotechnics are discussed. The chapter further delves
into the theory behind the implemented machine learning models, particularly Gaussian
Processes. Lastly, we discuss the use of Geographic Information Systems in integrating
geotechnical data.

2.1 Geotechnics

Geotechnics is a field within civil engineering that studies the behaviour of natural materi-
als found on or near the earth’s surface. Natural materials within geotechnical engineering
usually include soil and rock. The primary distinction between soil and rock is that soil
is defined as loose matter consisting of a mixture of organic, mineral and other materials.
In contrast, rock is mainly composed of mineral matter which leads to rock having strong
internal cohesive and molecular bonds that bind the mineral grains more effectively to-
gether than those found in soils [31]. Soils are usually a result of geologic processes like
weathering and erosion. The weathering process breaks down or dissolves the rock, while
erosion is the process of transporting the decomposed material. Physical, biological, and
chemical processes that are affected by factors such as water, wind, and climate act either
by themselves or together to form the aforementioned processes [19].

Due to geologic soil-forming processes, soils have different characteristics that can be clas-
sified into layers or horizons [81]. The master soil horizons are illustrated in Figure. 2.1.1.
It is important to notice that the soil horizons shown in the figure may not always be
present in every type of soil, and even when present, they may not always occur in the
same order [74].
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The result of vertically stacking various soil horizons together after conducting geotech-
nical investigations is called a soil profile. It is essential to recognize the significance of
soil profiles from an engineering standpoint, given that all infrastructure rest on the soil.
Knowing the strength and properties of the soil at a site and relevant areas for an intended
project ensures both safe and stable work practice [31].

Figure. 2.1.1: A visual representation of common master soil horizons located beneath
the earth’s surface. The horizons in the illustrated soil profile are arranged in six distinct
layers. The topmost layer, the O horizon, consists mainly of organic materials. The
A horizon or topsoil is rich in dark, organic material called humus and is often highly
weathered. The light-coloured layer, the E horizon, contains mineral particles removed by
water or other processes. The subsoil, the B horizon, contains minerals from the horizons
above and below. The parent material, or the C horizon, consists of poorly or unweathered
geologic material. Finally, the hard unweathered parent rock is identified as the bedrock or
R horizon [74].

2.1.1 Geotechnical Definitions

Bedrock is defined as consolidated, i.e. solid, rock that exists beneath layers of unconsol-
idated geologic materials such as soil [9]. The uppermost layer of the bedrock is defined
as the bedrock surface. The DTB is therefore measured as the distance from the terrain
surface to the bedrock surface. Obtaining precise information about DTB is mainly done
with geotechnical investigation methods, and the range of the depth can be anything
from zero up to a hundred meters. Locations where DTB is measured as 0, are called out-
crops and are defined as the part of the bedrock which is exposed at the earth’s surface [3].
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To determine geotechnical soil properties, various techniques are available, including the
widely used Cone Penetration Test (CPT). However, CPT is not effective for soils contain-
ing gravel or larger particles, and it cannot be used for sampling bedrock [31]. In contrast,
Total Sounding (TS) is an in-situ technique that combines the principles of rotary pres-
sure sounding and rock control drilling. The process of TS involves penetrating drilling
rods into the ground at a constant penetration and rotation rate until rocks or boulders
are reached. When this happens, the drilling switches to rock control mode, increasing
the rotation rate, and then switch back to rotary pressure mode when the penetration
is through the soil layer with rocks. In the case that the drilling rod hits the bedrock
surface, the drilling rod is bored approximately 3 meters into the bedrock to confirm that
it is not just rocks or boulders. This results in data from TS to be highly accurate [29,
69].

2.1.2 Geomorphology

Soil-forming processes that occur at the surface or deep in the earth’s crust modify the
shape of the earth’s surface. The scientific term for studying the origin, evolution, shape,
and present landform of the earth’s surface is known as geomorphology [93]. Topography,
which is another term used in connection with describing the earth’s surface is measured
by the change in elevation across the earth’s surface. There is currently a vast selec-
tion of measurement tools available for land surface investigations, which include Global
Positioning Systems (GPS), Digital Elevation Model (DEM), and Light Detection and
Ranging (LiDAR) [26].

2.2 Remote sensing

The use of remote sensing makes it possible to acquire information about objects or
phenomena on the earth’s surface from a distance. Remotely sensed data are collected
from sensors that are aboard aircraft and satellites [76]. The sensors detect reflected
and emitted radiation from Earth to collect data. These sensors can be divided into two
categories: passive remote sensing sensors and active remote sensing sensors. The former
measures radiation which is reflected or emitted from an external source of energy, such as
sunlight, whereas the latter relies on an artificial source of energy, such as a laser beam [32].
Derived data from remote-sensing systems may differ based on the intended application
of the data, where spatial resolution, spectral resolution, and temporal resolution, are
parameters that specify the quality of the generated data [44]. The application of remote-
sensing technology spans numerous fields such as meteorology, agriculture, climate change
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detection, government, environmental monitoring, mapping, and others [96].

2.2.1 LiDAR

Light Detection and Ranging (LiDAR) is a remote sensing technique that measures ranges
(distances). Ranges are calculated by using the time it takes for an emitted laser signal
to travel between the sensor and a target. LiDAR is an active remote-sensing sensor
typically mounted on spaceborne, airborne, and ground-based platforms [41]. Since the
positional- and terrain data relevant to this study is generally collected through airborne
laser scanning, we will take a closer look at this technology.

Airborne LiDAR is a common technique for producing high-quality 3D digital representa-
tions like point clouds and has proven to be highly beneficial in terms of mapping larger
areas. Significant components of airborne LiDAR systems consist of (i) an aircraft which
is used to fly over the area of interest; (ii) a LiDAR sensor which continuously sends
laser pulses between the terrain and aircraft; (iii) a Global Navigation Satellite System
(GNSS) receiver on the aircraft that works with a ground-based GNSS station to record
the precise location of the sensor; (iv) an Inertial Measurement Unit (IMU) sensor that
measures the acceleration and rotation of the sensor; (v) and an onboard computer that
collects the data from the LiDAR, GNSS, and IMU sensors [49].

2.2.2 Data Processing

An airborne laser scanning survey provides the following datasets: data from the GNSS
ground station, navigation data from GNSS and IMU sensors on aircraft, and range
measurements. Once the datasets are processed, point clouds with x, y, and z coordinates
are interpolated to create the Digital Surface Model (DSM) and the Digital Terrain Model
(DTM). The primary distinction between a DSM and a DTM is that the former includes
details regarding features located above the terrain surface such as vegetation and human-
made objects, whereas the latter simply provides information about the elevation of the
underlying terrain. The generation of a DTM from a DSM requires classifying the points
within the point cloud as either ground points or non-ground points, followed by the
application of interpolation methods to fill in areas with missing data [76].
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2.2.3 Høydedata

The Norwegian Mapping Authority (Kartverket) administer høydedata.no, which is an
insight and download solution. The data is collected through different airborne laser
scanning and aerial photography surveys. The available data can be downloaded as point
clouds, DSM, and DTMs with various resolutions. In 2016 the National Detailed El-
evation Model Project was started where the goal was to map the accurate height of
every square meter of Norway. This project was finished in the summer of 2022. Areas
of application for elevation data can be calculating flood zones and avalanche danger,
planning infrastructure, analysing placement of wind turbines, mapping overgrowth, and
uncovering hidden cultural heritage, such as grave mounds [39].

2.3 Geostatistics

According to Waldo Tobler, "Everything is related to everything else, but near things are
more related than distant things" [87]. This phrase is considered Tobler’s First Law of
Geography and is the principle of spatial dependence (or autocorrelation). The effects of
spatial autocorrelation are widespread in spatial data and can be exemplified by various
sources. Examples include soil properties [30], air pollution concentration [72], and water
quality parameters such as temperature, pH, and dissolved oxygen [80]. To better under-
stand and predict parameters in such data, we need statistical methods that explicitly
account for spatial autocorrelation.

Geostatistics is a branch of statistics that focuses on analyzing spatially distributed data,
by providing a set of methods that can be used for modelling spatial autocorrelation,
making spatial predictions, and quantifying uncertainty [22]. Professor Georges Math-
eron [53] is recognized for defining the principles and basic methodology in geostatistics,
earning him the title of the founder of Geostatistics [2]. Geostatistics is often associated
with the Kriging method, which was originally developed by Daniel G. Krige in the 1950s
for mining applications, hence the name of the method [43]. Despite its origins in mining,
kriging has been widely adopted in various disciplines for interpolating spatial data and
generating predictions.

The subsequent sections in this Chapter (2.3) will provide an introduction to essential
concepts and terminology in geostatistics.
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2.3.1 Regionalized Variables and Random Functions

The concept of regionalized variables was introduced by Matheron in 1965 [53]. Standard
statistical literature does not take spatial variability into consideration, which is why a
variable that varies depending on location in space is said to be regionalized. At each
point x in the domain D (i.e. an area of interest), we have a regionalized variable, de-
noted by z(x), which represents the realization (or outcome) of a random function (or
random field), Z(x). The random function is a set of random variables which can be
defined as {Z(x) : x ∈ D}. Note that we use capital Z to denote random variables and
lowercase z to denote their realizations [91].

The following equation is defining a cumulative distribution function (CDF) for a random
function Z(x):

Fx1,...,xn(z1, . . . , zn) = P (Z(x1) ≤ z1, . . . , Z(xn) ≤ zn) (2.1)

Where,

z1, . . . , zn is a set of regionalized variable values

x1, . . . , xn ∈ D is a set of points in a given domain

Fx1,...,xn is a CDF

P is a probability function that measures the probability of the outcome of Z(xn)

In simpler terms, Equation 2.1 allows us to calculate the probability of observing certain
regionalized variable values at different locations in a dataset, based on the probability
distribution of the underlying random variables, which helps us quantify the uncertainty
in our estimations.

The statistical properties of a random function, such as its mean, variance, and correlation
structure, can be characterized using techniques like variogram modelling and covariance
functions, which will be explained further in the following sections.

2.3.2 Statistical Moments

Statistical moments refer to a set of mathematical measures that describe the character-
istics of the probability distribution of a random function. If we have a random function
Z(x) at a point x, the moments are defined as the expectation E of Z(x) [38].
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The first-order-moment is the mean, denoted by µ(x), which is mathematically calculated
as:

µ(x) = E{Z(x)} (2.2)

The first second-order-moment is the variance, dentoted by σ2(x), and is calculated as:

σ2(x) = V ar{Z(x)} = E{(Z(x)− µ(x))2} (2.3)

The second-order-moment between Z(x1) and Z(x2) is the covariance, denoted by Cov,
and is calculated as:

Cov(x1, x2) = E{(Z(x1)− µ(x1))(Z(x2)− µ(x2))} (2.4)

The second-order-moment between the difference Z(x1)− Z(x2) is the variogram, denoted
by γ, and is calculated as:

2γ(h) = V ar{Z(x1)− Z(x2)} (2.5)

Where h is the Euclidian distance between x1 and x2. The semivariogram is half of the
variogram and is defined as:

γ(h) =
1

2
V ar{Z(x1)− Z(x2)} (2.6)

2.3.3 Stationarity

Statistical characteristics of a random function (e.g. mean, variance, and other statistical
moments) are said to be stationary if they remain constant over time and space for all
points in a domain.

According to Chilès and Delfiner [11], there are two types of stationarity in geostatistics
that are based on the first two statistical moments (i.e., mean and variance):

(i) The assumptions of second-order stationarity are that the mean and variance are
constant in space. These assumptions can be formulated as:

µZ(x) = µZ(x+h) = µZ (2.7)

and
V ar{Z(x)} = V ar{Z(x+ h)} = σ2

Z (2.8)

By inserting Equation 2.7 and Equation 2.8 we can derive the following expression
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for the covariance:

C(h) = Cov{Z(x), Z(x+ h)} = E{Z(x)Z(x+ h)} − µ2
Z (2.9)

Where h is the lag distance, which is a vector that describes the distance separating
a pair of points in the given space, and C(h) is the covariance function. Note that
if we define h = 0 we get the nugget C(0) which equals to the variance σ2 at lag
distance 0:

C(0) = E{(Z(x)− µZ)
2} = V ar{Z(x)} = σ2

Z , ∀ x, x+ h ∈ D (2.10)

(ii) The assumption of intrinsic stationarity is slightly weaker than the assumption of
second-order stationarity. Intrinsic stationarity assumes that the statistical proper-
ties of a random variable do not depend on the location in space, but only on the
distance between locations. In other words, if two points in space have the exact
same distance between them, then their statistical properties should be the same:

Z(x+ h)− Z(x) (2.11)

Assuming the variance of the increment, Equation 2.11, corresponding to two dif-
ferent locations depends only on the vector h, we can derive the semivariogram,
denoted by the function γ(h):

γ(h) =
1

2
V ar{Z(x+h)−Z(x)} =

1

2
E{(Z(x+h)−Z(x))2}, ∀ x, x+h ∈ D (2.12)

2.3.4 Covariance Functions and Semivariogram Models

The relationship between the semivariogram and the covariance can be expressed math-
ematically using the formula [6]:

γ(h) = C(0)− C(h) (2.13)

With this relation, we can estimate the semivariogram to study the spatial correlation
within a dataset. This can then be transformed into a covariance function, which is
necessary for the estimation of values across a random field (i.e. spatial interpolation).
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Figure. 2.3.1: A typical example of a semivariogram showing different components.
Illustration from [8] and under CC-BY-3.0 licence.

The semivariogram can be visualized as a model, which can be derived from the covariance
function. To obtain the semivariance, the differences between pairs of sample points in a
real-world dataset are calculated and we obtain an empirical estimate. To ensure the va-
lidity of an interpolation method, it is necessary to calculate an empirical semivariogram
model from a chosen theoretical semivariogram model and the empirical estimate. The
shape of a semivariogram model is characterized by specific parameters, including range,
sill, and nugget, and is illustrated in Figure. 2.3.1. The range is the distance where the
data points are no longer correlated to each other, the nugget represents the discontinuity
in the semivariogram at lag distance 0, and the sill reflects the maximum dissimilarity
between the data points at a distance [4].

It is essential that a semivariogram model is positive definite [37], meaning that the
covariance between any two points cannot be negative, which ensures that the variance
of any linear combination is positive [5]. There are different types of theoretical models
that already exist. The most common type of model is isotropic, where the shape of
the semivariogram is symmetric in all directions. Anisotropic models, on the other hand,
allow for variations in the directionality of the semivariogram. We will now take a closer
look at commonly used theoretical models, and the concept of isotropy and anisotropy.

Isotropy

A random function is said to be isotropic if it only depends on the length of the directional
vector h [6]. In simpler terms, it means that the semivariogram is only dependent on the
distance between two points and not on their orientation. Common isotropic variogram
models include:
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(i) Spherical:

γ(h) =


0, |h| = 0

C(0) + C[3
2
|h|
a
− 1

2
( |h|

a
)3], 0 < |h| ≤ a

C(0) + C, |h| > 0

(2.14)

(ii) Exponential:

γ(h) =

0, |h| = 0

C(0) + C[1− exp(− |h|
a
)], |h| > 0

(2.15)

(iii) Gaussian:

γ(h) =

0, |h| = 0

C(0) + C[1− exp(− |h|2
a2

)], |h| > 0
(2.16)

Where C(0) is the nugget constant, C is the sill, |h| is the length of the distance, and a

is the range of the model. Figure 2.3.2 displays the abovementioned models to visualize
a comparison.

Figure. 2.3.2: Theoretical variograms of the Spherical, Exponential, and Gaussian
models are compared in this plot. The nugget, sill, and range parameters are set to 0.2,
0.8, and 4, respectively. The x-axis denotes the lag distance, while the y-axis represents the
semivariance. The Spherical model reaches the sill at the shortest lag distance, while the
Exponential model reaches it at the longest lag distance. The lag distance of the Gaussian
model lies between these two models.
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Anisotropy

Anisotropy occurs when the spatial correlation is not the same in all directions [38]. This
means that the semivariogram will depend on both the distance and direction between
two points. Anisotropy is often observed in natural systems, such as in geological for-
mations, where the spatial structure of minerals can be stretched in certain directions
[24]. There are two types of anisotropy: one is known as geometric anisotropy and the
other is referred to as zonal anisotropy [97]. Zonal anisotropy will not be discussed in this
thesis. However, a comprehensive explanation of this concept can be found in Journel
and Huijbregts [38] work.

Geometric anisotropy occurs when the range changes with the direction of the semivari-
ogram, but the sill remains constant. By applying a linear transformation to the coordi-
nates in a corresponding isotropic model the geometric anisotropy can be corrected. This
type of anisotropy is determined by two parameters, a scaling parameter and a rotation
parameter [14]. By applying the concepts describing geometric anisotropy in "Mining
Geostatistics" by Journel and Huijbregts [38], we can explain the linear transformation
of a point in a 2D space with three steps:

(i) Let the point in the 2D space be represented by a vector x = (x1, x2)
⊺ in a coordi-

nate system with origin in o = (0, 0)⊺. We start the transformation by rotating the
coordinate system by an angle θ to obtain new coordinates (y1, y2). This can be
done by using the rotation matrix R:

R =

 cosθ sinθ

−sinθ cosθ

 (2.17)

y1
y2

 = R

x1

x2

 (2.18)

(ii) The second step is to stretch or shrink the rotated coordinate system along each of
its axes by the scaling factors λ1 and λ2, respectively. This results in another set of
new coordinates (y′1, y

′
2) that are obtained using a diagonal matrix, denoted by D:

D =

λ1 0

0 λ2

 (2.19)

y′1
y′2

 = D

y1
y2

 (2.20)

(iii) The last step rotates the coordinates (y′1, y
′
2) through the inverse rotation matrix
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R−1 in order to derive the final transformed coordinates (x′
1, x

′
2):

R−1 =

cosθ −sinθ

sinθ cosθ

 (2.21)

x′
1

x′
2

 = R−1

y′1
y′2

 (2.22)

The transformation process can now be simplified by calculating the product of the three
matrices R−1 ·D ·R. This results in the transformation matrix T , which can be used
directly on the initial coordinates (x1, x2) to obtain the transformed coordinates (x′

1, x
′
2):x′

1

x′
2

 = R−1DR

x1

x2

 = T

x1

x2

 (2.23)

The transformation method for correcting geometric anisotropy can be applied to an
isotropic model to transform it into an anisotropic model. Figure 2.3.3 uses the ex-
ponential semivariogram model from Equation 2.15 to visualize how the parameters of
anisotropy affect the spatial correlation of data points in space. From the figure, we see the
isotropic kernel function has circular symmetry and the same value in all directions, while
the anisotropic kernel function is elongated in one direction and has rapidly decreasing
values along the minor axis.
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Figure. 2.3.3: This plot illustrates the differences between isotropic and anisotropic
covariance (or kernel) functions. The figure shows two contour plots of 2D exponential
kernel functions, with the x and y values representing the points in the space. The left
plot illustrates an isotropic kernel function, while the right plot illustrates an anisotropic
kernel function. The length scale parameter of the anisotropic kernel function is set to 4,
and the rotation angle is set to 2 radians. The colours represent the density of the kernel
function, with darker colours indicating higher density.

2.3.5 Kriging

Kriging is a spatial interpolation technique that estimates unknown values of interest over
a domain on the basis of a limited set of sampled observation points [4]. The estimation of
a point at a location with no observation is obtained by a weighted sum of the observations,
which can mathematically be expressed as:

Ẑ(x0) =
n∑

i=1

λiZ(xi), i = 1, . . . , n (2.24)

Where,

Ẑ(x0) is the estimated value at the unobserved location x0

Z(xi) is the observed value at the sampled location xi

λi is the unique weight assigned to the observation at the ith location

The weights λi are calculated by minimizing the estimation variance σ2
E. We can find the

set of weights that results in the most accurate estimate of the unknown value, while also
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quantifying the uncertainty of the estimate. The estimation error is considered to be the
difference between the estimated Ẑ and the true value Z at a point x0:

Ẑ(x0)− Z(x0) (2.25)

If we assume that the expected difference between estimates and observations is equal to
0, the estimator E is said to be unbiased:

E{Ẑ(x0)− Z(x0)} = 0 (2.26)

The estimation variance σ2
E is then expressed as:

σ2
E = V ar{Ẑ(x0)− Z(x0)} = E{(Ẑ(x0)− Z(x0))

2} (2.27)

There are several forms of kriging. The choice of kriging form depends on the assumptions
made about the underlying trend. The trend can be defined as the systematic patterns of
variations observed in the dataset [11]. The following presents a summarized overview of
the key differences between the most commonly used kriging forms [38]:

(i) Simple kriging : assumes that the mean of the unknown variable is known and
constant across the entire area of interest. This means that the assumption is
second-order stationarity, refer to Equation 2.7. The estimate at an unsampled
location is then calculated using the following formula:

Ẑ(x0) = µ+
n∑

i=1

λi(Z(xi)− µ), i = 1, . . . , n (2.28)

Where µ is the known mean.

(ii) Ordinary kriging : assumes that the mean is unknown but constant over the entire
area of interest. The estimate at an unsampled location of interest can therefore be
calculated using Equation 2.24.

(iii) Universal kriging : also known as kriging with a trend, assumes that the mean differs
according to a spatial trend, while the variance is constant over the area of interest.
To take the trend component into account, we can define a stochastic function Y (x):

Y (x) = m(x) +R(x) (2.29)

Where m(x) is a deterministic trend function and R(x) is the stochastic residual.
The trend function modelled as a polynomial of order K can be expressed as:

m(x) =
K∑
k=0

βkfk(x) (2.30)
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Z(x) =
K∑
k=0

βkfk(x) +R(x) (2.31)

Where fk is a deterministic function of spatial coordinates and βk are coefficients
estimated from the observations.

Figure. 2.3.4 gives a visual comparison of the aforementioned sub-types of kriging.

Figure. 2.3.4: This figure shows the results of three kriging methods (simple, ordinary,
and universal) applied to five observations (black dots). The x-axis represents random
points on a field, and the y-axis represents the estimated values at those positions. Blue,
green, and red lines represent the estimated field for each method, with dashed grey lines
representing their mean functions.

2.4 Machine Learning

The field of Artificial Intelligence (AI) has become increasingly popular in recent years due
to the availability of large amounts of data and advances in computing power. Machine
learning is a subset of AI. In the 1950s, Arthur Samuel, an AI pioneer, described machine
learning as the "field of study that gives computers the ability to learn without being
explicitly programmed" [73]. This definition holds true as machine learning involves the
use of algorithms and statistical models to enable machines to discover patterns in data
and make predictions about future events [67].

Nowadays, machine learning technology is widely used in many industries, including
geotechnics. The application of machine learning in geotechnical engineering can be used
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to predict geotechnical parameters like Depth to Bedrock (DTB), which differs from the
traditional empirical and statistical methods that require prior information about the re-
lationships among the data [66].

There are three different types of machine learning: supervised learning, unsupervised
learning, and reinforcement learning. Supervised learning involves training a model on
a labelled dataset, where the algorithm learns to map the inputs to the correct outputs
(labels). There are two major types of supervised learning: classification and regression.
In classification tasks, the algorithm learns to assign labels to inputs, which results in
discrete output values. On the other hand, in regression tasks, the algorithm is trained
to predict a continuous output value [58]. Unsupervised learning trains a model on an
unlabelled dataset, where the output labels are unknown. The goal is for the model to find
patterns or structures in the data without guidance or supervision, allowing it to make
sense of complex or unstructured data [67]. Reinforcement learning involves training a
model to take actions in an environment and receive rewards or penalties based on those
actions. The model must learn by itself the best strategy (policy) that maximizes the re-
wards it receives over time [23]. Overall, the type of machine learning to use depends on
the nature of the task and the available data. Note that unsupervised and reinforcement
learning is outside the scope of this study. The focus of this thesis is on regression-based
supervised learning. Figure 2.4.1 shows a typical workflow for supervised machine learn-
ing.
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Figure. 2.4.1: This flowchart illustrates the process of a supervised machine learning
model.

Like any other technology, machine learning also has limitations and challenges that
should be considered. One of the most significant challenges is the problem of bias. Bias
can arise from the data, the model, or the algorithm used to train the model, and when the
model produces results that misrepresent the true relationship between the input features
and the output variable [12]. Another challenge is overfitting, which occurs when the
model is too complex and fits the training data too closely, leading to poor performance
on new, unseen data [67].

2.5 Gaussian Processes

Gaussian Processes (GPs) are a generalized supervised learning method that can be used
for both regression and classification tasks in machine learning [63]. They are based on
the Gaussian probability distribution (also known as the normal distribution) and are
commonly used for non-parametric modelling (i.e. not limited by a functional form). By
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providing a measure of confidence in the predictions, GPs can help identify situations
where the model may not be reliable, allowing for a more reliable decision-making process
[68]. This feature makes GPs a valuable tool in a wide range of applications, including
geotechnical parameter estimation.

Unlike other machine learning methods that learn a finite set of parameters to model the
data, GPs define a probability distribution over functions f(x). For the function values,
x, this distribution is defined by a mean function m(x), which gives the expected value
of the function at each input point, and a positive semidefinite [37] covariance function
(kernel function) k(x, x′), which measures the similarity between the function values at
any two points in the input domain [68].

In mathematical terms, we can represent a GP as follows [68]:

f(x) ∼ GP (m(x), k(x, x′)) (2.32)

2.5.1 Gaussian Process Regression

Gaussian Process Regression (GPR) implements GPs for regression tasks. GPR works
well on small datasets and since it is based on GPs it also provides the uncertainty related
to the predictions [63].

The methodology behind GPR can be explained as follows according to Section 2.2 in
Rasmussen, Williams, et al. [68]:

(i) We can start by assuming that the unknown function values follow a GP, as de-
scribed by Equation (2.32). We also assume that the observed output (target) values
are noisy versions of the true function values, where Gaussian noise with variance
is added to each observation. So, given a set of observations y, we can write:

y = f(x) + ϵ (2.33)

Where ϵ is the Gaussian noise (i.e. irreducible error) which is defined as:

ϵ ∼ N (0, σ2
yI) (2.34)

Here, I denote the identity matrix and σ2
y is the variance. ϵ follows a distribution

N . The mean µ in the distribution is set to 0 since GPs are able to model the mean
from an arbitrary value. In other words, this is a Gaussian distribution.

(ii) Given the observations n, we assume a training dataset in the form of a vector
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X = [x1, . . . , xn], with corresponding target values y. The goal of GPR is to estimate
the function values f∗ at a new input (test) point x∗. Gaussian distribution with an
expected mean of 0 can therefore be expressed as: y

f∗

 ∼ N

0,

K(X,X) + σ2
nI K(X,X∗)

K(X∗, X) K(X∗, X∗)

 (2.35)

Where,

K is a matrix constructed by using any covariance function k(x, x′).

K(X,X) is the covariance matrix between training data points X

K(X∗, X) is the covariance matrix between the test data points X∗ and the training
data points X

K(X∗, X∗) is the covariance matrix between the test data points X∗.

(iii) The key predictive equations are then calculated as:

f∗|X, y,X∗ ∼ N (f̄∗, cov(f∗)), where (2.36)

f̄∗ ≜ E[f∗|X, y,X∗] = K(X∗, X)[K(X,X) + σ2
nI]

−1y, (2.37)

cov(f̄∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]

−1K(X,X∗) (2.38)

(iv) To simplify the equations from (iii) we can define K = K(X,X) and K∗ = K(X,X∗),
which constitutes a column vector of n kernel functions for one test point x∗, i.e.
x∗ 7→ k(xi, x∗). Hence, we can write the predictive equations as a function:

f̄(x∗) =
n∑

i=1

αik(xi, x∗), i = 1, . . . , n (2.39)

Where f̄(x∗) represents the mean prediction from the predictive function f(x∗). xi

refers to the training points, with n being the total number of training points. αi

is a weight assigned to each training point based on its distance from the new test
point and its uncertainty.

The similarity between Equation 2.39 and the kriging Equation 2.24 in Section 2.3.5
is evident, where both equations estimate the value of an unobserved point by using a
linear combination of observed data points. The weights in both equations are determined
based on the correlation or covariance structure between the observed data points and the
unobserved point. Figure 2.5.1 illustrates the key stages involved in making predictions
with a GPR model.
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Figure. 2.5.1: Gaussian Process Regression (prediction) with a squared exponential
kernel. The left plot show draws from the prior distribution of functions. The middle
plot show draws from the posterior predictive distribution. The right plot is the mean
prediction (blue line) with 1 standard deviation (shaded grey) and one realization (blue
dashed line) [10]. Illustration under CC-BY-SA-4.0 licence.

2.6 Kernels

The kernel function, also referred to as the covariance function, is a crucial component
in GPR. The kernel function determines the shape and smoothness of the prior distri-
bution over functions, which in turn affects the behaviour of the posterior distribution
over functions. We have already covered the main concepts regarding kernel functions
in Section 2.3.4. This section will therefore mainly focus on the relevant kernels for this
thesis, which are the Radial Basis Function (RBF) kernel, the Matérn 3/2 kernel, and a
combined kernel with RBF and linear kernels.

The choice of kernel function can have a significant impact on the model’s behaviour [18].
A common kernel function is the squared exponential kernel, also known as the RBF
kernel or Gaussian kernel. This kernel is mathematically defined as [68]:

k(x, x′) = σ2 exp

(
− 1

2ℓ2
∥x− x′∥2

)
(2.40)

Where σ2 is the signal variance parameter (where σ is known as the amplitude parameter),
ℓ is the length scale parameter which describes the correlation length, and ∥x− x′∥2 is
the Euclidean distance between x and x′. The squared exponential kernel assumes that
the correlation between two points decays exponentially with distance and is smooth and
infinitely differentiable.

Another commonly used kernel is the Matérn kernel, which is a family of kernels that
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allows us to control the smoothness of the function being modelled. The Matérn kernel
is defined as [27]:

k(x, x′) =
21−ν

Γ(ν)

(√
2ν

ℓ
∥x− x′∥

)ν

Kν

(√
2ν

ℓ
∥x− x′∥

)
(2.41)

where Γ is the gamma function, Kν is the modified Bessel function, ℓ is the length scale,
and ν is a parameter controlling the smoothness. When:

(i) ν → ∞, the kernel converges to the squared exponential kernel from Equation 2.40,
resulting in very smooth functions.

(ii) ν = 1
2
, the kernel yields the exponential kernel, also known as the Ornstein-Uhlenbeck

Process [88], and it results in functions that are continuous.

(iii) ν = 3
2
, the kernel is differentiable once, which means that the resulting functions are

smooth and can be used for modelling data that has some level of noise and exhibits
trends.

(iv) ν = 5
2
, the kernel is differentiable twice, which results in even smoother functions

that can be used for modelling data with less noise and more complex trends.

In simpler terms, lower values of ν yield rougher functions, and the Matérn kernel is a
flexible kernel that can be used to model a wide range of functions with varying degrees
of smoothness [68].

Both of the abovementioned kernel functions are isotropic. To take geometric anisotropy
into account when determining the distribution over the functions, the kernel function can
be modified to include different length scales and rotation angles for each input dimension
as described in Section 2.3.4.

Combining kernels can be of great use when wanting to model more complex functions
and detect different structures in the data that cannot be detected by a single kernel alone
[56]. Multiplying kernels results in a kernel which has a high value only if both of the two
base kernels have a high covariance value while adding kernels results in a kernel that has
a high value if either of the two base kernels has a high covariance value [18]. A possible
kernel combination is a linear kernel and a RBF kernel, which can be interesting to test
if there is both linearity and anisotropy present in a dataset. If we add these kernels
together, we can mathematically express it as:

k(x, y), (x′, y′) = kx(x, x
′) + ky(y, y

′) (2.42)

Where kx(x, x
′) is the kernel function for the RBF kernel from Equation 2.40 and ky(y, y

′)

is the kernel function for the linear kernel which can be expressed as:

Page 26 of 93



CHAPTER 2. THEORY

k(y, y′) = σ2
b + σ2

s(y − c)(y′ − c) (2.43)

Where σb is the bias amplitude that is equal to adding an uncertain offset to the model,
σs is the slope amplitude, and c is the shift which sets the x-coordinate for the point of
intersection for all lines in the posterior function [18].

2.7 Hyperparameter Selection

Hyperparameters in machine learning are parameters that are not learned from data but
are set before the training process begins and remain constant during training. They
control the learning process and can significantly affect the model’s performance [23].

In GPR, hyperparameters define the covariance function’s characteristics, which, in turn,
determines the shape of the prior distribution over the functions. These hyperparameters
can be tuned so the optimal values for the hyperparameters are selected to improve the
model’s performance. There are several methods that can be used for hyperparameter
selection, such as Grid search, Random search, and Bayesian optimization [75]. In GPR,
maximizing the log marginal likelihood of the training data is a commonly used approach
for fitting the hyperparameters [68].

Before defining the log marginal likelihood, it is necessary to introduce the marginal
likelihood. The marginal likelihood is obtained by marginalizing (or integrating), the
product of the likelihood function and a prior distribution over the model parameters
[57]. The marginal likelihood is given by:

p(y|X) =

∫
p(y|f,X) p(f |X) df (2.44)

Where p(y|f,X) is the likelihood function of the observed data given the function values,
and p(f |X) is the prior distribution over the function values.

In the case of a GPR, the marginal likelihood can be denoted as p(y|X, θ), which rep-
resents the likelihood of observing the target values y, given the input data X and the
hyperparameters θ. It can be expressed as

p(y|X, θ) = N (y|0, Kθ) (2.45)

Here, N (y|0, Kθ) denotes a multivariate Gaussian distribution with mean 0 and covari-
ance matrix Kθ, which is parameterized by the hyperparameters θ.
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As previously stated in this section, the optimal hyperparameter values are obtained by
maximizing the log marginal likelihood. By taking the logarithm of Equation 2.45, we
can obtain the log marginal likelihood [68]:

log p(y|X, θ) = −1

2
y⊺K−1

θ y − 1

2
log(|Kθ|)−

n

2
log(2π) (2.46)

Where n is the number of points in the input data, and |Kθ| is the determinant of Kθ.

Finally, the maximization of the log marginal likelihood function can be written as:

θ̂ = argmax
θ

(log p(y|X, θ)) (2.47)

Where θ̂ are the trained hyperparameters.

2.8 Accuracy Assessment

To evaluate a model’s performance, it is essential to measure its accuracy by training
and comparing multiple models. To compare the models, we must select appropriate
metrics that evaluate their performance. When performing supervised regression tasks, it
is necessary to calculate residuals, which are the difference between the true and predicted
values. The closer the residual value is to 0, the better the model performs. The following
metrics are used to compare models in this thesis.

2.8.1 R2 Score

The R2 score, also known as the coefficient of determination measures how well a model
makes its predictions based on a scale between 0 and 1. A score of 1 indicates that the
model fits the data perfectly, while a score of 0 suggests that the model is predicting the
mean value of the observed data [58]. The R2 score can be calculated using the following
formula:

R2 = 1− RSS

TSS
= 1−

∑
(yi − ŷi)

2∑
(yi − ȳ)2

, i = 1, . . . , n (2.48)

Where yi is the true value, ŷi is the predicted value, and ȳ is the mean value of the
observed data. RSS stands for the sum of squares of residuals and TSS stands for the
total sum of squares.
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2.8.2 Root Mean Squared Error

A commonly used performance metric for regression problems is the Root Mean Squared
Error (RMSE). It is the square root of the average squared distance between true and
predicted values, i.e. the standard deviation [23]. The smaller the RMSE, the better the
model’s performance. The mathematical formula to compute the RMSE is:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, i = 1, . . . , n (2.49)

Where n is the number of samples in the dataset you are measuring the RMSE on.

2.8.3 Continuous Rank Probability Score

The Continuous Rank Probability Score (CRPS) [25] is a metric that compares an actual
true value to its predicted distribution. The smaller the CRPS value, the more accurate
the predicted distribution is. We can define the formula for calculating CRPS as:

CRPS(F, y) =

∫
R
[F (x)−H(x ≥ y)]2 dx (2.50)

Where,

y is the actual true value

x is the parameter of interest

F is the predicted CDF

H(x) is the Heaviside step function [1]:

H(ŷi) =

1, x = 0

0, x ≤ 0
(2.51)

2.9 Loss Function and Optimization

In machine learning, a loss function measures how well a model’s predictions match its
intended target value. It quantifies the error between predicted and actual values, and
training a model involves minimizing this loss function. An optimizer adjust the weights
and biases of a model in a direction such that the loss function is minimized. The choice
of what loss function to use depends on the problem [12].
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2.9.1 Negative Log Marginal Likelihood

The Negative Log Marginal Likelihood (NLML) is a loss function which is generally used
to find optimal hyperparameters θ̂ for GP models [68]. It is defined as the negative of the
log marginal likelihood function, refer to Equation 2.46. The negative sign is added to
convert the maximization problem into a minimization problem. The formula for NLML
can be written as:

θ̂ = argmin
θ

(− log p(y|X, θ)) (2.52)

2.9.2 Adaptive Moment Estimation

Adaptive Moment Estimation optimizer, also known as the Adam optimizer, is a gradient
descent [46] based optimization algorithm that was presented by Diederik Kingma and
Jimmy Ba [42]. It combines the advantages of two other optimization methods, namely
Adaptive Gradient Algorithm (AdaGrad) [17] and Root Mean Square Propagation (RM-
SProp) [86]. The Adam optimizer adjusts the learning rate of each weight in the model
during training by computing a running average of the first and second moments of the
gradients, i.e. the mean and the variance, respectively. The algorithm then uses these
estimates to update the hyperparameters, resulting in faster convergence and better per-
formance [71].

2.10 Geographic Information System

Geographic Information Systems (GIS) is a system designed to capture, store, manipu-
late, analyze, and present spatial or geographic data. It allows users to overlay different
layers of information onto a map, creating a more complete picture of a geographic area
[61].

Geotechnical data can be integrated into a GIS system to create a comprehensive under-
standing of the geological and geotechnical features of a particular site or region. For
example, geological maps, borehole logs, and geophysical surveys can be digitized and
integrated into a GIS, allowing for easy visualization and analysis of the subsurface con-
ditions. This information can then be used to make informed decisions about site selection,
design, and construction, as well as to identify potential geohazards such as landslides or
sinkholes [92].
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Data Exploration

To gain a better understanding of the data used in this thesis, an initial data exploration
was conducted. In this chapter, we will start by discussing the datasets in more detail,
including the type of data collected, the location of the study area, and the time frame
of the data collection. Next, we will provide an overview of the geological setting of the
study sites, which is important for understanding the geotechnical properties of the soil
and rock formations. Finally, we will discuss semivariogram models, which are used to
characterize spatial dependence and variability in geotechnical data.

3.1 Datasets

This section provides a description of the datasets that were used to train and test the
machine learning approach. Two datasets were used for both training and testing the
models and include boreholes obtained from TS in geotechnical investigations conducted
by NGI. NGI stands for the Norwegian Geotechnical Institute and is an independent re-
search centre that combines geotechnical knowledge and technology to provide services
within a wide range of sectors, including energy, infrastructure, construction, and the
environment [59].

Two borehole datasets were used in this study. They were retrieved from NGI’s geo-
database and converted to comma-delimited Excel files. The first borehole dataset is
from geotechnical investigations near a highway called E18 in Bærum municipality in
Norway. We will therefore refer to this dataset as Bærum E18. The geographical location
of the dataset is presented in Figure. 3.1.1.
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Figure. 3.1.1: Study area: E18, Bærum, a highway in Bærum municipality in Norway.

As shown in Figure. 3.1.1, the data has high point density and the boreholes are linearly
distributed along the highway. The dataset consists of a total of 8376 boreholes derived
from TS.

The second borehole dataset is from geotechnical investigation projects that cover a part
of the eastern part of Oslo municipality in Norway. Hence, is why we will refer to this
dataset as Oslo East. The geographical location of this dataset is presented in Figure.
3.1.2. This dataset contains 2335 boreholes that are also derived from TS. The area
is more rectangular and the boreholes are spread more evenly than in the Bærum E18
dataset.
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Figure. 3.1.2: Study area: Eastern part of Oslo municipality in Norway.

The datasets used in the study contain information about the DTB for all boreholes.
To visualize the boreholes and terrain surface in the study area, 3D projections of the
datasets were generated. This is presented in Figure. 3.1.3. The longitude and latitude
coordinates of the study area are given in the EUREF89 NTM Zone 10 (EPSG:5110) map
projection and are represented by the x- and y-axis, respectively. The z-axis represents
the depth of the boreholes and the terrain in meters. The DTM-derived gridded grey
surface above the borehole points is also shown in the same map projection. The figure
indicates that all borehole values are below 0. This is due to the fact that outcrops, i.e.
bedrock visible on the earth’s surface, are defined as 0 in the datasets; thus, even if an out-
crop is at a terrain height of, for instance, 4 meters, it is defined as 0 meters in the datasets.
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(a) Terrain surface and boreholes in Bærum E18 dataset.
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(b) Terrain surface and boreholes in Oslo East dataset.

Figure. 3.1.3: The subfigures 3.1.3a and 3.1.3b are 3D projections of the terrain surface
and borehole depth in the datasets provided by NGI. The x- and y-axis represent the
latitude and longitude coordinates respectively, while the z-axis represents the depth of the
boreholes and the terrain surface in meters.

The data collection time frame is based on the individual projects that the boreholes
originate from. In Figure. 3.1.4 we show the month and year of investigation for each
borehole in the datasets. A majority of the boreholes are from investigations conducted
between 2010 and 2020, with some older data points dating back to 2005 and 1994.
One might wonder if the quality of the data depends on the age of the data. As this is
geotechnical data collected thorough TS the information about the borehole depth itself is
quite accurate. However, according to Lysdahl (personal communication, Apr. 20, 2023)
at NGI, there can be some inaccuracy in the actual GPS positioning on the surface. Data
collected before 2010 could have a 1-3 meters inaccuracy in GPS positioning compared
to data collected after 2010, particularly in areas with forests or near buildings. Data
collected after 2010 has a requirement of at least a minimum accuracy of 10 centimters
for coordinates and terrain height.
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(a) Time frame for data collection for Bærum
E18 dataset.

(b) Time frame for data collection for Oslo East
dataset.

Figure. 3.1.4: The subfigures 3.1.4a and 3.1.4b show the time frame for when the
borehole data was collected in the datasets provided by NGI. The x-axis represents the
month and year for when data was collected, whilst the y-axis refers to the number of
boreholes from the time frames.

3.2 Geological Setting

In order to gain a more comprehensive understanding of the geology in the study areas,
we will explore the geological setting present in the borehole datasets. Since the study
sites are closely located, many of the geological properties are similar. A quaternary
geological map of the study areas, derived from the Geological Survey of Norway (NGU)
map database, is shown in Figure. 3.2.1. About 55% of Norway has exposed bedrock
or bedrock with a thin layer of quaternary sediments, as reported by Olsen et al. [62].
It is evident from Figure. 3.2.1 that some areas in both datasets coincide with exposed
bedrock regions, while the remaining areas are characterized by a continuous sediment
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cover, which is according to Olsen et al. [62] estimated to have an average thickness of
approximately 6 meters.

Figure. 3.2.1: Quaternary geological map of the study areas, based on data from the
NGU map database. The map shows the distribution of various sediments and the bore-
holes from the NGI datasets. The red points in the map refer to the boreholes in the Oslo
East dataset, whilst the blue points refers to the boreholes in the Bærum E18 dataset. The
different sediment types are represented as coloured polygons in the map, where the map
legend specifies what sediment type each colour represents. More information about the
map can be found at ngu.no.

3.3 Semivariogram Models

Semivariograms were produced and studied to gain insights into the spatial correlation of
the data. The semivariograms were created using the Matheron estimator [54] and the
isotropic spherical model given by Equation 2.14. From the results presented in Figure
3.3.1, we can observe that both datasets have a moderate to strong spatial correlation.
The effective ranges of the models are around 7000 meters, indicating that the correlation
between data points diminishes beyond this range. The sills of the models are relatively
high, meaning that there is a strong degree of correlation between the data points. The
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(a) Semivariogram for Oslo East dataset.

(b) Semivariogram for Bærum E18 dataset.

Figure. 3.3.1: Subfigures 3.3.1a and 3.3.1b portray the semivariograms of the datasets
provided by NGI. These semivariograms were computed using SciKit-GStat [51] with the
Python backend. The semivariograms were estimated using the Spherical theoretical model
(green line) and fitted to an experimental variogram (blue dots) with 30 lag classes up to
a maximum of 7000 units (x-axis). The histogram at the top of the plots indicates the
number of point pairs for each lag class and shares the x-axis with the semivariogram.

semivariogram for the Bærum E18 dataset has a nugget effect of 14.25 meters, indicating
the presence of measurement error or noise that cannot be explained by the model. The
exact values of the parameters calculated from the semivariograms are listed in Table 3.3.1.

In addition to the semivariograms in Figure 3.3.1, semivariogram maps were created by
using ArcGIS Pro [34], a GIS software. Semivariograms are usually presented as 1D curves
showing the relationship between the semivariogram value and the lag distance along a
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Table 3.3.1: Semivariogram parameters for two locations.

Dataset Model Estimator Effective Range Sill Nugget

Bærum E18 Spherical Matheron 6999.96 m 59.73 m 14.25 m
Oslo East Spherical Matheron 7110.54 m 304.88 m 0.00 m

(a) Semivariogram map for Oslo East dataset. (b) Semivariogram map for Bærum E18 dataset.

Figure. 3.3.2: The subfigures 3.3.2a and 3.3.2b show the semivariogram maps for the
datasets provided by NGI. Both semivariogram maps are created with the GIS software,
ArcGIS Pro.

particular direction. However, to gain a global understanding of the spatial correlation
in all directions, we can create a 2D representation in the form of a semivariogram map.
The map is created by calculating the semivariogram at a set of regularly spaced points
throughout the study area and interpolating between these points to create a continuous
surface [15]. Figure 3.3.2 illustrates the semivariogram maps for both borehole datasets.
The maps show the semivariogram values as a colour scale, where darker colours (red)
indicate large semivariance values. The maps also provide insights into the directionality
of the spatial correlation, as evident from the elliptical shape of the contours. Especially
in Figure 3.3.2b, we see a clear anisotropy in the spatial correlation, where the correlation
is stronger in the northeast-southwest direction compared to the northwest-southeast
direction. This information is valuable for selecting appropriate kernel functions in the
GPR model, as anisotropic models may be required to accurately capture the spatial
correlation of the data.
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Methods

This chapter presents the methodology employed in this thesis, with a focus on the frame-
work developed for estimating DTB. The chapter discusses the software and tools used,
data pre-processing, and the implementation of the models. The source code used for this
study can be accessed via the GitHub links provided in Table A.0.1 in Appendix A.

Figure 4.0.1 shows a workflow that summarizes the methodology in this thesis.

Borehole
data

Data pre-
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Split data
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uncertainty
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End
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Figure. 4.0.1: Workflow of the methodology in this study for estimating Depth to Bedrock
using Gaussian Process models.
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4.1 Software and Hardware

Python [89] version 3.10.10 was used in this study. Data manipulation and analysis were
performed using the Pandas module [55], while basic scientific computations were carried
out using the NumPy module [28]. TensorFlow version 2 [52] was utilized to implement
the models, and the results were visualized and evaluated using the Plotly library [35]
with Python. A complete list of the software and Python modules used to create the
source code can be found in Table A.0.2 in Appendix A.

For this study, all computations were performed on a standard laptop with a CPU of
2.80 GHz and 16 GB of RAM. The machine ran on a 64-bit Windows operating system.
Despite not having high-end hardware, the laptop was able to run all the necessary tasks
in a timely manner, and the results were obtained successfully. Although more powerful
hardware could have potentially sped up some of the processes, the laptop used for this
study was capable of completing all the required tasks.

4.2 Data Pre-processing

In addition to the data exploration from Chapter 3, it was necessary to do some data pre-
processing before using the datasets in the models. Both borehole datasets provided by
NGI were relatively prepared. Subsets from the datasets used in the study are presented
and described in Table 4.2.1. We are using 3 columns from each dataset for the models,
where 2 of the columns are the input features and the last column is the target values.
The input features represent the longitude and latitude coordinates that are the position
of the boreholes, and the target values represent the DTB values in meters. The datasets
were stored as Pandas [55] DataFrames.

To avoid biased models and incorrect results we checked for missing values, which resulted
in the Bærum E18 dataset having none, and the Oslo East dataset having 177 missing
DTB values. Many machine learning models. including GPs, are unable to handle missing
values [36]. As the number of missing values was relatively small, we decided to remove
all rows with missing DTB values from the dataset. Consequently, the final number of
boreholes in the Oslo East dataset used for the models was 2158.

The final step in data pre-processing involved examining the distribution of the datasets.
The original data distribution for the datasets used in this study is illustrated in Figure
4.2.1. An important observation is that the input data, represented by the longitude and
latitude coordinates, has a significantly larger scale compared to the output data or target
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(a) Subset from Bærum E18 dataset

X Y DTB

101247.056 1210636.918 18.7
101261.11 1210620.965 29
101265.003 1210652.979 20.8
101274.151 1210609.009 25.1
101276.233 1210669.003 11.6
101277.056 1210637.019 20.9
101279.962 1210665.029 14.4
101283.285 1210569.039 24.5
101289.11 1210621.059 21.3

· · · · · · · · ·

(b) Subset of Oslo East dataset

X Y DTB

118552.99 1212222.01 <Null>
118855.86 1212450.93 5.96
118866.6 1212451.11 5.6
115726.65 1212913.03 1.1
115727.1 1212912.48 1.3
115719.38 1212914.61 1
115720.35 1212914.7 0.8
115719.65 1212915.64 0.5
115712.62 1212918.44 2.3

· · · · · · · · ·

Table 4.2.1: Subsets from borehole datasets provided by NGI. Tables 4.2.1a and 4.2.1b
provide the structure of the datasets, where the first two columns (X and Y) correspond to
the longitude and latitude coordinates, respectively. These coordinates are expressed in the
EUREF89 NTM Zone 10 (EPSG:5110) map projection. The last column (DTB) contains
the depth to bedrock values, which are the target values in this study.

values, which is evident by comparing the x-axis values in the figure.

GPR is a non-parametric approach that does not make any assumptions about the under-
lying distribution of the data. Instead, we select a prior distribution that best represents
the data being modelled. As a result, GPR does not require any scaling of the input
data. However, the kernel function can be affected by the scale of the input features. If
the input features are on different scales, the kernel function may be biased towards the
features with larger scales, leading to inaccurate estimates [68].

To ensure that all data used in the model are on a similar scale, both the input data
and the output data (target values) were standardized. Standardization is the process of
transforming data so that it has a mean µ of zero and a standard deviation σ of one:

xscaled =
x− µ

σ
(4.1)

Standardizing the target values ensures that they are on the same scale as the input fea-
tures, thereby preventing the model from overemphasizing the impact of the coordinates
and underemphasizing the impact of the DTB feature and vice-versa. Figure 4.2.2 shows
the data distribution after standardization.
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(a) Data distribution in Oslo East dataset.

(b) Data distribution in Bærum E18 dataset.

Figure. 4.2.1: The subfigures 4.2.1a and 4.2.1b show the data distribution for each
column in the borehole datasets provided by NGI. X and Y correspond to the longitude
and latitude coordinate values, respectively, and DTB is the depth to bedrock values. The
values in the columns are represented on the x-axis, while the count of those values is
shown on the y-axis.
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(a) Data distribution after scaling Oslo East dataset.

(b) Data distribution after scaling Bærum E18 dataset.

Figure. 4.2.2: The subfigures 4.2.2a and 4.2.2b show the data distribution for each
column in the borehole datasets provided by NGI after standardization. X and Y corre-
spond to the longitude and latitude coordinate values, respectively, and DTB is the depth
to bedrock values. The scaled values in the columns are represented on the x-axis, while
the count of those values is shown on the y-axis.
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4.3 Model Implementation

In this section, we describe the implementation of the GP models used in this study. The
implementation is strongly based on the source code by Roelants [70] and is created using
the TensorFlow [52] and TensorFlow Probability [16] frameworks. TensorFlow provides a
powerful set of tools for building and training machine learning models, while TensorFlow
Probability allows us to construct probabilistic models that can capture the uncertainty
inherent in the given problems.

The specific GP models implemented in this study are the GaussianRegressionModel
and GaussianProcess models from the TensorFlow Probability module. These models
allow us to construct and train GPs using different types of kernel functions and likelihood
functions. In addition, these models also enable us to make predictions on new unseen
data. In the following sections, we will provide a detailed explanation of the implemen-
tation process, including kernel functions, hyperparameter optimization, Cross-validation
(CV), and model evaluation.

4.3.1 Choice of Kernel

When using the GP models from TensorFlow, any kernels from the positive-semidefinite
kernels package in TensorFlow Probability can be used. For this study, the following three
kernel functions were used:

• RBF

• Matérn kernel with ν = 3
2

(Matérn 3/2)

• Linear

All three kernel functions are described in more detail in Section 2.6.

The reason behind choosing the RBF kernel for this study is that it relies on the principle
that similar inputs have similar outputs [33]. This principle is essential for our study,
as we work with spatial data. However, this kernel has a tendency to quickly decrease
exponentially towards 0 the further the extrapolations are away from the training data.
According to Stein [82], the RBF kernel is too smooth and is unrealistic when it comes
to modelling many physical systems, and therefore recommends using the Matérn ker-
nel. Therefore, the Matérn 3/2 kernel was chosen, as it strikes a good balance between
smoothness and flexibility. The linear kernel is only used in combination with the RBF
kernel to try to capture any underlying linear trends in the data, which can be useful in
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cases where the data has a clear or some degree of linearity.

Anisotropy was included by combining the kernels with an input-transformed kernel us-
ing the FeatureTransformed function from the positive-semidefinite kernels package in
TensorFlow. This function creates a transformation function that transforms the input
data and then passes them to the base kernel, which in this case can be either RBF,
Matérn 3/2, or the combined kernel with the RBF and linear kernels. The transformation
function was implemented using the formulas in Section 2.3.4.

4.3.2 Model Training

Hyperparameter Optimization

To optimize the hyperparameters, we use the Adam optimizer from TensorFlow. The
Negative Log Marginal Likelihood (NLML) of the model is calculated using the training
data and the negative of the log_prob function from the TensorFlow Probability mod-
ule. The hyperparameters are updated using gradient descent until convergence, which is
determined by monitoring the change in the NLML between iterations. The optimization
process is repeated several times with different initial values of the hyperparameters to
ensure that the optimization process does not get stuck in a local minimum. The final
set of hyperparameters is chosen based on the model with the lowest NLML value.

Each kernel has its own set of trainable hyperparameters. The trainable hyperparameters
for each kernel used in this thesis are listed in Table 4.3.1. The mean function for all
models was set to 0. All hyperparameter prior values were set with a Gaussian (normal)
distribution in mind, and the hyperparameters were constrained to be positive to avoid
negative hyperparameter values after optimization. For the RBF and Matérn 3/2 kernels,
the trainable hyperparameters are σ and ℓ, which represent the amplitude and length scale
of the kernel, respectively. The amplitude controls how much the functions vary in vertical
scale, while the length scale represents the "wiggliness" of the function which determines
how far away from the data the model can extrapolate [18]. The length scale parameter is
also trainable for the geometric anisotropy transformation. But the difference here is that
there are two length scale parameters ℓ1, and ℓ2, one for each input dimension to detect
the dominating direction of the input data. In addition to ℓ1 and ℓ2, the transformation
also has a trainable angle parameter θ which controls the orientation to rotate the input
data [38]. The bias amplitude σb, slope amplitude σs, and shift c parameters in the lin-
ear kernel control the offset, slope, and intercept just like in a standard linear regression
function [18]. Lastly, the observation noise variance parameter σy controls the amount of
noise added to the observed data. This hyperparameter is used for all models regardless
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of which kernel is chosen, and its value is learned during the optimization process along
with the other hyperparameters [68].

Table 4.3.1: Trainable hyperparameters.

Kernel/
Transformation Formula Trainable

Parameters
Parameter
Description

RBF 2.40 σ and ℓ Amplitude and length scale
Matérn 3/2 2.41 σ and ℓ Amplitude and length scale

Linear 2.43 σb , σs , and c
Bias amplitude, slope amplitude,

and shift

Geometric Anisotropy 2.23 ℓ1 , ℓ2 , and θ
Length scale for input dimension 1,
length scale for input dimension 2,

and rotation angle in radians

Observation noise variance 2.33 σy The variance of the Gaussian noise

Cross-Validation

Cross-validation (CV) is a method used to evaluate the performance of a machine learning
model on a given dataset. This process involves partitioning the dataset into training and
test sets, training the model on the training set, and evaluating the model on the test
set. Hence, the datasets were split randomly into training and test sets, where 80% of the
data was used for model training and 20% for testing and evaluating model performance.

To further ensure the model is not overfitting to a specific subset of the training data,
we applied shuffling to the training set and split it into batches of size 128. This allows
us to perform hyperparameter optimization, as described in Section 4.3.2, multiple times
with different subsets of the training data. In our framework, we ran 500 iterations as
we observed that the loss functions for the models stabilized after approximately 250
iterations. The final model with the optimal hyperparameter values is then evaluated on
the test set to estimate the model’s performance on unseen data.

Model Evaluation

When evaluating the performance of the GPR models, we use the metrics that were de-
fined in Section 2.8. These metrics include the R2 score, RMSE, and CRPS. The R2

metric provides an indication of how well the model fits the data on a scale between 0
and 1, while the RMSE metric measures the difference between the predicted values and
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the actual values. The CRPS metric, on the other hand, evaluates the probabilistic pre-
dictions of the model by comparing them to the actual values.

We used these metrics to assess the performance of the models after training and testing.
This allows us to determine if the models are overfitting to the training data or if they
generalize well to new, unseen data.

4.3.3 Interpolation

The aim of the model is to interpolate DTB values at locations without any observations.
To accomplish this, additional data had to be created. We generated an evenly spaced
2D grid of points using the Pandas [55] module. The x- and y axes of the grid were set to
match the range of the borehole datasets, ensuring we had known DTB values available in
the interpolation field to check if the predictions are consistent with the actual measured
values in that area. We used 100 equally spaced samples along each axis, resulting in a
final grid of 10,000 points that were used for the interpolation.

The DTB values from the interpolation were obtained as the mean prediction from the
trained model. The standard deviation of the predictions was used as a measure of uncer-
tainty, providing insight into how confident the model was in its predictions. For example,
if the standard deviation is high at a certain point, it indicates that the model is less cer-
tain about the prediction at that point. On the other hand, if the standard deviation is
low, the model is more confident about the prediction at that point. The mean predic-
tions and the standard deviation values were calculated based on the posterior predictive
distribution obtained from the trained model.

The mapping of interpolation results involved two visualizations: one for the mean pre-
dictions and one for the estimated uncertainties. The maps were created by transforming
the points in the predicted field into rasters with a 100-meter resolution. The borehole
dataset observations were overlaid as points on the raster that displayed the mean pre-
dictions and were coloured based on their actual DTB values. To highlight the difference
between the maps, another colorscale (yellow to red) was used to visualize the raster that
displayed the uncertainties associated with the mean predictions. The maps were created
using ArcGIS Pro [34].
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Results

This chapter presents and compares the results obtained from the tested models. The
chapter is organized into two sections, each corresponding to the borehole datasets used
to train and test the models. For each dataset, six different types of kernels were used to
train the models. Therefore, for each dataset, we obtained six distinct models. A detailed
description of the datasets can be found in Chapter 3, while the methodology for the
model implementation is described in Chapter 4.

In each section, we provide the results obtained from training the models, including opti-
mized hyperparameters, metric results, results from the loss function, and visualizations
of the interpolation and uncertainty results.

5.1 Oslo East Dataset

5.1.1 Training Results

The training of GPR model on the Oslo East dataset only took approximately 4-6 seconds
to complete for each of the six models. During the training process, the hyperparameters
were optimized using CV as described in Section 4.3.2. The optimized hyperparameters
for each of the six kernels used to train the models are shown in Table 5.1.1. The table
shows both the prior values set for each hyperparameter as well as the posterior values
after training.

The loss function for each model during the training process is shown in Figure 5.1.1.
As expected, the loss function decreases with each iteration and eventually converges to
a steady-state value. The convergence rate and final loss value vary depending on the
kernel type used. The models using the Matérn 3/2 kernel achieve the lowest final loss
value.
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Table 5.1.1: Hyperparameter optimization results for the Oslo East dataset. The poste-
rior is presented in scaled values.

(a) RBF kernel

Hyperparameter Prior Posterior

Isotropy

Amplitude σ 1.0 4.955
Length scale ℓ 1.0 0.220

Observation noise variance σy 0.001 0.002

Geometric anisotropy

Amplitude σ 1.0 3.831
Length scale 1 ℓ1 1.0 3.279
Length scale 2 ℓ2 2.0 7.104

Angle θ 1.57 1.034
Observation noise variance σy 0.001 0.002

5.1.2 Metric Results

The metric results for each model trained on the Oslo East dataset are shown in Table
5.1.2. The R2 score, which measures the amount of variation explained by the model,
ranges from 0.600 to 0.829 across the six models. The RMSE ranges from 0.364 to 0.559,
and the CRPS ranges from 0.153 to 0.263. The best model performance for both isotropic
and anisotropic models is achieved by the Matérn 3/2 kernel. Where the best-performing
model is the anisotropic Matérn 3/2 model with an R2 score of 0.829, RMSE of 0.364,
and a CRPS of 0.152.

The model performance was visualized using scatter plots that display the mean prediction
values against the true values (or ground truth), as shown in Figure 5.1.2. The plots
indicate that the model predictions are generally close to the true values, as most points
are near the diagonal line. However, some outliers are present, indicating potential areas
of improvement for the model. Overall, the scatter plots demonstrate that the models
perform well in predicting DTB values for the Oslo East dataset.

5.1.3 Best Model Results

In this section, we will display the interpolated field and associated uncertainties for the
best-performing model trained on the Oslo East dataset. To create the figures, we fol-
lowed the procedure described in Section 4.3.3. Based on the metrics presented in Table
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(b) Matérn 3/2 kernel

Hyperparameter Prior Posterior

Isotropy

Amplitude σ 1.0 2.834
Length scale ℓ 1.0 0.312

Observation noise variance σy 0.001 0.002

Geometric anisotropy

Amplitude σ 1.0 2.226
Length scale 1 ℓ1 1.0 2.807
Length scale 2 ℓ2 2.0 5.805

Angle θ 1.57 0.945
Observation noise variance σy 0.001 0.002

(c) Linear + RBF kernel

Hyperparameter Prior Posterior

Isotropy

Bias amplitude σb 0 0
Slope amplitude σs 1.0 0.566

Shift c 0 7.469
Amplitude σ 1.0 4.964
Length scale ℓ 1.0 0.220

Observation noise variance σy 0.001 0.002

Geometric anisotropy

Bias amplitude σb 0 0
Slope amplitude σs 1.0 0.292

Shift c 0 8.321
Amplitude σ 1.0 3.843

Length scale 1 ℓ1 1.0 3.288
Length scale 2 ℓ1 2.0 7.095

Angle θ 1.57 1.034
Observation noise variance σy 0.001 0.002
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(a) RBF kernel. (b) Matérn 3/2 kernel.

(c) Linear + RBF kernel.

Figure. 5.1.1: The NLML for six models trained on the Oslo East dataset. The blue
and red lines represent the loss during training for the isotropic and anisotropic models,
respectively. The x-axis displays the NLML value, while the y-axis represents the number
of iterations.

5.1.2, the anisotropic model with the Matérn 3/2 kernel performed the best for the Oslo
East dataset. The results for this model are shown in Figure 5.1.3. The interpolation
and uncertainty results for all models trained on the Oslo East dataset can be found in
Appendix B.
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Table 5.1.2: Metric results for Oslo East dataset. R2 is the coefficient of determination,
Root Mean Squared Error (RMSE), and Continuous Rank Probability Score (CRPS).

Kernel Metric Isotropy Geometric anisotropy

R2 0.676 0.600
RBF RMSE 0.502 0.558

CRPS 0.260 0.262

R2 0.755 0.829
Matérn 3/2 RMSE 0.437 0.364

CRPS 0.172 0.153

R2 0.677 0.601
Linear + RBF RMSE 0.502 0.558

CRPS 0.260 0.261
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(a) Isotropic RBF kernel. (b) Anisotropic RBF kernel.

(c) Isotropic Matérn 3/2 kernel. (d) Anisotropic Matérn 3/2 kernel.

(e) Isotropic Linear and RBF kernel. (f) Anisotropic Linear and RBF kernel.

Figure. 5.1.2: Scatter plots of the mean prediction values (y-axis) versus ground truth
values (x-axis) obtained from the six Gaussian Process for Regression (GPR) models
trained with six different kernels on the Oslo East dataset. All values are in meters.

Page 54 of 93



CHAPTER 5. RESULTS

Figure. 5.1.3: Interpolation and uncertainty for the anisotropic model with Matérn 3/2
kernel trained on Oslo East dataset.
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5.2 Bærum E18 Dataset

This section presents the same workflow presented in Section 5.1 but for the Bærum E18
dataset. The dataset contains 8376 boreholes, making it the larger of the two datasets.

5.2.1 Training Results

Similar to the Oslo East dataset, the GPR models were trained on the Bærum E18 dataset
using six different kernels. The training process took approximately 32-40 seconds to com-
plete for each of the six models. The results from the hyperparameters optimized during
training for each of the six kernels are shown in Table 5.2.1. The table displays both the
prior values set for each hyperparameter and the posterior value after training each model.

Table 5.2.1: Hyperparameter optimization results for Bærum E18 dataset. The posterior
is presented in scaled values.

(a) RBF kernel

Hyperparameter Prior Posterior

Isotropy

Amplitude σ 1.0 7.199
Length scale ℓ 1.0 0.122

Observation noise variance σy 0.001 0.003

Geometric anisotropy

Amplitude σ 1.0 5.709
Length scale 1 ℓ1 1.0 6.421
Length scale 2 ℓ2 2.0 11.531

Angle θ 1.57 1.695
Observation noise variance σy 0.001 0.002

Figure 5.2.1 shows the loss functions for the six models trained on the Bærum E18 dataset.
The loss functions for all six models decreased during training, indicating that the models
were learning and improving their predictions. The anisotropic Matérn 3/2 model yielded
the lowest loss values.
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(b) Matérn 3/2 kernel

Hyperparameter Prior Posterior

Isotropy

Amplitude σ 1.0 3.592
Length scale ℓ 1.0 0.271

Observation noise variance σy 0.001 0.002

Geometric anisotropy

Amplitude σ 1.0 3.082
Length scale 1 ℓ1 1.0 3.181
Length scale 2 ℓ2 2.0 6.466

Angle θ 1.57 1.263
Observation noise variance σy 0.001 0.002

(c) Linear + RBF kernel

Hyperparameter Prior Posterior

Isotropy

Bias amplitude σb 0 0
Slope amplitude σs 1.0 1.611

Shift c 0 5.970
Amplitude σ 1.0 7.234
Length scale ℓ 1.0 0.122

Observation noise variance σy 0.001 0.003

Geometric anisotropy

Bias amplitude σb 0 0
Slope amplitude σs 1.0 1.216

Shift c 0 6.974
Amplitude σ 1.0 5.723

Length scale 1 ℓ1 1.0 6.419
Length scale 2 ℓ1 2.0 11.527

Angle θ 1.57 1.695
Observation noise variance σy 0.001 0.002
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(a) RBF kernel. (b) Matérn 3/2 kernel.

(c) Linear + RBF kernel.

Figure. 5.2.1: The NLML for six models trained on the Bærum E18 dataset. The blue
and red lines represent the loss during training for the isotropic and anisotropic models,
respectively. The x-axis displays the NLML value, while the y-axis represents the number
of iterations.

5.2.2 Metric Results

Table 5.2.2 presents the results of the metrics used to evaluate the performance of the six
models trained on the Bærum E18 dataset. The anisotropic model with the Matérn 3/2
kernel achieved the best performance, with an R2 score of 0.954, RMSE of 0.211, and a
CRPS of 0.078. These results suggest that this model is able to accurately predict the
DTB values for the given dataset.

5.2.3 Best Model Results

This section presents the interpolated field and associated uncertainties for the best-
performing model trained on the Bærum E18 dataset. Based on the metrics results pre-
sented in Table 5.2.2, the best model performance is obtained by the anisotropic model
with the Matérn 3/2 kernel. The results are visualized in Figure 5.2.3.

Page 58 of 93



CHAPTER 5. RESULTS

Table 5.2.2: Metric results for Bærum E18 dataset. R2 is the coefficient of determina-
tion, Root Mean Squared Error (RMSE), and Continuous Rank Probability Score (CRPS).

Kernel Metric Isotropy Geometric anisotropy

R2 0.812 0.471
RBF RMSE 0.428 0.720

CRPS 0.303 0.298

R2 0.943 0.954
Matérn 3/2 RMSE 0.235 0.211

CRPS 0.093 0.078

R2 0.809 0.468
Linear + RBF RMSE 0.432 0.721

CRPS 0.303 0.298

Visualizations of the interpolation and uncertainty results for all models are provided in
Appendix C. The maps are generated the same way as described in Section 5.1.3.
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(a) Isotropic RBF kernel. (b) Anisotropic RBF kernel.

(c) Isotropic Matérn 3/2 kernel. (d) Anisotropic Matérn 3/2 kernel.

(e) Isotropic Linear and RBF kernel. (f) Anisotropic Linear and RBF kernel.

Figure. 5.2.2: Scatter plots of the mean prediction values (y-axis) versus ground truth
values (x-axis) obtained from the six Gaussian Process for Regression (GPR) models
trained with six different kernels on the Bærum E18 dataset. All values are in meters.
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Figure. 5.2.3: Interpolation and uncertainty for anisotropic model with Matérn 3/2
kernel trained on Bærum E18 dataset.
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Chapter 6
Discussion

The preceding chapters have presented the related theory, methodology, and results of
this study, which aimed to investigate the effectiveness of GP models in predicting DTB
values for geotechnical investigations, as well as the possible benefits of using anisotropic
models for random effects in geostatistical settings. In this chapter, the implications of
these findings and their potential contributions to the field of geostatistics, machine learn-
ing, and geotechnics will be discussed.

First, we will examine the quality of the data used in this study. Then, we will discuss the
choice of kernels and hyperparameters and how they influenced the model performance.
Next, we will go into the details of the model performance and analyze the strengths and
limitations of the models in predicting DTB values. After discussing the model perfor-
mance, we will compare our results to related works presented in Chapter 1. Finally, we
will address the remaining challenges and future work.

6.1 Data Quality

The datasets used in this study have generally high quality. Both datasets contain infor-
mation about boreholes from geotechnical investigations conducted by NGI. The geotech-
nical data is considered to be of high quality due to the strict quality control procedures
implemented by NGI during data acquisition. It is worth noting, however, that the accu-
racy of the borehole data acquired before the year 2010 may be compromised as the GPS
position of these coordinates could be offset from the actual borehole locations.

When pre-processing the data, we found missing values in the Oslo East dataset. These
values were removed from the dataset, as we had enough observations available. However,
missing values are common in many real-life datasets, and imputation techniques can be

Page 62 of 93



CHAPTER 6. DISCUSSION

used to handle them. The framework used in this thesis is not equipped to handle missing
values, but future work could explore incorporating imputation techniques into the GP
models.

It is important to keep in mind that while the geotechnical investigation data used in this
study is of high quality, it is still subject to some degree of uncertainty and variability,
which can affect the accuracy of our interpolated depth estimates. The interpolation
results in this study revealed irregular bedrock morphology in the Oslo area, indicating
significant variation in sediment thickness.

6.2 Choice of Kernel and Hyperparameters

The choice of kernel and hyperparameters is an important aspect of GPs that can signifi-
cantly impact the performance of the model. The kernel choice in a GP model forms the
prior assumption about the underlying function which is the basis for how the function
will further learn from the data. In our study, we experimented with several kernels,
including the RBF, the Matérn 3/2, and a combined kernel with linear and RBF compo-
nents.

The choice of the kernel in our study was based on literature that described the be-
haviours of the different kernels [18, 68, 82]. The RBF kernel assumes smooth variations
in the data, while the Matérn 3/2 kernel captures both smooth and abrupt variations.
The combined kernel, on the other hand, was used to capture both linear and nonlinear
relationships between the variables.

The depth of the boreholes used in our study varied significantly, resulting in the Bærum
E18 dataset having a higher degree of anisotropy which was clear in the northeast-
southwest direction. The Oslo East dataset had more evenly distributed borehole depths
in all directions resulting in a smaller degree of anisotropy. To assess the effectiveness
of different kernels in capturing these varying data structures, we experimented with a
combination of linear and RBF kernels. This was done primarily to evaluate whether the
kernel could accurately capture any linear trends present in the datasets.

In addition to the kernel combination, we also explored modifications that allowed us to
include anisotropy. By incorporating this modification, we aimed to understand better
how the model was affected by variations in the orientation and structure of the data
points.

The results of the hyperparameter optimizations in Tables 5.1.1 and 5.2.1 indicate that
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models with anisotropic kernels are capable of identifying the major axis of the input
data. This can be observed by examining length scale parameters in the different models
after training.

For instance, the optimization process revealed that the length scale ℓ parameter for all
isotropic models trained on both datasets was very low, below 1. While in the anisotropic
models, the posterior values for the length scale parameters for two directions ℓ1 and ℓ2,
yielded higher values even though the prior value for the ℓ1 parameter was set to the same
value as in the prior value of the length scale ℓ parameter in the isotropic models. By
inverse transforming the values for ℓ1 and ℓ2 with the standardization method used for
the observations we can obtain the optimized length scale parameters in meters, which
can give us a better indication of at what length in the different directions the points in
the datasets are spatially correlated with each other.

The average posterior value for ℓ1 and ℓ2 from the anisotropic models trained on the Oslo
East dataset is approximately 3 and 6 respectively. These values in meters after inverse
transformation yield that the average minor axis has a length of around 55 meters and
the major axis has a length of around 105 meters. For the Bærum E18 dataset, we have
that the average ℓ1 and ℓ2 posterior values are 5 and 10 respectively. The minor axis is
approximately 86 meters and the major axis is around 148 meters. From these results, we
can interpret that there is slightly more anisotropy detected in the Bærum E18 dataset
compared to the Oslo East dataset. However, from the semivariogram maps in Figure
3.3.2 we see that the degree of anisotropy in the Bærum E18 dataset should be much
larger than what the optimized hyperparameter results show.

It is worth noting that the choice of kernel and hyperparameters can be highly dependent
on the specific problem being addressed. In some cases, more complex kernels may be
needed to capture the underlying relationships, while in other cases, simpler kernels may
be sufficient. This is also why the prior distribution for the hyperparameters actually can
play a part in how the posterior predictive function turns out. The kernel functions used
for this project assume that the target variable can be modelled as a Gaussian distribution,
which is not true according to the data distributions presented in Figure 4.2.2, we will
go into more detail about this in Section 6.3. By choosing a prior distribution based on
what we priorly know about the input data and with the help from experts like geologists
we can ensure that the chosen kernel and hyperparameters are more appropriate for the
specific problem we want to model.
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6.3 Model Performance

The models in this study were trained using a batch training approach, where the datasets
were partitioned into batches and trained in 500 iterations. As shown in Figure 5.1.1 and
Figure 5.2.1, the loss functions demonstrate that the models were able to learn relatively
quickly from the data. Specifically, the models using the RBF kernel and the combined
kernel with linear and RBF kernels reached a steady-state loss value after approximately
250 iterations, while the models using the Matérn 3/2 kernel converged much earlier at
around 150 iterations. These observations were consistent for both datasets. Moreover,
the Negative Log Marginal Likelihood (NLML) values for the models using the Matérn
3/2 kernel were significantly lower compared to the other models, suggesting that the
Matérn 3/2 kernel was more efficient in capturing the underlying pattern of the data.

The models in this study had a relatively fast training time, despite being trained locally
on a standard laptop. For instance, the models trained on the Oslo East dataset with
around 2000 data points had an average training time of 4 seconds, while the average train-
ing time for the Bærum E18 dataset with approximately 8000 data points was around 35
seconds. However, when predicting the posterior mean values over a high-resolution field,
a challenge was discovered. The interpolation results shown in Figure 5.1.3 and Figure
5.2.3 were obtained using a grid of size 100 times 100, which equals 10,000 data points.
This resolution may not be considered high, particularly when dealing with complex or
detailed data. However, when attempting to predict over a grid with a larger resolution,
such as 100 000 data points, the model failed due to insufficient RAM. The reason for
this failure is that when estimating over a high-resolution field using a GP model, the
size of the covariance matrix increases rapidly. For an n× n matrix, the computational
complexity of computing the inverse is O(n3), which becomes prohibitively expensive for
large values of n, where n is the number of data points. This is known as the "curse of
dimensionality" problem [7].

Table 5.1.2 and Table 5.2.2 present the metric results obtained after running the poste-
rior prediction function over the test subsets for each model in the two datasets. The
results for the Oslo East dataset, shown in Table 5.1.2, indicate that the Matérn 3/2
kernel had the best performance for both isotropic and anisotropic models. The R2 scores
for the Matérn 3/2 kernel were 0.755 and 0.829 for the isotropic and anisotropic models
respectively. The results for the remaining two kernels were nearly identical to each other,
suggesting that combining the RBF kernel with the linear kernel did not yield significant
improvements compared to using the RBF kernel alone. By doing some further research
it was found that the linear kernel is never more accurate than a tuned RBF kernel, hence
it is not necessary to combine these two together as the RBF kernel will outperform the
linear kernel as shown in the results of this study [40].
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Table 5.2.2 presents the metric results for the Bærum E18 dataset. Once again, the
Matérn 3/2 kernel performed the best among all the models, with R2 of 0.943 for the
isotropic model and 0.954 for the anisotropic model. Moreover, the Continuous Rank
Probability Score (CRPS) for these models was also quite low, indicating a good match
between the predictive functions and the observed outcomes. However, it’s important
to note that the dataset has a higher point density than the Oslo East dataset, and the
points are more clustered and very closely located. This can result in high goodness of fit
values that may be a sign of overfitting, where the model is fitting the noise in the data
rather than the underlying pattern.

The metrics results for the RBF kernel and the combined kernel models (Table 5.2.2)
were almost identical to each other, similar to the results for the Oslo East dataset. As
previously mentioned, the Bærum E18 dataset has a higher degree of anisotropy com-
pared to the Oslo East dataset, so it was expected that the anisotropic models would
perform better. However, the metrics results for the anisotropic models using RBF and
the combined kernel were below 0.471, while the isotropic models performed much better
with an R2 of around 0.800. This suggests that the anisotropic models did not perform as
well as expected on the Bærum E18 dataset despite the higher degree of anisotropy and
that the isotropic models generally are more stable than the anisotropic models. Such
low R2 values for the anisotropic models indicate that they are performing worse than
predicting the mean value. This makes them unreliable and unfit for modelling the DTB
values, as the uncertainty related to the predictions is too high.

To visualize the metrics results, scatter plots that show the mean prediction values and
the actual values were created. These are shown in Figure 5.1.2 and Figure 5.2.2. The
subfigures in Figure 5.1.2 for the Oslo East dataset show that there are very few outliers
and that most of the predictions are consistent with the observed output values. How-
ever, in subfigure 5.2.2b and subfigure 5.2.2f in Figure 5.2.2 for the Bærum E18 dataset,
there is a very significant outlier that has a large negative value. This means that there
are negative values present in the Bærum E18 dataset which was used in the training
processes. This error was not discovered until later in the study, thus might be a large
reason for one of the biggest challenges in this study where the models predict negative
values. However, when checking the Oslo East dataset for negative values in the target
values used for model training, we find none.

The best-performing model for both datasets is the anisotropic model using the Matérn
3/2 kernel. Figure 5.1.3 and Figure 5.2.3 show the interpolation results and the uncer-
tainty associated with the predictions for this model for the Oslo East dataset and the
Bærum E18 dataset. These figures demonstrate a common trait in all models where the
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predictions become more uncertain the farther away they are from the observed data
points. At these locations, the model typically predicts the mean value of the expected
outcome, which is a typical behaviour of a GPR. This is because the locations closer to
the observed data points are expected to have similar properties and outcomes to the
observed data points.

Another trait is that all six models predict negative values, even though all observations
are above 0. The isotropic and anisotropic models using the Matérn 3/2 kernel predict
much lower negative DTB values compared to the remaining four models. This is a chal-
lenge that needs to be addressed. As mentioned above, there was a negative value present
in the Bærum E18 dataset, but none in the Oslo East dataset, which indicates that the
reason for the models predicting negative values can be influenced by something else.

In Chapter 4, we mentioned that we assume all prior hyperparameters are based on Gaus-
sian distribution and that the hyperparameters were constrained to be positive. However,
the distribution of the input data as illustrated in Figure 4.2.2 shows that the target
variable has a right-skewed distribution. In such cases, the target values can be trans-
formed to remove the skewness in the data and approximate a Gaussian distribution, for
example, by using a log-transformation. However, these types of transformations should
be applied cautiously as the results of statistical methods conducted on data that has
been log-transformed are often not applicable to the initial, untransformed data [20]. It
is also possible to rather set the prior hyperparameter values so it fits the distribution of
the input data better, but this needs to be tested.

6.4 Comparison to Related Works

Shen and Gelfand [79] conducted a similar study that also explored the use of anisotropic
kernel functions within the Bayesian framework. They used the Matérn kernel and an
exponential kernel where one of the metrics used to validate the model performances was
CRPS. Comparing our study’s best-performing model, the anisotropic model with Matérn
3/2 kernel, to Shen and Gelfand [79]’s models trained on real data from PM2.5 monitoring
stations, we observed that our model yielded lower CRPS values. However, it is essential
to consider various factors when comparing the results of the two studies, including the
differences in the datasets, the experimental setup, and the choice of hyperparameters.
Additionally, it is important to consider the specific goals and objectives of each study.
While both studies focus on using Bayesian methods with anisotropic kernel functions,
they have different purposes. Shen and Gelfand [79] aimed to predict PM2.5 concentra-
tion, while our study’s primary objective was to predict DTB.
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In Chapter 1, we mentioned a couple of other studies based on standard machine learning
models [78, 94]. These studies mainly utilized tree-based ensemble models to estimate
the DTB for a larger field than what we interpolated in our study. In contrast, we used
a regression-based approach, which makes it difficult to directly compare our results to
those of Shangguan et al. [78] and Yan et al. [94]. Although our best-performing models
have higher R2 scores, it is important to consider many factors when comparing results
from different studies. The differences in application scenarios, datasets, and experimental
setups can all impact the model performances, making direct comparisons between studies
challenging.

6.5 Remaining Challenges and Future Work

The work presented in this study focuses on the choice of kernels in Gaussian Processes
(GPs) and the impact these kernels have on the model performance. The study explores
several kernel choices, including the Radial Basis Function (RBF), Matérn 3/2, and a
kernel combination of linear and RBF components. The anisotropy of the data is also
taken into account by incorporating modifications that allow for anisotropy. The results
of the hyperparameter optimizations show that models with anisotropic kernels are ca-
pable of identifying the major axis of the input data, and the length scale parameters
provide insight into the spatial correlation of the data points. However, the degree of
anisotropy detected by the hyperparameter optimizations may not reflect the actual de-
gree of anisotropy in the data. Additionally, the models using anisotropic kernel functions
were less stable when compared to the isotropic models.

One of the remaining challenges in the models of this study is the optimization of hy-
perparameters, which can be a computationally demanding task. To tackle this issue,
Markov Chain Monte Carlo (MCMC) and sampling methods can be utilized to optimize
hyperparameters and reduce computational costs [68]. Another challenge is selecting ap-
propriate kernels and hyperparameters for specific problems. For instance, in this study,
we attempted to use a combined kernel, but the combination of the RBF kernel and the
linear kernel did not yield the desired results. Nonetheless, there are several other kernels
that can be combined and tested to uncover patterns and structures in spatial data that
cannot be detected by a single kernel.

The selection of kernels and hyperparameters can be highly dependent on the problem at
hand. The choice of the prior distribution for the hyperparameters influences the poste-
rior predictive function. Expert knowledge and selecting a prior distribution that fits the
data being modelled can help overcome this challenge.
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As mentioned in Section 2.5, another essential component of GPs beside the kernel func-
tion is the mean function. In this study, the mean function was set to 0 as GPs are able
to model the mean from an arbitrary value [68]. However, a mean function that is able
to detect the mean value of the observations locally based on the location in the input
domain could possibly reduce the uncertainties related to the predictions in areas farther
away from observations.

Another recommendation for future work is to explore the underlying causes for the neg-
ative predictions generated by the models. One possible reason could be the mismatch
between the distribution of the prior function and the data distribution. To address this,
one could explore options such as log transforming the target values or adjusting the prior
values of the hyperparameters to better align with the data distribution.

The data used in this study only included longitude (x), latitude (y), and the DTB
values, without taking surface topography into consideration. Chapter 2 mentions the
easy accessibility of remote sensing data nowadays, which can provide more accurate and
comprehensive data about surface topography. The models used in this study directly
incorporated DTB values, which may not be the most realistic representation of the ter-
rain height in areas with significant construction work or other man-made changes to the
ground surface.

One potential solution to address this issue is to subtract the terrain height obtained from
a DTM from the DTB values to obtain the bedrock topography. This approach may lead
to a more realistic interpolation of the DTB by taking the actual terrain into considera-
tion. Alternatively, the anisotropic implementation can be scaled to a 3D problem, where
the terrain height can be included as an additional input feature, along with the x and
y coordinates. Incorporating quaternary geological maps into the model can also provide
valuable geological information to improve the quality of the DTB estimates.

To conclude, further research should investigate combining different kernel functions, ex-
plore the use of mean functions, identify the underlying causes of negative predictions,
and incorporate remote sensing data and geological maps into the framework.
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Chapter 7
Conclusion

The main objective of this thesis was to develop a machine learning framework for esti-
mating Depth to Bedrock (DTB) in areas of interest using Gaussian Processes (GPs). To
achieve this goal, several kernel functions, including Radial Basis Function (RBF), Matérn
3/2, and combined kernels with linear and RBF functions, were evaluated in conjunction
with GPs. Additionally, the impact of implementing anisotropy in the kernels was eval-
uated. While the implementation of anisotropy resulted in a slight improvement in the
best-performing model, it was observed that the anisotropic models were more unstable
compared to the isotropic models in the remaining experiments. Matérn 3/2 kernel with
anisotropic implementation performed the best, achieving the lowest CRPS and highest
R2 score in estimating DTB.

Future research can focus on optimizing hyperparameters, selecting appropriate kernels,
exploring the use of mean functions, and incorporating additional geological and remotely
sensed data to improve DTB estimation and to create a more robust framework. Further
investigation should also address the issue of models estimating large negative values and
the effects of non-Gaussian variables.

In conclusion, this thesis presents a flexible framework for estimating DTB using GPs,
which not only demonstrates the importance of selecting an appropriate kernel function
and optimizing its hyperparameters but also provides a basis for future research in this
area.
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Appendix A
Source Code and Software

Table A.0.1: Source Code Links for GitHub.

File Name GitHub Link Commit Hash

gaussian_process_regression.py The main program file 84fec8a
geometric_anisotropy.py Input transformed kernel for anisotropy 209c584
kernel_setup.py Function for kernel selection 209c584

GitHub Repository: https://github.com/marisha-g/M-DV-V2023

Table A.0.2: Software and Python modules used in this study.

Module/Software Purpose of use Version Reference

Python High level programming language 3.10.10 [89]
TensorFlow System for large-scale machine learning 2.10.0 [52]
TensorFlow Probability Probabilistic reasoning and statistical analysis 0.14.0 [16]
Plotly Library for graphing and data presentation 5.9.0 [35]
NumPy Scientific computing with Python 1.23.5 [28]
Pandas Data manipulation and analysis 1.5.3 [55]
Scikit-learn Machine learning library 1.2.1 [63]
SciPy Scientific- and technical computing 1.9.3 [90]
tqdm Progress bar 4.65.0 [13]
ArcGIS Pro GIS software 3.0.2 [34]
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Appendix B
Interpolation Results for Oslo East Dataset

Figure. B.0.1: Interpolation and uncertainty maps for the isotropic model with Matérn
3/2 kernel trained on the Oslo East dataset.
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APPENDIX B. INTERPOLATION RESULTS FOR OSLO EAST DATASET

Figure. B.0.2: Interpolation and uncertainty maps for the anisotropic model with
Matérn 3/2 kernel trained on the Oslo East dataset.
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APPENDIX B. INTERPOLATION RESULTS FOR OSLO EAST DATASET

Figure. B.0.3: Interpolation and uncertainty maps for the isotropic model with RBF
kernel trained on the Oslo East dataset.
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APPENDIX B. INTERPOLATION RESULTS FOR OSLO EAST DATASET

Figure. B.0.4: Interpolation and uncertainty maps for the anisotropic model with RBF
kernel trained on the Oslo East dataset.
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APPENDIX B. INTERPOLATION RESULTS FOR OSLO EAST DATASET

Figure. B.0.5: Interpolation and uncertainty maps for the isotropic model with linear
and RBF kernels trained on the Oslo East dataset.

Page 85 of 93



APPENDIX B. INTERPOLATION RESULTS FOR OSLO EAST DATASET

Figure. B.0.6: Interpolation and uncertainty maps for the anisotropic model with linear
and RBF kernels trained on the Oslo East dataset.
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Appendix C
Interpolation Results for Bærum E18 Dataset

Figure. C.0.1: Interpolation and uncertainty maps for the isotropic model with Matérn
3/2 kernel trained on the Bærum E18 dataset.
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APPENDIX C. INTERPOLATION RESULTS FOR BÆRUM E18 DATASET

Figure. C.0.2: Interpolation and uncertainty maps for the anisotropic model with
Matérn 3/2 kernel trained on the Bærum E18 dataset.
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APPENDIX C. INTERPOLATION RESULTS FOR BÆRUM E18 DATASET

Figure. C.0.3: Interpolation and uncertainty maps for the isotropic model with RBF
kernel trained on the Bærum E18 dataset.
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APPENDIX C. INTERPOLATION RESULTS FOR BÆRUM E18 DATASET

Figure. C.0.4: Interpolation and uncertainty maps for the anisotropic model with RBF
kernel trained on the Bærum E18 dataset.
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APPENDIX C. INTERPOLATION RESULTS FOR BÆRUM E18 DATASET

Figure. C.0.5: Interpolation and uncertainty maps for the isotropic model with linear
and RBF kernels trained on the Bærum E18 dataset.
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APPENDIX C. INTERPOLATION RESULTS FOR BÆRUM E18 DATASET

Figure. C.0.6: Interpolation and uncertainty maps for the anisotropic model with linear
and RBF kernels trained on the Bærum E18 dataset.
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