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Abstract

Accurate measurements of soil moisture are necessary for predicting weather patterns, mitigating floods and

droughts, estimating precipitation and evapotranspiration, and calculating energy fluxes between the biosphere

and the atmosphere. However, soil moisture variability is influenced by environmental conditions such as

precipitation, soil properties, topography, temperature and vegetation cover. As part of the Hydrometeorology

to Operations (H2O) project by the Norwegian Meteorological Institute, this study aims to investigate the

temporal and spatial variability of soil moisture at Søråsfeltet in Ås, and to compare the effectiveness of satellite

measurements to ground-based sensors.

Both ground-based and remote sensing methods were used to measure soil moisture, including the GroPoint

Profile (SMIoT), SoilVUE10, COsmic-ray Soil Moisture Observing System (COSMOS), ThetaProbe ML2

(ADR), in addition to manual samples using the volumetric method, as well as data from the Sentinel-1 satellite.

The data was collected from January to December 2022 at three locations in Ås with Søråsjordet as the main

focus area.

The results showed significant temporal and vertical spatial variability of soil moisture. While ground-

based sensors responded well to precipitation and provided reasonable soil moisture ranges, measurements

from the Sentinel-1 satellite did not capture the same variability and its usage is not recommended. The

ground truth data lies between the measurements of COSMOS and SoilVUE sensors, suggesting they provide

a more accurate representation of surface soil moisture than the SMIoT sensors. However, the SoilVUE sensor

experienced a malfunction or data transfer issue, resulting in incorrect data for soil moisture at depths of 10

and 50 cm.

The shallow soil moisture layers of the SMIoT and SoilVUE sensors exhibited more significant fluctuations

than the deeper layers, consistent with the faster response of shallow soil layers to meteorological events. The

overall trend suggests lower vertical and horizontal spatial variability when the soil is close to or at its saturation

point.

The SoilVUE sensor consistently reported lower values than other in-situ sensors, but it showed an over-

estimation during heavy precipitation. A likely reason is poor contact with the soil due to the hysteresis effect

of the soil’s expansion/contraction characteristics, which resulted in air gaps after several wetting and drying

cycles. This led to preferential flow during precipitation and poor soil contact during dry periods.

This study made several specific contributions to the understanding of soil moisture measurement in Ås:

first, it compared various soil moisture sensors; second, it identified malfunctions in the SoilVUE sensor at

Søråsfeltet; third, it contributed to the verification process for relocating a SMIoT sensor by discovering a

drainage pipe that was affecting measurements in its original location; and fourth, it determined that satellite

measurements are not appropriate for this region.
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Sammendrag

Nøyaktige målinger av jordfuktighet er nødvendige for å predikere vær, forutsi flom- og tørkeperioder, es-

timere nedbør og evapotranspirasjon, og beregne energistrømmen mellom biosfæren og atmosfæren. Imi-

dlertid påvirkes variasjonen i jordfuktighet av eksterne faktorer som temperatur, nedbør, vegetasjon, jordens

egenskaper og topografi. Som en del av prosjektet ”Hydrometeorology to Operations (H2O)” ledet av Meteo-

rologisk Institutt, er målet med denne oppgaven å undersøke hvordan jordfuktighet varierer over tid og rom på

Søråsfeltet i Ås, og å sammenligne nøyaktigheten av satellittmålinger med bakkebaserte sensorer.

For å måle jordfuktighet ble både bakkebaserte og fjernmålingsmetoder brukt, og måleinstrumentene som

ble brukt var GroPoint Profile (SMIoT), SoilVUE10, COSmic-ray Soil Moisture Observing System (COS-

MOS), ThetaProbe ML2 (ADR), i tillegg til manuelle jordfuktighetsprøver og satellittdata fra Sentinel-1.

Dataene ble samlet inn fra januar til desember 2022 på tre steder i Ås, med Søråsjordet som hovedområde.

Resultatene viste betydelig tidsmessig og vertikal romlig variasjon av jordfuktighet. Mens bakkebaserte

sensorer responderte godt på nedbør og ga rimelige jordfuktighetsverdier, klarte ikke målingene fra Sentinel-

1-satellitten å fange opp samme variasjon og bruken av satellittmålinger anbefales dermed ikke. De faktiske

jordfuktighetsdataene ligger mellom målingene fra COSMOS- og SoilVUE-sensorene, noe som antyder at

de gir en mer nøyaktig representasjon av overflatejordfuktighet enn SMIoT-sensorene. Imidlertid opplevde

SoilVUE-sensoren en systematisk målefeil eller problem med dataoverføring, noe som resulterte i feil data for

jordfuktighet på 10 og 50 cm dybde.

De grunneste jordfuktighetslagene viste større variasjon i jordfuktighet enn de dypere lagene, noe

som samsvarer med den generelt raskere responsen av grunne jordlag på meteorologiske hendelser. Den

overordnede trenden antydet lavere vertikal og horisontal romlig variasjon av jordfuktighet når jorda var nær

eller på metningspunktet.

SoilVUE-sensoren rapporterte konsekvent lavere verdier enn andre in-situ-sensorer, men viste en overes-

timering under kraftig nedbør. En mulig årsak er jordas hystereseeffekt, der gjentakende sykluser med utvidelse

og sammentrekning resulterte i dannelse av luftlommer. Dette førte til preferensiell strømning under kraftig

nedbør og dårlig kontakt med jorda under tørre perioder.

Denne masteroppgaven har på flere måter bidratt til økt forståelse av måling av jordfuktighet i Ås: for

det første sammenlignet den ulike jordfuktsensorer; for det andre identifiserte den feil på SoilVUE-sensoren

på Søråsfeltet; for det tredje bidro den til verifiseringsprosessen for omplassering av en SMIoT-sensor ved å

oppdage en dreneringsrør som påvirket målingene i den opprinnelige posisjonen; og for det fjerde fastslo den

at satellittmålinger ikke er passende for denne regionen.
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NVE-site (Kjerringjordet) and Søråsjordet in the period 01.01.22 to 31.12.22. The vertical

grey lines represent days with more than 4 mm precipitation. . . . . . . . . . . . . . . . . 37
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1. INTRODUCTION

Soil moisture is defined as the total amount of liquid water in the unsaturated zone of the soil, which lies

between the water table and the soil surface (American Meteorogical Society, 2023). Accurate measure-

ments of soil moisture are essential for parameterizing numerical weather models. These models are used

to forecast weather patterns, anticipate and mitigate the risk of floods and droughts, estimate cloud cover

and precipitation, calculate evapotranspiration, and to calculate the energy fluxes in the land between the

biosphere and the atmosphere (Cheng and Cotton, 2004, Crow and Wood, 2002, Guderle and Hildebrandt,

2015, Hubbard and Wu, 2005, Torres et al., 2013, Zhang et al., 2020a). However, the temporal and spatial

variability of soil moisture is influenced by a variety of environmental conditions, such as temperature,

precipitation, vegetation cover, soil properties and topography (Morgan et al., 2003, Robinson et al., 2008,

Zhang et al., 2020b, Zhao et al., 2018). Despite existing research in the field, there is still a knowledge

gap regarding how changes in environmental conditions impact soil moisture dynamics, emphasizing the

significance of gaining a better understanding of this topic (Brye et al., 2000).

Measuring soil moisture has been a topic of interest for centuries, with early methods including man-

ually digging up soil samples and weighing them before and after drying (Hillel, 1982). As technology

advanced, more sophisticated methods were developed, such as the use of tensiometers and time domain

reflectometry (TDR) in the mid-20th century (Kutilek and Nielsen, 2015). While these techniques allow

for a continuous time series of soil moisture at greater depths and with greater accuracy, they rely on proxy

measurements of soil moisture, such as dielectric conductivity or transmissivity (Moldoveanu and David,

2013). A drawback is that it can be influenced by external factors such as soil salinity, fluctuations in

temperature, and poor probe/soil contact. Therefore, manual digging still remains the standard method

and reference for all other techniques (Hillel, 1982). In recent years, remote sensing techniques such as

satellite-based measurements have become increasingly popular, as they allow for the mapping of soil

moisture over large areas. Additionally, advancements in sensor technology have led to the development

of low-cost and portable soil moisture sensors that can be used for in situ measurements. Previous research

found the need for comparing remote-sensing measurements of soil moisture to ground-based measure-

ments to assess their accuracy and to determine whether these measurements are sufficiently accurate to

represent variability of soil moisture of an area (Min et al., 2023).

The Hydrometeorology to Operations (H2O) project aims to improve the accuracy and reliability of
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numerical weather predictions by improving the representation of processes on the ground, with a partic-

ular focus on the link between water and the related fluxes of the biosphere (Kroken et al., 2009). This

is being accomplished by utilizing advanced models of hydrological processes, such as how precipitation

hitting the ground is distributed to streams, rivers and groundwater. Additionally, the project aims to im-

prove the observational systems used to validate the prediction of short-term heavy precipitation events

during summer by including soil moisture into the parameterization of land surface models. As a part of

the H2O project, this thesis aims to deepen the understanding of tempospatial variability in soil moisture.

The motivation for this research is driven by the ongoing need to understand soil moisture and its vari-

ability in order to improve forecasting of weather, droughts, and floods (Hubbard and Wu, 2005, Torres

et al., 2013, Zhang et al., 2020a). Understanding the temporal and spatial variability of soil moisture is

important for managing and conserving natural resources, as well as predicting and mitigating the impacts

of climate change on ecosystems (Hoegh-Guldberg et al., 2018). Additionally, research on soil moisture

can also have practical applications such as improving irrigation management and crop planning for agri-

culture, and predicting the risk of wildfires (Marek et al., 2021, Torres et al., 2013). Understanding soil

moisture dynamics can also contribute to better decision making for water resources management, disaster

risk reduction and sustainable development (Robinson et al., 1985).

The focus of this thesis is to investigate the temporal and spatial variability of soil moisture in Ås,

Norway, and to compare the effectiveness of satellite measurements with ground-based sensor. The study

will employ time series analysis and perform statistical tests to analyze soil moisture measurements from

different ground-based sensors. Furthermore, comparisons between satellite data and ground-based mea-

surements will also be performed. Additionally, the study will investigate the effect of precipitation on soil

moisture. The data will be collected from The Norwegian Water Resources and Energy Directorate (NVE),

The Norwegian University of Life Sciences (NMBU) and the Norwegian Meteorological Institute, and the

sensors that were used for this were GroPoint Profile (SMIoT), SoilVUE10 (SoilVUE), COsmic-ray Soil

Moisture Observing System (COSMOS), ThetaProbe ML2 (ADR) in addition to manual soil moisture

measurements and data from the Sentinel-1 satellite.

This master thesis will investigate the following questions:

Research question 1: How does soil moisture vary over time and space at Søråsfeltet in Ås?

Research question 2: How do satellite measurements compare to well-probed ground-based measure-

ments to accurately estimate soil moisture levels?
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2. THEORY

Soil moisture is an important component of the earth’s water and energy cycle, and its knowledge is

vital in various fields of study, including agriculture, forestry, hydrology, climate science, and natural

resource management. It is important to understand the temporal and spatial variability of soil moisture as

it influences plant growth and crop yield, floods and droughts, and water resource management.

In this chapter, an introduction to the hydrological cycle along with its significant processes is provided

in subsection 2.1. Following this, subsection 2.2 is dedicated to the topic of soil, including its composition

and formation. Subsequently, in subsection 2.3 the focus shifts towards subsurface water, with particular

emphasis on ground water and soil moisture. The theory presented is primarily based on the works of Oke

(1987), Hendriks (2010), Keller (2018), Hillel (1982) and Wallace and Hobbs (2006), unless otherwise

noted.

2.1. Hydrological cycle

The hydrological cycle, also known as the water cycle, describes the continuous movement of water on,

above, and below the Earth’s surface. At any given moment, only a tiny fraction of the total water in

the water cycle is found near the Earth’s land surface. This includes water in the atmosphere, rivers, and

subsurface environments, which amounts to just 0.3 % of the total water on Earth. The majority, 97 %,

is in the oceans. The hydrological cycle is driven by solar energy and describes the process by which the

sun heats water on the surface of the Earth, causing it to evaporate into water vapor which is carried in

the atmosphere through circulation. This water vapor eventually condenses and falls back to the surface

as precipitation, completing the cycle.

The water cycle is composed of several processes including evapotranspiration E, precipitation P ,

infiltration F , and runoff R, and together they constitute the water balance (Equation 1).

P = E + F +R +∆S (1)

The definition of ∆S varies depending on the source. Hendriks (2010) defines it as the average change

in storage, whereas Oke (1987) defines it as the net change in soil moisture content. Storage includes the

water stored in rivers, lakes, soil water and groundwater. The American Meteorological Society (2023)

defines soil moisture as the total amount of water in an unsaturated soil. Thus, soil moisture, also known
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Fig. 1: Illustration of the water cycle, showing the various processes through which water moves within

the land-atmosphere system. Image by Freepik.com

as soil water, represents the water in land surfaces that is not surface water or groundwater, but instead

resides in the pores of the soil.

Evaporation of water is the change of water from liquid state into vapor. Water may evaporate from

any wet surface, such as the ocean, lakes, or the soil, which purifies the water leaving salts behind on the

surface (Figure 1). When water evaporates from the stomata, numerous openings or pores in the epidermis

of plants, it is called transpiration (sto, 2022). Due to the fact that both evaporation and transpiration

involve the movement of water into the atmosphere, they are often discussed jointly and referred to as

evapotranspiration. Hydrologists sometimes describe evapotranspiration as a loss of water, even though

it ultimately circles back to the surface. Precipitation is the process through which liquid and solid water

fall from the atmosphere on the earth’s surface. This includes both rain, snow and hail which replenishes

water resources on earth. Infiltration is the process of water seeping through pores and cracks in the soil,
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sediments or rocks. Water movement through the unsaturated zone, where there is both water and air in

the pores, is referred to as percolation. This process helps to refill groundwater. Understanding the balance

between the aforementioned processes is important in managing and conserving water resources for both

human and ecosystem use, as it determines the amount of water available.

Changes in land use, such as deforestation or urbanization, can alter the water balance through changes

in evapotranspiration. Climate change, such as human-induced global warming, can also affect the water

balance. For example, rising temperatures in mountainous areas can cause the snowline and the 0 °C

isotherm to shift, leading to less snow storage in winter and decreased meltwater discharge in spring and

summer. This, in turn, could have economic consequences, such as hindering cargo transport along rivers

like the Rhine, as predicted by Kwadijk (1991). The impact of human-induced global climate change

on the River Rhine discharge was the main subject of Kwadijk’s study, which examined various climate

scenarios for the years 1990 to 2100. The climate scenarios were based on scenarios of greenhouse gas

emissions, and the conclusion was that even for scenarios anticipating decreases in annual precipitation,

winter discharges should increase and summer discharges should decrease.

2.2. Soil

As water interacts with the subsurface, it also interacts with soil, which may be defined in different ways

depending which perspective it is viewed from. From a soil scientist’s point of view, soil is the result

of physical, chemical, and organic processes that have transformed solid earth material, usually bedrock,

into a medium that can support rooted plant life. From an engineering perspective, soil is any solid earth

material that can be excavated without blasting (Keller, 2018). Hillel (1982) simply defines soil as the

weathered and fragmented outer layer of the earth’s terrestrial surface.

Soil formation involves both physical and chemical processes. Physical weathering occurs when rocks

break down into smaller fragments due to temperature changes and mechanical stresses caused by water

freezing and thawing. Roots also contribute to breaking down rocks, and particles transported by wa-

ter, ice, and wind can erode rock surfaces. Chemical weathering processes break down parent materials

through processes like hydration, oxidation, reduction, solution, dissociation, precipitation, and removal

of components via volatilization or leaching. These processes create weathering products that can be

transported by water, glaciers, or wind and deposited in different locations.

Soil is typically composed of mineral and organic matter, air and water. Figure 2 provides a visual
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Fig. 2: The building blocks of healthy soil: a breakdown of the key components of soil composition.

Adapted from Hillel (1982).

representation of the volume composition of a soil at an optimal condition for plant growth. Soil can be

viewed as a three-phase system consisting of solid, liquid, and gaseous phases, with mineral and organic

matter constituting the solid phase, water the liquid phase, and air the gaseous phase. The quantitative

relationships between these phases’ volumes and masses are of great interest in soil science. Table 1

presents the volume and mass of each phase, which defines the terms commonly used to describe the

quantitative relationships between the main components of soil.

Table 1: Volume and Mass Relationships in Soil as a Three-Phase System: Solid, Liquid, and Gaseous

Phases

Volume Mass

Air Va Ma ≈ 0

Water Vw Mw

Solids Vs Ms

The density of arable, mineral soils, ρs, is defined in Equation 2. According to Hillel (1982), typi-

cally values for the mean density are around 2.6-2.7 g/cm3, while for clay it is approximately 2.9 g/cm3

(Schjønning et al., 2017).
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ρs = Ms/Vs (2)

The dry bulk density, ρb, represents the mass of dried soil to its total volume, which includes the

volume of solids, air, and water (Equation 3). Therefore, ρb is always smaller than ρs. If pores constitute

half of the soil volume, then ρb is half the value of ρs, assuming the mass of air is negligible (MA = 0).

The typical value of ρb ranges from 1.3-1.35 g/cm3, but can be as high as 1.6 g/cm3 in sandy soils or as

low as 1.1 g/cm3 in clay soils.

ρb = Ms/Vt = Ms/(Vs + Va + Vw) (3)

The porosity f shown in Equation 4, is an indicator of the relative pore volume in the soil, and consists

of the volume of fluids, Vf , namely water and air, over the total volume, Vt, and typical values are between

30-60 %.

f = Vf/Vt = (Va + VW )/(Vs + Va + Vw) (4)

Coarse-textured soils usually have less porosity than fine-textured soils. Clayey soils may undergo

changes in volume due to various factors, such as moisture content, leading to swelling and shrinking.

They can also form aggregates or disperse, depending on their composition and external forces. Addition-

ally, these soils can experience compaction and cracking over time, which affects their porosity and overall

structure.

Permeability is a property that characterizes how easily water flows through a material. In general,

soils with large pores, such as clean gravels and sands, have high permeabilities, while soils with small

pores, such as clays, have low permeabilities. The presence of fine particles in a mixture of clean gravel

and sand can decrease permeability. The permeability of different soils can vary widely. For example, a

study by Rawls et al. (1982) found the permeability of sand and loamy sand ranging from 10−2 to 10−5

cm/s, while the permeability of clay loam ranging from 10−5 to 10−7 cm/s.
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2.3. Water in the ground

2.3.1. Ground water

Groundwater refers to water that is stored beneath the Earth’s surface that fully saturates the pores and

fractures within rock or soil. Nearly all groundwater is of atmospheric origin, which means that it stems

from precipitation, followed by infiltration and percolation. Only a very little portion of the water, which is

caught during sedimentation, is connate. There is groundwater beneath the surface of land across the entire

planet, including the Sahara Desert, where there is estimated to be around 150 000 km3 of water (Hendriks,

2010). Groundwater is a valuable resource that can be used for agriculture, industry, and drinking water.

It has the ability to purify itself as it travels through the soil, making it a natural filtration system. A water

table that can establish itself freely is by definition the level at which the water pressure is the standard

atmospheric pressure of 101.325 kPa, and separates the saturated zone from the unsaturated zone.

2.3.2. Soil moisture

Soil moisture is defined as the total amount of liquid water in the unsaturated zone of the soil, which

lies between the water table and the soil surface (American Meteorological Society, 2023). It constitutes

a small fraction, only 0.15 %, of the liquid freshwater on Earth. Unsaturated soil refers to conditions

where there is still air present in the pores. Soil water content, or soil moisture content, is an important

determinant of the soil’s properties, including its strength and its tendency to shrink or swell. When

attempting to build a sand castle, it becomes clear that dry sand is structurally inadequate for construction,

while moist sand can be compacted and shaped into stable vertical walls. This observation highlights the

role that water plays in the engineering properties of soils.

The content of water in the soil can be expressed as a fraction of either volume or mass:

w = Mw/Ms, (5)

θ = Vw/Vt = Vw/(Vs + Va + Vw), (6)

where w, the gravimetric water content, is the dimensionless ratio of water mass Mw to dry soil mass,

Ms, and θ, the volumetric water content, is the ratio of water volume Vw to total soil volume Vt. The two

equations can be related to each other using the dry bulk density ρb and the density of water ρw:
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θ = w(ρb/ρw) (7)

2.3.3. Subsurface water system

Groundwater and soil moisture are connected and interact with each other forming the subsurface water

system. The movement of water in the subsurface is governed by physical properties of the soil, such as

permeability and by the topography of the landscape. Groundwater and soil moisture can be replenished

by precipitation and other surface water sources, and they can also discharge into surface water bodies.

The hydrological cycle is important for determining soil moisture levels. Precipitation can increase soil

moisture levels, while evapotranspiration can decrease soil moisture. Infiltration can also impact soil

moisture levels by affecting how quickly water moves through the soil, and which amount of water is

transported via surface runoff.

In practical terms, the lower limit of soil moisture in the field is not zero, but positive, due to the

limitation of plants in extracting water beyond a certain level known as the wilting point. This bound on

soil moisture has significant implications for its statistical properties in both space and time.

The movement of water in soil can occur horizontally or vertically through soil pores or fractures in

the soil structure. Saturated flow refers to water movement in completely filled pores, whereas unsaturated

flow is more common, occurring when only some of the pores are filled with water (Brady and Weil, 2002).

Additionally, soil water flow can be classified into two other types: matrix and preferential flow, with their

relative significance dependent on the soil type and rainfall intensity. Matrix flow refers to the uniform and

slow movement of water through soil, while preferential flow is non-uniform and occurs through preferred

pathways, such as cracks, wormholes, and root channels. These pathways, which make up a small portion

of the total pore volume, can quickly transport water and solutes into deeper layers of soil, even below

saturation levels. During heavy precipitation, water infiltrating the soil surface is often directed through

these pathways. Although matrix flow is important, preferential flow may be responsible for most of the

moisture and solute transport.

9



3. METHOD

In this chapter, a brief introduction to the research area and the soil moisture instrumentation is provided.

The different techniques and instruments are presented and their locations are disclosed. Then, the man-

ual measurements from the summer of 2022 are described, followed by a description of the processing

methods used for the data. Finally, the approach for analyzing the data is discussed.

3.1. Research area

Søråsfeltet in Ås, Norway, is the primary location for the soil moisture data used in this study. The

observations from The Norwegian University of Life Sciences (NMBU) at Søråsfeltet are among one of

the longest and most comprehensive in Norway, with measurements since 1863 (Kroken et al., 2009). The

field laboratory, BIOKLIM, is partially automated and provides meteorological and microclimatic data to

the research communities in Ås. With its extensive measuring equipment, BIOKLIM enables continuous

measurements of air temperature, precipitation, ground heat fluxes, radiation, and soil temperature profiles.

The field station is located approximately 800 meters southeast of the Faculty of Science and Technology

at NMBU. The are coordinates N 59° 39’ 37”, E 10° 46’ 54”, with an elevation of 93.3 meters above

sea level. The field station, pictured in Figure 3, slopes 1 % towards the southwest and has 5 000 m2

dedicated to field trials. It is surrounded by forests and residential areas, with a minimum distance of 200

meters from the fenced field station. As reported by Naalsund (2022), the soil in the vicinity of Søråsfeltet

consists of 48 % clay, 42 % silt, and 10 % sand with a bulk density of 1.03 g/cm3. The soil’s porosity was

calculated to be 61 %. According to Keller (2018), a soil with this composition will be classified as a silty

clay. Given the availability of data and previous work done in this area, Søråsfeltet is an ideal location

for this study, allowing for comparison of findings with previous studies and providing an opportunity for

more comprehensive analysis of the data.

The COSMOS sensor, operated by The Norwegian Water Resources and Energy Directorate (NVE),

is located in Kjerringjordet at N 59°39’51.9” E 10°45’42.8”, roughly 1.2 km west of Søråsfeltet, which

is also an agricultural site (Figure 4). The COSMOS sensor will be presented more thoroughly in section

3.3.3. Additionally, SMIoT sensor 3 was relocated to this location on 29.06.
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Fig. 3: A view of Søråsjordet, characterized by short grass and a flat terrain. Image from Laura

Ehrnsperger.

Fig. 4: The map displays an aerial photograph of the Søråsfeltet area along with the Kjerringjordet. The

Søråsfeltet area is located in the lower right corner of the map, while the Kjerringjordet is located in the

upper left corner approximately 1.2 km away from each other. Image from Google Maps.

3.2. Meteorological conditions

The average temperature in Ås in 2022, was 7.3 °C, which is 1.0 °C higher than the average temperature

for the normal period of 1991-2020. It was the third warmest year since weather observations began in Ås
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almost 150 years ago in 1874. The increase in temperature is consistent with global warming trends and

may have significant implications for ecosystems and agriculture in the region (Hoegh-Guldberg et al.,

2018). About 80 % of the normal amount of precipitation for Ås fell in 2022, making it a relatively dry

year. The daily and monthly values for precipitation are shown in Figure 5. The dataset used in the analysis

shows a yearly precipitation amount of 659 mm, which is 7.5 % lower than the reported value of 714 mm

by Bioklim (Wolff, 2023). This could cause discrepancies in the dataset.

The winter varied between cold and mild periods, with occasional snow (Wolff, 2023). The spring was

dry and mild, with very little rainfall in March and April, and slightly below-average precipitation in May.

The summer had no heat waves or temperature records, but was characterized by 59 Nordic summer days

(temperature above 20 °C) and eight high summer days (temperature above 25 °C). July was slightly colder

than normal, while June and August were slightly warmer. August was particularly dry, with only one-

third of the normal amount of precipitation. The autumn months were warmer than usual, with November

being the third warmest November on record since 1874.
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Fig. 5: a) Daily and b) monthly precipitation from January to December 2022. Based on data from

Bioklim.
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3.3. Soil moisture instrumentation

In this analysis, six different methods have been used to measure soil moisture, in addition to two datasets

for precipitation, all presented in Table 2. The measurement campaign of 2022, mentioned in section 3.4,

used the volumetric method, and the ThetaProbe ML2 sensor to measure soil moisture, which will be

discussed more in section 3.3.2. The ThetaProbe ML2 sensor will hereafter be called ADR, named after

the technology behind the sensor. The ScanMatic Internet of Things (SMIoT), SoilVUE 10 and COsmic-

ray Soil Moisture Observing System (COSMOS) sensors were all permanently installed at Ås to measure

soil moisture, and are all going to be elaborated on in their respective subsections in section 3.3.1. The

data on precipitation was collected from the field laboratory BIOKLIM accessed via Seklima.met.no. The

aforementioned methods and datasets are all ground-based. Additionally, satellite remote sensing data

from the Sentinel-1 mission was also used to analyze soil moisture.

Table 2: Summary of dataset information, including depth of measurement, temporal resolution, period

of time covered, accuracy and measured parameter.

Dataset Depth Resolution Measuring period Accuracy Parameter

SMIoT x3 5 & 25 cm 10 min 07.02 - 17.07 ±2 % SM and temperature

SoilVUE 5, 10, 20, 30, 40 10 min 01.01 - 30.12 ±1.5 % SM and temperature

50, 60, 75 & 100 cm

COSMOS 25 cm Hourly 01.05 - 30.11 ±2 % Soil moisture

ADR 5 cm Weekly 09.06 - 08.09 ±1 % Soil moisture

Sentinel-1 5 cm Weekly 01.01 - 31.12 - Soil moisture

Volumetric 5 cm Weekly 09.06 - 21.09 - Soil moisture

Bioklim - 10 min 01.01 - 31.12 - Precipitation

SeKlima - Daily 01.01 - 31.12 - Precipitation

There are various methods of measuring soil moisture, and they are divided into direct and indirect

measurements. An example of a direct measurement technique is the thermo-gravimetric method where

a soil sample, usually 100 g is oven dried for 24 hours at 100-105 °C (Lekshmi et al., 2014). The weight

of the sample is recorded before and after drying, and the soil moisture content can be calculated. From
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this point on, the method for measuring soil moisture content will be referred to as the volumetric method,

as volumetric soil moisture content is the most relevant. This technique is a destructive method, since the

soil sample cannot be used for repetitive measurements as the soil structure gets disturbed. This technique

ensures accurate measurements, as it does not depend on salinity or soil type, and is therefore regarded as

the standard reference for determining soil moisture content (Hillel, 1982).

3.3.1. Electromagnetic sensors

Electromagnetic sensors are frequently used to estimate soil moisture due to their capacity to indirectly

measure the electrical conductivity of the soil, which is closely related to the water content. Although

indirect measurements may not provide a precise value, the advantage of using such sensors is that they are

less invasive than the manual volumetric method. Additionally, continuous measurements can be obtained

compared to the manual method, and the same soil column can be measured multiple times. In their study

of soil electrical conductivity, Patel et al. (2018) confirmed the correlation between the dielectric constant

(κ) of soil components, such as air, water, and dissolved salts.

The dielectric constant of air is approximately 1, while the dielectric constant of liquid water at room

temperature is 81 as reported by Ling et al. (2016). The amount of water and air affects the total dielectric

value of soils, which typically ranges between 2 and 5 for most dry soils. When soil is dry, there is

less water present to conduct electricity, resulting in a lower electrical conductivity. Furthermore, when

the soil is wet, the presence of water allows electricity to flow more easily, leading to a higher electrical

conductivity. The dielectric constant is not only dependent on the amount of water present in the soil, but

also on temperature. As mentioned, water exhibits a dielectric constant of 81 at room temperature, but at

0 °C, the dielectric constant increases to 88, while at 100 °C, it falls to 55 (Moldoveanu and David, 2013).

As a result, it is important to calibrate electromagnetic sensors and account for temperature variations in

order to obtain accurate and reliable soil moisture measurements.

Empirical equations can be used to establish the correlation between the dielectric constant of soil and

soil moisture. For example, Topp et al. (1980) proposed an equation linking the dielectric constant of soil

κ with its moisture content θ. This equation takes the following form:

θ = −5.3 ∗ 10−2 + 2.92 ∗ 10−2κ− 5.5 ∗ 10−4κ2 + 4.3 ∗ 10−6κ3, (8)

In the plot depicted in Figure 6, a third-degree polynomial is displayed for κ-values ranging from 1 to
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Fig. 6: Plot of the empirical equation describing the relationship between soil moisture and dielectric

constant (κ) in the range of 1 to 81, as described in Equation 8. There is a strong positive correlation

between soil moisture and dielectric constant.

81, which is the typical range for soil. The plot also includes the extreme values of 1 and 81, representing

pure air and liquid water, respectively. At κ=1, there is no presence of water in the soil, while at κ=81

the soil moisture is at 100 %. The plot shows the correlation between soil moisture and changes in κ.

According to Muñoz-Carpena (2021), the relationship in Equation 8 works for most mineral soils and for

moisture below 50 %. For larger water content a specific calibration is required.

3.3.2. ThetaProbe ML2 (ADR)

The ThetaProbe ML2 from Delta-T Devices is a type of soil moisture sensor that uses amplitude domain

reflectometry (ADR) technology to measure the volumetric water content of soil (Delta-T Devices Ltd,

1998). The sensor works by sending a low-frequency electromagnetic wave through the soil and measur-

ing the amplitude of the reflected wave. The amplitude of the reflected wave is related to the dielectric

constant of the soil, which in turn is related to the water content of the soil as seen in Equation 8. The

ADR sensor is designed to be inserted vertically into the soil to a depth of up to 6 cm probing a soil vol-

ume of around 30 cm3 surrounding the central rod. The ADR sensor provides several advantages over the
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traditional volumetric method, including its simplicity, reduced labor requirements, and shorter processing

time. According to ICT-International (2021), ADR sensors permanently buried in landfills have demon-

strated long-term durability, remaining operational for at least 15 years suggesting a reliable and robust

technology.

The ThetaProbe ML2 sensor is connected to the HH2 Handheld Meter from Delta-T Devices. Together,

these devices form the ADR-sensor, named after the technology used. The ADR-sensor has a measuring

range of 5 to 50 % with full accuracy, and according to Van Bavel and Nichols (2010) the ADR-sensor

does not require calibration for most applications. Additionally, it is possible to calibrate the sensor for

general soil types, mineral or organic, or conduct a soil-specific calibration for a full range of 0 to 100 %

with an accuracy of ±1 % (The, Delta-T Devices Ltd, 1998). The ADR-sensor was used during the 2022

measurement campaign, which will be discussed further in Section 3.4.

3.3.3. COsmic-ray Soil Moisture Observing System (COSMOS)

The COSMOS sensor is a cosmic-ray sensor of type CRS-2000/B from Hydroinnova. The sensor works by

detecting the naturally occurring cosmic ray neutrons that interact with the hydrogen atoms in soil water

(Zreda et al., 2008). The sensor consists of two detectors that are placed several meters apart, and measures

the difference in cosmic ray flux between the two detectors. Cosmic rays are high-energy particles that

continuously bombard the Earth and produce secondary particles, including fast neutrons, when colliding

with atoms in the air. The fast neutrons lose energy by colliding with other particles until they reach

thermal equilibrium with the environment. The process of thermalization depends on the presence of

hydrogen, which is abundant in air and soil. The cosmic-ray soil moisture method uses a sensor to count

fast neutrons, which decreases with increasing hydrogen content due to their thermalization. To obtain soil

moisture values from counts, there exist three distinct methods which are described in detail in Centre for

Ecology & Hydrology (2021).

The COSMOS sensor is located at Kjerringjordet and is operated by The Norwegian Water Resources

and Energy Directorate (NVE) (Figure 7 and Figure 8). A key characteristic of the Cosmic-Ray Neutron

Sensing method is its large footprint, up to several square kilometers, and to a depth of up to 75 cm, but the

one located at Kjerringjordet measures soil moisture at 15 and 30 meters distance from the sensor and at

25 and 50 cm depth (Naalsund, 2022). The accuracy is reported to be around ± 2 % for soil water content

between 5 and 30 % according to Zreda et al. (2008).
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Fig. 7: The map displays the location of the COSMOS-sensor together with the new position of SMIoT

sensor 3 at Kjerringjordet. Image from Google Maps.

3.3.4. SoilVUE 10

The SoilVUE 10 sensor from Campbell Scientific is a soil water content profile sensor, see Figure 9. The

sensor utilizes time domain reflectometry (TDR) technology to determine soil moisture content (Campbell

Scientific Inc., 2022). It consists of TDR circuitry connected to a series of helical waveguides that make

up part of a threaded design. The waveguides are embedded in threads and centered on the measurement

depths of 5, 10, 20, 30, 40, 50, 60, 75, and 100 cm for the 1.0 m column version of the sensor. The goal of

the threaded design is to maximize soil contact to minimize air gaps and preferential flow.

The TDR method measures the dielectric constant, κ, by transmitting an electromagnetic pulse along

a transmission line placed in the soil and measuring the time it takes for the pulse to travel down and back

along the transmission line. The propagation velocity, v, of the wave depends on κ, which means that κ is

proportional to the square of the transit time, t, down and back along the transmission line. The formula

for κ is given by

κ =
( c
v

)2

=

(
c · t
2L

)2

, (9)

where c is the velocity of electromagnetic waves in a vacuum, and L is the length of the transmission
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Fig. 8: A view of the COSMOS sensor at Kjerringjordet. Image from Laura Ehrnsperger.

line (Patel et al., 2018). The dielectric constant is related to the volumetric water content using Equation 8.

The accuracy for measuring volumetric water content is ±1.5 %, but for areas such as Søråsfeltet a soil-

specific calibration due to the dispersive nature of soils with high clay content is recommended by the

instrument manual (Campbell Scientific Inc., 2022). For the sensor, the range of the measurement of

volumetric water content is 0 to 100 %.

The SoilVUE sensor is located at Søråsjordet, as can be seen in Figure 10. During the measurement

period the sensor was relocated 18.07., with the new location being displayed in Figure 11.

3.3.5. ScanMatic Internet of Things (SMIoT)

The SMIoT sensor is a soil moisture sensor that utilizes the time domain transmission (TDT) method, a

refined version of TDR, to measure soil moisture content (GroPoint™, 2021). The abbreviation SMIoT

stands for ScanMatic Internet of Things. IoT generally describes situations in which network connectivity

and computing capability are extended to objects, sensors, and common household items that are not
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Fig. 9: SoilVUE sensor. Note the threaded design meant to optimize soil contact. Image from Laura

Ehrnsperger.

typically thought of as computers. This enables these devices to generate, exchange, and consume data

with little to no human intervention (Rose et al., 2015). The sensor consists of a 38 cm long probe that

is inserted vertically into the soil at a desired depth. The TDT method measures the time it takes for an

electromagnetic wave to propagate along a specific length of a transmission line in the soil. Moisture in

the soil affects the dielectric properties of the soil, causing the electromagnetic wave to travel at different

speeds in wet soil compared to dry soil. By detecting these differences in travel time, the TDT method

provides a proxy measurement of soil moisture content using a calibration curve. The SMIoT sensor can

measure soil moisture content over a range of depths from 5 cm to 1 meter, depending on the number of

rods connected. The SMIoT sensors used in this analysis measure soil moisture at 5 and 25 cm depth. The

range of measurement is 0-100 % with an accuracy of ±2 %, and a 10-minute resolution (GroPoint™,

2021).

Generally, for most soils there is no calibration needed for the SMIoT sensor, but a specific calibration

might be needed for the clayey soil at the research site (GroPoint™, 2021). In the beginning of the
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Fig. 10: The map displays the original location of the SoilVUE sensor together with the SMIoT sensors at

Søråsjordet. Additionally, it displays the artificial drainage pipes installed beneath the ground, represented

by black lines. Image from Google Maps.

measurement period, four SMIoT sensors where located at Søråsfeltet. The analysis considered data only

from sensors 2 to 4 as sensor number 1 was unable to measure soil moisture, as shown in Figure 10.

Additionally, sensor 3 was relocated to Kjerringjordet on 29.06, as depicted in Figure 11. Data was

gathered utilizing GroPoint™ Lite Multi-Segment Soil Moisture Profiling Probe type 2 (GPLP-2 type),

which were connected to SM5039 loggers from Scanmatic. These can be observed in Figure 12 and

Figure 13, respectively.

3.3.6. Sentinel-1

Advances in satellite technology have shown that soil moisture can be measured by a variety of remote

sensing techniques. The Sentinel-1 satellite from the European Space Agency (ESA) uses a Synthetic

Aperture Radar (SAR) instrument to measure soil moisture (ESA-1, 2023). It consists of two polar orbiting

satellites, Sentinel-1A and Sentinel-1B, each equipped with a C-band SAR instrument that generates high-
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Fig. 11: The map displays the new location of the SoilVUE sensor together with the SMIoT sensors at

Søråsjordet. Additionally, it displays the artificial drainage pipes installed beneath the ground, represented

by black lines. Image from Google Maps.

resolution remote sensing imagery. C-band radars can penetrate through clouds and rain, making it useful

for measuring soil moisture. The SAR instrument’s ability to penetrate vegetation canopies or soils and

measure soil moisture is limited to the uppermost layers, typically up to a depth of 5 cm.

The SAR sends microwave signals towards the Earth and measures the energy that bounces back,

known as backscatter (ESA-2). The instrument’s antenna receives the backscatter echo a short time later

at a slightly different location as the satellite moves along its orbit. The amplitude and phase information of

the returned signal is recorded to creates an image of the area. The increase in reflectivity due to moisture

in the soil and vegetation affects the observed dielectric conductivity. This conductivity is closely related

to the amount of moisture present, as presented in Equation 8.

The Sentinel-1 satellite carries the Synthetic Aperture Radar (SAR) instrument that measures soil

moisture content from a height of around 700 km, enabling it to measure soil moisture content over large
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Fig. 12: The SMIoT sensor before

insertion into the ground. Image

from Laura Ehrnsperger.

Fig. 13: The SM5039 logger from Scanmatic. Image

from Laura Ehrnsperger.

areas. The satellite has four different modes and three different resolutions. The mode used in this analysis

is Interferometric Wide Swath (IW) in high resolution, with Stripmap (SM), Extra Wide Swath (EW), and

Wave (WV) being the other modes and full or high being the remaining resolutions.

3.4. Measurement campaign of 2022

As part of the H2O-project, a measurement campaign was conducted at Søråsfeltet, Ås, in the summers

of 2022. The purpose of the campaign was to obtain manual soil moisture samples, which are considered

to be ground truths (Hillel, 1982). These samples could then be compared to other sensors to assess their

performance. Søråsfeltet was chosen for the manual measurements due to the availability of different

sensors for comparison, along with the previous work done in this area regarding long time series of

measurements. The measurement campaign involved soil moisture measurements using the volumetric

and ADR sensor, as introduced in subsection 3.3 and subsubsection 3.3.2, respectively. Measurements of

the 2022 campaign were conducted by H. Haaland and J. Fjeldså. For the volumetric method, data from

22.06 to 28.09, 2021, is available, while the ADR measurements stopped 05.08. of the same year.

23



3.5. Data processing

Processing of soil moisture data is important to ensure the accuracy and reliability of the analysis results.

One common processing step is to remove outliers or spikes in the data that are not physically possible,

which can be caused by environmental factors such as soil disturbance. Despiking methods like the in-

terquartile range (IQR) method can be used to identify and remove these outliers. In data analysis, noise

refers to unwanted random variations or errors in the data that can distort the analysis results and reduce

the accuracy of the model. Time-averaging is a technique that can be used to remove noise from a dataset

and uncover the underlying signal. By calculating averages over a certain time period, random variations

or errors in the data can be reduced, resulting in a smoother and more stable signal (Raschka and Mirjalili,

2019). Postprocessing of soil moisture data often involves gap filling in missing values. This is especially

important in long-term monitoring applications where sensors may fail or lose connection, resulting in

missing data points. Methods such as linear or spline interpolation can be used to estimate the missing

values based on surrounding data points, improving the accuracy and completeness of the dataset. Finally,

data cleaning and quality control are necessary to ensure that the data is complete and consistent. Var-

ious techniques, including despiking, time-averaging, and data imputation, were used to preprocess the

soil moisture datasets. The details of these preprocessing techniques will be described in the following

sections.

3.5.1. SMIoT sensors

According to the manufacturer’s specifications, the SMIoT sensor generates measurement data by trans-

mitting 400,000 pulses through the sensing element and applying filtering to remove outliers before av-

eraging the data and sending the measurement as SDI-12 output (GroPoint™, 2021). SDI-12 a standard

communications protocol, which allows a microprocessor-based sensor, such as the SMIoT sensor, to

transfer measurement data to a battery-powered data logger, as reported by METER-Environment (2020).

To postprocess the data obtained from SMIoT sensors, the Interquartile Range (IQR) method was

used, which involves removing outliers that fall outside the 1.5 x IQR range. Upper and lower limits were

defined based on the following equations:

IQR.Limit.lower = Quantile.lower + 1.5× IQR
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IQR.Limit.upper = Quantile.upper + 1.5× IQR

where IQR.Limit.lower and IQR.Limit.upper are the limits applied to the outliers, Quantile.upper and

Quantile.lower are the 25 % and 75 % percentiles, respectively, and IQR is the interquartile range. These

limits were used to identify and remove any spikes in the data, ensuring the accuracy and reliability of the

results. The processing of data was done by L. Ehrnsperger at The Norwegian Meteorological Institute.

3.5.2. COSMOS sensor

The COSMOS sensor measures soil moisture using the cosmic-ray technique on an hourly basis. However,

this method results in noisy time-series. Therefore, it is recommended to average the counts over longer

time periods, such as 6 or 24 hours, to reduce the impact of noise and obtain more reliable measurements

(Centre for Ecology & Hydrology, 2021). Additionally, the presence of water above the soil surface during

snow events can be mistakenly interpreted as soil moisture. To address this issue, a correction is applied to

the daily volumetric water content when a snow day is detected. In this analysis, daily averages were used

instead of 30-minute intervals. After examining a plot of the data, it became apparent that values equal to

50 % were likely to be a default value used for missing data. Consequently, these values were removed

from the dataset to avoid any potential bias in the analysis.

3.6. Temporal and spatial variability in soil moisture measurements

To examine the temporal and spatial variability in soil moisture measurements across Søråsfeltet, multiple

techniques were utilized. Time series data from the ADR sensor, SMIoT measurements, COSMOS sensor,

volumetric method, and SoilVUE sensor were displayed, with precipitation events over 4 mm indicated

to identify the impact of precipitation on soil moisture changes. The data from the different sensors were

further analyzed to assess the spatial variability in soil moisture across the field. Additionally, satellite data

was used to provide an overview of soil moisture variations across larger spatial scales. The combination

of these different sensors and methods will hopefully provide a comprehensive understanding of how soil

moisture varies both in space and time in Søråsfeltet and the surrounding area.
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3.7. Statistical analysis

Statistical analysis plays an important role in understanding the dynamics of soil moisture, and several

tests can be used to determine the distribution of the data and identify patterns and changes over time. It is

important to first test for normal distribution using the Shapiro test, because many statistical methods rely

on the assumption of normality (Brownlee, 2018). Depending on the distribution of the data, a suitable

significance test can then be chosen. For normally distributed data, a t-test can be used to compare the

means of two independent samples. This is important in soil moisture time series analysis because it can

help to identify patterns and changes in soil moisture over time. For data that is not normally distributed,

a Wilcoxon Rank Sum test can be employed to determine whether the distributions of two paired samples

are equal or not. In addition, the Kolmogorov-Smirnov test can be used to test for similar distribution

between two sets of samples. This test determines the likelihood of observing two sets of samples like this

if they were drawn from the same, but unknown, probability distribution. This is important because it can

help to identify similarities or differences between soil moisture data collected from different locations or

at different times. For example, if soil moisture data collected from two different fields exhibit similar

probability distributions, it may indicate that the two fields have similar soil properties and require similar

irrigation or fertilization practices. On the other hand, if the soil moisture data collected from two fields

exhibit different probability distributions, it may indicate that the two fields have different soil properties

and require different management practices to optimize crop yields.

Exploratory data analysis uses statistical methods to find patterns that could be overlooked in a set

of data Potter (2006). The box plot, illustrated in Figure 14, is one of these methods, which is used to

graphically summarize and analyze sets of data. The plot consists of a rectangular box and two whiskers

that extend from the box, which also gives it the name whisker plot. The box represents the interquartile

range (IQR), which spans the middle 50 % of the data. The line inside the box represents the median, and

the whiskers extend to the minimum and maximum values within 1.5 times the IQR from the box. Points

beyond the whiskers are considered outliers, but are not visualized in Figure 14.

The Pearson’s correlation coefficient measures the correlation between the two variables. This coef-

ficient can vary from -1 (perfect negative correlation) through 0 (no correlation) to +1 (perfect positive

correlation) and determines the strength and direction of the relationship between the variables (Mukaka,

2012). The strength of association is shown in Table 3.
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Fig. 14: Illustration of a box plot showing the median, lower and upper quartile (Q1 and Q3), interquartile

range and minimum and maximum values of a dataset. Adapted from Potter (2006).

Table 3: Rule of thumb for interpreting the size of correlation coefficient (Mukaka, 2012).

Correlation coefficient (r) Strength of correlation

±0.00 - 0.29 Negligible

±0.30 - 0.49 Low

±0.50 - 0.69 Moderate

±0.70 - 0.89 High

±0.90 - 1.00 Very High

All statistical analyses and graphics showing results were conducted using Python version 6.5.2. The

quality of coding and English in this thesis was improved through the use of ChatGPT version 3.5.
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4. RESULTS

The purpose of this study is to examine both temporal and spatial variability of soil moisture at Søråsfeltet

in Ås and the surrounding area, as well as to compare satellite measurements to ground-based sensors.

Additionally, the performance of the sensors under dry and wet conditions will be of interest.

This section presents the main outcomes obtained from the methods described in subsubsection 3.3.1.

Specifically, subsection 4.1 presents time series for the sensors mentioned to show the temporal variability

of soil moisture, while subsection 4.2 showcases the results concerning spatial variability. Both sections

include plots illustrating interesting patterns before introducing satellite data. Subsequently, in subsec-

tion 4.3, the satellite data will be examined in more detail and compared to the different ground-based

sensors. In subsection 4.4, statistical tests will be carried out to determine any similarities or patterns

between the different sensors. Finally, in subsection 4.5, any potential errors or uncertainties will be ad-

dressed to provide a better understanding of the limitations and potential sources of inaccuracies in the

results obtained.

4.1. Temporal variability

4.1.1. Intercomparison of different sensors

The time series obtained from the SMIoT sensor is showing considerable temporal variability at depths of

5 and 25 cm across the period from 07.02 - 17.07 (Figure 15). At 5 cm depth, the soil moisture reached

a minimum 12.02 at 25 %, followed by an upward trend that culminated in a peak in April. Afterwards,

soil moisture levels decreased during a dry period until mid-May, when precipitation occurred, leading

to a rapid increase and an overall peak of 68 % 04.07. The fluctuations in soil moisture levels generally

corresponded to precipitation events, although there was an anomalous increase in soil moisture from

mid-March to the end of March, despite a lack of precipitation during this period.

The measurements from at 25 cm depth generally indicated higher soil moisture content with smaller

fluctuations compared to the 5 cm depth, but it exhibited the same overall trend. The minimum is 13.02

at 34 % followed by an upward trend until the end of April. Thereafter, the soil moisture decreased

due to the dry period, before it rapidly increased in end of May. Around mid-June the soil moisture

plateaued and reached saturation at 68 %. Even though there were some precipitation events afterwards,

the soil moisture content did not increase further. A time lag was observed between the soil moisture
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measurements at depths of 5 cm and 25 cm, with the sensor at 5 cm registering a faster response to

precipitation. Furthermore, both depth exhibited an increase of soil moisture 26.05 where there is no

displayed precipitation parallel to the steep increase of soil moisture.
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Fig. 15: Soil moisture measurements from the SMIoT sensor 2 at 5 and 25 cm depth from March to July

2022. The running mean of all samples is shown as a line and the standard deviation as a shaded area. The

color blue represents soil moisture, and red represents temperature. The vertical grey lines represent days

with more than 4 mm precipitation.

The SMIoT sensor measured diurnal fluctuations in soil moisture at a depth of 5 cm and ground-

level temperature over a period of seven days from 14.04 to 21.03. This period was chosen due to the

relatively stable soil moisture (Figure 15), which resulted in an interesting pattern for the entire week. The

measurements were taken every 10 minutes, and there was no precipitation during this period.

During this period, soil moisture exhibited a sinusoidal pattern, with a trough at around 07 in the

morning and a peak at 18 in the afternoon (Figure 16). Temperature followed a similar trend, with a

trough at 06 in the morning and a peak at 15 in the afternoon (Figure 17). The running mean values

showed that soil moisture was 46.6 % at the trough and 47.2 % at the peak, resulting in a difference of 0.6

percentage points. The temperature had a trough at 3 °C and a peak at 9 °C.
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Fig. 16: Diurnal fluctuations of soil moisture

measured at 5 cm depth of the SMIoT sensor.
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Fig. 17: Diurnal fluctuations of ambient tem-

perature of the SMIoT sensor.
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Fig. 18: Soil moisture content at 5 cm depth and ambient temperature from the SMIoT sensor in the period

10.03.22 to 05.04.22. The vertical grey line represents a day with more than 4 mm precipitation.

Figure 18 displays the soil moisture content at a depth of 5 cm, as well as the ambient temperature.

The soil moisture plot is a subset of the larger graph shown in Figure 15, displaying only the period

from 10.03 to 05.04 The temperature remains stable at or below zero until 26.03, when it experiences

a few positive spikes. After these fluctuations, the temperature stabilizes again, but now in the positive

region, between 0.4 and 0.5 °C. Meanwhile, the soil moisture exhibits some fluctuations around 32.5 %

30



between 10.03 and 17.03, but then begins to increase steadily until it reaches a peak of 47.5 % after 11

days. Notably, there is only one precipitation event over 4 mm, occurring on 19.03, during this time period.

The depth of 10, 75, and 100 cm for the SoilVUE sensor were stable during the whole period, with

values ranging between 45 and 50 % (Figure 19). The SoilVUE sensor was moved to another location

18.07, which is clearly visible for the 100 cm sensor by the abrupt drop of soil moisture content. The 5

and 20 cm depths exhibited similar behavior to the SMIoT sensors, where the 5 cm depth always reported

lower values than at 25 cm. The 5 cm depth showed overshooting during precipitation events in the wet

period of November. The 50 cm depth consistently reported the lowest values out of all the depths during

the first nine months with the lowest measurements being below 1 percent. During precipitation events

in November, this depth also experienced extreme spikes. The 40 and 60 cm depths behaved similar, and

experienced very stable values from January to mid-May without responding to precipitation events. After

a long dry period, the values started to drop around mid-May. Overall, the different depths showed varying

patterns and behavior, which could indicate differences in the moisture retention capacity of the different

soil layers.
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Fig. 19: Soil moisture measurements from SoilVUE sensor at nine depths from January to November

2022. The vertical grey lines represent days with more than 4 mm precipitation.

31



To validate the accuracy of the sensor such as ADR, SMIoT, SoilVUE and COSMOS, soil moisture

samples were collected manually using the volumetric method. These samples were used as a benchmark

or ground truth for comparison with the measurements obtained from the sensors that measure indirectly,

as described by Hillel (1982). The resulting volumetric soil moisture content was plotted in Figure 20, with

vertical grey lines indicating days with precipitation exceeding 4 mm. The measurement period spanned

from 09.06 to 21.09, 2022.

The plot displayed a trend that was consistent with the observations made from the sensors measuring

indirectly, indicating that precipitation events caused an increase in the soil moisture content. In early July,

the measurements showed higher values compared to other days, with a maximum of 49 %, taken during a

precipitation event. In contrast, the beginning of August recorded some of the lowest values, reaching 15

%, despite experiencing precipitation events during that time. On average, the measurements had a value

of 26 % with a standard deviation of 6.5 %. Notably, measurements taken at Kroer are marked in red,

and are shown to be 16.3 % and 14.6 %, respectively. Overall, these manual soil moisture samples will

provide valuable confirmation of the trends observed in the sensor data, and help to ensure the accuracy

and reliability of the measurements.
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Fig. 20: Volumetric soil moisture content from the manual samples using the volumetric method. The

vertical grey lines represent days with more than 4 mm precipitation.
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4.1.2. Satellite versus ground measurements of soil moisture

Figure 21 displays soil moisture content from the top layer (5 cm depth), measured by the Sentinel-1

satellite, for the period spanning 01.01.22 to 31.12.22. The data showed a mean soil moisture content of

8.26 %, with a standard deviation of 2.97 %. The minimum soil moisture value of 3.4 % was recorded

on 09.10.22, while the maximum value of 17.6 % was recorded on 23.01.22. Despite the presence of

vertical grey lines indicating days with more than 4 mm of precipitation, there does not appear to be any

discernible pattern in the soil moisture content over time. The data is characterized by numerous spikes and

fluctuations, with no clear correlation between changes in soil moisture and precipitation events. Overall,

the figure suggests that the satellite measurements do not represent the surface soil moisture observed in

the ground-based measurements and are not reacting to precipitation, the main driver of changes in soil

moisture.
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Fig. 21: Surface soil moisture content from the Sentinel-1 satellite in the period 01.01.22 to 31.12.22. The

vertical grey lines represent days with more than 4 mm precipitation.

4.2. Spatial variability

In Figure 22, a time series obtained from all functioning SMIoT sensors is presented, displaying soil

moisture content at depths of 5 cm and 25 cm. As sensor 1 malfunctioned, only sensor 2, 3, and 4 are
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displayed. In June, sensor 2 records much higher values compared to sensors 3 and 4, exhibiting the same

trend for both the 5 cm and 25 cm sensors.

For sensor 3, some unrealistically low values were removed. On the 20.05, sensor 3 deviates from

the other sensors, as it fails to record any increase in soil moisture. Throughout the time series, sensor 3

consistently reports the lowest values, displaying a surprisingly stable soil moisture content at 25 cm depth

from 16.02 to 02.05 with a mean of 46 % and a standard deviation of only 0.66 %.

Sensor 4 exhibits a similar trend to sensor 2, gradually increasing from the beginning of the time series

until the dry period, when it slowly decreases again. During the wet period, sensor 4 responds well to

precipitation, reaching a peak of 67 % just below the peak recorded by sensor 2.
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Fig. 22: Soil moisture measurements from three SMIoT sensors at 5 and 25 cm depth from February to

July 2022. The vertical grey lines represent days with more than 4 mm precipitation.

The measurements from Sensor 3 of the SMIoT, which measures soil moisture at a depth of 25 cm,

have exhibited remarkable stability over an extended period of time, as shown in Figure 23. Starting at

37.0 % on the 14.02, the sensor experienced a quick increase on the 15.02 up to 47.0 %, but then remained

stable for the next three months. From the 16.02 to the 01.05, the mean soil moisture content for Sensor

3 was 46.00 %, with a low standard deviation of 0.66 %. This suggests that the soil moisture at this depth

remained relatively constant during this period, despite a few precipitation events. In comparison, the
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Fig. 23: Soil moisture measurements from the SMIoT sensor 3 at 5 and 25 cm depth from 14.02 to

01.05.2022. The vertical grey lines represent days with more than 4 mm precipitation.

mean soil moisture content for Sensor 3 at 5 cm depth was 36.6 %, with a higher standard deviation of

2.68 %. This indicates that the variability in soil moisture content was four times higher at the shallower

depth.

In Figure 24, the soil moisture measurements obtained from the COSMOS sensor between 01.05 and

30.11 are presented. For the hourly data, one noteworthy observation is the high daily variability in soil

moisture values. Further analysis of the dataset reveals a daily standard deviation of 3.9 %, while the mean

for the entire period is 39.5 %, with a standard deviation of 9.6 %. The maximum soil moisture value

recorded was 55 %, which occurred on three different occasions: 02.06, and 01.11 and 09.11. The lowest

value, 17.9 %, was recorded on 08.05 towards the end of the drought period in April/May. Increases in

soil moisture were generally observed after precipitation events, and soil moisture decreased during drier

periods.

To obtain daily data, the hourly data from the COSMOS sensor was processed by removing values

equal to 50 %, as described in subsubsection 3.5.2. This step resulted in gaps in the data mid-August and

late-October. Nevertheless, the processed plot displays less noise, providing a clearer view of the daily
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Fig. 24: Time series of soil moisture measured by the COSMOS sensor, showing the hourly and daily

values from May to December. The straight lines of the hourly values in mid-August and October are due

to gap-filling. The vertical grey lines represent days with more than 4 mm precipitation.

variability in soil moisture. The mean soil moisture value over the monitoring period is 37.7 %, with a

standard deviation of 8.2 %. The highest soil moisture value of 53.6 % was recorded on 09.11, while the

lowest value of 22.8 % was recorded on 09.09.

Analysis of the temporal trends reveals that soil moisture values were lowest after the dry periods

in May and early September. On the other hand, the highest values were recorded in early November,

following a period of heavy precipitation.

The soil moisture content from the top layer of ground was observed by the Sentinel-1 satellite at

three different measurement sites over the course of the year, from 01.01. to 31.12. The results of these

measurements are displayed in Figure 25. The measurements from the Kjerringjordet and Kroer show

similar result to the measurements from Søråsjordet, with no apparent trends and no clear correlation with

precipitation events. However, there is a noticeable difference in the mean soil moisture content between

the three sites. Søråsjordet has an overall higher mean soil moisture content of 8.3 % with a mean of 3.0

%, while NVE has a mean of 7.4 % with a standard deviation of 2.3 %, and Kroer has the lowest mean
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Fig. 25: Surface soil moisture content from the Sentinel-1 satellite displaying the locations Kroer, NVE-

site (Kjerringjordet) and Søråsjordet in the period 01.01.22 to 31.12.22. The vertical grey lines represent

days with more than 4 mm precipitation.

being 5.4 % with a standard deviation of 1.8 %. All these values are very low and probably not physically

meaningful.

In Figure 26, the spatial variability of soil moisture is illustrated through a south-north transect of

Søråsfeltet, based on five different days during the 2022 measurement campaign. Each day is represented

by a different color. The results do not exhibit any significant trend for the spatial variability, with the

exception of a slight positive spike near sampling point 9 and a negative spike near point 19. In contrast,

the temporal effects are more noticeable, with the sample taken on 19.08 standing out due to a recent

precipitation event two days prior. Similar trends are observed in Figure 27, where the only observable

trend of the west-east transect is the higher soil moisture measurement on 19.08. Additionally, the soil

moisture measurements from 24.08. are generally higher compared to remaining days.
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Fig. 26: South-north transect of Søråsfeltet

showing soil moisture levels measured by

ADR-sensor.

Fig. 27: West-east transect of Søråsfeltet show-

ing soil moisture levels measured by ADR-

sensor.

4.3. Comparison of sensors

The COSMOS, SMIoT, and SoilVUE sensors exhibit similar temporal patterns, although their absolute

values differ (Figure 28). These sensors respond similarly to both dry and wet periods. The SMIoT sensor

consistently records the highest values, occasionally exceeding the physical limit at 61 %. On the other

hand, the SoilVUE sensor consistently records the lowest values of the three, with measurements below

the wilting point at 18 %. The COSMOS sensor falls between the other sensors without surpassing the

lower or upper limit for soil moisture.
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Fig. 28: Soil moisture measurements from SMIoT sensor 3 at 5 cm depth, from SoilVUE at 5 cm depth,

the daily averaged values from the COSMOS sensor, measurements from the Sentinel-1 satellite, and the

volumetric samples from 01.04 to 31.09.2022. The vertical grey lines represent days with more than 4 mm

precipitation.

4.4. Statistical analysis

The results of the Shapiro-Wilk test for normality indicated that none of the p-values exceeded 0.05,

leading to the rejection of the null hypothesis that the data follows a normal distribution. Moreover,

none of the histograms showed a resemblance to a normal distribution. As a result, a t-test to compare the

means of two independent samples was not performed due to the lack of normality in the samples. Instead,

a Wilcoxon Rank Sum test was done to check whether the distributions of two paired samples were equal

or not, all of which gave negative results. Additionally, the Kolmogorov-Smirnov test was performed to

assess the similarity between two sets of samples, and all results were negative. Finally, the Levene test for

equality of variances resulted in some p-values above 0.05, indicating the lack of significant differences

between the variances of the samples. Only the tests that failed to reject the null hypothesis are shown in

Table 4.
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Table 4: Results of the Levene test for equality of variances

Comparison Levene test statistic p-value Result

SoilVUE 20 cm vs Cosmos daily 0.0166 0.8973 Fail to reject null hypothesis

SMIoT Sensor 2 25 cm vs Cosmos hourly 0.7274 0.3937 Fail to reject null hypothesis

SMIoT Sensor 3 25 cm vs Manual Samples 0.9736 0.3238 Fail to reject null hypothesis

SoilVUE 20 cm vs SMIoT Sensor 3 5 cm 1.8223 0.1771 Fail to reject null hypothesis

SMIoT Sensor 3 5 cm vs Cosmos daily 0.0623 0.8030 Fail to reject null hypothesis

4.5. Possible errors and uncertainties
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Fig. 29: This plot depicts box plots representing volume fractions of soil samples collected from

Søråsfeltet. Each box is color-coded by the collector, and displays the median, quartiles, range, and

outliers of the data.

In addition to providing a visual representation of the distribution of soil water in the Søråsfeltet,

Figure 29 highlights any differences in measurements among the collectors, which could potentially be a

source of systematic errors. It is worth noting that there is an outlier 07.07.2022 in the data due to a precip-

itation event, and thus should not be considered a human error. The color-coding of the box plots for each

collector allows for easy identification of any differences in the measurements among them. By analyzing
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these differences, researchers can identify potential sources of systematic error, such as variations in the

techniques used to collect the soil samples, or sampling at different depths. This information is valuable

for improving the accuracy and reliability of future measurements and can help ensure that any systematic

errors are properly addressed and minimized. This is especially relevant for the volumetric method as it is

considered ground truth, so ensuring its accuracy is important for the validation and calibration of indirect

measurement methods.

The lowest measured values are around 15 %, which matches decently with the wilting point at 18 %

(Dingman, 2014). This could be used as a reference for filtering values. The maximum values are around

30-32 % for days with no precipitation, and up to 40-50 % for the rainy day.
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5. DISCUSSION

The purpose of this study is to examine both temporal and spatial variability of soil moisture at Søråsfeltet

in Ås and the surrounding area, as well as to compare satellite measurements to ground-based sensors.

Furthermore, a comparison of sensors will be conducted across a diverse range of naturally occurring soil

moisture conditions.

The chapter is divided into four sections, with subsection 5.1 and subsection 5.2 focusing on temporal

and spatial variability of soil moisture in Søråsfeltet, respectively. subsection 5.3 provides a comparison

of the soil moisture measurement techniques used in the study, while subsection 5.4 evaluates potential

sources of error.

5.1. Temporal variability

In this section, the temporal variability of soil moisture will be investigated to address the research ques-

tion. The analysis will include examining the time series data from various sensors, focusing on general

trends, dry and wet periods, and other noteworthy patterns. Additionally, the temporal variability of the

satellite measurements will also be evaluated and discussed.

SMIoT

The soil moisture generally responds well to precipitation, as shown in Figure 15, with a maximum value

of 68 % at 25 cm depth. However, this value exceeds the porosity of the soil, which is estimated to be

61 % according to Naalsund (2022). The reason for this overestimation could be the lack of calibration

for the soil type. Clayey soils typically require a special calibration to improve the accuracy of moisture

measurements (GroPoint™, 2021). Another possible explanation could be the inaccuracy of the sensor for

soil moisture values over 50 % (GroPoint™, 2021). Despite these limitations, the trend in the data is still

considered representative and useful for those not requiring exact values.

It is a commonly observed phenomenon that there is a delay in the response of soil moisture in deeper

soil layers, caused by the longer time taken for water to infiltrate after precipitation. However, this delay

may vary depending on the soil type and other environmental factors, as noted by Xu et al. (2021). A study

conducted by Naalsund (2022) investigated the response time of clayey soil at Søråsjordet and found that

it had a response time of 0-2 hours. This means that after precipitation, it takes between 0 to 2 hours for the
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moisture to pass by the sensor at 5 cm and be detected at the depth of 25 cm. However, the soil can become

increasingly compact due to the lack of tillage and the activity of shallower roots, which gradually reduces

the infiltration rate. As the soil depth increases, the constant infiltration rates decline rapidly (Wang et al.,

2015). This can result in a longer delay in soil moisture response patterns in deeper layers.

Another notable event in the data is the appearance of peaks 26.05, despite the apparent absence of

precipitation during this time. After ruling out snowmelt and irrigation as potential causes, a closer ex-

amination of the precipitation data showed that there were two days with 3 mm of rainfall that were not

included in the figure due to the 4 mm threshold. These two days explain the increase in soil moisture

during this period. To avoid the issue of a threshold while keeping the plot clear, some studies, including

He et al. (2023), have utilized dual x- and y-axes.

The figures 16 and 17 indicate a possible correlation between soil moisture and temperature, with both

variables exhibiting a similar diurnal pattern. However, it is important to note that the daily variability of

soil moisture is only 1.3 %, and the observed change is smaller than the accuracy of the SoilVUE sensor

used to measure it. While this observation could imply the possibility of measurement error, determining

the exact cause is challenging and requires further investigation.

A study by Young et al. (2008) examined a method for estimating volumetric water content of near-

surface materials in which diurnal temperature variations can be as high as ± 20 °C. The study employed

a Levenburg-Marquardt (LM) optimization of thermal conductivity, volumetric heat capacity, and drift

in ambient temperature, resulting in the LM-Uncorrected method for calculation of water content, and

an expansion of this method that incorporates temperature dependencies of soil thermal conductivity and

optimizes on volumetric water content, apparent needle spacing, and drift in ambient temperature during

the measurement, which is known as LM-Corrected. The LM-Uncorrected method revealed a diurnal

variability of soil moisture ranging from ± 0.02-0.03 m3

m3 , while the LM-Corrected method produced a

time series of water content values that was much smoother at only ± 0.005 m3

m3 . Further research is

needed to confirm and comprehend the relationship between soil moisture and temperature with respect to

diurnal variability, and it would be interesting to apply the LM-Corrected method to the measurement of

the SMIoT sensor.

The mid to end of March saw an increase in soil moisture despite only one recorded precipitation event

at 5.1 mm, as illustrated in Figure 18. It is unlikely that irrigation was the cause since there was no evidence

of any irrigation activities in close proximity, and there was no snow to be melted (Kroken et al., 2009,
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Wolff, 2023). Other nearby sensors demonstrate similar water levels, decreasing the possibility of runoff.

Additionally, data from the bio-climatic field station at Søråsfeltet show no snow cover, further reducing

the likelihood of snowmelt being the cause. The stable temperature of about 0 °C in the area during the

period indicates that the melting of frozen water in the soil could be the most likely explanation. Due to the

latent heat of phase change, soil melting processes effectively dampen significant temperature variations

from the surface down to the deep soil layer. The temperature of the ice remains constant as the ice melts

(Tipler and Mosca, 2012). This melting process results in an increase in liquid water in the soil, leading

to a rise of the dielectric conductivity as the conductivity of frozen and liquid water differ. The increase

in measurable soil moisture is most significant at a depth of 5 cm and decreases with greater depths, as

can be seen in Figure 22. In the soil thawing process, the upper and lower layers of frozen soil begin to

melt first. However, the water from melted ice in the upper layer becomes obstructed by the frozen layer,

allowing the soil moisture content to increase in the upper layer first (Musa et al., 2016).

An interesting question is whether the SMIoT sensors accurately measures soil moisture in frozen

ground. When ice is present in the soil, the soil water potential and liquid water content are strongly

influenced by temperature. As soil temperature drops further below the soil water freezing point, more

water freezes, and liquid water content decreases. This drop in liquid water content during freezing is

analogous to soil drying (Flerchinger et al., 2006). According to the manufacturer’s specifications, the

sensors can function in temperatures ranging from -20°C to 40°C (GroPoint™, 2021). Previous research

by Yoshikawa and Overduin (2005) found that the accuracy of dielectric sensors in measuring unfrozen

water content under frozen soil conditions is comparable to the manufacturer’s claims.

In summary, soil moisture can increase due to sources other than precipitation, such as irrigation,

runoff, snowmelt, or melting of frozen water in the soil. In this case, the stable temperature of about 0 °C

during the observed period suggests the latter as the most likely explanation, where the melting of ice in

the soil results in an increase in liquid water content and measurable soil moisture.

SoilVUE

Upon closer examination of Figure 19, inaccuracies are suspected in the measurements at depths of 10 and

50 cm. However, it is unclear whether the confusion in the depths is due to sensor malfunction or a data

transfer issue to the online database. To gain a better understanding of the distribution of soil moisture at

different depths, boxplots of the measurements are shown in Figure 30.
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Fig. 30: Boxplots for the different depths of the SoilVUE sensor showing the distribution of soil moisture.

During periods of excessive rainfall, such as at the beginning of November and end of December,

interesting observations can be made. Assuming that the 50 cm sensor is located at near-surface level,

which seems more likely than it actually being positioned at a depth of 50 cm, the response time appears

to be rapid. However, the measurements at 5 cm and 50 cm seem to overestimate the soil moisture content,

while the same trend, albeit not as significant, can also be observed at a depth of 20 cm (Figure 15). The

rapid increase and subsequent decrease in soil moisture content could be due to preferential flow, the

movement of water through large, connected pores or cracks in the soil. This can cause water to bypass

some soil layers, leading to rapid wetting of deeper soil layers and a quick response time in the sensors

located at those depths.

Studies such as Demand et al. (2019) have found that preferential flow is strongly influenced by the ini-

tial soil water content and maximum rainfall intensity, with higher rainfall intensities leading to increased

preferential flow. Additionally, preferential flow has been found to occur less frequently in spring and

more frequently in summer and early autumn. These findings align with the observed spikes in soil mois-

ture content during autumn when general soil moisture levels were already high (Figure 15). However,

further investigation would be necessary to confirm the hypothesis of preferential flow causing the rapid

increase and decrease in soil moisture content.

The SoilVUE sensor behaves abnormally during dry periods, such as the one observed in April/May,
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where both the 5 and 50 cm sensors report values well below the wilting-point of clay soils at 18 %

(Dingman, 2014). The hysteresis effect of the soil’s expansion/contraction characteristics can make it

difficult to achieve a good contact with the soil. Additionally, after several wetting and drying cycles, the

soil may not fit tightly around the probe, resulting in air gaps. In this clayey type of soil, moderate to

severe surface cracks can appear when the soil dries out (Dingman, 2014).

A study by Wilson et al. (2023) found the SoilVUE sensor to generally have lower soil moisture con-

tent when compared to the HydraProbe by Stevens Water Monitoring Systems, the TDR-315L by Acclima

Inc.. Additionally, the soil moisture content at a depth of 10 cm from the SoilVUE sensor were con-

sistently about 0.09 m3/m3 lower than the gravimetric soil water content. This discrepancy suggests a

potential limitation for the the SoilVUE sensing rods. A shortcoming of this study was that only measure-

ments at 10 cm were looked at, as the HydraProbe and the TDR-315L do not measure at different depths.

Despite this limitation, the study suggests that the SoilVUE sensor may be beneficial for monitoring the

soil temperature profile, especially when precise soil moisture measurements are not crucial.

Marek et al. (2021) conducted a study analyzing soil water content data from a 100 cm SoilVUE sen-

sor. They concluded that poor contact between the electrode and the soil resulted in underestimation of soil

water content by the SoilVUE sensor. Moreover, this poor contact causes greater apparent spatial variabil-

ity than what is actually present in the soil. In dry or drying soil, the SoilVUE sensor may report smaller

water content values than the actual values, while in saturated soil, the reported values may sometimes be

larger than the actual values due to water filling the gaps between the electrodes and the soil. Addressing

this problem is not straightforward since detecting air gaps is difficult without disturbing the sensor and

measurement site.

At agricultural sites, controlling the moisture level of soil through periodic irrigation can help reduce

the variation in moisture content, which in turn can limit the expansion and contraction of soil and mini-

mize the formation of air gaps between the probe and the soil (Centre for Ecology & Hydrology, 2021).

However, if limiting the variation in moisture content is not possible, a technique of filling the gaps is

suggested by GroPoint™ (2021). For instance, if the soil pulls away from the side of the probe after it

has been inserted for some time, a slurry made by mixing soil from the immediate vicinity of the probe

with water can be poured down the resulting crack to fill it. After drying out and shrinking, the slurry may

need to be repeated a number of times before the crack remains filled. However, there are some potential

problems associated with this method. The slurry may not have the same structure and properties as the
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natural soil. The repeated insertion of slurry to the soil can lead to changes in soil structure and moisture

that may not be representative of the original conditions. Therefore, it is important to evaluate the potential

impact of this method before implementing it. Adjusting the sensor placement or selecting a more suitable

site, to improve the accuracy of the measurements without altering the natural soil moisture, might be a

better idea.

Upon closer examination of the dry period in April/May, it appears that the soil moisture content

begins to decrease from the top layers down. Soil moisture at 5 cm depth reacts first, while at 50 cm the

data displays irregular behavior as usual. As time passes, the soil moisture content at 20 cm also begins to

decrease. This trend continues downward to 75 cm, with the sensors recording lower soil moisture content

as time passes. The sensor at 100 cm remains stable throughout the period, except for when the SoilVUE

sensor was moved on 18.07. This observation is consistent with previous research by Xu et al. (2021),

indicating that soil drying typically begins in the top layers. In general, temporal variability is higher at

shallow depths, resulting in a greater range of both low and high soil moisture content values throughout

the measuring period.

The observed pattern of decreasing soil moisture from top layers down during a dry period impacts

ecosystems. According to Hoegh-Guldberg et al. (2018), decreasing soil moisture causing water stress in

plants can lead to reduced growth, lower yields, and even plant mortality. The primary adaptation strategy

for drought-tolerant plants to cope against water deficits is deeper rooting to access water from lower soil

layers (Seleiman et al., 2021). However, not all plants have the ability to develop deeper root systems,

and some may be more vulnerable to drought stress. This could result in a shift in vegetation towards

more drought-resistant plant species. As stated by Hoegh-Guldberg et al. (2018), human-induced global

warming has led to an increased risk of drought. This could have significant implications for ecosystems,

particularly in areas where vegetation is already stressed due to water limitations.

Alternatively, if the soil is unable to absorb all the water from the precipitation, it can result in flooding,

which can have severe consequences for both natural and human systems. These include environmental

disturbance, habitat destruction, crop loss, nutrient deficiency in soil, property damage, and loss of human

life (Aldardasawi and Eren, 2021). Therefore, understanding soil moisture patterns and their changes in

response to climate change is important for managing the impacts of both droughts and floods.
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Satellite measurements

The satellite measurements from Sentinel-1 are found to be comparable to the SoilVUE sensor at 5 cm

depth during dry periods (Figure 21). As earlier mentioned, the SoilVUE sensor at 5 cm reports soil

moisture content well below the wilting-point of silty clay soils at 18 % (Dingman, 2014). This means that

also the data from the satellite falls below the wilting point. However, when compared to the SMIoT sensor

which has data within the physically possible range, a significant mismatch is observed. The satellite data

is around 30 percentage points lower than the SMIoT sensor data. Furthermore, the response of the satellite

to precipitation is negligible. Calibration alone cannot fix the significant difference between the satellite

and the ground based sensors, since the patterns also are different. The limitations of satellite retrievals

of soil moisture are discussed by Entekhabi et al. (2004), including shallow vertical penetration depth,

limited ability to penetrate vegetation or snow, sensitivity to surface roughness, discontinuous temporal

coverage, and the short life span and high cost of satellite missions.

Figure 31 and 32 are showing data from Sentinel-1 in 2021 and 2022. The plots were provided by J.

Blyverket, so the processing steps are not known. In particular, Figure 31 exhibits soil moisture values

exceeding 80 %, surpassing measurements obtained from all other sensors in this study. On the other hand,

Figure 32 displays a narrower range of values, ranging between 15 and 20 %, but there is no reaction to

precipitation or dry periods, as can be seen in Figure 28. These plots further reinforce the limited utility of

satellite data for soil moisture analysis in Ås.

A validation study conducted by Bauer-Marschallinger and Massart (2021), found that the surface soil

moisture products derived from Sentinel-1 are currently in a ”pre-operational” stage with limited quality

assessment. However, they are still deemed useful for distribution to mainstream users and can satisfy most

applicable requirements. The study also showed that the product’s temporal analyses demonstrated poor

to medium performances when compared to in-situ data. Furthermore, it was observed that the satellite

measurements do not accurately represent surface soil moisture as measured by ground-based methods

and are not responsive to precipitation, the primary driver of soil moisture of this ecosystem. However,

unlike in the study by Bauer-Marschallinger and Massart (2021), the results from this study indicate that

the Sentinel-1 data is not useful.
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Fig. 31: Surface soil moisture content from Sentinel-1 (CGLS) together with in-situ data from Ås. The

dataset corresponds to the year 2021 and was provided by Jostein Blyverket from the Norwegian Meteo-

rological Institute.

Fig. 32: Surface soil moisture content from Sentinel-1 together with in-situ data from Ås. The dataset

corresponds to the year 2022 and was provided by Jostein Blyverket from the Norwegian Meteorological

Institute.
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5.2. Spatial variability

This section will address the research question by investigating the spatial variability of soil moisture, with

a focus on both vertical and horizontal variability. The analysis will include a review of time series data

from different sensors, highlighting general trends, dry and wet periods, and other significant patterns. The

spatial variability of the satellite measurements will also be evaluated and discussed as part of the analysis.

Variability between SMIoT sensors

The vertical spatial variability of the three SMIoT sensors reveals distinct patterns at different depths

(Figure 22). The 25 cm depth generally exhibits higher soil moisture levels compared to the 5 cm depth,

a trend that is supported by the findings of Dingman (2014). The studies of Huang et al. (2022) and Xu

et al. (2021) suggest that soil moisture generally increases first and then decreases with depth. Furthermore,

fluctuations in soil moisture are observed to be larger at the 5 cm depth, which consistently decreases more

rapidly in dry periods than the 25 cm depth. These observations are consistent with the faster response of

shallow soil layers to meteorological events compared to deep soil layers, as reported by Xu et al. (2021).

Precipitation responds faster in shallow soil layers and has a relatively slower response in deeper soil

layers, which can be explained by the fact that the top layers are the first contact point for precipitation.

One of the SMIoT sensors, sensor 3, exhibited an interesting behavior during the spring season. The

sensor measurements at a depth of 25 cm stabilized at a soil moisture level of 46 % after the precipitation

event on 14.02, which was different from the measurements of the other sensors. Moreover, sensor 3 did

not show any response to the precipitation event on 20.05, while sensors 2 and 4 at 5 cm and sensor 2

at 25 cm depth registered an increase in soil moisture. Upon investigation, it was discovered that sensor

3 was located directly above an artificial drainage pipe’s inlet and outlet (Figure 10). This placement

likely influenced the soil moisture in close proximity to the pipe. For heavy clay soils, installing drainage

systems does not significantly increase soil storage capacity due to the absence of large pores. However,

the installation of drainage systems can increase infiltration capacity by creating cracks during dry periods,

which reduces surface runoff (Robinson and Rycroft, 1999). The dominant factors affecting flow rates vary

depending on the site conditions (Robinson et al., 1985).

Looking at Figure 23, it is clear that there are no peaks in the spring season for sensor 3. Furthermore,

upon closer inspection of Figure 22, it can be seen that sensor 3 does not experience the same peaks
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as the other sensors, except after relocating sensor 3 to Kjerringjordet on 29.06. These findings suggest

that the placement of sensor 3 directly above the artificial drainage pipe has influenced its soil moisture

measurements. While studies on clay soils generally demonstrate that drainage installations reduce peak

flows (Robinson and Rycroft, 1999), a long-term investigation of grassland drainage on clay soil found

only minor effects on peak and overall flows (Armstrong and Garwood, 1991). Therefore, the evidence

is not conclusive, but it appears that the artificial drainage pipe is affecting the measurements of sensor 3.

Unfortunately, no further work can be conducted as the sensor has been relocated.

The overall spatial variability of the soil moisture sensors reaches a low point on 07.07, which coin-

cides with the end of the rainy period. This observation is consistent with the findings of Korres et al.

(2015), who conducted a meta-analysis of spatiotemporal soil moisture patterns and reported negative

linear relationships between the coefficient of variation and the mean soil moisture for all datasets. The

trend suggests that there is a lower vertical and horizontal spatial variability when the soil is close to or

at its saturation point. This suggests that soil moisture sensors may be more reliable in wetter conditions,

but could be less reliable in drier conditions. In drought-prone regions, this could make it more difficult

to accurately predict soil moisture dynamics and make models more prone to false predictions under dry

conditions, or at least less reliable.

COSMOS

Area measurements can provide more representative information on soil moisture over a larger area, but

the high variability can make it difficult to analyze temporal trends (Hendriks, 2010). Point measurements,

on the other hand, can be affected by soil heterogeneity and disturbance caused by burying the instruments

in the soil. The COSMOS sensor is a valuable tool for measuring soil moisture, but its footprints vari-

ability requires data processing for meaningful insights. Daily values have been compiled to reduce the

variability, as shown in Figure 24, but this resolution makes it difficult to study the sensor’s response time

to precipitation events.

Precipitation is an essential factor affecting soil moisture’s spatial variability, and COSMOS measure-

ments have shown that after a rain event, soil moisture tends to be more spatially homogeneous due to

runoff and infiltration. A study of soils in France, Spain, and Tunisia found that precipitation changes

the mean soil water content but not the distribution of soil water, especially minima and maxima, through

time (Vachaud et al., 1985). Additionally, the COSMOS sensor’s neutron intensity varies with changes in
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barometric pressure, incoming cosmic radiation, snow, and atmospheric water vapor (Wien et al., 2021).

Therefore, it is important to correct the measurements at the specific location using measured climate vari-

ables. Despite overall reasonable values from COSMOS measurements, missing data and spikes can still

be challenging. Gap filling and removal of erroneous values may be necessary to avoid confusion.

Variability in ADR-transect measurements

Spatial patterns of near-surface soil moisture distribution are not easily discernible from the measurements

presented in figures 26 and 27. One study found that heavier rains and higher mean moisture contents

are often associated with lower spatial variability (Qiu et al., 2001), but this might not be the case here as

there is still a relatively high variability even after a precipitation event right before 19.08. The dominant

controls on spatial variability of soil moisture are land use, relative elevation, and hillslope position in the

surface soil (0-5 cm) (Qiu et al., 2001), but as Søråsjordet only has 1 % slope with the same land use,

none of these dominant factors should affect the spatial variability. Results from another study showed

that spatial variability generally increases with extent scale, with the standard deviation increasing from

0.036 cm3/cm3 at the 2.5-m scale to 0.071 cm3/cm3 at the 50-km scale (Famiglietti et al., 2008). In non-

uniformly wet profiles, the ADR-sensor seriously overestimates the water content when using calibrations

from the manufacturer, as reported by Kargas and Kerkides (2009). This finding appears to be in line with

the manufacturer’s claim of full accuracy up to 50 % (Delta-T Devices Ltd, 1998). Since the ADR sensor’s

maximum value during the measurement campaign did not exceed this threshold, the accuracy beyond this

level could not be assessed. However, it is important to note that the temporal variability observed in the

measurements is greater than the spatial variability. Other studies that have observed spatial variability of

soil moisture have incorporated significantly more measurement points, highlighting the need for further

research to fully understand the spatial variability of soil moisture distribution using ADR-measurements.

Spatial variability of satellite measurements

According to the results of Bauer-Marschallinger and Massart (2021), the spatial analysis of satellite mea-

surements was found to be more consistent than the temporal analysis when compared to in-situ mea-

surements. The surface soil moisture measurements at Søråsjordet were slightly higher compared to Kjer-

ringjordet, and Kroer showed the lowest values. The variation in vegetation cover among the sites may

be a possible cause for the spatial variability in soil moisture measurements. Søråsjordet had short grass
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around 10 cm, Kjerringjordet had longer grass around 40-50 cm, and Kroer was located in a forested area

with a steep slope and shallow, mostly organic soil dominated by litter. Consistent with the satellite mea-

surements, the manual samples presented in Figure 20 also displayed consistently lower measurements at

Kroer. However, the presence of apparent random noise makes it difficult to draw definitive conclusions

from the dataset.

5.3. Comparison of soil moisture instruments

When looking at the SMIoT, SoilVUE, and COSMOS sensors, a similar temporal pattern is observed

(Figure 28). However, consistently higher values are recorded by the SMIoT sensor, while the SoilVUE

sensor records the lowest values. To provide validation of these measurements volumetric samples were

collected as ground truth data (Hillel, 1982). These indicate that the COSMOS and SoilVUE sensors

provide a more reasonable range of soil moisture content compared to the SMIoT sensor, which tends to

overestimate during wet periods.

According to Hillel (1982), the conventional volumetric method for clay samples may not be com-

pletely reliable since some clay may still retain moisture even at a temperature of 105 °C. Additionally,

certain organic matter in the sample can undergo oxidation and decomposition at this temperature, leading

to weight loss that is not solely attributable to evaporation of moisture. Errors in the thermo-gravimetric

method can be decreased by increasing the size and quantity of samples, or prolonging the time spent

drying. However because sampling is a destructive process, it may disturb an observational site, which

would lead to inaccurate data. Because of this, a lot of researchers use indirect techniques that enable

repeated or continuous measurements at the same location. After the equipment is built and calibrated,

these techniques take less time, labor, and cause fewer soil disturbances.

According to Graf et al. (2021), precipitation directly affects soil moisture content by increasing it.

The SoilVUE and SMIoT sensors show an immediate response to precipitation due to their high 10-minute

resolution. On the other hand, the COSMOS sensor has been plotted with daily values to reduce noise, as

suggested by the manual, resulting in a delayed response to precipitation.

The satellite measurements show a significant discrepancy from the other sensors. The satellite mea-

surements consistently report lower soil moisture content, do not exhibit any reaction to precipitation,

and exhibit a different pattern compared to the other sensors. Due to these inconsistencies, the satel-

lite measurements may not be suitable for various applications, such as numerical weather prediction,
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flood and drought prediction, and automatic irrigation. Furthermore, the non-continuous data makes it

less preferable compared to other sensors with higher resolution. Therefore, caution is advised when us-

ing satellite-derived soil moisture data and further investigations are necessary to identify the underlying

causes of these differences.

Currently, the challenge is to determine which soil moisture sensor is best suited for different con-

ditions. To address this issue, the European Association of National Metrology Institutes (Euramet) is

working on developing a multi-scale metrological system with traceable methods for soil moisture mon-

itoring (Zboril, 2022). The goal of the project is to establish a metrological foundation for soil moisture

measurements across multiple scales, ranging from decimeters to kilometers, with a relative uncertainty of

20 % or better. In other words, they want to create a system for measuring the tempospatial variability of

soil moisture, ensuring that the different soil moisture measurement methods are standardized and accu-

rate, allowing for reliable comparisons between data collected by different sensors. This will be important

for a variety of applications, such as agriculture, drought and flood prediction, and climate modeling,

where accurate and reliable soil moisture measurements are essential (Cheng and Cotton, 2004, Crow and

Wood, 2002, Guderle and Hildebrandt, 2015, Hubbard and Wu, 2005, Torres et al., 2013, Zhang et al.,

2020a).

5.4. Evaluation of possible sources of error

Sources of error associated with different soil moisture sensing methods can affect the reliability and

validity of data, as stated by Robinson et al. (2008). This section discusses potential errors including

improper installation, calibration, data handling, and sampling techniques. By identifying these sources of

error, accuracy and precision of soil moisture measurements can be improved

Calibration of the sensors, or rather the lack thereof, can affect the accuracy of the soil moisture mea-

surements. User manuals for soil moisture sensors commonly highlight the need for specific calibration

when dealing with soils with high clay content (Campbell Scientific Inc., 2022, GroPoint™, 2021, Wijaya

et al., 2003). According to a study conducted by Singh et al. (2019), correcting for the effects of clay could

enhance the precision of measurements in clayey soils. The research revealed that in soils with clay con-

tent up to 50 % , soil moisture content was underestimated at low soil moisture levels and overestimated

at high soil moisture levels. Direct soil sampling such as the volumetric method, do not face the same

calibration issues as indirect methods (IAEA, 2008).
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When installing soil moisture sensors, it is important to consider their placement carefully. For in-

stance, inaccurate measurements may be produced by sensors placed in areas with high vegetation density

due to potential interference from roots or leaves (Yang et al., 2018). During the study, unusual behavior

was observed from SMIoT sensor 3, which was later found to be caused by an artificial drainage pipe.

The sensor was relocated, and the impact is now being monitored. Locations were selected for all sensors

at Søråsjordet to avoid interference from forests and buildings, or any other factors that may affect their

measurements.

The accuracy of soil moisture measurements can be impacted by incorrect data handling practices,

such as inaccurate recording or processing of the data. A delayed response to precipitation has been

observed in the COSMOS sensor, which may be mitigated by modifying either the COSMOS sensor

code or the precipitation handling method. Currently, soil moisture measurements from the COSMOS

sensor are plotted at 23:59, the end of the day, while the total precipitation for a given day is plotted at

the beginning of the day at 00:00, creating a potential weakness in the data handling approach due to

the timing difference. Furthermore, the decision to use a 4 mm cutoff for precipitation was based on a

similar approach used by Naalsund (2022), aiming to avoid cluttered plots. However, this approach has

the drawback that occasionally precipitation below 4 mm actually may still have a noticeable impact on

the soil moisture sensors.

The accuracy of soil moisture measurements can be affected by human error during the installation

of sensing methods. Poor contact with the soil and preferential flow due to air gaps caused by improper

installation were discussed in section 5.1. Systematic error due to different samplers was also considered

(Figure 20), but no obvious error was found. Reynolds (1970) highlights another potential source of error

caused by transferring samples from field containers to laboratory containers before drying. This method

can lead to moisture condensation on the inside of the container, resulting in an underestimation of the

moisture content. IAEA (2008) suggest using a portable electronic scale to weigh samples in the field to

mitigate this issue.
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6. CONCLUSION AND OUTLOOK

This study aimed to investigate the temporal and spatial variability of soil moisture at Søråsfeltet in Ås and

surrounding areas, as well as to compare satellite measurements to ground-based sensors. The research

covered the time frame from January to December 2022. The study uncovered significant fluctuations

over time and in soil moisture levels across different depths, with some variability observed horizontally

as well. The satellite measurements did not capture the same variability as the ground-based sensors.

The soil moisture sensors were observed to respond well to precipitation, with high correlation between

the two. However, the SMIoT sensor exhibited overshooting during heavy precipitation in wet periods,

exceeding the upper value limited by the porosity. It is worth noting that the SMIoT sensor, which gen-

erally measured the highest values compared to the other sensors, requires a specific calibration for soil

moisture values over 50 %. The SMIoT and SoilVUE sensors reacted quickly to precipitation due to their

high 10-minute resolution, while the COSMOS with a daily resolution naturally reacted slower. During

the spring, the sensors showed an increase in soil moisture even without precipitation, attributed to melting

of frozen soil leading to an increase of liquid water in the soil.

During the study, it was found that SMIoT sensor 3 had an unusually long period of stable soil moisture

at a depth of 25 cm, with a standard deviation of 0.66 % over a three-month period. Further investigation

revealed the presence of an artificial drainage pipe beneath the sensor, affecting the measurements. This

highlights the importance of proper investigation and selection of sensor placement. To address the issue,

the sensor was relocated, and the problem was resolved.

The soil at Søråsjordet has a high clay content, which presents a common challenge for most soil

moisture sensors. The hysteresis effect of the soil’s expansion and contraction characteristics can make it

difficult to establish good soil contact with the probe. Furthermore, after several wetting and drying cycles,

the soil may loosen and create air gaps around the sensor, leading to inaccurate measurements. Proper

installation techniques and a special calibration for this type of soil would be beneficial to overcome this

problem.

Regarding the vertical spatial variability, the shallow soil moisture layers exhibited larger fluctuations

than the deeper layers, observed in both the SMIoT sensors and the SoilVUE sensor. The SMIoT sensors

at 5 cm showed a diurnal pattern, potentially correlated with temperature, although this was inconclusive.

This trend was less visible in the deeper layer, consistent with the faster response of shallow soil layers
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to meteorological events, such as temperature variations and precipitation, compared to deep soil layers.

The overall trend for all sensors suggests lower vertical and horizontal spatial variability when the soil was

close to or at its saturation point.

The volumetric samples collected as ground truth indicated that the COSMOS and SoilVUE provided

a more reasonable range of soil moisture compared to the SMIoT sensor. However, the SoilVUE sensor

had some sensors providing data at incorrect depths, possibly due to sensor malfunction or data transfer

issues. The satellite measurements consistently showed soil moisture levels below the wilting point, did

not react to precipitation, and did not exhibit the same pattern as the other sensors. Therefore, satellite

measurements do not perform well compared to the well-probed ground based measurements.

The insights gained from this study will benefit a range of fields. By understanding the temporal and

spatial variability of soil moisture, and how well different soil moisture sensors perform, there is potential

for better water management, numerical weather prediction, disaster risk reduction, prediction and miti-

gation of the impacts of climate change, and sustainable development. This study made several specific

contributions: first, it compared various soil moisture sensors in Ås; second, it identified malfunctions in

the SoilVUE sensor at Søråsfeltet; third, it contributed to the verification process for relocating a SMIoT

sensor by discovering a drainage pipe that was affecting measurements in its original location; and fourth,

it determined that satellite measurements are not appropriate for this region. The practical applications of

research on soil moisture make it an important area of study with far-reaching implications for the future.

6.1. Further work

To improve the accuracy of the SoilVUE sensor, it is recommended to refill any cracks that may be af-

fecting the contact between the sensor and soil. If this does not result in more accurate measurements,

reinstalling the sensor may be necessary. Additionally, further investigation into the 10 and 50 cm sensors

is needed to determine the cause of malfunction or data transfer issue.

To improve the accuracy of the SMIoT sensors, a temperature correction using the LM-Uncorrected

or LM-Corrected method by Young et al. (2008) could be applied to account for variations in temperature

affecting soil moisture measurements.

The current state of soil moisture estimation using Sentinel-1 data exhibits a significant discrepancy

from ground-based sensors, indicating a need for improvement. Fortunately, ESA is set to launch two new

Sentinel-1 satellites in the near future, which are hoped to significantly enhance the quality and quantity
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of soil moisture data. These new satellites, Sentinel-1C and Sentinel-1D, will be equipped with advanced

sensors and improved capabilities that will allow for higher resolution and more frequent soil moisture

measurements (ESA-3, 2022).

Finally, there is also potential for using machine learning algorithms to improve the accuracy of soil

moisture measurements and better understand the underlying patterns and drivers of soil moisture variabil-

ity over time and space. These are all exciting directions for future work that could contribute significantly

to the understanding of soil moisture dynamics and improve the reliability of soil moisture data for a wide

range of applications.
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