

Master’s Thesis 2023 30 ECTS

Faculty of Science and Technology

Prediction of nitrogen purification in

wastewater with Machine learning

Sebastian Tobias Becker

MSc Data Science

Abstract

Wastewater treatment plants are necessary for avoiding environmental pollution by humans.

Last year the European Commission proposed a new directive with stricter requirements for

wastewater treatment plants [1]. To meet the proposed regulatory changes regarding the allowed

amount of pollution, many wastewater treatment plants need expensive facility upgrades. These

upgrades may increase land use. Additionally, the taxpayers will most likely have to pay for

the expenses related to meet the new requirements for the wastewater treatment plants. One

possible solution for reducing the cost and land use could be to optimize the processes used

today with new technology. This study will investigate if it is possible to use machine learning to

predict the amount of nitrate contained in the wastewater after denitrification. For this purpose,

historical data from two different denitrification processes from one wastewater treatment plant

is utilized. The first process dosed methanol based on measurements of nitrate, oxygen, and

flow before denitrification, while the second process dosed methanol based on measurements of

nitrate, oxygen, and flow before denitrification and previous nitrate out measurements. The

data were collected between 30.11.2022 and 05.01.2023. One statistical approach and two

machine learning models were tested for predicting the amount of nitrate contained in the

wastewater after denitrification. The statistical method is a seasonal autoregressive integrated

moving average with exogenous variables (SARIMAX) and the machine learning approaches are

the long short term memory (LSTM) and extreme gradient boosting (XGBoost) algorithms.

For the first process all models showed similar results with SARIMAX as the best model

with an MSE, RMSE and MAE of 0.15, 0.39 and 0.29 respectively. For the second process

the SARIMAX model outperformed the LSTM and XGBoost with MSE,RMSE and MAE of

2.09, 1.45 and 1.24 respectively. Our research show that it is significantly easier to get good

performing models for process one than two. We are presenting some aspects which should be

further investigated to obtain a solution that is ready to be put into use.

2

Sammendrag

Renseanlegg er nødvendig for å unng̊a miljøforurensninger fra mennesker. I fjor foreslo EU-

kommisjonen et nytt direktiv med strengere krav til renseanlegg [1]. For å møte de foresl̊atte

reguleringene ang̊aende tillatt mengde forurensning, trengs kostbare oppgraderinger av mange

anlegg. Disse oppgraderingene kan føre til økt arealbruk. I tillegg vil mest sannsynlig skattebe-

talerne m̊atte betale for utgiftene knyttet til å oppfylle de nye kravene. En mulig løsning for å

redusere kostnadene og arealbruk kan være å optimalisere dagens prosesser med ny teknologi. I

denne oppgaven vil det undersøkes om det er mulig å bruke maskinlæring til å predikere meng-

den nitrat som er igjen i avløpsvannet etter denitrifikasjon. For dette formålet er historiske

data fra to ulike denitrifikasjonsprosesser fra et renseanlegg benyttet. I den første prosessen

er metanoldoseringen basert p̊a målinger av nitrat, oksygen og strømning av avløpsvann før

denitrifikasjon. I den andre prosessen doseres metanol basert p̊a målinger av nitrat, oksygen,

strømning av avløpsvann samt tidligere nitrat ut målinger. Dataen ble samlet inn mellom

30.11.2022 og 05.01.2023. En statistisk tilnærming og to maskinlæringsmodeller ble testet for å

predikere mengden nitrat som er i avløpsvannet etter denitrifikasjon. Den statistiske metoden

som ble brukt er en SARIMAX modell og maskinlæringsmetodene er LSTM og XGBoost. For

den første prosessen viste alle modellene lignende resultater, hvor SARIMAX var den beste

med en MSE, RMSE og MAE p̊a henholdsvis 0.15, 0.39 og 0.29. For den andre prosessen var

SARIMAX den klart beste modellen med en MSE, RMSE og MAE p̊a henholdsvis 2.09, 1.45 og

1.24. Disse resultatene indikerer at det er lettere å lage gode modeller for den første prosessen

enn den andre. Til slutt presenteres noen aspekter som bør undersøkes videre for å f̊a en løsning

som kan tas i bruk.

3

Acknowledgements

This thesis represents the final milestone of my master’s degree at Norwegian University of Life

Sciences (NMBU) and symbolizes the end of a significant chapter in my life. I have had an

amazing time at NMBU.

I express my gratitude to my supervisor, Hans Ekkehard Plesser, for his guidance and insightful

discussions.

I would also like to thank my supervisor at Sintef, Sølve Eidnes, for his valuable guidance and

engaging discussions. Additionally, I am grateful to Sintef and Sølve Eidnes for providing me

with the opportunity to work on this exciting problem statement.

Special thanks go to Veas, particularly Hilde Johansen and Anne-Kari Marsteng, for answering

all my questions regarding wastewater treatment.

Lastly, I want to thank my girlfriend, friends, and family for their constant support.

Ås, 14.05.2023

Sebastian Tobias Becker

4

Contents

1 Introduction 9

1.1 Context . 9

1.2 Thesis objective and motivation . 10

2 Theory 11

2.1 Description of the wastewater treatment plant 11

2.1.1 The biological treatment step . 12

2.1.2 Methanol dosage strategies . 13

2.2 Machine Learning . 13

2.2.1 Enabling computers to learn from data 13

2.2.2 Learning strategies in ML . 13

2.3 Artificial neural network . 15

2.3.1 Single-layer neural network . 15

2.3.2 Multilayer artificial neural networks . 17

2.3.3 Recurrent neural network . 19

2.3.4 Long short-term memory . 21

2.4 Ensemble learning . 22

2.4.1 Extreme gradient boosting . 22

2.5 Time series forecasting . 24

2.5.1 Time series . 24

2.5.2 Stationarity and differencing . 24

2.5.3 Autoregressive . 25

2.5.4 Moving average . 25

2.5.5 Autoregressive integrated moving averge 25

2.5.6 Seasonal autoregressive integrated moving averge with exogenous variables 26

2.6 Workflow of machine learning . 26

2.7 Overfitting vs underfitting . 28

2.8 Performance metrics for regression . 29

2.9 Evalution protocols for machine learning . 29

2.9.1 Hold out method . 30

2.9.2 K-fold cross validation . 30

5

3 Method 31

3.1 The data sets . 31

3.1.1 Features and target . 31

3.2 Pre-processing and data analysis . 32

3.3 Method Selection . 33

3.4 Model implementation and development . 34

3.4.1 SARIMAX . 34

3.4.2 LSTM . 35

3.4.3 XGBoost . 36

3.5 Baseline . 37

3.6 Software . 37

4 Results 38

4.1 Data exploration . 38

4.2 Results on methanol dosage without feedback 41

4.2.1 XGBoost . 41

4.2.2 LSTM . 42

4.2.3 SARIMAX . 43

4.2.4 Summary of the results when methanol was dosed without feedback . . 44

4.3 Results on methanol dosage with feedback . 44

4.3.1 XGBoost . 44

4.3.2 LSTM . 46

4.3.3 SARIMAX . 46

4.3.4 Summary of the results when methanol was dosed with feedback 47

5 Discussion 48

5.1 The data sets . 48

5.2 Differences between the process when methanol is dosed with and without feed-

back . 49

5.3 Struggles with feedback . 49

6 Conclusion and recommendations 51

6.1 Conclusion . 51

6.2 Recommendations . 51

6

List of Figures

2.1 Building blocks of a wastewater treatment plant 12

2.2 Biological treatment in wastewater treatment plant 12

2.3 Adaline algorithm . 15

2.4 Learning rate . 17

2.5 Fully connected multilayer perceptron . 18

2.6 Recurrent neural network . 20

2.7 Long short term memory cell . 21

2.8 Structure of a tree model . 23

2.9 SARIMAX model . 26

2.10 Under- and overfitting . 28

3.1 Transforming a dataset to a 3D tensor . 35

4.1 Visualization of nitrate out values . 39

4.2 Pearson correlation . 40

4.3 acf plot, both processes . 41

4.4 XGBoost predictions, without feedback . 41

4.5 Important features XGBoost, without feedback 42

4.6 LSTM predictions, without feedback . 43

4.7 SARIMAX predictions, without feedback . 44

4.8 XGBoost predictions, with feedback . 45

4.9 Important features XGBoost, with feedback . 45

4.10 LSTM predictions, with feedback . 46

4.11 SARIMAX predictions, with feedback . 47

7

List of Tables

3.1 Hyperparameters tested in auto arima . 35

3.2 Hyperparameters tested in GridSearch . 36

3.3 Hyperparameters tested in GridSearchCV . 37

3.4 Python libraries used . 37

4.1 XGBoost parameters, without feedback . 42

4.2 LSTM parameters, without feedback . 43

4.3 Performance overview, without feedback . 44

4.4 XGBoost parameters, with feedback . 45

4.5 LSTM parameters, with feedback . 46

4.6 Performance overview, with feedback . 47

8

Chapter 1

Introduction

1.1 Context

In October 2022, the European Commission proposed a new directive for wastewater treatment

[1]. Its primary aim is to regulate the emission of wastewater from municipalities in urban areas.

The wastewater treatment directive primarily regulates the emission of organic material and

nutrient salts from wastewater treatment plants, to prevent overfertilization in the ocean, rivers

etc. [2]. The existing directive applies for wastewater treatment plants in densely populated

areas with organic load of 2000 person equivalents (pe) to fresh water or 10 000 pe to sea water

[2].

The proposed directive will impose stricter regulations on wastewater treatment plants in urban

municipalities. According to Norwegian law, wastewater treatment plants in urban areas are

subjected to a purification requirement of 70% of the amount of nitrate entering the treatment

plant [3]. One of the proposed changes in the directive is to increase the nitrogen remowal rate

85% [4].

According to the applicable directive, there are two mandatory steps for wastewater treatment

plants. The first step is to remove material waste in the wastewater, this is referred to as the

primary step [2]. The secondary step is the chemical or biological treatment of the wastewater

for removing water soluble organic material [2]. The nitrogen removal is an essential part of

the secondary step. Nitrogen removal can be obtained in several ways. One common method

is to use biological filters where bacteria converts ammonia to nitrate by nitrification, and then

nitrate to nitrogen gas, and this process is called denitrification.

Nitrogen is a primary nutrient for the growth of plants, but too high concentration of nitrogen

can be harmful for nature [5]. Too high levels of nitrogen in water can lead to extensive growth

of algae. The overgrowth in algae can lead to eutrophication. Eutrophication is overgrowth

of plants in water and leads to less biodiversity [5]. Under normal conditions the algae serve

as food for living organisms and strengthening the biodiversity. Furthermore, temperature

plays a crucial role in the growth of algae. The production of algae is higher during summer

9

compared to the winter [6]. One effect of global warming is the rise in water temperature. This

again can lead to eutrophication if there is too much nitrogen in the water [6]. The arguments

presented above are the main arguments for why it is important to remove the nitrogen from

the wastewater before it is released back into rivers, lakes etc.

1.2 Thesis objective and motivation

Veas is the largest wastewater treatment plant in Norway and is owned by the municipalities

Oslo, Bærum and Asker. The facility is located in Slemmestad and is responsible for treating

the wastewater from the the owners and Nesodden municipality. Veas is a decisive contributor

for keeping the Oslofjord clean. One of the measures to keep the Oslofjord clean is the den-

itrification of the wastewater. Veas adds methanol to the wastewater as a carbon-source for

the denitrification process. The goal of Veas is to predict the amount of nitrate contained in

the wastewater after denitrification under different conditions. This will enable them to test

different strategies for adding methanol and see how it influences the denitrification.

The reason why Veas wants to predict the amount of nitrate contend in the wastewater after

denitrification is to optimize their process. By optimizing their process, they are hoping to

reduce the amount of methanol added to the denitrification process but still comply with the

purification regulations. By lowering the consumption of methanol, Veas expects to lower their

cost of operation. Another reason is to be better equipped for the future with population

growth and increasing supply of wastewater to the treatment plant.

The first steps for making a model predicting the amount of nitrate after denitrification, is to

investigate whether it is possible to predict the amount of nitrate after denitrification with use

of machine learning. Therefore, the aim of this master thesis is to investigate what type of

data and which machine learning algorithms are suitable for predicting the purification degree

of nitrate. To do so this thesis adresses the following research questions:

1. Which models are suitable for predicting the amount of nitrate contained in the waste-

water after denitrification?

2. Which features are important for predicting the amount of nitrate contained in the

wastewater after denitrification?

3. Is it more difficult to predict the amount of nitrate contained in the wastewater after

denitrification when the methanol is added with or without feedback?

10

Chapter 2

Theory

2.1 Description of the wastewater treatment plant

The process described in this section is specific to Veas and is therefor not generalizable to all

wastewater treatment plants.

The water entering the sewerage system consists primarily of wastewater and storm water.

Households and industry are the primary sources of wastewater while storm water comes from

rain or melted snow. From now on, both wastewater and storm water will be denoted as

wastewater. The main goal of a wastewater treatment plant is to remove nutrients and organic

matter from the wastewater in accordance with governmental demands before releasing treated

wastewater to the fjord.

Figure 2.1 shows the treatment steps of a wastewater treatment plant in chronological order.

The primary goal of the grate is to remove physical waste, such as cotton buds, sanitary pads,

wet wipes, plastic, and other waste. Heavy particles like sand and coffee grounds are removed in

the sand trap. The wastewater is then transported and distributed in eight process lines, each

of which consists of a chemical treatment step and a biological treatment step. In the chemical

treatment step chemicals are added to cause the particles in the water to bind together, and the

heavy particles sink to the bottom and form sludge. The sludge is pumped out, while the water

is transported to the biological treatment step. The objective of the biological treatment is to

remove nitrogen from the wastewater with help of bacteria. The biological treatment step is

where methanol is added, and we will therefore elaborate more on the design of this treatment

step.

11

Figure 2.1: Schematic overview of the main building blocks of a wastewater treatment plant.

2.1.1 The biological treatment step

The biological treatment process is a two-step process with nitrification followed by denitri-

fication. In the nitrification step bacteria are transferring ammonia into nitrate and in the

denitrification step the bacteria transfer the nitrate into nitrogen gas. Figure 2.2 shows the

flow of wastewater through the biological treatment step. Several real-time measurements are

taken during the biological treatment. The measurements of most interest for the denitrification

process are measurements of oxygen and nitrate concentrations. Methanol is added before the

wastewater is pumped equally into four denitrification(DEN)-filters. The exception is when one

filter is cleaned, which happens approximately once per day. Then the wastewater is pumped

into the remaining filters. Methanol works as a energy source for the bacteria in the DEN-filters

[7]. Real-time measurements of nitrate level is taken after the DEN-filters. The measurement

is taken from a small tub which is filled with treated water from one of the four DEN-filters

for fifteen minutes before another filter fills the tub for fifteen minutes. Fully treated water is

then discharged into the Oslofjord.

Figure 2.2: Schematic overview of the biological treatment in the wastewater treatment plant.

The denitrification step depends on several factors. Some of the most important factors are

the temperature of the wastewater, available oxygen and methanol in the wastewater, amount

of water going through the filters and the condition of each filter [7]. At regular intervals the

DEN-filters are washed and this can affect the denitrification. For more information about the

denitrification process, see [7, 8].

12

2.1.2 Methanol dosage strategies

In this thesis we will investigate two different approaches for how to dose methanol. The two

different ways are:

1. With feedback: This is the most common way of adding methanol to the denitrifi-

cation process. The dosage of methanol depends on four factors: nitrate and oxygen

measurements in the tank before the denitrification, flow of wastewater, and nitrate mea-

surement after denitrification. This method is called with feedback since previous nitrate

measurement after denitrification has an influence on the methanol dosage.

2. Without feedback: This is an alternative dosage method. The difference is that the

methanol dosage is solely dependent of nitrate and oxygen measurements in the tank

before denitrification and flow of wastewater. Previous nitrate measurement after den-

itrification does not influence the methanol dosage, and therefore this method is called

without feedback.

2.2 Machine Learning

2.2.1 Enabling computers to learn from data

Humans learn through a variety of methods, such as observation, trial and error, repetition,

feedback, etc. Learning involves changes in the brain which lead to acquiring knowledge, expe-

rience, and behaviour. The human ability to learn gives us the possibility to retain information

over time. In this way we are able to learn from the past and recall the information in the

future. Machine learning tries to mimic both the human ability to learn and to recall learned

information. In other words, machine learning is the science of enabling computers to learn

from data. Arthur Samuel, who was one of the pioneers in Artificial intelligence (AI), defined

machine learning as “The field of study that gives computers the ability to learn without be-

ing explicitly programmed” [9]. Through the development of machine learning(ML), several

strategies on how to enable computers to learn have emerged.

2.2.2 Learning strategies in ML

The three learning strategies of ML are supervised learning, unsupervised learning, and rein-

forcement learning. The available data set and the problem domain determine which learning

strategy should be utilized. Since the data set influences which learning strategy is the right one

to utilize, one must first understand the different types of data sets. In the ML domain, data

sets are either labelled or unlabelled. Unlabelled data sets are a collection of data samples with-

out any form of labels. When dealing with unlabelled data the machine learning algorithm must

learn these labels by itself, and this leads to a more demanding training process. Clustering is

a common problem in which unlabelled data is grouped into clusters. A clustering algorithm

could be utilised for grouping news articles based on their content into several clusters where all

13

articles in one cluster have some similar attributes. Labelling data can be labour intensive and

therefore cost consuming [10]. If each news article is assigned a specific label or category, then

the data is labelled. Now that the difference between labelled an unlabelled data is established

the next three paragraphs will elaborate on supervised learning, unsupervised learning, and

reinforcement learning.

Supervised learning

Supervised learning is a ML strategy in which an ML algorithm is trained using labelled data.

The labelled data consists of features and one or several target variables. Each training sample

in the training data consists of a set of features and a related target. During training, the

supervised ML-algorithm learns to map features to targets by identifying patterns between

features and targets. Once the model is trained it can make predictions on unseen data by using

the learned pattern to predict the associated target to the unseen data. There are two main

subcategories of supervised learning called classification and regression [11]. In classification

we try to classify data samples to predefined discrete classes, while regression tries to predict

a continuous value to a data sample. Supervised learning can be utilized in many applications

such as image recognition, fraud detection, spam filters. Supervised learning is a fundamental

technique in ML because of its ability to map features to targets and therefore it is an essential

tool in a variety of fields [11].

Unsupervised learning

Unsupervised models are trained on unlabelled data. By using unsupervised learning we are

able to extract hidden structure or patterns in our data without knowing the targets [12]. Two

main methods of unsupervised learning are clustering and dimension reduction. Clustering

involves dividing data into similar clusters without having any explicit information about the

correct cluster association. The samples assigned to the same group have some degree of

similarity and are dissimilar to samples in other groups. Dimension reduction is sometimes

necessary when working with high dimensional data to limit the need for storage. It can also

be necessary for compressing high dimensional data to a smaller subspace but still capturing

most of the information contained in the data.

Reinforcement learning

In reinforcement learning the goal is to train an agent to interact with an environment with the

aim of maximising the reward [12]. In other words, the agent learns to take actions that lead

to the best possible outcome, based on the feedback from the environment. The agent receives

either reward or punishment from the environment based on its actions. The agent must learn

the optimal action at every stage through trial and error, it does not have access to the optimal

policy, in contrast to supervised learning where the ground truth is known. Reinforcement

learning is used in a wide range of applications as game playing, robotics, and autonomous

driving.

14

2.3 Artificial neural network

Artificial neural networks (ANN) are a subcategory of machine learning, which has gained

significant attention in years [11]. This section will start with explaining the feedforward

network. This is done to build an understanding for the main building blocks of ANN. Once

the basic concepts of ANNs are explained, the more complex recurrent neural networks (RNN),

specifically long short-term memory (LSTM) will be explained. LSTM networks will be one of

the primary methods used in this thesis.

2.3.1 Single-layer neural network

The foundations for ANNs were laid early in 1940s with the work of W. S. McCulloch and

W. Pitts who published an article about the MccullockPits neuron [11]. Some years later

F. Rosenblatt published the perceptron learning algorithm based on the work of McCulloch

and Pitts [11]. Eventually in the beginning of the 1960s “Adaline” was introduced. The

Adaline algorithm was an enhanced version of the perceptron. Figure 2.3 shows a schematic

overview of the Adaline algorithm. The Adaline algorithm will be used for building the basic

understanding for single-layer neural networks and later multi-layer neural networks.

Figure 2.3: Schematic overview of the Adaline algorithm.

The Adaline algorithm is a supervised leaning algorithm. It is one of the simplest forms

of a single layer ANN. The algorithm works by iteratively adjusting the weights based on

a linear activation function ϕ(z) where z is the linear combination between the weights and

feature values. The weights are initially set to small random values, and they are updated

iteratively during the training phase using a gradient descent algorithm. The weights are

updated during the training to minimize a cost function J which in the case of Adaline algorithm

is the sum of squared errors between predicted output from the activation function and the

actual output. The learning rate which controls the step size of the weighted updates is an

important parameter to ensure good performance. The threshold function is used for making

the final output prediction. All equations are obtained from [11, Ch. 2] and the Adaline learning

rule can be summarized in the following steps:

1. Initially the weight vector(w) is initialized to small random numbers. Weights are the

learnable parameters of the Adaline model.

15

2. The net input(z) is calculated, this is a linear combination of the weight vector w and

the feature vector(x). The net input is defined as:

z = w0x0 + w1x1 + ...+ wmxm, (2.1)

where w0x0 is called the bias unit and x0 is by definition equal to 1.

3. In the case of Adaline the net input is transformed to an activation through the linear

activation function ϕ(z), where ϕ(z) = z. The output of the linear activation function is

used for training the weights of the Adaline algorithm.

4. One essential step of the Adaline algorithm is to minimize the cost function, during

training. Minimizing a cost function is a common step for supervised machine learning

algorithms. The cost function for Adaline is defined as:

J(www) =
1

2

∑
i

(
y(i) − ϕ

(
z(i)

))
. (2.2)

The cost function of Adaline has two important properties. First, it is a convex function,

and second it is differentiable. Because of these two properties one can use gradient de-

scent to finding the weights minimizing the cost function. The main idea behind gradient

decent is to take a step in the opposite direction of the gradient(∇J (w)) iteratively, until

a global or local minimum is reached. The weight change is defined as:

w := w +∆w, (2.3)

where ∆w is the negative gradient multiplied with the learning rate (η) given by:

∆w = −η∇J(w). (2.4)

To compute the gradient of the cost function, it is necessary to calculate the partial

derivetive of the cost function with respect to each weight. The formula for updating

weight wj is defined as:

∆wj = −η
∂J

∂wj

= −η
∑
i

(
y(i) − ϕ

(
z(i)

))
x
(i)
j . (2.5)

In the case of Adaline all weights are updated simultaneously.

5. Step 2–4 is repeated until some criterion for stopping is meet. There are two main

approaches for termination, the first one is to run the algorithm for a pre-defined number

of epochs(number of training iterations). The second is to run until there is almost no

change in the weights between two consecutive epochs.

6. Step 1-5 can be defined as the training process. The final output of the activation function

16

is passed to a threshold function. In the case of a binary classification the threshold

function for Adaline is assigning the label one if the activation is greater than 0 and -1

otherwise.

The correct chose of learning rate is a crucial step in the Adaline algorithm. The learning rate

impacts the convergence of the algorithm. An excessively large learning rate may result in

overshooting the minimum. While a small learning rate may lead to slow convergence or being

trapped in a local minimum. The different scenarios are visualised in Figure 2.4.

Figure 2.4: Shows how different learning rates influence the convergence of the model and where
the blue dot is the first random initiation of the weights.

Feature scaling is the process of transforming features to the same scale. Machine learning

algorithms utilizing gradient descent can benefit from feature scaling since the features are on

the same scale. From Equation 2.5 we see that large values of x
(i)
j have a greater impact on

delta ∆wj than small values of x
(i)
j . Feature scaling ensures that all features contribute equal

to ∆wj, and this may lead to faster convergence because the optimizer may need fewer steps

to find the global minimum [11]. Standardization and normalization are two common feature

scaling technique. Standardization normalise the features with mean equal to 0 and standard

deviation of 1 while normalization scale the feature to the range (0, 1) [11]. Normalization is

often called min-max-scaling.

2.3.2 Multilayer artificial neural networks

A multilayer artificial neural network contains more than one layer. In contrast, a single-layer

ANN as the Adaline has only one connection between input and output layer. The three main

building blocks of a multilayer artificial neural network is the input layer, hidden layer, and the

output layer. These layers consist of multiple units. Multilayer neural networks can be divided

into three main groups: fully connected neural networks, convolutional neural networks, and

recurrent neural networks. The fully connected neural network and recurrent neural networks

will be further elaborated here.

17

The fully connected neural network will be explained through a multilayer perceptron (MLP).

An overview over the MLP is illustrated in Figure 2.5:

Figure 2.5: Schematic overview of a fully connected multilayer perceptron.

The MLP shown in Figure 2.5 consists of one input layer, one hidden layer and one output

layer. Further it is an example of a fully connected artificial neural network because all nodes

in the earlier layer are connected to all nodes in the following layer. If there is more than one

hidden layer the model is called a deep neural network [11]. Additional layers and nodes will

lead to more complex models. If there is too few nodes or hidden layers the model will not be

complex enough. For obtaining the optimal number of nodes and layers one has to try many

different combinations. There is no one-size-fits-all solution for the number of hidden layers

and nodes. The MLP learning procedure can be summarized in three steps according to [11,

Ch. 12]:

1. Forward propagation:

Forward propagation is the process of passing the input data through a neural network

to produce an output. The activation of each unit in one layer multiplied with the weight

vector serves as the input for the next layer. For the MLP algorithem this can be written

on matrix form as:

Z(h) = A(in)W (h) (2.6)

A(h) = ϕ
(
Z(h)

)
, (2.7)

where A(in) is an n × n matrix, m is the number of features and n is the number of

samples. W (h) is an m × d matrix where d is the number of units in the hidden layer.

18

This will result in the matrix Z(h) with dimension n × d. The superscripts (in) and (h)

corresponds to input and the hidden layer.

Similarly for the output layer we can write:

Z(out) = A(h)W (out) (2.8)

A(out) = ϕ
(
Z(out)

)
, (2.9)

where (out) correspond to the output layer.

2. Error calculation:

Based on the output of the network and the true label the error is calculated. The error

indicates the degree of accuracy or precision of the model on the input data. The goal is

to minimize the error during the training, this is done through minimizing a cost function.

There are many different cost functions, and the appropriate to use is dependent on the

problem at hand.

3. Backpropagate:

Backpropagation is an algorithm widely used for training the weights of a neural network.

The backpropagation algorithm works by propagating the error backwards through the

network, starting from the output layer and moving towards the input layer. Backpropa-

gation utilizes the chain rule for effectively computing the partial derivatives of a complex

function. In the case where gradient descent is used as an optimizing algorithm, the effec-

tively computed partial derivatives come in handy for updating the weights of the model.

Overall, backpropagation is an essential algorithm for training deep neural networks by

effectively minimizing the error and enable the network to accurately predict outputs on

new data.

2.3.3 Recurrent neural network

The theory and equations presented in this section is based on [11, Ch. 16].

Recurrent neural networks are designed for modelling sequential data. Sequential data is when

a sequence of data points are not independent from each other. Recurrent neural networks

have many of the same characteristics as the feedforward network, but the main difference is

how information is propagated through the network. For example, in the case of a feedforward

network with three layers, the information flows from the input layer to the hidden layer and

from the hidden to the output layer. While in a recurrent neural network with three layers,

the hidden layer gets two inputs. One from the input layer and the other from the hidden

layer from the previous time step, as shown in the unfolded single layer RNN in Figure 2.6.

The information from the previous time step enables the network to have memory of past time

points.

19

Figure 2.6: Schematic overview of recurrent neural network.

The weights do not depend on time and therefore they are shared across the time axis. The

net input of the hidden layer depends on two weight matrices: one from the input, while the

other comes from the activation, from the previous time step. The weight matrices are denoted

Wxh and Whh. Wxh is the matrix between the input(x) and hidden layer(h) and Whh is the

weight matrix between time step t and t− 1 from the same hidden layer. The activation of the

hidden layer at time t is calculated as follows:

h(t) = ϕh

(
zzz
(t)
h

)
= ϕh

(
WWW xhxxx

(t) +WWW hhxxx
(t−1) + bbbh

)
, (2.10)

where bh is the bias from the hidden units and ϕh is the activation of the hidden layer.

The output activations of time stamp t, (ooo(t)) are given by:

o(t) = ϕo

(
WWW hohhh

(t) + bbbo
)
, (2.11)

where WWW ho is the weight matrix between the hidden layer and output layer and bbb0 is the bias

from the output layer.

RNN uses backpropagation through time (BPTT) which is slightly different from the back-

propagation used of feed forward neural networks. For more information about BPTT, see

[11, Ch. 16]. One frequent problem with RNN or feedforward networks with many layers are

vanishing or exploding gradients. Vanishing gradients occur when the gradients get smaller and

smaller during the backpropagation. This leads to almost no change in the weights of the earlier

layers, and the model will not converge correctly. Exploding gradients is the opposite where the

gradients get bigger and bigger during the backpropagation. Long short-term memory (LSTM)

is a model for sequence data which has been successful in overcoming the problems regarding

the gradients.

20

2.3.4 Long short-term memory

The theory and equations presented in this section is based on [11, Ch. 16].

The main building block of a long short-term memory (LSTM) is a memory cell, which can be

seen as a replacement of the hidden layer in an RNN. The memory cell allows the LSTM to

handle sequence data with dependencies in the data and the structure of a LSTM is shown in

Figure 2.7.

Figure 2.7: Schematic overview of a LSTM cell, see text for details. The visual-
ization is licensed under the CC-BY license, by Guillaume Chevalier. The boxes in
red, purple, turquoise, and black are changes. The original visualization can be found
her: https://github.com/guillaume-chevalier/Linear-Attention-Recurrent-Neural-
Network/tree/master/inkscape drawings

The LSTM architecture has an additional flow of information called cell state (C) compared to

the RNN in Sec. 2.3.3. A LSTM memory cell consists of three gates called forget gate(ft), input

gate(it) and output gate(ot), marked in purple, turquoise and black, respectively, in Figure 2.7.

The forget gate affects which information to keep in the cell state, and is given by:

fff t = σ(WWW xfxxx
(t) +WWW hfhhh

(t−1) + bbbf). (2.12)

The weight matricesWWW xf andWWW hf are the weights associated to the input (xxx(t)) and the activa-

tion from the previous time step (hhh(t−1)), respectively. The sigmoid function, σ, is responsible

for deciding what information to keep. It uses the input, previous activation and bias (bbbf) to

output a matrix with the same dimension as Ct−1 with values between 0 and 1, where 1 repre-

sents remember and 0 represents forget. The weight matrices and bias vector are the trainable

parts and are responsible for the behaviour of the forget gate.

The input gate and candidate value (C̃i) determine what new information to add to the cell

21

https://github.com/guillaume-chevalier/Linear-Attention-Recurrent-Neural-Network/tree/master/inkscape_drawings
https://github.com/guillaume-chevalier/Linear-Attention-Recurrent-Neural-Network/tree/master/inkscape_drawings

state, and are given by:

it = σ(Wxix
(t) +Whih

(t−1) + bi) (2.13)

C̃i = tanh(Wxcx
(t) +Whch

(t−1) + bc). (2.14)

The sigmoid function in the input gate decides which values are updated, while the tanh

function in the candidate value decides what value that should be added to the new cell state.

The weight matrices and the bias are the trainable parts.

The cell state (C(t)) is updated based on the forget gate, input gate and the previous cell state

C(t−1). The update is given by:

C(t) = (C(t−1) ⊙ ft)⊕ (it ⊙ C̃i), (2.15)

where ⊙ denotes element-wise multiplication and ⊕ denotes element-wise addition.

The output gate is given by:

ot = σ(Wxox
(t) +Whoh

(t−1) + bo), (2.16)

where the weight matrices and bias are the trainable parts. The output of the output gate is

used for updating the hidden units. The update of the hidden units is given by:

h(t) = ot tanh
(
C(t)

)
, (2.17)

where the tanh function compresses the cell state values between -1 and 1 and when multiplied

with the output gate we are left with the activation for the next time step.

2.4 Ensemble learning

Ensemble learning algorithms combine several algorithms to one model. The idea behind

ensemble learning is that several algorithms combined is more generalizable than one single

algorithm[11]. Majority voting is one of the least complex ensemble method, it simply predicts

the label predicted by the most algorithms. For example, if six out of ten models predict x for

a certain sample, then the ensemble model will predict x for that sample.

2.4.1 Extreme gradient boosting

Extreme gradient boosting (XGBoost) is a very popular and powerful ensemble learner. The

main building block of the XGBoost algorithm is the gradient boosting decision tree algorithm.

A decision tree has a tree structure with a root node, internal nodes and leaf nodes as shown

in Figure 2.8, and it works by iteratively dividing the data into smaller chunks based on the

feature that leads to the largest information gain [11]. A decision tree is iteratively dividing the

nodes until it has reached the max depth of the tree, or a node consists of only a single sample.

22

For more information on decision trees, see [11, Ch. 3]. The gradient boosting algorithm can

be summarized in the following steps [13].

1. Calculate the average of the target variable. This value will be used as a baseline predic-

tion in the following steps.

2. Calculate the residual for every sample based on the average value from step one. The

residual is calculated by subtracting the baseline prediction from the real target value.

3. Create a new decision tree with the aim of predicting the residuals.

4. Predict the target value based on the baseline prediction and all decision trees trained

until now multiplied with their learning rate. The learning rate is introduced to reduce

overfitting. In the first iteration the predicted value is calculated by adding the learning

rate multiplied with the residual predicted by the decision tree to the baseline prediction.

5. Compute the new residual based on the predicted value in step four. The residual is

calculated as in step 2.

6. Repeat step 3 to 5 until the desired number of decision trees are built. The desired

number of decision trees is called number of estimators.

7. Make a final prediction based on all decision trees. The calculation of the final prediction

is calculated by adding the prediction of all decision trees multiplied with the learning

rate to the initial prediction.

Figure 2.8: Schematic overview of the structure of a tree based model.

23

2.5 Time series forecasting

The theory and equations presented in this section is mainly obtained from [14, 15].

2.5.1 Time series

A time series is a set of numerical data in consecutive order along one axis, and this axis is

referred to as time [14]. Any permutation of the order will change the information in the data.

By default, time series data is not independent and identically distributed(i.i.d) along the time

axis. For example, daily sea temperature measurements of two successive days are correlated

across the year and daily measurements change between seasons and therefore are not i.i.d.

One parameter traced over time forms a univariate time series. Several parameters traced over

the same time steps form a multivariate time series. Time series are either regular or irregular.

Regular timeseries are defined as a timeseries with equal time difference between all pairs of

consecutive values. This can be denoted as ∆t = t2 − t1 = ti+1 − ti for all i = 1, ..., tmax−1.

For irregular time series at least one ti+1 − ti ̸= ∆t. Many models require regular time series

by definition therefor transforming an irregular time series into a regular time is sometimes

necessary.

Time series are often composed of the sum or product of three components. These components

are trend, seasonality, and random noise [14]. The trend in the time series is a non-periodic

function over time indicating a general direction of development of the time series. Seasonality

is a periodic function describing the oscillation in a time series. Random noise is describing the

time independent randomness in the time series.

2.5.2 Stationarity and differencing

Some models require stationary data. A stationary time series is defined as: “A stationary

time series is one whose statistical properties do not depend on the time at which the series is

observed” [14]. Consequently, a time series with trend or seasonality are nonstationary because

the statistical properties will change with time. To transform a nonstationary time series to a

stationary timeseries a widely used technique is differencing [15].

Differencing computes the difference between successive time points. This is often referred to

as first differences. First differences are used for removing a linear trend. When we have a

linear trend, we assume that:

yt = yt−1 + c+ εt, (2.18)

where c is the average value of the change between two consecutive time points and εt is

random noise for the current time point. By subtracting yt−1 from Equation 2.18 we are left

with yt − yt−1 = c+ εt, and yt − yt−1 is the differenced value denoted y′t. The differenced time

series will result in a time series with length T − 1 where T is the length of the original time

series. The reason for this is because y1 have no previous value y0.

24

Seasonal differencing is the differences for a given time period, such as a year, and the same

period from the previous year. For example, one could subtract daily temperatures in the

previous year from those of the current year. The goal of seasonal differencing is to remove

seasonal variation, and can be denoted as:

y′t = yt − yt−m, (2.19)

where m is the seasonal length.

2.5.3 Autoregressive

Autoregressive (AR) models are widely used in time series forecasting where there is a relation-

ship between past and feature values. This is due to the AR models using a linear combination

of past target variables to forecast new target variables. An autoregressive model of order p

can be written as:

yt = c+ ϕ1yt−1 + ϕ2yt−2 + ...+ ϕpyt−p + εt, (2.20)

where yt−1, ..., yt−p are past values of the target variable, ϕ1, ..., ϕp are the model parameters

and εt is random noise.

2.5.4 Moving average

Instead of using the past values of the target variable in a regression, an moving average (MA)

model uses past errors in a regression like model. A MA model of order q can be written as:

yt = c+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q, (2.21)

where εt−1, ..., εt−p are the past errors and ϕ1, ..., ϕp are the model parameters.

2.5.5 Autoregressive integrated moving averge

An autoregressive integrated moving averge (ARIMA) model is the combination of differencing

with AR and a MA model. ARIMA models are often written as ARIMA(p, d, q) where p is the

order of autoregressive part, d is the degree of first order differencing and q is the order of the

moving average. The ARIMA model can be written as

ŷt = c+ ϕ1ŷt−1 + ...+ ϕpŷt−p + ...+ θ1εt−1 + ...+ θqεt−q + εt, (2.22)

where the ŷ values are the differenced values.

Finding the optimal values for p, d and q can be difficult. One common way of finding p

and q is to use the autocorrelation function (acf) and partial autocorrelation function (pacf).

Autocorrelation is the relationship between yt and yt−k for different values of k and partial

autocorrelation is the relationship between yt and yt−k after removing the effect of 1, 2, . . . , k−1

25

[14]. It is also possible to use an auto ARIMA function to determine the values for p, d and q.

The auto ARIMA function tries different values for p, d and q and returns the best combination.

The drawback of this method is that it is computational expensive.

2.5.6 Seasonal autoregressive integrated moving averge with exoge-

nous variables

Seasonal autoregressive integrated moving averge with exogenous variables (SARIMAX) is a

extension of ARIMA models to incorporate exogenous variables and seasonal effects. The

addition of exogenous variables and seasonal effects can lead to more powerful models [16].

The general notation for SARIMAX models is SARIMAX(p, d, q)(P,D,Q, S), where (p, d, q)

are the non-seasonal parameters that are similar to those of the ARIMA model. The additional

seasonal parameters, (P,D,Q), represent the seasonal autoregression, differencing and moving

average terms, respectively. The seasonal length, S, specifies the number of time units in a

single season.

Exogenous variable are variables that affect the time series being modelled but are not them-

selves affected by the time series. For instance, in the context of predicting the corn production,

the weather would be an exogenous variable because the weather effects the corn production,

but corn production does not influence the weather. By incorporating exogenous variables into

the model, we can potentially improve its forecasting accuracy and robustness [16].

Figure 2.9: Schematic overview of the variables contributing to the forecast of an SARIMAX
model.

2.6 Workflow of machine learning

Chollet and Francois [17] suggest an universal workflow for machine learning tasks. The uni-

versal workflow follows seven distinct steps:

1. Define the problem and collect data

The initial step in applying machine learning is to precisely define the problem. Once

26

the problem is defined it is important to identify a suitable ML method for solving the

problem. Subsequently it is crucial to determine the type of input data that is required for

training the model. It should be kept in mind that the model can only learn information

contained within the data. In other words, if you have some features X and target Y

it does not mean that X contains the information to predict Y . For instance, if you

are trying to predict the corn production of this year based on the corn production from

previous years. This will most likely lead to bad results since the corn production of

recent years might not contain much predicative information about the corn production

of this.

2. Choose an evaluation metric

It is essential to define a common measurement of success to compare the performance

of different ML models. The appropriate metric to measure success is highly related to

the problem. For example, root mean squared error (RMS) or mean squared error (MSE)

are metrics used for regression tasks.Further, it is important to establish a baseline. This

baseline is used for determining whether a particular model is an improvement over the

baseline.

3. Decide on an evaluation protocol

Once the evaluation metric has been identified, it is essential to define the evaluation

protocol. The holdout method, k-fold cross validation and nested cross validation are

three common evaluation protocols [11]. The appropriate evaluation protocol is highly

related to how much data is available. For instance, if there is a small data set, the k-fold

cross validation or nested cross validation would be the appropriate choice of protocol.

On the other hand, if there is plenty of data available the hold out method is appropriate.

4. Prepare the data

For a machine learning model to be able to learn from data, the data must be organized

in a way that the model can interpret. For instance, some models only work with nu-

merical data and not categorical data, which require transforming the categorical data

to numeric data. One-hot encoding is a suitable method for transforming categorical

data to numerical data [11]. If working with deep neural networks, it is recommended to

normalize or standardise the data as this can help the model to train [11]. Additionally,

visualising the data during the data preparation step is recommended. Visualization can

identify characteristics of the data and determine further data preparation steps. The

steps mentioned above are just some of the most common data preparation steps, but the

most important is to prepare the data for machine learning models to be able to learn for

data.

5. Develop a model

The objective of this step is to develop a model that outperforms the baseline. One

essential step of developing a model is to identify the optimal activation function, loss

function and hyperparameters for effectively solving the problem at hand.

27

6. Scale up

After identifying models that outperforms the baseline, it is essential to evaluate the level

of complexity of those models. Is it possible to obtain better results through additional

layers? More hidden units? Or train for more epochs? These are important questions to

ask when optimizing models.

7. Regularize and tune our model

The final step involves regularizing and hyperparameter tuning. Regularizing is used

for tackling overfitting while hyperparameter tuning is done for squeezing out the last

improvements of the model.

2.7 Overfitting vs underfitting

In supervised machine learning we want models to be capable of predicting or classifying unseen

data correctly. If a model is sufficiently good at predicting unseen data, we say that the model

is generalizable. The main goal of machine learning is to produce a generalizable algorithm.

Data used for training machine learning models are known as training data and the data used

for evaluating the model is known as test data. The ideal case is when there is little difference

between the error of the training data and test data. When the model performs bad on both

the training and test data, we say that the model is underfitting. On the other hand, when the

model performance is sufficiently good on the training data and bad on the test data the model

is overfitting. The different scenarios of underfitting, optimal fit and overfitting are illustrated

in 2.10. Models suffering from overfitting have captured all details in the training data, which

are too specific for the training data, and this leads to less generalizability. Underfitting fails

to capture significant details of the training data and are therefore not generalizable.

Figure 2.10: Illustrates underfitting, optimal fitting and overfitting of machine learning models.

28

2.8 Performance metrics for regression

Regression refers to the problem of predicting a numerical value [18]. Performance metrices

are used to evaluate the performance of models. In relation to regression the metric should be

able to measure how far the prediction is from the real value. Mean squared error (MSE), root

mean squared error (RMSE), mean absolute error (MAE) and coefficient of determination R2

are frequently used for regression tasks. These metrices will be further elaborated on below.

• MSE is the mean value of the sum of the squared estimate of errors (SSE).MSE is defined

as:

MSE =
1

n

n∑
i=1

(y(i) − ỹ(i))2, (2.23)

where y(i) is the true value and ỹi is the predicted value. MSE is a unbonded metrics

which means that MSE depends on the target value. This can easily be demonstrated

by: (10− 15)2 < (100− 150)2.

• RMSE is the square root of MSE. The difference between RMSE and MSE is that RMSE

will have the same unit as the target while MSE has units of the target squared. RMSE

is defined as:

RMSE =
√
MSE =

√√√√ 1

n

n∑
i=1

(y(i) − ỹ(i))2. (2.24)

• MAE has the same property as RMSE regarding the error score having the same unit

as the target. Unlike RMSE and MSE, MAE does not penalise larger errors more than

smaller errors, but there is a linear relationship between small and large errors. This

follows from the fact that there is no squaring of the error. MAE is defined as:

MAE =
1

n

n∑
i=1

∣∣yi − ỹ(i)
∣∣ , (2.25)

where yi is the true value and ỹ(i) is the predicted value.

2.9 Evalution protocols for machine learning

The theory presented in this section is mainly obtained from [11, Ch. 6]

To accurately assess the performance of machine learning algorithms, it is essential to evaluate

the model on a data set that is distinct from the one used for training. Various techniques

exist for assessing the effectiveness of these algorithms, with two common methods being the

hold-out method and cross-validation. In the following parts we are going to further elaborate

on these two methods.

29

2.9.1 Hold out method

The hold-out method, which is a commonly used approach for evaluating machine learning

algorithms, involves partitioning the dataset into training and test sets. The training set is

used for model fitting, while the test set is employed for evaluating the performance of the

model. When dividing the data into training and test sets, it is essential to keep in mind that

a larger test set may lead to a loss of crucial information, while an excessively small test set

may not be representative [11]. Typical splits for the hold-out method include 90:10, 80:20,

or 70:30, although the size of the split is highly dependent on the size of the original data.

Furthermore, it is critical to note that when using the test data for model selection, it can

lead to overfiting becuse of information lekage. A way to avoid this is to divide the data into

training set, validation set, and test set. The training set is used for fitting the model while

the validation set it used for model selection. Finally, the test set is used for evaluating the

selected model since it is an unbiased data set that the model has not seen during the training

and selection process.

2.9.2 K-fold cross validation

The k-fold cross validation algorithm works by dividing the training data into k folds. For k

iterations, the model is trained on k − 1 folds and tested on the remaining fold. This process

is repeated k times, resulting in every sample being used for training and validation. The

performance is averaged across the k iterations to obtain an overall estimate of the model

performance.

K-fold cross-validation is less sensitive to the initial partition of the data compared to the

hold out method. It is useful for finding the optimal hyperparameters. Once the optimal

hyperparameters have been identified the final model is trained on the entire data with the

selected hyperparameters and tested on a separate test data to get an indication of the overall

performance of the model.

30

Chapter 3

Method

3.1 The data sets

The multivariate time series used in this study was obtained from Veas, a wastewater treatment

company. They provided two distinct data sets which were selected to investigate the research

questions established in Sec. 1.2. The data sets were collected in the same time span but

from two different process halls with different strategies for adding methanol in the measured

period. Data set one was collected from process hall one and the methanol dosage strategy

called with feedback in Sec. 2.1.2 was utilized. Data set two was measured in process hall two

and the methanol dosage strategy without feedback was utilized. From now on data set one will

be donated as “process where methanol was dosed with feedback”, while data set two will be

denoted as “process where methanol was dosed without feedback”.

Since the data sets were collected in the same time span, we assumed that all factors affecting

the denitrification would be equal for the two process halls, except the strategy utilized for

adding methanol. Consequently, it would be possible to conclude whether it is easier to predict

the amount of nitrate after denitrification for one of the methanol dosage strategies.

3.1.1 Features and target

The two data sets consist of thirteen variables, with each distinct measurement represent-

ing hourly averages of the measured variables. The measurements were measured between

30.11.2022 and 05.01.2023 resulting in two distinct data sets of size 870 × 13. The variables

were selected based on their assumed significant influence on the denitrification process, as de-

termined from a review of relevant literature and input from a process engineer at Veas. These

variables were selected:

• Amount water: Amount of water entering the wastewater treatment plant, measured

in l/s.

• Temp in: Measurement of the temperature of the wastewater before the grate, measured

31

in Celsius.

• Level: Measurement of liquid level in DEN-tank, measured in mH2O.

• Oxygen: Measurement of oxygen level in the DEN-tank, measured in mg/l.

• Nitrate in: Measurement of Nitrate level in the DEN-tank, measured in mg/l.

• Methanol set point: Number between 0 and 100, that adjust the methanol addition if

the current nitrate measurements are over or under given set points.

• Methanol: Measurement of methanol added to the wastewater measured in l/h.

• Pressure pump: Measurement of pressure on the pump, measured in bar.

• RPM: Average number of rounds per minute(RPM) of the two pumps.

• Pressure filter: Average pressure into the four DEN-filters, measured in bar.

• Flow filter: Average flow into the four DEN-filters, measured in l/s.

• Nitrate out: Measurement of Nitrate level in the waste water after denitrification,

measured in mg/l.

• Temp out: Measurement of the temperature of the wastewater after denitrification,

measured in Celsius.

The variables above are arranged in chronological order according to their respective time of

measurement in the wastewater treatment plant. The objective of this thesis is to predict the

Nitrate out based on the other variables in the data set. Despite temp out is being measured

after Nitrate out we included it in our model because this variable is the closest temperature

measurement of the wastewater in the denitrification filter. if the models are to be employed

at Veas in the future, e.g. for decision support, it would be expedient to install sensors for

measuring the temperature in the denitrification-tank.

3.2 Pre-processing and data analysis

The main goal of this step was to investigate the data and potentially discover important

characteristics for the modelling process.

Since we were dealing with time series data the first thing we did was to investigate if there were

any missing or duplicates in the data points. No missing data were found but there were some

duplicated time stamps. All duplicates were removed from the data. Further we checked for

global and contextual outliers. All outliers were sent to a process engineer at Veas for evaluating

if the outliers should be considered as outliers or not. All outliers were measurements that could

be expected, and therefore not removed.

The next step was to standardize the two data sets. For standardizing the data sets we used

32

the StandardScaler 1 function from the preprocessing package from Sklearn. StandardScaler

was used for getting the variables in the data on to the same scale. This can lead to faster

convergence of machine learning algorithms as mentioned in Sec. 2.3.1. Further scaling the

data made it possible to determine feature importance in the case of SARIMAX. If the data is

scaled we can investigate the absolute value of the coefficients of the SARIMAX model, which

corresponds to how much weight the model puts on the respective features when deciding the

output.

After scaling the data, all variables in the data set were plotted in a line plot. This was done

to investigate if there are some repeating pattern or correlation between variables in the data.

The line plot was also used for investigating if the variables had constant mean and variance

over time. To further investigate the correlation between variables we used the Pandas function

corr 2 for obtaining the Pearson correlation. The Pearson correlation tells us if there is a linear

relationship between two variables. The plot acf 3 function from statsmodels was used for

plotting the autocorrelation function. From the autocorrelation plot it is possible to determine

if there is a seasonal pattern and if so the seasonal length.

For evaluating the performance of the models, we used the hold out method. All models were

trained and tested on the same data. The training data contained measurements from between

30.11.2022 and 29.12.2022 and the test data contained measurements from between 30.12.2022

and 05.01.2023. We believe that maintaining the chronological order in the training and test

sets would result in a more accurate assessment of the model performance. This is because if

a model is deployed it is trained on past data and will be utilized to forecast future data.

3.3 Method Selection

SARIMAX, LSTM and XGBoost were selected to investigate which models are suitable for

predicting the amount of nitrate contained in the wastewater after denitrification. Although

SARIMAX is a forecast method and not a prediction method we chose to include this method

because its forecast relies on both prior values of the predictor and exogenous variables. There-

fore, if we provide two different exogenous inputs for the same forecast horizon, it will provide

two different forecasts. Hence it is possible to use the SARIMAX model to predict future nitrate

out values based on different exogenous variables and see how it will affect the denitrification

process. In the following paragraphs will present why we chose to include SARIMAX, LSTM

and XGBoost.

SARIMAX was included because it is a widely used forecasting method for modelling process

with a seasonal component. We know that the nitrate has a daily variation and thus it contains

1Documentation for StandardScaler : https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.StandardScaler.html

2Documentation for corr : https://pandas.pydata.org/docs/reference/api/
pandas.DataFrame.corr.html

3Documentation for plot acf : https://www.statsmodels.org/dev/generated/
statsmodels.graphics.tsaplots.plot acf.html

33

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corr.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corr.html
https://www.statsmodels.org/dev/generated/statsmodels.graphics.tsaplots.plot_acf.html
https://www.statsmodels.org/dev/generated/statsmodels.graphics.tsaplots.plot_acf.html

a daily seasonal component. Because SARIMAX is capable of incorporating daily fluctuations

and handling exogenous variables we thought the model would be suitable for the modelling

problem. Another reason for trying SARIMAX is that it is possible to see feature importance.

If the data set is standardised then the absolute value of the coefficients tells how important a

feature is [19].

LSTM is a powerful machine learning algorithm widely used for time series problems. The

LSTM model was included in this paper because of its ability to deal with long term depen-

dencies. The ability to handle long term dependencies is important because we assume there

is some dependence between consecutive time steps in the data. Another advantage of LSTM

is that it is more robust against the vanishing gradient problem than other RNN architectures.

Both SARIMAX and LSTM learn or incorporate information from previous time points. To

investigate if this information is leading to any improvement in predicting the amount of nitrate

contained in the wastewater after denitrification, we included XGBoost, which only depends

on data points from each feature. XGBoost was also chosen because it is a powerful method

for tabular data while being computational inexpensive. Another advantage of XGBoost is the

built-in feature importance.

3.4 Model implementation and development

3.4.1 SARIMAX

The exogenous variables for the SARIMAX model were current values of all features and the

endogenous variable was the nitrate out values.

The SARIMAX model was implemented in Python using the statsmodels module, a popular

statistical modeling library that provides a range of statistical models, tests, and data visual-

ization tools. To identify the optimal SARIMAX parameters, the auto arima4 function from

the Pmdarima library was utilized. This library is specifically designed for time series analysis,

providing a range of methods and tools to facilitate the modelling of time series data.

To determine the best SARIMAX parameters, several input parameters were specified, includ-

ing the endogenous and exogenous training variables, as well as the start and end values of the

autoregressive, moving average, seasonal autoregressive, and seasonal moving average compo-

nents (p, q, P,Q). The values of p, q, P and Q tested for in the auto arima are listed in Table

3.1. Additionally, the seasonality was set to true. The order of differencing and seasonal differ-

encing is found by the auto arima function by conducting several differencing tests. auto arima

is an exhaustive algorithm which tries every combination of the model parameters and returns

the parameters optimising a given information criterion.

4Documentation for auto arima: https://alkaline-ml.com/pmdarima/modules/generated/
pmdarima.arima.auto arima.html

34

https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.auto_arima.html
https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.auto_arima.html

Parameter Tried parameters
p 0, 1, 2, 3, 4, 5
q 0, 1, 2, 3, 4, 5
P 0, 1, 2, 3
Q 0, 1, 2, 3

Table 3.1: All parameters tested in the auto arima for the SARIMAX.

One limitation of the auto arima function is the possibility to overfitting, as the information

criterion is based on the training set. To mitigate this risk, the top three parameter combina-

tions were tested on a separate test set. The performance of each model was evaluated using

standard metrics such as RMSE, MSE, and MAE, and a visual inspection was conducted. Fur-

ther the performance of the SARIMAX model were compared to the performance of the LSTM

and XGBoost.

3.4.2 LSTM

LSTM requires a 3D tensor with shape (batch, timesteps, features) as input. As the provided

data was in the form of a data frame, we utilized the function presented in Figure 3.1 to convert

it to the desired format. The transformation function returns two 3D tensors, one representing

the training data and the other corresponding to the targets. It takes four parameters, namely,

”alldat,” which is the 2D data frame, ”targetdata,” which is the target, ”input width,” which

represents the lookback length, and ”output tag,” which is the name of the target column.

Additionally, the parameter ”includetarget” is used to specify whether lagged values of the

target should be included in the training data. In this case, we set ”includetarget” to false,

and since we assumed a daily fluctuation, ”input width” to 24. This lead to a 3D tensor with

shape (846, 24, 12).

Figure 3.1: Function for transforming a dataset to a 3D tensor. Code snippet obtained from
Sølve Eidnes.

The LSTM model was implemented using the Keras deep learning API in Python, which offers

a range of deep learning models, layers, optimizers, and other features. The LSTM model

35

utilized in this study was a single-layer LSTM architecture with a single dense output layer

containing a single unit.

To optimize the hyperparameters of the LSTM network, we used the GridSearch5 tuner class

from the Keras library. The GridSearch tuner is a computationally intensive algorithm that

becomes more complex with the addition of more parameters. Because of the resource-intensive

nature of exhaustive algorithms, we constrained the search space for hyperparameters to save

computational power. Additionally, the purpose of this thesis was to identify the overall per-

formance of various machine learning algorithms in predicting the amount of nitrate after

denitrification, rather than maximizing model performance through hyperparameter tuning.

The hyperparameters considered in the GridSearch included the number of units, dropout rate,

activation functions, and optimizer. The values of units, dropout rate, activation functions

and optimizer tested for in the GridSearch are listed in Table 3.2. The GridSearch algorithm

identified the combination of hyperparameters that produced the best performing model, based

on a small validation set drawn from the training data. The hyperparameter combination

that yielded the best performance was subsequently evaluated on the test set, using the same

evaluation metrics as those employed for the SARIMAX model.

Parameter Tried parameters
Units 2, 5, 10, 20, 30, 40, 50
Dropout rate 0.0, 0.1, 0.2, 0.3
Activation functions relu and tanh
Optimizer adam and RMSprop

Table 3.2: All parameters tested in the GridSearch for the LSTM.

3.4.3 XGBoost

Both the LSTM and SARIMAX model have information from past values. To give the XGBoost

the same information we added lagged values as columns. Since there was a daily pattern in

the data we added columns for the last twenty-three hours, resulting in a dataframe of shape

846×288.

XGBoost was implemented by using the xgboost6 package for Python. The Scikitlearn wrap-

per XGBRegressor was used for implementing a XGBoost regressor. To identify the optimal

parameters for the XGBoost the GridSearchCV 7 function from Scikitlearn was utilised. Grid-

SearchCV is an exhaustive hyperparameter tuning algorithm.

The hyperparameters were booster, nestimators, max depth and eta. The tested values in

GridSearchCV are listed in Table 3.3. GridSearchCV identifies the combination of the best

5Documentation for GridSearch: https://keras.io/api/keras tuner/tuners/grid/
6XGBoost package for Python: https://xgboost.readthedocs.io/en/stable/python/python intro.html
7Documentation for GridSearchCV : https://scikit-learn.org/stable/modules/generated/

sklearn.model selection.GridSearchCV.html

36

https://keras.io/api/keras_tuner/tuners/grid/
https://xgboost.readthedocs.io/en/stable/python/python_intro.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

performing hyperparameters based on a cross validation on the training data. The best per-

forming hyperparameters was tested on the test set, and the performance of the model were

evaluated on the same evaluation metrics used for the SARIMAX and LSTM models.

Parameter Tried parameters
nestimators 2, 5, 7, 10, 15, 20, 25, 30, 50
max depth 1, 2, 3, 4, 6, 8
eta 0.1, 0.3, 0.01

Table 3.3: All hyperparameters tested in the GridSearchCV for the XGBoost.

The XGBoost model has a built-in feature importance function. To visualize the feature im-

portance the plot importance function from XGBoost was used. By defining the importance

parameter in the plot importance function it is possible to determine how the importance is

calculated. We used the weight importance: this is the number of times the feature appears in

a tree.

3.5 Baseline

A simple baseline was created to verify the models in this thesis. The simple baseline used was

to predict the average nitrate out value in the training set. For the models to be verified as

success they should at least make predictions more accurate than the average nitrate out value

from the training set.

3.6 Software

The experiment of this thesis was programmed in Python, and the most important libraries

are listed in Table 3.4.

Library Version
Python 3.10.9
Pandas 1.5.3
Statsmodels 0.13.5
XGBoost 1.7.5
NumPy 1.23.5
Scikit-learn 1.2.1
Keras 2.12.0
Tensorflow 2.12.0
Pmdarima 2.0.3
Seaborn 0.12.2
Matplotlib 3.7.0

Table 3.4: Python libraries and the corresponding version used in the project.

37

Chapter 4

Results

4.1 Data exploration

In Sec. 3.1, we assumed that the factors affecting the denitrification process were similar for the

two datasets except for the strategy utilized for adding methanol. A comparison of nitrate out

values between the two datasets are shown in Figure 4.1. The figure reveals significant differ-

ences in nitrate out for the two processes. The nitrate out values for the process where methanol

was dosed without feedback range between 0 and 5, whereas the process where methanol was

dosed with feedback the nitrate out values range between 0 and 10. Moreover, in the data

where methanol was dosed with feedback there is a noticeable increase in nitrate out values

towards the end of the measurement period. This observation may suggest that the denitrifi-

cation process may have been influenced by factors specific to each process or that there is a

significant difference in the nitrate out values for the different strategies for dosing methanol.

38

(a)

(b)

Figure 4.1: Figure (a) shows nitrate out values where methanol was dosed without feedback
and Figure (b) shows nitrate out values where methanol was dosed with feedback. The blue is
the training period and the orange is the testing period.

39

Figure 4.2 shows the Pearson correlation between the variables for the two data sets with

different methanol dosage strategy. We can observe that there are some different correlations

between variables in the two distinct processes for adding methanol. In the process without

feedback there is a correlation of 0.7 between nitrate out and methanol, while for the process

with feedback there is a correlation of 0.1 for nitrate out and methanol. This can indicate that

methanol is more important for predicting the nitrate out value for the process without feedback

than for the process with feedback. There is also a difference in the correlation between nitrate

in and out between the two processes. In the process without feedback nitrate in and out have

a correlation of -0.7 while this correlation is 0.2 for the process with feedback. Furthermore,

pressure pump, amount water, flow filter, pressure filter and rpm are highly correlated for both

processes, with a correlation coefficient between 0.8 and 0.9. This is not unexpected since all

these measures are related to the input flow of wastewater entering the wastewater treatment

plant. Additionally, temp out and temp in are also found to be highly correlated features

for both processes. For the process without feedback all variables besides methanol have a

correlation coefficient between -0.25 and 0.3 with nitrate out. For the process with feedback we

can obtain that nitrate out has a strong negative correlation with nitrate in, temp in, and temp

out. In contrast, pressure pump, amount water, flow filter, pressure filter, and rpm are highly

positive correlation with nitrate out. This can indicate that several variables are important for

predicting nitrate out.

For the process without feedback, we can observe that methanol set point is not correlated

with any other variable, this is as expected since the variable is set to 0 for the process without

feedback because the methanol dosage is not dependent of nitrate out values. For the process

with feedback methanol set point is either increased or decreased depending on if the nitrate

out is over or under a given threshold value.

Figure 4.2: The Figure to the left shows the Pearson correlation between the features and targets
for the process without feedback and the Figure to the right shows the Pearson correlation
between the features and targets for the process with feedback.

40

Figure 4.3a and 4.3b show the autocorrelation for the first hundred lags for both the processes.

We can observe a seasonal pattern in the nitrate out variable with a seasonal length of 24 hours

because there are approximately 24 lags between each peak. This corresponds to the assumed

daily variations in nitrate values entering the wastewater treatment plant.

(a) (b)

Figure 4.3: Figure (a) shows acf for process when methanol is dosed without feedback, and
Figure (b) shows acf for process with feedback.

4.2 Results on methanol dosage without feedback

4.2.1 XGBoost

The GridSearchcv for the XGBoost regressor, resulted in the parameters shown in Table 4.1.

The objective function used was reg:squarederror. The performance of the XGBoost regres-

sor was assessed using the test set, and the results are presented in Figure 4.4. The model

manages to capture the overall trend, but it struggles to replicate the fluctuations in the data.

Additionally, the predicted nitrate out values are one average lower than the actual values.

Figure 4.4: Predicted values generated by the XGBoost model compared to the actual values
from the test period where methanol was dosed without feedback.

41

n estimators max depth eta
50 3 0.3

Table 4.1: The best parameter combination for XGBoost on methanol dosage without feedback.

Feature importance plot for XGBoost when methanol is dosed without feedback is represented

in Figure 4.5. It reveals that methanol, nitrate in, and oxygen are the most significant features

for the XGBoost model. This aligns with the theory presented in Sec. 2.1.1. Additionally, the

analysis suggests that the model places less emphasis on lagged values. Notably, the six most

important features include either current values or values from last time step.

Figure 4.5: Ten most important features for XGBoost when methanol is dosed without feedback.

4.2.2 LSTM

The GridSearch resulted in the parameters presented in Table 4.2 and the loss function used

was mean squared error. Figure 4.6 shows the predictions of the LSTM model on the test data

compared to the actual values, and we can see that the model manages to catch the trend but

struggles with the fluctuations. Moreover, the model tends to predict lower nitrate out values

compared to the actual values.

42

Figure 4.6: Predicted values generated by the LSTM model, compared to the actual values
observed during the testing period when methanol was dosed without feedback.

units activation dropout optimizer
30 relu 0.1 RMSprop

Table 4.2: The best parameter combination for LSTM on when methanol was dosed without
feedback.

4.2.3 SARIMAX

From the autoArima function the optimal model parameters (p, d, q)(P,D,Q, S) were equal to

(1,0,1)(1,0,0,24). This indicates that the predictions for time step t + 1 is based on timestep

t and t - 24h. The four most important exogenous features for the SARIMAX model were

methanol, temp out, flow filter and pressure pump. The predicted values by the SARIMAX

model compared to the actual values are represented in Figure 4.7, and it shows that the model

catches the general trend and some of the fluctuations in the data.

43

Figure 4.7: Predicted values generated by the SARIMAX model, compared to the actual values
observed when methanol was dosed without feedback.

4.2.4 Summary of the results when methanol was dosed without

feedback

Table 4.3 shows the performance of all models compared to the baseline. All models are quite

equal in terms of performance but based on the metrics used, the SARIMAX model is the

best performing model. The baseline is outperformed by all algorithms which indicates that

it is possible to obtain reasonably good results on the process without feedback. Additionally,

the examination of feature importance for both the XGBoost and SARIMAX models, along

with the analysis of the model parameters of the SARIMAX models have indicated that lagged

features are not significant in the prediction of nitrate out values when methanol is dosed

without feedback.

MSE RMSE MAE
XGBoost 0.20 0.45 0.35
LSTM 0.16 0.40 0.31
SARIMAX 0.15 0.39 0.29
Baseline 7.17 2.67 1.92

Table 4.3: Performance overview of the chosen models on the process when methanol was dosed
without feedback.

4.3 Results on methanol dosage with feedback

4.3.1 XGBoost

The best parameter combination obtained from the gridSearchCV are shown in Table 4.4 and

reg:squarederror was used as objective function. Figure 4.4 displays the predicted values for

44

the test period. The model captures the general trend of the data during the first half of the

test period, but the predictions deviate significantly from the actual values in the second half

of the period. Specifically, the predicted values tend to be overestimated.

Figure 4.8: Predicted values generated by the XGBoost model compared to the actual values
observed during the testing period when methanol was dosed with feedback.

n estimators max depth eta
30 4 0.3

Table 4.4: The best parameters for XGBoost on predicting nitrate out when methanol was
dosed with feedback.

Figure 4.9 shows the feature importance for XGBoost on the process with feedback. Based

on the feature analysis of the XGBoost model the three most important features are oxygen,

methanol, and level of the current time point. Additionally, the XGBoost model trained on the

process where methanol was dosed with feedback tends to give priority to the current or lag

one values of the features. Seven of the top ten most important features are current values or

values from last time step.

Figure 4.9: The ten most important features for XGBoost when methanol was dosed with
feedback.

45

4.3.2 LSTM

In Figure 4.5 we see the predictions versus the actual value for nitrate out in the test period

for the LSTM. The LSTM model effectively captures the overall trend in the first portion of

the training data with some overshooting on some tops. The model appears to struggle with

the second half of the test data. The predictions generated by the LSTM model has a lack

of variability in comparison to the actual values. The optimal model parameters are shown in

Table 4.5.

Figure 4.10: Predicted values generated by the LSTM model, compared to the actual values
observed during the test period when methanol was dosed with feedback.

units activation dropout optimizer
40 relu 0.1 adam

Table 4.5: The best parameter combination for LSTM when methanol was dosed with feedback.

4.3.3 SARIMAX

Figure 4.11 displays the predicted values for the test period for the SARIMAX model. As the

other models, SARIMAX can predict the trend in the first half of the test set, but for the

second part of the test set the model struggles to predict the nitrate out values. The optimal

model parameters (p, d, q)(P,D,Q, S) were (3,0,2)(1,0,0,24) for SARIMAX. This indicates that

the model emphasizes previous values more than the SARIMAX model for the process where

methanol was dosage without feedback. The most important exogenous variables for predicting

nitrate out were RPM, flow filter, temp out, methanol and nitrate in. Both SARIMAX models

emphasise methanol, temp out and flow filter for predicting nitrate out.

46

Figure 4.11: Predicted values generated by the SARIMAX model, compared to the actual
values observed during the testing period when methanol was dosed with feedback.

4.3.4 Summary of the results when methanol was dosed with feed-

back

Table 4.6 shows the performance of the models trained on the process with feedback and the

baseline. we can see that the SARIMAX model outperformance the XGBoost and LSTM, this

observation corresponds to the visual inspection. SARIMAX is the only model performing bet-

ter than the baseline. The XGBoost model do not emphasize lagged values and the SARIMAX

model trained on the data with feedback emphasize to some extend lagged values more than

the SARIMAX model trained on without feedback.

MSE RMSE MAE
XGBoost 9.40 3.07 2.68
LSTM 6.94 2.63 2.24
SARIMAX 2.09 1.45 1.24
Baseline 5.77 2.40 1.71

Table 4.6: Performance overview of the best performing models when methanol was dosed with
feedback.

47

Chapter 5

Discussion

5.1 The data sets

The datasets utilized to train the machine learning models in this thesis represent measurements

taken during a relatively brief period during winter. Given that machine learning models only

can learn information contained in the training data, it is reasonable to assume that the models

developed in this study would be applicable to only a limited range of periods. This inference is

based on the understanding that several of the features employed in this study exhibit natural

variability over the course of a year. For instance, the wastewater temperature tends to be

significantly higher during the summer season than during winter. It is reasonable to assume

that the increased temperatures will influence the denitrification process, and therefore could

the information learned during winter not be as applicable anymore. As a result, it is unlikely

that the models developed in this thesis would generalize well to non-winter periods.

The two data sets utilized in this study have several correlated features, as described in Section

4.1. Highly correlated features can lead to less model interpretation [20]. This can be shown

with a short example. If we have the equation Y = X0 + W1X1 + W2X2, where the value of

the coefficients (W) give us a sense of how important the coefficient is for predicting Y . In

case one: Y = 8, X0 = 0, X1 = 2 and X2 = 4, and in case two: Y = 16, X0 = 0, X1 = 4 and

X2 = 8. Then both Y = X0 +4X1 +0X2 and Y = X0 +0X1 +2X2 would satisfy the equation.

In the first equation W1 would have a higher impact on Y while in equation two W2 would

have a higher impact. This indicates that both combinations of coefficients can perfectly fit

the data and that it is somewhat random which parameter the model prefers. Since we have

many correlated features, it might be difficult to conclude which parameters are significant for

predicting the amount of nitrate contained in the wastewater after denitrification.

Highly correlated data sets do not influence the model prediction in a negative way, but can

lead to more computational expensive models because the models must take several parameters

into account [20]. One possible way to reduce the dimension of the data without losing too

much of the information in the data set is to use principal component analysis (PCA).

48

5.2 Differences between the process when methanol is

dosed with and without feedback

From Table 4.3 and 4.6 we can observe that the models trained on the process where methanol

is dosed without feedback yield better results than when methanol is dosed with feedback. In

Section 3.1 we assumed that the features affecting the denitrification process would be equal for

both process halls because the measurements are from the same time period. This assumption

was not completely correct because the process halls in periods had significantly different input

flows of wastewater. The difference in flow led to periods with greater input flow to the process

hall where methanol was dosed with feedback. When there is high flow, the wastewater uses

shorter time to go through the denitrification-filters. This leads to less denitrification and

therefore higher nitrate out values. We assume this is the main reason for why the process with

feedback had higher nitrate out values than the process without feedback. The differences in

operation conditions could be one reason for the difference in prediction performance.

Another reason why there is a prediction difference between the two processes could be due

to how the models are developed. The models are developed to predict the amount of nitrate

contained in the wastewater after denitrification given some input variable. In other words,

a function is trained for predicting an outcome based on some input without having some

feedback. In the process without feedback, the methanol is dosed based on observable mea-

surements before denitrification and thereby no feedback in the process. Hence it is possible

for the models to learn a cause and effect between the features and the amount of nitrate after

denitrification. On the other hand, when methanol is dosed based on previous nitrate out val-

ues, we have a feedback loop. Consequently, we are trying to learn a process with a feedback

loop using a model that does not have a feedback loop. This makes it harder for the model

to learn the cause and effect between the features and targets. The addition of feedback is

most likely one reason for why it is easier to predict nitrate out values for the process without

feedback.

5.3 Struggles with feedback

In Section 4.3 we observed that when methanol was dosed with feedback, all models struggled

with predicting the nitrate out value after about halfway into the test data. This sudden drop in

performance may be due to process specific changes that the model is not capable of predicting.

One process-specific change we are aware of in this period was the increased supply of melted

snow to the wastewater treatment plant. The increase in supply of melted snow might change

the denitrification process in a way that the trained models do not have any information about,

and therefore are we experiencing a drop in performance. One reason for this could be that

the training data does not contain any information about increased supply of meltwater to the

wastewater treatment plant. As mentioned earlier, the dosage strategy with feedback is a more

complex strategy which makes it harder for the model to learn a cause and effect between the

49

features and target. The increased supply of meltwater could lead to changes in the amount of

methanol and therefore also change the cause and effect. On the other hand, the results on the

first half of the test data when methanol was dosed with feedback showed promising results. In

this period all models can predict the general trend in nitrate out values. This might indicate

that it is possible to predict nitrate out values if the process is stable.

50

Chapter 6

Conclusion and recommendations

6.1 Conclusion

In this study we have investigated the possibility to predict the amount of nitrate after deni-

trification for two distinct processes at Veas. In the first process the methanol was added to

the wastewater without feedback. For this process the SARIMAX was the best performing

model, and we obtained a MSE, RMSE and MAE of 0.15, 0.39 and 0.29 respectively. The

difference between the worst and best performing model was 0.05 for all measurements. All

models outperformed the baseline for this process. This observation indicates that it is possible

to predict the amount of nitrate after denitrification for the data tested for in this study.

In the second process the methanol was added with feedback. Process two is the normal dosing

strategy for Veas and is therefore a more realistic process. We found that this process is much

more difficult to make good predictions on. The main reason for this is assumed to be because

of the feedback of prior values which makes it more difficult for the models to learn a cause and

effect. The SARIMAX model was the best performing model on this process with an MSE,

RMSE and MAE of 2.09, 1.45 and 1,24 respectively. The SARIMAX model was the only one

outperforming the baseline.

The feature evaluation in this study has shown that the models emphasize recent features in the

predictions. Adding information about the past does not necessarily lead to better performing

models for this study. Both SARIMAX models and XGBoost models emphasized methanol

values for predicting nitrate out.

6.2 Recommendations

One possible solution for overcoming the challenges associated with the more complex modelling

task when methanol is added with feedback is to include more data during training. The

variation in the data has shown to be difficult to make good models for, therefore we assume

that more data will not necessarily lead to better performing models. Therefore, we suggest

51

including more training data but first apply a clustering algorithm to the training data. The

clusters identified by the algorithm would consist of similar samples and subsequently separate

algorithms could be trained on each of the clusters. When making a prediction on a sample, the

model trained on the cluster most similar to the sample is used for prediction. Alternatively,

a combined prediction of all models where the models are weighted according to the similarity

to the sample. The idea behind this approach is that several specialized machine learning

algorithms are better than one big machine learning algorithm in predicting the amount of

nitrate after denitrification.

52

Bibliography

[1] Proposal for a revised urban wastewater treatment directive, Oct 2022.

[2] Klima- og miljødepartementet. Revisjon av avløpsdirektivet. https://

www.regjeringen.no/no/sub/eos-notatbasen/notatene/2021/des/revisjon-av-

avlopsdirektivet/id2966230/, 2021. Accessed: 07.04.2023.

[3] Lovdata. Forskrift om begrensning av forurensning (forurensningsforskriften). https://

lovdata.no/dokument/SF/forskrift/2004-06-01-931/KAPITTEL 4#KAPITTEL 4, 2007.

Accessed: 03.04.2023.

[4] Norskvann. Forskrift om begrensning av forurensning (forurensningsforskriften).

https://norskvann.no/wp-content/uploads/V2 Gjennomgang-av-forslag-til-

nytt-avlopsdirektiv-fra-EU.pdf, 2022. Accessed: 03.04.2023.

[5] European commission. Protecting waters against pollution caused by nitrates from agricul-

tural sources. https://environment.ec.europa.eu/topics/water/nitrates en, 2021.

Accessed: 07.04.2023.

[6] United states enviormental protection agency. Climate change and harmful al-

gal blooms. https://www.epa.gov/nutrientpollution/climate-change-and-harmful-

algal-blooms, 2022. Accessed: 07.04.2023.

[7] H Oedegaard. Oversikt over metoder for fjerning av nitrogen. Vann, 1980.

[8] Bruce E Rittmann, Joshua P Boltz, Doris Brockmann, Glen T Daigger, Eberhard Morgen-

roth, Kim Helleshøj Sørensen, Imre Takács, Mark Van Loosdrecht, and Peter A Vanrol-

leghem. A framework for good biofilm reactor modeling practice (gbrmp). Water Science

and Technology, 77(5):1149–1164, 2018.

[9] Arthur L Samuel. Machine learning. The Technology Review, 62(1):42–45, 1959.

[10] Rob Toews. Synthetic data is about to transform artificial intelligence.

https://www.forbes.com/sites/robtoews/2022/06/12/synthetic-data-is-about-

to-transform-artificial-intelligence/?sh=59f22d597523, 2022. Accessed:

28.04.2023.

[11] Sebastian Raschka and Vahid Mirjalili. Python Machine learning. Packet publishing Ltd.,

35 Living street, UK, 2019.

53

https://www.regjeringen.no/no/sub/eos-notatbasen/notatene/2021/des/revisjon-av-avlopsdirektivet/id2966230/
https://www.regjeringen.no/no/sub/eos-notatbasen/notatene/2021/des/revisjon-av-avlopsdirektivet/id2966230/
https://www.regjeringen.no/no/sub/eos-notatbasen/notatene/2021/des/revisjon-av-avlopsdirektivet/id2966230/
https://lovdata.no/dokument/SF/forskrift/2004-06-01-931/KAPITTEL_4#KAPITTEL_4
https://lovdata.no/dokument/SF/forskrift/2004-06-01-931/KAPITTEL_4#KAPITTEL_4
https://norskvann.no/wp-content/uploads/V2_Gjennomgang-av-forslag-til-nytt-avlopsdirektiv-fra-EU.pdf
https://norskvann.no/wp-content/uploads/V2_Gjennomgang-av-forslag-til-nytt-avlopsdirektiv-fra-EU.pdf
https://environment.ec.europa.eu/topics/water/nitrates_en
https://www.epa.gov/nutrientpollution/climate-change-and-harmful-algal-blooms
https://www.epa.gov/nutrientpollution/climate-change-and-harmful-algal-blooms
https://www.forbes.com/sites/robtoews/2022/06/12/synthetic-data-is-about-to-transform-artificial-intelligence/?sh=59f22d597523
https://www.forbes.com/sites/robtoews/2022/06/12/synthetic-data-is-about-to-transform-artificial-intelligence/?sh=59f22d597523

[12] Batta Mahesh. Machine learning algorithms-a review. International Journal of Science

and Research (IJSR)., 9:381–386, 2020.

[13] Cory Maklin. Gradient boosting decision tree algorithm explained. https:

//towardsdatascience.com/machine-learning-part-18-boosting-algorithms-

gradient-boosting-in-python-ef5ae6965be4, 2019. Accessed: 04.05.2023.

[14] Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice. OTexts,

2018.

[15] Peter J Brockwell and Richard A Davis. Introduction to time series and forecasting.

Springer, 2002.

[16] Brendan Artley. Time series forecasting with arima, sarima and sarimax.

https://towardsdatascience.com/time-series-forecasting-with-arima-sarima-

and-sarimax-ee61099e78f6, 2022. Accessed: 01.05.2023.

[17] Francois Chollet. Deep learning with Python. Simon and Schuster, 2021.

[18] Jason Brownlee. Regression metrics for machine learning. https://

machinelearningmastery.com/regression-metrics-for-machine-learning/, 2021.

Accessed: 18.04.2023.

[19] Alina Zhang. Feature importance in linear models: Four often neglected but

crucial pitfalls. https://towardsdatascience.com/feature-importance-in-linear-

models-four-often-neglected-but-crucial-pitfalls-e5c513e45b18, 2021. Ac-

cessed: 10.05.2023.

[20] Tarek Ghanoum. Why multicollinearity isn’t an issue in machine learn-

ing. https://towardsdatascience.com/why-multicollinearity-isnt-an-issue-in-

machine-learning-5c9aa2f1a83a, 2022. Accessed: 10.05.2023.

54

https://towardsdatascience.com/machine-learning-part-18-boosting-algorithms-gradient-boosting-in-python-ef5ae6965be4
https://towardsdatascience.com/machine-learning-part-18-boosting-algorithms-gradient-boosting-in-python-ef5ae6965be4
https://towardsdatascience.com/machine-learning-part-18-boosting-algorithms-gradient-boosting-in-python-ef5ae6965be4
https://towardsdatascience.com/time-series-forecasting-with-arima-sarima-and-sarimax-ee61099e78f6
https://towardsdatascience.com/time-series-forecasting-with-arima-sarima-and-sarimax-ee61099e78f6
https://machinelearningmastery.com/regression-metrics-for-machine-learning/
https://machinelearningmastery.com/regression-metrics-for-machine-learning/
https://towardsdatascience.com/feature-importance-in-linear-models-four-often-neglected-but-crucial-pitfalls-e5c513e45b18
https://towardsdatascience.com/feature-importance-in-linear-models-four-often-neglected-but-crucial-pitfalls-e5c513e45b18
https://towardsdatascience.com/why-multicollinearity-isnt-an-issue-in-machine-learning-5c9aa2f1a83a
https://towardsdatascience.com/why-multicollinearity-isnt-an-issue-in-machine-learning-5c9aa2f1a83a

	Introduction
	Context
	Thesis objective and motivation

	Theory
	Description of the wastewater treatment plant
	The biological treatment step
	Methanol dosage strategies

	Machine Learning
	Enabling computers to learn from data
	Learning strategies in ML

	Artificial neural network
	Single-layer neural network
	Multilayer artificial neural networks
	Recurrent neural network
	 Long short-term memory

	Ensemble learning
	Extreme gradient boosting

	Time series forecasting
	Time series
	Stationarity and differencing
	Autoregressive
	Moving average
	Autoregressive integrated moving averge
	Seasonal autoregressive integrated moving averge with exogenous variables

	Workflow of machine learning
	Overfitting vs underfitting
	Performance metrics for regression
	Evalution protocols for machine learning
	Hold out method
	K-fold cross validation

	Method
	The data sets
	Features and target

	Pre-processing and data analysis
	Method Selection
	Model implementation and development
	SARIMAX
	LSTM
	XGBoost

	Baseline
	Software

	Results
	Data exploration
	Results on methanol dosage without feedback
	XGBoost
	LSTM
	SARIMAX
	Summary of the results when methanol was dosed without feedback

	Results on methanol dosage with feedback
	XGBoost
	LSTM
	SARIMAX
	Summary of the results when methanol was dosed with feedback

	Discussion
	The data sets
	Differences between the process when methanol is dosed with and without feedback
	Struggles with feedback

	Conclusion and recommendations
	Conclusion
	Recommendations

