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Abstract

Anomaly detection in industrial time series data is essential for identifying and preventing poten-
tial issues in production processes, ensuring high product quality and reducing downtime. This
master’s thesis investigates the performance of two unsupervised machine learning algorithms,
Local Outlier Factor (LOF) and DBSCAN, for detecting clogging events in the production pro-
cess of Bioco, a company in the biotechnology industry. The main objective is to evaluate the
algorithms’ ability to provide early warnings for clogging events, enabling timely preventive
actions.

The research process involves a thorough theoretical overview, data exploration and prepro-
cessing, application of the selected algorithms, and evaluation of their performance. The study
also examines the sensitivity of the algorithms to parameter tuning and the effectiveness of
incorporating lagged variables as features in the anomaly detection models.

The results indicate that both LOF and DBSCAN can detect relevant anomalies in the time
series data, but their performance in providing early warnings for clogging events is limited.
While LOF requires careful parameter tuning, DBSCAN demonstrates more stable performance
across different parameter settings. The inclusion of lagged variables does not improve the de-
tection of clogging events, showcasing challenges in selecting the optimal lag length.

This study contributes to the existing literature on anomaly detection in industrial time series
data by providing insights into the practical performance of LOF and DBSCAN algorithms in
a specific industrial context. The findings highlight the importance of considering the effects
of lagged variables and parameter tuning when designing anomaly detection models for indus-
trial applications. Future research could explore other anomaly detection algorithms and their
performance in different industrial settings to enhance the generalizability of the results.
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Chapter 1
Introduction

Making sure that manufacturing processes are as efficient and successful as possible is essential
in today’s industrial climate. These procedures are susceptible to anomalies and unforeseen
events that might result in significant financial losses and diminished productivity. To lessen
the impact of such events, accurate and rapid anomaly detection is required. A good illustration
is the continuous enzymatic hydrolysis process used by Bioco to generate food items by process-
ing chicken and other birds. Clogging incidents can significantly interrupt this process, halting
all production and incurring major expenditures for the organization. The goal of this thesis
is to create a machine learning model that can use time series data from sensors positioned
throughout the production process to identify and forecast clogging incidents. These sensors
gather crucial data for identifying system irregularities, including flow rates, pressures, temper-
atures, torques, and velocities. This thesis discusses the difficulties connected with anomaly
identification in industrial time series data. It takes a strong and scalable solution to address
these industrial issues.

1.1 Motivation

The practical application of anomaly detection algorithms to actual industrial time series data
serves as the driving force behind this thesis. By effectively detecting anomalies, companies
like Bioco can implement proactive measures to prevent disruptions, reduce downtime, and
minimize financial losses. A wide number of businesses may benefit from the development of
effective anomaly detection algorithms, which can also advance the field of industrial process
optimization. The growing importance of data-driven decision-making in manufacturing and
the increasing complexity of production processes further emphasize the need for advanced
techniques to identify and predict anomalies.

1.2 Challenges in anomaly detection

Anomaly detection on industrial time series data presents many challenges that have to be
addressed before implementation to create effective solutions. These challenges include, but are
not exclusive to:

Data Quality: Missing values, noise, and discrepancies may be present in time series data col-
lected from industrial processes. It is essential to preprocess and clean the data to address these
problems to guarantee the accuracy and reliability of the anomaly detection algorithms. To ad-
dress data quality challenges, it is essential to apply appropriate data imputation algorithms
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and noise reduction methods.

Feature Selection: A critical part of the procedure is choosing the features that are most rele-
vant for anomaly detection. The performance of the algorithms can be negatively impacted by
irrelevant or redundant features, which can also make the models’ computations more complex.
Advanced feature selection techniques, such as wrapper and embedded methods, can aid in
selecting the most informative features.

Model Interpretability: It’s critical to comprehend how an anomaly detection system functions
in industrial settings. Model interpretability enables domain specialists to understand the dis-
covered anomalies, identify the causes, and take the necessary actions to resolve the problems
and resume the process. Better communication between data scientists and domain specialists
in the industry can be facilitated by developing interpretable models or adding explainability
approaches, resulting in more informed decision making.

Scalability: Industrial time series data can be large and high-dimensional. Anomaly detection
methods should be scalable to handle extensive datasets and adapt to changes in the data over
time. The scalability of the algorithms can be improved and the computational load can be
decreased by using techniques for parallel processing, distributed computing, and efficient data
storage. Incorporating adaptive model updating strategies can ensure that the algorithms re-
main effective as the data and processes evolve.

False positives and negatives: For the detection system to be effective, it is crucial to strike a
balance between false positives, which are instances flagged as anomalies even when they are
regular events and false negatives, cases where the system failed to detect real anomalies. To
reduce the effect of both types of mistakes on the system’s overall performance, an appropriate
balance should be struck. This balance can be enhanced by creating methods to adjust and
fine-tune model thresholds, and incorporating domain knowledge.

Real-time detection: In an industrial setting, real-time anomaly detection is essential for pre-
venting disruptions and minimising the impact on the production process. The selected anomaly
detection algorithms should be able to process the data and detect anomalies in a timely man-
ner, enabling immediate corrective measures. Real-time streaming data processing and efficient
model deployment techniques can contribute to achieving this.

1.3 Objectives

This thesis’ main goal is to investigate and select appropriate anomaly detection algorithms for
Bioco’s time series data, encompassing both traditional statistical methods and deep learning
strategies. The objective is to determine the best-performing algorithm that can accurately
predict, flag, and detect clogging events before they affect production and result in high costs
for the company. The effectiveness of these algorithms will be evaluated by observing how early
anomalous behaviour can be detected prior to a clogging event, and the best algorithm will
be suggested for implementation in Bioco’s manufacturing process. The secondary goal is to
present a thorough understanding of the difficulties encountered in anomaly identification for
industrial time series data and to suggest solutions to these difficulties.
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1.4 Scope and limitations

The analysis of time series data from sensors measuring flow rates, pressures, temperatures, and
other metrics in Bioco’s continuous enzymatic hydrolysis process is the sole focus of this thesis.
While machine learning algorithms will be the main focus, a brief overview of conventional
statistical techniques for anomaly identification will also be given. This thesis does not cover
other data types or attempt to provide an exhaustive review of all possible anomaly detection
algorithms. Instead, a selection of relevant algorithms will be tested and evaluated based on
their performance within the specific context of Bioco’s production process. Furthermore, the
thesis acknowledges the limitations arising from only using data originating from the same
industrial process and the potential impact of these limitations on the generalizability of the
findings.

1.5 Thesis structure

This thesis will, in the following chapters, explore the theoretical foundations of existing ap-
proaches and discuss the challenges and limitations associated with current methods. It will
dive into the theoretical foundations of anomaly detection and explore different methods for
applying these to time series data. Furthermore, results of applying these methods to Bioco’s
data will be presented.
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Chapter 2
Theory

2.1 Anomaly detection

Anomaly detection is a widely studied topic in various domains [1], and it refers to the process
of identifying patterns or data points that significantly deviate from the regular, expected be-
haviour. When focusing on industrial systems, these anomalies may lead to equipment failure,
inefficiencies in the process or safety hazards. Detection of such anomalies in a timely man-
ner is crucial for maintaining the smooth operation of the system, preventing damage, added
costs and ensuring worker safety. In the context of industrial big data, Caithness and Wallom
(2018) emphasise the significance of developing and implementing efficient anomaly detection
techniques at industrial scale [2]. In the case of Bioco’s industrial process, clogging events halt
the entire production for hours, resulting in high costs for the company. Evidently, anomaly
detection is of high importance for preventing the clogging events.

An important aspect to consider in anomaly detection is that deviations from normal behaviour
are not always observable before a major incident occurs. This can be attributed to complex
industrial processes not having comprehensive data or sensors to monitor every aspect of the
system. As such, subtle process changes can go unnoticed until they accumulate and cause major
disruptions. Some anomalies may be the result of complex interactions between different system
components. Such interactions can be difficult to recognise without a deep understanding of
underlying relationships.

2.1.1 Anomaly types

Data anomalies can be split up into three categories: point, contextual and collective anomalies.
Each of these possess unique characteristics and require different approaches for detection and
managing. A comprehensive review of anomaly types and outlier detection methodologies and
can be found in the work of Hodge and Austin (2004) [3]

2.1.1.1 Point anomalies

Point anomalies represent single data points that significantly deviate from the rest of the data.
These can be identified by individual analysis of each data point, deciding if it lies outside the
regular range or the data distribution. These anomalies are the easiest to detect, and can be
discovered using even statistical methods.
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Figure 2.1: A figure illustrating a point anomaly in synthetic data

2.1.1.2 Contextual anomalies

Contextual anomalies are data points that are anomalous in specific contexts, and not necessarily
when considered individually. To find these, one often needs to have an understanding of
the underlying contextual information, making them more challenging to detect. These are
commonly observed in time series, where the context is provided by the data points’ relationships
to their neighbouring data.

Figure 2.2: A figure illustrating contextual anomalies in synthetic data. The deviations here are
with regard to the current state of the process and are not deviations from the total distribution
of the measurements.

2.1.1.3 Collective anomalies

When groups of data points are considered anomalous when seen together, they are seen as
collective anomalies. These are often not detected when examining individual data points, but
require analysis as a whole group before the anomalous pattern emerges. Similar to contextual
anomalies, these are common in time series data, where groups of data points may violate the
regular temporal behaviour.
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Figure 2.3: A figure illustrating collective anomalies in synthetic data

2.1.1.4 Multivariate anomalies

Multivariate anomalies are data points that appear anomalous when considering relationships
between at least two features. These may not be visible when analysing each feature indepen-
dently. These can be challenging to detect in real-world data, as they may be hidden among
relationships between multiple variables. Detecting these is especially important in industrial
settings, where interactions between process variables can have a significant impact on the
overall performance of the industrial process.

Figure 2.4: A figure illustrating multivariate (bivariate here) anomalies in synthetic data

2.2 Simple statistics and thresholds

Before the widespread adoption of machine learning techniques for anomaly detection, various
statistical and threshold-based methods were used to identify outliers and irregular patterns in
data. Such methods are often simple and interpretable, but may struggle to capture complex
relationships between variables in the data and adapt to an evolving process and changing
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conditions. Some of the most commonly used non-machine learning methods for anomaly
detection include:

2.2.1 Threshold methods and statistical process control

Threshold-based methods involve manual setting of predefined limits for variables, and data
points that exceed these thresholds are flagged as anomalies. These can be based on assump-
tions, experience, domain knowledge or other factors. Statistical process control is a collection
of statistical methods for monitoring and controlling of industrial processes. Control charts
plot process variables over time, and SPC uses statistical tests to determine if the process is
running regularly or if any anomaly has occurred. The concept of statistical process control
and the application of it in the industry can be contributed to Shewhart (1931) [4]. While these
methods are easy to implement and effective for detecting changes in the mean or variance of a
process, they are not effective when the anomalies are multivariate, or when non-linear patterns
are introduced. Furthermore, they require manual tuning of thresholds and are not effective in
identifying anomalies that result from subtle changes or complex interactions between variables.

Figure 2.5: Control chart on randomly generated data

The control chart illustrates a threshold-based method for anomaly detection. The plot shows
a randomly generated data set with anomalies, along with the mean, indicated by the red line,
and upper and lower control limits, UCL and LCL, green dashed lines, based on 3 standard
deviations from the mean. Data points exceeding the UCL or LCL are considered anomalies.

2.2.2 Z-score

Expressing in terms of the standard deviation, the Z-score measures how far a data point is
from the mean of the whole dataset. Z-scores are a widely used statistical measure, making it
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easier to compare values from different distributions [5].

Z =
x− µ

σ

Here, x is the data point, σ is the dataset mean and µ is the standard deviation. In the anomaly
detection context, data points with high Z-scores, typically greater than 2, are considered out-
liers and are thus anomalous. It is a simple and widely used method, but is sensitive to extreme
values, assuming that the data is normally distributed.

Figure 2.6: Z-scores of randomly generated data

The histogram illustrates the distribution of Z-scores of randomly generated data. The red
dashed lines at Z-score = 2 and Z-score = -2 represent the threshold for anomaly detection.
Data points with Z-scores greater than 2 or less than -2 are considered anomalies.

As an extension to the Z-score, Hotelling’s T-square method is applied for multivariate data.
The T-square method is a statistical measure that considers the correlation between variables,
making it viable for multivariate data analysis [6].

2.2.3 Interquartile Range

The IQR measures statistical dispersion and is calculated as a difference between quartiles,
representing the range between the first quartile, 25th percentile, and third quartile, 75th per-
centile. In the anomaly detection context, it can be used to identify outliers, by calculating
the range within which most of the data points are expected to fall [7]. Typically, values above
the third quartile plus 1.5 times the IQR, as well as values below the first quartile minus 1.5
times the IQR are considered outliers [8]. The IQR method is a robust measure of variability
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and is less sensitive compared to standard deviation, making it better fit for non-normal data.
However, it is not suitable for detecting subtle anomalies and multivariate, or time series data
without heavy adaptation.

Figure 2.7: IQR method on randomly generated data

The box plot demonstrates the IQR method for anomaly detection. The box represents the
interquartile range from the first quartile, Q1, 25th percentile, to the third quartile, Q3, 75th
percentile. The line inside the box is the median. The whiskers extend to 1.5 times the IQR
from the box. Data points outside the whiskers are considered anomalies.

2.3 Time series data

Time series data are a sequence of observations or measurements collected at regular time
intervals. It is represented by a sequence of observations xt, where xt is the observed values at
time t. The underlying processes in the data often have specific characteristics, such as trends,
seasonalities and autocorrelations, which are to be accounted for in the potential analysis.
The temporal ordering of time series data introduces unique challenges and opportunities for
anomaly detection, and understanding there characteristics and features is important for the
effectiveness of anomaly detection algorithms [9].

2.3.1 Trend

Trends are persistent movements in the data, over a long period of time. Trends can be up-
ward, downward, or flat, showing the general direction of change in the data over a period of
time. Identifying and modeling trends can be important to distinguish between variations and
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anomalies in the data. A simple linear trend can be represented by a straight line in the form
of yt = α + βt+ ϵt, where yt is the observed value at time t, α is the intercept, β is the slope,
and ϵt is the error term [10].

Figure 2.8: Trend in randomly generated time series data

The plot shows a synthetic time series with a linear trend. The blue points represent the
observed values, and the red line represents the underlying linear trend.
In an industrial setting, an upward trend in pressure throughout the day might indicate a
natural step in the process, while a downward trend in temperature might indicate an anomaly.
Detrending techniques, such as differencing, can be applied to remove the trend from the data,
making it easier to apply certain models.

2.3.2 Seasonality

Seasonality refers to regular, periodical and repeating fluctuations in the data. These are of-
ten related to as daily, weekly or annual cycles. Accounting for seasonality can be crucial for
differentiating between normal and anomalous cycles in the data. Similar to the trend, decom-
position techniques can be used to both isolate and remove seasonal components from data.
Consequentially, this might assist anomaly detection algorithms by reduce the rate of false pos-
itives, caused by the periodical fluctuations.

Seasonality is the presence of regular, periodic patterns in a time series data. The seasonal
component St can be represented as a function of time, with a fixed period p [10]:

St = f(t mod p),
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where f is a function that captures the seasonal pattern and t mod p represents the remainder
of the division of t by the period p.

Figure 2.9: Seasonality in randomly generated time series data

The plot shows a synthetic time series with a seasonal pattern. The blue points represent the
observed values, and the oscillation indicates the underlying seasonal pattern with a period of
24.

2.3.3 Autocorrelation

Autocorrelation simply refers to the correlation between a time and its own past values, mea-
sures a degree to which a given data point is related to data points at previous time steps.
Analysis of autocorrelation can reveal important patterns and dependencies in the data. A
strong autocorrelation, for example, indicates that values in a dataset are highly influenced by
its recent past values. The existence of autocorrelation can be investigated using methods like
the autocorrelation function (ACF) or the partial autocorrelation function (PACF).

The ACF is a measure of the correlation between a time series xt and its lagged values xt−k,
where k is the lag. The autocorrelation at lag k, denoted as ACF (k) or ρk, can be calculated
as [10]:

ρk =

∑N−k
t=1 (xt − x̄)(xt+k − x̄)∑N

t=1(xt − x̄)2
,

where x̄ is the mean of the time series and N is the number of observations.
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The PACF is the correlation between a time series and its lagged version after removing the
effect of intermediate lags. The partial autocorrelation function (PACF) for a time series (xt)
at lag k can be represented as [10]:

ϕkk = Corr(xt − x̂
(k−1)
t , xt+k − x̂

(k−1)
t+k ),

where x̂
(k−1)
t and x̂

(k−1)
t+k are the linear least squares predictions of xt and xt+k, respectively,

using lags 1, 2, ..., k − 1.

Figure 2.10: Autocorrelation in randomly generated time series data

The plots show the autocorrelation function, ACF, and the partial autocorrelation function,
PACF, of a synthetic time series. The blue bars represent the correlation at each lag, and the
blue shaded area represents the confidence interval under the null hypothesis of no autocorre-
lation. At lag 0, the autocorrelation is always 1 because a data point is perfectly correlated
with itself. This is a fundamental property of the autocorrelation function. For the partial
autocorrelation function, it also gives the value of 1 at lag 0.

These techniques can aid in determining the presence and degree of autocorrelation in the data
and similar to trend and seasonality, accounting for autocorrelation, models can more accurately
capture the actual underlying structure of the given data and improve their performance.

2.4 Types of machine learning

As a subfield of artificial intelligence, machine learning focuses on developing algorithms and
models that learn from data, making decisions and predictions without explicit programming
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[11]. It is is a powerful analysis tool for large data sets and complex data, and is useful is
the task of anomaly detection [12]. Machine learning can be divided into three main types,
supervised learning, unsupervised learning and reinforcement learning. In this thesis, focus will
be laid on supervised an unsupervised learning, as reinforcement learning is not applicable for
use on Bioco’s industrial data.

2.4.1 Supervised and unsupervised learning

In supervised learning, an algorithm learns from a set of labeled data, consisting of input-
output pairs, with the goal of learning a mapping from inputs to outputs, that then generalises
well to unseen data [11]. This approach works well for tasks like classification, regression and
forecasting with time series. For binary classification problems, we can define the labels as
follows:

yi =

{
1 if i is anomalous

0 else

D = (xi, yi)
n
i=1 is a data set containing n data points, the goal of a supervised learning algo-

rithm is to find a function f(x) that maps the input features xi to their corresponding labels yi.
Such a model is trained by minimisation of a loss function L(y, f(x)), measuring the difference
between the predicted and the true labels.

In the context of anomaly detection, a supervised learning algorithm can be trained on a labeled
data set with examples of both normal and anomalous data points, to then learn to classify
data points as either anomalous or normal based on the data features. Supervised learning
for anomaly detection can be challenging if the data is imbalanced, with a small amount of
anomalies compared to normal data [12].

Advantages

• Because the model is trained on la-
beled data, high accuracy in identify-
ing anomalies can be achieved, provided
that the training data is representative
and there are enough examples of normal
data and anomalies [11]

• Clear decision boundaries between nor-
mal behaviour and anomalies can be
learned, making interpretation of results
easier

Disadvantages

• Getting labeled data can be expensive
and sometimes impossible, especially in
cases where anomalies are rare

• Model is more likely to overfit on the
training data and not generalise well to
new data with unknown anomalies

Unsupervised learning aims to discover structures and patterns hidden in the data, without the
use of labeled examples [11]. It does not map inputs to inputs, but instead focuses on findings
patterns, relationships or clusters within the data [12]. This is used in anomaly detection to
identify deviating or unexpected patterns, indicating anomalies. Unsupervised learning is better
fit for cases when obtaining labeled examples or a balanced data set is difficult.
The objective function here can be represented by minimising a measure of dissimilarity d(xi, xj)
or maximising a measure of similarity s(xi, xj). The choice of this measure and function depends
on the algorithm being used:

L(X) =
N∑
i=1

N∑
j=1

f(d(xi, xj)) or L(X) =
N∑
i=1

N∑
j=1

f(s(xi, xj))
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Advantages

• Does not require labeled data, suitable
for cases where acquiring labeled data is
difficult

• Can potentially detect new or previously
unknown types of anomalies that super-
vised methods might miss [12]

Disadvantages

• Relies on patterns and structures in the
data, which might not be enough for ef-
fective anomaly detection. Thus, gen-
erally, lower accuracy is expected com-
pared to supervised methods

• Results produced can be difficult to in-
terpret, as clear decision boundaries be-
tween anomalies and normal behaviour
are not provided. Thus, the inter-
pretability is lower

2.5 Anomaly detection using machine learning

This section provides a theoretical overview of statistical and machine learning methods that
can be employed for anomaly detection. Statistical methods normally assume that the data
follows a specific distribution, and deviations are considered anomalies. On the other hand, ML
techniques are widely used for anomaly detection, as they have the ability for adaptation to
complex data structures and large data amounts.

2.5.1 Statistical methods

These methods are based on assumptions about the data distribution, and deviations from these
distributions are considered anomalies [13]. The methodology involves fitting a statistical model
to the data, and evaluating the likelihood of data points belonging to the model [14].

2.5.1.1 Gaussian Mixture Models

Probabilistic models assuming that the data is generated from a mixture of Gaussian distri-
butions are called Gaussian mixture models [14]. Uses an expectation-maximization algorithm
to estimate means, covariances and mixture weights of the components. Fits to the data and
calculates the probability of each data point belonging to the model, where low scoring data
points are anomalies. Can be used in both supervised and unsupervised manner depending on
the task. Model might not be suitable for Bioco’s data because of the assumptions the model
makes, but is used to see if the underlying structure of the data can be described using it. The
probability density function of a GMM can be written as:

P (x) =
k∑

i=1

πiN(x|µi,Σi)

P(x) represents the probability density of point x, πi is the weight of the i-th Gaussian compo-
nent, N(x| µi, Σi) is the Gaussian distribution with mean µi and covariance matrix Σi, and k
is the number of Gaussian components [14].
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Figure 2.11: GMM model on randomly generated data

The histogram shows a synthetic dataset from a mixture of two Gaussian distributions, and the
red line represents the probability density function of a Gaussian mixture model fitted to the
data.

2.5.1.2 Autoregressive Integrated Moving Average (ARIMA)

ARIMA combines autoregression, differencing and moving average components. As a linear
time series model, it is designed to work with stationary time series data [15]. Variations of
the model incorporate differencing to remove seasonality and trends. Can be used for anomaly
detection by forecasting future values based on historical data and comparing new actual values
to the predicted ones. Strong deviations indicate anomalies, when data does not follow the
regular pattern. For on-line applications, the model can be continuously fit on new data as
it comes in, making constant forecasts and comparisons. Choice of model parameters (p,d,q)
is critical for performance [15], where p is the autoregressive (AR) order, d is the degree of
differencing and q is the moving average (MA) order. These are determined using various tests,
and some variations of the model, like auto ARIMA, do this automatically. Deep understanding
of the parameters is not relevant for our application.

Page 22 of 105



Figure 2.12: ARIMA model on randomly generated time series data

The plot illustrates the application of an ARIMA model on a synthetic time series. The actual
values of the time series are plotted in blue, while the forecasted values are represented in red.
The red shaded area surrounding the forecast represents the confidence interval, providing a
range within which the future values are likely to fall. This showcases the ARIMA model’s ca-
pacity to predict future data points based on historical data. Any deviations from the forecasted
range are potential anomalies.

2.5.2 Clustering methods

Clustering methods, as an unsupervised learning technique, groups similar data points together
into clusters based on features [14]. For anomaly detection, data points not belonging to any
cluster, or too distant from cluster centroids are indentified as anomalies.

2.5.2.1 K-means

Simple technique partitioning data into K clusters based on features’ mean values [16]. Initially
starts with K centroids, iteratively updates centroids by minimising sum om squares distances
between data and cluster centroids [14]. Data points far from assigned clusters are considered
anomalous, deviating from general pattern. K-means allows for definition of thresholds for
anomaly flagging. Algorithm is sensitive to the initial centroids [14], as well as spherical shape
and equal size assumption about the clusters.
K-means aims to partition a dataset X = {x1, x2, . . . , xn} into K distinct clusters, where each
data point xi belongs to the cluster with the nearest mean. The objective function to minimize
sum of squares [16] within clusters :
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J(C1, C2, . . . , CK) =
K∑
k=1

∑
xi∈Ck

∥xi − µk∥2 (2.1)

where Ck represents the k-th cluster, and µk is the mean of the data points in cluster Ck.
Updates the cluster assignments and mean iteratively until convergence. This process can be
summed up in two steps:

1. Assignment step: Assign each data point xi to the nearest cluster centroid:

Ck = {xi : ∥xi − µk∥2 ≤ ∥xi − µj∥2 ∀j, 1 ≤ j ≤ K} (2.2)

2. Update step: Cluster centroids are updated by computing the mean of the points as-
signed to a cluster:

µk =
1

|Ck|
∑

xi∈Ck

xi (2.3)

Figure 2.13: K-means clustering on randomly generated data

The plot shows the result of K-means clustering on a synthetic dataset. The colored points
represent data points assigned to different clusters, and the large red points are the centroids
of the clusters.
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2.5.2.2 DBSCAN

Density-based spatial clustering of applications with noise, an algorithm that groups data points
based on density and proximity [17]. DBSCAN is more flexible since it does not require a
prespecified amount of clusters like k-means. Thus, it is seen as the more flexible clustering
algorithm for finding complex cluster structures. DBSCAN examines densities and proximities
of data points, categorizing them based on local properties. Points that do not fit into dense
regions are potential anomalies. The algorithm can be summarised as follows:

1. For each data point xi, compute the number of neighbouring data points within a distance
of ϵ. These are denoted as N(xi).

2. If |N(xi)| ≥ MinPts, xi is marked as a core point. Otherwise, mark xi as a border or
noise point.

3. For each core point, if it is not already part of a cluster, create a new cluster and recursively
add all its density-reachable points. Two points are density-reachable if there is a chain
of core points between them, where each core point is a neighbour of the next core point
in this chain.

4. Finally, assign border points to their nearest core point’s cluster.

Main parameters of DBSCAN are ϵ and MinPts. Choice of these significantly affects the
performance of the algorithm. Might require trial and error to find the optimal hyperparame-
ters. DBSCAN can find clusters of arbitrary shapes, separating noise[17], making it robust for
anomaly detection. Lacks performance on data with variying density, where ϵ and MinPts are
not optimal for all regions in the feature space.

Figure 2.14: DBSCAN clustering on randomly generated data
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The plot shows the result of DBSCAN clustering on a synthetic dataset. The colored points
represent data points assigned to different clusters.

Furthermore, the next figure showcases the use of DBSCAN for anomaly detection in a different
synthetic data set, mixed of normally distributed data points in three clusters and randomly
placed anomalies.

Figure 2.15: Anomaly detection using DBSCAN on randomly generated data

The blue points represent data points assigned to different clusters, while the red points rep-
resent the identified anomalies. This highlights the ability of DBSCAN to distinguish between
clustered data and sparse anomalies.

2.5.3 Nearest neighbour methods

Nearest neighbour methods rely on between-point distance to determine similarity [18]. Used
for both supervised and unsupervised learning tasks, depending on the data.

2.5.3.1 K-nearest neighbours

Non-parametric method used for classification and anomaly detection. Assumes that similar
data points are located close to each other on the feature space. k-NN selects k closest neighbour
by calculating distances between data points [18]. Average distance to the k-neighbours gives
anomaly score. High anomaly score indicates that a point is likely an anomaly. Allows for
definition of thresholds for classification of anomalous points. k-NN’s strength is its simplicity,
but the algorithm suffers from high computational complexity on large data sets, as it calculates
distances between a point and all other points. The algorithm uses Euclidean distance d(x, y)
to measure the distance between two data points x and y in the feature space:
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d(x, y) =

√√√√ n∑
i=1

(xi − yi)2

The average distance to k nearest neighbours of the data point x is then computed as the
anomaly score S(x):

S(x) =
1

K

K∑
i=1

d(x, yi)

Figure 2.16: Application of k-nearest neighbours on randomly generated data

The plot shows the result of application of k-nearest neighbours on a synthetic data set. The
blue points represent data points, the red point is an anomaly, and the green dashed lines
connect the anomaly to its five nearest neighbours.

2.5.3.2 Local outlier factor

Density-based method for anomaly detection, working around local density for data in the fea-
ture space. Compares the ratio between the average local density of a data point’s k nearest
neighbours to its own local density, calculating a LOF score. It represents how much the local
density of a data point differs from its neighbours. High LOF score for a data point indicate
that it is located in a sparse region of the feature space, and thus has a significantly lower local
density than the neighbours. Local outlier factor is particularly good for anomaly detection in
data with varying densities, because it considers the local context. Choice of the k parameter
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can have a significant impact and is often crucial for optimal performance [19].

Consider a data point x for which the LOF score is to be computed. The reachability distance
reachdist(x, y) between x and another data point y in LOF is defined as the maximum of the
distance d(x, y) and the k-distance of the data point y, which is the distance from y to its k-th
nearest neighbour.

reachdist(x, xy) = max{d(x, y), k−dist(y)}

The local reachability density lrd(x) of a data point x is the inverse of the average reachability
distance from x to its k nearest neighbours [19]:

lrd(x) =
1∑

y∈Nk(x)
reachdist(x, y)

Here, Nk(x) represents the set of k nearest neighbours of the data point x. As the final step, the
local outlier factor LOF(x) is calculated as the average ratio of the local reachability densities
of the k nearest neighbours of x to its own local reachability density:

LOF(x) =

∑
y∈Nk(x)

lrd(y)
lrd(x)

|Nk(x)|
In this context, x is the data point for which LOF score is computed, while y represents the other
data points in the dataset. Calculations start from x and consider the relationship between x
and its k nearest neighbours (the set Nk(x)), which are the data points y.

Figure 2.17: Application of LOF on randomly generated data
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The plot shows the result of application of LOF on a synthetic data set. The orange points
represent normal data points, and the blue points are considered as anomalies by the LOF
model.

2.5.4 Decision tree based methods

Decision tree algorithms rely on tree structures, representing decisions and outcomes [20], and
are used both for supervised and unsupervised tasks . Handle complex relationships between
features well and the results are often easy to interpret, making them well suited for anomaly
detection. Work through recursively partitioning the input spaces, making a series of binary
splits on the data features. Results in tree-like structures, with leaf nodes corresponding the
predictions or decisions [20]. In anomaly detection, a decision boundary is constructed around
the normal data points, separating normal instances from anomalous points. Decision tree
methods are robust to noise, missing values and are able to process high-dimensional data.

2.5.4.1 Isolation forest

An unsupervised anomaly detection algorithm, based on construction of multiple decision trees
[21]. Randomly selects a feature and splits data based on a randomly chosen value for the
feature. Isolation forest repeats this process recursively until all the data are isolated, forming
a ”forest” of trees. The algorithm does not make assumptions about the underlying data dis-
tribution, instead finding anomalies by comparing the path lengths of the data in the forest.
Data points with shorter average path lengths in the trees are anomalies, as they are isolated
more quickly than normal data [21]. A robust method with low memory requirement, effective
for anomaly detection in high-dimensional and diverse data [21].

The path length h(x) of a data point x in an isolation tree represents number of edges from the
root node, to the node containing the data point. Essentially indicates how quickly a point of
data can be isolated compared to others. It can be calculated as:

h(x) =

n∑
i=1

1

2⌈log2(ni+1)⌉ (2.4)

where n is the number of trees in the forest and ni is the number of data points in the subtree
rooted at node i. Then, the anomaly score s(x) for a data point x is computed as:

s(x) =
2
−E(h(x))

c(N)

(1− 2
− 1

c(N) )−1
(2.5)

where E(h(x)) is the average path langth of x across all of the trees. N is the total number
of data points in the data, and c(N) is the average path length of an unsuccessful search in a
binary search tree. An unsuccefull search is defined as the search algorithm attempting to find
a target value in a binary search tree, but with the value not existing in the tree. In the end,
the average path langth of an unsuccessful search is used as a reference for comparing isolation
abilities of data points.
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Figure 2.18: Isolation forest on randomly generated data

The plot illustrates the performance of an isolation forest model on a synthetic data set. The
normal data points are shown in orange, while the anomalies are represented in blue. The model
effectively separates the normal data points from the anomalies, as can be seen in the plot.

2.5.5 Deep learning and neural network methods

Deep learning and neural network methods are methods that have the ability to learn complex,
non-linear patters from large data sets with vast variety [12]. Recently, these methods have
gained popularity because of public availability and ease of use of some applications built on
deep learning and neural networks. Flexible methods that are also applicable to anomaly
detection tasks, where models are trained to recognise normal patterns and flag any deviations
from these as anomalies.

2.5.5.1 Autoencoders

Unsupervised neural networks, learning to encode and decode the input data. Autoencoders
effectively learns a representation of the data of a lower dimension [12]. For anomaly detection,
the algorithm is trained on normal data, and the reconstruction error between the input and
the decoded output is then used as an anomaly score [22]. When these errors are high the
autoencoder fails or struggles with reconstruction of the input, indicating that anomalous data
is present. Autoencoders have shown to be effective on anomaly detection in high-dimensional
data, as they learn a compressed representation of the data, capturing the most relevant fea-
tures. However, autoencoders may require large amounts of training data and resources for
optimal performance. Anomaly scores for a given data point x are calculated by computing its
reconstruction error, using a trained autoencoder:
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S(x) = L(x, g(f(x))) (2.6)

where S(x) represents the anomaly score of the data point x, and L(·) is the loss function used
to measure the reconstruction error.

Figure 2.19: Application of an autoencoder on randomly generated data with a reconstruction
error bar

The plot showcases anomaly detection using autoencoders. The normal data points are plotted
with the colour representing the reconstruction error. The lower the reconstruction error, the
more likely it is that the data point is normal. The anomalies, located outside the range of
the normal data, are also coloured according to their reconstruction error. The anomalies have
a higher reconstruction error because the autoencoder was not trained on these types of data
points.

2.6 Related work

Many anomaly detection techniques have been proposed in the literature, as it has been widely
studied in different fields. A comprehensive study on various anomaly detection techniques was
done by Chandola et al. [1]. Statistical, clustering, classification-based methods are discussed
and different types of anomalies are presented. Challenges in this field were also addressed.

Deep learning-based approaches were discussed by Chalapathy and Chawla [23] in a more recent
survey about anomaly detection. Importance of deep learning in processing of high-dimensional
data, as well as the use of different architectures, such as autoencoders and recurrent neural net-
works for anomaly detection purposes were discussed. Furthermore, future research directions
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for deep learning-based anomaly detection methods were considered. As another deep learning
approach, Malhotra et al. [24] proposed an encoder-decoder framework based on Long Short
Term Memory networks for anomaly detection. Effectiveness of their approach was demon-
strated on several data sets, including aerospace and automotive industry data.

Goldstein and Uchida [25] conducted an evaluation of different unsupervised anomaly detection
algorithms. Statistical, clustering, nearest neighbour and subspace methods were considered.
A framework for evaluation was proposed and advantages and disadvantages of every method
were discussed, based on results of application to multivariate data.

The related works demonstrate continued interest in improvement and development of anomaly
detection techniques for various types of applications. The exploration of new approaches and
the application of current machine learning techniques provides a solid foundation for further
research and advancements in the field of anomaly detection.

2.7 Summary

An overview of the theoretical background for anomaly detection in an industrial setting and
related work has been provided in this chapter. The theory for time series data, statistical,
non-machine learning and machine learning methods have been discussed. Furthermore, the
challenges associated with these, as well as practical implementation considerations and evalu-
ation of anomaly detection solutions were presented. This foundation of information will serve
as the theoretical basis for the anomaly detection techniques suggested in this thesis.
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Chapter 3
Data Exploration

This chapter presents the data exploration process for the industrial time series data provided
by Bioco. A crucial first step for the analysis, particularly for complex industrial processes with
interrelated variables. Ideally, the raw data is to be examined, cleaned and transformed into a
more structured and understandable format, paving the way for further analysis and anomaly
detection. A comprehensive overview of the data, its variables and structure is provided. For
confidentiality reasons, some of the data description, plots and relations are altered, and an
exact representation of the distributions in the data is not provided.

3.1 Data description

For the purpose of the thesis, 8 data sets were provided by Bioco. These comprise of various
dimensionalities, with the data representing sensor measurements collected at various points in
the industrial process, in the years 2020, 2021 and 2022. These include flow rates, pressures,
temperatures and other critical process parameters. In general, variables called TT are temper-
atures, PT are pressures and F are flow rates. Additionally, the data includes a column that
tracks the time during the process. The data sets are structured as follows:

Table 3.1: Data set dimensionalities

Dataset Name Rows Columns Sampling Frequency

Process 2021 873105 37 Varying between 60 and 10 sec
Process 44 8640 49 1 min
Process 45 8640 49 1 min
Process 46 8640 49 1 min
Process 47 8640 49 1 min
Process 48 8640 45 1 min
Process 49 8640 45 1 min
Process 50 8640 45 1 min

The columns represent the different sensors placed across the industrial process, while the rows
represent sensor measurements at a given time point.

The significant difference in data points in the 2021 data set is explained by the nature of the
collection of that data, as well as the sampling frequency. The Process 2021 data set encom-
passes continuous sensor data from November 2020 until the end of March 2021 with a varying
frequency, while the 2022 data, data sets Process 44-Process -50, was collected on the weeks
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corresponding to the data set name, at a lower frequency of sampling. Thus, the Process 2021
data set includes a significant amount of irrelevant data, such as days when the industrial pro-
cess was not running. This results in varying, more extensive preprocessing requirements for
2021 data.

3.1.1 Clogging events

In addition to the data, dates and timestamps of previous clogging events were provided by
Bioco. These are essential, serving as an evaluation benchmark for the performance of anomaly
detection models. The following table presents the known clogging events at Bioco in 2021 and
2022:

Table 3.2: Known clogging events in 2021 and 2022

Date Time Clog Index

12/01/2021 05:45 clog 1
01/02/2021 08:40 clog 2
24/02/2021 08:00 clog 3
01/03/2021 17:00 clog 4
05/12/2022 15:05 clog 5
13/12/2022 01:35 clog 6

3.2 Visualisation

As Bioco’s process is continuous, rest raw materials from poultry are constantly fed into the
system, with the whole process taking approximately 60 minutes. The sensors collecting mea-
surements are located at different points throughout the process, which gives a global overview
of the process parameters at a time point. This means that a data point in a feature x and y
at a time point t do not represent the same material, but rather the property of the material
at the location of the sensor. This can be dealt with in a multitude of ways, discussed later. A
sketch of the process, including an approximate timeline:

Figure 3.1: Process sketch with an approximate timeline

The hopper allows the process to have an even and steady flow rate, the heater warms raw ma-
terial to a working temperature, the mixer blends the material, the hydrolysis column performs
enzymatic hydrolysis and the deactivator heats the material and neutralises enzymes.

The clogging events showcased in table 3.2 are known to occur between the end of the hydrolysis
column and the deactivation. This is significant in the context of anomaly detection, giving a
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long period of time for analysis of the raw material going through the system. This property
is less important if a clogging is an effect of a slow buildup or organic matter in the pipes, but
plays a core role if it is caused by the properties of the raw material fed into the system.

A visualisation of selected sensors in the raw data is provided in the following figure to provide
an opportunity to examine the inherent structure and patterns in the data. For confidentiality
reasons, the y-axis is hidden:

Figure 3.2: Plot for sensors F03, PT03, and TT08 in the Process 2021 dataset, representing
flow rates, pressures and temperatures. F03 and PT03 are located in the hydrolysis column,
while TT08 is in the mixer 3.1.

Figure 3.3: Plot for sensors F03, PT03, and TT08 in the Process 44 dataset, representing flow
rates, pressures and temperatures. F03 and PT03 are located in the hydrolysis column, while
TT08 is in the mixer 3.1.

The plots showcase the distribution of values in three of the multitude of sensors in the data sets,
with data in figure 3.2 spanning over a significantly longer period of time. For the Process 44
data set, periods when the process is not running can be identified by a significant change in
values and distribution, which is also noticeable in the figure 3.2 plots. For the subsequent data
sets, Process 45-Process 50, the distribution of values is very similar to those presented in figure
3.3.

3.3 Preprocessing

In the context of analysing Bioco’s industrial process data for anomaly detection, it is essential
to recognise that treating this data as regular time series may not yield meaningful insight. Tra-
ditional methods for time series decomposition, such as Seasonal Decomposition of Time series
(STL) are designed to capture seasonality, trends and residuals in the data. These components
are largely irrelevant in a continuous industrial process, and applying STL or similar methods
to such data in not the most appropriate approach for understanding the underlying behaviour.
Thus, these techniques are not used in the thesis.
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3.3.1 Frequency of data collection

As previously shown in table 3.1, the sampling frequency varies in the Process 2021 data set.
Although the approach to this time series data differs from the traditional methods of handling
a time series, a consistent frequency in the data is important for preserving the temporal depen-
dencies and pattern in the data. Discrepancies in the sampling frequency are thus investigated
using Python:

Algorithm 1 Pseudocode for finding frequency changes

Require: df - DataFrame
Ensure: Prints indices where frequency changes are detected
1: df find frequency ← copy of df
2: Calculate time differences between consecutive rows in df find frequency
3: Store time differences in a new column time diff
4: Convert time differences to seconds
5: Store the converted time differences in a new column time diff seconds
6: Calculate differences between consecutive time differences
7: Store the calculated differences in a new column time diff delta
8: Find indices where the absolute value of time diff delta is greater than or equal to 1
9: Store these indices in a variable change indices

10: if length of change indices > 0 then
11: print ”Frequency changes in the dataset occur at the following indices:”
12: previous index← None
13: for each index in change indices do
14: if previous index is None OR the location of the previous index is not equal to the

location of the index− 1 then
15: before index← location of the index− 1
16: after index← location of the index+ 1
17: if before index is within the range of indices AND after index is within the range

of indices then
18: print index, index before it, and index after it
19: end if
20: end if
21: previous index← index
22: end for
23: else
24: print ”The frequency doesn’t change throughout the dataset.”
25: end if

The function investigated both frequency changes and time anomalies, which are instances
where there is a sudden jump in the data sampling. For data sets other than Process 2021,
the frequencies do not change, and are consistent throughout. For the Process 2021 data,
the frequency changes at 2020-12-25 10:13:39, where the sampling frequency goes from once
a minute, to six times a minute. This is however, true only for a part of the sensors, and
other sensor data are still collected at 60 second intervals. Furthermore, the data set contains
a variety of time anomalies, but the majority of these are outside the scope of relevance for
anomaly detection, as they either occur when the industrial process is not running, or during
intervals which are not later used for anomaly detection. The frequency change, however,
introduces a variety of missing data, which is addressed in the next section.
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3.3.2 Missing values

The presence of missing values is investigated using the open-source package missingno. The
nullity matrix displays data completion patterns in the data:

Figure 3.4: Missing value matrix for the Process 44 data set. The columns represent the features
in the data, and the black areas showcase the completion of the data in the corresponding
column. A full black column means no missing data

Figure 3.5: Missing value matrix for the Process 2021 data set. The columns represent the fea-
tures in the data, and the black areas showcase the completion of the data in the corresponding
column. A full black column means no missing values.

The columns represent the features in the data, and the black areas showcase the completion
of the data in the corresponding column. For data sets other than Process 2021, there are no
missing values. Process 2021 contains a vast variety of missing data, some of which are intro-
duced during the frequency shift. A majority of the instances where there is a long sequence of
missing data, such as in the column PT02 in figure 3.5, are within a range where the process is
not running, or during a period irrelevant for the analysis. However, missing values in columns
such as F02 at PT13 fall within the range of some of the clogging events defined in table 3.2.
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These cannot be imputed in an effective way and the columns are discarded if selected within
the data window chosen during further analysis.

As discussed previously, a frequency change occurs in the collection of the data. However, data
in features such as TT03 and TT04 in figure 3.5 do not undergo this change, and are still
collected once a minute. This is evident in the stripe pattern observed in these columns. For
periods where this stripe pattern is present within a chosen data window, the values are linearly
interpolated and brought to the same frequency as the other features.

3.3.3 Sensor location identification

Approximate locations of part of the sensors in the process were provided by Bioco. Approx-
imate locations of flow rate sensors F01, F02, F03, temperature sensors TT06, TT07, TT08,
TT09, TT12, TT12 and pressure sensors PT02, PT03, PT05 and PT07 are known. The exact
locations of these and the rest of the sensors were further investigated by computing correlation
coefficients in the data sets, with a varying degree of success:

Algorithm 2 Pseudocode for calculating lag and correlation between sensors

Require: signal1, signal2, max lag
Ensure: Returns the best lag and maximum correlation between the two signals
1: function CALC LAG(signal1, signal2, max lag)
2: Initialize an empty list corr values
3: for lag in range −max lag to max lag do
4: Calculate the correlation between signal1 and the lag-shifted signal2
5: Append the calculated correlation to corr values
6: end for
7: Find the maximum correlation in corr values and store it in max corr
8: Find the index of the maximum correlation and store it in best lag
9: Subtract max lag from best lag

10: return best lag, max corr
11: end function
12: Initialize an empty dictionary lags
13: for each i in the range from 1 to the number of columns in data 44 find lag do
14: for each j in the range from 0 to i− 1 do
15: signal1← data 44 find lag at column i
16: signal2← data 44 find lag at column j
17: (lag, corr) ← CALC LAG(signal1, signal2, 55)
18: if corr > 0 then
19: Add the result to lags with the key being the combination of column names
20: end if
21: end for
22: end for
23: Print the significant correlations
24: for each pair, values in lags do
25: print ”The lag between” pair ”is” values[0] ”minutes with a correlation of” values[1]
26: end for

The max lag is subsequently adjusted depending on the data set used, representing the maxi-
mal lag value in data instances. For data sets other than Process 2021, this value is set to 55,
corresponding to 55 minutes into the process. For the Process 2021 dataset, this value is set to
330, corresponding to the same amount of time adjusted for the changed frequency. The use
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of the method on this data set is limited to a selected window in the data when the industrial
process is running.

For a selection of sensors, the method produces desirable results, indicating toward values that
are in line with the approximate sensor locations provided by Bioco. For sensors corresponding
to velocities, torques and intensities, the results are unsatisfactory and random, thought to
be caused by the noise and the nature of the data, and the correlations cannot be properly
examined. The use of the obtained values is closely related to and further discussed in the
following subsection.

3.3.4 Lagging

To incorporate the lag information obtained from the preceding subsection, correlated sensor
signals can be adjusted according to their estimated lag. This process is done by shifting the
time series of one sensor relative to the other by the computed lag value. Aligning the time
series in this manner achieves an accurate representation of the relationship between the sensors
and the raw material passing through the process.

There are a multitude of ways of implementing the lag process, depending on the sensor chosen
as the reference point. For the purpose of this thesis, the temperature sensor TT12 at the
end of the process was chosen as the reference point, resulting in sensor data located prior to
deactivation 3.1 being shifted forward by a defined value, corresponding to the location of sensor
in the process.

Algorithm 3 Pseudocode for lagging sensor data

Require: df - Original DataFrame
Require: locations - Dictionary containing sensor locations
Ensure: Produces a DataFrame with lagged sensor data
1: Initialize an empty DataFrame lagged df
2: function shift data(sensor, lag)
3: Shift the sensor data by lag in the df DataFrame
4: return shifted sensor data
5: for each sensor, lag in locations do
6: shifted sensor data← shift data(sensor, lag)
7: Concatenate shifted sensor data to lagged df
8: end for

The sensor data is shifted according to the specified lag values in the locations dictionary.
Twelve sensors, approximate locations of which are known are lagged accordingly to be in
aligned with temperature sensor TT12 for the relevant data sets. These are subsequently used
for anomaly detection, together with the unlagged data for a coherent representation of the
underlying process. Throughout the rest of the thesis, the term ”lagged” and ”shifted” are used
interchangeably to represent the same process.

3.4 Summary

The data exploration process for the Bioco data set has been discussed and the data structure
presented. The necessary preprocessing steps have been outlined and data has been prepared for
anomaly detection. Functions for identifying frequency anomalies, correlations between sensors
and subsequent lagging have been defined. These processes set the foundation for further
analysis and modeling in the subsequent chapters.
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Chapter 4
Method

The purpose of this chapter is to provide an overview of the methods used for anomaly detection
in the industrial time series data. The variations in data preprocessing steps depending on the
model used are shown. The local outlier factor and DBSCAN algorithms are then presented
and optimised, as they are the primary methods used. Criteria for evaluation of the models are
defined to ensure that the results are credible. The results of application of these methods are
presented in the following chapter.

4.1 Data selection

Refer to tables 3.1 and 3.2 for this section. Clog 5 is attributed to manual change in process
parameters. It is caused by human error and not as a result of the industrial process. Thus, it
is unsuitable for anomaly detection and excluded from the analysis to avoid biased results.

Prior to clog 3, process parameters were changed, and the clogging event is thought to be caused
by this change. This occurs 40 minutes prior to the clogging. Despite this, decision is made
to include this clogging in the analysis, as the industrial process continues regularly until the
blockage. The impact of this is noted later in the thesis, as results are presented.

The clogging events 1,2,3,4 in the Process 2021 data are all relevant for anomaly detection.
Varying windows of data surrounding these are selected for when the process is running. Fea-
tures in data windows that include missing values discussed in the previous chapter 3.3.2 that
cannot be imputed are discarded. From the 2022 data, only the Process 50 data set, containing
clogging event 6, is used in anomaly detection. The remaining data sets serve as references for
evaluation and generalizability testing of tuned algorithms.

Additional data is selected for analysis to use in parallel with other data windows, defined as
”secondary data”. As secondary data, the selected data windows are reduced to only contain
a subset of features. These include only the sensors for which approximate locations in the
process were provided by Bioco. The locations were subsequently confirmed using the correlation
function defined in the previous chapter 2. As a result, the dimensions of the data are reduced
to window length x 14 features, including the time column. Unimputable features in relevant
data are similarly discarded.
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Figure 4.1: Flow rate sensor F03 and temperature sensor TT12 in a selected data window

The plots depict flow rate sensor F03 and temperature sensor TT12 data in the selected data
window for analysis of clog 1. Clog 1 is the sudden drop in pressure and temperature in the
figures. The rest of the features show a similar pattern. This is true for the rest of the clogging
events. Starts and ends of the process are included for model evaluation, as these would naturally
be seen as anomalies by algorithms used.

4.2 Selective denoising

A variation of denoising is done on a per-sensor basis after selection of data windows. Features
of the data containing sensor errors and unnatural value deviations not related to the regular
process are selected. Denoising is performed by defining noise intervals and calculating rolling
means and standard deviations for a set amount of data points before and after an interval. The
gap is subsequently filled with normally distributed values, aiming to preserve the similarity of
structure to surrounding data. Following figures illustrate an example of applying this to flow
rate sensor data in a selected data window.

Figure 4.2: Flow rate sensor F02 before and after denoising in selected intervals
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4.3 Dimensionality reduction for feature importance

Techniques for dimensionality reduction can be used for analysis of data structure. In this case,
principal component analysis (PCA) is applied to access feature importance and to identify
potential redundant features, before the application of anomaly detection. The original feature
space is transformed into a lower-dimensional space and principal components are created,
capturing the majority of the variance in the data set. The first principal component account
for the largest variance in the data, followed by the second, and so on.
The PCA transformation can be summarised as:

Y = XW

Where X is the original data, W the eigenvectors and Y is the transformed data. Coefficients
that define the linear combination of the original features in the data are called loadings. These
are obtained from the PCA as:

Loadings = Eigenvectors×
√

Eigenvalues

The eigenvectors W and eigenvalues λ are derived from the covariance matrix of the original
data, either XX⊤ or X⊤X. The magnitude of these loadings then indicates how much each
feature contributes to the principal component. The sum of the absolute loadings for each
feature, across all principal components, gives feature importance:

Feature Importancei =
n∑

j=1

|Loadingsij |

Where i is the index of the feature, and n is the number of principal components.

Feature importance is calculated for the relevant data in the following manner:

Algorithm 4 Pseudocode for PCA Loadings for Feature Importance

1: Scale the data set
2: Fit PCA to the scaled data set, 95% explained variance
3: Obtain the PCA loadings
4: Calculate the absolute loadings
5: Compute the sum of the absolute loadings for each feature across all principal components
6: Display the importance of each feature

A threshold of 95% explained variance is used. This approach gives insight into the relative
importance of features in the data. Redundant features are removed to make the input data
more informative and less noisy for anomaly detection algorithms. As PCA is a linear technique,
there are limitation to how effective this method is for feature importance analysis. Feature
importance is further discussed in later parts of the thesis.

4.4 Local outlier factor algorithm

As local outlier factor is a distance-based algorithm, it is sensitive to scale of the features. Fea-
tures in the selected windows of data are standardised by removing the mean and scaling to
unit variance.

Initially, a baseline LOF model is fit to the data. Predicted anomaly points are attached to
timestamps, inspected and visually analysed. Hyperparameter tuning is done using a custom
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grid search process and a custom wrapper class for the model, as tuners such as GridSearchCV
normally require labels.

Algorithm 5 Pseudocode for hyperparameter tuning of LOF algorithm with custom wrapper,
scorer, and pipeline for time series data

1: Input: Preprocessed DataFrame
2: Output: Best model best model
3: Output: Anomaly timestamps
4: Define custom scorer function lof score(estimator, X)
5: Create custom wrapper class LOFWrapper with methods: init , fit, predict
6: Define parameter grid param grid for LOFWrapper
7: Create pipeline with StandardScaler and LOFWrapper
8: Initialize best score to ∞ and best params to None
9: Create a parameter grid iterator param grid iterator from param grid

10: for each parameter combination params in param grid iterator do
11: Set pipeline parameters using params
12: Initialize scores list
13: for each train index and test index in TimeSeriesSplit(X) do
14: Split X into X train and X test using train index and test index
15: Fit pipeline on X train
16: Calculate score using lof score function on pipeline model and X test
17: Append score to scores list
18: end for
19: Calculate mean score as the mean of scores list
20: if mean score < best score then
21: Update best score to mean score and best params to params
22: end if
23: end for
24: Print best params
25: Create best model using best params
26: Fit best model on X
27: Predict anomalies using best model on X
28: Get anomaly timestamps from X.index where predicted labels are -1

A custom wrapper LOFWrapper is created and tailored to work with unsupervised learning
methods and unlabeled data. Allows to set the y parameter to None to work with LOF in
anomaly detection tasks. Inherits from base class estimator BaseEstimator and Classifier-
Mixin which implements the scoring method, allows it to be used in a scikit-learn pipeline.
The custom scorer lof score is made so custom scoring can be defined. This takes an estimator
and a data set as inputs, returning the inverse of the mean of negative outlier factor , which
is the negative of the standard local outlier factor. This type of scoring rewards models with
low scores that try to optimally capture the structure of the data. Thereafter, a parameter grid
can be used in the same manner a grid search is done for supervised methods.

Cross-validation is done using TimeSeriesSplit that splits the data into samples that preserve
the temporal dependency between observations. Regular K-fold cross-validation is avoided as it
does not preserve the relation, splitting the data randomly. Parameters are updated in a loop,
and those with lower validation scores update the best parameters.

Optimal model is achieved by scaling and adjusting the best parameters found during the tuning.
A middle ground is found between an out-of-the box and the tuned model. The performance is
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evaluated by plotting the data and examining how early anomalous behaviour was seen before
a clogging. This is done iteratively while model parameters are changed. Precision is analysed
by the number of non-anomalous instances flagged as anomalous. Ideal model performance is
seen as achieving a state where only the pre-clogging anomalous behaviour and starts and ends
of the process are flagged as anomalies.

Feature importance is investigated after an optimal performing model is achieved. Two methods
are used, with one utilising cluster labels and a supervised classifier model, and a manual method
where features are iteratively removed and LOF scores are calculated. The method utilising
supervised learning is divided into multiple variations.

Algorithm 6 Pseudocode for feature importance calculation for LOF algorithm using feature
removal

1: Define LOFModel with tuned hyperparameters
2: Standardize data set using StandardScaler
3: Calculate LOF scores for the full dataset
4: Initialize FeatureImportance dictionary
5: for each feature in the dataset do
6: Remove the current feature from the standardised dataset
7: Calculate LOF scores without the current feature
8: Calculate mean absolute difference between original and reduced LOF scores
9: Store the score difference in FeatureImportance dictionary

10: end for
11: Convert FeatureImportance dictionary to a DataFrame
12: Sort the feature importances
13: Print the sorted DataFrame

Most optimal model is used here. The method essentially performs a feature removal analysis.
Mean absolute differences in LOF scores are calculated with and without each feature, and the
features are ranked by their importance in the process.

Additionally, a secondary analysis is done using aRandomForestClassifier and data labeled
by the LOF algorithm.

Algorithm 7 Pseudocode for feature importance calculation for LOF algorithm using a decision
tree classifier

1: Scale data using StandardScaler
2: Fit the LOF model to the scaled data and obtain LOF labels
3: Create a new DataFrame with LOF labels as the target variable
4: Split the labeled data into features (X) and target (y)
5: Train a RandomForestClassifier on the labeled data (X, y)
6: Calculate permutation importance using the trained RandomForestClassifier and permuta-

tion importance
7: Display feature importances

The most optimal LOF algorithm is first applied to generate labels for the data. A Random-
ForestClassifier is trained on the data and feature importance is calculated using permuta-
tion importance. This method uses permutation importance which permutes the features
one at a time. The change in the model’s accuracy score is used to estimate the importance of
that feature.
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There are considerations to keep in mind using this method. As a clogging occurs, the industrial
process comes to a halt. The regular process is disturbed and sensor values greatly differ before
the pipes are flushed as seen in figure 4.1. As permutation importance randomly shuffles
values of a single feature, this can lead to misleading estimates. A workaround is to modify
the method to use windowed permutations, where data are shuffled within windows instead of
permuting the whole feature.

Algorithm 8 Pseudocode for windowed permutation importance for LOF Algorithm

1: Scale data using StandardScaler
2: Fit the LOF model to the scaled data and obtain LOF labels
3: Create a new DataFrame with LOF labels as the target variable
4: Split the labeled data into features (X) and target (y)
5: Train a RandomForestClassifier on the labeled data (X, y)
6: Define windowed permutation importance function with inputs: model, X, y, window size,

n repeats, and random state
7: Initialize scores decreases as an empty list
8: for each feature in X do
9: Initialize decrease as an empty list

10: for i in range 0 to n repeats do
11: Create a copy of X, called X permuted
12: for j in range 0 to number of samples in X, with step window size do
13: Permute the values of the feature within the window in X permuted
14: end for
15: Calculate the accuracy score using the RandomForest model on X permuted and y
16: Append the drop in accuracy to decrease
17: end for
18: Append decrease to scores decreases
19: end for
20: Return scores decreases as an array
21: Calculate windowed permutation importance using the trained RandomForestClassifier and

windowed permutation importance function
22: Display feature importances

The new method acts as an extension of standard permutation importance. It works similarly,
where the difference between the original model’s accuracy and the accuracy after permuting
a feature is used to estimated feature importance. However, the feature values are permuted
within windows of fixed size. This change aims to avoid misleading results and give a more
accurate estimate of important features.

An optimal window size needs to be determined for optimal performance of this method as the
structure of the data needs to be preserved. This is done by iterating through different window
sizes and inspecting the results. The procedure is as follows:
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Algorithm 9 Pseudocode for testing different window sizes for windowed permutation impor-
tance

1: Define a list of window sizes to test
2: Define try window size function with input: window size
3: Calculate windowed permutation importance using window size
4: Compute mean importances and standard deviations of importances
5: Return mean importances and standard deviations
6: for each window size in the list do
7: Call try window size function with the current window size
8: Print window size and the corresponding feature importances
9: Calculate and print the sum of feature importances

10: end for

As Bioco’s industrial process lasts around 60 minutes, this is used as an anchor point for finding
the optimal window size, scaling the values in the list of window sizes to test with how many
process cycles are passed. The results for each window size are inspected. The criterion is to
find a window size that has stable importance scores, where scores do not significantly change
between several gaps. Goal is to minimise the trade-off between misleading results and preserv-
ing data structure.

In summary, manual feature removal in algorithm 6 assumes that the mean absolute difference
in LOF scores is an adequate metric of importance. This method does not capture complex
relationships between features and is used as a baseline algorithm for feature scoring. Methods
for feature importance calculation showcased in algorithms 7 and 8 depend on the quality of
the LOF model. As labeled data are unavailable and the model is tuned by visual reference,
these methods can underestimate and overestimate feature importances.

4.5 DBSCAN algorithm

Similarly to local outlier factor, DBSCAN is sensitive to the scale of the features. Features
are appropriately scaled in the selected windows of data to mitigate the influence of varying
magnitudes.

Starting procedure is identical to LOF, a baseline DBSCAN model is fit to the data, predicted
anomaly points are attached to timestamps, inspected and visually analysed. In contrast to
LOF, which evaluates the degree of local densities, DBSCAN can identify clusters of arbitrary,
varied shapes. This difference should allow DBSCAN to better adapt to industrial sensor data.
However, as mentioned in section 2.5.2.2, proper selection of hyperparameters MinTps and ϵ
is crucial for optimal results.

As MinPts represents the minimum number of points required in a neighbourhood for it to
be considered a cluster, a nearest neighbours approach can be used. K-nearest neighbours’
distances for each point in the data are calculated. Density of data points in the feature of data
points is then analysed. A sharp change in density is an indication of an appropriate MinPts
value.
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Algorithm 10 Pseudocode for finding optimal MinPts value and distances

Require: data, min k, max k
Ensure: optimal k, k values, avg distances all
1: Initialize optimal k, max curvature, k values, and avg distances all
2: for k in range(min k, max k + 1) do
3: Instantiate NearestNeighbors with n neighbors=k and fit to data
4: Calculate distances to k-nearest neighbors
5: Compute average distances
6: Sort average distances
7: Compute second derivative (curvature) of sorted average distances
8: Find the index of the maximum curvature
9: if maximum curvature > max curvature then

10: Update max curvature and optimal k
11: end if
12: Append k to k values and the mean of average distances to avg distances all
13: end for
14: return optimal k, k values, avg distances all

NearestNeighbors is used to calculate distances. Second derivative, or curvature, of sorted
average distances is used to measure how sharply average distances change to identify optimal
k. This method helps to automate the process by iterating through a set of given k-values ef-
ficiently and find optimal MinPts parameter. Domain knowledge is often used in determining
the optimal value for this parameter and a rule of thumb is to use a value of at least Minpts >
Features. As such, this method is seen as appropriate as this condition holds true for optimal
k-values determined.

An example of results derived from this implementation is illustrated in the following figure,
illustrating relationship between k-values and average distance to the k-th nearest neighbour.
In this iteration, the optimal MinPts value was determined to be 43.

Figure 4.3: Relationship between k-values and average distances to k-th nearest neighbour, with
optimal k-value derived illustrated

The method essentially derives from analysing elbow/knee plots to determine the optimal k-
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value, but these sharp curvature changes are not visually observed in such plots in data used.
Thus, values obtained from algorithm 10 are used.

Acquired MinPts parameter can then be used to obtain optimal value of ϵ. NearestNeigh-
bors can be reused, similarly calculating k-nearest neighbour distances. The distances to the
k-th nearest neighbour for each data point are utilised instead of average distances, as epsilon
represents the radius of neighbourhood around each point.

Algorithm 11 Pseudocode for finding optimal epsilon value

Require: data, k
Ensure: optimal epsilon
1: function find optimal epsilon(df, k)
2: Instantiate NearestNeighbors with n neighbors=k and fit to data
3: Calculate distances to k-nearest neighbors
4: Extract the distance to the k-th nearest neighbor for each point
5: Sort the k-nearest neighbor distances
6: Find the elbow point using KneeLocator with curve=’convex’ and direction=’increasing’
7: Plot the KNN distance plot and mark the elbow point
8: return The k-th nearest neighbor distance at the elbow point
9: end function

10: Set the value of k
11: Call find optimal epsilon with scaled data and k
12: Print the optimal epsilon value

An example of results derived from this implementation is illustrated in the following figure.

Figure 4.4: KNN distance plot with optimal value of ϵ marked in red

The plot showcases the optimal ϵ value found for an iteration of parameter tuning for a data
window. KneeLocator is used to automatically find the point for maximum curvature in the
plot, which is marked with the red circle.

An optimal model is achieved utilising the same process used for local outlier factor algorithm in
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4.4. A state where anomalous behaviour is detected as early as possible, while also minimising
the amount of false positives is seen as ideal model performance. Same logic is used for starts
and ends of the process, and rates of false positives for these are not relevant.

Feature importance is similarly investigated utilising the same methods used for LOF, applying
procedures described in algorithms 6, 7 and 8. The LOF model is exchanged for the best
performing DBSCAN model. Adjustments are made to algorithm 6 to use silhouette scores
as the evaluation metric. Differences between silhouette scores, measuring how well points are
assigned to clusters, are used as the importance value for each feature. Similarly to LOF,
DBSCAN cluster labels are used for a supervised learning approach. As the labels only vaguely
represent the ground truth, feature importances can be over- and underestimated.

4.6 Implementation flow

The entire workflow of the anomaly detection process can be summarised in the following
workflow.

Load data

Preprocessing

PCA for insight

Select data

Fit model

Visual evaluation

Hyperparameter tuning

Re-evaluate

Calculate feature importances

Optimal results?

No

Final model

Figure 4.5: Anomaly detection workflow for LOF and DBSCAN algorithms
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4.7 Summary

The chapter presents two unsupervised learning algorithms for anomaly detection, local outlier
factor and DBSCAN, and the approach of tailoring these for industrial time series data.

The next chapter presents the results of application of these. The anomalous points identified
by LOF and DBSCAN are attached to the original data with minimal preprocessing for an
optimal representation of the industrial process. Identified anomalies are presented using figures
captured from interactive Plotly plots, that allow for a better visualisation of data surrounding
these.
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Chapter 5
Results

This chapter showcases the identified anomalous points prior to clogging events in relevant data
windows. Primary focus is to showcase the performance of two unsupervised learning methods,
local outlier factor and DBSCAN, on the relevant data windows containing clogging events. For
locations of the clogging events in the data, refer to table 3.2. As previously mentioned, clog 5
is not included, as it is attributed to human error.

The chapter only showcases the results for clog 1. For readability reasons, the rest of the results
are moved to the Appendix. These results are presented in a similar fashion and can be found
in Appendix B.

The anomaly timestamp tables presented showcase the earliest anomalous behaviour detected
by an algorithm prior to a clogging and relevant in the context. The index column represents
the position of these values in a list of points flagged as anomalies by the algorithms, used as a
reference point for evaluation.

Timestamps of identified anomalous points are attached to the original data and plotted to-
gether with selected sensors. To get an accurate representation of the process, anomalies are
shown together with sensor data of flow rate sensor F01, located early in the process, in the
hopper, and temperature sensor TT12, located late in the process, in deactivation 3.1.

For confidentiality reasons, data values in the plots are removed or hidden. As a result, the
figures can be challenging to interpret. However, all clogging events in the figures can be iden-
tified by a sudden decrease of values, followed by an irregular distribution in relation to the rest
of the figure.

Additionally, results of using lagged variables are presented in a similar format.

5.1 Local outlier factor results

Following tables and figures present relevant timestamps flagged as anomalies by the most
optimal LOF model. As previously mentioned, the index columns show the position of these
points in a list of data flagged as anomalous. Results for clog 2,3,4 and 6 can be found in
Appendix B.1
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5.1.1 Results without lagging of variables

5.1.1.1 Clog 1

For the first clogging, earliest anomalies are identified right as the event happens. No anomalous
behaviour is detected a notable amount prior to the clogging.

Table 5.1: LOF anomaly timestamps for clog 1, occurring at 05:45

Anomaly index Timestamp

4 2021-01-12 05:22:34
5 2021-01-12 05:22:44
6 2021-01-12 05:22:54
7 2021-01-12 05:23:04
8 2021-01-12 05:23:14
9 2021-01-12 05:23:44
10 2021-01-12 05:23:54

The following plots showcase the points presented in the table, as well as additional false posi-
tives, anomaly indexes 1-3, prior to the clogging event. Further anomalous points displayed are
not relevant, as they are marked during the clogging.

Figure 5.1: Clog 1, anomalies detected using LOF, showcased on F01 sensor data
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Figure 5.2: Clog 1, anomalies detected using LOF, showcased on TT12 sensor data

The following figure presents the earliest relevant timestamp prior to the clogging, zoomed in
for visibility.

Figure 5.3: Clog 1, earliest detected relevant anomaly timestamp, showcased on F01 sensor data

5.1.2 LOF results from using lagged variables

This part presents results from utilising data shifted by the method showcased in section 3.3.4.

5.1.2.1 Lagged variables and clog 1

Using lagged variables for clog 1 does not provide optimal results. No anomalous behaviour
is detected prior to the clogging. The earliest detected timestamps during the clogging are
showcased in the following table.
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Table 5.2: LOF anomaly timestamps for clog 1 using lagged variables, occurring at 05:45

Anomaly index Timestamp

20 2021-01-12 05:46:34
21 2021-01-12 05:46:44
22 2021-01-12 05:46:54
23 2021-01-12 05:47:04

The following plots showcase the points presented in the table. Additional anomalies displayed
are marked during the clogging and startup of the process.

Figure 5.4: Clog 1, anomalies detected using LOF and lagged variables, showcased on F01
sensor data
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Figure 5.5: Clog 1, anomalies detected using LOF and lagged variables, showcased on TT12
sensor data

The following figure presents anomaly index 20 in table 5.2, zoomed in for visibility.

Figure 5.6: Clog 1, earliest detected relevant anomaly timestamp in lagged data, showcased on
F01 sensor data

5.2 DBSCAN results

Following tables and figures present relevant timestamps flagged as anomalies by the most
optimal DBSCAN model. As previously mentioned, the index columns show the position of
these points in a list of data flagged as anomalous. Results for clog 2,3,4 and 6 can be found in
Appendix B.2
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5.2.1 Results without lagging of variables

5.2.1.1 Clog 1

For the first clogging using DBSCAN, earliest anomalies are identified right as the event happens.
However, the anomalous behaviour is detected a minute earlier compared to utilising LOF 5.1.
No anomalous behaviour is detected a notable amount prior to the clogging.

Table 5.3: DBSCAN anomaly timestamps for clog 1, occurring at 05:45

Anomaly index Timestamp

2 2021-01-12 05:21:34
3 2021-01-12 05:21:44
4 2021-01-12 05:21:54
5 2021-01-12 05:22:04
6 2021-01-12 05:22:14
7 2021-01-12 05:22:24
8 2021-01-12 05:22:34

The following plots showcase the points presented in the table, as well as a false positive,
anomaly index 1, prior to the clogging event. Additional anomalous points displayed are not
relevant, as they are marked during the clogging.

Figure 5.7: Clog 1, anomalies detected using DBSCAN, showcased on F01 sensor data
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Figure 5.8: Clog 1, anomalies detected using DBSCAN, showcased on TT12 sensor data

The following figure presents the earliest relevant timestamp prior to the clogging, anomaly
index 2 in table 5.3, zoomed in for visibility.

Figure 5.9: Clog 1, earliest detected relevant anomaly timestamp, showcased on F01 sensor data

5.2.2 DBSCAN results from using lagged variables

Similarly to results obtained from using the LOF algorithm and shifted variables, this part
presents results from utilising data shifted by the method showcased in section 3.3.4.

5.2.2.1 Lagged variables and clog 1

Using lagged variables for clog 1 does not provide optimal results. No anomalous behaviour is
detected prior to the clogging. No false positives are produced. The earliest detected timestamps
during the clogging are showcased in the following table.
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Table 5.4: DBSCAN anomaly timestamps for clog 1 using lagged variables, occurring at 05:45

Anomaly index Timestamp

1 2021-01-12 05:36:34
2 2021-01-12 05:36:44
3 2021-01-12 05:36:54
4 2021-01-12 05:37:04

The following plots showcase the points presented in the table. Additional anomalies displayed
are marked during the clogging event.

Figure 5.10: Clog 1, anomalies detected using DBSCAN and lagged variables, showcased on
F01 sensor data

Page 58 of 105



Figure 5.11: Clog 1, anomalies detected using DBSCAN and lagged variables, showcased on
TT12 sensor data

The following figure presents anomaly index 1 in table 5.4, zoomed in for visibility.

Figure 5.12: Clog 1, earliest detected relevant anomaly timestamp in lagged data, showcased
on F01 sensor data

5.3 Table of results

For ease of reference, the reported clogging times and earliest detected anomalies by LOF and
DBSCAN are showcased in the following table. For tables and figures showcasing full results of
respective algorithms, refer to Appendix B
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Table 5.5: Reported clogging event times and earliest detected anomalies

Clogging event Reported clogging
event time

LOF: earliest
detected relevant

anomaly
timestamp

DBSCAN:
earliest detected
relevant anomaly

timestamp

1 2021-01-12 05:45 05:22:34 05:21:34
2 2021-02-01 08:40 08:37:56 08:37:56
3 2021-02-24 08:00 08:02:46 08:02:26
4 2021-03-01 17:00 16:58:34 16:58:24
6 2022-12-13 01:35 01:33 01:33

5.4 Feature importance results

The following tables present the most important features for achieving the results presented. A
table with combined features importance across all clogging events for LOF and DBSCAN, and
a secondary table of combined feature importance using the same algorithms on shifted data
are showcased. These are derived using feature importance techniques described in chapter 4.

Table 5.6: Top 8 most important features for LOF and DBSCAN

Feature Relative importance (%)

PT02 16.5
PT03 13.4
PT05 11.3
F01 10.0
PT07 9.3
TT12 7.6
TT06 5.1
TT20 4.6

The second table, presenting feature importance using shifted variables:

Table 5.7: Top 8 most important features for LOF and DBSCAN using shifted variables

Feature Relative importance (%)

PT02 25.1
PT07 23.6
PT03 15.9
PT05 10.6
TT06 8.6
TT20 8.4
TT09 7.7
F01 6.5
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Chapter 6
Discussion

This chapter aims to discuss the results and findings presented in chapter 5, focusing on the
performance of the local outlier factor (LOF) and density-based clustering of applications with
noise (DBSCAN) algorithms on industrial time series data provided by Bioco. The discussion
revolves around the effectiveness of these methods in detecting anomalous behaviour prior to
clogging events, the impact of using shifted variables, as well as potential future directions
for research. As previously stated in section 3.3.4, the terms ”shifted” and ”lagged” are used
interchangeably.

6.1 Performance in detecting anomalies

Both LOF and DBSCAN algorithms perform similarly in detecting anomalous behaviour in
most cases. Neither algorithm consistently detected anomalies a notable time prior to the clog-
ging events, which limits their practical use for early warning in Bioco’s industrial process.

Based on the results obtained, both LOF and DBSCAN algorithms demonstrated some success
in detecting anomalous behaviour prior to a clogging event. However, the ability to detect such
behaviour in a timely manner prior to an event was limited. In most cases, the earliest detected
anomalies coincided with the occurrence of the clogging events themselves.

For example, for clog 1, LOF and DBSCAN detected anomalous behaviour at 05:22:34 and
05:21:34, respectively. As shown in tables 5.5 and 3.2, clogging event 1 occurs at 5:45, which
indicates that anomalous behaviour was detected a significant amount of time prior to the event.
However, in reality, the process hits a point of no return around 05:23, and the clogging is in
full motion at this point. This is indicated by the extreme drop in pressure in sensor F01 after
the detected anomaly timestamps in the following figure.
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Figure 6.1: DBSCAN, clog 1, point of no return showcased on F01 data. The point of no return
is between the marked anomaly and the blue-labeled data point

Similar behaviour is present for clog 3, 4 and 6. For clog 3, the point of no return occurs later,
between 08:02:46 and 08:03:06. For clog 4, it is around 16:59:14. For clog 6, it is similarly
earlier, at 1:33. For clog 2, the given time is correct, and the clogging occurs at 08:40. To make
these easier to follow, these are indicated in the following table.

Table 6.1: Reported clogging events compared to points of no return

Clogging event Reported clogging event time Point of no return

1 2021-01-12 05:45 2021-01-12 05:23
2 2021-02-01 08:40 2021-02-01 08:40
3 2021-02-24 08:00 2021-02-24 08:02:46
4 2021-03-01 17:00 2021-03-01 16:59:14
6 2022-12-13 01:35 2022-12-13 01:33

This removes any bias related to results and clarifies the points at which detected anomalous
behaviour is too late to prevent a clogging. A table comparing these points of no return to
earliest relevant anomalous timestamps detected by LOF and DBSCAN algorithms is shown
below.

Table 6.2: Points of no return compared to earliest detected anomalies

Clogging event Point of no return LOF: earliest
detected relevant

anomaly
timestamp

DBSCAN:
earliest detected
relevant anomaly

timestamp

1 2021-01-12 05:23 05:22:34 05:21:34
2 2021-02-01 08:40 08:37:56 08:37:56
3 2021-02-24 08:02:46 08:02:46 08:02:26
4 2021-03-01 16:59:14 16:58:34 16:58:24
6 2022-12-13 01:33 01:33 01:33
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Examining this, earliest relevant detected anomalies by both LOF and DBSCAN are generally
close to points of no return for most clogging events. This indicates that the algorithms were
able to detect anomalous behaviour, but not sufficiently early to be considered as reliable early
warning indicators. An early warning of 30 seconds will most likely have a limited value in a
real production, as a human operator still has to process this warning and perform preventive
action. Even an automatised response to such warnings implemented into the process will prob-
ably not have time to prevent a clogging event, unless a system is in place that directly injects
a fluid or some sort of appropriate solvent, like water, into the area where a clogging regularly
occurs.

The most notable result is seen for clog 2, where both algorithms detected anomalous behaviour
2 minutes prior to the points of no return. This is the most promising result, providing a po-
tentially useful early warning time window. However, this is just a single instance. For the rest
of the clogging events, anomalous behaviour was detected under a minute to, or at the exact
same time of the point of no return, failing to provide sufficient time for preventive measures.
Overall, DBSCAN outperformed LOF, albeit to a very small degree.

Preprocessing steps affected the performance of the algorithms. For example, the application
of LOF to unfiltered data for clog 4 (table B.4) gave additional relevant anomalous times-
tamps. However, this variation did not generalise well to the rest of the data, resulting in a
high amount of false positives during normal production. This highlights the need for carefully
selected preprocessing steps that enhance a model’s performance, while at the same time min-
imising sensitivity to noise.

The impact of false positives on the performance of the algorithms in Bioco’s industrial setting
should be considered. While a few false positives might be acceptable, an excess could lead to
unintended consequences. In a decision support context, an operator receiving occasional false
positives alert may perceive themselves as ”smarter than the system” and remain engaged in
the process, providing a sense of purpose and utility. However, a high frequency of false posi-
tives may cause the operator to lose focus and even ignore genuine alerts, potentially leading
to overlooked critical events.

One approach to address this issue of false positives could be to develop a secondary filter-
ing method, distinguishing between true and false positives. This could involve examining the
flagged time steps and applying additional criteria or algorithms to determine their validity.
Such a method could help reduce the number of false positives presented to an operator, in-
creasing the reliability of the system.

Another approach involves the use of an ensemble of anomaly detectors. By incorporating
multiple anomaly detection algorithms, the final decision of whether to flag an event as anoma-
lous could be based on an agreement between the detectors. Only if a given proportion of
the detectors agree that an event is anomalous, is it flagged for an operator’s attention. This
ensemble approach could enhance the overall robustness and accuracy of the system, leveraging
the strengths of each individual algorithm and compensating for their weaknesses.

6.2 Effectiveness of using shifted variables

Incorporating variable shifting was done as an attempt to capture a synced representation of
raw material passing through the system at a given time point. However, the results show that
using lagged variables does not lead to improved performance for either LOF or DBSCAN. In
most cases, the algorithms failed to detect anomalous behaviour prior to the clogging events.
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Additionally, even the clogging events were not marked as anomalies by the algorithms in a
timely manner.

It is possible that the choice of lag values or their incorporation into the feature set could be
suboptimal. The values by which the features were shifted were based on the approximation of
the location of these in Bioco’s industrial process, which may have been inaccurate, indicating
the need of further exploration. Using lagged variables with incorrect shift values might have a
detrimental effect on the performance of the used algorithms. If the chosen shift values do not
accurately reflect the time it takes for raw material to pass through different stages of Bioco’s
process, the resulting features essentially introduce noise and misleading information, causing
the algorithms to miss important patterns related to the clogging events.

Additionally, the variation in input properties, such as tougher, more viscous raw material and
other process conditions, such as changed process parameters, could lead to fluctuations in time
it takes for the material to pass between different points in the process. This further complicates
the selection of appropriate lag values, limiting the effectiveness of using shifted variables. An
approach to solve this could involve analysing how the relationship between the lags of different
sensors changes over time. Doing this, it might be possible to identify deviations in Bioco’s
process that can serve as early warning indicators for clogging events.

As it stands, it is beneficial to reassess the use of shifted variables in the current implementation,
and explore alternative methods for capturing dynamic relationships between sensor data. This
could involve further correlation testing for set data windows, assisted by using near infrared
sensors to capture data about raw material properties. Additionally, other feature engineering
techniques, better suited for variations in raw material properties and process conditions should
be considered.

Another approach would be a proper implementation of autoencoders (2.5.5.1). These were
briefly used in the analysis, but not explored on a proper level because of limitations in com-
putational resources, discussed later. However, as autoencoders learn a lower-dimensional rep-
resentation of the input data, this might reveal hidden patterns or relationships not evident in
the raw sensor data.

In conclusion, while the use of shifted variables in the current implementation has not given
significant improvements in the performance of LOF and DBSCAN algorithms, there are several
alternative approaches that should be explored to better capture the relationships between
sensor data in Bioco’s process. By combining the mentioned techniques with domain expertise,
it may be possible to develop more effective strategies for shifting sensor data and improving
the detection of anomalous behaviour in Bioco’s industrial process.

6.3 Sensitivity to parameter tuning

The optimal n neighbors parameter in LOF and MinPts parameter in DBSCAN essentially
represent the same thing. In general, for Bioco’s data, setting n neighbors and MinPts pa-
rameters between 1.2-1.5 times the number of features used gives a model that tries to capture
pre-clogging behaviour, with a minimal amount of false positives. Setting this parameter to
values lower than the amount of features in the data used yields a model that seems to detect
anomalous behaviour earlier than the results showcased in chapter 5. However, such a model
essentially flags much of the regular production as anomalous behaviour, produces false posi-
tives, and does not generalise well between data windows. The parameter ϵ for DBSCAN is
derived from finding the optimal MinPts parameter. No notable improvement in performance
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is noted from adjusting this parameter manually.

For LOF, the sensitivity of setting the contamination parameter is an interesting topic. This
parameter essentially sets the proportion of anomalies in the data set, directly influencing
number of detected anomalies. As we have prior knowledge of the clogging events, setting
this parameter value based on known events essentially introduces hindsight bias, resulting in
biased results. The trick used to avoid this was to include starts, end, and inactive periods in
the industrial process in data used. The idea is that the pre-clogging, anomalous behaviour is
caught in the results, and the rest of the ”anomaly quota” is filled by irrelevant periods. For
implementation in the actual industrial process, where data from inactive periods might not be
utilised, setting the parameter to a very low value, below 0.001, should yield optimal results.
In praxis, a value of 0.001 means that there is an anomalous point for every 1000 points. With
a sample rate of 6 sensor values a minute, this translates to an anomaly every 167 minutes, or
roughly 3 hours of production. If a window size of at least 30000 data points, or just above 83
hours of production is used, 30 anomalous points are detected. This value should, in theory, be
appropriate for potential clogging prevention. For a sampling rate of 1 sensor value a minute,
the contamination parameter should be adjusted to 0.006 and lower, representing the same
amount of production time. However, this is only a speculation, as this was not thoroughly
tested.

6.4 Feature importance evaluation

Feature importance results shown in 5.4 provide insight into which features contribute the most
to the performance of the LOF and DBSCAN algorithms. However, it is important to consider
that these results are based on the suboptimal performance achieved in detecting anomalies
prior to clogging events. Thus, the identified important features may not necessarily be the
optimal features for detecting anomalous behaviour early enough to prevent such events.

Examining the top features presented in table 5.6, PT02, PT03, and PT05 have the highest
relative importance. These pressure-related features seem to be more informative for the algo-
rithms compared to the temperature and flow-related features, which might be attributed to
the nature of clogging events being more closely related to changes in pressure. However, the
fact that the algorithms did not provide satisfactory early warnings for clogging events suggests
that relying solely on these features might not be sufficient.

Incorporating shifted variables, as shown in table 5.7, PT02 and PT07 become the most im-
portant features, followed by PT03 and PT05. The increase of importance of PT07 and the
emergence of TT06 and TT20 among the top features suggest that using lagged variables may
provide additional information to the algorithms. Nevertheless, the use of shifted variables did
not produce any reliable early warnings for clogging events, indicating the previously mentioned
need of an alternative approach to lagging these variables.

6.5 Limitations and challenges

One of the primary limitations encountered in this work was the lack of sufficient computational
resources. The machine used for the analysis was an outdated unit, which significantly impacted
the feasibility of employing more complex models, such as autoencoders. Due to the consider-
able amount of time and computational resources required to set up and utilise these advanced
models, a decision was made to focus on simpler models that appeared more promising, given
the available resources.
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This limitation influenced the choice of algorithms and methods employed, potentially affect-
ing the success in detecting pre-clogging anomalous behaviour. As a result, the findings may
not fully represent the capabilities of more advanced models that could have been explored if
computational resources were less limited.

6.6 Future Work

Future work in this area should prioritise addressing the limitations encountered in this work
and exploring new techniques and strategies that could enhance the performance of anomaly
detection algorithms in industrial time series data.

With increased computational resources, more sophisticated and computationally expensive
methods, such as autoencoders and other deep learning techniques, can be thoroughly investi-
gated and tested on Bioco’s data. This would also allow for the use of larger data windows,
enabling more extensive performance evaluation and better understanding of the relationships
within the sensor data.

The idea of using ensemble methods or combining different anomaly detection algorithms should
be explored further. By leveraging the strengths of multiple algorithms, it is thought to be pos-
sible to achieve better overall performance in detecting anomalous behaviour prior to a clogging
event.

Future research should explore additional feature engineering and selection strategies that could
improve the performance of the algorithms. Looking into alternative techniques for incorporat-
ing lagged variables may yield better results, and ensemble methods that utilise both regular
and lagged data should be considered.

The impact of different preprocessing steps on algorithm performance should be systematically
evaluated, as the results in this work indicate that these steps can significantly influence anomaly
detection outcomes. By understanding how preprocessing choices affect the results, more in-
formed decisions can be made when selecting the most appropriate preprocessing techniques.

Additionally, future work should focus on minimising the occurrence of false positives while
maintaining the ability to detect true anomalies. This, as previously discussed, could involve
developing advanced warning systems that can differentiate between true and false positives,
improving the reliability and usability of the anomaly detection system.
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Chapter 7
Conclusion

The aim of this thesis was to investigate the application of anomaly detection algorithms for
early detection of clogging events in an industrial setting, specifically for Bioco’s production
process. The main goal was to identify anomalous behaviour in time series sensor data prior to
clogging events, with the aim of allowing preventive actions to be taken. To achieve this, two
unsupervised learning algorithms, LOF and DBSCAN, were employed and their performance
was evaluated in terms of their ability to detect anomalies in the data.

The results revealed that both LOF and DBSCAN were able to detect anomalous behaviour in
most cases, but their performance was not consistent in providing sufficient early warnings for
clogging events. The earliest detected anomalies often coincided with the point of no return or
occured too close to the clogging event itself, limiting the practical use of these algorithms for
early warning purposes.

Feature importance analysis indicated that certain features contributed more to the detection
of anomalies than others. However, the most important features identified were not necessarily
the most effective in providing early warnings of clogging events. This highlights the need for
further investigation into feature selection and engineering techniques that may enhance the
performance of anomaly detection algorithms.

Several limitations were encountered during this research, including limited computational re-
sources, which constrained the exploration of more advanced techniques such as autoencoders
and other deep learning methods. Additionally, preprocessing steps were found to have a sig-
nificant impact on the performance of the algorithms, indicating that a systematic evaluation
of different preprocessing techniques is needed to optimise anomaly detection results.

Future work should focus on addressing these limitations and exploring new strategies for im-
proving anomaly detection in industrial time series data. This includes investigating more
advanced algorithms and feature engineering techniques, ensemble methods, and refining warn-
ing systems to address false positives. By building upon the findings of this thesis, it is hoped
that more effective and reliable anomaly detection systems can be developed to aid in the pre-
vention of clogging events in Bioco’s industrial process and improve overall process control in
their industrial setting.

67



Bibliography

[1] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection: A survey”.
In: ACM Computing Surveys (CSUR) 41.3 (2009), pp. 1–58. url: https://dl.acm.org/
doi/10.1145/1541880.1541882.

[2] Neil Caithness and David Wallom. “Anomaly Detection for Industrial Big Data”. In:
Proceedings of the 7th International Conference on Data Science, Technology and Ap-
plications. SCITEPRESS - Science and Technology Publications, 2018. doi: 10.5220/
0006835502850293. url: https://arxiv.org/abs/1804.02998.

[3] Victoria J Hodge and Jim Austin. “A survey of outlier detection methodologies”. In:
Artificial Intelligence Review 22.2 (2004), pp. 85–126. url: https://link.springer.
com/article/10.1007/s10462-004-4304-y.

[4] Walter A Shewhart. “Economic control of quality of manufactured product”. In: Bell
System Technical Journal 10.2 (1931), pp. 500–501.

[5] David S Moore, George P McCabe, and Bruce A Craig. Introduction to the Practice of
Statistics. 7th ed. W.H. Freeman, 2012.

[6] Harold Hotelling. “The Generalization of Student’s Ratio”. In: The Annals of Mathemat-
ical Statistics 2.3 (1931), pp. 360–378. doi: 10.1214/aoms/1177732979. url: https:
//doi.org/10.1214/aoms/1177732979.

[7] Frederik Michel Dekking et al. A Modern Introduction to Probability and Statistics. 1st ed.
Springer London, 2010, pp. 234–236. doi: 10.1007/1-84628-168-7.

[8] Steven Walfish. “A review of statistical outlier methods”. In: Pharmaceutical technol-
ogy 30.11 (2006), p. 82. url: http://www.statisticaloutsourcingservices.com/
Outlier2.pdf.

[9] Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice. 3rd ed.
OTexts, 2021.

[10] G.E.P. Box et al. Time Series Analysis: Forecasting and Control. Wiley Series in Prob-
ability and Statistics. Wiley, 2015. isbn: 9781118674925. url: https://books.google.
no/books?id=rNt5CgAAQBAJ.

[11] Christopher M Bishop. Pattern recognition and machine learning. Springer, 2006.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016.
url: https://mitpress.mit.edu/9780262035613/deep-learning.

[13] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT Press, 2012.

[14] Trevor Hastie, Rober Tibshirani, and Jerome Friedman. The elements of statistical learn-
ing: data mining, inference, and prediction. 2nd ed. Springer Science & Business Media,
2009. doi: https://doi.org/10.1007/978-0-387-84858-7.

68

https://dl.acm.org/doi/10.1145/1541880.1541882
https://dl.acm.org/doi/10.1145/1541880.1541882
https://doi.org/10.5220/0006835502850293
https://doi.org/10.5220/0006835502850293
https://arxiv.org/abs/1804.02998
https://link.springer.com/article/10.1007/s10462-004-4304-y
https://link.springer.com/article/10.1007/s10462-004-4304-y
https://doi.org/10.1214/aoms/1177732979
https://doi.org/10.1214/aoms/1177732979
https://doi.org/10.1214/aoms/1177732979
https://doi.org/10.1007/1-84628-168-7
http://www.statisticaloutsourcingservices.com/Outlier2.pdf
http://www.statisticaloutsourcingservices.com/Outlier2.pdf
https://books.google.no/books?id=rNt5CgAAQBAJ
https://books.google.no/books?id=rNt5CgAAQBAJ
https://mitpress.mit.edu/9780262035613/deep-learning
https://doi.org/https://doi.org/10.1007/978-0-387-84858-7


[15] Peter J Brockwell and Richard A Davis. Introduction to time series and forecasting. 3rd ed.
Springer, 2016. doi: https://doi.org/10.1007/978-3-319-29854-2.

[16] J. B. MacQueen. “Some Methods for Classification and Analysis of MultiVariate Obser-
vations”. In: Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Prob-
ability. University of California Press, 1967, pp. 281–297. url: http://projecteuclid.
org/euclid.bsmsp/1200512992.

[17] Martin Ester et al. “A Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise”. In: KDD’96. Portland, Oregon: AAAI Press, 1996, pp. 226–231.

[18] T. Cover and P. Hart. “Nearest neighbor pattern classification”. In: IEEE Transactions
on Information Theory 13.1 (1967), pp. 21–27. doi: 10.1109/TIT.1967.1053964.

[19] Markus Breunig et al. “LOF: Identifying Density-Based Local Outliers.” In: vol. 29. June
2000, pp. 93–104. doi: 10.1145/342009.335388.

[20] J Ross Quinlan. “Induction of decision trees”. In: Machine learning 1.1 (1986), pp. 81–
106.

[21] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation Forest”. In: 2008 Eighth IEEE
International Conference on Data Mining. 2008, pp. 413–422. doi: 10.1109/ICDM.2008.
17.

[22] Chong Zhou and Randy C. Paffenroth. “Anomaly Detection with Robust Deep Autoen-
coders”. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. KDD ’17. Halifax, NS, Canada: Association for Comput-
ing Machinery, 2017, pp. 665–674. isbn: 9781450348874. doi: 10.1145/3097983.3098052.
url: https://doi.org/10.1145/3097983.3098052.

[23] Raghavendra Chalapathy and Sanjay Chawla. “Deep learning for anomaly detection: A
survey”. In: arXiv preprint arXiv:1901.03407 (2019). url: https://arxiv.org/abs/
1901.03407.

[24] Pankaj Malhotra et al. “LSTM-based encoder-decoder for multi-sensor anomaly detec-
tion”. In: arXiv preprint arXiv:1607.00148 (2016). url: https://arxiv.org/pdf/1607.
00148.pdf.

[25] Markus Goldstein and Seiichi Uchida. “A comparative evaluation of unsupervised anomaly
detection algorithms for multivariate data”. In: PloS one 11.4 (2016), e0152173. url:
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.

0152173&type=printable.

Page 69 of 105

https://doi.org/https://doi.org/10.1007/978-3-319-29854-2
http://projecteuclid.org/euclid.bsmsp/1200512992
http://projecteuclid.org/euclid.bsmsp/1200512992
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1145/342009.335388
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1145/3097983.3098052
https://doi.org/10.1145/3097983.3098052
https://arxiv.org/abs/1901.03407
https://arxiv.org/abs/1901.03407
https://arxiv.org/pdf/1607.00148.pdf
https://arxiv.org/pdf/1607.00148.pdf
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0152173&type=printable
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0152173&type=printable


Appendix A
Table of Python-packages

Python-package
name

Version Purpose of use

”kneed” 0.8.3 Knee point identification

”matplotlib” 3.7.1 Plots and figures

”missingno” 0.5.2 Missing data visualisation

”numpy” 1.24.3 Array computing

”pandas” 2.0.1 Data analysis

”plotly” 5.14.1 Interactive plots and figures

”scikit-learn” 1.2.2 Mainly for anomaly detection, model tuning and
feature importance

”seaborn” 0.12.0 Mainly for correlation and lag identification and
figure styling

”statsmodels” 0.14.0 Statistical computations and data exploration

Table A.1: Python-packages used during data exploration, data processing, data visualisation,
feature selection, feature engineering, anomaly detection and feature importance, the respective
version used as well as the purpose of their use.
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Appendix B
Continuation of results

B.1 Local outlier factor results

B.1.1 Results without lagging of variables

B.1.1.1 Clog 2

For the second clogging, earliest anomaly is identified a significant amount prior to the clogging
event. However, this is attributed to the process being in the startup phase, indicating a false
positive. Subsequent points are identified right as the event happens.

Table B.1: LOF anomaly timestamps for clog 2, occurring at 08:40

Anomaly index Timestamp

8 2021-02-01 07:43:46
9 2021-02-01 08:37:56
10 2021-02-01 08:38:06
11 2021-02-01 08:38:46
12 2021-02-01 08:38:56
13 2021-02-01 08:39:06
14 2021-02-01 08:39:16

The following plots showcase the points presented in the table, as well as additional false pos-
itives, prior to the clogging event. Additional anomalous points displayed are not relevant, as
they are marked during the clogging.
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Figure B.1: Clog 2, anomalies detected using LOF, showcased on F01 sensor data

Figure B.2: Clog 2, anomalies detected using LOF, showcased on TT12 sensor data

The following figure presents the earliest relevant timestamp prior to the clogging, anomaly
index 9 in table B.1, zoomed in for visibility.
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Figure B.3: Clog 2, earliest detected relevant anomaly timestamp, showcased on F01 sensor
data

B.1.1.2 Clog 3

For the third clogging, earliest anomalies are identified more than 40 minutes prior to the event.
However, this is attributed to a manual change in process parameters in that period. Subsequent
anomalies are detected as the clogging occurs.

Table B.2: LOF anomaly timestamps for clog 3, , occurring at 08:00

Anomaly index Timestamp

1 2021-02-24 07:15:56
2 2021-02-24 07:16:06
3 2021-02-24 07:24:06
4 2021-02-24 08:02:46
5 2021-02-24 08:02:56

The following plots showcase the points presented in the table. Additional anomalous points
displayed after the significant drop in values are not relevant, as they are marked during the
clogging.
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Figure B.4: Clog 3, anomalies detected using LOF, showcased on F01 sensor data

Figure B.5: Clog 3, anomalies detected using LOF, showcased on TT12 sensor data

The following figure presents the earliest timestamp prior to the clogging, anomaly index 1 in
table B.2, zoomed in for visibility.
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Figure B.6: Clog 3, earliest detected relevant anomaly timestamp, showcased on F01 sensor
data

B.1.1.3 Clog 4

Utilising the most optimal model on filtered and denoised data, the results are as shown in the
following table.

Table B.3: LOF anomaly timestamps for clog 4, occurring at 17:00

Anomaly index Timestamp

4 2021-03-01 16:58:34
5 2021-03-01 16:58:44
6 2021-03-01 16:58:54

No anomalous behaviour is detected prior to the clogging. The anomalous points are flagged
too late, right as the clog happens. The following plots showcase this.
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Figure B.7: Clog 4, anomalies detected using LOF, showcased on F01 sensor data

Figure B.8: Clog 4, anomalies detected using LOF, showcased on TT12 sensor data

The following figure presents the earliest timestamp detected, anomaly index 4 in table B.3,
zoomed in for visibility.
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Figure B.9: Clog 4, earliest detected relevant anomaly timestamp, showcased on F01 sensor
data

However, if utilised on unfiltered data, two additional timestamps prior to the clogging are
produced.

Table B.4: LOF anomaly timestamps for clog 4 on unfiltered data, occurring at 17:00

Anomaly index Timestamp

13 2021-03-01 15:34:44
14 2021-03-01 16:18:44
15 2021-03-01 16:58:24
16 2021-03-01 16:58:34

However, this variation of implementation does not generalise well on the rest of the data,
resulting in false positives during normal production and a sensitive model. This is showcased
in the following plots of temperature sensor TT12.
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Figure B.10: Clog 4, anomalies detected using LOF on unfiltered data, showcased on sensor
TT12

The yellow-marked area is irrelevant, caused by choice of imputation technique. All other
anomalous points detected prior to and after the clogging, excluding this, are false positives.
The following figure presents the earliest timestamps prior to the clogging detected on unfiltered
data, anomaly indexes 13 and 14 in table B.4, zoomed in for visibility.

Figure B.11: Clog 4, earliest detected relevant anomaly timestamp using unfiltered data, show-
cased on sensor TT12

B.1.1.4 Clog 6

For the sixth clogging and 2022 data, earliest anomalies are identified right as the event happens.
No anomalous behaviour is detected a notable amount prior to the clogging. No false positives
are produced.
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Table B.5: LOF anomaly timestamps for clog 6, occurring at 01:35

Anomaly index Timestamp

1 2022-12-13 01:33:00
2 2022-12-13 01:34:00

The following plots showcase the points presented in the table. Additional anomalous points
displayed are not relevant, as they are marked during the clogging.

Figure B.12: Clog 6, anomalies detected using LOF, showcased on F01 sensor data

Figure B.13: Clog 6, anomalies detected using LOF, showcased on TT12 sensor data

The following figure presents the earliest timestamp prior to the clogging, anomaly index 1 in
table B.5, zoomed in for visibility.
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Figure B.14: Clog 6, earliest detected relevant anomaly timestamp, showcased on F01 sensor
data

B.1.2 LOF results from using lagged variables

B.1.2.1 Lagged variables and clog 2

For clog 2, the lagged variables provide interesting results, showcased in the following table.

Table B.6: LOF anomaly timestamps for clog 2 using lagged variables, occurring at 08:40

Anomaly index Timestamp

16 2021-02-01 07:54:56
17 2021-02-01 08:05:06
18 2021-02-01 08:05:16
19 2021-02-01 08:05:36
20 2021-02-01 08:48:56

Anomalous behaviour is detected more than 40 minutes prior to the clogging event, with mul-
tiple consecutive timestamps. However, this is attributed to the clogging happening early after
the start of the industrial process. The lagged variables early in the process are using data from
the start of the process, while variables later are using data from regular operation. This is
indicated in the following figures, showing an abundance of points flagged as anomalies.
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Figure B.15: Clog 2, anomalies detected using LOF and lagged variables, showcased on F01
sensor data

Figure B.16: Clog 2, anomalies detected using LOF and lagged variables, showcased on TT12
sensor data

The following figure presents anomaly index 16 in table B.6, zoomed in for visibility.
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Figure B.17: Clog 2, earliest detected relevant anomaly timestamp in lagged data, showcased
on F01 sensor data

B.1.2.2 Lagged variables and clog 3

For clog 3, using lagged variables does not provide any relevant results. Only the clogging event
is detected by the model, as showcased in the following table.

Table B.7: LOF anomaly timestamps for clog 3 using lagged variables, occurring at 08:00

Anomaly index Timestamp

2 2021-02-24 08:10:56
3 2021-02-24 08:11:06

The following plots showcase the points presented in the table. Additional anomalies displayed
are marked during the clogging. A false positive is also present during normal operation.
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Figure B.18: Clog 3, anomalies detected using LOF and lagged variables, showcased on F01
sensor data

Figure B.19: Clog 3, anomalies detected using LOF and lagged variables, showcased on TT12
sensor data

The following figure presents anomaly index 2 in table B.7, zoomed in for visibility.
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Figure B.20: Clog 3, earliest detected relevant anomaly timestamp in lagged data, showcased
on F01 sensor data

B.1.2.3 Lagged variables and clog 4

Using lagged variables for clog 4 similarly does not produce optimal results. No anomalous
behaviour is detected prior to the clogging. The earliest anomalous instances are detected
during the event itself. Additionally, using lagged variables creates multiple false positives
during regular production.

Table B.8: LOF anomaly timestamps for clog 4 using lagged variables, occurring at 17:00

Anomaly index Timestamp

9 2021-03-01 17:23:24
10 2021-03-01 17:23:34
11 2021-03-01 17:23:44

The following plots showcase the points presented in the table. Additional anomalies displayed
are marked at the start of the process and during the clogging. Mutiple false positives are also
present during normal operation.
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Figure B.21: Clog 4, anomalies detected using LOF and lagged variables, showcased on F01
sensor data

Figure B.22: Clog 4, anomalies detected using LOF and lagged variables, showcased on TT12
sensor data

The following figure presents anomaly index 9 in table B.8, zoomed in for visibility.
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Figure B.23: Clog 4, earliest detected relevant anomaly timestamp in lagged data, showcased
on F01 sensor data

B.1.2.4 Lagged variables and clog 6

Unsatisfactory results of applying the model to clog 6 data with lagged variables, no anomalous
behaviour detected prior to the clogging. The table showcases earliest anomalous timestamps.

Table B.9: LOF anomaly timestamps for clog 6 using lagged variables, occurring at 01:35

Anomaly index Timestamp

1 2022-12-13 01:48:00
2 2022-12-13 01:58:00
3 2022-12-13 02:00:00

The following plots showcase the points presented in the table. Additional anomalies displayed
are marked during the clogging.
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Figure B.24: Clog 6, anomalies detected using LOF and lagged variables, showcased on F01
sensor data

Figure B.25: Clog 6, anomalies detected using LOF and lagged variables, showcased on TT12
sensor data

The following figure presents anomaly index 1 in table B.9, zoomed in for visibility.
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Figure B.26: Clog 6, earliest detected relevant anomaly timestamp in lagged data, showcased
on F01 sensor data

B.2 DBSCAN results

B.2.1 Results without lagging of variables

B.2.1.1 Clog 2

For the second clogging using DBSCAN, earliest anomalies are identified right as the event
happens. Results are almost identical to that of LOF, excluding the false positive with anomaly
index 8 in table B.1. No anomalous behaviour is detected a notable amount prior to the clogging.

Table B.10: DBSCAN anomaly timestamps for clog 2, occurring at 08:40

Anomaly index Timestamp

4 2021-02-01 08:37:56
5 2021-02-01 08:38:06
6 2021-02-01 08:38:46
7 2021-02-01 08:38:56
8 2021-02-01 08:39:06

The following plots showcase the points presented in the table, as well as additional false posi-
tives, anomaly indexes 1-3, caused by process startup. Further anomalous points displayed are
not relevant, as they are marked during the clogging.
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Figure B.27: Clog 2, anomalies detected using DBSCAN, showcased on F01 sensor data

Figure B.28: Clog 2, anomalies detected using DBSCAN, showcased on TT12 sensor data

The following figure presents anomaly index 4 in table B.10, zoomed in for visibility.
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Figure B.29: Clog 2, earliest detected relevant anomaly timestamp, showcased on F01 sensor
data

B.2.1.2 Clog 3

For the third clogging, DBSCAN provides identical results to those of LOF for the same event
in section B.1.1.2, where earliest anomalies are identified more than 40 minutes prior to the
event. Similarly, this is attributed to a manual change in process parameters in that period.
Subsequent anomalies are detected as the clogging occurs.

Table B.11: DBSCAN anomaly timestamps for clog 3, occurring at 08:00

Anomaly index Timestamp

3 2021-02-24 07:15:56
4 2021-02-24 07:16:06
5 2021-02-24 07:24:06
6 2021-02-24 08:02:26
7 2021-01-12 08:02:36

The following plots showcase the points presented in the table, as well as false positives during
regular production, anomaly indexes 1 and 2, prior to the clogging event. Additional anomalous
points displayed are not relevant, as they are marked during the clogging.
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Figure B.30: Clog 3, anomalies detected using DBSCAN, showcased on F01 sensor data

Figure B.31: Clog 3, anomalies detected using DBSCAN, showcased on TT12 sensor data

The following figure presents the earliest relevant timestamps prior to the clogging, anomaly
indexes 3 and 5 in table B.11, zoomed in for visibility.
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Figure B.32: Clog 3, earliest detected relevant anomaly timestamp, showcased on F01 sensor
data

B.2.1.3 Clog 4

No anomalous behaviour is detected prior to the clogging. The anomalous points are flagged
too late, right as the clog happens. The following plots showcase this. Opposed to the varia-
tion in results using LOF B.1.1.3, no variation in preprocessing provides additional anomalous
timestamps.

Table B.12: DBSCAN anomaly timestamps for clog 4, occurring at 17:00

Anomaly index Timestamp

5 2021-03-01 16:58:24
6 2021-03-01 16:58:34
7 2021-03-01 16:58:44
8 2021-03-01 16:58:54

The following plots showcase the points presented in the table. Additional anomalous points
displayed are not relevant, as they are marked during the clogging, starts and ends of the
process, and as a result of filtering.
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Figure B.33: Clog 4, anomalies detected using DBSCAN, showcased on F01 sensor data

Figure B.34: Clog 4, anomalies detected using DBSCAN, showcased on TT12 sensor data

The following figure presents the earliest relevant timestamp, anomaly index 5 in table B.12,
zoomed in for visibility.
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Figure B.35: Clog 4, earliest detected relevant anomaly timestamp, showcased on F01 sensor
data

B.2.1.4 Clog 6

DBSCAN gives identical results to utilising LOF on the same data in section B.1.1.4. No
anomalous behaviour is detected a notable amount prior to the clogging. No false positives are
produced.

Table B.13: DBSCAN anomaly timestamps for clog 6, occurring at 01:35

Anomaly index Timestamp

1 2022-12-13 01:33:00
2 2021-12-13 01:34:00

The following plots showcase the points presented in the table. Additional anomalous points
displayed are not relevant, as they are marked during the clogging.
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Figure B.36: Clog 6, anomalies detected using DBSCAN, showcased on F01 sensor data

Figure B.37: Clog 6, anomalies detected using DBSCAN, showcased on TT12 sensor data

The following figure presents the earliest timestamp detected, anomaly index 1 in table B.13,
zoomed in for visibility.
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Figure B.38: Clog 6, earliest detected relevant anomaly timestamp, showcased on F01 sensor
data

B.2.2 DBSCAN results from using lagged variables

B.2.2.1 Lagged variables and clog 2

Using lagged variables for clog 2 does not provide optimal results. No anomalous behaviour is
detected prior to the clogging. No false positives are produced. The earliest detected timestamps
during the clogging are showcased in the following table.

Table B.14: DBSCAN anomaly timestamps for clog 2 using lagged variables, occurring at 08:40

Anomaly index Timestamp

1 2021-02-01 08:53:46
2 2021-02-01 08:53:56
3 2021-02-01 08:54:06
4 2021-02-01 08:54:16

The following plots showcase the points presented in the table. Additional anomalies displayed
are marked during the clogging event.
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Figure B.39: Clog 2, anomalies detected using DBSCAN and lagged variables, showcased on
F01 sensor data

Figure B.40: Clog 2, anomalies detected using DBSCAN and lagged variables, showcased on
TT12 sensor data

The following figure presents anomaly index 1 in table B.14, zoomed in for visibility.

Page 97 of 105



Figure B.41: Clog 2, earliest detected relevant anomaly timestamp in lagged data, showcased
on F01 sensor data

B.2.2.2 Lagged variables and clog 3

For clog 3, using lagged variables does not provide any relevant results. Only the clogging event
is detected by the model, as showcased in the following table.

Table B.15: DBSCAN anomaly timestamps for clog 3 using lagged variables, occurring at 08:00

Anomaly index Timestamp

2 2021-02-24 08:09:56
3 2021-02-24 08:10:06
4 2021-02-24 08:10:16
5 2021-02-24 08:10:56

The following plots showcase the points presented in the table. Additional anomalies displayed
are marked during the clogging. A false positive is also present during normal operation.
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Figure B.42: Clog 3, anomalies detected using DBSCAN and lagged variables, showcased on
F01 sensor data

Figure B.43: Clog 3, anomalies detected using DBSCAN and lagged variables, showcased on
TT12 sensor data

The following figure presents anomaly index 2 in table B.15, zoomed in for visibility.
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Figure B.44: Clog 3, earliest detected relevant anomaly timestamp in lagged data, showcased
on F01 sensor data

B.2.2.3 Lagged variables and clog 4

Using lagged variables for clog 4 similarly does not produce optimal results. No anomalous
behaviour is detected prior to the clogging. The earliest anomalous instances are detected late
into the event. The results are almost identical to LOF for the same data in section B.1.2.3,
excluding false positives during regular operation.

Table B.16: DBSCAN anomaly timestamps for clog 4 using lagged variables, occurring at 17:00

Anomaly index Timestamp

1 2021-03-01 17:23:24
2 2021-03-01 17:23:34
3 2021-03-01 17:23:44

The following plots showcase the points presented in the table. Additional anomalies displayed
are marked during the clogging.
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Figure B.45: Clog 4, anomalies detected using DBSCAN and lagged variables, showcased on
F01 sensor data

Figure B.46: Clog 4, anomalies detected using DBSCAN and lagged variables, showcased on
TT12 sensor data

The following figure presents anomaly index 1 in table B.16, zoomed in for visibility.
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Figure B.47: Clog 4, earliest detected relevant anomaly timestamp in lagged data, showcased
on F01 sensor data

B.2.2.4 Lagged variables and clog 6

The model is unsuccessful in identifying anomalous behaviour prior to clog 6 using lagged
variables. The earliest identified anomaly timestamps are presented in the following table.

Table B.17: DBSCAN anomaly timestamps for clog 6 using lagged variables, occurring at 01:35

Anomaly index Timestamp

1 2022-12-13 01:48:00
2 2022-12-13 01:49:00

The following plots showcase the points presented in the table. Additional anomalies displayed
are marked during the clogging.
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Figure B.48: Clog 6, anomalies detected using DBSCAN and lagged variables, showcased on
F01 sensor data

Figure B.49: Clog 6, anomalies detected using DBSCAN and lagged variables, showcased on
TT12 sensor data

The following figure presents anomaly index 2 in table B.17, zoomed in for visibility.
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Figure B.50: Clog 6, earliest detected relevant anomaly timestamp in lagged data, showcased
on F01 sensor data
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