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Abstract 

  

Microorganisms in the gut are proven to affect health in multiple ways, and they have been 

studied extensively for the last decade. HumGut is a database containing microorganisms 

from the healthy human gut. The company Genetic Analysis (GA) has a GA-map dysbiosis 

test that aims to characterize microorganisms in the human gut to identify dysbiosis patients. 

This thesis provides an overview of the taxonomic and functional categorization of the human 

gut, gained by analyzing HumGut, and how well the GA-map spans the healthy human gut by 

investigating how it overlaps the database. Prodigal, Tax4FUN, and Diamond were used to 

acquire functional profiles for the HumGut genomes.  

 

GA-map identifies microorganisms by matching GA-map probes to the 16S sequences in their 

genomes. Most genomes in HumGut do not have an identified 16S sequence. Still, the results 

show that the GA-map spans the majority of higher taxonomic ranks in HumGut. There are 

both taxonomic and functional parts missed by the map. The functional space missed by the 

GA-map seems to be relative similar to matched functional regions. 

 

The genome categories in the HumGut collection are also evaluated in this thesis. The 

genomes in HumGut come from two sources: RefSeq and UHGG. Most of the UHGG 

genomes are Metagenome Assembled Genomes (MAGs). The findings show that MAGs may 

have lower quality on the 16S sequence than RefSeq-genomes, of which the latter is expected 

to have higher quality. The results also suggest that UHGG-genomes might have functional 

differences from other genomes. 
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Sammendrag 

 

Det er bevist at mikroorganismer i tarmen påvirker helsen på flere måter, og det har blitt 

forsket mye på disse organismene det siste tiåret. HumGut er en database over 

mikroorganismer fra frisk human tarm. Bedriften Genetic Analysis (GA) har en GA-map 

dysbiose test med mål om å karakterisere mikroorganismer i human tarm for å identifisere 

dysbiose pasienter. Denne masteroppgaven presenterer en oversikt over human tarm gjennom 

taksonomisk og funksjonell kategorisering, oppnådd ved å analysere HumGut, og hvor godt 

GA-map spenner frisk human tarm ved å undersøke hvordan den identifiserer HumGut-

genomene. Prodigal, Tax4FUN og Diamond ble brukt for å få funksjonelle profiler. 

 

GA-map identifiserer mikroorganismer ved å matche med 16S-sekvensen til genomet. De 

fleste HumGut-genome har ikke en identifisert 16S-sekvens. Likevel viser resultatene at GA-

map dekker over de fleste høyere taksonomiske nivåene i HumGut. Det er både taksonomiske 

og funksjonelle regioner som ikke dekkes. De funksjonelle regionene som ikke blir dekket av 

GA-kartet, ser ut til å være hovedsakelig like funksjonelle regioner som blir dekket. 

 

En annen del av oppgaven er å evaluere genomkategoriene i HumGut. Genomene i HumGut 

kommer fra to kilder: RefSeq, som har validerte genomer, og UHGG. De fleste genomene i 

UHGG er Metagenom sammensatte genomer (MAGs). Funnene kan tyde på at disse 

genomene har lavere kvalitet på 16S sekvensene enn RefSeq-genomene, som er forventet å ha 

høyere kvalitet. Resultatene kan også indikere at UHGG-genomer kan ha funksjonelle 

forskjeller fra andre genomer.  
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1. Introduction 
 

1.1 Human Gut 
 

The human gut has been studied extensively for the last decade, especially the microbiome. 

The microbiome is the collection of microorganisms in the human gut (Turnbaugh et al., 

2009). Parts of the microbiome are heritable, but it is shown that most are shaped by 

environmental factors (Rothschild et al., 2018). The microbiota affects the body in different 

ways, locally, like gut immunity (Althani et al., 2016), and in more distant organs, like 

regulating immunological defense against viral infection in the lungs (Ichinohe et al., 2011). It 

can also affect anxiety (Diaz Heijtz et al., 2011) and pain perception (Amaral et al., 2008). 

Microorganisms in the human gut have been proven to be directly associated with various 

diseases and disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, and 

many more (Hou et al., 2022).  

 

Gut bacterial dysbiosis is deviations in a healthy gut microbiome (Casén et al., 2015). 

Disorders such as Chron's disease, ulcerative colitis, inflammatory bowel diseases (IBD), 

irritable bowel syndrome (IBS), obesity, nonalcoholic steatohepatitis, and type I and type II 

diabetes are all examples of disorders associated with dysbiosis (Casén et al., 2015). Some of 

these disorders are quite prevalent. For instance, IBS affects around 11 % of the global 

population and gives a reduced health-related quality of life (Lovell et al., 2012; Akehurst et 

al., 2002). 

 

Although dysbiosis has been researched extensively, it is unknown whether dysbiosis is an 

effect or a casual factor (Kim et al., 2023). Knowing more about the human gut may open 

opportunities related to diagnostics, treatment, or prevention of various diseases. 

 

1.2 Databases covering microorganisms in human gut 
 

Even if the microorganisms in the gut are proven to affect diseases and have been researched 

through the years, much is still unknown about them. Part of the problem is that only around 

one-third of them are found in the majority of healthy individuals (Lloyd-Price et al., 2016).  
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The major problem is that most of the microorganisms in the human gut are challenging to 

cultivate in the lab and, therefore, difficult to get isolates from (Lagkouvardos et al., 2017). 

 

The introduction of short-read Metagenome Assembled Genomes (MAGs) has partially 

solved the latter problem. A deep read coverage of the human gut will contain the DNA of 

(nearly) all microorganisms living there (Sangwan, 2016). Depending on how long each read 

is, MAGs can be separated into short-read and long-read MAGs, where short-reads typically 

have a size around 150-250 basepairs (Maguire et al., 2020). MAGs can be derived from these 

read coverages by assembling reads and binning the results. Assembling reads generate 

contigs. Contigs are contiguous genomic fragments that are longer than the raw reads. 

Binning tries to discover patterns that can tell whether two contigs belong to the same 

genome. These patterns are used to separate contigs into bins, and the finished bins are MAGs 

(Maguire et al., 2020). Most MAGs lack a 16S sequence, and due to high similarity and high 

volumes of short-read data, assembling 16S is complex and may have poor quality (Yuan et 

al., 2015).  

 

The Unified Human Gastrointestinal Genome (UHGG, https://www.ebi.ac.uk/metagenomics) 

database is a genome database containing MAGs from the human gut, and isolates (Almeida 

et al., 2021). National Center for Biotechnology Information has a database that only includes 

isolate, called NCBI Reference Sequence (RefSeq). RefSeq sequences are curated and 

modified to ensure quality (Pruitt et al., 2007). 

 

HumGut is also a genome database containing genomes from UHGG and RefSeq collection. 

To make HumGut, over 5700 healthy human metagenomes were screened for the containment 

of over 490,000 publicly available microorganisms from UHGG and RefSeq. Over 381,000 

genomes were found in the samples, and their prevalence score has been computed (Hiseni et 

al., 2021). The prevalence score is the fraction of metagenomes containing the genome, with 

some minimum Average Nucleotide Identity (ANI). ANI is a measure of similarity between 

two genome sequences (Yoon et al., 2017). These genomes were then clustered at 97.5% 

sequence identity, resulting in 30691 clusters. For each cluster, the one with the highest 

prevalence was chosen as the cluster representative. (Hiseni et al., 2021) 

 



 

  3 

In addition to genome databases, there are also marker databases. One example is 

mBodyMap, a marker database for microbes in humans and their association with health (Jin 

et al., 2022). Another example is GMrepo v2, a human gut microbiome database focusing on 

disease markers. GMrepo v2 contains disease markers identified between two phenotypes, for 

instance, healthy versus disease (Dai et al., 2022). There are also general databases, like 

GreenGenes (DeSantis et al., 2006), SILVA (Quast et al., 2013), and Ribosomal Database 

Project (RDP) (Maidak et al., 1997) that contains all kinds of 16S sequences and not only 

those in the human gut. 

 

1.3 16S marker 
 

A marker that is frequently used is the 16S rRNA marker. 16S rRNA is a profiling 

phylogenetic marker gene. Such marker genes are often used in phylogenetic studies (Langille 

et al., 2013). The marker is conservated due to slow evolving and can therefore be used to 

classify microorganisms into taxonomical categories, and taxonomic relationships can be 

discovered from similarities in the marker (Yarza et al., 2008). 16S rRNA marker is used in 

projects like “Landscape of Gut Microbiome – Pan-India Exploration,” which maps the Indian 

gut microbiome (Dubey et al., 2018). 16S rRNA contains no functional information (Langille 

et al., 2013) 

 

1.4 Functional profiling 
 

1.4.1 Gene prediction  
 

Markers like 16S and genome databases can give insight into the human gut but do not 

contain functional information (Langille et al., 2013). Functional profiling, often based on the 

coding genes in the microorganism (Börnigen et al., 2013) may provide insight into how the 

microbiome affects health and how the lack or abundance of one microorganism influences 

the individual. The coding genes can be predicted if this information is not known.  

 

Microbial gene prediction is the prediction of protein-coding genes in an organism. When 

predicting genes, software tends to be over-sensitive and produces faulty genes (Dimonaco et 

al., 2022). Some software that predicts genes are GLIMMER, which uses interpolated Markov 

models (Salzberg et al., 1998), GeneMark, a tool designed to improve finding gene 
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boundaries by using hidden Markov models (Lukashin et al., 1998), and Prodigal, which uses 

the fifth-order Markov model and aims to reduce false positives (Hyatt et al., 2010). 

 

1.4.2 Protein sequence alignment 
 

Protein sequence alignment is to compare (predicted) proteins to a database of known proteins 

(reference database) to find similarities and homologies between sequences. The Basic local 

alignment search tool (BLAST) is one tool that does this (Altschul et al., 1990). BLAST first 

breaks down the sequence into small fragments called K-mers. The K-mers are then compared 

to the reference database. If a K-mer matches the reference database, the hits are extended to 

generate a more precise alignment. BLAST often returns several alignments for each protein. 

(Almutairy & Torng, 2017). DIAMOND is a different protein sequence alignment tool that 

only can be used for protein, developed to be faster than BLAST (Buchfink et al., 2021). 

 

1.4.3 Functional categories 
 

One way to do functional profiling is to obtain functional categories and assign genes to them. 

Some functional databases are Gene Ontology (GO) which contains scientific functional 

profiles for different organisms, including microbial genomes (Harris et al., 2004), Clusters of 

Orthologous Groups of proteins (COGs) that contains sequenced genomes of prokaryotes and 

unicellular eukaryotes based on orthologous relations (Tatusov et al., 2001) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) orthology, that links the gene to a functionally 

categorized gene catalog (Kanehisa et al., 2002). 

 

Several tools can link genomes to functional categories. Two of these tools are Phylogenetic 

Investigation of Communities by Reconstruction of Unobserved states (PICRUSt)  and 

Tax4FUN2, which links the 16S sequence to KEGG orthologs (Langille et al., 2013; 

Wemheuer et al., 2020). Thus, 16S sequences can be used to gain functional information, 

even if it does not contain it. Tax4FUN2 utilizes the high similarities in 16S rRNA between 

genomes to estimate the function of the microorganism. It links 16S to functional annotation 

of closely related genomes to assign functional profiles. (Wemheuer et al., 2020). The 

database UniProt Reference Clusters (UniRef) can also be used for this purpose. UniRef 

contains cluster protein in a database, and its functional search is based on similarity (Suzek et 
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al., 2007). Hence, UniRef can only be used for proteins that are in or have high similarity to a 

protein in the database. 

 

PICRUSt and Tax4FUN2 both give a vector for each genome containing the functional 

profile. The vector shows which functional category the genome contains. This can be put 

together to show how many times each functional category was found in the genome. 

Different genomes can be compared to find similarities and differences in which functional 

categories were found and how many times they were found. 

 

1.5 Genetic Analysis  
 

Genetic Analysis (GA) is a company focusing on the human microbiome. One of their 

products is the GA-map Dysbiosis Test (GA-map), a product which uses 16S to characterize 

the microorganism in the human gut. The map consists of DNA probes that target bacteria in 

the human gut. To make this map, both healthy and IBS and IBD individuals were tested, and 

it was shown that the GA-map was able to identify and characterize dysbiosis patients based 

on these probes. (Casén et al, 2015). 

 

The probes in the map are DNA that targets regions on the 16S. Using a probe instead of 

sequencing makes the analysis rapid and enables the testing of many fecal samples (Casén et 

al., 2015). 

 

In a joint effort with Norwegian university of life sciences (NMBU), Genetic Analysis has 

also made HumGut, a genome database containing microorganisms in the human gut. To 

make HumGut, samples from healthy individuals from different regions of the world were 

screened for the containment of available genomes from RefSeq and UHGG. The goal of 

HumGut was to make one genome collection a universal reference that can be used for human 

gut microbiota. (Hiseni et al, 2021). 
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1.6 Aims of the study 
 

The aim is to get an overview of the human gut in terms of taxonomic and functional 

categorization by analyzing HumGut and to see how well the GA-map spans the healthy 

human gut by investigating how it overlaps with the genomes in the HumGut genome 

collection. This knowledge is of some importance to the GA company when it comes to 

understanding how well their probes cover different taxonomic and functional groups from 

healthy human guts worldwide.  

 

HumGut consists of genomes from various sources and is presumed to be of varying quality. 

Thus, an aim is also to evaluate the quality of the genomes in the HumGut collection. This 

aspect is of more general importance as it signifies the current progress in uncovering the 

genomic information related to the human gut microbiome.  

 

The aims of the study is to 

1. Get a taxonomic overview of HumGut and find out how the GA-map covers the taxonomic 

classifications. 

2. Get a functional overview of HumGut and find out how the GA-map spans over the 

functional space of HumGut 

3. Evaluate the quality of the genomes in HumGut 
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2. Methods 
 

All data analysis has been done using RStudio 4.1.0 (R Development Core Team, 2010), and 

all figures have been made using the ggplot2 package (Wickham et al., 2016), in addition to 

the cowplot-package (Wilkerson, 2021) for multi-panel plots. The package tidyverse 

(Wickham et al., 2019) is used throughout the thesis.  

 

2.1 HumGut 
 

HumGut is a project aiming to be a genome collection used as a universal reference for 

human gut microbiota (Hiseni et al., 2021). HumGut is made by screening samples from 

healthy individuals for the containment of genomes from two different databases. The 

containment of these genomes found is the data used in this project.  

 

HumGut is a joint effort between the company Genetic Analysis (GA) and the Norwegian 

university of life sciences (NMBU). GA also has a product called the GA-map Dysbiosis Test 

(GA-map). This map uses probes that match 16S sequences to characterize the 

microorganisms in the human gut. Some of the aims of this thesis involve finding out how 

this map covers HumGut.   

 

2.1.1 Data retrieval 
 

The data used in this thesis are two datasets from the HumGut project, made available from 

the company GA due to confidence surrounding the GA-map probes. The first dataset 

contains the genomes for the cluster representatives for 30691 HumGut clusters (one 

representative for each cluster). Clusters are small taxonomic orders with a high sequence 

identity. In this context, members of the same cluster have a 97.5 % average sequence identity 

(ANI). The rows in the data set are the genomes, and an overview of the columns in the 

cluster representative (HumGut) dataset can be seen in Table 2.1. 
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Table 2.1. The table shows some information for each of the columns in the HumGut cluster 

representatives data frame (Hiseni et al., 2021)   

Column name Description 

Ncbi_tax_id Taxonomy id from taxonomy database from 

NCBI 

(https://www.ncbi.nlm.nih.gov/taxonomy/)  

Genome_id Unique ID for the genome 

Cluster025 The cluster the genome belongs to, with 97.5 

% sequence identity 

Cluster025_size Numbers of genomes in the same cluster025 

Cluster05 A broader cluster the genome belongs to, 

with 95 % sequence identity 

Cluster05_size Numbers of genomes in the same cluster05 

Prevalence_score The average occurrence in 3534 healthy 

human gut screens. 

Metagenomes_present Numbers of metagenome the genome was 

found in, using 95 % sequence identity as 

threshold 

Genome_size Number of basepairs in the genome 

GC GC-content in the genome 

Completeness Estimated completeness of the genome in 

percent 

Contamination Estimated contamination of the genome in 

percent 

Genome_type Type of RefSeq or UHGG (Complete 

Genome, Chromosome, Scaffold and Contig 

for the former and MAG and Isolate for the 

latter) 

Source RefSeq 

(https://ftp.ncbi.nlm.nih.gov/genomes/refseq/) 

or UHGG 

(https://www.ebi.ac.uk/metagenomics/) 

 

https://www.ncbi.nlm.nih.gov/taxonomy/
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/
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ftp_download Address (ftp) the genome is downloaded from 

HumGut_name Unique HumGut name for each cluster025 

HumGut_tax_id Unique HumGut tax id for each cluster025 

Gtdbtk_organism_name GTDB-tk (https://gtdb.ecogenomic.org/) 

organism name for the genome 

Gtdbtk_tax_id Artificially created tax-ids for GTDB-tk 

Gtdbtk_taxonomy Full GTDB-tk taxonomy 

Ncbi_organism_name Organism name from the NBCI taxonomy 

database 

(https://www.ncbi.nlm.nih.gov/taxonomy/) 

Ncbi_rank Rank at the NCBI database 

Path  Folder with the downloaded genome 

Genome_file Name of the FASTA file in an archive with 

the genomes 

 

A dataset containing the subset of HumGut-clusters that has a 16S sequence previously 

extracted by the tool Barrnap (Seemann, 2013) was also retrieved and downloaded. This 

dataset will be referred to as HumGut16S. HumGut16S contains several members from each 

cluster. This dataset also contains test probes, the GA-map with names assigned from GA for 

this project, and how they match the 16S-sequences. A probe is considered to match the 

genome if the probe is entirely complementary to a stretch of the genome´s 16S-sequence. 

HumGut16S was reduced to only contain observations matching known forward and reverse 

primers. An overview of the columns in HumGut16S can be seen in Table 2.2. 

 

Table 2.2. The table shows column information for HumGut16S (Hiseni et al., 2021). A 

semicolon implies that several columns are fitting the same description.  

Column name Description 

Cluster025 The cluster the genome belongs to, with 97.5 

% sequence identity 

Genome_id Unique ID for the genome 

Source RefSeq 

(https://ftp.ncbi.nlm.nih.gov/genomes/refseq/) 

https://gtdb.ecogenomic.org/
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/
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or UHGG 

(https://www.ebi.ac.uk/metagenomics/) 

 

 

Genome_type Type of RefSeq or UHGG (Complete 

Genome, Chromosome, Scaffold and Contig 

for the former and MAG and Isolate for the 

latter) 

Prevalence_score The average occurrence in 3534 healthy 

human gut screens.  

Tax_id Taxonomy id from taxonomy database from 

NCBI for RefSeq genomes 

(https://www.ncbi.nlm.nih.gov/taxonomy/) 

(and NA, not available) for UHGG 

Sequence The 16S sequence 

FwPrimer; RvPrimer Whether the genome has, or does not have, 

match to known forward/reverse primers. 

IG0005; AG0703; AG1687; IG0133; 

AG1152; IG0060; IG0020; AG0815; 

AG0865; AG0638; IG0028; IG0012; 

IG0058; IG0023; AG1034; AG0930; 

IG0044; IG0053; AG0974; AG0651; 

AG0931; AG1099; AG0732; AG1225; 

AG1226; AG0377; IG0063; AG0608; 

AG0895; AG0416; AG1698; IG0197; 

AG0581; AG0620; AG0393; AG0396; 

AG0686; AG0863; AG0515; IG0079; 

AG1046; IG0020; AG0815; AG0865; 

AG0638; IG0028; IG0012; IG0058; 

IG0023; AG1034; AG0930; IG0044; 

IG0053; AG0974; AG0651; AG0931; 

AG1099; AG0732; AG1225; AG1226; 

AG0377; IG0063; AG0608; AG0895; 

The different probes. The columns contain 0, 

meaning that the genome is not targeted by 

the probe, or 1, meaning the genome is 

targeted. 

https://www.ncbi.nlm.nih.gov/taxonomy/
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AG0416; AG1698; IG0197; AG0581; 

AG0620; AG0393; AG0396; AG0686; 

AG0863; AG0515; IG0079; AG1046; 

AG0777; IG0081; AG1061; IG0314; 

AG0912; AG1661; IG0011 

 

HumGut16S was reduced to only contain observations that match to known forward and 

reverse primers. 

 

2.1.2 Classification of genomes in HumGut 
 

To be able to find patterns that arose because of similar classification, the genomes were 

classified into phylum, family, genera, and species. Phylum and family were classified using 

branch_retrieve in the microclass package (Vinje et al., 2016). Observations without phylum 

were discarded. 

 

To use branch_retrieve, a node table containing all tax ids and how they are related and a 

name table containing all tax ids and their corresponding name was downloaded. 

Branch_retrieve uses these tables to search after tax id and returns tax_ids for the decided 

taxonomic levels. Six tax ids had expired and were replaced by new ones found by searching 

manually in the National Center for Biotechnology Information (NCBI) database 

(https://www.ncbi.nlm.nih.gov/taxonomy/). One rank at the time, branch_taxid2name in the 

microclass package was used to find rank names for the genomes. Branch_retrieve returned 

NA as tax_id for some ranks. To have genus and species for all observations, these ranks were 

extracted from the “NCBI-organism name” column in the HumGut-dataset. 

 

2.2 Probes matching the genomes  
 

One of the aims of this study is to find how well the GA-map spans the healthy human gut by 

investigating how it overlaps with the genomes in the HumGut genome collection. This 

means how the GA-map probes match overlaps HumGut16S. To investigate this, the cluster 

each observation belongs to is used. This means that the found results mirror the cluster level 

and not every single observation. In addition to analyzing which probes target a cluster, the 
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genome type was controlled to find deviations between the different genome types. This is 

part of evaluating the quality of the genomes in the HumGut-collection. 

 

A cluster is considered matched by the probe if at least one observation within the cluster has 

a 16S sequence with a stretch that is entirely complementary to the probe, with a maximum of 

one mismatch. The number of matches for each cluster is the sum of probes matching at least 

one cluster member. This means that the clusters with zero targets have no matched cluster 

members. A cluster matched three times might be three observations belonging to the same 

cluster, each matched once by different probes, or one cluster member matched by three 

probes. Cluster defined as this will be referred to as a single HumGut genome. 

 

2.2.1 Genome sources and categories 
 

The National Center of Biotechnology Information (NCBI) has a public database called 

Reference Sequences (RefSeq), which contains nucleotide and protein sequences that are 

validated to confirm accuracy. RefSeq sequences are curated and modified. RefSeq contains a 

significant taxonomic diversity (Pruitt et al., 2007), but only some microorganisms in the 

human gut can be easily cultivated (Nayfach et al., 2019). One way to discover and 

characterize new microorganisms is to perform de novo assembly of shotgun metagenomic 

reads into contig sequences and sort them after sequence coverage. This enables the recovery 

of potential genomes, called metagenome-assembled genomes (MAGs), that are part of The 

Unified Human Gastrointestinal Genome (UHGG) database. In this thesis, all the MAGs are 

short-read MAGs. UHGG also contains isolates with varying completeness (Almeida et al., 

2021). 

 

The RefSeq genomes in HumGut have previously been shown to be significantly better 

quality than the UHGG genomes (Hiseni et al., 2022), and it was decided to control if the 

database source affected the matching rate of the clusters. RefSeq is divided into different 

genome categories depending on the degree of fulfillment. Contigs are reads put together to 

form large fractions of the chromosome. Scaffolds are unlocalized or unplaced contigs that 

have been connected with some gaps. A chromosome contains a sequence for one or more 

chromosomes. The chromosome may be completely sequenced with no gaps, or chromosome 

coining scaffolds or contigs with the gaps between. Chromosomes may contain unplaced or 
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unlocalized scaffolds. Complete genomes have no gaps, no unplaced or unlocalized scaffolds, 

and are expected to be completed. (https://www.ncbi.nlm.nih.gov/assembly/help/) 

 

The genome´s mode genome category, which is the genome category occurring most 

frequently within the genome, and matching information as either matched or not matched 

were assembled to find any association between genome category and probe match.  

 

2.2.2 Matches between genomes and GA-probes 
 

For each genome, it was found how many probes that have a match. This was done both for 

all genomes in HumGut16S and for only genomes from the RefSeq source. 

 

 2.2.3 GA-map probes 
 

Match information was also found on probes basis. For each of the probes, it was counted 

how many clusters, species, and genera it targets, using genomes from the RefSeq source 

only. 

 

The company gave the probes names anonymously to keep their real identity hidden due to 

confidence surrounding the probes. These names do not show information about the probe. 

The probes were therefore named after the genomes they matched. The name shows which 

lowest taxonomic rank above 75 % of the genomes the probe matches belongs to, using 

RefSeq genomes only. 

 

 This means that if over 75 % of the RefSeq matches belong to the same species, the probe 

was named after the species. To show what taxonomic group the probe was named after, the 

probe name started with s_ for species, g_ for genus, f_ for family, or p_ for phylum. No 

probes are identical, but several got identical names. These clusters had the number of 

genomes targeted added to the probe names to clarify that no probes are equal. 

 

2.3 Functional profiling 
 

To investigate how well the GA-map spans the healthy human gut includes investigating how 

it spans over the functional space of HumGut. To do this, genes were predicted for all the 

https://www.ncbi.nlm.nih.gov/assembly/help/
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genomes in both data sets using Prodigal, and functional profiles were built using Tax4FUN, 

Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs, and Diamond. The genomes 

were then clustered using K-means. 

 

2.3.1 Building functional profiles 
 

The coding genes in the microorganism are needed to do functional profiling with the desired 

tools. As this was not available in the dataset, it was obtained using the Prodigal software. 

Prodigal is a genome annotation software built to reduce false positives. Prodigal does not 

require parameters adjusted to the organism (Dimonaco et al., 2022) and was made to work 

for most organisms (Hyatt et al., 2010). 

 

A subset of the HumGut table was filtered only to contain the cluster centroids for the 

genomes present in HumGut16S. The cluster centroid is the genome within the cluster that 

was most prevalent in the human guts sequenced to make HumGut. This subset was filtered 

only to contain the three columns genome_id, path, and genome_file and downloaded as a 

tab-separated text file. 

 

2.3.1.1 Gene prediction 
 

Prodigal was performed for the cluster representatives using a script that takes a tab-separated 

text file like that as input. The software first achieved the whole genome using a path and 

genome files. To predict genes, prodigal utilizes elements like start codon and ribosomal 

binding site in addition to the open reading frame (ORF) (Hyatt et al., 2010).  

 

Prodigal results in General Feature-files (GFF) and FASTA-files, one for each cluster 

representative. These files were read in using readGFF and readFasta in RStudio. The GFF-

file contains a score. The higher the score is, the more likely it is that the predicted gene is 

real, according to the Prodigal premises. To find a score limit, three random DNA sequences 

were made that contained no genes, and the prodigal results of these three genomes were read. 

Both random and genome DNA had low, mid, and high GC content. DNA with a high content 

of GC generally contains fewer stop- and start codons and more non-real ORFs. These ORFs 

are often chosen as the real ones instead of the actual ORF. This means that, in general, 
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software like Prodigal predicts genomes with lower GC contents more accurately. (Hyatt et 

al., 2010). The random and genome-DNA were used to make histograms to decide on a score. 

 

The fasta and GFF-files were filtered only to contain genes with a score over the limit. The 

resulting fasta-files were used in DIAMOND. 

 

2.3.1.2 Assigning genomes into KEGG orthologs 
 

DIAMOND is a protein aligner that was developed to be a fast alignment on behalf of 

sensitivity compared to its alternatives. The sensitivity has also improved through 

improvements in the software (Buchfink et al., 2021). DIAMOND aligns the proteins to a 

database. For each comparison, DIAMOND computes the similarity between the protein and 

the closest match in the database. In this project, DIAMOND aligns the proteins from the 

fasta-files to Tax4FUN2. Tax4FUN2 is a database that assigns functional profiles to proteins 

using KEGG orthologs (KOs) (Wemheuer et al., 2020). Thus, functional profiles can be built 

based on the similarity between the query proteins and the proteins in Tax4FUN2, which have 

assigned functions. 

 

The functional profile for each genome is a vector, showing which functional categories the 

genome holds. All the genomes’ profiles were set together to form a matrix. The functional 

categories extracted were used as a factor, so the table gives 0 if the genome does not possess 

the category. The resulting table had one column for each genome and one row for each 

functional category. The number in each cell showed how many predicted genes in that 

genome that holds this category. A table showing whether the gene was found in the genome 

(0 for not found and 1 for found, presence-absence matrix) was also made, and this was used 

for further analysis. 

 

2.3.2 Analyzing the functional categories 
 

The resulting matrix contained one column for each functional profile and one row for each 

genome. Since each genome has many coordinates, they are in a high-dimensional space. To 

be able to see patterns, principal component analysis (PCA) was used. In PCA, as few 

components as possible are used to explain as much variance as possible. The principal 

components are sorted, so the first contains the most information. (Pearson, 1901) The first 
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two principal components were used to find patterns in the data regarding how HumGut16S is 

distributed in HumGut, whether different phyla can be separated using functional profiles, 

whether genomes matched by and not matched by a phylum are functionally different, and 

whether genomes from the two different sources are functionally different. 

 

The latter was also done using partial least squares (PLS), which aims to maximize covariance 

between the decided response and other variables (Wold et al., 2001). Contrary to PCA, PLS 

is supervised (Ruiz-Perez et al., 2020). This means that PLS relies on data with known 

responses to carry out its analysis.    

 

PLS was performed using plsr in the pls package in RStudio (Mevik et al., 2021). The 

genome source is already known and was used as both training and test dataset. Plsr uses 

leave-one-out cross-validation as default, which was also used in this project. In this type of 

cross-validation, each observation is left out once for validation and used as training in the 

rest of the repetitions (Gourvénec et al., 2003). 

 

To find what separates groups from each other, correlation was used. In RStudio, correlation 

by default is calculated with Pearson distance. Pearson correlation is a measure of linear 

correlation between two variables, in this context, between the source and the KOs, calculated 

one by one. Pearson correlation distance is always between -1 and 1. A higher absolute value 

means stronger association between the predictors and responders, in this case, between the 

KO and source (Schober et al., 2018). 

 

2.3.3 K-means 
 

To take more of the variance into consideration, the functional profile matrix was clustered 

with K-means. K-means pick one representative for each cluster. For each observation, it 

calculates the distance between the observation and each representative and assigns the 

observation to the closest representative. To get more accurate results, it starts over again with 

new representatives and aims to find the optimal clusters. In K-means clustering, the optimal 

clusters have a low within-cluster sum of squares. This means that the genomes in the K-

means clusters are as similar to each other and as distinct from other clusters as possible 

(Hartigan & Wong, 1979). 
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3. Results 
 

3.1 HumGut 
 

HumGut is a genome database covering microorganisms in the healthy human gut. Some of 

the microorganisms HumGut contains are present in a subset called HumGut16S. This subset 

contains the microorganisms with 16S-sequence that the tool Barrnap (Seeman, 2013) was 

able to extract when HumGut was made. GA-map Dysbiosis test (GA-map) from the 

company Genetic Analysis (GA) consists of probes that match some of the genomes in 

HumGut16S. One of the aims of this study is to get a taxonomic overview of HumGut and 

find out how the GA-map covers the taxonomic span. Since GA-map probes match 16S-

sequences, they can only match genomes in HumGut16S. Thus, to say something about how 

the map covers the taxonomic span of HumGut, it is necessary to know whether HumGut16S 

is representative of HumGut. 

 

The HumGut-collection consists of 30536 clusters classified into 16 phyla, 346 genera, and 

1025 species. These clusters are cluster representatives and will be referred to as genomes. Of 

these, 15 phyla, 300 genera, 904 species, and 4253 clusters are represented in HumGut16S. 

The phylum Candidatus Thermaplasmatota has no genomes in HumGut16S. Figure 1 shows 

how HumGut16S is distributed across the taxonomic rank of the phylum.  
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Figure 1. The figure shows the number of genomes of each phylum that is in HumGut16S for 

the four most frequent phyla (left panel) and the twelve other phyla (right panel) present in 

HumGut. The figure is split into two panels to have different scales along the x-axis. The bar 

for each phylum shows the total of clusters in the phylum in HumGut, and the green part is 

HumGut16S. One phylum, Candidatus Thermaplasmatota, has no genomes in HumGut16S. 

 

3.2 How the GA-map overlaps HumGut 
 

The GA-map contains probes that match 16S sequences in HumGut16S. A probe is 

considered to match the genome if the probe is entirely complementary to a stretch of the 

genome´s 16S sequence. One single mismatch is allowed because this does not stop their 

hybridization.  

 

Matches are analyzed at the cluster level. This means that the number of matches on a genome 

is how many probes match at least one cluster member. 

 

3.2.1 Genome categories 
 

 

HumGut16S contains genomes assembled from two different sources, the National Center for 

Biotechnology Information (NCBI) Reference Sequences (RefSeq) and The Unified Human 
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Gastrointestinal Genome (UHGG). The two sources contain a total of six different genome 

categories in HumGut. One of these is metagenome-assembled genomes (MAGs) in UHGG. 

Assembling 16S-sequences in MAGs is challenging, which may lead to poor quality. UHGG 

also contains cultivated isolates with varying completeness. RefSeq has four different genome 

categories with different levels of completion, from contig (sequence contigs) and scaffold 

(connected contigs) to chromosome (sequence for one or more chromosomes) and completed 

genomes. RefSeq genomes are curated by NCBI and are previously shown to be significantly 

better quality than MAGs (Hiseni et al., 2022). One of this thesis aims is to evaluate the 

quality of the genomes. 

 

The histogram in Figure 2 shows the fraction of not matched and matched genomes for each 

mode genome category, which is the genome category with the highest frequency within the 

genome. Genome categories from the UHGG source are colored in red (MAGs are darker 

than isolates), while genome types from RefSeq are grey. Lighter grey color indicates a more 

complete RefSeq genome. 

 

 

 

Figure 2. The figure shows which fraction of genomes are not matched and which are 

matched by GA-probes with the different genome categories as the mode genome category. 

There are two UHGG categories (MAG and Isolate) colored in red and four different RefSeq 
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categories in grey. The figure shows that the genomes not matched by the GA-probes have a 

substantially larger fraction of UHGG genomes than those matched. 

 

Figure 2 shows that the genomes with a genome category from UHGG as a genome category 

(colored in red) make up a larger fraction of the not matched genomes than the matched ones. 

Nearly half of the not matched genomes have UHGG as the mode genome category, which 

applies to around one-third of the matched ones. This indicates that the assembly quality of 

UHGG might affect the results. 

 

3.2.2 Matches between GA-probes and HumGut16S 
 

The GA-map consists of 48 probes that are a complementary match to a stretch of the 16S 

sequence for some of the genomes in HumGut16S. Figure 3 shows how many probes match 

the 4253 genomes in HumGut16S. The leftmost bar shows that 1119 genomes have no probes 

matching. The bars to the right added up give 3134 genomes matched by at least one probe. 

Thus, almost three-fourths of the genomes are matched by at least one probe. 

 

Figure 3. The figure shows how GA-probes matched the HumGut16S genomes, where the 

bars indicate how many genomes were matched by 0, 1, …, 35 different probes. Almost three-

fourths of the genomes are matched by at least one probe.   
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Due to the differences in matching rate between different genome categories, two different 

analyses were performed: one including all genomes (figure 3) and one including RefSeq-

genomes only (figure 4). Figure 4 shows the number of matches on the genomes in this subset 

of data, which contains 2936 genomes. 

 

Figure 4. The figure shows how GA-probes matched the 2936 RefSeq genomes in 

HumGut16S, where the bars indicate how many genomes were matched by 0, 1, …, 10 

different probes. Above three-fourths of the genomes are matched by at least one probe. The 

maximum number of probes matching one genome is 10. 

 

Figure 4 shows that one probe matching is the most common, but some genomes have up to 

10 matches. The bars with one or more matches summed up shows that 2246 genomes are 

matched by at least one probe, while 690 have no match. 

 

Of 15 phyla present in HumGut16S, four are not matched by the probes. These are 

Elusimicrobia, Synergistetes, Lentisphaerae, and Candidatus Saccharibacteria. They are all 

among the six phyla with the fewest genomes in HumGut.  

 

In the subset of HumGut16S with RefSeq-genomes only, there are 256 genera represented. Of 

these, 81 have no genome that is matched by the probes. Twenty-nine of these were found in 

under 1 percent of the healthy human guts that were screened to make HumGut, while two of 

them, Ruthenibacterium and Agathobaculum, were found in over 22 % of these guts. 
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3.2.3 GA-map probes 
 

Matching between genome and probe was also analyzed on probe basis. Figure 5 shows how 

the probe matches on RefSeq-genomes are distributed across clusters and the taxonomic ranks 

of species and genera. 

 

 

 

Figure 5. The figure shows how many genomes, species, and genera the different probes 

match using RefSeq genomes only. Two of the probes have no match against RefSeq-genomes.  

 

The figure shows that some probes are narrow-matching and match only a few genomes. 

These are the upper probe names, and most match a narrow group of species and genera. 
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Some probes, like IG0023 and AG0930, match a wider group of genera than probes matching 

the same number of clusters. Two probes, AG0638 and AG0620, have no match against 

RefSeq genomes. 

 

The company gave the GA-map probes anonymous names to hide their identity. These names 

do not contain any obvious information about the probes. The probes were therefore named 

after the genomes they match. This naming shows which narrowest classification level, over 

75 % of the genomes the probe matches belong to, using RefSeq observations only. Table 3.1 

shows the assigned names of the probes. 

 

 Table 3.1. The table shows the names of the probes given after the narrowest taxonomic 

group that over 75 % of the RefSeq matches belong to. Probes that did not get a unique name 

have added the number of clusters they match. 

 

 

 

 

The table shows that 18 probes are named after species, 14 after genera, six after families, 

eight after phylum, and two observations do not match any RefSeq member. Probes named 

after species are generally more narrow matching than those named after phylum. 
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3.3 Functional profiling 
 

The first step in functional profiling of the genomes in HumGut is to build functional profiles 

for each genome. In this project, this means: 

1. Predicting genes with the prodigal tool and filtering them 

2. Aligning the resulting proteins against Tax4FUN2 using diamond 

3. Achieving the Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs belonging to 

these proteins and filtering them 

 

After the profiles have been built, the resulting functional profile for each genome is the 

vector of KEGG orthologs (KOs), indicating the presence or absence of the functional 

categories within the genome. The vectors used in this project are 0 or 1, where 1 means that 

at least one gene possesses this functional category.   

 

In this section, results from HumGut16S will be presented first, followed by results from all 

HumGut-genomes. All genomes have been processed equally. When it comes to matching by 

probes, only genomes in HumGut16S can be considered matched.  

 

3.3.1 Building functional profiles 
 

Functional profiling is about finding the coding genes in each genome and then running a 

search with these against some database to assign the genes into functional categories. The 

functional profile for each genome is then a vector with 0 and 1, indicating which categories 

were found in that genome. When building functional profiles, one must decide upon different 

limits. While no limits are “correct”, these choices are important for the resulting functional 

profiles.  

 

3.3.1.1 Gene prediction 
 

 The software Prodigal was used to predict coding genes in the genomes. This is needed to 

find functional categories within the genes. Gene prediction software tends to be over-

sensitive and find genes that do not exist. For each predicted gene, the prodigal gives a score. 

The higher this score is, the more likely it is that the gene is real. In this case, each genome 



 

  25 

contains many genes. Thus, being conservative and losing some genes is better than getting 

false positives. 

 

To find a reasonable score limit for when to believe that a gene is real, three random DNA-

“genomes” similar to the genomes were made. These do not contain any actual genes. Thus, 

any genes predicted by prodigal are false positives for these “genomes.” The histograms in 

Figure 6 show the prodigal scores of the three randomized DNA “genomes” and three cluster 

representatives from HumGut. The plots show that the score for random genomes is generally 

under 10, while the score of the cluster representatives is generally below 1000.  

 

A score limit of 30 was decided by comparing the random DNA and cluster representatives. 

This limit is shown with a red line in Figure 6. All predicted genes below this limit were 

discarded.    

 

Figure 6. The figure shows scores for genes predicted by prodigal for three random DNA 

“genomes” (top) and three genomes with different GC content. The red lines show the 

decided score limit of 30. All predicted genes below this score were discarded. 

 

3.3.1.2 KEGG Orthologs 
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Functional profiling was performed for the clusters in HumGut16S and the HumGut-dataset. 

The software Diamond was used. Diamond searches after alignments in the Tax4FUN2-

database. The database contains 6 323 861 proteins assigned to functional KOs. There are in 

total 21 620 KOs. 8236 of these are present in the coding genes predicted by HumGut16S. 

The histogram in Figure 7 shows the distribution of how many cluster representatives the  

KOs were found in.  

 

 

 

 

 

 

Figure 7. The figure shows how KEGG orthologs (KO) distribute across HumGut16S. As 

shown to the left, most KOs are found in very few genomes. The rightmost bars show that 

some KOs are found in almost all genomes. No KO is found in all genomes.  

 

In this project, Diamond results with an e-value above 0,001 were discarded. This means that 

for each 1000 search, it is expected to get one false positive. These KOs are most likely to be 

occurring infrequently. 872 functional categories were found in three or fewer genomes and 

were removed. The 7364 remaining functional categories were found in between 4 and 4178 

of the 4253 genomes.  
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In the full HumGut-dataset, including HumGut16S, 8481 functional categories out of 21620 

were found. The most frequently occurring functional category was found in 29129 of 30536 

genomes. The histogram in Figure 8 shows how many cluster representatives the KOs were 

found in. 

 

Figure 8. The figure shows how KEGG orthologs distribute across all the HumGut-genomes. 

As shown to the left, most KOs are found in very few genomes. The rightmost bars show that 

few KOs are found in most genes. No KO is found in all genomes. 

 

Like explained above, it is expected to observe some false positives. An E-value threshold of 

0,001 was used for both analyses. In HumGut, 316 KOs were found in three or fewer 

genomes and were discarded. Thus, 7925 functional categories were kept.  

 

3.3.2 Analysis of the functional profiles 
 

Functional profiling can be used to find patterns in the function between different categories 

of genomes. One way to analyze functional profiles is using Principal Component Analysis 

(PCA). As explained in the method section, PCA is a tool that reduces multidimensional data 

into components, whereas as few components as possible explain as much of the variance in 

the data as possible (Daffertshofer et al., 2004). PCA plots show the two variables that explain 

the most variance, named PC1 and PC2. In this project, functional profiling is used to 
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compare the different assembling sources and to investigate how the GA-map spans over the 

functional space of the human gut. 

 

3.3.2.1 Using functional profiles to separate genomes by phylum 
 

HumGut contains 16 phyla (HumGut16S contains 15). Genomes within the same phylum are 

expected to share a lot, even the majority, of the functional categories. Visualizing how a 

PCA separates the phyla can reveal whether two principal components are enough and show 

which genomes that are separated in later PCA plots.  

 

Figure 9 shows how well PC1 and PC2, which are the two components explaining most of the 

variance, can separate the different phyla in HumGut16S. The two principal components 

make up nearly one-fourth of the found variance in the profile. The phylum list on the right 

side of the plot is sorted after the number of genomes within the phyla in HumGut16S, from 

most genomes to fewest.  

 

Figure 9. The plot visualizes a principal component analysis for HumGut16S, where the two 

first PC´s explain 24.73 % of the variance. Different colors are used to show which phylum 

the cluster representative belongs to. The phylum list on the right side of the plot is sorted 

after the phyla´s frequency.  
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By using two components only, some separation can be seen between the 15 phyla. For 

instance, Proteobacteria generally have a higher value on PC1, while Bacillota is generally 

low on PC1 and has a wide range of PC2. Bacteriodota is mainly gathered at high PC2 and 

medium PC1. 

 

The same analysis was performed for all the genomes in HumGut, shown in Figure 10. As in 

Figure 9, the phylum list is sorted after the number of genomes in the figure.  

 

 

 

Figure 10. The plot visualizes a principal analysis for HumGut, where the two first PC´s 

explain 13,28 % of the variance. The phylum list on the left is sorted after the phyla´s 

frequency. Different colors are used to show which phylum the genome belongs to. 

 

The two different principal components explain 13.28 % of the variance found. These two 

components show a clear separation between the phyla. As seen in Figure 10, showing the 

phyla separation from functional categories in HumGut16S, most Proteobacteria genomes are 

clearly separated from the others. Bacteriodota seems to be clearly different from the others. 

 

3.3.2.2 How HumGut16S is distributed in HumGut 
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As mentioned earlier, there are in total 30536 clusters, and 4253 of these are in HumGut16S. 

Figure 11 is a PCA plot, explaining a total of 13.28 % of the variance in HumGut. In the 

figure, genomes in HumGut16S are colored red, and the rest of HumGut is blue. 

 

Figure 11. The figure shows a PCA plot that explains 13.28% of the variance found in the 

functional profiles of HumGut. The 4253 in HumGut16S are colored blue, while the 26283 

other genomes are red. The plot shows no clear separation of HumGut16S and the rest of 

HumGut, which indicates that no functional region is not partially in HumGut16S. 

 

Figure 11 shows no distinct differentiation between genomes that are present in HumGut16S 

and those that are not. This indicates that there are no regions in functional space that are not 

partially covered by HumGut16S. Thus, it seems like the HumGut16S can be used as 

representatives for HumGut.  

 

3.3.2.3 Functional profiling and match of a GA-probe 
 

Figure 12 shows how well the same two principal components can separate between genomes 

matched by and not matched by the probe IG0023. IG0023 was chosen as an example because 

it is the most wide-matching probe in terms of species and genera, shown in figure 5. For 

more narrow-matching probes, separation in principal components is more expected 

regardless of the probe. 
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Figure 12. The figure shows a principal component analysis, where the two first principal 

components explain 24.73 % of the variance. IG0023 matches 905 genomes (colored blue in 

the figure). There are 3348 HumGut16S genomes not matched by this probe (colored in red). 

 

Figure 12 shows that most of the IG0023-matched genomes are grouped, but there is no 

perfect separation. This indicates that most of the genomes matched by IG0023 are functional 

similar, and that also some other genomes also share this similarity. IG0023 matches 905 

genomes. This is a greater number than shown in Table 3.1 and Figure 5, which show RefSeq-

genomes only.  

 

3.3.2.4 Variation in functional profiling between different genome categories 
 

The HumGut16S contains six genome categories: four RefSeq (complete genome, 

chromosome, scaffold and contig) and two UHGG (isolate and MAG). 1310 genomes are 

MAG, 1148 contig, 953 scaffold, 511 complete genome, 304 isolate, and 27 chromosome. 

Only RefSeq-genomes are curated, and if this affects this analysis, the two different sources 

are expected to be grouped separately in PCA plots. Figure 13 shows two PCA plots showing 

how the different genome types are spread. The left bar shows the four RefSeq categories, and 

the right panel UHGG. The figure is split to make the categories with few genomes visible.  
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Figure 13. The figure shows how the genome categories in HumGut16S are distributed across 

the two principal components. The left panel contains RefSeq categories, which are complete 

genome (511 genomes), chromosome (27 genomes), scaffold (953 genomes) and contig (1148 

genomes) and the right panel UHGG, which contains 304 isolate genomes and 1310 MAG . 

The figure is split to make all categories visible.  

 

Figure 13 shows some vague grouping for MAGs at PC2 between 0 and 10 and PC1 between 

around -8 and 0. PC1 around 0 and PC2 around -6 seem to be RefSeq genomes only. Still, it is 

not a good separation between the different genome categories.  

 

Assembling of 16S-sequence in MAGs is difficult, so HumGut contains a larger fraction of 

MAGs than the 16S-dataset. Out of 30536 genomes, 27363 are MAGs, 1247 are contigs, 1041 

are scaffolds, 512 are complete genomes, 343 are isolates, and 30 are chromosomes. Figure 

13 shows two PCA plots that visualize how the different genome categories are spread in 

HumGut. The left panel shows RefSeq-categories, and the right UHGG. The figure is split 

into two panels to make all the categories visible. 
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Figure 14. The figure shows how the genome categories are distributed across the two 

principal components. The left plot contains RefSeq categories (Chromosome, 30 genomes, 

complete genome, 512 genomes, scaffold, 1041 genomes and contig, 1247 genomes) and the 

right plot UHGG (isolate, 343 genomes and MAG, 27363 genomes). The figure is split to 

make all categories visible. 

 

This figure shows that some regions have higher RefSeq frequency than others. Most 

genomes with PC2 lower than -15 are RefSeq. No large region seems to be entirely missed by 

any of the sources. Even if some grouping can be seen, PCA does not separate the different 

genome types well.  

 

The small trends of spreading of genome categories in Figures 13 and 14 might be because 

the functional profiles differ between the different phyla. Figure 15 is a PCA plot showing the 

source (RefSeq or UHGG) for Bacillota-genomes only. Bacillota makes up over half of the 

genomes in HumGut, with 17488 genomes. As stated earlier, the source is the mode source 

for genomes in HumGut16S and the cluster representative´s source for other HumGut 

genomes.  
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Figure 15. The figure shows a PCA plot for the phylum Bacillota, where the two PCs explain 

11.31 % of the variance. The 1350 genomes from RefSeq as the source are colored red, while 

the 18217 UHGG genomes are blue. A slight pattern between RefSeq and UHGG can be seen 

for some of the genomes. For instance, the RefSeq observations at PC1 -5 tend to have higher 

PC2 than UHGG-genomes.  

 

The PCA plot shows a slight trend to separation between RefSeq and UHGG. For instance, 

the RefSeq observations at PC1 -5 tend to have higher PC2 than UHGG-genomes. This 

pattern is vague, not perfect, and only seen for a few genomes. Thus, the PCA plot does not 

provide a good separation between the sources. 

 

Using PLS is a different way to analyze functional profiles. PLS aims to maximize covariance 

between the response and other variables (Wold et al., 2001), and any differences between the 

sources should thus be visible in a PLS plot. 
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Figure 16. The figure shows a PLS plot for Bacillota-genomes in HumGut. The 18217 

Bacillota-genomes with UHGG as the source are colored in red, while the 1350 genomes 

from RefSeq are grey. The plot shows some trends. Most genomes to the far right are RefSeq. 

The genomes with the lowest value on PLS component 2 tend to be UHGG, while genomes 

with PLS component 2 above 10 are mostly RefSeq. In total, it is still not a good separation 

between the two sources. Using the same data as test and training data gives an accuracy of 

0.96.  

 

To narrow the functional spread due to differences in the genomes further down, the genera 

Streptococcus was extracted and studied further. A PLS for this genus only is shown in figure 

17. 
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Figure 17. The figure shows a PLS plot for the Streptococcus genera. There are 505 from 

UHGG are colored in red, while 583 RefSeq-genomes are grey. The plot shows a good 

separation between genomes from the two different sources. Using the same data as training 

and test data gives an accuracy of 0.93. 

 

Figure 17 shows a strong relation between PLS and source for one genus only. This might 

indicate that it is possible to find KOs, or combinations of KOs, that separate the two 

sources.   

 

This was investigated further using correlation. Correlation between the functional categories 

and source was calculated for the 2927 KOs that had variation within Streptococcus. Two 

KOs were found in all Streptococcus-genomes, while 4997 were not found in any. The two 

highest correlations in absolute value were 0.75 and 0.74. These correlations belonged to 

functional categories found in the majority of RefSeq genomes and few UHGG genomes.  

 

The two KOs with the highest correlations are K12294 and K12295. These are both 

associated with the spliceosome and are involved in processing genetic information at the 

transcription level. Both KOs are two-component systems and belong to the LytTR family. 

K12294 is a sensor histidine kinase, while K12295 is a response regulator.  
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There are nine KOs with an absolute correlation above 0.65. All of these are functional 

profiles that are more frequent in RefSeq than in UHGG-genomes. These are associated with 

metabolism, environmental information processing, genetic information processing, 

organismal systems and human diseases.   

 

3.3.2.5 Clustering with K-means 
 

3.3.2.5.1 Clustering HumGut16S with K-means 

 

While PCA can give valuable insight into the data, it only explains a fraction of the variation 

in the dataset because it compresses everything into two dimensions. Clustering is to divide 

the data into groups with similar data based on all dimensions. Thus, each cluster is a “subset” 

of the functional space of HumGut, which may reveal variation not seen with PCA. Here, 

clustering is used to investigate further whether the GA-map covers all functional areas of 

HumGut and the differences between the genome assembly sources.  

 

Using K-means clustering, the 4253 genomes in HumGut16S were assigned to 43 clusters, 

where the number 43 was chosen to have, on average, close to 100 genomes in each cluster. 

The clusters contained between 11 and 261 genomes. Figure 18 shows the fraction of 

genomes within each k-mean-cluster that is marched by the probes.     
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Figure 18. The PCA plot shows the 43 K-means clusters as dots. The size of the dots 

illustrates the size of the K-means clusters in terms of genomes belonging to the cluster. The 

color illustrates the fraction of the K-means cluster that the GA-probes match.  

 

Some of the dots in Figure 18 have a dark color. Of these, two are not matched by any GA-

probe. The 15 dots with the lightest color illustrated the 15 K-means clusters where GA-

probes match all members. The plot shows that most of the colors with a light color have a 

high PC2. 

 

The K-means clusters that the GA-probe does not match contain 63 functional categories that 

are not present in the fully matched clusters. Among these, seven categories are not matched 

at all. Two of these are only found in the non-matched clusters. There are, in total, 60 

functional categories not found in matched genomes. These are, on average, found in 7.73 

genomes, while the average is 696 for all functional categories in HumGut16S. 

 

The two clusters not matched by the GA-probes are the two darkest dots in the plot. One of 

them is located at PC1 around -8 and PC2 -6. This dot represents 62 genomes, all belonging to 

the phylum Proteobacterium. The other not matched cluster can be seen as a tiny dot at PC1 -

4 and PC2 -6, next to a bigger, lighter dot. These two clusters are both consisting 

of Proteobacteria-genomes. The second non-matched cluster is the smallest one and consists 
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of eleven genomes. The larger, lighter one next to it represents 179 genomes, where the probe 

matches 97 % of the members. 

 

The smallest non-matched cluster has one functional profile found in all the members of this 

K-means cluster but not in any other. This functional profile is K21486, the KO identifier for 

the protein ankyrin repeat family A member 2, mainly known as ANKRA2 that enables 

enzyme binding activity in human cells (https://www.ncbi.nlm.nih.gov/gene/57763). There 

are also 15 other functional profiles that are found in over 90 % of the member of this non-

matched cluster that is rarely found in other clusters. Among these, the functional profile 

occurring most frequently in other clusters is found in 14 % of its members. 

 

The larger unmatched cluster has no functional profiles that are never found in matched 

clusters. Five functional profiles found in above 80 % of this cluster’s members are found in a 

maximum of 20 % of the members of other clusters. One of these is only found in one 

genome outside of this cluster. This functional profile is related to biotin metabolism. 

 

Two clusters with slightly lighter colors than the not-matched ones can be seen at PC1 around 

2 and PC 2 around -1.2. The largest of them represents 151 genomes, belonging to the phyla 

Actinomycetota. The smallest one represents 40 genomes, all Fusobacteria.  

 

At the left and upper right corners, there are groups of clusters that are lighter colored. The 

left group, showing four dots at PC1 below -20, are all fully matched by the probes. This 

group represents, in total, 353 genomes. Most of these belong to the phylum Proteobacteria, 

but there are also eight Bacteriodota-genomes. There are six clusters located at PC2 above 10. 

This group represents 146 genomes, all belonging to the phylum Bacillota, and all matched by 

the GA-probes.  

 

3.3.2.5.2 Clustering HumGut with K-means 

 

HumGut was assigned to 305 clusters using K-means. As above, the number of clusters were 

chosen to have, on average, 100 members in each.  Figure 19 shows how these clusters are 

spread in size and fraction matched by the probes.  

 

 

https://www.ncbi.nlm.nih.gov/gene/57763
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Figure 19. The PCA plot shows the 305 K-means clusters as dots. The size of the dots 

illustrates the size of the K means-clusters in terms of genomes belonging to the cluster. The 

color illustrates the fraction of the K-means cluster that is matched by the GA-probes. There 

are only HumGut16S genomes that can be analyzed for matches against the probes, and there 

are relatively few HumGut16S genomes in HumGut. Thus, most dark clusters have no or few 

HumGut16S members.  

 

Figure 19 shows how well the probes match these 305 K-means clusters. The K-means 

clusters contain between 11 and 373 genomes. 66 clusters are not matched by any of the 

probes. Half of these, 33 clusters, have no genomes in HumGut16S and thus no possibility to 

be matched by the probes. 83 clusters have less than one percent of its genomes matched by 

the GA-probes.  

 

Some groups in Figure 19 stick out. For instance, all the genomes below PC1 -5 seem dark 

and thus have a small fraction that is matched by the probes. This region of the PCA plot 

shows 56 K-means clusters, representing 6086 genomes. All of these genomes belong to the 

phylum Bacillota. The cluster with the highest matched rate from this group, has 0.29 of its 

members matched by GA-probes. This cluster is located at PC1 -5.2 and PC2 -4.1. The cluster 

located furthest to the left of the figure has a matched rate of 0.078.  
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Another group that is separated from the others in Figure 19 is located at PC2 above 5 and 

PC1 between 5 and 15. This group contains 44 clusters representing 4010 genomes. All of 

these belong to the Bacteroidota phylum except for one that is Synergistetes. The cluster has a 

mean fraction matched by the probes at 0.08, but the most matched cluster has 0.037. This 

genome is located at PC1 12.1 and PC2 6.98. Figure 19 shows that within this group, 

especially genomes with PC1 below approximately 8 seem to be dark. In this subgroup, there 

are nine clusters (858 genomes), and the highest matched rate is 8.3%.  

 

The lower left corner in Figure 19 seems to have more clusters that are matched at a higher 

rate than the other areas in the plot. Four clusters have PC1 above 18. These have a matched 

rate of 0.85-0.92. The four clusters represent 358 genomes. Nine of these are Bacteroidota, 

while the rest are Proteobacteria.  
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4. Discussion 
 

This master thesis aimed to investigate and make functional profiles of the genomes in the 

HumGut database, a database for microorganisms found in the human gut. The thesis had 

three aims: to gain a taxonomic and functional overview of HumGut, assess the coverage of 

the GA-map dysbiosis test from the company Genetic Analysis (GA), and evaluate the quality 

of the HumGut-genomes. First, this was done by investigating how the GA-probes match the 

subset of HumGut with available 16S sequence. This subset of HumGut will be referred to as 

HumGut16S. Secondly, functional profiles were made for all genomes found in HumGut, and 

different groups in the form of phyla, matches with probes or not, categories and sources were 

compared. The following discussion will first focus on classifying and then on functional 

profiles. 

 

4.1 HumGut 
 

There are 16 phyla in HumGut and 15 in HumGut16S. Figure 1 shows the number of 

genomes belonging to each phylum, both for HumGut and for HumGut16S, the latter colored 

green. The bar for Candidatus Thermaplasmatota has no green part and is not a part of 

HumGut16S. This phylum has 36 genomes in HumGut and is the fifth smallest phylum, as 

shown in the figure. 

 

All the other phyla are present in HumGut16S. However, there are variations in what degree 

each phylum is presented. For some, one-third of the HumGut-genomes are in HumGut16S, 

but other phyla, like Euryarchaeota, are barely present. This variation makes it challenging to 

determine whether HumGut16S is a good representative subset for HumGut. This will be 

explored later. 

 

HumGut consists of 30536 genomes, and 4253 of these are in HumGut16S. 16S is the most 

used marker for studying microbiomes (Pollock et al., 2018), but there are quite few HumGut-

genomes with available 16S sequences. The lack of this sequence mostly comes from 

difficulties in assembling 16S from short reads. However, this might soon improve.  

 

As explained in the introduction, 16S sequences are highly conservated. 16S-sequences are 

challenging to assemble from short-read MAGs for several reasons. First, because the 16S 



 

  43 

contains repetitive regions (Perisin et al., 2016), it can be difficult to determine the correct 

order of the reads. Second, some genomes contain several 16S-sequences with slight 

variations (Větrovský & Baldrian, 2013). Because 16S-sequences are conservated, this 

sequence is often similar between different organisms (Yuan et al., 2015), which makes it 

challenging to determine which reads belong together. These challenges lead to few HumGut-

genomes with available 16S-sequences and might result in poorer quality from HumGut-

MAGs 16S sequences. However, if long-read MAGs are used instead, one read might cover 

the whole 16S sequence, and the problem of assembling this sequence is removed. A study 

from 2016 showed that Nanopore long reads could identify more species than short-read 

sequencing (Shin et al., 2016). This indicates that Nanopore long reads had higher quality and 

thus might be matched more similarly to RefSeq genomes than short-read MAGs. A study 

from 2022 showed that long-read MAGs had twice as many high-quality MAGs as short-read 

MAGs (Gehrig et al., 2022). Even though all MAGs in HumGut are considered to have high 

quality, this might mean that long-read MAGs could gain even higher quality. 

 

4.2 How the GA-map overlaps HumGut 
 

 4.2.1 Genome categories 
 

HumGut16S contains genomes assembled from two different sources, the National Center for 

Biotechnology Information (NCBI) Reference Sequences (RefSeq) and The Unified Human 

Gastrointestinal Genome (UHGG). These two sources contain a total of six different genome 

categories: MAG and Isolate (both UHGG) and Contig, Scaffold, Chromosome, and 

Complete genome (all RefSeq). The genomes in HumGut16S were categorized into the mode 

category for all the observations in the genome. This means the category occurs most 

frequently within the genome. One weakness with this is that when finding the mode genome 

category, the source is not considered. This means that genomes with, for instance, Isolate (a 

UHGG genome category) as the mode genome category might have RefSeq as the mode 

source and the other way around. 

 

Figure 2 shows the fraction of genomes matched and not matched by the probes with the 

different genome categories as mode category. The UHGG categories make a larger fraction 

of the genomes not matched by the probes than those that are matched. This might indicate 

that RefSeq has better quality on the 16S sequence and is thus being matched by more probes. 
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This indication is supported by previous research in HumGut (Hiseni et al., 2021) and similar 

studies using fecal samples from humans (Meziti et al., 2021). Long-read MAGs might solve 

this problem. 

 

As mentioned, MAGs in HumGut are short-read MAGs, and all of them are considered to be 

of high quality (Hiseni et al., 2022). Still, these results, as well as a previous study (Hiseni et 

al., 2022), indicate that the MAG 16S quality in HumGut might be poorer than the RefSeq 

16S quality. This could be because of poorer assembly. 

 

4.2.2 Matches between GA-probe and 16S sequence 
 

Of 4253 genomes, 3134 have at least one probe matching. This means that nearly three-

fourths of HumGut16S are discovered by diagnostic tools from GA. As shown in Figure 3, 

most of the matched genomes have one target, but up to 35 probes match one genome. This is 

assumed not to be the case and might have something to do with poorly assembled UHGG-

genomes. 

 

As explained earlier, the number of genomes is the number of clusters, a group of genomes 

that are 97.5 % similar across the genome. For genomes with this high similarity, it is 

expected that the 16S is more similar within the cluster than the 16S sequences in general 

because the 16S sequence is highly conservative (Langille et al., 2013). Thus, the variation in 

16S within one cluster is anticipated to be small. 

 

With this in mind, the number of probes matching shown in Figure 3 and Figure 4 is the sum 

of probes matching at least one cluster member. This means that three probes matching can 

mean that the three probes match all the cluster members or that all members are matched by 

one probe except for one that is matched by two different probes. Because the variance in the 

16S sequence is expected to be minor, the cluster members are expected to mainly be matched 

similarly. Still, one cluster has up to 35 matches in Figure 3. The probes match differently, as 

shown in Figure 5, and no cluster is expected to be matched by so many probes. 

 

Thus, the 16S sequence variance might be greater than expected. When the number of probes 

is based on probes that match at least one cluster member, poorly assembled cluster members 

can affect the analysis. To avoid this, it was attempted only to consider a probe to match the 
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cluster if at least half of the members were matched. However, some probes are highly 

narrow-matching, exploit slight variation in 16S-sequences, and might not truly match the 

whole cluster. Setting such limits for when a cluster is considered matched would exclude 

these probes. 

 

In addition to analyzing the number of probes matching the genomes for HumGut16S, the 

same analysis was performed for the subset of HumGut16S containing RefSeq-genomes only. 

RefSeq genomes are curated by NCBI and are previously shown to be significantly better 

quality than MAGs (Hiseni et al., 2022), which make out most of the UHGG genomes in 

HumGut. Using RefSeq-genomes only would therefore exclude the genomes with the 

assumed lowest quality. 

 

This analysis is shown in Figure 4, which shows the number of probes matching the 2936 

HumGut16S RefSeq genomes. Compared to Figure 3, showing the same for all HumGut16S 

genomes, both figures show that one probe matching the genome is the most common. When 

the UHGG observations were removed, the maximum number of probes targeting one 

genome was 10, compared to 35 with the UHGG observations. This indicates that UHGG has 

a greater variance in the 16S sequences than RefSeq. As explained earlier, the number of 

probes is the number of probes that matches at least one cluster member. The most matched 

single genomes have six matches for UHGG and five matches for RefSeq. All genome types 

but MAG has five matches on one genome as max. MAG has three genomes matched six 

times that belong to three different clusters. 

 

Genera names were extracted from the HumGut-table and were sometimes inaccurate. 

Firmicutes were received as the genus name for 263 single genomes in HumGut16S, which 

includes 60 different clusters. Their NCBI organism name in HumGut was Firmicutes 

bacterium, most with numbers after, for instance, Firmicutes bacterium CAG:884. Searching 

these up in NCBI did not gain known genera. To have a genus for these observations, 

Firmicutes is used even though it is not a genus. 

 

Phylum are the highest taxonomic rank used in this thesis, and HumGut16S contains 15 

phyla. Of these, 11 is matched by the probes. The phyla Elusimicrobia, Candidatus 

Saccharibacteria, Synergistetes and Lentisphaerae has no genome in HumGut16S that has a 
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match against any probe. These four phyla are all among the six phyla with fewest HumGut-

genomes. Of 4253 genomes, these four phyla in total make 20.  

 

The HumGut16S subset containing only RefSeq-genomes contains 300 genera. Of these, 81 

have no genome that is matched by the probes. Of 2936 RefSeq-genomes, these genera are 

315. Twenty-nine of these are found in under 1 % of the sequenced human guts. HumGut 

contains only genomes found in the healthy human gut. Whether it matters that the GA-

dysbiosis map does not match these genera depends on their biological function. Two of these 

genera are Brevundimonas (found in almost three percent of the guts) which might be a 

pathogen (Liu et al., 2021), and Adlercreutzia (found in five percent of the guts), which might 

have a positive health impact (Goris et al., 2021). The latter has previously been shown to be 

related to dysbiosis (Shaw et al., 2016). 

 

Even though no genomes in HumGut16S belonging to these phyla and genera are matched by 

the GA-map, there might be HumGut-genomes without available 16S sequences that are 

matched.  

 

4.2.3 GA-map probes 
 

Figure 5 shows how many genomes, species, and genera the different probe matches. Due to 

the previous results on genome quality, this is done for RefSeq-genomes only. IG0053 is the 

probe that matches with most genomes, while IG0023 matches most species and genera. 

The figure clearly shows that some probes are narrow and others match broader.  

 

Table 3.1 shows that IG0053 matches 874 genomes. In total, 2246 genomes are matched at 

least once (shown in Figure 4). Thus, IG0053 matches above one-third of the matched 

genomes. IG0023 and IG0053 are both named after the Bacillota-phylum in Table 3.1. 

 

Figure 5 shows that even though IG0053 matches many genomes, only seven probes match 

above 250 genomes. Of 48 probes, eight have less than 75 % of their matched genomes within 

the same genera. This supports the expectation that no genome should have 35 matches. This 

is also supported by the fact that no single genome is matched by more than six probes and 

that the 16S sequences are expected to be similar. As shown in Table 3.1, two probes are not 
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matching any RefSeq genomes. It was considered to use RefSeq-genomes only for this part, 

but because RefSeq misses many genomes and these two clusters, this was not ideal. 

 

4.3 Functional profiling 
 

Functional profiling seems to have good quality for all genomes categories. The GA-map 

misses some smaller regions of functional space. This is especially the case for HumGut, 

because the GA-map can only be analyzed for HumGut16S. MAGs might be functionally 

different from other genomes.  

 

4.3.1 Building functional profiles 
 

4.3.1.1 Gene prediction 
 

The software Prodigal was used to predict coding genes. As stated in the introduction, gene 

prediction tools like Prodigal overpredicts genes. Prodigal gives a score, and the higher the 

score is, the more likely it is that the gene is real. Figure 6 shows three random DNA-

“genomes” containing no genes and three real genomes. As expected, Prodigal predicts genes 

in both the randomized DNA and the genomes, but the predicted genes in the genomes 

generally have a higher score. 

 

It was decided to have a score limit of 30. This is shown with a red line in Figure 6. The 

figure shows that nearly all the predicted genes in the random DNA are below the limit, and 

so are many predicted genes in the real genomes. Some of these genes are likely to be real 

genes. However, using too low a score would produce false positive genes. The figure shows 

that a lower score would have led to the inclusion of a higher number of genes from the 

random DNA, and thus also other false genes 

 

4.3.1.2 KEGG ortholog 
 

Figures 7 and 8 show how the KEGG orthologs (KOs) are distributed across HumGut16S (7) 

and HumGut (8). Both figures show that most KOs are found in a few genomes. No KO was 

found in all genomes, neither for HumGut nor for HumGut16S. This is surprising because 

some KOs are expected to be core categories and needed for the microorganisms to be alive. 
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Furthermore, all these genomes are found in the same environment, a healthy human gut, and 

it is expected that there are some similarities. 

 

There might be several reasons why no core categories were found. As explained earlier, the 

chosen prodigal score limit is expected to have filtered out some genes. Thus, core genes 

might have been filtered out in some genes. All the genomes in HumGut are expected to have 

high quality Hiseni et al., 2022). Still, there are indications from both previous research 

(Hiseni et al., 2022) and this thesis that MAGs might have poorer quality than expected. If the 

assembly quality is poor, there might be missing regions where the core genes are found. It is 

also possible that there are core genes with multiple functions. As stated in the methods, the 

sensitivity of Diamond homology searching has been improved (Buchfink et al., 2021). Still, 

some homologs might not have been identified due to differences in sequence divergence or 

alignment quality. 

 

4.3.2 Analyze of the functional profiles 
 

4.3.2.1 Using functional profiles to separate genomes into phyla 
 

Figure 9 and 10 clearly shows that genomes of the same phyla group together in functional 

space. This indicates that the different phyla are separated in functional space and that PCA 

can detect this with only two components. Hence, the differences between genome categories 

in the 16S studies can not be seen here.   

 

Figure 9 shows the PCA plot for HumGut16S. This figure shows that for HumGut16S, most 

genomes from Bacillota, Proteobacteria, and Bacteroidota can be functionally separated from 

other genomes by using these two PCs. The other phyla seem to be tighter grouped with some 

subset of different phyla. Plotting PC3 and PC4 makes some of these phyla, for instance, 

Actinobacteria, clearer separated. 

 

Figure 10 shows a somewhat better separation for HumGut. As in Figure 9, Bacillota is 

partially separated from other genomes and partly similar to different phyla. At least most 

Bacteroidota is clearly separated from other genomes. In this “sky” of Bacteroidota, one 

genome belonging to Synergistetes can be seen. Proteobacteria seems to have genomes 
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clearly separated from others down in the left corner, but it also contains genomes more 

similar to others. Some subgroups of other phyla can be seen. 

 

While Figure 9 shows 24.37 % of the detected variance in HumGut16S, Figure 10 explains 

only 13.28 % of the variance detected in HumGut. Still, the separation seems to be somewhat 

better. This indicates that the different phyla in fact are separated in functional space and that 

PCA can detect this with only two components. That phyla are similar in function might seem 

obvious, but previous studies have shown that taxonomy and function are not always tightly 

linked (Burke et al., 2011) 

 

4.3.2.2 How HumGut16S is distributed in HumGut 
 

Figure 11 shows no clear separation between genomes that are and are not in HumGut16S. 

Thus, it seems like HumGut16S can be used as a representative for HumGut. This does not 

mean that the distribution is perfect. For instance, there appear to be more HumGut16S-

genomes in the lower left corner than in the upper left.   

 

4.3.2.3 Functional profiling and match of a GA-probe 
 

Figure 12 shows that IG0023 matches mostly a subset of the functional space of HumGut16S. 

The probe does not fully match this functional space, and there are matched genomes in other 

functional regions. Most matched genome is still grouped in one area of the PCA plot, which 

means that it seems like probes matching and functional profile is related.  

 

That the separation is not perfect could indicate several things. This analysis compares 16S-

sequences, which match the probes, and functional profiles. Poor quality on one of them 

would therefore affect these analyses. Twenty-two matched outliers were identified with a 

PC1 above -2 and PC2 above 5. All these genomes were MAGs. 

 

Along PC2, there are genomes both with and without match from IG0023 mixed. While some 

of this may be explained by poor 16S quality or even poor functional profiling, it seems likely 

that this probe does not match all of this functional space. The probes are not aiming for 

functional profiles. Thus, IG0023 might truly have openings in the functional area of its 

matched genomes. 
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4.3.2.4 Variation in functional profiling between different genome categories 
 

In general, MAGs seem to span out the functional space. This means that the functional 

profiles seem similar between the different genome categories. Thus, MAGs do not seem to 

differ from other genome types functionally. This indicates that there are no, or only small, 

quality issues with the functional profiling of MAGs.  

 

HumGut consists of genomes from two sources (RefSeq and UHGG) and, in total, six genome 

categories (complete genome, chromosome, scaffold, and contig (all RefSeq) and MAG and 

Isolate (both UHGG). RefSeq is previously shown to have better genome quality (Hiseni et 

al., 2021). If the genome categories are functionally different, it would likely be because of 

this difference in quality. 

 

Figure 13 shows some tendency of grouping between genome categories in HumGut16S, but 

this is vague. The upper right corner seems to be primarily MAGs (although some Refseq and 

Isolates are there as well), and a small group of RefSeq-genomes at PC1 around 0 and PC2 

around -6 is not visible in the UHGG panel. Figure 14, showing the same for HumGut, also 

shows similar vague trends. 

 

One reason for the trends to be vague is that many other factors affect the genome's functional 

profile. One of these factors is taxonomy. To avoid this, a similar figure including only data 

for one taxon was made. Figure 15 shows a PCA plot for the phylum with the most 

genomes, Bacillota. This figure shows the same as the previous two: there is some weak 

grouping tendency, but not a perfect one. 

 

To investigate if the vague trend exists or if the pattern is due to other factors, a PLS plot was 

made (Figure 16). PLS maximizes the variance between the two sources (Wold et al., 2001), 

meaning that a trend should be visible here. This plot shows a greater tendency to separation 

between UHGG and RefSeq. This might indicate that it is possible to find patterns in the 

functional profiles that separate RefSeq-genomes from UHGG and that there might be a 

systematic bias. 
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To further narrow down expected variation from different genomes, Figure 17 shows the 

same for one genus, Streptococcus only. Streptococcus is not the most dominant Bacillota-

genera in terms of genomes, but the most dominant ones have very few RefSeq-genomes. 

This strengthens the hypothesis that there might be a systematic bias. However, since the 

genus has relatively few observations, it might not be representative.  

 

Accuracy for the two PLS plots is calculated from the same data used to make the model. 

Consequently, the obtained accuracy is falsely high because this data is used to establish the 

separation. In this case, PLS was used to test whether a separation is possible. Ideally, a 

subset of the observations should have been withheld so accuracy could have been calculated 

based on unseen data. However, for Streptococcus, as many observations as possible were 

needed to make a robust model. For Bacillota, the functional differences within the phylum 

make it difficult to remove observations. Filtering out data to calculate accuracy could have 

impact on the result. Nevertheless, the obtained accuracy showed that a separation is possible 

for these data, and that there are some patterns that distinguish between MAGs and other 

genome types.  

 

As stated, PLS maximizes the variance between the two sources. The Bacillota-dataset 

contains 19567 observations, and Streptococcus contains 1088 and 7925 functional 

categories. This means that for Streptococcus, there are many more categories than 

observations. Because machine learning as PLS combines data in different ways (Obermeyer 

& Emanuel, 2016; Gourvénec et al., 2003), a pattern found is natural when there are more 

categories than observations. 

 

The correlation was calculated to investigate whether it is a pattern between functional profile 

and genome category. Of the 7925 KOs, the correlation could not be calculated for 4999 

because these were equal. Thus, these KOs were found in all Streptococcus genomes or not 

found in any. Two were found in all, and 4997 were not found in any. Given that all these 

genomes belong to the same genera, it is surprising that only two were found in all of these 

genomes. There are many other KOs found in most of these genomes. 

 

Two functional categories had similar correlations (0.74 and 0.75), which was also the highest 

correlation found in this study. One of these categories was K12295, which, as explained in 

the results in section 3.3.2.4, is a two-component histidine kinase response. The other one was 
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K12294, which is a two-component histidine sensor. It is believed that such two-component 

histidine kinase sensors recognize environmental signals to influence the activity of a 

transcription factor they are mated to (Szurmant et al., 2008). There are genomes where one is 

found and not the other. Still, K12294 and K12295 may be coupled. This would explain why 

both the functional categories with the highest correlation are related to a two-component 

histidine system. 

 

These two functional profiles are found in most RefSeq-Streptococcus genomes and a few 

UHGG-Streptococcus genomes. It might be random reasons for them to be more frequent in 

RefSeq than in UHGG. This is especially relevant because the correlation is based on 

relatively few observations (583 RefSeq and 505 UHGG). Another reason for these two to be 

the most associated with source could be that the two-component histidine kinase system is 

complex. Like the 16S sequence, these genome segments are conservated and may have 

several copies (Eguchi et al., 2017). Thus, assembling these regions may be difficult, which 

could be why they are not found in UHGG-genomes (mostly MAGs) if these regions are 

present there.  

 

4.3.2.5 Clustering with K-means 
 

The discovered patterns were studied further using K-means. PCA plot uses two dimensions, 

while K-means do not reduce the dimensions. This means that K-means can use more of the 

variation found. 

 

4.3.2.5.1 Clustering HumGut16S with K-means 

 

Of the 43 K-means clusters HumGut16S were clustered into, the GA-map matched 41 to 

some degree. This means that most of the functional space of HumGut16S matches the map. 

Figure 18 also shows that both low and high PC1 and PC2 have some matched clusters. Thus, 

the two PCs explaining most of the variation found do not separate the clusters based on the 

degree of the match against the GA-map.     

 

On the one hand, the two non-matched clusters are not located on the far sides of the PCA 

plot in Figure. This indicates that these clusters are not “extreme” and do not exhibit extreme 

characteristics compared to clusters matched by the probes. Especially the smallest non-
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matched cluster is located close to a matched cluster. This means that the non-matched and 

matched cluster share functional patterns and that these two clusters are not extreme in terms 

of functional characteristics. On the other hand, the two non-matched clusters are positioned 

diagonally across from each other in the figure, with an empty gap between them. This could 

indicate that there is a region that is not matched. 

 

There are 60 functional categories that no matched genome contains. Except for two of them, 

they are all found in a genome in a cluster that is at least partially matched. This means that 

even though the functional category is not found in any matched genome, a genome with a 

similar functional profile as a genome with the category is matched. Thus, these categories are 

“indirectly matched” by the GA-map. 

 

4.3.2.5.2 Clustering HumGut with K-means 

 

The clustering of HumGut showed larger, darker regions (Figure 19). This is expected 

because matching with the probes can only be analyzed for genomes in HumGut16S. Thus, 

the match rate is lower and dark color is more natural. A few groups in this plot stick out. 

Most genomes with low PC1 are not matched by the probes. These genomes have Bacillota as 

a phylum. Bacillota is the phylum with the most genomes in HumGut, as shown in Figure 1. 

As seen in Figure 10, it is spread over a large part of the functional space, and some genomes 

are located at the far end. Thus, it is natural that some of these are along the outer edge of this 

plot.  

 

Another distinct group is located isolated at PC2 above 5. These genomes are Bacteroidota, 

except for one that is Synergistetes. If Figure 10 is studied closely, one can see that within the 

orange “island” of Bacteroidota, there is one purple dot. This Synergistetes-genome is a MAG 

that is not in HumGut16S. Thus, this group in Figure 19 probably represents parts of the 

Bacteroidota-piece of Figure 10.  

 

Nine other Bacteroidota-genomes are represented in the clusters in the lower right corner. 

These clusters are the only distinct group with a high fraction of matched genomes. The other 

genomes in these clusters are Proteobacteria. These genomes are likely to be those shown 

with orange color in the middle of Proteobacteria in the lower left corner of Figure 10. The 

plot has ten Bacteroidota-genomes located in the middle of Proteobacteria with PC1 lower 
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than -10 in Figure 10. Of these, eight are RefSeq-genomes in HumGut16S that are matched by 

the probes.  

 

Even though some functional areas have a low matched rate, all the groups of clusters have 

matched genomes. Thus, even though there are clusters without match, there is no large 

region consisting of several clusters that are never matched by any probe.  

 

It was randomly decided to have around 100 genomes on average in each cluster. In this 

project, it was decided to have comparable sizes of the K-means clusters for HumGut and its 

subset HumGut16S to make comparisons more accurate. 

 

4.4 Concluding remarks and further perspective 
 

The first aim of this thesis was to get a taxonomic overview of HumGut and find out how the 

GA-map covers the taxonomic classifications. GA-map matches can only be measured for the 

part of HumGut in HumGut16S. Thus, probe matches for most of HumGut remain unknown. 

Of 16 phyla in HumGut, 11 have at least one genome in HumGut16S that is matched by the 

GA-map. One phylum is absent in HumGut16S, while four are present with no match. This 

indicates that the GA-map do not span over the whole taxonomic specter of HumGut. 

However, the phyla that are not matched are among the phyla with least HumGut-genomes 

and they also make a small fraction of HumGut16S. These phyla might have HumGut-

genomes that are matched. The findings show that the map covers most phyla.  

 

The second aim was to get a functional overview of HumGut and find out how the GA-map 

spans over the functional space of HumGut. This was done using PCA and K-means 

clustering. HumGut16S seems to span well over the functional area of HumGut. Some K-

means clusters were not matched by the map, indicating that there are functional regions that 

are missed. The functional profiles missed by the map do not seem to be extreme. In this 

thesis, probes and functional profiles are mainly studied separately. In the future, it might be 

interesting to combine this and find which probes match which functional profiles. 

 

The last aim was to evaluate the quality of the genomes in HumGut. This was done by 

studying GA-map coverage for the different genome categories and with PCA and PLS. The 

finding suggests that the 16S-sequences from Metagenome Assembled Genomes (MAGs) 
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might have poorer quality than other 16S-sequences in HumGut. It seems like the quality of 

the whole genome is better, giving better results on functional profiling. This indicates that 

the difference found in 16S-sequences is due to these sequences and not that the genomes are 

different. There are, however, also findings from functional profiling indicating that there 

could be differences between the functional profiles of MAGs and other genomes. 

 

Given the results from analyzing the quality of genomes in HumGut, this field should be 

focused more on in the future. Results from this study show that MAGs might have poorer 

16S quality than others, but it has yet to be investigated whether some patterns can be found 

to decide which MAGs have poorer quality. Results from functional profiling might indicate 

that some functional categories are seen in fewer MAGs than expected. Finding patterns on 

which categories this applies might be useful for later studies.  
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