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Abstract

Bread wheat is among the most critical staples worldwide and is essential to
Norway’s food production. The aftermath of the green revolution nearly eradicated
Norwegian wheat production in the 1950s and 1960s. The lack of fit between
Norwegian wheat varieties at that time and the new agronomic practices rendered
Norwegian wheat production uncompetitive, which spurred intense breeding efforts.
The efforts resulted in the release of two landmark wheat varieties: Runar and Reno,
released in 1972 and 1975, respectively, which brought back domestic wheat
production in Norway. Since then, new varieties have been bred and released on the
market, but we know little about the achieved breeding gains or their genetic

background.

To fill this gap, we tested 21 historical and modern wheat varieties present on the
Norwegian market since the release of Runar in a multi-year field trial under two
fertilization levels (75 and 150 kg N ha1). We detected an annual genetic progress in
grain yield (GY) of 18kg ha! (0.34%), which did not rely on agronomic input. The
progress was primarily associated with increased number of grains per spike and
area. New varieties in Norway can also take advantage of the changing climate (earlier

spring) by extending their vegetative periods by three days on average.

Genome-wide association analysis on a diverse panel of over 300 lines could not fully
explain the genetic progress in GY. However, it discovered several significant loci
associated with GY and other traits. Validation of these loci using recent breeding
lines confirmed their effects and showed potential for using them in marker-assisted
selection. Two loci, representing the Ta-Col5 and Ta-GS5-3A genes (associated with
spike architecture and kernel size), showed a change in allele frequency over the last

100 years, indicating possible historical selection pressure.

We investigated the prospects of accelerating genetic gains using multispectral drone
imaging data for standalone GY prediction and augmenting genomic selection models.
The multispectral data allows for GY prediction with accuracy comparable to genomic
data, and models using both genomic and phenomic variates appeared superior. We

discussed the biological rationale behind this GY prediction and its practical aspects.

This work provides insight into historical changes in GY and other traits in Norwegian
spring wheat, and describes a semi-novel way of using phenomic data for GY

prediction and augmenting GP to accelerate genetic gains in GY.

II






Norsk sammendrag

Hvete er blant de viktigste matvekstene i verden, og spiller en ngkkelrolle i norsk
matproduksjon. Mekaniseringen av jordbruket pa 50- og 60-tallet naermest utryddet
norsk hveteproduksjon. Norske kornsorter var darlig tilpasset de nye agronomiske
dyrkingsmetodene, og gjorde norsk hveteproduksjon lite konkurransedyktig. Dette
forte til intensivt foredlingsarbeid som resulterte i to milepaelsorter: Runar fra 1972
og Reno fra 1975, og norsk hveteproduksjon tok seg sakte, men sikkert opp igjen.
Siden den gang har nye og forbedrede sorter blitt utviklet og sluppet ut i markedet,
men vi vet lite om det genetiske grunnlaget for den observerte avlingsframgangen.

For a fylle dette gapet har vi testet 21 historiske og moderne hvetesorter som er eller
har veert tilgjengelige pa det norske markedet siden Runar i et flerarig feltforsgk med
to gjedslingsnivaer (7.5 og 15 kg N per dekar). Vi fant en arlig genetisk framgang i
kornavling pa 1.8 kg per dekar (0.34%), og denne var uavhengig av gjgdslingsniva.
@kningen var i hovedsak assosiert med gkt antall korn per aks og areal. Nye sorter
kan ogsd utnytte klimaendringene gjennom en i gjennomsnitt 3 dager forlenget
vekstsesong.

Assosiasjonskartlegging i en samling med over 300 varhvetelinjer kunne ikke helt
forklare den genetiske avlingsframgangen, men avdekket flere viktige gener assosiert
med kornavling og andre agronomiske egenskaper. Vi validerte disse assosiasjonene
i nye foredlingslinjer, noe som bekreftet deres effekt og viste potensiale for a bruke
dem i markgr-assistert seleksjon. To kromosomomrader som representerte genene
Ta-Col5 og Ta-GS5-3A (assosiert med aksstruktur og kornstgrrelse) viste endringer i
allelfrekvens i lgpet av de siste hundre drene, noe som kan tyde pa at de har veert
under historisk seleksjonspress.

Vi sa pa muligheten til & gke den genetiske framgangen ved & bruke multispektrale
dronebildedata til & predikere kornavling og forbedre modellene brukt i genomisk
seleksjon. Multispektrale dronebilder gjgr det mulig & forutse kornavling med
ngyaktighet tilsvarende genomiske data, og modeller som benytter bade genomiske
og fenomiske data utpeker seg som mest effektive. Vi diskuterte biologiske
sammenhenger som kan forklare hvordan denne metoden virker til a predikere
kornavling og dens praktiske aspekter.

Dette arbeidet gir innsikt i historiske endringer i avling og andre egenskaper i norsk
varhvete, samt presenterer en delvis ny mate a bruke fenotypiske data pa til &
forbedre genomisk prediksjon av kornavling og g¢ke den genetiske
avlingsframgangen.
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1 Introduction

1.1 Current situation in small grain production in Norway

On the western side of the Scandinavian Peninsula, Norway stretches between
latitudes 57°58" and 71°10’N with a total distance of 1,752 km from south to north.
Out of its surface area of about 324,000 km?, only 3% (about 1,000,000 ha) of
Norwegian land is arable soil, with most of the land covered by mountains (44%),
forests (38%), lakes (6%) and wetlands (6%). Unlike other lands situated at a similar
latitude, the climate of Norway is relatively warm due to the presence of the Gulf
Stream. The main agricultural area (in the country’s southeastern part) is separated
from the west coast by tall mountain ranges, creating conditions that resemble a
continental climate with less rainfall and higher temperature differences between
winter and summer. The area in the southeast constitutes over half of the country’s
arable land and is where most of the cereal production occurs. Other agriculture-
intensive areas in Norway are found in Trgndelag in central Norway (with a mix of
livestock and barley production) and Jaeren on the southern part of the west coast,

with intensive livestock production (Figure 1).

Glaciers covered Norway’s surface entirely during the last ice age; therefore, most of
today’s soil is of recent origin, formed by glacial deposits created by the retraction of
the glaciers some 10,000-20,000 years ago. The main agricultural area in the south
rose around 200 m out of the sea when the glaciers melted, and thus, most of the
produce is grown on clay soils of marine origin. In some areas, the clay is covered by
moraines deposited during short periods of glacial expansion. Sandy soils are at the

bottom of valleys, where rivers change their course (Lillemo & Dieseth, 2011).

Only 30% of Norway’s arable land is suitable for grain farming, resulting in only
45.9% (on average) of the grain demand being satisfied by national production.
Improving Norwegian self-sufficiency in grain production is an important political

goal.

Barley, wheat, and oats are currently (in descending order) the most farmed crops in

Norway, with a residual production of rye (Figure 2).
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Figure 1 Main agricultural areas in Norway: production type, arable land, and area
share of wheat production. Taken from Lillemo and Dieseth (2011)
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Figure 2 Production of small grain crops in Norway in tons between 2000 and 2021.
Hvete - wheat, rug - rye, bygg - barley, havre - oats. The color indicates the crop: blue
- wheat, orange - rye, grey - barley, yellow - oats. Data source: Agriculture Authority
of Norway. Figure source: https://brodogkorn.no/fakta/kornproduksjon-i-norge



1.2 Grain yield in Norwegian small grains

According to the old records, the grain yield (GY) level in practical farming in Norway
remained constant until the turn of the nineteenth century. The acreage of small
grains and the agricultural practice were stable, with no significant development

taking place for hundreds of years (Strand, 1964).

Experimental work in Norwegian agriculture was initiated in 1898, followed by the
introduction of artificial fertilizers and the availability of improved varieties.
Although these pioneering changes initially had minimal effect on the actual
production, primarily due to slow work progress and the farming community's
reluctance, the grain progress rate increased with time (Strand, 1964). The increase
in GY was especially pronounced in the decade following stagnation during the
Second World War (Figure 3).
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Figure 3 Estimated productivity of seasons from 1888 until 1960 for barley (dashes),
oats (dots, upper curve), spring wheat (dots, lower curve), and mean of the crops (solid
line). Taken from Strand (1964)

Between 1888 and 1960, the average GY for small grains rose from approximately 1.8
t ha! to almost 2.8 t ha'! (Figure 3). The release of new varieties contributed to 34,
35, and 53% of the total progress in GY for barley, oats, and spring wheat, respectively
(Strand, 1964).

The yields in Norwegian small grains continued to rise in the following period from
1960 to 1992. During this period, the average GY of barley, oats, and spring wheat

increased by 1.8, 1.4, and 2.1 t ha'l, respectively, corresponding to a linear increment



of 70, 56, and 74 kg ha'! per year. The progress was attributed to new cultivars,
agriculture practice, and interaction between those factors. The GY increase
depended mainly on the introduction of new varieties (40-57%) and cultivation
practice (31-60%), while the interaction term was less significant, especially in oats
(Table 1) (Strand, 1994).

Table 1 Gains in Norwegian small grains GY in the 1960-1992 period (GY increase) in
barley, wheat, and oats, attributed to the release of new cultivars (G), improvements in
management practice (M), and the interaction between G and M (G x M). Adapted from
Strand (1994)

GY Increase G M GxM
Crop Per years TOt(:ll in % Kg in % Kg in % Kg.in
period? period? period? period?
Barley 7.0 180 40 72 50 90 10 18
Wheat 7.4 214 47 100 31 66 22 48
Oats 5.6 141 42 60 60 84 -2 -3

akg per daa

Dissection of GY progress into the three primary statistical components underlined
the importance of developing new cultivars and improvements in agricultural

practice

It is important to mention that the 1960-1992 period coincided with the global Green

Revolution, which changed the varieties and agronomic practices.

1.3 The Green Revolution

The term “Green Revolution” (also known as The Third Agricultural Revolution) was
coined in 1968 by William S. Gaud of the US Agency for International Development.
The term describes the whole of new technology introduction and agricultural policy
implementation between the 1940s and 1960s., which resulted in drastic increases in
yields in food crops, particularly in developing countries (Dalrymple, 1985; Eliazer

Nelson, Ravichandran, and Antony, 2019).

To increase agricultural productivity, novel high-yielding wheat and rice varieties
were introduced during the Green Revolution, developed by the International Maize
and Wheat Improvement Center (CIMMYT), Mexico, and the International Rice
Research Institute (IRRI), Philippines. These new varieties had doubled yield
potential due to higher responsiveness to nitrogen fertilizers (Dalrymple, 1985;
Davies, 2003).



The increase in genetic GY potential is associated with several traits in green-
revolution varieties. For rice and wheat, the GY potential improvement was caused
by increased biomass production and plant height reduction, thus improving the
harvest index (HI). Pre-Green Revolution rice and wheat varieties were tall and leafy,
with fragile stems and HI of around 0.3. They could achieve a total biomass of 10-12
tha, resulting in a yield potential of approximately 4 t ha-1. However, when exposed
to excess nitrogen fertilization, these varieties tillered intensely, grew excessively tall
(which led to early lodging), and yielded less (Khush, 1999).

The new varieties, on the other hand, had HI of 0.5, closer to the theoretical limit of
0.6 (Slafer et al., 2023). Because of their shorter and stronger straw, they could
withstand intensive nitrogen fertilization without the risk of lodging. The most
critical factor behind HI improvement was the change in plant architecture, which
doubled the GY potential in rice and wheat varieties (Khush, 1995). Incorporating
disease, insect resistance, and abiotic stress resistance (for instance, moisture stress,

salinity, alkalinity) genes increased yield stability in the new varieties.

The revolution in agriculture did not happen due to improved genetics alone. It was
necessary to develop appropriate management practices to utilize the yield potential
of the new cultivars, such as: (i) knowledge of plant nutrient requirements for each
primary soil type, (ii) gathering data on agronomical traits needed to increase GY -
optimum rates, dates and methods of sowing, (iii) irrigation practices, (iv) pest and
weed control, and (v) mechanization in land preparation, sowing, and harvesting
(Khush, 1999).

The best-described genes that played a significant role in the Green Revolution are
Rht-B1b and Rht-D1b (Reduced height, previously known as Rhtl1 and Rht2,
respectively) (Flintham, Angus, and Gale, 1997; Y. Wang et al, 2014). These two
gibberellin-insensitive dwarfing genes reduce lodging by decreasing plant height and
are associated with increasing grain number, GY, and HI (Chapman et al,, 2007). The
Rht genes’ positive effects on GY and grain number can be explained by reducing the
internal competition for assimilates between the developing spike and the vegetative
part of the plant, which allows the survival of a higher number of florets per ear to be
filled after pollination (Fischer & Quail, 1990). The Rht-B1b and Rht-D1b genes
originate from Japan. In the 20t century, a semi-dwarf wheat line, Daruma, was
crossed with an American variety Glassy Fultz, producing “Futlz Daruma”. “Fultz
Daruma” was crossed with “Turkey Red” (a leading US cultivar imported from Russia)
to produce “Norin-10" (Wilhelm et al.,, 2013). “Norin-10” was, in turn, used to produce

many high-yielding varieties, which gradually spread the Rht-B1b and Rht-D1b genes



worldwide. Nowadays, the Norin-10 dwarfing genes are present in more than 70% of

commercial wheat varieties worldwide (Arnold, 1999).

“Daruma”, which is thought to be the donor of both Rht-B1b and Rht-D1b genes, was
presentin Japan as early as 1894 (Kihara, 1983). However, the alleles might have first
occurred much earlier, already in the 3rd-4th century AD, in a native Korean wheat
population “Anzunbaengimil” (“crippled wheat”) (Cho et al., 1980). Both Rht-B1b and
Rht-D1b genes are thought to be products of spontaneous mutations in wheat

populations originating from Japan, China, and Korea (Kihara, 1983).

The Green Revolution echoed throughout the world and, with exceptions, tripled the
average cereal crop yields with only a 30% of the cultivated land increase, leading to
poverty reduction and lower food prices. The caloric availability would have declined
by 11-13% without the Green Revolution (John & Babu, 2021). Thousands of hectares
of land would otherwise have undergone agricultural transformation to meet food
and fodder demand (Pingali, 2012).

The impacts of the Green Revolution were most pronounced in developing countries
(Figure 4). For instance, India was able to transit from a “ship-to-mouth” system

(dependency on imported grains) to self-sufficiency (Brainerd & Menon, 2014).

The Green Revolution, however, had negative environmental impacts, such as
increased pesticide use (Choudhary et al, 2018), water consumption (Davis et al,
2018), air pollution and greenhouse gas emissions (de Miranda et al.,, 2015), and the
extinction of indigenous varieties of crops (Prasad, 2016), to name but a few. Those
concerns, however, have been raised mainly during the last two decades, as most of
the effects were not visible immediately, and the general awareness of environmental

impacts had previously not been as high as today.

The Green Revolution laid the foundations for modern agriculture, allowing it to keep
up with the ever-increasing demand for food worldwide due to increasing human
population and at the same time preventing the agricultural area from expanding
(Figure 5).
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Figure 4 Average grain yield in wheat from the 1940s to 2010 in Mexico and India, and
the impact of introducing the Green Revolution’s high-yielding varieties (HYVs). Taken
from Hansen, Wingender and Gollin (2021)
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Figure 5 Worldwide change in cereal production, yield, population, and land used for

cereal production since the Green Revolution. Taken from Richie (2017)



The overall global increase in cereal GY is a collective effort. Breeders and
agronomists worldwide work to create genotypes achieving high GY in various
environments. Even though the Green Revolution paved the general path towards
achieving high GY, the resulting genetic gains in GY were created by many institutions
worldwide, often independently. It is, therefore, worthwhile to investigate the GY

increase in individual collections.

1.4 Genetic gains in grain yield

The ultimate goal of any breeding program is to produce superior genotypes in terms
of adaptation, resistance, end-use qualities, and yield. Those improvements should be
visible (measurable) in time. Estimating the rate of genetic gain allows for regular
evaluation of breeding programs for their performance and improving their
efficiency. There are several approaches to performing this estimation. For instance,
Cargnin, de Souza, and Fronza (2008) used regression analysis on the GY of the top
five varieties divided by field trial mean and multiplied by 100. Tadesse et al. (2010)
developed and used the concept of “success rate” (when the newest variety
performed best) in field trials. However, the most common method of estimating
genetic gains is assigning each accession in a collection a value that places it on the
timeline - most often the year when a line became a variety (became officially
accepted for cultivation by local authorities) - and then performing regression

analysis of this value against achieved GYs (Tadesse et al., 2019).

Another question concerns the environment (management) used to test the varieties.
Each variety is developed to be competitive under particular management where it
can approach its yield potential. However, agricultural practices have changed over
the years due to technical and regulatory reasons. Is it then appropriate to have a
collection of varieties spanning a longer period in a single field trial under single
management, as done in most studies? On the one hand, some varieties will have the
advantage of being grown under their optimal management, while others not,
possibly leading to conclusions not reflecting the cropping reality. On the other hand,
a single field trial under single management allows one to perform a back-to-back
comparison among the accessions, showing how efficient the varieties are in coping
with the specific management (environment). There is no simple answer to this
question. However, for practical reasons, most studies are carried out either under a
single management (for example, Yao et al, 2019) or a few managements (for

example, Voss-Fels et al,, 2019).



Perhaps the most comprehensive study of genetic gains in GY was conducted by Voss-
Fels et al. (2019), where 191 wheat cultivars registered as varieties in Western
Europe between 1960 and 2013 were tested under three managements. This work
extensively analyzed germplasm originating from one of the world’s most essential

and most intensive wheat production areas, deserving to be described here in detail.

The study showed clear progress in GY in the period due to the introduction of new
varieties (approximately 800 kg halin total, 15 kg hal, 0.2% per year), which was
also visible in sub-optimal conditions (lack of fungicide treatment, low N fertilization)
(Figure 6). The slopes of the regression lines for each environment are almost
parallel, indicating very minor genotype x environment interactions (different
ranking of varieties in a collection in different environments). New varieties are
consistently better in terms of GY, even in suboptimal conditions (Voss-Fels et al.,
2019).
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Figure 6 Grain yield genetic gains in Western-European wheat between 1965 and 2013

under three managements (environments). Taken from Voss-Fels et al. (2019)

There is strong evidence of GY's significant genetic progress in collections worldwide,
spanning various time intervals during the 20th and 21st centuries (collected in Table
2). The studies use various genotype collections and methodologies but reach a
similar conclusion: new varieties are better (at least in terms of GY) and can use
available resources more efficiently. In wheat, the estimated value of the gains in GY
varies between 5 and 115 kg ha! per year (0.19 - 2.80%, Table 2).



Table 2 Genetic gains in wheat grain yield in various collections worldwide.

GrPS - grains per spike, GrpA - grains per area, SppA - spikes per area, TKW - thousand

kernel weight

Country/Region Period Annual gain Associated GY Reference
kg/ha/y(%) components
Argentina 1984-1994 23.6 (- %) GrpA Abbate et al. (1998)
Argentina 1934-2015 | 26.9 (1.35 %) GrPS AE};E;E’JLC?SS’;’)M
Asia/China 1950-2005 | 53.8 (1.25%) GrPS, TKW Tian et al. (2011)
Asia/China/Hebei | 1964-2007 | 47.4 (0.72%) GrPS, TKW Yao et al. (2019)
Australia/NSW | 1901-2014 | 26.0 (0.40%) GrpA, TKW, GrPS Flohr et al. (2018)
Brazil 1976-2005 | 48.0 (1.84%) - Caranrl:I’l‘Zjae (520(;‘02;3 and
Canada 1988-2018 | 38.0 (0.68%) - So et al. (2022)
Chile 1965-2019 | 70.2 (0.49%) - del Pozo et al. (2022)
CIMMYT 1994-2010 31.0 (1.00%) - Maneés et al. (2012)
CIMMYT 1995-2009 | 27.8 (0.65%) - Sharma et al. (2012)
CIMMYT 1977-2008 | 34.7 (0.70%) TKW Lopes et al. (2012)
A(Iig}\l/lal\:[)ii{efn 2002-2016 115 (2.80%) - Sharma et al. (2022)
VS/lc)l\lilllZl\r/'ir(i/e 1979-1997 5.30 (0.19%) - Trethowan et al. (2002)
Europe/France 1980-2010 12.8 (2.60%) - Brisson et al. (2010)
Europe/Germany | 1985-2007 28.0 (0.34%) - Ahrends et al. (2018)
Europe/Turkey 1964-2010 30.9 (0.62%) SppA, GrPS Akin et al. (2017)
Europe/UK 1972-1995 120 (1.20%) GrpA Shearman et al. (2005)
India 1900-2016 | 24.3 (0.8%) - Yadav et al. (2021)
Mexico 1950-1982 | 59.0 (1.10%) GrpA, GrPS Waddington et al.
(1986)
Mexico 1962-1988 | 67.0(0.88%) | GrpA, SppA, GrPS Sa}g;g:f‘(rlaggnd
Mexico/CIMMYT | 1966-2009 | 30.0 (0.59%) TKW Aisawi et al. (2015)
Peltonen-Sainio,
Northern Europe 1961-2005 35.3 (-%) - Jauhiainen, and Laurila
(2009)
South Africa 1998-2013 0.82% TKW Dube et al. (2019)
Western Europe 1960-2013 15.1 (0.21%) GrPS, GrpA Voss-Fels et al. (2019)

However, a question arises: how is the breeding progress achieved, and what are the

traits associated with progress in GY?

To answer this question, attempting to dissect GY into more basic components is
necessary. GY is a product of two primary components: the number of grains
produced per unit area and grain weight. The number of grains per area is a product
of the number of fertile tillers per area and the number of grains per spike. Likewise,

grains per spike is a product of the number of florets per spike and floret fertility
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(proportion of florets that successfully form a grain). Therefore, increasing yield
components will increase GY (Tillett et al., 2022). However, it is typical to observe

that yield components compensate for each other.

The studies which attempted to point out the traits associated with GY (Table 2) most
often report an increase in grains per spike (GrPS, 8 out of the analyzed 13 works),
grains per area (GrpA, 6/13), and kernel weight (TKW, 6/13). It is also remarkable

that a simultaneous increase in GrPS/GrpA and TKW was reported in 3 cases.

1.5 Grain yield plateau and perspectives for the future

Global agricultural production has to be increased by 60-110% by 2050 to provide
for the changing world: to feed the growing population, to supply meat, dairy, and
biofuel production, as well as to provide food security to over 870 million chronically
undernourished people (Pingali, 2007; Charles et al., 2010; Liniger et al, 2007; Foley
etal, 2011; Tilman et al, 2011). Doubling of the agricultural production translates to
roughly a 2.4% increase per year, far higher than the current rate of yield increase in
wheat (0.9%), indicating a strong need for yield increase without expanding the
agricultural area (Ray et al, 2013). At the same time, there are signs of stagnating
yields in the major crops, especially in the most intensive and productive systems in
the world (Grassini, Eskridge, and Cassman, 2013), which, together with rising
challenges posed by climate change, calls for a drastic increase in yields (Braun, Atlin
and Payne, 2010).

1.6 Genotype x environment interactions (GEI)

Genotype-environment interaction (GEI or GxE) is a universal phenomenon that
relates to all living organisms: genotypes and environments interact to produce an
array of phenotypes. When responses of two genotypes to different levels of
environmental qualities are compared, GEI can be statistically described as the failure
of the two response curves to be parallel (Baker, 1988). In practical terms, GEI can be
defined as a difference in genotype ranking in different environments. GEI is of
paramount importance in plant breeding - collections of genotypes are tested in an

array of various environments, which implies the presence of GEI.
The importance of GEI is greatly summarized by Gauch and Zobel (1996):

“Were there no interaction, a single variety of wheat or corn or any other crop
would yield the most the world over, and furthermore the variety trial need
be conducted at only one location to provide universal results. And were there

no noise, experimental results would be exact, identifying the best variety
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without error, and there would be no need for replication. So, one replicate at
one location would identify that one best wheat variety that flourishes

worldwide.”

GEIs can be grouped in two broad categories: non-crossover and cross-over
interactions (Figure 7). The crossover interaction is the most important in plant
breeding (Kang, 2002).

No plasticity Plasticity
No GxE No GxE
A B
1
—
—
|
8
> Genotype
o Plasticity Plasticity - A
5 GXE (scale) GXE (crossover)
£ -
o |C D
—

Environmental Factor

Figure 7 Types of genotype x environment interactions (GEI, GxE): no GEI (AB),
plasticity (C, scaling response without crossover), and crossover GEI (D). Taken from
Kusmec, de Leon and Schnable (2018)

A large presence of GEI indicates the need for testing the breeding material in
numerous environments (locations over several seasons), therefore has a dramatic
impact on all stages of a breeding program. Significant GEI also affects trait
heritability negatively - the larger the GEI component, the smaller the heritability
estimate. Therefore, GEI limits breeding progress in light of the Breeder’s equation

described in the next section (Kang, 2002).

Considering a large presence of GEI, a plant breeder faces a choice: to develop
separate populations for each site type where environmental qualities cause different
rankings, or to select genotypes that generally perform best across many sites. The
first solution is expected to reach higher genetic gains but is also more costly. The

second alternative yields lower gains, but at a lower cost.
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1.7 Accelerating genetic gains through breeding

The sole purpose of breeding is to develop superior genotypes concerning target
traits. Therefore, only traits influenced by genetics - heritable- are interesting for

breeders.

Plant breeders often use heritability (repeatability) to quantify the precision of field
trials or series thereof. In its simplest form, it is the ratio of trait variance explained
by heritable genetic effects and the total trait variance (narrow-sense heritability).
Analogically, broad-sense heritability is the proportion of trait variance associated
with an effect for the whole genotype (including the sum of epistatic, dominance, and
additive effects) (Nyquist, 1991). Heritability is a critical parameter in breeding as it
directly influences the response to selection (Piepho & Mohring, 2007). Because the
phenotype ultimately emerges from a complex interplay between many genes (and
GEI), it was compelling to take a statistical approach to estimate the genetic gain
(progress) achieved by breeding. It takes the form of the “Breeder’s equation”
(Equation 1, by Lush, 1943):

AZ = H*S (Equation 1)

where Z is the mean of a trait in the population, AZ is the change in the mean over one

whole generation, H? is the trait heritability, and S is the selection differential.
For practical purposes, the Breeder’s equation can also be written as Equation 2:

"1 0y

AG = I (Equation 2)

where AG is the genetic gain, i is selection intensity, r is the selection accuracy, o4 is
the genetic variation, and L is the generation interval. It is essential to mention that
Equation 2 is not strictly mathematically accurate, but helps to understand the main

rules that govern the breeding progress.

A successful breeding program requires a broad additive genetic variation within the
breeding population - the higher the genetic variance, the bigger the improvement
potential. Selection intensity represents the difference between the trait mean of
selected individuals and the population mean, expressed in standard deviations of the
population mean. The selection intensity depends on the number of candidates
available for selection, and selection response increases with intensity; however, at
the cost of making fewer selections and reducing the genetic variance carried over to
the next generation. The accuracy of selection describes how well the selection

criteria represent the true breeding values of the selections and is directly connected
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to trait heritability. Accuracy of selection is high for highly-heritable traits but has to
be supplemented with extra information (such as genomic or pedigree) for traits with
low heritability. Generation interval, in general, indicates the average age of the
selections at the birth of their offspring (in plants: producing viable seeds). The
shorter the breeding cycle interval, the faster the breeding progress (Falconer &
Mackay, 1996).

The following sub-chapters will describe how to accelerate genetic gains by acting

upon particular components of the Breeder’s equation.

1.7.1  Need for speed in plant breeding
Shuttle breeding

A typical wheat variety takes over twelve generations of selfing to develop. The
process includes three phases: crossing and inbreeding (approximately six
generations of self-pollination to reach homozygosity and eliminate segregation),
testing phase (screening for target traits in multi-environmental field trials), and
bulking up the seed (Alahmad et al.,, 2022). Therefore, the progress of a breeding
program is mainly limited by the number of generations that can be grown per year.
The ability to conduct more than one generation of selfing in a single year would

increase the genetic gains dramatically.

Shuttle breeding was introduced in 1946 by Norman Borlaug to shorten the time of
developing varieties for Mexican farmers (Rajaram, Hettel, and International Maize
and Wheat Improvement Center, 1995). This methodology attempts to turn over two
plant generations per year by planting in contrasting environments (in terms of
altitude, latitude, and precipitation). It has successfully reduced the time to complete
a breeding cycle by 50% (Borlaug, 2007), doubling the genetic gains in light of the

Breeder’s equation (Figure 8).

This strategy is still being used today by CIMMYT, Mexico (International Maize and
Wheat Improvement Center): during the winter season, populations are grown in the
Sonora Desert under short days and are selected for disease resistance, grain quality,
photoperiod insensitivity, grain yield, and agronomic type. During summer, the
populations are planted at Toluca station at higher altitudes to subject the crop to
lower temperatures during grain filling and are selected for disease resistance (Ortiz
et al, 2007). As an added benefit to cutting the breeding cycle length by half, this
strategy also enables the selection of genotypes grown under different soil types,
temperatures, photoperiods, and disease pressures. This strategy used by Borlaug led

to the development of the high-yielding, disease-resistant, and photoperiod-
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insensitive dwarf varieties, which laid the foundation of the Green Revolution

(Rajaram, Hettel and International Maize and Wheat Improvement Center, 1995).

| Yaqui Valley |
. Winter cycle
Cludag 90:1I'e90n (May — October)

Toluca Valley

Summer cycle
(November — May)

El Batan
2240 m

Figure 8 Shuttle breeding strateqy adopted by CIMMYT, Mexico, started by Norman
Borlaug in the 1940’s. Figure taken from Alahmad et al. (2022)

Speed breeding

The initial cycles after crossing in a wheat breeding program eliminate heterozygosity
by self-pollination. Only after breeding lines are stable (inbred) can they be reliably
evaluated in multi-environment field trials. Selection under field conditions in those
early generations is not the primary purpose, and being able to accelerate the time it
takes to develop a stable line in artificial conditions would significantly increase the
overall genetic gains of a breeding program (Watson et al,, 2018). Speed breeding
aims to achieve this by growing multiple generations (cycles) under artificial
conditions in a greenhouse, with prolonged photoperiod and elevated temperatures.
Under those conditions, plants complete their life cycles faster. Breeders can grow up
to 4-6 generations per year compared to usually 1 to 3 generations under field
conditions or traditional greenhouses (Alahmad et al., 2022), reducing the “L” in the

Breeder’s equation and effectively increasing the genetic gains (Figure 9).
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number of wheat generations achieved per year. Taken from Watson et al. (2018)

The idea of speed breeding was inspired by research conducted in the 1980s by NASA
(National Aeronautics and Space Administration) and Utah State University, aiming
to explore the possibilities of developing a wheat “fast crop”, suitable for growing on
orbital stations (Hickey et al.,, 2019). This project yielded the “USU-Apogee” cultivar,
which can flower within only 25 days after sowing when exposed to temperatures
around 23 °C and continuous light (Bugbee & Koemer, 1997). The development of
light-emitting diodes (LED) allows for cost-effective and crop-tailored lighting
solutions for speed breeding. Nowadays, detailed protocols are widely available for

various crops (Ghosh et al,, 2018).
Doubled haploids

The desired homozygosity for self-pollinating crops like wheat is typically achieved
by several generations of selfing. Production of doubled haploids is an alternative way

to achieve homozygosity immediately by “skipping” the selfing rounds.

A doubled haploid (DH) is created when chromosomes in a haploid cell (1n) are
doubled. DHs can occur spontaneously or by colchicine-induced chromosomal
doubling, directly producing completely homozygous lines from heterozygous plants
in a single generation. Therefore, DHs save at least three to four generations of self-
pollination to fix pure lines (Tadesse et al., 2010; El-Hennawy et al., 2011).

Some applied wheat breeding programs use DHs, especially in breeding of winter
wheat due to the long generation interval including several weeks of vernalization.
However, the problematic establishment of specialized DH laboratories and the cost
of DH production limits their application (Rutkoski, Krause, and Sorrells, 2022).

16



1.7.2 Increasing accuracy - the genomic innovation

The genomic era started in the early 1980s with a breakthrough in the discovery of
recombinant DNA technology. The following development of bioinformatics formed
the so-called “Next Green Revolution” in plants (Araya et al., 2017). Developing new
technologies and tools led to cost reduction and popularizing of these techniques in

both research and applied domains.

Hexaploid wheat genome sequencing

The International Wheat Genome Sequencing Consortium (IWGSC) was established
in 2005 with the aim of sequencing wheat genomes. It delivered a complete assembly
of allohexaploid wheat (cultivar “Chinese Spring”) genome (IWGSC RefSeq v1.0,
Appels et al.,, 2018), recently followed by its refined version (RefSeq v2.1. Zhu et al.,
2021). The wheat genome sequencing was indeed a milestone, enabling the
identification of genes underlying many traits and boosting wheat genetics research
and development of selection tools for increasing breeding efficiency (Lukaszewski
etal,2014). IWGSC was a worldwide effort with numerous participants. For instance,
Norway, represented by NMBU, contributed by physical mapping and sequencing of
chromosome 7B (Belova et al, 2013, 2014).

Further advancements in genomics allowed for studies of pangenomes. For instance,
extensive structural rearrangements, introgressions from wild relatives, and
differences in gene content of wheat varieties were discovered due to complex
breeding histories (Walkowiak et al.,, 2020). Another study identified over 36 million
intervarietal single nucleotide polymorphisms across 18 varieties, with over 140 000

genes predicted in the pangenome (Montenegro et al,, 2017).

Despite the decreasing cost, complete genome sequencing is still not widely used in
plant breeding. A more technically and economically-viable alternative is molecular
markers.

Molecular markers

Genetic markers are heritable biological features determined by allelic forms of genes
or genetic loci used to track an individual. Genetic markers used in plant breeding
consist of two main types: classical markers (not covered in this introduction) and
DNA markers, including restricted fragment length polymorphisms (RFLPs),
Amplified fragment length polymorphisms (AFLPs), Random amplified polymorphic
DNAs (RAPD), Simple sequence repeats (SSRs), Single nucleotide polymorphisms
(SNPs), and Diversity array technology (DArT) (Collard et al., 2005). Recently, genetic
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markers can also be discovered by sequencing methodologies (GBS, genotyping by

sequencing) (Li et al.,, 2015).

First discovered in the human genome, SNP markers proved to be an abundant and
universally detectable form of genetic variation among individuals of the same
species (Rafalski, 2002). Due to their biallelic nature, SNP markers are less
polymorphic than SSR markers; however, their abundance and potential to be
subjected to automation compensated for this shortcoming (Mammadov et al, 2012).
The genomic abundance and density of SNP markers allowed for the development of
genetic maps for detecting and mapping quantitative traitloci (QTL). Even though the
polymorphisms associated with a trait may not have a causative effect on the trait of
interest, they are assumably tightly linked with a genetic structure with a causative
effect (Ganal et al, 2012).

The most common way to detect SNPs in plants is array genotyping. SNP arrays
(chips) are commercially available and typically consist of thousands of SNPs selected

to be highly polymorphic for a given species.

One of the first large-scale SNP genotyping arrays developed for wheat was the
[llumina 90K SNP Chip, containing over 81 000 individual SNP markers, with nearly
47 000 placed on a consensus map (S. Wang et al., 2014). Another project concerning
SNP arrays was conducted by Allen et al. (2017) to provide a set of highly-informative
markers for the wheat breeding community. A collection of 820 000 markers
(Winfield et al, 2018) was analyzed, and over 35 000 highly-polymorphic and
informative markers were chosen to form what was later called the “Wheat Breeder’s
Array”. Currently, the TraitGenetics 25K Illumina SNP chip, consisting of selected
highly polymorphic markers from the [llumina 90K and “Wheat Breeder’s” 35K array
and gene-specific markers for important traits is currently used by many European
wheat breeding programs, including Graminor. It was also used for genotyping the

material used in this thesis research.

Results from SNP genotyping are an invaluable resource for wheat breeding, which
enable marker-assisted selection, QTL discovery, and genomic selection, to name a

few, all of which contribute to the rate of genetic gains.
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Marker-assisted selection (MAS) - the concept
The concept of MAS was hinted already in the 1980s by Smith & Simpson (1986):

“It is unlikely that many of the polymorphisms identified by the new
laboratory techniques will be the QTL themselves. However, many of them

may be linked to the QTL and so will allow indirect selection”.

In practical terms, MAS relies upon linkage disequilibrium (LD) between a marker
and a QTL - that a trait is associated with an allele of a gene, which is in high LD with
the detectable marker. Therefore the allele is selected indirectly by selecting the
marker as if the effect was caused by the marker (Ben-Ari & Lavi, 2011).

The usefulness of MAS stems from the fact that many traits of interest for breeders
are challenging to assess. The possibility of selecting based on a linked marker is
appealing. Additionally, selection based on DNA can be performed at an early plant
age without the need to observe the actual phenotype (Ben-Ari & Lavi, 2011).
However, MAS would not accelerate a classical breeding program as the genotypes
still have to conclude their life cycle in the field. The true potential of MAS manifests
in conjunction with new technologies such as speed breeding. In speed breeding, it is
possible to advance the breeding material several generations in the time it would
typically take to conduct one in field conditions. However, the ability to assess
phenotypes under speed breeding conditions is limited, therefore selection of
candidates based on their DNA rather than phenotypes is appealing. Predicting of
phenotypes based on DNA coupled with short cycle time holds great promise to
accelerate genetic gains (Rutkoski, Krause, and Sorrells, 2022). The prerequisite for
deploying MAS is reliable detection of polymorphisms, performed nowadays

primarily by association studies.

GWAS - Genome-Wide Association Studies

The development of genotyping technologies allowed for the gradual replacement of
simple sequence repeats (SSR) and diversity array technology (DArT) markers with
a significant number of single nucleotide polymorphisms in the form of an array. This
provides an effective way to identify associations between various traits and loci
through genome-wide association studies (GWAS) (Jin et al, 2016; Li et al, 2016;
Quan etal, 2021). GWAS’ ability to use natural germplasms allowed for bypassing the
time needed to develop biparental populations needed for more traditional linkage
analyses (Shi et al, 2017) and made GWAS adopted as the method of choice for
searching for genotype-phenotype correlations (Myles et al, 2009). The main

advantage of GWAS over linkage analysis is the ability to exploit all the recombination
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events that took place during the evolutionary history of the studied population
rather than identifying only differences between the parents of a particular cross
(Zhu et al., 2008).

Various GWAS models successfully account for population structure and spurious
associations while reducing computational effort, including MLM, CMLM (Zhang et al.,
2010), MLMM (Segura et al., 2012), SUPER (Q. Wang et al., 2014), GBLUP (Zhang et
al, 2007) and FarmCPU (Liu et al.,, 2016). Except for the stable QTL with significant
effects, loci discovered by GWAS for many traits are often population or environment
specific. To tackle this challenge, an alternative method of QTL mapping, meta-QTL
analysis (MQTL), was proposed. It attempts to collect independently discovered QTL
from different populations and environments on a consensus map (Miao et al, 2022),
pointing out regions consistently associated with a trait. However, MQTL requires a

wealth of GWAS results from various collections and environments.

Genomic selection and genomic prediction

For complex traits, the chances of identifying reliable molecular markers for single
loci decrease with the number of genes involved, limiting the possibility of practical
use of specific markers discovered in GWAS for making selections (Reynolds & Braun,
2022). Although MAS is a popular approach in molecular breeding (Lande &
Thompson, 1990), its use has been limited due to the genetic complexity of many
traits controlled by a large number of genes with minor effects (Riedelsheimer et al.,
2012). Genomic selection (GS) (Meuwissen, Hayes, and Goddard, 2001), bearing
similarity to the BLUP method (Henderson, 1975), takes a vastly different approach
than MAS. It aims to improve the breeding germplasm as a whole for all traits of
interest over multiple breeding cycles. GS uses genomic-estimated breeding values
(GEBVs), which indicate the value of a genotype as a parent based on genomic

markers.

Calculating GEBVs requires a training set, that is genotypes that are both genotyped
and phenotyped. Based on known genotypes and phenotypes, GEBVs are predicted
for not phenotyped genotypes (Rutkoski, Krause, and Sorrells, 2022) (Figure 10).
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Figure 10 Idea scheme of genomic selection/prediction. TRN - training, TST - testing
populations. Taken from Crossa et al. (2017)

GS gives a theoretical advantage in plant breeding by accelerating the genetic gains
through cost reduction per cycle and shortening the cycle duration (Hickey et al,
2014). A theoretical requirement of GS is that at least one marker is linked with each
QTL (Hayes & Goddard, 2001), and all markers’ effects are estimated simultaneously
using known phenotypes of the training population (Heffner, Jannink, and Sorrells,
2011).

Many GS methods have been developed to improve computing efficiency, speed, and
to handle the increasing sizes of available genomic data. Variation and the “curse of
dimensionality” (when there are far more variables than records) resulting from
thousands of markers can be controlled by either variable selection or shrinkage
methods. GS methods differ in their assumptions about the distribution of marker
effects and variances (Kaler et al, 2022). Table 3 collects relevant examples of GS
methods.

Methods such as ridge regression assume homogenous distribution of marker effects
across the genome. In contrast, heterogeneity among markers is allowed in Bayesian
methods, with part of the markers having effects drawn from different underlying
distributions than the rest (Table 3).
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Table 3 An overview of some of the most popular GS methods and their features.
Adapted from Kaler et al. (2022). Methods: Bayes A, Bayes B, Bayes C, Bayesian LASSO
(BL) using Bayesian Generalized Linear Regression R package (BGLR_R), and Bayesian
Ridge Regression (BRR) using BGLR_R, Bayesian LASSO (BLBL) using Bayesian Linear
Regression R package (BLR_R), and Bayesian Ridge Regression (BLRR) using BLR_R,
ridge regression-best linear unbiased prediction (rrBLUP), Reproducing Kernel Hilbert
Spaces (RKHS) regression, Mixed model using Newton-Raphson algorithm (NR), and

Genomic best linear unbiased prediction (GBLUP).

Method

Main features

Ref.

Bayes A

Utilizes an inverse chi-square (x2) on marker variances
yielding a scaled t-distribution for marker effects.
Similar to BL and in contrast to BRR, it shrinks tiny
marker effects towards zero and larger values survive.

Meuwissen, Hayes, and
Goddard (2001)

Bayes B

Similar to Bayes A, uses an inverse x2 resulting in scaled
t-distribution.

Unlike Bayes A, utilizes both shrinkage and variable
selection.

Meuwissen, Hayes, and
Goddard (2001)

Bayes C

Applies both shrinkage and variable selection methods.
Characterized by a Gaussian distribution.

Bayes B and Bayes C consist of point of mass at zero in
their slab priors.

de Los Campos et al.
(2013)

BLBL_BLR

Bayesian lasso uses the Laplace (double exponential,
DE) distribution, where the prior assigned to marker
effects and all marker effects are assumed to be
independently and identically distributed. This prior
assigns the same variance or prior uncertainty to all
marker effects. This prior possesses thicker tails than
the normal prior. Bayesian lasso removes markers from
the model, contrary to what happens in variable
selection approaches. Bayesian lasso is expected to
shrink effects more strongly toward zero than the
Gaussian prior, as opposed to inducing sparsity in the
strict sense of the Lasso.

Pérez & de Los Campos
(2014)

BLRR_BLR

Induces homogeneous shrinkage of all marker effects
towards zero and yields a Gaussian distribution of
marker effects.

Similar to RR-BLUP, there is a problem of QTL linkages
to the marker.

de Los Campos et al.
(2013)

BL_BGLR

Modified version of BLR, has same assumptions as
BLBL_BLR.

Pérez & de Los Campos
(2014)

BRR_BGLR

Modified version of BLR, has same assumptions as
BLRR_BLR.

de Los Campos et al.
(2013)

NR

Fit mixed models with the advantage of specifying the
variance-covariance structure for the random effects
and specify heterogeneous variances using more than
one variance component and allowing specification of
covariance structures.

Uses Direct-Inversion Newton-Raphson algorithm.

Covarrubias-Pazaran
(2016)
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Table 3 Cont.

Method Main features Ref.
RKHS Based on genetic distance and a kernel function with a Gianola & van Kaam
smoothing parameter to regulate the distribution of (2008)
QTL effects.
Effective for detecting nonadditive gene effects.
rrBLUP Assumes markers have equal variances with small but Meuwissen, Hayes, and
non-zero effects. Goddard (2001)

Applies homogeneous shrinkage of predictors towards
zero but allows for markers to have uneven effects.
Computed from a realized-relation matrix based on
markers.

Some QTL are in LD to marker loci, whereas others are
not.

GBLUP Assigns common variance to all loci and treats them as VanRaden (2008)
equal.

Uses a genomic relationship matrix instead of the
conventional pedigree-derived numerator relationship
matrix.

Breeding programs use GS in two ways. The first focuses on predicting additive effects
in early generations (F2:F3) to achieve a rapid selection cycle with a short interval. In
this application, it is of interest to predict the additive values rather than the total
genetic value (summarizing marker effects using linear additive models is sufficient).
The second approach attempts to predict the total genetic values of individuals,
considering both nonadditive and additive effects. Thereby, the genotypes’

performance (commercial values) is predicted (Crossa et al., 2017).

With the rising accessibility of genomic data and the development of analytic
methods, acquiring plant phenotypes has become a bottleneck. Although high-
throughput genotyping is expanding exponentially, the acquisition and processing of
phenotypes constrain the ability to use this data for crop yield improvement (Ruiz-
Guzman et al., 2016; Li et al,, 2021).
Increasing capacity - high-throughput phenotyping

Phenotyping is the foundation of any breeding program and is traditionally done
manually. Modern plant phenotyping often measures complex traits on different
scales of organization from organs to whole canopies, increasing the workload, need
for resources, and cost (Fiorani & Schurr, 2013). A more comprehensive and recent
definition of plant phenotyping is the assessment of complex plant traits such as
growth, development, tolerance, resistance, architecture, physiology, ecology, yield,
and the essential measurement of individual quantitative parameters that form the
basis for complex trait assessment (Li, Zhang and Huang, 2014; Costa et al, 2019).

The expanding plant phenotyping recently became an independent research field.
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Current acquisition of plant characteristics relies primarily on expert visual scoring,
which is expensive and generates bias. The latest developments of both hardware (for
example, cameras) and software open new possibilities of both automating,
improving, and expanding the capture of phenotypes for the needs of both research
and plant breeding (Li, Zhang and Huang, 2014). In the recent years, many platforms
using robotics and imaging technologies were deployed to automatically assess plant
growth and performance, both under controlled and field conditions (Araus & Cairns,
2014). The new approach to phenotyping using technology and analytics forms the
domain of high-throughput phenotyping (HTP).

Plant canopy reflectance

Electromagnetic waves/photons are carriers of information for any imaging
technique. Their interaction with the plant canopy depends on its optical properties,
which correspond to many aspects of physiology (Figure 11). Therefore imaging
shows great potential for plant phenotyping (Li, Zhang, and Huang, 2014).

Figure 11 Typical plant canopy reflectance spectrum with regions important from
plant phenotyping’s perspective. Taken from Ollinger (2011)
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Interactions between plant canopies and incident radiation are incredibly complex
due to the diversity in size, shape, composition, and arrangement of cells and plant
organs (Ollinger, 2011). However, the biophysical basis for nearly all of those

interactions can be assigned to two categories: absorbance and scattering, with
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scattering being divided further into transmittance and reflectance. Absorbance
includes waves absorbed by pigments, liquid water, and other plant components
(Blackburn, 1998; Kokaly et al.,, 2009). By contrast, scattering occurs when radiation
crosses a boundary between two media with different refractive indices. A well-
known example is the illusion of a “bent stick” when dipped in water due to different
refraction of water (1.33) and air (1.0) (Ollinger, 2011).

Machine learning and deep learning for plant phenotyping

Images of whole plants and organs can be used either for semantic analysis or for
quantitative assessment of reflectance parameters (Burud et al, 2017; David et al,
2020). Deep learning (DL) is a sub-domain of machine learning (ML) and, more
generally, artificial intelligence (AI). An excellent introduction to DL for plant

phenotyping can be found in Arya et al. (2022).

With recent advances in GPU (graphical processing unit) performance and increasing
availability of large-scale datasets (Russakovsky et al., 2014; Alom et al, 2019), deep
learning (DL) has become the state-of-the-art method for numerous computer vision
tasks, including object detection (Ren et al, 2017), instance segmentation (He et al.,
2020), semantic segmentation (Ronneberger, Fischer and Brox, 2015), and image
regression (Aich & Stavness, 2018; Xiong et al, 2019). Several HTP-tailored DL
models were also developed (David et al, 2020). A synthetic overview of DL

applications in HTP is shown in Figure 12.

A specific niche of HTP is multispectral phenotyping, which uses multispectral
cameras equipped with “invisible” wavelengths like near-infrared on top of RGB.
Images captured using multispectral cameras allow for deriving vegetation indices
(VIs). VIs are constructed from reflectance values for two or more wavelengths to
analyze the specific characteristic of vegetation. Vs as simple and effective proxies of
surface vegetation conditions are widely used in vegetation monitoring via remote

sensing (Araus & Cairns, 2014).

VIs can be calculated from satellite images or unmanned aerial vehicle (UAV) imagery.
UAV remote sensing has many advantages: high image spatial resolution, instant
information acquisition, convenient operation, high maneuverability, freedom from

cloud interference, and low cost (lizuka et al, 2018).
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Figure 12 An overview of DL applications in high-throughput plant phenotyping. Taken
from Arya et al. (2022)

In the recent years, field phenotyping has seen considerable advances due to
improvements in camera technology, the popularization of cost-effective UAV
platforms used as vectors for the cameras, and developments in Al methodologies.
Multispectral UAV imagery (Figure 13) has been successfully used to predict or
estimate numerous essential crop traits, such as grain yield (Duan et al, 2017; Zhou
etal,2017; Maimaitijiang et al., 2020; Suab & Avtar, 2020; Shafiee et al., 2021), above-
ground biomass (Han et al., 2019; Lu et al, 2019; Li et al, 2020), plant height (Hu et
al., 2018; Hassan et al, 2019; Tirado, Hirsch and Springer, 2020), the maturity date
(Zhou etal,, 2019; Trevisan et al., 2020) and crop emergence (Li et al, 2019), to name
but a few.
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Figure 13 An example of false-color visualization of NDVI (normalized vegetation
index) map of a field trial at NMBU. Taken from Burud et al. (2017)

Linking the “omics” - potential of GS supplemented with HTP data

While HTP data has shown great potential in standalone grain yield prediction using
ML, the models are often environment or population-specific (Crossa et al., 2017).
Using HTP platforms with Vls as predictor traits in pedigree and GS models increases
the prediction accuracy for grain yield (Rutkoski et al., 2016). The authors found that
within-environment secondary Vls increased prediction accuracies for grain yield by
over 50% using pedigree relationships and 70% using genomic relationships (GS),
indicating that traits measured by HTP paired with GS can improve prediction
accuracy during the early stages of breeding. HTP techniques also effectively evaluate
genetic resources for complex trait expression (Reynolds & Langridge, 2016).
Predicting breeding values of genotypes concerning grain yield can also be improved
by 70% on average by including VIs as covariates in a model with multivariate

pedigree and genomic models (Sun et al., 2017).

A recent study used statistical models to assess wavelength-by-environment
interactions in HTP by incorporating genomic and pedigree GxE interactions
(Montesinos-Lépez et al,, 2017). Although the authors observed little gains in GS
accuracy, critical hyperspectral wavelength by environment interactions were
detected, demonstrating that GS coupled with HTP is a powerful tool for application

to early-generation testing of many selection candidates.
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2 The thesis

2.1 Background and motivation of the thesis

Norway initially was not able to fully benefit from the Green Revolution. Wheat
cultivars and varieties in the 1950s and 1960s were tall and susceptible to lodging. It
was a common practice at that time to windrow the yields, manually harvest, and
even dry the yields indoors due to unfavorable weather conditions towards the end
of the growing season. The old cultivars could not withstand increased N-fertilization
without lodging and were not suitable for mechanized harvest. This lack of fit
between varieties and mechanization nearly eradicated domestic wheat production
in the 1960s due to favorable imported wheat prices from countries that could benefit
from the technological advancements (Lillemo & Dieseth, 2011). This dependency on
imported small grains spurred intense breeding efforts to produce varieties capable
of benefiting from the new cultivation methods. These efforts yielded two “landmark”
varieties: Runar and Reno (released as varieties in 1972 and 1975) and revitalized
Norwegian wheat cropping. Both Runar and Reno could be machine-harvested and
could take advantage of increased N fertilizer input without lodging. Their release
marked the modern era of wheat breeding in Norway. In the following years,
Norwegian wheat breeding became more international by, for instance, cooperating
with CIMMYT and using their germplasm for crossing. Such efforts led to the
development of important varieties such as Bastian, released in 1989. The scale and
extent of nowadays’” wheat breeding in Norway are more significant than three
decades ago, continuously working to produce varieties of high value to satisfy

domestic demand for grain.

Progress in spring wheat grain yield in Norway has been documented by Erling
Strand in three of his works, concerning the three periods: 1889-1962, 1960-1974,
and 1960-1992 (Strand, 1964, 1975, 1994). These studies gave valuable insight into
the contributions of new genotypes and growing techniques to the grain yield
progress in Norway and captured the echoes of the Green Revolution. However, little

is known about later gains in grain yield until today.

Selection of breeding candidates is traditionally based on phenotypes (phenotypic
selection) and “the Breeder’s eye”. Recently, with the advancements in DNA-based
techniques, it became possible to pin down essential genes for traits of interest. These
genes are often discovered in retrospective analyses. Breeding progress in grain yield

in Norwegian spring wheat, bearing similarity to many collections worldwide,
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remains largely undissected, with little knowledge of the underlying genes under

historical selection pressure.

The "Next Green Revolution” caused by the wide adoption of genomic and phenomic
techniques in modern wheat breeding also happens in Norway. For instance, genomic
selection has become nearly routine in many breeding programs due to lower
genotyping costs and the extent of available phenotypic data. Efforts are also made to
utilize more novel technologies in the breeding programs, such as high-throughput
phenotyping; however, the use is mainly in the experimental phase. Both GS and HTP
have the potential as standalone tools to accelerate genetic gains in grain yield but
have their shortcomings. For instance, grain yield prediction using machine learning
and UAV (Unmanned Aerial Vehicle) HTP multispectral data tends to be cost-efficient
and decently accurate but does not work in cross-environment scenarios. GS
protocols open new avenues for speed breeding and efficient selection using marker
data for traits that are expensive or difficult to score. However, large datasets and
more complicated models are needed to reach satisfactory accuracy in cross-
environment scenarios. Integration of “omics” - for instance, adding HTP data layer in
GS models - usually leads to improved accuracy and error reduction. So far, no such

attempts were done for Norwegian spring wheat.

Therefore, based on the motivation described above, the main objectives of this thesis

were to:

L. Determine, describe, and document grain yield and other agronomic and
quality traits’ progress in Norwegian spring wheat since 1972
concerning changing management practices.

IL. Perform genetic dissection of grain yield and associated traits in
Norwegian spring wheat, considering the time dimension - breeding
progress in the traits over time.

11 Assess the prospect of future improvement in grain yield in Norwegian

spring wheat by exploring the use of UAV multispectral data for
standalone grain yield prediction and its synergy with genomic

prediction protocols.
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2.2 Materials and Methods
2.2.1 Paper |

Breeding progress can be “measured” in several methods, as described in the
Introduction. To study breeding progress in grain yield and associated traits in
Norwegian spring wheat, we gathered a collection of representative varieties for the
period (listed in Table 4) and tested them in multi-year field trials. We assembled a
relatively small panel of initially 24 lines, including both historical varieties (such as
the landmark varieties Runar and Reno), more recent varieties, and some of the most
recent variety candidates at the time of the start of the trials in 2016. Varieties were
placed on the timeline using their official year of release. Throughout the trials, three
of the most recent variety candidates were rejected from the official field trials and
their records were removed from the analysis. The historical varieties were chosen
by their relevance to the Norwegian spring wheat market (ones with the most
significant market share at a time). In contrast, the newest lines were chosen to
sample the current diversity in variety candidates. The collection includes mostly
varieties bred by either Norwegian or Swedish companies/institutes, with one

exception (Arabella).

Table 4 Varieties used to investigate the breeding progress in Norwegian spring wheat.
Accessions present in the experiment, but not released as varieties are not included in

the list. YOR - year of release

Line Cultivar Country/breeder YOR
1 Runar Norway/IPK 1972
Reno Norway/IPK 1975

3 Tjalve Sweden/Weibull 1987
4 Bastian Norway/IPK 1989
5 Polkka Sweden/Lantmannen SW Seed 1992
6 Avle Sweden/Lantmannen SW Seed 1996
7 Zebra Sweden/Lantmannen SW Seed 2001
8 Bjarne Norway/Graminor 2002
9 Demonstrant Norway/Graminor 2008
10 Krabat Norway/Graminor 2010
11 Mirakel Norway/Graminor 2012
12 Rabagast Norway/Graminor 2013
13 Seniorita Norway/Graminor 2014
14 Arabella Poland/Danko 2014
15 Willy Norway/Graminor 2016
16 Caress Sweden/Lantmannen SW Seed 2017
17 Zombi Norway/Graminor 2018
18 Alarm Norway/Graminor 2019
19 Betong Norway/Graminor 2019
20 Eleven Sweden/Lantmannen SW Seed 2019
21 Felgen Sweden/Lantmannen SW Seed 2019
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The collection “starts” with the landmark varieties - Runar and Reno - with the aim
to anchor the progress to the current breeding era. Pre-Green Revolution varieties
are dramatically different and would cause practical problems with lodging under the

used fertilization rates.

The changing agronomic practice over the decades was also of interest, and therefore
the collection was tested under two fertilization rates: 75 and 150 kg N ha-1. The latter
represents current fertilization practice, while the former is closer to the rates used
in Norway in the early 1970s. The experiment aimed to observe if genetic progress in

grain yield and associated traits depended on high agronomic input.

2.2.2 Paper II

Traits which exhibited progress over the period in Paper I were followed up in a
genetic study. For this purpose, a panel of 301 hexaploid spring wheat varieties and
cultivars was used, referred to as the NMBU spring wheat panel or MASBASIS. This
panel also includes the varieties from the historical collection. The NMBU spring
wheat panel consisted of 186 Norwegian, 40 Swedish, and 37 lines originating from
CIMMYT, Mexico, and presented considerable genetic diversity in most traits. Multi-
environment field data (7 years, 2 locations) was available for this panel, making a
solid foundation for genetic studies. A peculiar aspect of the panel is strong
population structure, which results from different backgrounds of lines (Nannuru et
al, 2022). Accessions originating from the Nordic countries are considered well-
adapted to the Norwegian growing environment, while lines from other climate zones
(such as Mexico and China) show poor adaptation (and, therefore, more variable
phenotypes). This population structure allowed for investigating the adaptation to
the Norwegian growing conditions by comparing results obtained for the adapted and

non-adapted lines.

By analyzing the documentation of lines in the NMBU spring wheat panel, it was
possible to place a large part of the adapted lines on the timeline, similar to the
historical panel. However, as only a part of the lines were released varieties, a
different approach was taken: varieties were assigned to a discrete period based on
their year of creation. Year of creation was estimated by analyzing the documentation

of the lines.

The NMBU spring wheat panel was genotyped using I[llumina 25K chip, yielding
19874 high quality polymorphic markers (minor allele frequency > 0.05 and less than
10% missing scores). This data was used in a Genome-Wide Association Study

(GWAS) to discover regions associated with grain yield, days to maturity, days to
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heading, and plant height. The population structure was addressed by introducing
population structure correction in the models and by analyzing the adapted part
separately from the entire panel. With the added time dimension of the part of the
NMBU spring wheat panel, it became possible to confront findings from the historical
collection and look at the discovered significant loci from a time perspective. The
population structure additionally allowed for investigating the loci associated with

adaptation to the Norwegian growing conditions.

A wide selection of GWAS methods became available during the last two decades (as
reviewed in the Introduction). For the genetic study, a hybrid approach was taken.
First, GWAS was conducted using the FarmCPU method (Liu et al., 2016) with a strict
significance criterion based on Bonferroni threshold and repeatability to see the most
important and stable associations. Regions surrounding the associations were
investigated further using the MLM method (Zhang et al., 2010) to build more robust
haplotypes. This approach was motivated by the fact that the FarmCPU method tends
to “distillate” the associations, providing fewer hits but with lower p-values. On the
other hand, MLM tends to provide more hits but with higher p-values. By linking the

two methods, it was possible to increase the confidence of discovered regions.

Allele frequency of the discovered polymorphisms was analyzed over time.
Collections of the most recent spring wheat breeding lines from Graminor AS
breeding program were used for validation and estimating the usefulness of loci in

future breeding efforts.

2.2.3 Paper III

High-throughput field phenotyping solutions range from budget devices (such as
consumer-grade drones with cameras) to complicated, extensive, and expensive field
installations (for instance, gantry systems with many sensors). The latter’s cost limits
the application of such solutions in commercial breeding programs. We explored the
“low-cost phenotyping” technology by deploying commercially-available UAVs
equipped with multispectral cameras for regular data capture during the growing
seasons. Such data was already successfully used in our group for grain yield
prediction using machine learning (Shafiee et al, 2021). Genomic selection (GS) is
already a routine in many breeding programs, and increasing its accuracy is one of
the main goals. Some studies attempted to include HTP multispectral data as
covariates (Crossa et al., 2017), but few attempts were made to use “multispectral
similarities” instead of fixed covariates. Therefore, we deployed UAV multispectral
phenotyping of the NMBU spring wheat panel. Taking advantage of the already-
available genotyping and field data, we built a series of models based on GBLUP
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(VanRaden, 2008) using different combinations of genomic, multispectral, and
environment relationship matrices. We compared them back to back for their GY

prediction ability in both single and multi-environment scenarios.

2.3 Main results

In Paper I, historical genetic gains in Norwegian spring wheat grain yield (GY) and
associated traits were investigated under two fertilization regimes. Using multi-
season field trial data of the collection of 21 (initially 24) historical and current spring
wheat varieties planted under 75 and 150 kg N ha? fertilization regimes, we
discovered highly significant progress in GY between 1972 and 2019 of 17.8 kg ha!
(0.34%) per year. The gains were clearly visible under both fertilization regimes (21.2
and 14.3 kg ha'! per year under 150 and 75 kg N hal, respectively), showing minimal
genotype by environment interactions. New varieties consistently had higher GY than
the older ones. New varieties under the 75 kg N ha! treatment yielded almost similar
to old varieties under 150 kg N, showing that improved genetics leads to more

efficient resource utilization (Figure 14).

Tl <)
R?*=0.50 y=-36+0.0212x

o
=}
X

GY [Mg-ha™]

e
=)
X

451 A e~ 150 kgN/ha
=&~ 75 kgN/ha
40+
1972 1990 2005 2019

YOR

Figure 14 Grain yield genetic gains over the 1972-2019 period under 75 (green,
triangles) and 150 kg N ha! fertilization (orange, dots). GY - grain yield, YOR - year of

release of a variety.

The GY increase over the years coincides with an increase in the number of grains per
spike and area, hinting that increments in these traits contributed to the progress. No
signs of increments in kernel weight were found. Higher GY usually means lower

grain protein content, and this was also the case in Norwegian spring wheat.

33



However, due to the substantial increase in GY, new varieties still had superior

protein yield compared to old varieties.

New varieties have extended vegetative and grain-filling periods, reaching

physiological maturity approximately three days later than old varieties.

In Paper II, grain yield, plant height, earliness, and heading time were dissected in
GWAS. NMBU spring wheat panel of 301 lines genotyped with Illumina 25K SNP chip
was used to discover genetic structures associated with genotype adaptation.
Furthermore, placing lines on the timeline allowed to uncover loci associated with

genetic progress in GY and the other agronomic traits.

The study identified twelve QTL associated with GY (three), days to maturity (two),
days to heading (two), and plant height (five). Two loci significant for heading time
(unknown locus) and grain yield (the Vrn-A1 locus) were strongly associated with line
adaptation, hinting that it mostly consists of a phenological response. The Vrn-A1
locus on chromosome 5A explained a similar proportion of variance as line

adaptation status.

Table 5 QTL regions discovered in the study for days to heading (DH), days to maturity
(DM), grain yield (GY), and plant height (PH), their genomic locations, QTL effects in the
full dataset (Er) and in the adapted part (Ea), trait variance explained in the full dataset
(%PVEF) and in the adapted part (%PVE4), candidate well-known loci (Locus)

Trait QTL/Chr Span Mbp Er %PVEr Ea %PVE4 Locus
DH QHd.nmbu-1B 1-2 2.04 14.1 Mono Mono
QHd.nmbu-7B 606 0.91 11.4 0.91 11.4
DM QMat.nmbu-6B 132-136 5.93 25.8 4.85 24.8
QMat.nmbu-6D 6 0.82 8.80 0.81 10.0
QYld.nmbu-3A 267 38.1 22.0 16.4 14.3 Ta-GS5-3A
GY QYld.nmbu-5A 683-708 192.6 67.2 Ns Ns Vrn-Al
QYld.nmbu-7B 701-703 106.2 16.3 83.6 30.9 Ta-Col5
QHt.nmbu-2A 524-543 7.91 9.21 7.97 12.6
QHt.nmbu-4A 570-603 9.77 9.36 5.45 9.08
PH QHt.nmbu-4B 13-59 8.20 27.7 7.22 23.9 Rht-B1
QHt.nmbu-4D 19-26 8.29 32.5 9.32 42.9 Rht-D1
QHt.nmbu-6B 202 2.00 5.21 1.25 2.14

The study discovered two loci associated with GY on chromosomes 3A (267Mbp) and
7B (around 700Mbp), showing a decline over the years in the frequency of the
unfavorable allele, possibly responsible for the breeding progress described in Paper
I. The loci correspond to Ta-GS5-34 and Ta-Col5 genes, respectively, associated with
spike architecture (number of grains per spike) and kernel size. The locus on
chromosome 7B substantially affects GY with an effect of nearly 1 t hal. Its

unfavorable allele has been eliminated over the years, showing no prospect of future
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use for increasing GY. Although the locus on 3A has a minor effect of around 300 kg

ha-l, it still shows large diversity in the panel, showing room for future improvement.

The sudden drop in plant height after 1970 could not be explained by the Rht genes,
which still segregate in today’s germplasm. A locus on chromosome 2A explained the
sudden drop. However, this association could be spurious since no QTL was
previously identified in this locus. No genetic explanation could be found for the
increments in the length of the vegetative period over the years, hinting that it must
have occurred due to the accumulation of favorable alleles at numerous small-effect
loci which could not be discovered using the methodology. Almost all the discovered
QTL were validated using independent sets of breeding lines, providing wheat
breeders in Norway and the Nordics a valuable base for developing marker-assisted

selection protocols to improve GY and other traits.

Paper III elaborated on using UAV multispectral-derived genotypic relationships for
GY prediction. Using multi-environment GY data from the NMBU spring wheat panel
of 301 genotyped lines (used in Paper II) paired with UAV multispectral data gathered
using budget cameras, a series of GS models based on the GBLUP model (VanRaden,
2008) were developed and tested in single and multi-environment scenarios. UAV
multispectral phenotypes were used to derive multispectral relationships (M
matrices) instead of using them as simple covariates in the model. The study
demonstrated that in single-environment scenario GY prediction using the M matrix
yields comparable accuracies to GS (using the G matrix) and that models using both

G and M matrices are superior to models with individual matrices (Table 6).

M matrix, assumed to be environment-specific, shows high prediction ability in multi-
environment scenarios. This ability increases with the number of data-gathering
sessions. Practical aspects of GY prediction using the M matrix were also investigated,
showing that the optimal time for data capture occurs during grain filling. GY
prediction is also possible using a conventional RGB camera with a slight loss in
accuracy. Paper Il provided a simple yet effective framework for using budget UAV
data and existing software to improve the accuracies of GS protocols and to lower
their error. It also attempted to understand the mechanisms governing the predictive
ability of the M matrix and overcomes the environment-specificity problem of

machine learning GY prediction protocols.

35



Table 6 Comparison between the predictive abilities of models with covariates: G
(genomic relationship matrix) and M (multispectral relationship matrix). Comparison
performed in a single-environment scenario using 200 iterations and 80/20 dataset
partitioning to training and testing datasets, respectively. Metrics: rTRN - accuracy in
training test, rTST — accuracy in testing set, rmseTRN - root mean squared error in

training set, rmseTST - root mean squared error in testing set

i Model with covariates:
Metric
G M G+M
rTRN 0.98 0.79 0.99
rTST 0.68 0.71 0.79
rmseTRN 15.61 41.30 10.96
rmseTST 48.02 47.80 40.52

2.4 Additional work not included in the manuscripts
2.4.1  Use of soil parameter sensors in field trials.

Soil is a vital component of plant growing environment and directly influences GY and
reflectance parameters, to name but a few. The ability to quantify dynamic soil
properties such as moisture and temperature in real-time can be essential for linking
canopy multispectral reflectance data with the environment and genotype that
caused it. In 2020, we started using wireless soil sensors across field trials based on
this rationale. Data gathered using those sensors allows for classifying environments
(seasons) based on their properties. Dense soil and climate data is now routinely
gathered in our field trials; however, more seasons are required before this data can

be used.

2.4.2  Genetic study of spike parameters in spring wheat.

As a follow-up to the findings from Papers [ and II, we gathered spike samples from
the NMBU spring wheat panel and the validation panels of current breeding lines. For
each line replicate, ten representative spikes were gathered and analyzed for spike
morphological parameters (length, width, number of spikelets, number of fertile
spikelets). Based on data obtained from those samples and previously available data
described in the thesis, a genetic dissection of spike parameters is currently being

conducted to verify the associations of the discovered loci with GY.

2.4.3  Historical progress in GY under controlled conditions.

The experiment aimed to determine if the historic yield increase in Norwegian spring
wheat can be explained at physiological and metabolomic levels through combining

novel HTP (high-throughput phenotyping) and semi-HTP biochemical methodologies
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offered at PhenoLab, University of Copenhagen (Photo 1). The main goal was to study
the differences in crop canopy development, photochemical performance and
multispectral patterns supplemented with metabolomic / phytohormone signatures
over the vegetation period in a set of spring wheat cultivars representing 5 decades
of breeding progress in Norway (described in Paper ). Data obtained during the

experiment is currently being analyzed.

Photo 1 Experiment with the historical and current variety collection under controlled
conditions in PhenolLab, Copenhagen. Image taken at anthesis. Photo credit: Prof.

Thomas Georg Roitsch
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2.5 Discussion
2.5.1 Did wheat breeding in Norway increase grain yield?

Significant genetic gains over time were repeatedly observed not only across
numerous trials during representative seasons presented in Paper I, but also in 2018,
when the whole region experienced severe drought. Similar numbers and conclusions
about the genetic gains can also be drawn by extracting the data for the 21 historical
and current varieties from the NMBU spring wheat panel, fertilized with 120 kg N ha-
1, as described in the supplementary of Paper L. In Paper II, a larger sample of varieties
and breeding lines also showed GY progress over the periods. Significant gains in
grain yield can be repeatedly observed across many environments and genotype sets,

which is compelling.

Are not genetic gains in GY an inherent consequence of the legal requirements of
variety acceptance by authorities and consumer demand? For a breeding line to
become an official variety, the line has to be superior in at least one quality to the
currently registered varieties. In Norway, those qualities include earliness, climate
and disease resistance, winter survival (for winter crops), grain yield, and yield
quality (Mattilsynet, 2022). Variety candidates are then tested across several
environments (locations and seasons). Based on the results of these trials, a candidate
either becomes a variety or is rejected if it fails to outperform already available

material.

Varieties are commercial products of breeding companies, and their products have to
be in demand for a breeding company to make profit. The demand is created by
farmers, which are also profit-driven - buying seeds is an investment that has to bring
return. Consumers, in turn, regulate this return through industry and their
intermediates. Finally, the price fetched by farmers for their grain is a product of
quantity and usefulness for the industry - determined by grain quality - on top of
other investments like fuel, fertilizer, and fungicides. This perhaps oversimplified
(legal incentives or inflation are not included) chain leads to an obvious conclusion
that variety development and registration makes sense only if it is superior in yield
quantity and quality. All requisites for a line to become a variety eventually boil down
to the two factors under the challenging climate in Norway: high yield potential and
the ability to resist yield and quality losses due to unfavorable weather conditions
and plant diseases. Earliness is important in Norway due to erratic weather patterns
during the late growing season and lowers the risk of quality and quantity loss due to

lodging or pre-harvest sprouting.
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Therefore, stating that Norwegian wheat breeding concentrates solely on increasing
GY per se would not be complete. However, assuming that a variety candidate meets
grain quality for a target class, trait superiority needed for registration also
contributes to higher GY, directly or indirectly, which explains the progress in GY.
Therefore, it is reasonable to state that genetic gains in GY are a logical consequence

of economy and legislation.

Despite its genetic complexity as a highly quantitative trait, GY can be seen as an
accessible target for selection. With many loci with often additive effects, breeding for
GY becomes a true numbers game, the outcomes of which can be observed in linear
GY increase in many post-Green Revolution collections worldwide. Estimated annual
genetic gains in GY in Norwegian spring wheat (approximately 18 kg ha'! per year)
show similarity to many collections from many regions; however, they appear smaller
than the median (as reviewed in the Introduction). It can be noticed that gains in
collections originating from developing regions are usually higher than developed
ones. Developing areas work primarily towards meeting their rising demand for grain
by prioritizing GY. At the same time, developed regions focus more on end-user
quality than on the magnitude of the yields. With its lion’s share of bread wheat being

used by industrialized bakeries today, Norway fits well in this picture.

2.5.2  Is thisyield progress dependent on intensive management?

In the case studied in Paper I, the environments consisted of two fertilization regimes
(75 and 150 kg N ha‘l, referred to as management - M). The experiment showed that
N fertilization had a visible effect on GY, but rankings of accessions within each N
treatment were similar, indicating only minor GXE (M) interactions Therefore, genetic
gains in GY were not contingent on N input and were stable within these boundaries,
although numerically slightly higher under 150 kg N ha-1. The message from Paper I
confirms findings from other recent works (as reviewed in the Introduction):
breeding causes new varieties to be consistently better than older ones at utilizing
available resources, and the degree of interactions among varieties and environments
is minor. However, these conclusions are valid only if the studied environments

remain within “reasonable” boundaries.

The concept of studying genetic progress in GY is extended in the work of Ahrends et
al. (2018). The authors tested a collection of sixteen wheat varieties released in
Germany between 1895 and 2007 under twenty-four long-term fertilization regimes,
ranging from no fertilization to full intensive practice. The authors concluded that
genetic gains in GY are observable only under particular management treatments,

and overall, newer varieties tend to respond stronger to more intensive management.
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These findings also align with Paper I, where the estimated genetic gains in GY were
slightly higher under intensive management (21 vs 14 kg ha-! per year). However, due
to the small sample size used in this thesis, it is hard to go beyond speculation about
responsiveness. Nevertheless, the slight difference between gains estimated under
the managements does not invalidate the conclusions about the superiority of newer

varieties, as their rankings remain similar.

Remarkably, the most recent varieties grown under 75 kg N ha?! reached GY
comparable to old varieties grown under 150 kg N hal, clearly underlining that new
varieties can utilize available resources more efficiently. This conclusion is further
supported by the fact that despite the new varieties having significantly lower grain

protein content, they still reach significantly higher protein yield.

2.5.3  What is the genetic cause of the GY increase?

Even though GY is controlled by many small-effect loci, there are known large-effect
genes that either increase GY per se or allow increased GY indirectly. Stringent
significance criteria used in Paper [ were designed to detect rather large-effect stable
loci and succeeded in identifying three QTL regions. Two loci (QYld.nmbu-3A and
QYld.nmbu-7B) showed visible changes in allele frequency over time, with observable
decay of negative effect allele frequencies. Both those regions coincide with
chromosomal locations of two known genes associated with GY: Ta-GS5-3A and Ta-

Col5, respectively, and have shown effects in the sets of independent lines.

QYld.nmbu-7B appears to have been under intense selection pressure: all studied
accessions dated before 1970 carried an unfavorable allele, which was later gradually
replaced by either of the favorable effect alleles so that no studied line dated after
2006 carries the allele associated with low yield. The estimated effect of this QTL (0.9
tha1) explains most of the differences in GY between the oldest and more recent lines
in the study. Interestingly, the gene behind QYld.nmbu-7B, Ta-Col5, affects spike
parameters, including grains per spike (Dixon et al, 2018). This aligns with the
findings of Paper I - grains per spike and area were associated with the GY increase.
However, it is unlikely that this QTL contributed to the GY gains described in Paper I
due to its significant effect, no alleles with intermediate effect sizes, and near
monomorphism in the collection from Paper I. Even though QYld. nmbu-7B does not
explain the GY progress observed in Paper |, it sheds light on the broader historical
changes in GY in Norwegian wheat germplasm and sources of beneficial alleles. The
usefulness of this locus in modern breeding is limited, as the newest lines show little

polymorphism concerning the favorable allele.
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In Paper I, no trend over time was discovered for kernel weight, and GY was barely
associated with kernel weight. However, in Paper II, the QYldnmbu-3A locus,
representing the Ta-GS5-3A gene associated with kernel size (Wang et al, 2015),
appears as the best candidate to explain the breeding progress in GY. With a moderate
effect of approximately 0.3 t ha! this locus shows a shift in allele frequency with the
favorable allele occurring more often in the more recent lines. This locus can also be

used in future breeding, as it retains high polymorphism in current breeding material.

It was perhaps inappropriate to look for an explanation of a linear trait improvement
using such stringent criteria for GWAS, suited to detect large-effect loci. However,
using more relaxed criteria would, without a doubt, lead to the discovery of many QTL
candidates, with many being spurious. Such an approach could explain the progress,
but would it have any practical application? Voss-Fels et al. (2019) performed such
an experiment, demonstrating that GY increase is linked with decay in the number of
“detrimental haplotypes” (haplotypes with no or negative effect on GY) in a particular
variety. However, the “detrimental haplotypes” remained a statistical concept, and it
remains a question of the identical “detrimental haplotypes” would behave the same

way when analyzed in another population.

Reliable detection of smaller-effect loci in GWAS requires large population sizes, and
the smaller the assumed effect, the larger the population should be. Population size is
usually constrained by practical causes, and the population used in this study does
not allow for reliable detection of small-effect loci or at least to separate them from

false positives.

Even though the genetic progress in GY described in Paper | remains unexplained -
the discovered loci are not plausible candidates due to effect size or contradictory
trait association - the results from Paper Il are valuable. Almost all the discovered loci
were validated using the current breeding lines and showed enough polymorphism
in current breeding material to be developed further for marker-assisted selection.
The two genes that showed effects on GY and frequency change over time are also

candidates for a follow-up study on kernel and spike parameters in the population.

2.5.4  Did breeders breed for a changing climate?

According to the literature, growing season length in South-Eastern Norway was
extended by approximately seven days since 1970 (Nordli et al.,, 2008). In Paper |, the
newer varieties tend to mature later (approximately three days) with a resulting
extension of the grain filling period by two days on average. This increase in

vegetative period length correlates well with the increase in GY and is causative: an
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extended vegetative season means more time to build necessary source biomass and
fill grains (in the case of this thesis, to fill more grains). However, was this a deliberate
choice to pick up the gradual environmental changes and use them to the breeder’s

advantage?

Breeding aims to develop varieties that will thrive in their respective TPEs (target
population of environments), and therefore breeding programs are conducted in
those TPEs. Selections are traditionally made based on the performance of candidates
in the TPE(s), or, with more modern approaches like MAS or GS, based on models built
on data from the TPEs. Therefore, it is reasonable to assume that as long as changes
in the TPE are stable and gradual, the selection process will ensure the best possible
adaptation to the new conditions - including using new TPE features to the varieties’
advantage. This selection amidst a gradually changing environment does not require

a deliberate choice of the breeders to work.

Is then the cereal production in light of Climate Change safe? Is it then enough to “just”

keep breeding new varieties, and the process will ensure adaptation?

The answer is no, at least partially. The merit behind this answer lies in the Climate
Change itself, which is not only linear. The predictions for the future include gradual
changes and more erratic weather patterns, and the latter threatens grain production
the most (Reynolds & Braun, 2022). Small changes in climate can and will be picked
up by breeding, just as it took place in Norway, but the challenges do not end there.
Many traits can be reliably selected for only during a favorable season. For instance,
a season promoting pre-harvest sprouting occurs approximately once every five
years in Norway, hampering selection for the trait. Similarly, conditions allowing for
selection for overwintering occur once every couple of years. With the expected year-
to-year variability increase connected to the Climate Change, having reliable testing
conditions for making selections can be challenged. With the projected increased
demand caused by population growth, arable land reduction, and productivity loss in

the existing systems, the need for better varieties is high.

Nowadays, in a conventional breeding program, it takes around 12-15 years to
develop a new variety and bring it to the market. Selection, especially during later
filial generations, ensures adaptation to the changing conditions, as outlined in the
previous paragraphs. Is the tempo fast enough though? According to climate
projections, the pace at which the climate will change will increase, meaning that the
breeding process must also pick up the pace. How to achieve that? The most

significant promise is held by DNA-based methods, such as GS or MAS, which recently
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has become routine in many breeding programs. These promises are also even bigger
with advancements in phenomics and phenotyping technologies, which aim to

mitigate the bottleneck of phenotypic data collection.

2.5.5 Does grain yield prediction using multispectral data make sense?

After years of slumber (the "AI winter"), Al made a comeback recently taking
advantage of new and abundant data sources and increased computational power.
This comeback could also be seen in plant phenotyping, where the idea of GY
prediction using multispectral data became viral in many crops. Although the concept
of using remote sensing and multispectral reflectance for the estimation of ground
covered by vegetation was not new (present already in the 1970s), this time it was
paired with ML with the aim to predict grain yield in field trials before the harvest.
The ML models are able to predict GY based on reflectance in usually five spectral
regions: red, green, blue, red edge (rapid increase in sub-red reflectance), and near
infra-red. Based on those bands, VIs are derived as linear combinations of the spectral
regions, for instance NDVI - normalized difference vegetation index. VIs are then fed
into a model, which associates their values with plant output. This methodology

works, but why?

One fundamental problem with ML models is that they, unlike, for instance, linear
least-squares models, can hardly be understood and interpreted - the relationships
between input variables and model output are abstract. Even though such ML models
for GY prediction may use many Vls are predictor variables, the discussion here can
be narrowed down to the five spectral bands. Vs are their linear combinations, which
do not increase the dimensionality of the dataset. Therefore, we know that five

variables with the added time dimension can predict GY somehow.

GY, a genetically complex and highly-quantitative trait, can also be seen as a product
of the plant's state or “health” throughout the growing season and genotype-specific
yield potential. Factors which affect plant "health,” such as water or nutrient
deficiency or diseases, will ultimately deviate achieved GY from the potential
maximum. Therefore, GY can be viewed as a function of genotypic yield potential and
plant health over the season, or rather its calculus over time. This view allows us to
assume that if we had a proxy of plant "health", it would be theoretically possible to
predict GY. Multispectral canopy data can be used as such a proxy. For instance, NDVI
is widely used today to assess plant health. Spectra such as red edge and near infra-
red are associated with photosynthetic capacity and react to water status changes,
which are related to "plant health”. By knowing the function of plant health over the

season, mathematically estimating GY should be possible. Why is then ML involved?
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The first problem is the quality of estimation of the plant's health function. For best
estimation, the number of time points (data capture sessions) should be the highest
possible, but is limited by economic and technical factors. The best automated
facilities can deliver image data with a temporal resolution of hours, and cost-
effective and mobile platforms such as UAVs have resolution measured in days.
Moreover, lighting conditions further challenge data capture (as most sensors are
passive), lowering the temporal resolution. Therefore, precisely enough estimating
such a function is not possible using such equipment. Another problem is genotypic
effects on multispectral reflectance, as GY prediction is often applied in field trials
with multiple genotypes. Different genotypes can have different canopy reflectance
patterns, potentially resulting in different plant health functions. This increases the
complexity of the analysis, which becomes degree of freedom-deficient when
conducted using "traditional” methods. However, the rationale behind GY prediction
appears sound, and ML can tackle the data imperfections through a more abstract

association of spectral reflectance and GY.

Despite their success in predicting GY, ML models have another problem: a model
developed and successfully validated in environment X rarely works in environment
Y, even if tested on identical genotypes. This environment-specificity can be explained
by the fact that each environment is unique. Taking a snapshot of "plant health" at
any given time-space can hardly be practically repeated under field conditions. Such
a snapshot is practical for comparing genotypes grown in a single field trial under the
same conditions, explaining the prediction ability. Attempting to use this snapshot in
another environment theoretically has to fail due to presence of GEI. Providing a
detailed description of the environmental conditions experienced by the plants while

being phenotyped would probably increase the cross-environment prediction ability.

2.5.6  Why can M matrix predict grain yield?

GY prediction using M, in its essence, is equivalent to the GBLUP method of genomic
prediction. In GBLUP, the most critical component is the so-called G matrix, which can
be interpreted as a genomic relationship among studied genotypes. G matrix, in
statistical terms, is a variance/covariance matrix computed based on SNP marker
scores for each genotype. Its interpretation as a relationship matrix is possible due to
the scaling and centering of marker values. Having the G matrix computed, we know
approximately how related genotypes of interest are, similar to the information in the
pedigree-based kinship matrix (A). This information is used to predict breeding
values/phenotypes of genotypes that were not phenotyped but whose relationship

with phenotyped records is known. The power of the G matrix comes from the fact
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that markers are fully heritable and therefore are good proxies for estimating

relationships.

Using multispectral phenotypes to derive genotypic relationships presents a different
approach: multispectral phenotypes are far from fully heritable. They respond to the
environment, unlike SNP markers. Multispectral relationships are calculated
analogically to the G matrix, the difference being that SNP marker scores are replaced

with multispectral phenotypes. What is the point of computing such relationships?

Considering a single drone data capture session with a multispectral camera, we
obtain a snapshot of genotypes that experience similar conditions. If multispectral
phenotypes are proxies of “plant health”, then genotypes with a similar response to
the conditions would then be related stronger than genotypes with different
responses. Genotypes with similar responses will assumably handle the environment
similarly and reach a similar proportion of their respective GY potentials as their
products. This process repeated for multiple data capture sessions over the season
yields the similarity of genotypic response to the particular environment that carries

information about the final GY.

The critical difference between multispectral relationships and GY prediction using
ML is that ML focuses on numerical phenotype values. In contrast, the M matrix

derives similarities among genotypes based on those numerical phenotypes.

2.5.7 Why does M matrix GY prediction work?

The conclusions about spectral band importance challenge the theoretical rationale
for the usefulness of the M matrix described in the previous paragraph. Based on the
rationale, the bands which react to “plant health” should be the most critical (near-
infrared and red edge). The results have shown that all bands but near infra-red have
similar and high prediction ability and that removing the red edge and near infra-red
bands causes only a slight loss in accuracy. Therefore, it is reasonable to conclude that
the prediction ability of this method does not rely on the similarity of response to the

environment. What can be then the reason for the M matrix GY prediction to work?

There are two possible explanations: either the bands carry information linked to GY,
or the band information is valuable only because its heritable. Before discussing
further, it is necessary to ponder what UAV multispectral imagery actually captured

in the experiment.

Images were taken directly above experimental plots at 20 m with a multispectral

camera, and the resolution allowed for identifying fine details of the plots (as
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described in Paper III Supplementary). The ground was not masked in the images;
therefore, a part of the pixels in each plot was soil, which has vastly different
reflectance properties than plant canopy. Each plot was later cropped to size from the
images and summarized by extracting median values for each spectral band.
Therefore, the median values capture two semantic elements: plant canopy and soil.
The values then represent both canopy coverage and canopy properties of a genotype

ata given time.

It could be speculated that, for instance, the green reflectance points to chlorophyll
parameters or content, similarly to the red edge band, but then why do red and blue
bands also show almost identical accuracies? It is unlikely that different biological
merits behind different bands would yield so similar accuracies. Maybe it is a single
trait linked with GY that is captured by all bands?

The only trait captured by all bands in UAV multispectral imagery is crop canopy
coverage. It is a likely culprit to be the underlying trait that allows for GY prediction.
This hypothesis is supported by the fact that near infra-red showed lower accuracy
due to its less heritable values (due to its reaction pattern to water content in both
canopy and soil). The experiment showed that data capture time during the growing
season affects accuracy and that the highest accuracy is during grain filling. If canopy
coverage is the driver of the GY prediction accuracy, then canopy coverage during
grain filling explains differences in GY to the largest degree. It is a reasonable guess,
as higher canopy coverage allows for higher absorption of photosynthetically-active

radiation and, therefore, more resources to form the final GY.

Another possibility is that plants that “look alike, yield alike”, meaning that the
underlying association is correlative, not causative, and is usable only because it is
heritable. However, more experimentation and analysis are needed to go beyond
speculation about the nature of the M matrix. Literature on the subject is scarce and
primarily concentrates on practical aspects of the approach rather than its scientific

merit.
2.5.8  Where does grain yield prediction using M matrix fit?
First, GY prediction using the M matrix is not an alternative to GP (genomic

prediction), even though the core statistical protocol is standard.

GP’s main “selling point” is the ability to predict breeding values of genotypes
concerning a trait or selection index based on their DNA without the need to
phenotype. This approach presents excellent opportunities, especially with methods

like speed breeding. For instance, selection for GY can be made based on a single plant
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in a greenhouse during early filial generations. At the same time, traditionally, GY
estimation requires reasonably-sized trial plots available only in later filial
generations. This advantage led to the great popularity of the method and its

integration into many breeding programs.

At the same time, the protocol used for GY prediction using the M matrix requires
observation of multispectral phenotypes in situ; therefore does not fit well for early
generations in breeding programs. Especially in light of the uncertain biological merit
outlined in the previous paragraph, it is doubtful if the M matrix would work on a

single-plant or row level.

The M matrix has a prediction ability comparable to the G matrix in the setting with
larger field trial plots. More importantly, it showed a synergistic effect with the G
matrix - models with G and M matrices were superior to G or M alone. Therefore,
including multispectral data in GP protocols provides an interesting additional layer
of information to increase the accuracy of the already available GP protocols. The
experiment also showed that even as little as a single data capture during the growing
season has value and can be acquired using very budget-friendly hardware solutions.
An added benefit of multispectral data captured using UAVs is its scaling. Any sample
genotyping or analysis scales linearly with the number of samples, while UAV
phenotyping of more material does not increase the workload linearly. The UAV
phenotyping baseline workload may be significant, but phenotyping 100 or 200 plots
are nearly similar in resources and effort needed. Many plant breeding companies
and institutes have already shown interest in UAV technology for plant phenotyping,
and this work presents a way to utilize their data for both standalone GY prediction
as well as augmenting existing GP protocols at low cost. Additionally, the
methodology and software used is already available, well-documented, and does not

require much customization.
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2.6 Conclusion

This thesis provided insight into Norwegian spring wheat's past, present, and

potential future improvements in grain yield and other traits.

Genetic progress in grain yield from 1972 to 2019 was documented, describing
significant genetic gains that were not dependent on intensive agronomic input over
time. Genetic gains in grain yield were mainly associated with incrementing grains
per spike and grains per area and were compared with other wheat historical
collections worldwide. New varieties are consistently better adapted to the changing

environment and outperform old varieties in resource use efficiency.

It was possible to pinpoint several robust loci associated with grain yield, earliness,
and plant height. Several previously described and novel loci were detected to aid
marker-assisted selection. Two well-described genes associated with spike
architecture and kernel size were discovered in Norwegian wheat with changing
frequency over the decades and with validated effects in current wheat breeding

lines, providing insight into genomic regions under historical selection pressure.

A semi-new methodology of using drone multispectral phenotypes for grain yield
prediction analogous to genomic prediction was developed, tested, and compared in
single and multi-environment scenarios. The methodology is not an alternative to
genomic prediction, but the standalone prediction accuracies of the two methods are
comparable. Even though the rationale behind the ability to predict grain yield by
multispectral data was challenged, the usefulness of the developed protocol is
significant in the later stages of breeding programs. The methodology and existing
genomic prediction protocols can allow for the much-needed acceleration of genetic
gains. This work also laid the foundation for follow-up studies, including the genetic
basis for historical yield increase connected with changes in spike architecture and
the biological merit behind the ability of multispectral data to predict grain yield in

crops.
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1 | INTRODUCTION

Jon Arne Dieseth? |

Morten Lillemo'

Abstract

Spring wheat is currently dominating wheat production in Norway. The introduc-
tion of combine harvesting in the 1950s spurred breeding efforts to improve lodging
and preharvest sprouting resistance, and to integrate good breadmaking quality in
the locally adapted germplasm. Release of landmark cultivars Runar and Reno in the
1970s revitalized the country’s production and marked the onset of modern wheat
cultivation in Norway. Since that time, new cultivars have been developed but little is
known about the genetic basis of the achieved yield gains. We collected 21 representa-
tive cultivars released since 1972 in Norway and tested them in a multiyear field trial
including two fertilization rates: 75 and 150 kg ha~! N. We assessed grain yield, plant
height, heading, maturity, length of grain filling period, grain protein content, pro-
tein yield, aboveground biomass, harvest index, grain weight, test weight, grains per
spike, grains per square meter, and spikes per square meter and their response to fer-
tilization. We document an annual increase in grain yield of 17.8 kg ha! (0.34%), at
both rates of N fertilization. None of the traits exhibited significant genotype X man-
agement interaction. Wheat breeding has led to the development of higher-yielding
cultivars with higher protein yield that mature later, have a prolonged grain-filling
period, and produce more grains per spike and grains per unit area.

dom, 7.92 Mg ha’l) (FAOSTAT, data from 2003 to 2019;
https://www.fao.org/faostat/en/#home). Additionally, the wet

Wheat cropping in Norway is challenged by several factors.
Severe winters limit winter wheat production and a short veg-
etation period causes moderate yields (on average 4.5 Mg
ha~!, data from 2003 to 2019; Statistics Norway, 2020), as
compared with averages of other European countries with
more productive systems (France, 6.98 Mg ha=!; Germany,
7.52 Mg ha~!; Ireland, 9.12 Mg ha~!; and the United King-

Abbreviations: BM, biomass; DM, days to maturity; GF, grain filling
period; GPC, grain protein content; GrPm2, grains per m?; GY, grain yield;
HI, harvest index; PC, principal component; PH, plant height; PY, protein
yield; TKW, thousand-kernel weight; TW, test weight.

and windy climate, especially during late season, caused
delayed harvest in many years and further promotes produc-
tion challenges such as preharvest sprouting, lodging, and dis-
eases like powdery mildew, fusarium head blight, and septoria
nodorum blotch (Lillemo & Dieseth, 2011).

To deal with those limitations, experimental work in agri-
culture was initiated in Norway in 1889, quickly being fol-
lowed by introducing artificial fertilizers and new cultivars.
During the 1889-1962 period, wheat yields increased by
approximately 13 kg ha~! per year, of which 52.6% were esti-
mated to come from introduction of new cultivars and 47.4%

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.
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from improved growing technique (Strand, 1964). From 1960
to 1974, spring wheat yields were increased further by approx-
imately 130 kg ha~! per year (Strand, 1975), and the 1960
1992 period yielded, in total, an annual increase of 74 kg ha™!
per year, with 47% attributed to new cultivars, 22% to man-
agement, and 31% to a combination of new cultivars and man-
agement (Strand, 1994). However, little is known about recent
yield progress in Norwegian spring wheat cropping.

Cultivars grown in Norway before the 1950s were sus-
ceptible to lodging, and thus had to be either windrowed or
manually harvested and dried indoors due to the weather
conditions in the late growing season. This rendered them
not eligible to fully benefit from mechanization (single-pass
harvesting) and increased use of N fertilization. The lack of fit
between available cultivars and the new agronomic practice
coupled with low import prices resulted in little stimulation of
domestic production, nearly eradicating spring wheat in the
1960s. This spurred breeding efforts that eventually resulted
in the release of two landmark cultivars, Runar and Reno
(introduced in 1972 and 1975, respectively), which showed
enough resilience to the Norwegian growing conditions to
revitalize the wheat cropping and mark the beginning of
the era of modern wheat cultivation in Norway (Lillemo &
Dieseth, 2011).

Research on yield genetic gains in many wheat collections
revealed that it is associated with an increase in the num-
ber of kernels per spike and kernels per unit area whereas
the kernel weight has remained constant or decreased (Flohr
et al., 2018; Lo Valvo et al., 2018; Sayre et al., 1997; Voss-
Fels et al., 2019). The increase in kernels per spike is mostly
due to the introduction of the Norin 10 dwarfing alleles Rhz-
BIb and Rht-D1b (Foulkes et al., 2007), which have been
spread around the world with the CIMMYT germplasm used
in breeding programs (Mjerum, 1992). Shortening of the
straw had little effect on spike architecture; the number of
spikelets per spike is unaffected, but the above-mentioned
dwarfing genes are known to increase spike fertility because
less assimilates are needed for the growth and elongation of
stems in semi-dwarf wheat cultivars (Fischer & Stockman,
1986; Miralles et al., 1998). Yield gains are contingent on
increasing biomass produced while maintaining or improv-
ing harvest index (HI) in winter wheat (Beche et al., 2014).
The effects of dwarfing genes on yield and HI are mostly
explained by the reduced competition for assimilates between
the straw and the spike during stem elongation, resulting in an
increased sink size, yielding an increased seed number (Uddin
& Marshall, 1989). Yield genetic gain drivers from various
collections often overlap, but it is still necessary to investi-
gate each set because each set has distinct characteristics and
pedigrees. This knowledge is essential to maintain breeding
progress by evaluating gains achieved and pointing out traits
that can be emphasized in future breeding (Reynolds et al.,
2009; Wu et al., 2014).

Core Ideas

Grain yield in the 1972-2019 period increased by
17.8 kgha~! (0.34%) per year due to improved cul-
tivars.

Grain yield gains do not rely on intensive N fertil-
ization.

Cultivars do not exhibit significant genotype X
management interactions for any of the measured
traits.

Breeding in Norway since 1972 caused the culti-
vars to have a 2-d longer grain-filling period and
reach physiological maturity 3 d later.

New cultivars in Norway produce more grains per
spike and grains per unit area.

Historically, yield gains have been attributed to genetic
progress and crop management in equal measure. However,
it is not uncommon to observe a significant contribution of
the interaction between genotype and management to the yield
progress (Strand, 1964). The annual genetic yield gain in high-
intensity wheat systems since the 1960s has been approxi-
mately 1% per year (Abbate et al., 1998; Sayre et al., 1997,
Shearman et al., 2005). However, there is an ongoing discus-
sion as to whether the genetic gains continue or whether they
are approaching a plateau phase (Grassini et al., 2013).

It has been shown that the development of new cultivars
usually leads to improvement in yield, regardless of agro-
nomic practice. The performance is consistently better under
both high and low inputs (Ahlemeyer & Friedt, 2011; Ahrends
et al., 2018; Voss-Fels et al., 2019). This defies the view that
genetic gains are observed only under intense management
and proves that novel cultivars are better adapted to their tar-
get environments.

The objectives of this study were: (a) to estimate and doc-
ument grain yield (GY) progress in Norwegian spring wheat
over the course of the last five decades, (b) to determine if
this progress relies on N fertilization input, (c) to determine
the yield components linked to this increase, and (d) to deter-
mine and document wheat agronomical trait changes over this
period.

To achieve these goals, we performed a multiyear study
of historical and current spring wheat cultivars present on
the Norwegian market between 1972 and 2019. We assessed
genetic gains in GY, yield-related and physiological traits
over the course of five decades, their response to agronom-
ical input, and the underlying traits associated with the GY
increase.
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TABLE 1 Overview of the cultivars used in the study, countries
of origin, breeders, and years of release

Line  Cultivar Country/breeder YOR®
1 Runar Norway/IPK 1972
2 Reno Norway/IPK 1975
3 Tjalve Sweden/Weibull 1987
4 Bastian Norway/IPK 1989
5 Polkka Sweden/Lantminnen SW Seed 1992
6 Avle Sweden/Lantmiénnen SW Seed 1996
7 Zebra Sweden/Lantmidnnen SW Seed 2001
8 Bjarne Norway/Graminor 2002
9 Demonstrant ~ Norway/Graminor 2008
10 Krabat Norway/Graminor 2010
11 Mirakel Norway/Graminor 2012
12 Rabagast Norway/Graminor 2013
13 Seniorita Norway/Graminor 2014
14 Arabella Poland/Danko 2014
15 Willy Norway/Graminor 2016
16 Caress Sweden/Lantménnen SW Seed 2017
17 Zombi Norway/Graminor 2018
18 Alarm Norway/Graminor 2019
19 Betong Norway/Graminor 2019
20 Eleven Sweden/Lantménnen SW Seed 2019
21 Felgen Sweden/Lantmidnnen SW Seed 2019

“YOR, year of release. The year when a cultivar was listed in Norway after passing
official trials.

2 | MATERIALS AND METHODS

2.1 | Plant material
We assembled a collection of 21 spring wheat cultivars
released in Norway, covering historically the most widely
cultivated material since 1972 as well as the current and
recently released cultivars (Table 1). It represents the breed-
ing progress achieved from 1972 (onset of modern wheat cul-
tivation in Norway) to the present day. Except for the cultivar
“Arabella,” which is of Polish origin, all the other cultivars
were developed in either Norway or Sweden. The year when
a cultivar was officially approved by the Plant Variety Board
(year of release) was used to place it on the timeline. At the
start of the field experiment in 2016, cultivars 1621 (Table 1)
were still undergoing official trials and were released in the
following years. Additionally, our trials included three breed-
ing lines that were either withdrawn or rejected from official
trials during the period. Those lines remained in our field tri-
als but data from those was excluded from the analysis after
Ismeans calculation.

The collection was assembled to maximize its relevance for
the actual market situation over the period; therefore, the col-

cropsciece JES

lection suffers from imbalance as the cultivars are not equally
distributed on the timeline. Cultivars Runar and Reno had
almost 100% market share until the release of Tjalve in 1987,
which creates a 12-yr gap between 1975 and 1987. We did
not attempt to forcingly fill this gap as it would decrease the
collections’ relevance. Recent years were marked with the
release of more cultivars to the market; therefore, the 2008—
2019 period includes a relatively large number of accessions
(Table 1).

2.2 | Field trials
We conducted the experiment in field seasons 20162020 at
Vollebekk Research Station (/O\s, southeastern Norway, 59039’
N, 10°45" E). This location represents the most important
southern wheat cropping region in Norway. Field season 2018
was excluded from the analysis presented in the main text
due to drought (Supplemental Figure S1; Table 2) but is pre-
sented separately in the Supplemental Material. To evaluate
the effect of fertilization rates on yield performance and phys-
iological traits, two rates (managements) were applied before
sowing: 75 and 150 kg ha~! N (referred to as lowN and highN,
respectively) of compound NPK fertilizer (YaraMila 22-3—
10). The highN treatment reflects typical fertilization rates for
spring wheat in Norway currently, whereas the lowN treat-
ment was included to assess the performance of the cultivars
under less intensive management. Field trials included the full
set of 24 cultivars and were arranged in randomized incom-
plete block split-plot design with two replicates per manage-
ment and block size of six, with the position of the main treat-
ment (fertilization level) and subtreatments (cultivar) being
randomized every year. Trial plots of 5 m by 1.5 m arranged
in eight rows with 30-cm spacing between neighboring plots
were seeded with 185 g of kernels (61, 7 g m~2); 1-m alleys
were sprayed out with glyphosate after emergence, leaving
plots of 4-m length for harvest. Trials were sown on 12 May
2016, 24 May 2017, 3 May 2019, and 20 Apr. 2020. Fol-
lowing the seeding, standard local agronomic practice was
followed to keep the trial plots free of weeds and plant dis-
eases by use of herbicides (Tripali [active ingredients: flo-
rasulam + metsulfuron-methyl + tribenuron-methyl] and/or
Duplosan Meko [mekoprop]), and fungicides (Proline [proth-
ioconazole], Aviator Xpro [bixafen + prothioconazole], For-
bel [fenpropimorph], and/or Comet Pro [pyraclostrobin]) at
recommended doses according to needs. Border rows were
planted with buffer cultivar (Bastian) to eliminate border
effects. Following ripening, samples were gathered for yield
component estimation and the remaining trial material was
combine harvested during the first 2 wk of September.
Weather conditions throughout the field trial years were
similar in terms of average monthly temperature, solar radi-
ation, and rainfall except for the 2018 season (Table 2).
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TABLE 2  Weather data for the field trial seasons 20162020 between April and September
2016 2017 2018 2019 2020
Month Tan Rfsllm Iravg Tan Rfsum Iravg Tavg Rfsllm Iravg Tavg Rfsum Iran Tavg Rfsllm Iravg
°C mm Wm2 °C mm Wm2 °C mm Wm2 °C mm Wm2 °C mm W m~2
Apr. 52 100 11.7 4.4 35 13.4 5.1 32 14.0 7.9 15 16.2 6.4 30 15.0
May 11.6 50 18.5 9.6 68 14.6 150 0 222 9.7 101 17.0 9.5 47 21.4
June 15.6 90 21.1 143 94 19.1 16.7 82 239 148 64 17.7 17.6 115 21.1
July 16.1 55 19.1 159 20 19.8 202 44 232 172 52 20.2 143 128 18.0
Aug. 14.6 140 14.1 145 104 14.9 154 21 14.2 162 110 13.7 162 51 15.7
Sept. 141 41 9.9 115 119 6.7 12.1 128 9.4 11.0 191 8.3 120 81 9.0
Note. Ir,,,, average solar radiation; Rf,,,, sum of monthly rainfall; T,,,, average temperature.

TABLE 3  Overview of the gathered traits, abbreviations, units, and seasons when the data was collected

Trait Abbreviation
Grain yield GY
Plant height PH
Days to heading DH
Days to maturity DM
Grain filling period GF
Thousand-kernel weight TKW
Test weight ™
Grain protein content GPC
Protein yield PY
Biomass BM
Harvest index HI
Grains per spike GrPS
Grains per area GrPm2
Spikes per area SpPm2

Season 2018 was marked with higher average temperatures,
no rainfall, and high solar radiation from the second half of
April until early June, which, despite irrigation efforts, caused
severe drought stress to the trial and shortened the growing
season by nearly a month. Data from season 2018 was unrep-
resentative compared with the “normal” growing seasons, and
therefore, was analyzed separately.

Daily weather data were downloaded from the Norwe-
gian Bioeconomy Institute weather service, station in As
(https://Imt.nibio.no/station/5/).

2.3 | Measurements

Cultivars were evaluated for GY, plant height (PH), head-
ing and physiological maturity, yield components (test weight
[TW], thousand-kernel weight [TKW], and grains per spike),
grain protein content (GPC), and aboveground biomass (BM)
at maturity. Based on these variables, additional parameters
such as protein yield (PY), HI, grains per area, and spikes per

Unit Collected

Mg ha™! 2016, 2017, 2019, 2020
cm 2016, 2017, 2019, 2020
day 2017, 2019, 2020

day 2016, 2017, 2019, 2020
day 2017, 2019, 2020

g 2016, 2017, 2019, 2020
g 2016, 2017, 2019, 2020
% 2016, 2017, 2019, 2020
g m™2 2016, 2017, 2019, 2020
250 stems™! 2019, 2020

ratio 2019, 2020

spike™! 2017, 2019, 2020
grains m—2 2016, 2017, 2019, 2020
spikes m™2 2017, 2019, 2020

area were derived. Not every trait was assessed in every sea-
son (Table 3).

Assessment of heading and maturity stages was performed
visually, recording the date when 50% of the plants were in
the respective stage.

Plant height was measured manually at crop maturity as an
average height of a sample of fertile stems, from soil bed to
the top of a spike (excluding awns, if they were present).

Aboveground biomass was estimated by weighing 50 ran-
domly selected, moisture equalized (dried at 30 °C for 5 d)
fertile mature tillers. Those samples were manually threshed
to estimate grains per spike.

Protein content was determined by near infrared reflectance
spectroscopy on full kernels using Perten Inframatic 9200
spectrometer (Perten Instruments AB).

Grain yield per plot was dried to 13.5% moisture content,
weighed, and converted to Mg ha~!. A subsample of kernels
was used to estimate TKW and TW.

Protein yield was calculated as GY multiplied by protein
content, number of grains per m? (GrPm2) as GY divided
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by TKW, and number of spikes per m? as number of GrPm2
divided by grains per spike. Harvest index was calculated as a
ratio between the grain weight per 50 spikes and the biomass
of 50 fertile tillers. Collecting only fertile tillers for HI estima-
tion causes high HI values as the proportion of infertile stems
is not considered.

2.4 | Data analysis

All calculations and analyses were performed in R ver-
sion 4.05. Least square estimates for traits across trial years
and designs were calculated using packages “lme4” and
“ImerTEST” according to the following mixed model:

P

Ijklnos:“+gi+m/‘+gxm;/+Yk+Y Ry

+Y I RIBy, +Y I Wi, +Y 1 G+ €iinos
where Pjj,, is the phenotype (trait value) of the ith cultivar
in the jth management (fertilization) grown in the kth field
year in the /th replicate in the nth block in the oth row and sth
column; p is the general mean, g; is the fixed effect of the ith
cultivar, m; is the fixed effect of the jth management, g X m;;
is the fixed effect of the ith cultivar grown under jth manage-
ment (interaction), Y} is the random effect of kth field year, ¥
: Ry, is the random effect of the /th replicate within kth field
year, Y : R : By, is the random effect of the nth block within
the /th replicate within kth field year, Y : W}, is the random
effect of the oth field row within the kth field year, Y : C;, is the
random effect of the sth field column within the kth field year,
and e;jy;,,; represents the error term. Fixed effects are denoted
as lowercase letters, random effects are denoted by uppercase
letters, interaction is indicated by “X”, and nesting is indicated
by “:”. Row and column random effects (denoted W and C
in the model, respectively) were added to additionally correct
for variability within the field on top of the block effects if
a spatial trend was apparent. Model 1 was used to calculate
Ismeans averaged over genotypes or managements and to per-
form ANOVA based on the estimated fixed effects. Degrees of
freedom were calculated according to Satterthwaite’s method.

The Ismeans were calculated based on the full experiment
with 24 cultivars (including the three lines that were rejected)
to take full advantage of the trial design. The three rejected
lines were removed from the analysis after Ismeans calcula-
tion.

For the estimation of trait changes over the 1972-2019
period, a linear model was used with Ismeans of trait value as a
response variable and year of release as an independent vari-
able. Other models were investigated (quadratic, cubic, and
polynomial), but those more complex curves did not explain
significantly more variance and were potentially overfit as
our sample of cultivars is small and imbalanced. Therefore,

we decided to use standard linear regression for the purpose
of documenting and estimating the changes in traits over the
period.

For the traits that showed improvement over the period (cor-
relation with year of release >0.3), genetic gains per year were
reported as absolute values and as percent of the predicted trait
value for year 1972 (earliest cultivar in the collection) to stan-
dardize the results. Traits that showed improvement under at
least one treatment level were displayed in Figure 4.

Principal component analysis was performed on least
squares trait estimates for either cultivars alone or cultivars
in particular management. To account for the effect of scale,
variables were scaled as 1/SD.

Results were visualized using R packages: “corrplot,”
“ggplot2,” “ggpubr,” and “ggmisc.”

3 | RESULTS

3.1 | Grainyield
Weather conditions throughout the field trial years were simi-
lar in terms of temperature and rainfall, except for the 2018
season (Supplemental Figure S1) when heat and drought
stress reduced yields by nearly 70%, which can be seen in
the average GY of 6.01, 5.81, 5.70, and 5.35 Mg ha~! in sea-
sons 2016, 2017, 2019, and 2020, respectively, compared with
1.91 Mg ha™! in 2018 (Supplemental Table S1). Achieved
GYs in the representative seasons are significantly higher
than the national long-term average of approximately 4.5 Mg
ha~!. The highest-yielding cultivar in the collection is Ara-
bella (released in 2014, 6.5 Mg ha=!) and the lowest-yielding
is Runar (released in 1972, 5.2 Mg ha~!). Significant (p < .05)
annual genetic gains in GY over the 1972-2019 period are
observed for all the trial years and their mean except for field
season 2017 (Table 4; Supplemental Table S1). Estimated
annual genetic gain in GY vary from 16 kg ha™! (0.33%, Sea-
son 2020) to 23.1 kg ha~! (0.47%, Season 2019; Supplemental
Table S1), averaging 17.8 kg ha~! (0.34%) per year (Table 4).
Correlation between GY and year of release of a cultivar is
subject to variation among the years (ranging from 0.64 to
0.73) whereas being the strongest for the average values (0.74)
(Table 3; Supplemental Table S1). Genetic gains in GY can
also be observed under severe drought stress; on average 6 kg
ha~! (0.39%) per year, 10.3 kg ha~! (0.60%) under highN, and
2.8 kg ha~! (0.17%) under lowN (Supplemental Table S1).
Grain yield is significantly (p < .001) affected by fertil-
ization level and cultivar. Estimated GY averaged over trial
seasons for the 75 kg ha~! (lowN) and 150 kg ha~! (highN)
fertilization levels are 4.99 and 6.52 t ha™!, respectively. No
significant (o« = .05) interaction among genotypes and fertil-
ization levels is observed (Figure 1; Table 5) for GY. Genetic
gains over the period are observed for both fertilization
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TABLE 5

cropsciene NS

Traits collected in the study, units, abbreviations, least squares estimates of an average of trait values within management levels and

significance of model parameters genotype (g), management (fertilization, m) and genotype X management (g X m)

Trait Unit Estimate + SE?
75kgha' N
GY tha™! 4.99 + 0.16
PH cm 80.09 + 4.21
DH day 56.95 + 3.04
GF day 49.83 + 3.55
DM day 106.78 + 1.45
TKW g 37.29 + 0.57
™ g 78.09 + 0.98
GPC % 10.71 + 0.32
PY kg m~2 53.51 + 2.25
BM g 79.76 + 13.07
HI ratio 0.442 + 0.02
GrPS spike™! 26.52 + 2.65
GrPm2 10° m=2 1345 + 0.55
SpPm2 m~2 532.1 + 51.8

Significance of model parameters”

g m gXxm

150 kg ha™' N

6.52 + 0.16 o o ns
83.61 + 4.21 o o ns
56.90 + 3.04 o ns ns
52.73 £ 3.55 o o ns
109.63 + 1.45 o o ns
37.99 + 0.57 o ns
78.53 + 0.98 o o ns
11.76 + 0.32 o o ns
76.46 + 2.25 o o ns
101.72 = 13.07 o o ns
0.473 + 0.02 o o ns
31.01 £2.65 o o ns
17.27 + 0.55 ns
540.5 + 51.8 o ns ns

Notes. BM, biomass; DH, days until heading; DM, days until maturity; GF, length of grain filling period; GPC, grain protein content; GrPm2, grains per square meter;
GrPS, grains per spike; GY, grain yield; HI, harvest index; PH, plant height; PY, protein yield; SpPm2, spikes per square meter; TKW, thousand-kernel weight; TW, test

weight.
“Least squares estimate of trait value averaged over all cultivars and years.
"Two-way ANOVA.

*Significant at the .05 probability level. **Significant at the .01 probability level. ***Significant at the .001 probability level.

751 °
R?=0.50 y=-36+0.0212
7.0 y - X s
6.5
Ty
< 6.01
o
=
S5 5 A
6 R“=0.60 y=-23.8+0.0143x 4
A A
5.01 Y
A wR
a A
4.5 A =0~ 150 kgN/ha
=&~ 75 kgN/ha
4.0
1972 1990 2005 2019
YOR
FIGURE 1 Grain yield genetic gains over the 1972-2019 period

under 75 kg ha~! N (green, triangles) and 150 kg ha~' N (red, dots)
fertilization regimes. GY, grain yield; YOR, year of release

levels, 21.2 kg ha™! (0.37%) and 14.3 kg ha~! (0.32%) per
year for highN and lowN, respectively; however, the relation-
ship between GY and year of release is stronger under lowN
(R? = .6) than highN (R? = .5). Cultivars released recently
(2014-2019) grown under lowN nearly approach GY val-
ues of the legacy cultivars (Reno and Runar) under highN

(Figure 1). The genetic gains were positively validated in an
independent multiyear field trial (Supplemental Figure S5).

3.2 | Agronomical and physiological traits
Significant genetic gains over the period were found for days
to maturity (DM), length of grain filling period (GF), GPC,
PY, and GrPm?2 (Table 4).

None of the assessed traits were subject to genotype by
management (g X m) interaction at 95% significance level. All
traits, excluding DH and SpPm?2, are strongly affected by fer-
tilization, and significant differences among genotypes were
found for every trait investigated (Table 5).

3.3 | Correlations among the traits
Under both managements and for their mean, GY is con-
sistently and positively associated with GF and DM. A
typical negative relationship between GPC and GY is
observed; however, the relationship between GY and PY is
positive and strong under both managements and their mean
(Figure 2a,b).

Yield components associated with GY differ between man-
agements: under lowN, GY is associated with TKW and
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FIGURE 2 Pearson’s correlation coefficient matrices for (a) genotypic means and (b) genotypic means for traits of cultivars grown under lowN
(below diagonal, green border) and highN (above diagonal, red border). BM, biomass; DH, days until heading; DM, days until maturity; GF, length

of grain filling period; GPC, grain protein content; GrPm2, grains per square meter; GrPS, grains per spike; GY, grain yield; HI, harvest index; PH,
plant height; PY, protein yield; SpPm2, spikes per square meter; TKW, thousand-kernel weight; TW, test weight. ““p < .001, “p < .01, “p < .05

grains per spike (GrPS); and under highN, GY correlates with
the number of GrPm2. For genotypic means, differences in
GY can be best explained by grains per spike increase. The
length of the GF is determined by DM rather than DH. GF
is associated with GY and GPC due to the negative correla-
tion between GY and GPC. Differences in biomass produced
by the cultivars can be explained to a large degree by differ-
ences in PH, which, in connection with a lack of a significant
relationship between GY and PH, suggests that the decrease
in PH did not reduce GY achieved by the cultivars, and there-
fore, improvement of HI was driven by PH reduction. Number
of spikes per square meter is associated under both manage-
ments with reduced PH, TKW, and BM, hinting that culti-
vars producing a large number of spikes per unit area tend
to be shorter, produce smaller kernels, and accumulate less
biomass during growing season, and therefore, possess higher
HI. Longer GF is associated with higher TKW and BM pro-
duction (Figure 2a,b).

3.4 | Principal component analysis

The first two principal components (PCs) explain a total of
59.4% of variance present in the dataset of genotypic means
of the cultivars (Figure 3a). Biplot analysis reveals a similar
correlation pattern to that in Figure 3b: a strong cluster of vari-
ables (GY, DM, GF, and GrPS) contributing to the PC with the
most explanatory power. The year of release of a cultivar can

be moderately explained by both PC1 (r = .50, p = .021) and
PC2 (r = .62, p = .002).

Fertilization treatment clearly clusters the genotypic means
under fertilization treatments (Figure 3b). The two first PCs
explain a total of 65.6% of the variance present in the dataset
with mostly PC1 (capturing 48.2% of the variance) determin-
ing the management clusters. Differences among the culti-
vars within the same cluster are determined mostly by PC2,
explaining a total of 17.4% of the variance, with TKW, TW,
and PH as its biggest contributors. The traits that characterize
the management clusters are mainly GrPS, DM, GY, PY, and
GrPm?2, confirming the findings from Table 5.

3.5 | Genetic gains in agronomical and
physiological traits under contrasting
fertilization levels

Slopes for PH, GF, DM, PY, and GrPS are not significantly
different between the treatments (Figure 4a,b,c,e,g), confirm-
ing the absence of detectable g X m interaction (Table 5).
However, the slopes for GPC, HI, and GrPm2 (Figure 4d,f,h)
vary between the treatments, which shows presence of minor
interactions not detected by the ANOVA (Table 5).

Plant height shows a negative relationship with year of
release under both treatments, but the relationship is sig-
nificant only under lowN (a = .05). This association is
caused by the two old cultivars (Runar and Reno, released
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FIGURE 3 Principal component (PC) analysis on (a) trait genetic estimates and (b) genetic estimates under fertilization treatments. In (a),
colors are mapped to the year of release of a cultivar, in (b), colors indicate fertilization treatments. BM, biomass; DH, days until heading; DM, days
until maturity; GF, length of grain filling period; GPC, grain protein content; GrPm2, grains per square meter; GrPS, grains per spike; GY, grain
yield; HI, harvest index; PH, plant height; PY, protein yield; SpPm2, spikes per square meter; TKW, thousand-kernel weight; TW, test weight
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FIGURE 4 Relationships between (a) plant height, (b) grain filling period, (c) days to maturity, (d) grain protein content, (e) protein yield, (f)
harvest index, (g) grains per spike, and (h) grains per m? cultivar estimates and year of release under 75 kg ha™' N (green, triangles) and 150 kg ha™"!
N (red, dots) fertilization. DM, days until maturity; GF, length of grain filling period; GPC, grain protein content; GrPm2, grains per square meter;

GrPS, grains per spike; HI, harvest index; PH, plant height; PY, protein yield

in 1972 and 1975, respectively), showing that the newer cul- The newer cultivars tend to have prolonged GF caused
tivars are shorter than the old ones in Norway, but no con- by longer DM (Figure 4b,c). Significantly (a0 = .05) longer
sistent PH decrease can be documented from 1987 onward GF over the period can be observed under both fertiliza-
(Figure 4a). tion treatments but is stronger under lowN. The DM was
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consistently increased over the period under both treatments.
Cultivars released since 2018 under lowN mature in a similar
time as the old cultivars (released before 1985) under highN.
The length of GF and DM were increased on average by 2 and
3 d, respectively, under both treatments.

Grain protein content shows a negative correlation with
year of release under both treatments, which is stronger under
highN (Figure 4d). The two old cultivars (released before
1985) decrease the correlation due to their low GPC and show
that GPC consistently decreased from 1985 onward. Protein
yield shows a positive relation with year of release under both
treatments (Figure 4e). Despite a visible decrease in GPC
(Figure 4d), GY increase (Figure 1) causes higher PY. The
trend in PY is more visible under lowN.

Harvest index was increased over the period under lowN,
but this relationship is not visible under highN (Figure 4f).

Grains per m?> show an increase over time under both
fertilization treatments, with a higher increase under highN
(Figure 4h). Under lowN, the new cultivars tend to produce
more grains per spike (Figure 4g).

4 | DISCUSSION

4.1 | Grain yield

For the present study, we took a deliberate choice to start our
study with Runar, released in 1972, which marks the onset
of the modern wheat cultivation era in Norway. Moreover,
the older cultivars (cultivated before the 1970s) are substan-
tially taller and more susceptible to lodging, which would have
caused practical problems with the highN treatment with-
out mechanically supporting the plants. The breeding period
investigated is relatively short compared with many other
studies of collections from regions with a long wheat culti-
vation history, including Ahrends et al. (2018), Akin et al.
(2017), and Wu et al. (2014). The number of examined lines is,
thus, relatively small, which limits statistical power to detect
relationships.

The estimated annual genetic gains in GY for spring wheat
in Norway since 1972 (on average 17.8 kg ha~!, 0.34%) show
similarity to gains determined in numerous collections world-
wide (Ahrends et al., 2018; Crespo-Herrera et al., 2017; Dube
et al., 2019; Evans et al., 1980; Oury et al., 2012; Rodrigues
et al.,, 2007; Voss-Fels et al., 2019; Woyann et al., 2019),
although they are slightly lower. The gains being relatively
small show that GY was not the only priority for breeders.
Wheat breeding in Norway has put a great emphasis on bak-
ing quality (due to the fact that most of the production is used
for breadmaking), disease resistance (e.g., powdery mildew,
Fusarium head blight, septoria nodorum blotch), and resis-
tance to lodging and preharvest sprouting (Lillemo & Dieseth,
2011). Fungal diseases as well as lodging and preharvest

sprouting are promoted by often rainy and windy weather dur-
ing the season. The highest yielding cultivar, Arabella, is cul-
tivated as a feed wheat due to its exceptional biomass and GY
but does not meet the quality requirements for breadmaking
in Norway.

The GY gains can be seen under both high and low fertil-
ization inputs with similar cultivar ranking, showing that the
source of improvement is of a genetic nature. The estimated
gains are higher under high fertilizer input, which may indi-
cate that the new cultivars are more responsive to increased N
fertilization. This finding contradicts some of the results pub-
lished (Ahrends et al., 2018), where the genetic progress relied
strongly on the management applied (soil N availability). Our
findings correspond to the results of Voss-Fels et al. (2019),
where the progress was apparent across different management
regimes. The new cultivars under low N input nearly approach
the old ones under high input in terms of GY, which under-
lines genetic contribution to yield progress. Hypothesizing, it
would be possible to reduce the fertilizer input by almost 50%
and, by using new cultivars, still achieve yields close to those
obtained with high input five decades ago. Despite the unre-
alistic nature of this scenario (constantly increasing national
demand), it shows that breeding contributes to a more sustain-
able development of agriculture and leads to increased fer-
tilizer use efficiency. This aspect is even more pronounced
considering the higher PYs achieved by the newer cultivars.
Based on our results, there are no apparent signs of the genetic
gains approaching a plateau phase (Grassini et al., 2013).

4.2 | Agronomical and physiological traits
None of the investigated traits exhibited significant g X m
interaction (at 95% confidence level), and similar findings can
be found in the literature (Geren et al., 2019; Mandic et al.,
2015). The small cultivar pool investigated and use of the split
plot design to maximize cultivar comparisons within fertiliza-
tion level leaves little statistical power to assess the minor g X
m interactions that might be present. Increased fertilizer input
has a positive influence on GY, PH, GPC, GF, DM, TKW, TW,
GPC, PY, BM, grains per spike, and grains per area. Those
results are in line with previous works (Amer, 2017; Asghar
Ali et al., 2000; Mandic et al., 2015; Pradhan et al., 2018; Yu
et al., 2018) and confirm the current view on fertilizer effects
on crops.

4.3 | Grain yield and traits over the
1972-2019 period

The strong negative relation of GY and GPC, present under
both fertilization rates, corresponds with the common view,
for instance, of Monaghan et al. (2001) and Yu et al. (2018).
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The increase in GY is achieved by accumulating more starch
in the kernels at a cost of protein content. However, despite
the decline in GPC, a positive relation of grain PY with
year of release is observed. The negative relationship between
GY and GPC is especially pronounced in high-yielding cul-
tivars grown in European countries. A number of explana-
tions for this phenomena have been proposed, but none is uni-
versally accepted (Simmonds, 1995). Bread making quality
is a paramount breeding goal in Norway as the bulk of the
domestic wheat production is being used by industrial bak-
eries. Newly released cultivars must be at least as good as
cultivars already on the market in terms of yield, disease resis-
tance, and agronomic properties, and match with the require-
ments for the different quality classes defined by the industry.
It is a common practice nowadays in Norway to apply split fer-
tilization with about two-thirds of N applied at sowing and the
remainder at the heading stage. The latter amount is adjusted
according to the yield potential of a cultivar to secure suffi-
cient GPC, and therefore, achieve satisfactory baking qual-
ity. The trend observed in our data might be due to the fact
that the highest-yielding cultivars have a higher grain set and
the amount of N applied at sowing is not sufficient for them
to reach their full potential in GPC. Grain protein content in
wheat depends on the uptake of soil N before anthesis, its
uptake during the GF, and finally, remobilization to grains of
stored N in the plant. Larger N uptake before anthesis favors a
higher grain number whereas late N uptake assures high GPC.
It has been shown that up to 50% of total N in wheat plants at
maturity may be taken up after anthesis (Austin et al., 1977;
Ellen & Spiertz, 1980; Heitholt et al., 1990). Three of the cul-
tivars present in our collection possess the wild-type allele of
the Gpc-B1 (NAM-BI) locus: Mirakel, Rabagast, and Polkka.
The Gpc-B1 wild-type allele is well documented to increase
GPC, accelerate senescence, increase Fe and Zn content, and
toreduce GY (Brevis & Dubcovsky, 2010; Uauy, Brevis, etal.,
2006; Uauy, Distelfeld, et al., 2006). These three cultivars
show no apparent difference in GPC, GY, and DM, showing
that the general trend of decreasing GPC, delayed senescence,
and increased GY was achieved by utilizing a larger number
of small-effect quantitative trait loci rather than relying on a
single, large effect locus.

Grain yield is strongly associated with DM. Longer GF
results in an opportunity to gather more resources and allo-
cate them in kernels, but this trait is difficult to balance
under Norwegian growing conditions. Earliness is a desired
trait as September (harvest time) is usually marked with fre-
quent rainfall and wind, promoting lodging and preharvest
sprouting. However, a shorter vegetative period comes with
lower GY's and farmers in Norway must consider the balance
between the possibility of growing later cultivars for higher
yield with the risk of quality and yield loss due to difficult
weather at the end of the season. Therefore, with the increase
of latitude, earlier cultivars are desired in Norway due to the
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shortening of the available growing season. Changing cli-
mate with increased growing season temperature over the past
five decades has indeed allowed for the introduction of later-
maturing cultivars as seen in the trend over years for DM. The
spring in Norway arrived on average 7 d earlier in 2005 than
in 1971 (Nordli et al., 2008), which aligns with our findings of
an average 3 d longer time period between sowing and physi-
ological maturity.

The relationship between grains per spike and grains per
area was found to be a driver of yield gains in European wheat
collections (Voss-Fels et al., 2019); however, this was not
present among CIMMYT (Aisawi et al., 2015) nor Chinese
(Yao et al., 2019) accessions. In our study, GY is correlated
with the number of grains per spike and kernel weight (under
low fertilization input), and with the number of grains per area
(under high input), which aligns well with other studies on
European wheat (Voss-Fels et al., 2019). However, in contrast
to what has been shown for CIMMYT wheat (Aisawi et al.,
2015), kernel weight shows no signs of consistent improve-
ment in the 1972-2019 period; it is grains per area and grains
per spike that exhibit such an increase. By that, we con-
clude that the yield progress in our collection is driven by the
increase in grain number both per spike and area, considering
also reports from other wheat collections in Europe.

Grain protein content showed a declining trend over the
year of release in this study, which is connected to the progress
in GY (reverse relationship between protein content and GY).
This tendency, however, is more pronounced under the high N
treatment, suggesting that the highest-yielding cultivars need
more N to reach their protein content potential. Protein con-
tent of the older cultivars appear to be strongly responding to
soil N availability. The newer cultivars also respond to fertil-
ization; however, the GPC difference between the treatments
is smaller than for the legacy cultivars.

Harvest index was slightly improved over the years in our
collection, which is visible mostly under low fertilization.
No trend was observed for biomass production of the cul-
tivars under any treatment, which hints that GY increase
is driven by HI improvement rather than increases in total
biomass.

S | CONCLUSIONS

Spring wheat breeding progress represented by a collec-
tion of 21 cultivars released in Norway during the past five
decades increased the average GY by 17.8 kgha™! (0.34%) per
year under Norwegian growing conditions. Highly significant
gains are present under both high and low fertilization treat-
ments, providing grounds to conclude that breeding progress
does not depend on intensive management. Increased fertil-
ization has a significant positive effect on GY, PH, GPC, BM,
grains per spike, TKW, TW, HI, and DM. Days to heading
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and number of spikes per area are the only traits unaffected
by fertilization. None of the traits were subject to a signifi-
cant (o« = .05) g X m interaction. Grain yield in the collec-
tion is associated mostly with number of grains per spike and
number of grains per area. Breeding led to a development of
later-maturing cultivars with prolonged GF, producing more
grains per spike and grains per area. Grain yield gains have
been driven mostly by prolonged GF and increasing the num-
ber of kernels per spike and number of kernels per area.
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Weather data

Weather data was downloaded from Norwegian Institute for Bioeconomy website
(NIBIO, https://Imt.nibio.no/, weather station in As) and visualized using package
“ggplot2”. As the origin of the plot, the seeding date of the respective field trial year
was taken.

Genetic relationship among the varieties and hierarchical clustering

Genomic relationship matrix according to Van Raden (2008) and hierarchical
clustering were calculated and visualized using package “AGHmatrix”, using genomic

data already available in our laboratory.

Season 2018 (drought year) field trial

Trial was conducted in the same manner as in the remaining seasons as described in
the main text in materials and methods.

Genetic gains in grain yield - validation

Genetic yield gains described were validated by comparison to the same varieties
grown as a part of another field experiment of approximately 300 spring wheat lines
conducted in the same years as the main trial (2016-2020, excluding 2018) in the
same location. The experiment did not include the fertilization (management) factor,
instead the varieties were grown under 120 kg N ha‘l, full fungicide, pesticide, and
herbicide treatments following common practice. This fertilization, though slightly
suboptimal, is a compromise to reduce risk of lodging. Due to large size of the
experiment, it was arranged as an augmented alpha-lattice design. Least squares
estimates for grain yield were calculated for each trial year with R package “Ime4”, as

described in Materials and Methods, using an analogical mixed model:
Pik = u + gi + Yk + Y:Rkl + Y:R:Bklm +Y: Ckn +Y: Wko + €iklmno

Where P;; is a least square estimate of grain yield of the ith variety in kth field season
(vear), u is the general mean, g; is a fixed effect of the ith variety, Y} is a random effect
of kth field season (year), Y: R, is arandom effect of the Ith rep in season k, Y: R: By,
is a random effect of the mth block within the Ith rep in the kth season, Y: C},, is a
random effect of the nth column within the kth season, Y: W, is a random effect of
the oth row within the kth season and e;j ;.0 1S the corresponding error term. Results

were visualized as described in Materials and methods.



Supplementary Results and Discussion

Weather data
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Figure S1 Weather data for field seasons 2016-2019, from seeding the trial to the end
of September. Solid line marks the average temperature for each day, dashed line marks
the mean temperature across the season, bars mark the daily rainfall in mm per mZ.

Primary y axis - temperature in °C, secondary y axis - rainfall in mm per m?

Seasons 2016, 2017 and 2019 were approximately like one another in terms of
temperature and rainfall, which has a reflection in the average yields in those years
(Table 2). Season 2018 was characterized by slightly higher average temperature and
very scarce (if any) rainfall during the intensive growth phase of plants (Figure S1),
which resulted in severe drought stress and drastically reduced (approximately 60%)
grain yield (Table S1). For this reason, we deemed 2018 trial heavily biased and

therefore to not include it in the main analysis.
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Genetic relationship among the varieties with hierarchical clustering
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Figure S2. Genomic relationship (G) with hierarchical clustering of the varieties present
in the study, calculated according to Van Raden (2008)

The most similar pairs of varieties are Bastian and Bjarne, Runar and Polkka,
Demonstrant and Krabat, Avle and Caress. Two clusters containing highly genetically
similar varieties are present: Runar, Polkka, Willy, Demonstrant and Krabat (cluster
1) and Avle, Caress, Eleven and Felgen (cluster 2). Cluster 1 contains mostly varieties
developed by Graminor (Norway), while cluster 2 contains only varieties developed

by Lantmannen (Sweden).

Trial data for field season 2018 (drought)

As mentioned before, grain yield in 2018 field season were reduced compared to the
other years (by approximately 60%), which was caused by a combination of heat and
drought stress. As a general effect seen across the wheat growing region in south-

eastern Norway that year, high temperature and limited water availability during the



first month after seeding had a severe effect on tillering and grain set. Despite
repeated irrigation, this combined stress of heat and drought could not be alleviated
in our field trial. The data suggests that fertilization regime had a positive impact on
yield but less pronounced than in the “normal” years (Table S1, Figure S3). Despite
the drought and heat stress, statistically significant genetic gains in yield can still be
observed, but only for the highN treatment (10.3 kg-ha! per year, p < 0.05).
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Figure S3 Genetic grain yield gains over the 1972-2019 period under the two
fertilization levels. Green - lowN (75kgN-ha’l), red - highN (150kgN-ha?) fertilization

Table S2 Traits collected in the 2018 season, least square estimates of an average of

trait values across management levels and significance of model parameters.

Trait Abbv. Unit Estimate £ SE¥ Sign}ig::rr:l(;i::sr:: ol
75kgN | 150kgN [ genotype | management | gxm

Grain yield GY | Mghat 1(')?17 : z(ff : * o ns
Plant height PH cm 5%‘;11 * 52251 * x ns ns
Days to maturity DM day 9321?3 * 9?’)2% * ok ns ns
Thou:fer;gl:(ternel TKW g 3%';56 + 3%57% + sk . ns
Test weight T™W g 7%85?7 * 7%3;97 * ok ok ns
Protein content GPC % 1‘52‘3 * 1%2‘; * kK kK ns

T Least squares estimate of trait value averaged over all varieties), signif. codes: ***p <
0.001, *p < 0.01, *p < 0.05, nsp > 0.05
Tt Two - way ANOVA



The influence of genotype on all the measured traits in season 2018 (Table S2) is still
significantly present, however, less apparent in cases of grain yield and thermal time
to maturity (p < 0.05). Remarkably reduced plant height and increased protein
content was observed in 2018 compared to the other years (Table S2, Table 3).
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Figure S$4 Genetic gains over the 1972-2019 period in Norwegian spring wheat in
season 2018 in (a) days to maturity, (b) plant height, (c) thousand kernel weight, (d)
test weight and (e) grain protein content. Red - highN (150 kgN-ha'1), green - lowN (75
kgN-ha'1)

Under drought stress similar patterns over time can be observed as in “normal”
conditions for most of traits measured in 2018.

To summarize, drought and heat reduced grain yield by approximately 60% and
made the grain yield and plant height genetic gains dependent on fertilizer input. The
stress conditions also reduced the effect of fertilization on yield and plant height but
increased the average protein content of the kernels. Conclusions from this part
should be considered approximate, as some of the results may be misleading due to

the “uncontrolled” experiment conditions and uneven drought stress within the trial.



Validation of genetic gains in grain yield
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Figure S5 Validation of grain yield genetic gains

Estimated annual genetic gains from the validating experiment conducted over 4
years are approximately 17.52 kg-hal (0.39%, Figure S5), which confirms the

findings presented in the article.
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Abstract

Grain yields in Norwegian spring wheat increased by 18 kg ha-! per year between
1972 and 2019 due to introduction of new varieties. These gains were associated with
increments in the number of grains per spike and extended length of the vegetative
period; however, little is known about the genetic background of this progress. To fill
this gap, we conducted genome-wide association study on a panel consisting of both
adapted (historical and current varieties and lines in the Nordics) and important
exotic accessions used as parents in the Norwegian wheat breeding programs. The
study concerned grain yield, plant height, and heading and maturity dates, and
detected twelve associated loci, later validated using independent sets of recent
breeding lines. Adaptation to the Norwegian cropping conditions is associated with
the Vrn-A1 locus, and a previously undescribed locus on chromosome 1B associated
with heading date. Two loci associated with grain yield, corresponding to the TaGS5-
3A and Ta-Col5loci, indicated historical selection pressure for high grain yield. A locus
on chromosome 2A explained the tallness of the oldest accessions. We investigated
the origins of the beneficial alleles associated with the wheat breeding progress in the
Norwegian material, tracing them back to crosses with Swedish, German, or CIMMYT
lines. This study contributes to the understanding of wheat adaptation to the
Norwegian growing conditions, sheds light on the genetic basis of historical wheat
improvement and aids future breeding efforts by discovering loci associated with

important agronomic traits in wheat.



Key messages

Adaptation to the Norwegian environment is associated with polymorphisms in the
Vrn-A1 locus. Historical selection for grain yield in Nordic wheat is associated with
TaGS5-3A and Ta-Col5 loci.
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Chr - chromosome

CMLM - compressed mixed linear model

DArT - diversity array technology

DH - days to heading

DM - days to maturity
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FDR - false discovery rate
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QTL - quantitative trait locus

QTN - quantitative trait nucleotide
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SSR - simple sequence repeats
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Introduction

Hexaploid bread wheat (Triticum aestivum L.) is among the most essential and traded
staple foods, providing around 20% of daily protein and calorie intake for
approximately 4.5 billion people worldwide (Braun, Atlin and Payne, 2010). The
annual genetic gain in wheat grain yield (GY) must be increased from the current
levels to 1.0-1.6% to meet the food demands of the projected global population in the
2050. However, due to current and future challenges posed by climate change, such
as reduced soil health, change in temperature, and erratic rainfall, maintaining and

acceleration of the annual genetic gains is a challenge (FAO, 2017).

Today, wheat cropping in Norway is an integral part of the country’s sustainability
policy, despite being relatively small in size compared to the other Nordic countries
(0.33 Mt in Norway versus 2.67 Mt in Sweden, 0.84 Mt in Finland and 4.47 Mt in
Denmark) (FAOSTAT, data from 2010 to 2020; https://www.fao.org/faostat). From
1972 to 2019, wheat breeding in Norway increased grain yields by 17.8 kg ha-1 per
year and prolonged grain filling and vegetation periods by 2 and 3 days, respectively,
showing better adaptation of new cultivars to the changing climate (Mréz, Dieseth
and Lillemo, 2022). To enable further genetic gains in Norwegian spring wheat by
utilizing genomics-driven breeding approaches, such as marker-assisted selection
(MAS) or genomic prediction (GP), a detailed association study of important

agronomic and quality traits in the current breeding material is needed.

The success of a wheat crop is largely determined by adaptation, consisting of genes
for phenology and development and their interactions with one another and the
environment (Hyles et al., 2020). In order to reach maximum kernel size and number,
wheat must develop biomass and flower at the time of optimal seasonal conditions
(Trethowan, 2014). One of the key components of adaptation is the vernalization,
defined as a requirement of low temperatures to flower. Vernalization requirement
is mainly determined by the Vrn-A1 loci on the long arm of chromosome 5 with copies
in all the three wheat sub-genomes. Winter wheats usually carry the winter alleles at
all three homoeologous loci, while it is not uncommon for spring wheat to carry the
winter allele at Vrn-A1 to extend the vegetative growth period (Yan et al.,, 2003, 2004,
2006). Another critical aspect of wheat adaptation is photoperiod sensitivity, largely
determined by alleles of the Ppd1 (Photoperiodl) gene, with homologous copies on
chromosomes 24, 2B, and 2D (Ramirez et al., 2018).

There have been many loci under historical selection pressure in wheat due to

human-driven breeding efforts to improve yield, disease resistance, and other



desirable traits. The Rht genes are the main genes of the Green Revolution and
contributed to dramatic gains in GY (Liu et al., 2017). The Rht gene alleles control
plant height, and thus harvest index. Selection for favorable alleles in the Rht locus
led to the development of semi-dwarf varieties with increased yield, suitable for
intensive agriculture (Wang et al.,, 2014). Another selected locus is TaGW2, involved
in regulating grain weight in wheat (Zhang et al, 2018). Recently, a locus on
chromosome 3A - Ta-GS5-3A - was discovered to be under historical selection

pressure in Chinese wheat, causing increments in grain size (Wang et al., 2016).

Significant progress in GY was discovered in Norwegian spring wheat over the last
five decades due to introduction of new varieties, but little is known about its the
genetic basis. The Norwegian growing environment is also distinct, and the genetic
basis for genotype adaptation is largely unknown. To fill these gaps, the aims of this
study were: i) to detect genomic regions associated with grain yield, plant height, days
to heading and days to maturity; ii) to discover genomic regions associated with
genotype adaptation under Norwegian growing conditions; and iii) to explore genetic
explanations for the historical breeding progress in grain yield and plant height in

Norwegian spring wheat.

Materials and methods

Plant material

The NMBU spring wheat panel, consisting of 301 hexaploid spring wheat varieties
and breeding lines, was used for the primary association study. The same panel was
recently used for genetic analyses of Fusarium head blight (Nannuru et al., 2022) and
Septoria nodorum blotch (Lin et al, 2022) resistance. The collection encompasses
186 Norwegian, 40 Swedish, and 37 lines from CIMMYT, with several additional lines
from Australia, Brazil, Canada, Czech Republic, Denmark, Finland, France, Germany,
Netherlands, Poland, Russia, Slovakia, South Africa, Switzerland, UK, and the USA.
Varieties from Norway or Sweden are adapted to the local growing conditions, while
the remaining lines form the “exotic” (not adapted) part of the panel. The whole set
encompasses historically significant and current varieties, covering the highlights of
the last decades in wheat breeding in the Nordics and worldwide and representing a
broad genetic and phenotypic diversity. This collection also contains historical
varieties on the Norwegian market, described in Mroz, Dieseth, and Lillemo (2022).

This collection is referred hereafter to as the main panel.



An independent set of 889 current breeding lines was used for QTL validation. This
collection originates from the commercial spring wheat breeding program of
Graminor (Ridabu, Norway) and is hereafter referred to as the validation panels. Not
every genotype was tested in each season/location combination due to different
genotype content and number in every field season (ranging from 90 to 397 lines,
detailed overview in Table S3). The validation panels are considered adapted to the

Norwegian growing conditions due to their origin.

Field trials

Field trials were carried out for the main panel during field seasons 2015-2021 in
Vollebekk Research Station (Norway, As, 59°39’N, 10°45’E) and Staur farm (Norway,
Stange, 60°43’'N, 11°06’E). Those locations represent Norway’s two main and
economically important wheat-growing areas: the somewhat warmer and milder
climate of south-eastern Norway and the slightly colder and temperate climate of

inland Norway, respectively.

The trials were fertilized at sowing with 120 kg ha'! of compound NPK fertilizer
(YaraMila 22-3-10) and planted each season on the break of April and May in both
locations (exact planting dates in Table S1). Following germination, trials were kept
disease and weed free according to local management practices using herbicides
(Tripali [active ingredients: florasulam + metsulfuron-methyl + tribenuron-methyl]
and Duplosan Meko [mekoprop]) and fungicides (Proline [prothioconazole], Aviator
Xpro [bixafen + prothioconazole], Forbel [fenpropimorph] and/or Comet Pro
[pyraklostrobin]) in doses tailored to the needs. Irrigation was applied in case of
drought that could affect the growth of the plants. Alleys within the trials were
created by spraying Glyphosate shortly after seedling emergence. The trials were
harvested each season towards the end of August after all varieties had reached full

ripeness.

Season 2018 in both locations was marked by very little rainfall and high
temperatures during the early growth stages of the plants (almost no rain from May
to mid-June, Fig. S1, S2, Tables S4, S5), which, despite irrigation efforts, caused severe
damage to the trials. This damage reduced grain yields by nearly 60% and caused
many plant agronomical characteristics to be abnormal (data not shown). Therefore,

we excluded the 2018 field season at both locations from the analysis.

Field trials of the validation panels were carried out following the same procedures

as for the main panel in field seasons 2019-2022 at Staur and Vollebekk locations.



Field trial design

The trials were designed as an alpha-lattice with two replicates per genotype, a block
size of 6, and positions of every accession randomized each year. Each column was
planted with buffer variety at its start and end to eliminate border effects. Each field
trial plot was 5 by 1.5 m in size at harvest, with gaps between the plots of 30 cm and
a central alley of 1 m. Not every variety was tested for the main panel in each
season/location. The number of genotypes tested varied from 100 to 295 per
season/location, with 301 and 296 unique accessions in Vollebekk and Staur,

respectively (Table S2).

Phenotypic data

The collection was phenotyped for days to heading (DH), days to maturity (DM), grain
yield (GY), and plant height (PH). Not every trait was phenotyped in every

environment (season/location combination) (Table 1).

Table 1 Overview of when the phenotyped traits were captured in each location for the

main panel. * Days since sowing

Trait Abb.|Unit Vollebekk Staur

Days to maturity| DM | dss*|2015, 16,17, 19, 20, 21(2016, 17, 19, 20

Grain yield GY |g'm2(2015, 16,17, 19, 20, 21|2016, 17, 19, 20

Days to heading | DH | dss*|2015, 16,17, 19, 20, 21 2017, 19, 20

Plant height PH | cm (2015, 16,17, 19, 20, 21 2019, 20

DH and DM were assessed by recording when approximately 50% of the plants in an
experimental plot had reached the respective stage. GY was measured by harvesting
and threshing the trial plots, drying the yield until approximately 13.5% moisture,
weighing it, and recalculating it to g m-2. PH was assessed by measuring the distance
between the ground and the top of spikes (excluding awns, if present) for a random

tiller sample when plants reached their final height.

Data for plots that lodged early in the season was removed due to the heavy impact
on their development. If lodging occurred later in the season (close to physiological
maturity), data were double-checked for consistency and possible impact on the
traits and judged if it should be included in the dataset.



Statistical analysis of the field trials

For each trait, three types of genotypic means (Ismeans) were calculated:
location/season (field trial) means, location mean (all seasons from one location), and

a global mean, where all the locations and seasons were combined.

As it was common to observe extra spatial variability within the trials (due to soil
gradients) that could not have been captured by blocking, an additional covariate was

introduced (columns) into the models to correct it.

The Ismeans were calculated using packages “lme4” and “ImerTEST” and custom

scripts in R, version 4.2.1.
Field trial (environment) Ismeans were calculated using the mixed model (1):
Piymn = U+ gi + Ry + R: By + Gy + €jymn €Y)
Cross-season Ismeans for each location were calculated using the mixed model (2):
Poimn =u~+ gi+ YV +Y: Ry +Y:R: By + Y: Cien + €ikimn 2

Global means (cross-season, cross-location) were calculated using the mixed model
(3):
Pijklmn = u + 9i + L] + L: Y}k +L:Y: Rjkl +L:Y:R: Bjklm +L:Y: Cjkn + eijklmn (3)

Where P;ji;my is the phenotype (trait) value for genotype g; in location L; in season
Y, planted within replicate R;, block B,,, and column C,. Small letters denote fixed
effects, capitalized letters denote random effects and “:” denotes nesting of effects. u

is the general mean and e denotes the error, 11D (0, 62).

Field trial (season/location), location, and an overall means (across all field trials) are

hereafter referred to as environment, location, and global means, respectively.

For the validation panel, only environment means were calculated due to varying

genotype content in each environment.

Broad-sense heritability (H?) was used to assess data quality (replicability),

calculated for individual trials using equation (4):

2
H2 = ¢
" 02 +02

G e

C))

where g} is the genotypic variance and o7 is the error variance.



Variance components for equation (4) were estimated using package “Ime4” using a

fully random model (5):
Pi = Gi + ei (5)

where P; is the phenotype (trait) value of genotype G; and e; is the error term,
1ID(0,a2).

» o«

Data visualization was performed in R using packages “ggplot2”, “ggpubr” and “ggsci”.

Genotyping data

Samples were prepared and genotyped with the TraitGenetics 25K SNP chip as
described in Nannuru et al. (2022).

The physical positions of the markers were determined using the chip’s
documentation, and markers not mapped to any physical chromosome position were

placed on a fictional chromosome Un.

Markers were filtered, leaving only the ones with less than 10% missing data and
minor allele frequency (MAF) larger than 0.05. Heterozygous markers were treated
as missing data. After the quality check, the dataset contained 19874 high-quality
markers mapped to sub-genomes A (7999), B (7905), and D (2111) on chromosomes
1A (1156), 1B (1147), 1D (391), 2A (1232), 2B (1377), 2D (437) 3A (1074), 3B
(1336), 3D (256), 4A (699), 4B (602), 4D (111), 5A (1340), 5B (1406), 5D (311), 6A
(1126), 6B (1082), 6D (319), 7A (1372), 7B (955), 7D (285) and Un (1859).

Population structure, linkage disequilibrium, and GWAS

The main panel exhibits a strong population structure due to the presence of
“adapted” and “exotic” groups of lines; therefore, additional correction for population
structure was applied by including principal genomic components in the model. Due
to their poor adaptation, the “exotic” lines often exhibit unusual phenotypes under
Norwegian growing conditions. To mitigate the risk of confounding SNPs with line
adaptation and to discover possible sources of adaptation, two series of GWA studies
were carried out for each phenotype: on the whole collection and adapted lines only.
A detailed description of the population structure present in the main panel can be
found in Nannuru et al. (2022).

Genome-wide association studies (GWAS) and LD (linkage disequilibrium) analysis
were performed using GAPIT v3.2 (Wang & Zhang, 2021) in R version 4.2.1. GWAS

was performed on a series of phenotypes for each trait: all environment means,



location means, and global mean, computed as described in the section Statistical

analysis of the field trials.

Detecting peak markers using the FarmCPU method

Several models’ performance was considered, including CMLM (Zhang et al., 2010),
MLMM (Segura et al., 2012), SUPER (Wang et al., 2014), GBLUP (Zhang et al., 2007),
and FarmCPU (Liu et al., 2016).

The FarmCPU method was chosen to detect peak markers based on superior
accordance with the null hypothesis and stronger signal compared to the other
methods and its ability to “distillate” markers in a given significant locus by providing
fewer MTAs (marker-trait associations), but with a stronger signal. FarmCPU is a
multi-locus model based on the MLM method, which relies on iterative and
alternative use of fixed and random effect models to minimize the proportion of false
positives. Markers are tested one by one using random models. Then the resulting
significant associations are used as covariates in a fixed model (random models allow
for avoidance of the overfitting issue present with fixed effect models). FarmCPU is

well-suited for highly quantitative trait analysis (Liu et al., 2016).

MTAs for each trait were considered based on Bonferroni - corrected p-values
(effective threshold of -logio(p) = 5.6). MTAs that crossed the threshold at least for
the global mean, and two other environments were reported. All the studied traits are
highly quantitative and controlled by many small effect loci; therefore, the Bonferroni
correction of p-values can be too conservative (Haikka et al., 2020). Therefore, a less
stringent criterion of a = 0.001 was also applied: a region was considered meaningful
if two or more SNPs within 5 Mbp distance appeared significant for the global mean

and at least two different environments/means.

Expanding QTL regions around peak markers

Consistent peak markers discovered using the FarmCPU method (section above)
were used to anchor possible haplotypes. A window of 40 Mbp (chosen based on
linkage disequilibrium, Fig. S3, section Genome-wide association study and linkage
disequilibrium) around a peak marker’s position was studied using the MLM method
(also implemented in GAPIT v3.2). Markers were considered based on appearing
significant (-logio(p) > 3) for the global mean and at least two environments/means.
Peak markers alongside significant markers in the window were used to construct
haplotypes. The search for MTAs with the MLM method was carried out in the
adapted and complete datasets, similarly to the FarmCPU method.
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Individual markers and QTL haplotypes were tested for their associations with the
respective traits on the global mean without population structure correction in both
the full main panel and its adapted part. Comparison between marker alleles and
among haplotype alleles was performed using Tukey’s Honestly Significant
Difference (HSD) posthoc test, a = 0.05. Rare haplotype alleles appearing in less than
ten accessions were discarded from the analysis due to insufficient statistical power
to detect their associations. The proportion of phenotype variance explained by each
SNP and each putative QTL was estimated using linear models and reported

separately as a percentage in the whole panel and its adapted part.

Allele frequency over time

Varieties in the adapted part of the main panel were assigned a breeding line year of
creation by analyzing their documentation. For varieties for which it was only
possible to establish the year they were released to the market, seven years were
subtracted to obtain the year of creation (based on the average time it took from
variety creation and release to the market in the collection). It was possible to
establish the year of creation (YOC) for 180 lines in the adapted part of the main panel,
assigned to the following seven periods: pre-1960 (2 lines), 1960-1969 (4), 1970-
1985 (6), 1986-1995 (9), 1996-2005 (24), 2006-2010 (41), and 2011 onwards (94).
Allele frequency for each discovered haplotype and MTA in GWAS was calculated for

each period and analyzed for trends over the years.

Effect validation

Effects of the significant associations discovered in the main panel (full panel and its
adapted part) were tested using an independent set of varieties and breeding lines
originating from Graminor AS (Ridabu, Norway) spring wheat breeding program

(section Plant Material).

Field trial data were analyzed using mixed models as described in the section
“Statistical analysis of the field trials”; however, without calculating cross-
environment means due to different genotype composition each year. Associations of
markers and haplotypes were tested against each season’s genotypic means without
correcting for population structure using Tukey’s Honestly Significant Difference
(HSD) posthoc test, a = 0.05. Rare haplotype alleles (appearing in less than ten

accessions) were discarded from the analysis.
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Results

Phenotype data

Differences between the two field trial locations are visible for every studied trait.
Lines in the main panel grown in Staur, on average, tend to head nine days faster (DH),
have vegetative period shorter by 2.5 days (DM), have higher grain yield by 90 g m-2
(GY) and reach lower plant height by 4.5 cm (PH) compared to Vollebekk. The Staur
trials exhibit higher variability in DH, DM, and GY (Table 2).

The most substantial difference between the exotic and adapted lines of the main
panel is seen for GY, with a severe reduction of GY in non-adapted lines accounting
for 64% of the total phenotypic variance in yield. Adapted lines also tend to head
earlier, mature earlier, and be shorter, but with the grouping explaining much less of

the phenotypic variance (Table 2, Figure 1).
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Figure 1 Phenotypic differences among the genotypes due to line adaptation in (a) days
to heading, (b) days to maturity, (c) grain yield, and (d) plant height. Groups with the
same letter are not significantly different (HSD test, a = 0.05). A - adapted, E - exotic

lines; n - number of records in the group, avg — average phenotype value in the group

Traits analyzed in this study exhibited high heritability (H2 > 0.63). DH showed the
highest heritability (on average, 0.84), followed by DM, GY, and PH (0.63). PH
achieved the highest variability in H2 (0.39-0.9) compared to other traits (differences
around 0.2) in different environments. Heritability estimates from Vollebekk and
Staur experiment sites were comparable (0.73 and 0.69, respectively) except for PH
(0.78 and 0.47 from Vollebekk and Staur, respectively) (Table 3).
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Table 2 Descriptive statistics and variance explained by cultivar adaptation for days to
heading (DH), days to maturity (DM), grain yield (GY), and plant height (PH) in all the
studied environments (Env) and means. Avg - mean value, SD - standard deviation,
VarAD - fraction of variance explained by cultivar adaptation (in percent). For single
field trials (environments): letter designates location (V - Vollebekk, S - Staur) and
number denotes season (year). Vmean - cross-season trait means in location Vollebekk,
Smean - cross-season trait means in location Staur, Gmean - cross-season, cross-

location Global means.

Env/ DH, dss DM, dss GY, gm? PH, cm
mean Avg | SD | Varap | Avg SD | Varap | Avg | SD | Varam | Avg SD | Varap
V2015 | 70.7 | 1.4 4.3 1264 | 3.0 | 12.6 | 426 | 91 53.7 | 817 [ 9.9 9.4
V2016 | 62.0 | 1.6 2.7 109.8 | 3.8 4.7 387 | 77 534 | 731 | 89 1.2
S2016 - - - 1009 | 41 | 181 | 497 | 114 | 30.0 - - -
V2017 | 59.2 | 1.7 6.4 99.3 | 2.0 0.3 440 [ 75 53.5 [ 78.0 [ 86 3.6
§2017 | 58.0 | 21 | 29.6 | 120.8 | 59 | 189 [ 789 | 118 | 54.3 - - -
V2019 | 68.0 | 1.3 0.8 108.5 | 1.6 1.1 601 | 55 28.6 | 96.0 | 8.7 0.3
S§2019 | 479 | 2.5 | 149 99.8 | 6.0 | 18.0 [ 530 | 65 17.2 | 869 | 5.2 0.1
V2020 | 665 | 1.4 0.2 117.8 | 3.3 5.6 649 | 82 40.1 | 838 | 6.7 0.4
§2020 | 61.6 | 1.4 2.2 1123 | 14 0.4 592 | 81 56.7 | 70.2 | 5.3 0.1
V2021 | 644 | 1.7 0.0 1045 | 29 | 114 | 540 [ 69 463 | 86.1 | 7.8 0.8
Vmean | 65.1 | 1.4 0.5 111.1 | 2.3 | 10.6 | 509 | 72 63.7 | 83.0 | 7.7 1.7
Smean | 559 | 1.7 | 16.7 [ 1086 | 3.7 [ 13.8 | 600 | 97 56.3 | 785 [ 5.0 0.1
Gmean | 60.8 | 1.4 3.7 110.1 | 2.7 | 13.6 | 548 | 81 642 | 819 | 71 1.3

Table 3 Broad-sense heritability estimates for each trait and each field trial
(environment). DM - days to maturity, GY - grain yield, GPC - grain protein content, DH
- days to heading, PH - plant height

Trait Vollebekk Staur Av
2015 | -16 -17 | -19 -20 | -21 | Avg (2016 -17 | -19 | -20 | Avg g
DH 0.86 | 0.67 [ 0.84 | 0.81 | 0.79 | 0.89 | 0.81 - 0.88 | 0.92 | 0.77 | 0.86 | 0.84

DM 0.77 [ 0.62 | 0.51 [ 0.69 | 0.66 | 0.75 | 0.67 | 0.73 [ 0.58 | 0.61 [ 0.42 | 0.59 | 0.63
GY 0.85 [ 0.61 | 0.49 [ 0.68 | 0.57 | 0.73 | 0.66 | 0.61 [ 0.69 | 0.51 [ 0.53 | 0.59 | 0.63
PH 0.85 [ 0.83 ] 0.66 [ 0.90 | 0.59 | 0.86 | 0.78 - - 0.55 | 0.39 | 0.47 | 0.63

Trial means for all traits were highly positively correlated (r > 0.5) across all-
season/location combinations, except for seasons 2015 in Vollebekk (lower
correlations for GY and DH) (Figures S4-7).

PCA of phenotypic data separates adapted from the exotic part of the panel. The exotic
varieties form a spread-out cloud and have lower GY and higher PH than the adapted

part, while differences in DH and DM are not strongly pronounced (Figure 2).
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Figure 2 Principal Component Analysis (PCA) of the main panel based on phenotypical

data. Color indicates line adaptation: blue - adapted, red - exotic (not adapted). GY -
grain yield, DM - days to maturity, DH - days to heading, PH - plant height

The strong population structure could be seen in the lack of a significant relationship
between DM and GY for the whole panel (Figure 3a) and its presence within both the
adapted and exotic parts of the collection (Figure 3bc). PH showed a weak negative
correlation with GY for adapted lines (Figure 3b), not observed in the entire panel or

its exotic part.

= > T T = > T T = > I T
a [a) O] o o b [=} 0] o o c [=} (O] o o
DM | 1.00 0.57 DM | 1.00 0.58 0.56 DM | 1.00 ).4 0.54
GY 1.00 GY 1.00 GY  1.00
DH  1.00 DH | 1.00 DH | 1.00
PH ' 1.00 PH  1.00 PH  1.00

Figure 3 Pearson’s correlation coefficient matrices for genotypic means of (a) all
accessions, (b) adapted accessions and (c) exotic accessions. DM - days to maturity, GY
- grain yield, DH - days to heading, PH - plant height
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Accessions for which it was possible to establish the year of creation (YOC, 180 lines)
were assigned to the following seven periods: pre-1960 (2 lines), 1960-1969 (4),
1970-1985 (6), 1986-1995 (9), 1996-2005 (24), 2006-2010 (41), and 2011 onwards
(94). Significant trends over the years can be seen for all traits except days to heading.
Lines belonging to the time periods from 1996-2005 onwards mature later than lines
created in the 1960s, and old accessions (until 1970) are significantly taller than later
lines. For GY, there has been consecutive increases with the lines created during
1971-1995 yielding significantly higher than older ones, but less than the most recent
lines created after 1995 (Fig. 4).
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Figure 4 Changes in the traits over the seven periods (x axis): days to heading (a, DH,
blue), days to maturity (b, DM, violet), grain yield (c, GY, dark blue), and plant height (d,
PH, red). Periods with the same letter are not significantly different (HSD test, a = 0.05)

GWAS results

GWAS analyses were conducted for each trait for the whole panel and its adapted
parts. QQ and Manhattan plots are available on Figures S8-15 and S16-23,

respectively.

A total of thirteen consistent and highly significant MTAs were detected using the
FarmCPU method, pointing to twelve QTL regions across all sub-genomes (three in A
subgenome, five in B, and two in D). Two QTL were discovered for DH on
chromosomes 1B and 7B, two for DM on chromosomes 6B and 6D, three for GY on
chromosomes 3A, 5A, and 7B, and five for PH on chromosomes 24, 4A, 4B, 4D, and
6B. All these regions met the stringent Bonferroni threshold for the most significant
marker, except for the plant height QTL on 4D (QHt.nmbu-4B), where the peak
markers were discovered using the criterion of p<0.001 across the global mean and
two other environments and two MTAs within a 5 Mb window. The number of
significant SNPs (detected using FarmCPU and MLM methods) in each QTL varied

from 1 to 18, and no QTL was associated with more than one trait (Table 4, S6).
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Table 4 QTL regions discovered in the study for days to heading (DH), days to maturity
(DM), grain yield (GY), and plant height (PH), their genomic locations (Chr, Span in
Mbp), number of significant markers in the locus (n), peak marker(s), QTL effects in the
full dataset (Er) and in the adapted part (Ea) in respective units listed in Table 1, trait
variance explained in the full dataset (%PVEFr) and in the adapted part (%PVEa), and
summary of validation results (Val) corresponding to Table S7.

Trait QTL/Chr Span [ n Peak marker(s) 'Er_['%PVEr| 2Ea [2%PVEa| 3Val
DH QHd.nmbu-1B 1-2 2 |[BS00022180_51 2.04 14.1 [Mono| Mono | Rare
QHd.nmbu-7B 606 1 |BobWhite_c3541_152 0.91 114 [ 0091 11.4 Rare
DM QMat.nmbu-6B | 132-136 [ 10 [Kukri_rep_c71420 511 [ 5.93 258 | 4.85 24.8 +
QMat.nmbu-6D 6 1 |BS00022523_51 0.82 8.80 | 0.81 10.0 +
QYld.nmbu-3A 267 1 |BS00110129_51 38.1 22.0 16.4 14.3 +
GY QYld.nmbu-5A | 683-708 | 8 |BobWhite c8266_227 |192.6| 67.2 Ns Ns +
QYld.nmbu-7B | 701-703 | 6 |BS00083578_51 106.2] 163 |83.6| 309 +
QHt.nmbu-2A | 524-543 | 5 |AX-95095516 7.91 9.21 |7.97 12.6 Rare
QHt.nmbu-4A | 570-603 | 3 |CAP11 _c3631_75 9.77 1 9.36 [5.45 9.08 +
PH QHt.nmbu-4B 13-59 [18[TG0010a; TGO010b 8.20 [ 27.7 | 7.22 23.9 +
QHt.nmbu-4D 19-26 3 |BobWhite_s64797_152 | 829 [ 32.5 | 9.32| 429 +
QHt.nmbu-6B 202 1 [Ra_c10469_616 2.00 5.21 1.25 2.14 +

1Full difference between homozygotes without correcting for population structure using
a linear model in the full dataset. 2Full difference between homozygotes without
correcting for population structure using a linear model in the adapted
dataset.3Validation of effects without correcting for population structure in sets of
independent lines in a total of six environments using a linear model. + - at least one SNP
in the region showed significant effect (HSD test, @=0.05) in one of the validation sets.
Rare - all markers had MAF < 0.05 (estimation not reliable), Mono - marker
monomorphic (estimation not possible).

Two QTL regions were detected for DH on chromosomes 1B and 7B, explaining 14
and 11% of the variance and with two and one-day effects, respectively. Both
consisted of a few SNPs (two and one, respectively). QHd.nmbu-1B was strongly
associated with population structure, as it showed a significant effect only in the
whole dataset due to a lack of haplotype diversity in the adapted part. QHd.nmbu-7B
consistently showed the same effect and proportion of variance explained in both
datasets (Table 4, Table S6), indicating a lack of association with line adaptation.
QHd.nmbu-1B and QHd.nmbu-7B had low MAF in the validation sets, making the

estimation of their effects unreliable (Table S7).

For DM, two QTL regions were detected on chromosomes 6B and 6D, consistently
associated in the complete and adapted datasets. QMat.nmbu-6B consisted of 10
markers, while QMat.nmbu-6D included only one marker, which was discovered using
the FarmCPU method. QMat.nmbu-6B showed a considerable effect of around five
days, explaining approximately 25% of the variance in both datasets. Similarly,
QMat.nmbu-6D was detected consistently across the datasets, explaining 9 to 10% of

the variance, with a minor effect of 0.8 days. No adaptation-specific QTL was
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discovered for DM (Table 4, Table S6). Validation of both QMat.nmbu-6B and
QMat.nmbu-6D was successful, with multiple MTAs being confirmed for QMat.nmbu-
6B and the one MTA comprising QMat.nmbu-6D (BS00022523_51) (Table S7).

Three QTL regions were detected for GY with effects (without correcting for
population structure) ranging from 38 to 193 g'm2 and explaining between 16 and
67% of the variance in GY in the complete set. QYld. nmbu.54 is purely associated with
line adaptation, showing a very high effect and proportion of variance explained in
the entire dataset (193 grm-2and 67%, respectively) while exhibiting no significant
effect in the adapted set. Also, all the MTAs of QYld.nmbu.5A were discovered in the
entire dataset. However, the remaining two QTL (QYld.nmbu.3A and QYld.nmbu.7B)
were consistently associated with GY in both datasets, with more negligible effects
(Table 4, Table S6). Validation confirmed significant associations of at least one
marker in each QTL region associated with GY (1 SNP for QYld.nmbu.34, 3 for
QYld.nmbu.5A, and 2 for QYld.nmbu.7B) (Table S7).

The highest number of QTL regions (5) was detected for PH, on chromosomes 24, 44,
4B, 4D, and 6B. All the QTL regions for PH consisted of more than 3 SNPs except for
QHt.nmbu-6B (only one peak marker, discovered using the FarmCPU method). The
QTL had effects ranging from 2 to 10 cm and explained 5 to 33% of the variance in PH
in the entire dataset. None of the QTL appeared to be adaptation-specific, as all
showed significant and comparable effects in both adapted and complete datasets. As
the presence of exotic lines increases the variance in PH considerably (Figure 1), itis
remarkable that QHt.nmbu-4D’s proportion of variance explained and effect are
higher in the adapted than in the entire dataset. (Table 4). Validation confirmed the
associations of QHt.nmbu-4A, QHt.nmbu-4B, QHt.nmbu-4D, and QHt.nmbu-6B with
high confidence (multiple markers in the loci appeared significantly associated in
multiple validation sets in multiple environments). QHt.nmbu-2A could not be
validated due to residual minor allele frequencies of the SNPs comprising it in the
validation sets (Table S7).

Adaptation to the Norwegian growing conditions

Two QTL regions associated with DH and GY (QHd.nmbu-1B and QYld.nmbu-5A)
consistently appeared highly significant for their respective traits in the entire
dataset while showing no polymorphism/effect in the adapted part of the dataset
(Table 4, Figure 5). It was, therefore, reasonable to consider these QTL as pointers to
genomic regions associated with genotype adaptation to the Norwegian growing

conditions.
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Figure 5 Loci associated with adaptation to the Norwegian growing conditions:
QYld.nmbu-5A (abc) and QHd.nmbu-1B (def). Allele frequencies in the full panel and
adapted and exotic parts (ad), haplotype analysis of the loci (be), and presence of alleles
in adapted and exotic parts of the panel (cf). Comparison among the alleles was
performed using Tukey’s HSD test. Alleles with the same letter are not significantly
different (a = 0.05). Only alleles present in more than ten lines were considered for
QHd.nmbu-1B. For QYld.nmbu-54, alleles with low frequencies (in less than ten lines)
were gathered into the “Other” bin. Association of QYld.nmbu-5A haplotypes with DH is
shown on Fig. 524

The QYld.nmbu-5A (683-708 Mbp) region (Table 4) showed an extremely high effect
of 192 g m2 (almost 2 t ha'') and captured 67% of GY variance in the entire dataset.
The high proportion of variance explained by this QTL makes it likely that QYld.nmbu-
54 is the leading cause for the observed differences between the adapted and exotic
lines. Interestingly, even though QYld.nmbu-5A showed no significant effect in the
main panel’s adapted part, three SNPs belonging to it showed significant association
with GY in the validation panels; however, with effects not nearly as high as in the
entire main panel (Table S7). QYldnmbu-5A is effectively represented by five
haplotypes and several underrepresented variants. The allele associated with lower
GY (AAAGGTCC) occurs exclusively in exotic lines, while high-GY alleles are present

in adapted lines only. The rare alleles are present in 13 and 21 adapted and exotic
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lines, respectively. Exotic lines carrying one of the underrepresented alleles also
exhibit lower GY (Fig. 5abc). An analogous haplotype analysis of QYld.nmbu-5A
revealed its significant association also with DH, which could not be detected by
GWAS (Fig. S24).

QHd.nmbu-1B (1-2 Mbp), capturing 14% of the variance in DH in the entire dataset
(Table 4), is a likely candidate to contribute to line adaptation concerning DH.
However, the average proportion of DH variance explained by line adaptation is lower
(4%, Table 2). The early haplotype (C_T) is present in almost all adapted lines, and in
more than half of the exotic accessions. The late haplotype (T_C) occurs in only two
adapted lines, and twenty exotic lines (Fig. 5def). QHd.nmbu-1B also exhibited almost

no polymorphism in the validation sets.

Breeding progress in Norwegian spring wheat

Three of the detected QTL showed noticeable change in allele frequency over the
periods: QYld.nmbu-7B, QYld.nmbu-34, and QHt.nmbu-2A (Fig. 6).

QYld.nmbu-7B was consistently discovered in both adapted and complete datasets
and captured nearly 31% of the variance in GY in the adapted lines (Table 2, Table
S6) This QTL is represented in the adapted lines by four haplotypes: three with
similar, positive effects, and one allele with strong negative effect (TCCT) explained
mostly by SNP variation in the first marker (BS00083578_51) (Fig. 6¢). The negative
effect allele is present in all old accessions (before 1970). After 1971, its frequency
decays gradually to zero in the 2006-2015 bracket, replaced by either positive effect
allele. Two outliers carrying the negative effect allele are visible with high GY values

(comparable to lines carrying one of the favorable effect alleles) (Fig. 6¢).

QYld.nmbu-7B frequencies align well with the observed increase in GY over the
periods. The diversity in the validation panels in the QYldnmbu-7B locus was
generally low. The new breeding lines were dominated by favorable effect alleles,
limiting the prospects of exploiting this locus for further GY improvement. However,
QYld.nmbu-7B still showed a significant association with GY in the validation panels
(Table S7).

Another locus showing allele frequency change is QYld.nmbu-3A; however, not so
radically as QYld.nmbu-7B. QYld.nmbu-3A comprises a single SNP, consistently
detected using FarmCPU and MLM methods (Table S6) and explained 14 and 22% of
GY variance in adapted and complete datasets, respectively (Table 4). This locus is
polymorphic in all periods (except the oldest lines) and shows a decay in negative

allele (G) frequency over time; however, it still retains a degree of polymorphism in
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the most recent breeding lines (Fig. 6def). Although this region comprised only a

single MTA4, it was still significantly associated with GY in the validation sets. It is a

potential GY improvement source in future breeding (Table S7).
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Figure 6 Columns, from left to right: allele frequency over time, relationships between

QTL alleles and their respective trait across the periods, and comparison among QTL
alleles and the respective trait for QYldnmbu-7B (abc), QYldnmbu-3A (def), and

QHt.nmbu-2A (ghi). Rare alleles occurring in less than 5 lines were removed from the

analysis. Comparisons among QTL alleles were performed using HSD (Honestly
Significant Difference) test. Alleles with the same letter are not significantly different (a

=0.05)

Allele frequency change over the periods can also be observed for QHt.nmbu-2A,

represented in the adapted lines effectively by only two alleles, despite five significant
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MTAs comprising this locus. The lines dating before 1970 all carry the tall allele
(GTCTT), while the later accessions mostly carry the shortening allele (ACACC).
However, the tall allele could still be found in 3 lines created between 1986-1995 and
two most recent breeding lines (Fig. 6ghi). The locus also showed almost no diversity

in the validation panels (recent breeding lines) (Table S7).

By investigating the alle frequencies of SNPs in the validation panels (representing
the most recent germplasm in Norway), it can be observed that SNP alleles associated

with increased GY and higher DM are dominating in the population (Table S7).

Discussion

Crossing adapted germplasm with exotic parents is an essential source of variation
and valuable alleles (Reynolds et al.,, 2009) and has been actively used in Norwegian
spring wheat breeding by introducing mainly CIMMYT lines into breeding programs,
yielding many market-important varieties (Lillemo & Dieseth, 2011). Therefore,
analyzing only lines adapted to the distinct Nordic environments would appear
incomplete for this study. The exotic lines pose a statistical challenge, as those often
exhibit extreme phenotypes paired with distinct genetic backgrounds. However, the
statistical model used - FarmCPU - did effectively account for the population
structure, as judged by the QQ plots. Although the population structure can be
perceived as a shortcoming of the association panel it allows us to explore the genetic

basis of line adaptation to the Nordic growing environment.

The number of discovered regions associated with the traits is relatively modest due
to the stringent significance criterion applied. However, considering the presence of
strong structure (line adaptation) and different backgrounds of lines in the studied
population, it was necessary to reduce the risk of committing type 1 errors at the cost
of a higher number of false negatives. The purpose of this study was to pinpoint the
most important loci for each of the traits. Despite their highly quantitative nature, it
was possible to discover several large-effect QTL, explaining the most important
genetic variability in the traits in the panel. Apart from the two loci associated with
adaptation, ten QTL regions were consistently discovered in the entire panel and its

adapted part.

Line adaptation to the Norwegian growing conditions is most visible in achieved GY:
more than half of the variance in GY can be attributed to line adaptation, with much
smaller proportions for the other investigated traits. By comparing significant loci for

the entire panel and its adapted part alone, two loci were highly significant in the
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whole panel, with no effect in its adapted part, hinting that those regions may either
play a role in adaptation to the Nordic growing environment, be a remnant of line
origin, or be random (spurious). QYld. nmbu-5A’s polymorphism explains a significant
part of the variance in GY (similar to the variance explained by line adaptation), is
comprised of multiple SNPs, and coincides with the chromosomal location of the
Vernalization1 locus Vrn-A1 . Vernalization response is a well-described, crucial
component of genotype adaptation to particular growing conditions, as reviewed by
Hyles et al. (2020). Lines of diverse origins will carry different alleles in this locus,
favorable in their environments of origin. Considering the causative link between Vrn-
A1 and GY and line adaptation, it is reasonable to expect differences in flowering time.
Indeed, the non-adapted lines, on average, head later than the adapted ones, but the
differences are not as strongly pronounced as for GY. Despite that no signal of the Vrn-
A1 locus was detected for DH in GWAS (due to the stringent threshold), QYld.nmbu-
5A still shows a significant effect on DH, as revealed by haplotype analysis.
Additionally, in another round of late-planted trials of the same panel (sowing date in
late June), the heading and flowering time differences are much more pronounced
(data not shown), indicating that the vernalization genes are playing a crucial role in
adaptation to the Nordic growing environment. The fact that QYld.nmbu-5A has effect
on both GY and DH is convincing that GY benefits from phenological adaptation and

not from some other linked gene in the vicinity of the Vrn-A1 locus.

The second locus associated with line adaptation, QHd.nmbu-1B, captures over 14%
of the variance in DH in the whole set. QHd.nmbu-1B'’s peak marker (BS00022180_51)
has been previously discovered for DH in the same panel (Sgrensen, 2016), was found
significant for drought stress adaptation (Kamruzzaman, 2022) and conferring
sensitivity to the Parastagonospora nodurum Tox1 effector (Cockram et al., 2015),
however, to the best of the authors’ knowledge, does not align with any previously
described locus for days to heading, except for the previous study on the same panel
referred to above. The fact that line adaptation in this study is mainly associated with
GY and, to a smaller extent, DH, highlights the importance of phenology for adaptation
to the relatively short Norwegian growing season. Other important traits not
considered directly in this study but documented elsewhere include the ability to
withstand lodging and pre-harvest sprouting as well as disease resistance (Lillemo &
Dieseth, 2011).

Unlike most studies on historical genetic gains, this study attempted to use a mix of
registered varieties and advanced breeding lines based on the creation timeline

rather than the year of release. This was unavoidable due to the scarcity of registered
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varieties (especially in the earlier periods) and the resulting problems with reaching
a large enough sample size. Despite this shortcoming, the GY increase over time
shows similarity to many collections (Sayre, Rajaram and Fischer, 1997; Abbate et al,
1998; Shearman et al, 2005; Voss-Fels et al, 2019) and our previous research on
recent Norwegian varieties (Mroz, Dieseth and Lillemo, 2022). No trend over time
was apparent for DH while a slight increase in DM and a sharp decline in PH (driven
mainly by the oldest, tall accessions) could be observed. By investigating the genetic
pool of the most recent wheat breeding germplasm in Norway (the validation panels),
it becomes clear that favorable effect alleles of GY and DM were accumulated (all
favorable effect alleles of GY and DM are dominating the population). This finding
corresponds to Voss-Fels et al. (2019), where the authors showed that varieties
gradually accumulated genetic structures associated with GY, resulting in their linear
increase over the years. Interestingly, in the most recent breeding lines, alleles
associated with reduced PH dominate (concerning the Rht loci (Pearce et al, 2011)
represented by QHt.nmbu-4B and QHt.nmbu-4D in this work); however, still retaining
a high degree of diversity in the loci.

From the breeding progress standpoint, the most exciting finding is the QYld.nmbu-
7B locus. The region is strongly associated with GY, and a sharp decline in the
frequency of the unfavorable allele was observed over the studied periods. One could
argue that its association could be spurious and linked more to genotype background
rather than GY itself - all the oldest lines carry one allele and have lower GY, in
contrast to the recent accessions with other alleles and higher GY. However, the SNPs
constituting this locus still show a degree of polymorphism in the validation sets,
enough to be significantly associated with GY. In a nearby region (chromosome 7B,
674 Mbp) to QYidnmbu-7B (701 Mbp), the TaCol-5 gene was discovered and
experimentally confirmed to be associated with the number of spikelet nodes per
spike in wheat (Zhang et al, 2022). Transgenic plants overexpressing modified
dominant TaCol-5 allele showed increased GY due to higher tiller and spike number
paired with more significant spike node number. In light of the previously mentioned
GY progress in Norwegian spring wheat associated with an increase in the number of
grains per spike (Mréz, Dieseth, and Lillemo, 2022), it is compelling to hypothesize
that this locus contributed to the breeding progress in GY in Norway; however, a more
detailed genetic study of yield components and spike parameters is needed before
endorsing this hypothesis. The exact origins of the favorable effect alleles in
Norwegian germplasm remain largely unknown. However, an examination of
pedigrees revealed that the high GY allele (CTAC) of QYld.nmbu-7B occurred for the
first time in line T7347 (YOC 1977), which was a product of a cross between Runar
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(YOC 1965, first modern Norwegian landmark variety released in 1972) and the
German variety Sirius. Since Runar carries the low GY allele (TCCT), the high GY allele
must therefore come from Sirius, which indeed carries the CTAT allele. The high GY
haplotype (CTAC) is also found in a group of Swedish varieties (Tjalve, Dragon, Avle,
and Zebra). The other favorable allele (CTCC) is found in modern Norwegian varieties
with CIMMYT parentage (Bastian, Bjarne, Bajass, and Berserk), indicating that this
haplotype was introduced into Norwegian wheat breeding by crossing with CIMMYT
parents. Indeed, the CTCC haplotype is present in varieties with CIMMYT pedigrees
like Avocet, Kukri and Gamenya as well as the landmark Brazilian variety Frontana
(all present in the exotic group of this study). This locus appears to be almost “fully
utilized” in the most recent lines and shows no room for future improvement with the

current collection of alleles present in the germplasm.

Another locus showing signs of selection in Norwegian wheat is QYld.nmbu-34, which,
in contrast to QYld.nmbu-7B, still shows a high degree of polymorphism in the most
recent lines. Despite detecting only one significant SNP in the locus, its association
was consistent in the validation sets. QYld.nmbu-3A’s only MTA appears in a similar
region to the chromosomal location of the TaGS5-3A gene, a locus selected during
breeding in Chinese wheat associated with increased kernel size, resulting in higher
GY (Wang et al,, 2015; Ma et al, 2016). No significant breeding-related progress in
kernel weight was discovered in the 1972 - 2019 period in Norwegian spring wheat
(Mroz, Dieseth, and Lillemo, 2022); however, considering the relatively small effect
of QYld.nmbu-34, it could easily have been missed (should it had occurred due to
incorporation of this locus). QYld.nmbu-3A could also make a promising candidate for
future improvement in GY due to the still-existing polymorphism in the most recent
germplasm. However, to confirm QYld.nmbu-3A’s link with kernel weight, a follow-up
study of kernel parameters in the collection is needed. The favorable allele (A) of
QYld.nmbu-3A first appears with “Mgystad”, an old Norwegian variety released in
1966. “Mgystad” is a product of a cross between a sister line (Mg043-40, not present
in the panel) of Norrgna, old Norwegian variety, released 1952, with the Swedish
variety Karn II (not present in the panel). Since Norrgna carries the G allele
(associated with negative effect on GY), the favorable allele (A) likely comes from
Karn II. The presence of the same allele in Swedish varieties like Dragon and Avle
supports this hypothesis. The allele has been further transmitted from Mgystad to
important Norwegian varieties like Bastian and Bjarne, and later became dominating

in the Norwegian spring wheat breeding material.
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The tallness of the oldest lines investigated correlates well with the QHt.nmbu-2A
locus, which became almost monomorphic over time with regard to the short allele.
The oldest line with the short allele (ACACC) is the breeding line MS273-150 (YOC
1975), which is a progeny from the cross of Mgystad with the landmark semi-dwarf
variety Sonora 64. As Mgystad carries the tall allele (GTCTT), it is likely that Sonora
64 was the source of the short allele. The short allele is also present in line T7347,
which must have inherited it from Sirius. Moreover, the short allele is also found in
Swedish varieties like Tjalve, Dragon, and Avle, which all have been used as crossing
parents. Therefore, there are at least three plausible sources of the short allele in the
Norwegian spring wheat breeding program. Significant MTAs with PH in a similar
region were previously detected (Jamil et al, 2019); however, to the authors’

knowledge, no major known gene is situated in this locus.

Reduced height (Rht) genes originating from the Japanese line Norin-10 played a
crucial role in the Green Revolution by introducing semi-dwarf posture to new
varieties, which became spread worldwide during consecutive breeding efforts
(Borojevic and Borojevic, 2005). Rht-B1 and Rht-D1 loci are well visible in Norwegian
spring wheat, represented by the QHtnmbu-4B and QHtnmbu-4D regions,
respectively. These loci still maintain high polymorphism in Norwegian spring wheat,
with slight domination of the tall alleles, indicating that also other, mostly unknown,

genetic mechanisms contribute to the desired plant height of present-day varieties.

Due to the risks associated with wet periods at the end of the growing season in
Norway (lodging and quality loss due to pre-harvest sprouting), early-maturing
varieties of spring cereals are generally desired. Due to climate change, it was
estimated that from the 1970s until 2005, the vegetative season in Norway was
extended by approximately seven days (Nordli et al., 2008). Varieties released in this
period did utilize that change by extending their vegetative periods by four days on
average (Mroz, Dieseth, and Lillemo, 2022). The lack of evidence of consistent
changes in alle frequencies of the discovered loci associated with DM indicates that
this increase occurred due to the accumulation of several smaller-effect alleles rather
than by incorporating fewer, big-effect alleles. The two discovered regions associated
with DM (QMat.nmbu-6B and QMat.nmbu-6B) show polymorphism and significant

effects in the validation panel, with the late alleles dominating the population.
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Conclusions

A detailed GWAS analysis was conducted on multi-environment field trial data of
grain yield, earliness, and plant height in a diverse panel of Nordic and exotic lines.
The study detected twelve loci associated with the traits (two with heading time, two
with maturity time, three with grain yield, and five with plant height), later validated
using independent sets of recent Norwegian breeding lines. The results indicated that
adaptation to the Nordic growing conditions seen mainly in changes in grain yield and
is genetically associated with a phenological response due to polymorphisms in the
Vrn-A1 locus. The study also indicated that grain yield breeding progress in
Norwegian spring wheat was associated with the incorporation of the Ta-Col5 and
Ta-GS5-3A loci, responsible for changes in spike architecture and kernel weight;
however, a detailed follow-up study on spike and kernel traits is required. The radical
drop in plant height since the 1970s was associated with a locus on chromosome 2A.
Knowledge of these discovered QTL regions will be useful for breeding programs
targeting high-latitude spring wheat growing regions with similar growing conditions

to those in Norway.
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Table S1 Planting dates for the main and validation panels’ trials

Season Vollebekk Staur
Main panel Validation panel Main panel Validation panel
2015 2015-04-24 - - -
2016 2016-04-24 - 2016-05-10 -
2017 2017-05-04 - 2017-05-12 -
2018 2018-05-10 - 2018-05-09 -
2019 2019-05-19 2019-04-24 2019-06-04 -
2020 2020-05-15 2020-04-15 2020-04-21 2020-04-21
2021 2021-04-20 2021-04-19 2021-04-27 2021-04-27
2022 - 2022-04-26 - -

Table S2 Overview of the number of lines which were phenotyped in each

season/environment combination in the main panel. Total - total number of unique

genotypes present in the main panel

Location Field season
2015 2016 2017 2019 2020 2021 Total
Vollebekk 163 100 240 220 288 295 301
Staur - 100 240 220 288 - 296

Table S3 Overview of the number of lines which were phenotyped in each

season/environment combination in the validation panel. Total - total number of

unique genotypes present in the validation panel

Location Field season Total
2019 2020 2021 2022
Vollebekk 309 397 267 265 889
Staur 90 354 - -




Vollebekk 2015

2
g0 =
810 gga
H [
12.05 01.06 15.06 01.07 15.07 01.08 15.08 01.09 15.09 30.09
Vollebekk 2016
%
© 20 3
glhip= - s
©
2 B
H [
12.05 01.06 15.06 01.07 15.07 01.08 15.08 01.09 15.09 30.09
Vollebekk 2017
%
o 3
D15 - = - 3
310 §
31 o p a e 1ol
24.05 01.06 15.06 01.07 15.07 01.08 15.08 01.09 15.09 30.09
Vollebekk 2018 - Drought year
2
© 3
15
° 1g
0

0.05 01.06 15.06 01.07 15.07 01.08 15.08 01.09 15.09 30.09

Vollebekk 2019

03.05 15.05 01.06  15.06 01.07 15.07 01.08 15.08 01.09 15.09 30.09

Vollebekk 2020

2
27 3
0T §3
3
2004 01.05 1505 0106 1506 0107 1507  01.08 1508 0109 1509 3009
Vollebekk 2021
2
© 20 El
S8 -% - 3
310 ﬁ
4 e u §
2004 0105 1505 0106 1506 01.07 1507  01.08 1508  01.09 1509  30.09
Vollebekk 2022
2
© % 3
D15 =
310 ﬁ
2 Al d mial 0 I d . §

2004 01.05 1505 01.06 15.06 01.07 1507 01.08 15.08 0109 1509  30.09

Figure S1 Weather data for field seasons 2015-2022 in Vollebekk research station, from
seeding the trial to the end of September. Solid line marks the average temperature for
each day, dashed line marks the mean temperature across the season, bars mark the
daily rainfall in mm per m2 Primary y axis - temperature in °C, secondary y axis -
rainfall in mm per m?
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Figure S2 Weather data for field seasons 2016-2021 in Staur, from seeding the trial to
the end of September. Solid line marks the average temperature for each day, dashed
line marks the mean temperature across the season, bars mark the daily rainfall in mm

per m2. Primary y axis - temperature in °C, secondary y axis - rainfall in mm per m?
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Figure S3 Linkage disequilibrium (LD) between markers for the main panel
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Figure S4 Pearson’s correlation matrix for days to maturity between trial means,

environmental means, and the global mean. Variables named according to scheme:

Location_season. V - Vollebekk, S - Staur
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Figure S5 Pearson’s correlation matrix for grain yield between trial means,
environmental means, and the global mean. Variables named according to scheme:
Location_season. V - Vollebekk, S - Staur
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Figure S6 Pearson’s correlation matrix for days to heading between trial means,
environmental means, and the global mean. Variables named according to scheme:

Location_season. V - Vollebekk, S - Staur
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Figure S7 Pearson’s correlation matrix for plant height between trial means,
environmental means, and the global mean. Variables named according to scheme:
Location_season. V - Vollebekk, S - Staur
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Figure S8 Quantile-quantile (QQ) plots for GWAS analysis of days to maturity for the
adapted part of the main panel. Phenotypes named according to the scheme:
FarmCPU.season_location. Location: V - Vollebekk, S — Staur
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Figure S9 Quantile-quantile (QQ) plots for GWAS analysis of days to maturity for the

main  panel

(all lines). Phenotypes

named according

FarmCPU.season_location. Location: V - Vollebekk, S — Staur
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Figure $10 Quantile-quantile (QQ) plots for GWAS analysis of grain yield for the
adapted part of the main panel. Phenotypes named according to the scheme:
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Figure $12 Quantile-quantile (QQ) plots for GWAS analysis of days to heading for the
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Figure S15 Quantile-quantile (QQ) plots for GWAS analysis of plant height for the main
panel  (all lines). Phenotypes named according to the scheme:
FarmCPU.season_location. Location: V - Vollebekk, S — Staur
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Figure S16 Manhattan plots for GWAS analysis of days to maturity for the adapted
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Location: V - Vollebekk, S - Staur



Figure $S20 Manhattan plots for GWAS analysis of days to heading for the adapted
part of the main panel. Phenotypes named according to the scheme:
FarmCPU.season_location. Location: V - Vollebekk, S — Staur
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FarmCPU.season_location. Location: V - Vollebekk, S — Staur



FarmCPU.mean_Global FarmCPU.X2021_V

0guls)
0guls)

FarmCPU.X2017_V

“oglp)

FarmCPU.X2015_V
v

FarmCPU.mean_S

i

Figure $23 Manhattan plots for GWAS analysis of plant height for the main panel (all
lines). Phenotypes named according to the scheme: FarmCPU.season_location.
Location: V - Vollebekk, S - Staur



a b

QYld.nmbu—5A 1.004 g22232 54 293 n=33 24 18 163 21 34
HSDab ab b b
B ~racaTce 65l @ ©
0.751 _
. AAATACAT § 2
©
. AAGTACAT 3 =2
& 050 I
B ceamacar 2 60+
I searatce 0.5 . !
L4 [ ]
|:| Other
0.00 O & & & O &
O Y Y O )
~ > F KO S
Q@ +o\‘° & 06\ N & O
b < \\Q Ll S &
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Abstract

Using kinships and similarities among individuals forms the backbone of quantitative
genetics. With abundant available genomic data, genomic selection has become
routine in many plant breeding programs. Multispectral data captured by UAVs
showed potential for grain yield prediction in many plant species using machine
learning; however, the possibilities of utilizing this data to augment genomic
prediction models still need to be explored. We collected HTP multispectral data in a
genotyped multi-environment large-scale field trial using two cost-effective cameras
to fill this gap. We tested back-to-back the prediction ability of GY prediction models,
including genomic (G matrix), multispectral-derived (M matrix), and environmental
(E matrix) relationships using BLUP methodology in single and multi-environment
scenarios. We discovered that M allows for GY prediction comparable to the G matrix
and that models using both G and M matrices show superior accuracies and errors
compared with G or M alone, both in single and multi-environment scenarios. We
showed that the M matrix is not entirely environment-specific, and the genotypic
relationships become more robust with more data capture sessions over the season.
We discovered that the optimal time for data capture occurs during grain filling and
that camera bands with the highest heritability are important for GY prediction using
the M matrix. We showcased that GY prediction can be performed using only an RGB
camera, and even as little as a single data capture session can yield valuable data for
GY prediction. This study contributes to a better understanding of multispectral data
and its relationships. It provides a flexible framework for improving GS protocols at

a low cost without significant investments or software customization.



Introduction

To develop new plant varieties and cultivars, breeders initially relied solely on
recorded phenotypes of candidates paired with “the breeder’s eye”. With increasing
pressure caused by climate change, increasing world population, and diminishing
arable land, developing new and adapted germplasm is more urgent than ever
(Hickey et al, 2019). Nowadays, plant breeders have an abundance of new and
innovative tools at their disposal to aid their quest for better-adapted germplasm,
focusing on selection accuracy, breeding cycle shortening, and maximizing the genetic
pool to be screened - therefore effectively accelerating genetic gains in all aspects of
the breeder’s equation (Houchmandzadeh, 2014).

Genomic selection (GS), first proposed by Meuwissen, Hayes, and Goddard (2001),
aims to estimate breeding values (GEBVs) of individuals that have been genotyped-
but not phenotyped—based on prediction equations developed from a collection of
phenotyped and genotyped individuals. New parents for crossing are then selected
based on GEBVs, which shortens the breeding cycle since late filial generations do not
need to be phenotyped for quantitative traits such as grain yield (Bassi et al.,, 2015).
Due to the cost reduction of genotyping and well-elaborated methodologies, GS has

become routine in many breeding programs (Bhat et al., 2016).

With abundant genomic data, plant phenotype registering became a bottleneck in
plant research and breeding, stimulating the development of high-throughput
phenotyping (HTP) methodologies. HTP involves automating the evaluation of plant
phenotypes and was enabled by recent advancements and the popularization of
sensor and computing technologies paired with data analytics (White et al., 2012); it
allows to cover large numbers of genotypes in a fraction of the time needed for
manual measurements (Araus & Cairns, 2014; Burud et al., 2017). HTP has shown
considerable potential by enabling grain yield prediction using machine learning, as
reviewed by van Klompenburg, Kassahun, and Catal (2020). HTP data has proven
useful also in predicting above-ground biomass (Han et al., 2019; Lu et al., 2019; Li et
al, 2020), plant height (Hu et al, 2018; Hassan et al., 2019; Tirado, Hirsch and
Springer, 2020), earliness (Zhou et al, 2019; Trevisan et al, 2020), and crop

emergence (Li et al., 2019) to name but a few.

A specific branch of HTP uses unmanned aerial vehicles (UAVs) equipped with
multispectral or hyperspectral cameras, which record light spectrum above and
beyond the visible spectrum. The usefulness of recording wavelengths outside the

visible spectrum lies in their link with various aspects of crop physiology or



chemistry. For instance, near-infrared (NIR, 760-1400nm) is linked to crop water
status; RedEdge (around 730nm) is arguably a proxy of chlorophyll content (Pefiuelas
& Filella, 1998); and Ultra-Violet A (UV-A, 200-380nm) can be used to monitor stress
in plants (Brugger et al., 2019). This extra information can help construct vegetation
indices (VIs), which are linear combinations of reflectance values such as NDVI
(normalized difference vegetation index, Beisel et al., 2018) and, in turn, can be used

for primary trait prediction (Montesinos-Lopez et al., 2017; Shafiee et al., 2021).

HTP data gathered using multispectral and hyperspectral cameras has also been used
to improve the accuracy of GS, as first demonstrated by (Rutkoski et al., 2016), where
secondary VlIs increased grain yield prediction accuracy by 70%. HTP can help
measure genetically correlated secondary traits, which can be introduced into
multivariate prediction models (Sun et al.,, 2017; Sakurai et al., 2022). Likewise, HTP
data was also discovered to help evaluate genetic resources for the expression of
complex traits (Reynolds & Langridge, 2016). In a recent study, NIR spectra of grain
samples were used to construct spectral relationship matrices to enable phenomic
selection (PS) and to aid GS, showing that the hyperspectral matrix-aided best linear
unbiased prediction (H-BLUP) model performed at least as well as the standard
genomic best linear unbiased prediction (GBLUP) model. A model combining both
spectral and genomic information (GHBLUP) was superior to both G and HBLUP alone
(Robert et al.,, 2022), showing similar results to (Krause et al., 2019). The PS based on
the NIR spectra was also a promising, low-cost alternative to genotyping and a viable
approach for predicting complex traits in perennial species such as grapevine (Brault
et al, 2022). However, those approaches use expensive hardware like hyperspectral
cameras or spectrometers, which limits their applications in practical breeding. To
the authors’ knowledge, no attempt has been made to utilize genetic relationships
derived from low-cost multispectral imagery for grain yield prediction in wheat and

augmenting GS protocols.

To fill this gap, we deployed HTP in a multi-environment spring wheat trial using two
cost-effective multispectral cameras mounted on commercial UAVs. We tested
various back-to-back grain yield prediction models using genomic (G) and
multispectral (M) relationships combined with environment-specific phenotypical
covariates. We investigated the applicability and flexibility of environment-specific M
relationships in single and multi-environment scenarios and their synergy with the

GS-GBLUP model. As such, the main objectives of this study were to:

1. Investigate the prediction ability of multispectral-derived genetic relationships

for grain yield in single and multi-environment scenarios



2. Verify the possibility of augmenting GS with multispectral-derived genetic

relationships

3. Study which multispectral band(s) are the most important for grain yield

prediction

4.  Examine the mostinformative data capture time for grain yield prediction under

Norwegian growing conditions

Materials and methods

Plant material

The Norwegian University of Life Sciences (NMBU) spring wheat panel, consisting of
301 hexaploid spring wheat cultivars and breeding lines, was used for the study. The
same panel was recently used for genetic analyses of Fusarium head blight (Nannuru
etal, 2022) and Septoria nodorum blotch (Lin et al., 2022) resistance. The collection
encompasses 186 Norwegian, 40 Swedish, and 37 lines from CIMMYT, with several
additional lines from Australia, Brazil, Canada, Czech Republic, Denmark, Finland,
France, Germany, Netherlands, Poland, Russia, Slovakia, South Africa, Switzerland,

UK, and the USA. The whole set presents a broad genetic and phenotypic diversity.

Field trials

Trials were carried out during field seasons 2015-2022 between April and August in
Vollebekk Research Station (Norway, As, 59°39’'N, 10°45’E) and Staur farm (Norway,
Stange, 60°43’N, 11°06’E), which represent the two principal economically important
wheat growing areas in Norway due to the somewhat warmer and milder climate of
south-eastern Norway and the slightly colder and temperate climate of inland

Norway.

The trials were fertilized at sowing with 120kg-ha! of compound NPK fertilizer
(YaraMila 22-3-10) and planted each season in both locations in late April or early
May (exact planting dates in Table S3). Following germination, trials were kept
disease and weed free according to local management practices using herbicides
(Tripali [active ingredients: florasulam + metsulfuron-methyl + tribenuron-methyl]
and Duplosan Meko [mekoprop]) and fungicides (Proline [prothioconazole], Aviator
Xpro [bixafen + prothioconazole], Forbel [fenpropimorph] and Comet Pro
[pyraklostrobin]) in doses tailored to the needs. Irrigation was applied in case of
drought that could affect the growth of the plants. Alleys within the trials were

created by spraying Glyphosate shortly after seedling emergence. The trials were



harvested each season towards the end of August after all varieties had reached full

ripeness.

Field trial design

The trials were designed as an alpha-lattice with two replicates per genotype and a
block size of 6 with positions of every accession randomized each year. Each column
was planted with buffer variety at its start and end to eliminate border effects. Each
field trial plot was 5 x 1.5mm in size at harvest, with gaps between the plots of 30 cm
and a central alley of 1m. For the main panel, not every variety was tested in each
season/location, and the number of genotypes tested varied from 100 to 295 per

season/location.

Grain yield data

Grain yield was measured in two locations over seven field seasons (a total of 11
environments - year/location combinations): Vollebekk Research Station in 2015,
2016,2017,2019, 2020, 2021, and 2022; Staur Farm: 2016, 2017, 2019, and 2020.

Grain yield (GY) was measured by harvesting and threshing the trial plots, drying the
yield until approximately 13.5% moisture, weighing it, and recalculating it to g per

square meter.

Data for plots lodged early was removed due to the heavy impact on their
development. If lodging occurred late in the season (close to maturity), data were

double-checked for consistency and possible impact on the traits.

Statistical analysis of the field trial data

For GY, three types of genotypic means (Ismeans) were calculated: location/season
(environment) mean; location mean (all seasons from one location); and a global

mean (all the locations and seasons were combined).

As it was not uncommon to observe extra spatial variability within the trials (due to
soil gradients) that was not fully captured by blocking, an additional covariate was
introduced (columns) into the models to correct for it. The Ismeans were calculated

using packages “Ime4” and “ImerTEST” and custom scripts in R, version 4.2.1.
Environment (field trial) Ismeans were calculated using the mixed model (1):
Pymn = u+ gi + Ry + R: By + G + €itmn ®

Where P;;,,,, denotes the response variable measured in the ith genotype, lth
replication, mth block and nth column, u denotes a general mean or intercept, g;

denotes the fixed effect of genotype i, with i = 1, ..., I, R, denotes the random effect of



replication effect distributed as normal with mean zero and variance 01%, that is,
R,~N(0,02), R: B, denotes the random effect of block m nested in replication [, also
normally distributed as R: B;,,~N (0, a,f(R)), C,, denotes the random effect of column
effect distributed as normal with mean zero and variance oZ, that is, C,~N(0, 62),

€i1mn iS the error random term normally distributed as e;;,,,,~N (0, a2).
Cross-season Ismeans for each location were calculated using the mixed model (2):
Pigimn = 1+ gi + Yie + Y:Ryy + Y R: B + Y2 Cin + €4kimn (2

Where P;j;m, denotes the response variable measured in the ith genotype, kth year,
lth replication, mth block and nth column. Y}, denotes the random effect of year effect
normally distributed as Y,~N (0, 62), Y: R;, denotes the random effect of replication
[ nested in year k, also normally distributed as Y: R;;~N (0, Jg(y)), Y: R: By, denotes
the random effect of block m nested in replication [ nested in year k, also normally
distributed as Y: R: By;,, ~N (0, J,f(YXR)), Y: Cy,, denotes the random effect of column n
nested in year k, also normally distributed as Y: C,,,~N (0, og(y)), and ejym,y is the

error random term normally distributed as €;;,;,,,~N (0, 02).

Global mean (cross-season, cross-location) was calculated using the mixed model (3):
Pijklmn =u + 9i + L] + L: Y}k +Y:L: Rjkl +Y:L:R: Bjklm +Y:L: Cjkn + eijklmn (3)

Where P;jim, denotes the response variable measured in the ith genotype, jth
location, kth year, [th replication, mth block and nth column. L; denotes the random
effect of location effect normally distributed as L;j~N(0, a?), L:Yj, denotes the
random effect of location j nested in year k normally distributed as L: Y;; ~N (0, aLz(y)),
Y:L: Rjj, denotes the random effect of replication [ nested in location j nested in year
k normally distributed as Y: L: Rj; ~N (0, aﬁ(y“)), Y:L: R: Bjy;, denotes the random
effect of block m, nested in replication [ nested in location j nested in year k normally
distributed as Y: L: R: B, ~N (0, o-bZ(YxLXR))' Y: L: Cjyndenotes the random effect of
column n nested in location j nested in year k normally distributed as
Y:L: Gy ~N(O, ag(YXL)), €jiimn 1S the error random term normally distributed as

eijkzmn~N(0: 02)-

In the single-environment scenario (section Model performance assessment),
environment (trial), location, and global means were used. In the multi-environment
scenario (section Model performance assessment), only environment (trial) means
were used. Broad-sense heritability (H%) was calculated for individual trials using

equation (4):
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g,
H? = ——— @

o + a2
where ng is the genotypic variance and ¢ is the error variance. Variance components

for equation (4) were estimated using package “lme4” using the just described
models but assuming the lines (genotypes) as normally distributed with mean zero

and variance .

Genotyping data
Samples were prepared and genotyped as described in Nannuru et al. (2022).

Physical positions of the markers were determined using the chip’s documentation
and markers which weren’t mapped to any physical chromosome position were

placed on a fictional chromosome Un.

Markers were filtered, leaving only those with less than 10% missing data and minor
allele frequency (MAF) larger than 0.05. Heterozygous markers were treated as
missing data. After the quality check, the dataset contained 19874 high quality
markers mapped to sub genomes A (7999), B (7905) and D (2111) on chromosomes
1A (1156), 1B (1147), 1D (391), 2A (1232), 2B (1377), 2D (437) 3A (1074), 3B
(1336), 3D (256), 4A (699), 4B (602), 4D (111), 5A (1340), 5B (1406), 5D (311), 6A
(1126), 6B (1082), 6D (319), 7A (1372), 7B (955), 7D (285), and Un (1859).
High-throughput phenotyping data

High-throughput phenotyping data were captured using two cameras (Micasense
RedEdgeM https://micasense.com and DJI Phantom 4 Multispectral camera
https://www.dji.com/p4-multispectral). In both locations, the RedEdgeM camera

was used during field seasons 2019-2021, whereas Phantom 4 Multispectral was
used during field season 2021 in Vollebekk Research Farm.

Detailed UAV specifications and the HTP data capture and processing description can

be found in the Supplementary material.

High-throughput phenotyping data consisting of five color bands (red, green, blue,
near-infrared, and red edge) was available for three field seasons in the two locations
throughout the vegetation period, however, with varying temporal resolution: from
4 to 22 missions (Table 1).



Table 1 HTP mission overview: number of data capture sessions for each season,

camera, and location

Camera and Location
Season RedEdgeM P4M
Vollebekk | Staur | Vollebekk | Staur
2019 7 4 - -
2020 12 - - -
2021 8 - 22 -

The two cameras are fundamentally different regarding resolution and
bandwidths/central bands (Figure 1), so they were analyzed separately. Only raw
canopy reflectance values (red, green, blue, NIR, and RedEdge) were used for every

part of the analysis, without calculating multispectral indices.

0.59

Visible spectrum

0.41

©
w
s

Reflectance
o
o

o
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400nm 500nm 600nm 700nm | 800nm 900nm 1000nm
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wm b D DL 1
I I . ¢

DJI Phantom 4

Camera I I I I I I II I. @

P4 Multispectral Micasense RedEdge M

Red 650 + 16 nm 668 £ 5 nm
Green 560 + 16 nm 560 £ 10 nm
Blue 450 £ 16 nm 475+ 10 nm
Red Edge 730+ 16 nm 717 £ 5 nm
NIR 840 + 26 nm 840 £ 20 nm

Figure 1 Top: typical plant canopy reflectance spectrum with graphical interpretation
of light spectrum wavelengths; Bottom: visual interpretation and numeric values of
central bands and bandwidths for the two tested cameras: Micasense RedEdgeM, and
Phantom 4 (P4) Multispectral

Analyzed models
A number of models described below were developed and tested using R package

“Ime4GS” (Caamal-Pat et al., 2021) in R version 4.2.1.
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1. G - Single-environment genomic prediction

To benchmark single-environment analysis, genomic prediction using G (genomic
kinship) matrix (GBLUP, according to VanRaden, 2008) was performed in single-
environment scenario (section Model performance assessment). G was calculated
according to Equation 5:

ww'
B

G 5)

Where n is the number of genotypes, G is the square genomic relationship matrix with
n rows and n columns corresponding to the genotypes; W is a scaled (mean = 0,
standard deviation = 1) matrix of SNP marker data with n rows and m columns (which
equals number of quality checked markers, coded as Os and 2s); and W'is its

transpose.

For every environment (location/season combination), a random effect model was
fitted using G as the definition of variance/covariance structure among the genotypes

according to Model 1:
y=ul+g+e (Model 1)

Where y is the vector of Ismeans for a trait for n genotypes, u is the intercept, 1 is a
vector of ones, g is the vector of random genotypes effects distributed as
g~N(0, Gagz) and e is the vector of residual effects distributed as e~N (0, [5?).

Model 1 was trained and tested on environment (field trial), location, and global

means.

2. G - Multi-environment genomic prediction

To benchmark multi-environment prediction using the G matrix, Model 1 was used in
the multi-environment scenario (section Model performance assessment), using only

environment means.

3. G+E - Multi-environment genomic prediction with environment covariance (E)
matrix

To benchmark multi-environment predictions using the G matrix coupled with the
environmental (phenotypical) variance/covariance matrix Kg, genomic prediction
supplemented with Ke matrix was analyzed in a multi-environment scenario (section
Model performance assessment). For this purpose, only environment means were

used.

The Kk matrix was computed for grain yield according to equation 6:

11
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Where n is the number of environments (environment/season combinations), K is
the square environmental (phenotypical) variance/covariance matrix for grain yield
of dimensions n x n, P is a scaled rectangular matrix with n rows and m columns
(representing scaled phenotype values for every genotype for every environment in

rows) and P'is its transpose.
Using G and E, Model 2 was fitted:
y=ul+E+g+e (Model 2)

All the terms of Model 2 are equal to Model 1 except for E - vector of random
environment effects, E~N (0, Kz62).

4. M - Single-environment prediction using image-derived M matrix

For every season, based on least square mean values for every available raw band for
each flight date and each genotype, a multispectral relationship matrix was computed
according to Equation 7 and analogically to G and E matrices and similar to the work
of Krause et al. (2019):

Ky =— ™

Where n is the number of genotypes, Kj, is the multispectral variance/covariance
matrix of dimensions n x n in a particular season, Cis a scaled rectangular matrix with
n rows and number of columns corresponding to genotypic BLUE reflectance values

for each multispectral band at every flight within the season, and C' is its transpose.

As the reflectance values are assumably environment-specific, the K,, matrix was
computed for each environment (season/location combination) separately, with no

attempt to calculate a cross-environment K, matrix.

Using the derived K,, matrix, an analogical analysis to single-environment genomic
prediction was conducted by replacing G with K, matrix in a single-environment

scenario (section Model performance assessment) and fitting Model 3:
y=ul+g,+e (Model 3)

Where g,is the vector of random genotypes effects distributed as
g~N(0, KMO'E*). Each K,, matrix (developed based on different environment data)

was trained and tested on environment, location, and global means.

12



5. Multi-environment prediction using M matrix

To assess whether K, matrix derived based on data from a single season possesses
prediction ability in other environments (if it is environment-specific), an analogical
analysis was carried out in a multi-environment scenario (section Model
performance assessment) by replacing G with K, in Model 1. Each environments’ K,
matrix was tested for its multi-environment prediction ability using only
environmental grain yield means. There was no attempt to calculate a cross-
environment K, because of the assumed environment-specificity of multispectral
data.

6. Multi-environment prediction using M and E matrices

An analogical model to Model 2 was tested in a multi-environment scenario (section

Model performance assessment) by replacing G with the K, matrix. For this purpose,

only environment (trial) means were used.

7. G+M - Single-season genomic prediction supplemented with M matrix

To assess the prospect of supplementing genomic prediction models with

multispectral data, a Model 4 combining both G and K,, matrices was fitted for a

single-environment scenario (section Model performance assessment):
y=ul+g+g.+e (Model 4)

With terms identical as in Models 1 and 3. For the purpose, environment, location,

and global GY means were used.

8. G+M - Multi-environment genomic prediction supplemented with M matrix

To evaluate the combined prediction ability of the G and K, matrices, Model 4 was
tested in the multi-environment scenario (section Model performance assessment)

using only environment GY means.

9. G+M+E - Multi-environment genomic prediction supplemented with M and E
matrices

To further evaluate the combined prediction ability of G and K, matrices in multi-
environmental scenario (section Model performance assessment), Model 5 was

developed using G, M, and E matrices simultaneously:
y=ul+E+g+g.+e (Model 5)

With terms identical as in the previous models. For this purpose, only environment

(trial) means were used.

13



Model performance assessment
The models’ performance was analyzed under two scenarios (described below):
single (G, M, and G+M) and multi-environment (G, M, G+E, G+M, M+E, and G+M+E).

The assessment was performed using the following metrics:

rTRN - prediction accuracy in the training set (in the dataset used to develop the
model), defined as the Pearson correlation coefficient between predicted and
observed values.

rTST - prediction accuracy in the testing set (the dataset not seen previously by the
model), defined as the Pearson correlation coefficient between predicted and

observed values.

rmseTRN - root mean squared error in the training set, defined as:

Zﬁ=1(0b5TRN — predrgy)?
N

rmsergy =

Where obstrv are observed (ground truth) phenotypes, predrrv are predicted
phenotypes (output from the models), and N is the number of records (genotypes) in

the training set.

rmseTST - root mean squared error in the test set (previously unseen data), defined

as:

Zg=1(0bsrsr — predrsr)?

rmsersr =
N

Where obstst are observed (ground truth) phenotypes, predrsr are predicted
phenotypes (output from the models), and N is the number of records (genotypes) in

the testing set.
The models were tested using cross-validation with 200 iterations in two scenarios:

Single-environment: the training set consisted of 80% of genotypes available in the
respective environment/mean (20% as testing set). Genotypes were randomly

assigned to training/test sets at every iteration.

Multi-environment: the testing set consisted of 20% of all the available genotypes
in two environments not used for training the model. The training set comprised 80%
of all the available genotypes in the remaining environments (9). Therefore, the

testing set was double-blind: comprised of both environments and genotypes not

14



used for model training. Both genotypes and environments were randomly assigned

to training/testing sets at every iteration.

The importance of camera bands for grain yield prediction

Model 3 was tested in a single-environment scenario with M matrices constructed
based on all flight times with only a single camera band at a time (red, green, blue,
RedEdge, and NIR) to verify the importance of particular camera bands for grain yield

prediction using the M matrix.

The importance of timing of data capture

Model 3 was tested in a single-environment scenario with M matrices constructed on
all camera bands but with only one date at a time to verify the effect of time of data

capture on grain yield prediction accuracy.

Minimal setup for grain yield prediction

Based on the results mentioned in the previous paragraphs, a concept of minimal
setup for grain yield prediction was formed: a single flight mission taken during July
(grain filling stage). This concept was developed for multispectral cameras (with five
bands) and a simple RGB camera (3 bands, red, green, and blue). The RGB camera was
“simulated” using only three bands (out of the five available bands) for constructing

M matrices.

Model 3 was tested in the single-environment scenario, constructing M matrices
based on a random flight date in July in each environment with five (multispectral

camera) or three (RGB camera) bands.

Results

Phenotypic data evaluation - grain yield

Mean genotypic GY values across all environments (year and location combinations)
are similar (approximately 520 g m2), except for a field experiment in Staur in 2017
when the average GY value reached 789 g m2. The global mean is influenced mainly
by trials conducted in Vollebekk and resembles the distribution of the Vollebekk
environmental mean. The environmental mean in Staur is higher than the Vollebekk
means by 70 g m2. In all environments and means, a long left tail can be observed in
the distributions (Figure 2).
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Figure 2 Violin plot of distributions of grain yield genotypical means in each of the
studied environments and means: global means (across all studied environments) and
location specific means (across all environments within one location: Staur or

Vollebekk). Black dots indicate mean values

Table 2 Broad sense heritability (H2) of grain yield in each environment and number of

genotypes (n genotypes) tested in each environment (field trial)

Environment | ngenotypes H?
2015 Vollebekk 157 0.86
2016 Staur 100 0.55
2016 Vollebekk 98 0.58
2017 Staur 240 0.46
2017 Vollebekk 240 0.71
2019 Staur 220 0.50
2019 Vollebekk 220 0.68
2020 Staur 288 0.51
2020 Vollebekk 288 0.57
2021 Vollebekk 293 0.72
2022 Vollebekk 296 0.82

Across the field trials (environments), broad-sense heritability for GY ranged
between 0.46 (Staur 2017) to 0.86 (Vollebekk 2015) and the number of tested
genotypes varied between 98 and 296 (Table 2).

Field trials (environments) and means were, on average, highly correlated (r = 0.77).
The field trial from Vollebekk in 2015 is the most different from the remaining trials
and means, with r ranging from 0.32 (with Staur 2019) to 0.64 (with Vollebekk 2019)

and 0.67 with the Vollebekk environmental mean. The location means resemble more

16



recent trials (2019 onwards), which can also be observed for the global mean (Figure

3).
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Figure 3 Genotypic Pearson correlations for grain yield values among field trials

(environments), their means, and the global mean

High-throughput phenotyping data evaluation

Raw reflectance values for each band over field seasons in each environment are

shown on Figure S3.

Broad-sense heritability of each band changed during the season with no apparent
consistent trend; however, heritability values tended to be more stable later in the
growing season (from July onwards). NIR and red were the least heritable bands,
while RedEdge, green, and blue had higher heritability values. It was not uncommon
to observe that during the same mission, different bands had very different
heritability (Figure 4).
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Figure 4 Broad-sense heritability estimates for each band, in each environment, and for
each flight and camera. The X axis - data capture date (flight date), Y axis — broad sense
heritability. Line colors correspond to the bands they represent (RGB), grey — NIR, dark
red - RedEdge

Evaluation of single environment prediction using G matrix

Grain yield prediction using the G matrix in single-environment scenarios (model
trained and validated on a single season) consistently showed high accuracy in the
training set (on average 0.99). In contrast, accuracies in testing sets ranged from 0.59
to 0.81 in individual field trials, averaging to 0.75. In both location and global mean,
where the genetic signal is stronger, testing accuracies (r'TST) were higher than in the

individual trials. Root mean squared error (rmse) in the testing set was
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approximately four times higher than in the training set (53.0 and 13.9 for testing and

training sets, respectively, Table 3).

Table 3 Comparison of grain yield prediction accuracy and root mean squared error for
G matrix in a single season scenario (models built and verified on a single environment)
using cross-validation with 200 iterations. rTRN - accuracy in the training set, rTST -
accuracy in the testing set, rmseTRN - root mean squared error in the training set,

rmseTST - root mean squared error in the testing set

G matrix
Environment/mean.
rTRN | rTST | rmseTRN | rmseTST

2015V 0.99 0.69 15.7 64.9
2016_S 0.99 0.75 14.9 73.6
2016_V 0.98 0.72 14.7 52.0
2017_S 0.99 0.81 19.7 69.7
2017V 0.98 0.70 16.2 52.4
2019_S 0.95 0.59 23.6 51.9
2019V 0.98 0.63 11.1 40.7
2020_S 0.99 0.77 12.6 51.9
2020V 0.98 0.75 17.9 53.5
2021V 0.99 0.75 9.9 46.0
2022V 0.99 0.79 14.4 51.5
mean_global 1.00 0.86 6.3 40.2
mean_S 0.99 0.83 14.5 54.4
mean_V 1.00 0.85 3.6 39.1

Avg. | 0.99 0.75 13.9 53.0

Evaluation of single trait, single environment prediction using M matrix

M matrices showed the highest prediction ability on the environment they originated
from; however, they often retained prediction ability when tested on other
environments, especially those highly correlated with their environment of origin. M
matrices developed in seasons 2019 and 2020 showed poor prediction ability in 2015
Vollebekk, 2016 Vollebekk, and 2017 Vollebekk due to low correlations with those
environments. M matrices developed with data from 2021 Vollebekk (using both
cameras) showed decent prediction abilities across all the tested environments, even
in environments not strongly correlated with the M matrix’s origin (Figure 3).
Prediction accuracy was high (>0.5) for the global, and location means for all the M

matrices (Figure 5).
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Figure 5 Prediction accuracy achieved in single-environment scenarios by using M
matrix constructed on multispectral data from each environment with multispectral
data available. The y axis indicates from where the environment multispectral data
originated, while the x axis indicates the environment on which the model was trained
and tested. Numbers and colors indicate the prediction accuracy in the testing set
defined as Pearson correlation between predicted and actual values. * - data gathered
using Micasense RedEdgeM camera, ** data gathered using Phantom 4 Multispectral
camera. S - Staur, V - Vollebekk

Evaluation of G, M and G+M models in single-environment scenarios

Genomic prediction accuracies in testing sets ranged from 0.59 to 0.75, averaging
0.68 in the chosen environments, while training set accuracies reached nearly perfect
(0.98). Predictions using the M matrix in the single-environment scenario showed, on
average, lower training set accuracies than predictions using the G matrix (0.79 and
0.98, respectively); however, testing set accuracies were higher than those of the G
matrix (0.71 and 0.68, respectively). By comparing the difference between training
and testing sets accuracies, the M matrix model was less prone to overfitting than the
model using the G matrix (difference of 0.08 and 0.30 for M and G matrices,
respectively) (Table 4).

Table 4 Comparison among prediction performance of M matrices originating from
different seasons, prediction using only the G matrix (genomic prediction), and a
combined model utilizing both G and M matrices in the same model in a single-
environment scenario. Models were developed and tested on single environment means.
S - Staur, V - Vollebekk, rTRN - accuracy in the training set, rTST - accuracy in the

testing set, rmseTRN - root mean squared error in the training set, rmseTST - root mean
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squared error in the testing set. *M matrix developed using Micasense RedEdge M

camera data, ** M matrix developed using Phantom 4 Multispectral camera data

. Season/M matrix origin (if M present)
Model | Metric [ 07575 T 2019.v | 2020V | 2021.v* | 2021 ver | V&
rTRN 0.95 0.98 0.98 0.99 0.98
G TTST 0.59 0.63 0.75 0.75 0.68
rmseTRN | 23.61 | 11.06 | 17.87 9.88 15.61
rmseTST | 51.88 | 4072 | 5351 45.95 48.02
ITRN 0.74 0.81 0.75 0.81 0.84 0.79
" T TST 0.66 0.73 0.69 0.71 0.75 0.71
rmseTRN | 4320 | 3137 | 5362 | 4024 38.07 | 41.30
rmseTST | 4884 | 37.03 | 5813 | 49.11 4590 | 47.80
rTRN 0.96 0.98 0.99 1.00 1.00 0.99
- T TST 0.74 0.79 0.83 0.80 0.81 0.79
rmseTRN | 1951 | 11.02 | 11.23 6.87 619 | 10.96
rmseTST | 42.54 | 3233 | 4576 | 4100 4096 | 40.52

Supplementing genomic prediction (G matrix) with the M matrix in a single-
environment scenario yielded similar accuracy (0.71 for M versus 0.68 for G). The
G+M model exhibited traits of both individual matrix models and performed better
than either G or M alone: very high training accuracy, high testing accuracy, low

training error, and low testing set error (Table 4).

Evaluation of G, M, G+M, G+E and G+M+E models in multi-environment
scenarios

GY prediction using the G matrix alone in multi-environmental scenarios achieved
accuracies of 0.57 and 0.49 in training and testing sets, respectively. Prediction
accuracy in testing sets using M matrices originating from different environments
ranged from 0.27 to 0.44, averaging 0.36. Replacing G with the M matrix resulted in a
significant reduction of accuracy (difference in testing accuracy of 0.13) and a slightly
larger degree of overfitting of the model (difference of accuracy in training-testing
sets of 0.12) (Table 5).
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Table 5 Comparison of prediction ability of different models including combinations of
G, E and M matrices in multi-environmental scenarios (two environments as testing sets,
drawn randomly at every iteration). M matrices were developed based on data
originating from different environments, and each M matrix has been tested individually
on randomly selected test environments over 200 iterations. S — Staur, V - Vollebekk,
rTRN - accuracy in the training set, rTST - accuracy in the testing set, rmseTRN - root
mean squared error in the training set, rmseTST - root mean squared error in the
testing set. *M matrix developed using Micasense RedEdge M camera data, ** M matrix

developed using Phantom 4 Multispectral camera data

Model Metric If M present, M matrix developed on data from: Ave.
2019.S | 2019.v [ 2020v | 2021.v* | 2021_v* 8
r'TRN 0.57 -

G rTST 0.49 -
rmseTRN 111.1 -
rmseTST 117.0 -

r'TRN 0.43 0.40 0.54 0.52 0.52 0.48

M rTST 0.27 0.32 0.36 0.42 0.44 0.36
rmseTRN 110.6 111.6 112.2 113.4 113.5 112.3
rmseTST 117.0 115.0 124.2 121.7 119.7 119.5

r'TRN 0.95 -
rTST 0.83 -
GrE rmseTRN 40.59 -
rmseTST 58.16 -
r'TRN 0.46 0.46 0.56 0.57 0.57 0.52
G+M rTST 0.44 0.46 0.62 0.57 0.63 0.56
rmseTRN 107.0 107.0 110.0 108.0 109.0 108.0
rmseTST 121.0 121.0 117.0 124.0 121.0 120.8
r'TRN 0.90 0.92 0.90 0.91 0.93 0.91
M4+E rTST 0.70 0.78 0.73 0.77 0.79 0.75
rmseTRN 50.8 45.9 56.7 53.7 49.0 51.3
rmseTST 62.3 57.4 68.6 63.4 60.3 62.4
r'TRN 0.95 0.95 0.95 0.95 0.95 0.95
rTST 0.76 0.79 0.84 0.84 0.85 0.82
G+E+M
rmseTRN 36.9 37.2 40.1 40.2 40.5 39.0
rmseTST 54.9 50.9 56.2 54.8 53.0 53.9

Supplementing genomic prediction with a phenotypically-derived E matrix
drastically increased the prediction accuracy in training and testing sets (0.95 and
0.83, respectively) and reduced the errors. The G+E model achieved the highest

accuracy among all the tested models (Table 5).

Aiding genomic prediction with M matrices also increased prediction accuracy, albeit
smaller than adding the E matrix (testing sets accuracy difference of 0.27 between
G+E and G+M models). Prediction based on M matrices coupled with the E matrix
achieved an accuracy comparable with genomic prediction aided by the E matrix
(testing set accuracies of 0.75 and 0.83 for M+E and G+E models, respectively). The
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M+E model was similar to the G+E model in its degree of overfitting (difference

between training and testing set accuracies of 0.12 and 0.16, respectively) (Table 5).

The most complex model, utilizing G, E, and M matrices, achieved accuracy almost
identical to the G+E model (testing set accuracies of 0.82 and 0.83, respectively);
however, adding multispectral information resulted in more minor errors both in
training and testing sets, as compared to the G+E model. M matrix originating from
the 2021 Vollebekk environment (with the highest temporal density) paired with G
and E matrices showed the highest accuracy in the prediction of GY (testing set
accuracy 0.85) (Table 5).

Which camera bands are the most informative for grain yield prediction using
M matrix?

In single-environment scenario, grain yield prediction using a constructed M matrix
based on only one band reduced accuracy by 35% compared to the entire M matrix
(average testing set accuracy for the individual bands of 0.46 compared to 0.71 for
the entire M matrix, Table 4 and 5). On average, bands exhibited the following ranking
(descending prediction in the test set accuracy): RedEdge, red ex aequo green and
blue, and NIR; however, these differed slightly among the environments. The bands
with the highest prediction abilities were RedEdge and the three “basic” bands (red,
green, and blue). Contrastingly, The least informative band was consistently NIR
(except for Vollebekk 2019, where it ranked 4), with high variability in the testing set
prediction accuracy reaching as low as -0.22 in the Staur 2019 environment. The

remaining bands were consistent in their prediction abilities (Table 6).

Bearing similarity to the single-environment scenarios (Table 6), M matrices
developed on single bands had poor and reduced prediction ability in multi-
environment scenarios by 41% (average testing set prediction accuracy of 0.21)
compared to the entire M matrices (Table 5, 7). The average ranking of bands also
bared similarity to the single-environment scenarios: RedEdge ex aequo red and

green, blue and NIR.
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Table 6 Comparison of prediction ability of constructed M matrices based on a single
band captured during a single season in a single-environment scenario (models trained
and tested on a single environment, 80/20 genotypes train/test set). S - Staur, V -
Vollebekk, rTRN - accuracy in the training set, rTST - accuracy in the testing set,
rmseTRN - root mean squared error in the training set, rmseTST - root mean squared
error in the testing set. *M matrix developed using Micasense RedEdge M camera data,

** M matrix developed using Phantom 4 Multispectral camera data

Band Metric In season: Avg.
2019_S 2019V 2020V 2021_V* 2021_V**

rTRN 0.59 0.58 0.64 0.59 0.73 0.63

Red rTST 0.55 0.47 0.60 0.44 0.63 0.54

rmseTRN 52.29 44.2 62.6 55.95 47.2 52.4

rmseTST 52.7 46.5 66.0 70.2 54.8 58.0

rTRN 0.59 0.62 0.59 0.59 0.71 0.62

Green rTST 0.55 0.56 0.53 0.54 0.65 0.53

rmseTRN 52.4 42.4 65.6 56.0 48.6 53.0

rmseTST 53.1 44.8 68.1 59.0 52.2 55.4

rTRN 0.45 0.38 0.60 0.57 0.69 0.54

Blue rTST 0.40 0.25 0.53 0.47 0.65 0.46

rmseTRN 57.4 50.2 65.2 56.5 50.1 55.9

rmseTST 59.6 51.9 67.7 63.6 52.9 59.1

rTRN 0.63 0.63 0.58 0.60 0.69 0.63

RedEdge rTST 0.60 0.58 0.53 0.56 0.61 0.58

rmseTRN 50.2 42.0 66.3 54.9 49.7 52.6

rmseTST 51.4 44.0 68.6 59.4 55.8 55.8

rTRN 0.82 0.45 0.42 0.44 0.66 0.56

NIR rTST -0.22 0.35 0.21 0.13 0.55 0.21

rmseTRN 30.7 48.4 73.0 58.0 51.8 52.4

rmseTST 64.6 50.6 81.2 68.7 58.8 64.8

Table 7 Comparison of prediction ability of constructed M matrices based on a single
camera band in multi-environment scenarios (two environments as testing set, drawn
randomly at every iteration). The development of M matrices was based on data
originating from different environments, and each M matrix has been tested individually
on randomly selected test environments over 200 iterations. S — Staur, V - Vollebekk,
rTRN - accuracy in the training set, rTST - accuracy in the testing set, rmseTRN - root
mean squared error in the training set, rmseTST - root mean squared error in the
testing set. *M matrix developed using Micasense RedEdge M camera data, ** M matrix

developed using Phantom 4 Multispectral camera data

Band Metric M matrix developed on data from: Avg,
2019_S 2019V 2020_V 2021_V* 2021_V**

rTRN 0.46 0.44 0.56 0.56 0.55 0.51

Red rTST 0.21 0.24 0.24 0.25 0.35 0.26

rmseTRN 109.6 110.3 111.3 111.4 112.1 111.0

rmseTST 119.7 118.1 128.5 134.3 124.7 125.0
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Table 7 Cont.

r'TRN 0.46 0.45 0.56 0.57 0.55 0.52

Green rTST 0.22 0.23 0.23 0.25 0.35 0.26
rmseTRN 109.3 110.0 111.4 110.9 111.7 111.0

rmseTST 119.2 118.6 128.8 130.4 124.7 124.0

r'TRN 0.48 0.48 0.57 0.58 0.57 0.53

Blue r'TST 0.10 0.12 0.18 0.12 0.26 0.16
rmseTRN 109.1 109.3 111.1 110.6 111.1 110.0

rmseTST 121.0 121.4 131.7 133.1 129.2 127.0

r'TRN 0.44 0.45 0.56 0.56 0.56 0.52

RedEdge r'TST 0.24 0.25 0.24 0.26 0.33 0.26
rmseTRN 110.1 110.0 111.27 111.15 111.5 111.0

rmseTST 118.1 117.7 128.8 129.3 125.9 124.0

r'TRN 0.48 0.47 0.57 0.58 0.56 0.53

NIR r'TST 0.00 0.18 0.08 0.10 0.31 0.13
rmseTRN 109.2 109.5 110.9 110.5 111.5 110.0

rmseTST 122.8 120.3 132.7 133.3 127.2 127.0

Effect of multispectral data capture on grain yield prediction accuracy

GY prediction in single-environment scenarios was possible, with accuracies ranging

from 0.17 to 0.68. Based on all the environments, data capture sessions late in the

growing season (when plants approach physiological maturity, data not shown)

tended to be less informative. At the same time, the prediction accuracy dropped

further as maturing progressed. It is difficult to conclude the informativeness of early

season flights due to the scarcity of available records; however, based on Vollebekk

2020 and 2021 environments, early season flights are more informative than flights

taken later, until approximately the end of June. Data capture sessions carried out in

July showed the highest accuracy in all the seasons with stable accuracies (Figure 6).

Based on the 2021 Vollebekk environment, no significant differences in prediction

accuracy could be observed between the two used cameras (Figure 6).
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Figure 6 Prediction accuracy using M matrix developed on all bands from a single date
in single-environment scenario, expressed as Pearson correlation between predicted
and actual values in testing sets. X axis - date of mission, y axis — prediction accuracy.
Color indicates the camera used for data capture: red - Micasense RedEdgeM, blue -

Phantom 4 Multispectral camera

Minimal GY prediction setup in single-environment scenarios using M matrix

The prediction accuracy ranged from 0.51 to 0.58 and 0.55 to 0.62 for RGB and MS
cameras, respectively - using MS instead of RGB cameras increased prediction
accuracy only slightly (average difference of 0.04). Prediction performed using both
cameras showed identical degrees of overfitting (prediction accuracy difference

between training and testing sets of 0.03) (Table 8).
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Table 8 Comparison of grain yield prediction accuracy in single-environment scenarios
using a minimal setup (single data capture during July) with M matrices developed
based on RGB and multispectral data (cameras). S — Staur, V - Vollebekk, rTRN -
accuracy in the training set, rTST - accuracy in the testing set, rmseTRN - root mean
squared error in the training set, rmseTST - root mean squared error in the testing set.
*M matrix developed using Micasense RedEdge M camera data, ** M matrix developed

using Phantom 4 Multispectral camera data

Setup Metric M matrix developed on data from: Avg,
2019_.S [ 2019V [ 2020_V 2021_V* 2021_V**

rTRN 0.58 0.55 0.60 0.57 0.58 0.58

RGB camera rTST 0.56 0.51 0.58 0.54 0.55 0.55

rmseTRN 53.0 44.3 65.0 56.4 56.1 55.0

rmseTST 52.4 45.2 66.0 57.2 27.3 55.6

rTRN 0.63 0.59 0.62 0.63 0.61 0.62

MS camera rTST 0.62 0.55 0.59 0.60 0.58 0.59

rmseTRN 50.4 42.4 63.7 53.4 54.3 52.9

rmseTST 50.5 44.3 65.2 54.7 56.0 54.1

Discussion

Using relationships among objects or individuals has been present in plant breeding
for over 100 years and has been the foundation for quantitative genetics. Those
relationships can be derived based on various properties of the individuals, such as
their pedigrees (A matrix) or dense genotyping data (Meuwissen, Hayes, and
Goddard, 2001) and are widely used in breeding programs worldwide for both simple
and complex traits. This study elaborates on utilizing multispectral phenotypes to
construct genotypic relationships. The described methodology, bearing similarity to
the G or A matrices or work of Krause et al. (2019), focuses not on individual
numerical multispectral phenotype values and their possible abstract relationship

with the complex trait of interest but rather on the similarities between genotypes.

Having standard GS in a single-environment scenario as a benchmark, M matrix-
based prediction performed well. GS tended to reach almost perfect accuracy in the
training set, with a significant drop in accuracy when tested on new lines. With an
average GY heritability of 0.6 in this study, we can see that GS attempts to predict
experimental error in individual trials. The accuracy difference between training and
testing sets for the M matrix was four times smaller than for GS, indicating a much
lower level of overfitting, probably due to being “closer” to the actual phenotypes. It
is also seen in the fact that GS performs best when applied on multi-environment
means, where the genetic signal is strongest and the experimental error is of lesser

importance. The prediction accuracies using M matrices in a single-environment
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scenario are comparable to those using H matrices (Krause et al., 2019). H matrix is
analogical to the M matrix but developed on hyperspectral data with 62 bands,
covering a spectrum between the 380-850 nm region. It indicates that introducing
more narrower bands is less valuable than using fewer but broader bands available
on commercial “low-cost” cameras such as those used in the study. The prediction
accuracies achieved by the M matrices are also similar to other studies using linear
and non-linear modeling approaches, including OLS (ordinary least squares),
Bayesian methods, PLS (partial least squares), as well as functional regression
(Aguate et al, 2017; Montesinos-Lopez et al, 2017) or machine/deep learning
methods (Shafiee et al., 2021).

The development of M matrices based on different environments should have lower
prediction abilities when tested on the multi-environment means due to their
inherent connection to the environment from which they originated. However, when
tested on multi-environment means, temporally-dense data shows slightly higher
accuracy than on trial means from which they originated. It could be partially because
the means resemble the original environment but could also indicate that even the
seemingly environment-specific similarity measure has the potential to generalize
the genetic part of the phenotype. It is also highlighted by the M matrices originating
from different environments, showing prediction power when tested on different
environments (with exceptions). The temporally denser the data, the higher the M
matrix’s generalization ability. However, it is not easy to consult this hypothesis with

available research.

G and M matrices complement each other - the GS model coupled with the M matrix
(G+M) in a single-season scenario achieved higher accuracy than its components
alone. The G+M model has the theoretical advantage of using both genetic information
and the outcome of this information in a particular environment, capturing more of
the crucial GXE interactions. However, the performance gain of adding M to GS was
relatively small and came with valuable error reduction in the testing set. Considering
the relatively low expense of acquiring multispectral information and its standalone
prediction capacity, it can be a viable addition to the practical applications of GS

protocols.

In multi-environment scenarios, an M matrix-based prediction was inferior to GS, a
logical consequence of the inherent environment-specificity of the M matrices, as
opposed to the “general” genetic nature of the G matrix. However, the prediction
ability of M matrices in multi-environment scenarios tended to increase with the

number of data capture sessions, which was not the case for single-environment
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scenarios. It indicates that a temporally denser M matrix can describe the genetic
component of grain yield, reaching accuracy almost as high as GS, even though this

component is not as crucial for the prediction in a single-environment scenario.

GS supplemented with the M matrix shows overall slightly superior prediction
accuracy compared to the GS or M matrix-based prediction alone; however, this
appears to depend on the origin of the M matrix and, probably more importantly, the
temporal density of data capture sessions (these two are confounded in this work).
Despite higher accuracy, the G+M model shows higher error values, indicating that
providing environment-specific information (M matrix) to GS in multi-environment

prediction scenarios brings little value without providing further context.

Grain yield prediction in multi-environment scenarios using G or M matrices with
environmental context (E matrix) shows high prediction accuracy, with GS’s
superiority in accuracy and error. It indicates that both layers of information prove
informative when used in the environmental context. Although the model combining
G, M, and E variates (G+M+E) is not superior to G+E in terms of accuracy, it minimizes
the error, hinting that even only one field season of HTP data capture can aid GS
protocols in providing more accurate genetic estimates of grain yield in multi-

environment scenarios.

The camera bands’ relative ranking of prediction accuracy indicates that heritability
is essential. Both the least heritable and the least important band was near infra-red
(NIR), despite its established link with plant physiology (multiple reflections of turgid
cell structure (Josep Pefiuelas & Ilolanda Filella, 1998)). Hypothesizing, NIR
reflectance could gain importance when water availability severely limits grain yield
output (drought); however, it is impossible to verify this based on our available data.
NIR band tends to be “unstable” and prone to differences in light conditions during
data capture, bearing a significant challenge in field-based HTP. This problem is
partially solved by introducing normalized vegetation indices (VIs, linear
combinations of reflectance values in selected spectral regions) such as NDVI, which

are more robust under variable lighting conditions.

The most important bands (RedEdge, Red, Green, and Blue) all link to chlorophyll and
are more heritable than NIR. RedEdge points to chlorophyll content (Gitelson I,
Merzlyak, and Lichtenthaler, 1996), and due to its photochemical properties,
chlorophyll absorbs red and blue light while reflecting green. Therefore, it is
reasonable to hypothesize that chlorophyll properties and content of a genotype

govern the usefulness of the M matrix, following findings made by Krause et al.
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(2019). It may also be that these associations are spurious - the most influential
bands are highly heritable, and the M matrix models may therefore work on a “plants

that look alike, yield alike” principle without an actual biological component to it.

The most informative data capture time occurs during the grain-filling period, which
aligns well with the hypothesis that chlorophyll properties are captured by the M
matrix and govern its predictive ability - during grain-filling, higher chlorophyll
content means higher assimilation force and photosynthesis rate, resulting in higher
grain yield. At the same time, inspecting drone imagery during grain filling indicates
that the purely visual differences among trial plots are the smallest. Surprisingly, data
capture sessions taken later in the growing season yield lower prediction accuracy.
The moment when plants start maturing is easy to determine visually using HTP
imagery due to the decay of chlorophyll and water content. At the same time, grain
yield is generally highly correlated with earliness; hence, it should be reasonably
possible to predict grain yield based on differences in genotype earliness. Our
findings contradict this hypothesis, as a decay in prediction accuracy was observed
as maturing progressed. These arguments also support the hypothesis of the M matrix
using chlorophyll information proxies to predict grain yield rather than the “plants
that look alike, yield alike” principle. Krause et al. (2019) did not observe a similar
relationship: all flights taken during the vegetative season yielded comparable

accuracy.

This study used two cameras for HTP data capture: Micasense RedEdge M and
Phantom 4 Multispectral camera. They were analyzed back-to-back for their
prediction accuracy using the M matrix in all models and scenarios. Our results show
no evidence to conclude that there are significant differences in prediction accuracy
between the cameras, despite the different technical specifications and numerical
reflectance values obtained. This conclusion aligns with the authors’ previous studies,
comparing the same two cameras in parallel mission sessions for grain yield and

biomass prediction using machine learning (Shafiee et al,, in revision).

Based on our results, the prediction accuracy gains of using a multispectral camera
over a simple RGB camera are incremental, despite multispectral cameras giving
access to the informative RedEdge band. Considering the needed hardware, effort,
and other resources for grain yield prediction, a simple RGB camera is more appealing
from a purely economic standpoint. It was also exemplified that as little as a single
flight mission with a simple RGB camera during the grain-filling period yields enough

data to predict grain yield with accuracies over 0.5 in a single-environment scenario.
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It shows the potential of the method and the potential of HTP in large-scale field trial

applications.

The usefulness of GS and grain yield prediction using the M matrix can hardly be
compared, as those two methodologies occupy different application niches in plant
breeding: the purpose of GS is an early prediction of genotype’s GEBV (genotypically-
estimated breeding value) to enable efficient screening of early-generation progenies
in breeding programs and being able to apply speed breeding. Therefore, the most
significant advantage of GS is the ability to estimate GEBVs based on a sample of DNA
of a single plant earlier. Grain yield prediction using the M matrix does not have this
advantage. Genotypes must be put in field trials to collect their multispectral
phenotypes, which can occur only in later-generation progenies in reasonably sized
field trials. However, prediction using the M matrix scales very well, as adding more
plots does not increase the workload linearly (which is the case in GS). Therefore,
grain yield prediction using the M matrix fits well in the later stages of large-scale
breeding programs, allowing the breeder to test a more significant number of variety

candidates without expanding their technical base.

One disadvantage of the M matrix and ML protocols is their inherent connection with
their environment of origin. Environment-specific trait estimates are of little use for
breeders unless the environment closely resembles their target population of
environments. Nevertheless, it was shown that a constructed M matrix based on
dense data from a single environment could generalize (to “see” the heritable signal)
and perform well when tested on a multi-environment mean. The fact that the M
matrix works synergistically with GS makes it an affordable way to improve GS
prediction accuracy and be used as a standalone tool. An added advantage of M
matrix-based prediction or its inclusion into GS protocols is its purely statistical and
comprehensible nature paired with using already available software without

customization.
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Conclusions

Developing genotypic relationships using high-throughput multispectral data (M
matrix) gathered using consumer-grade equipment for grain yield prediction in
wheat was elaborated. A back-to-back comparison of the prediction abilities of
genomic selection models, including combinations of G, M, and E matrices, was
conducted using multi-environment field trial data and mixed models (BLUP) in
single and multi-environment scenarios. M matrix possesses a similar to the G matrix
standalone prediction ability, and genomic selection models can be improved by
including both G and M matrices. The importance of camera bands for grain
prediction using the M matrix was discussed, showing that bands with the highest
heritability are the most important. The importance of data capture was investigated,
demonstrating that imagery taken during grain filling yields the best accuracy. The
study also showed that grain yield prediction is possible using a simple RGB camera
with a slight accuracy loss. The work contributes to expanding use cases for
multispectral high-throughput phenotyping data and shows the potential of using
this data for improving genomic selection protocols or standalone grain yield

prediction in large-scale field trials.
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Multispectral image acquisition and processing

Two multispectral cameras were used in this study. The RedEdge-M has five imaging
sensors, including red, green, blue, red edge, and near InfraRed (NIR) bands (Figure
1). The camera has a 5.4 mm focal length, the sensor size is 4.8 mm x 3.6mm, and the
image size is 1280 x 960 pixels. A sunshine sensor can record the illumination
information of each image to calibrate the multispectral images. The camera was
mounted on a fully programmable DJI Matrix 100 UAV with a maximum payload of
1.25 kg. The flight routes were planned in the Altizure application (Everest

Innovation Technology).

The P4M camera has six imaging sensors, five narrow bands, and one combined RGB
sensor. The multispectral bands include Red, Green, Blue, red edge, and (NIR). The
camera focal length is 5.74 mm, the sensor size is 4.87 mm x 3.96 mm, and the image
size is 1600x1300 pixels. This camera is integrated into its UAV platform. Flight
routes were planned in the DJI GSPro application (https://www.dji.com/ground-
station-pro). Flights were conducted around local noon time. The images were taken

from a nadir view with 85% frontal and 80% side overlap.

The image pixel value depends on different factors, such as sensor setting, sensor
properties, and scene condition, which must be corrected to get a radiometrically
trusted measure of terrain reflectance. All related parameters are present in the
image EXIF data and applied for radiometric corrections in Pix4D (refer to Shafiee et
al,, 2021, for more details). Reflectance targets were applied to do a radiometric
calibration in field conditions. RedEdge-M has its calibration panel (with Albedo
values of 0.58, 0.59, 0.60, 0.59, and 0.56, respectively, for the blue, green, red, red
edge, and NIR bands). Our experiments showed that P4M generates more reliable
spectral values when the radiometric calibration (data not shown) is applied, which
was also noted by Di Gennaro et al. in their recent study (2022). Therefore, a
calibration panel (SphereOptics, Diffuse Reflectance Target-53%R) was applied to
correct P4M images (Albedo values of 0.54329, 0.54389, 0.54260, 0.54092, and
0.53788 respectively, for blue, green, red, red edge and NIR bands). Albedo values
were determined for each central wavelength based on the datasheet the target
provider enclosed. Images from both cameras were imported into Pix4D software
(Pix4D SA, Lausanne, Switzerland) for processing. Different Processing steps of UAV
images, including geometric correction, image mosaicking, and radiometric
calibration, were conducted in Pix4D with a spatial resolution of 1.3 and 1.09
cm/pixel, respectively, for RedEdge-M and P4M. Orthomosaics were generated for
each band separately. QGIS software (QGIS 3.4, Open-Source Geo-Spatial Foundation



Project. http://qgis.osgeo.org) was used to extract average spectral values for each
experimental plot in the trial (refer to Shafiee et al., 2021 for more details). Each plot
was masked out in the middle part to avoid border effects using a polygon shape file
in QGIS. A separate mask was generated for each camera. Since the pixel size is much
smaller than the plot size and the canopy is well structured, the mixed pixel issue is
insignificant in this study. The ZonalStatistic Tool was applied to calculate the median

reflectance value per plot.

Weather conditions during the field trials

Please refer to supplementary information of Paper II.

Planting dates of the trials
Table S1 Planting dates of the field trials at both locations

Season | Vollebekk Staur

2015 2015-04-24

2016 2016-04-24 | 2016-05-10

2017 2017-05-04 | 2017-05-12

2019 2019-05-19 | 2019-06-04

2020 2020-05-15 | 2020-04-21

2021 2021-04-20 | 2021-04-27

2022 2021-04-21
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Correlations between the bands and grain yield
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Figure S5 Env: Vollebekk 2020, Camera: Micasense. Pearson correlations among the

bands at different days and grain yield
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Figure S6 Env: Vollebekk 2021, Camera: Micasense. Pearson correlations among the

bands at different days and grain yield
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Errata

Section and page

Modification

Change

References p.57

Added reference

Slafer, G.A. et al. (2023). A ‘wiring diagram’ for
sink strength traits impacting wheat yield
potential. Journal of Experimental Botany, 74
(1), pp. 40-71. Available at:
https://doi.org/10.1093/jxb/erac410

Introduction p.5

Changed sentence

0ld: The new varieties, on the other hand, had
HI approaching the theoretical limit of 0.5.
New: The new varieties, on the other hand, had
HI of 0.5, closer to the theoretical limit of 0.6
(Slafer et al., 2023).

Introduction p.9

Changed sentence

0ld: In wheat, the estimated value of the gains
in GY varies between 5 and 115 kg ha-1 per
year (0.19 - 2.80%), with values around 0.2%
being most common in more reliable
collections (Table 2).

New: In wheat, the estimated value of the gains
in GY varies between 5 and 115 kg ha-1 per
year (0.19 - 2.80%, Table 2).

Introduction p.10

Changed table header

0ld: Table 2 Genetic gains in wheat grain yield
in various collections worldwide. GrPS - grains
per spike, NUE - nitrogen use efficiency, GrpA -
grains per area, BM - above- ground biomass,
SR - stripe rust resistance, HI - harvest index,
SppA - spikes per area, TKW - thousand kernel
weight, DH - days to heading, Chl - chlorophyll
content, PAR- increased capture of
photosynthetically-active radiation

New: Genetic gains in wheat grain yield in
various collections worldwide. GrPS - grains
per spike, GrpA - grains per area, SppA - spikes
per area, TKW - thousand kernel weight

Paper Il p.16, Table 4

Addition to table

footnote

Mono - marker monomorphic (estimation not
possible); (...) Full difference between

homozygotes (...)

Paper Il p.16, Table 4

Added to table caption

in respective units listed in Table 1









ISBN: 978-82-575-2081-6
ISSN: 1894-6402

U
B Norwegian University
M of Life Sciences

Postboks 5003
NO-1432 As, Norway
+47 67 23 00 00
www.nmbu.no

ON'YSIJVYOQYOAANY / 268911



	Blank Page
	Blank Page

