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A B S T R A C T   

Non-destructive methods for assessing the chemical composition of fruit and berries are being developed for use 
in e.g., sorting, storage management or as part of decision making in autonomous harvesting systems. In this 
study, Raman spectroscopy (RS) was used to estimate a selection of chemical components using partial least 
squares regression (PLSR) from early (June) and late (September) in the Norwegian strawberry harvesting 
season. Satisfactory PLSR models were made for total soluble solids (TSS), fructose, glucose, sum of sugars (SS), 
citric acid and sum of acids (SA) with coefficient of determination (R2) ranging from 0.81 to 0.92 when evaluated 
by cross validation. PLSR models for total acid content, sucrose and malic acid did not perform as well, with R2 

ranging from 0.42 to 0.68, when evaluated by cross validation. Strawberries harvested in September showed 
significant difference between samples in sweet, sour, and acidic taste (p < 0.001). Results from RS demonstrated 
that the method can be used to determine sensory properties, where e.g., the correlation between predicted 
values of TSS and SS/SA with sensory sweet taste were 0.80 and 0.87, respectively. In conclusion, RS performed 
very well for characterization of both chemical and sensory properties in fresh strawberries.   

1. Introduction 

Strawberry (Fragaria × ananassa Duchesne ex Rozier) is a fruit char-
acterized by its red color, sweetness, and distinct berry flavor. It is a non- 
climacteric fruit, meaning that minimal maturing takes place after 
harvest, which emphasizes the importance of correct harvest time to 
ensure desired strawberry quality. Decision to pick is normally made by 
assessing red color development, i.e., when a specified percentage of 
surface area is red. To ensure that sensory attributes are acceptable, 
information about chemical composition. e.g. sugars and acids, is also 
needed in the decision making process (Kader, 2002). Strawberry fruit 
sweetness and acidity are important for consumer acceptance, and the 
sugar-acid ratio can be the most important factor for perceived sweet-
ness in strawberries (Ikegaya et al., 2019). 

There is a need for quantitative information to be used by autono-
mous harvesting systems (Zhou et al., 2022) in postharvest sorting and 
during storage (Lewers et al., 2020). Spectroscopic sensors can be used 
to assess chemical composition in single strawberries without the need 
for destructive chemical analyses. Several studies have been performed 

using near infrared (NIR) spectroscopy to determine a range of physi-
cochemical properties in strawberries the last twenty years, including 
total soluble solids (TSS) (Agulheiro-Santos et al., 2022), TSS and indi-
vidual sugars (Nishizawa et al., 2009), acidity (Shao & He, 2008) and 
both TSS and acidity (Amodio et al., 2017; Mancini et al., 2020; Saad 
et al., 2022; Sánchez et al., 2012). While many have reported good re-
sults for estimation of TSS, a proxy measurement of total sugar content, 
with R2 values of 0.79–0.96 using NIR spectroscopy, results for acidity 
were generally not good enough for reliable use, with R2 ranging from 
0.54 to 0.91. Raman spectroscopy (RS) is a strong candidate method for 
assessment of TSS and acidity in strawberries, and given the high 
chemical resolution of RS, it may be possible to assess the content of 
individual sugars and acids as well. Other benefits of RS for analysis of 
strawberries are that the method is insensitive to water and has high 
sensitivity for different pigments (e.g., anthocyanins and carotenoids), 
which can be useful for determining strawberry maturity. There is 
currently no published scientific literature on the use of RS for analysis 
of strawberry quality, but the technique has shown promise when 
analyzing other fruit and berries, such as determination sugar content in 
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apples (Monago-Maraña et al., 2021), polysaccharide distribution in 
apples (Szymańska-Chargot et al., 2016) and evaluation of maturity in 
tomatoes (Qin et al., 2012). Monago-Maraña et al. (2021) also showed 
that the wide area Raman probe used for apple analysis could penetrate 
at least 8 mm into an intact apple, and it is reasonable to assume that 
penetration depth is comparable in strawberries, meaning that internal 
chemistry will contribute to the Raman spectrum. This asset could also 
be an additional benefit in strawberry analysis. 

The main aim of this study was to use RS to predict chemical 
composition, including TSS, total acidity (TA), individual sugars and 
organic acids of strawberries harvested ten weeks apart in one growing 
season. Harvesting at different times induces changes in strawberry 
chemistry, and this will potentially give a good indication of perfor-
mance of developed models over a season. A separate aim was to 
investigate if RS can be used to characterize sensory taste properties in 
strawberries. 

2. Materials and methods 

2.1. Samples 

Fresh strawberries (Fragaria × ananassa Duchesne ex Rozier) were 
harvested in two batches in the summer of 2021, the first batch in week 
26 (B1, n = 50) and the second batch in week 36 (B2, n = 100). The 
berries were selected to span different degrees of ripeness, visually 
assessed based on color development and color uniformity. In B1, the 
berries were selected to span from unripe to overripe, exemplified by all 
degrees of ripeness shown in Fig. 1A, and in B2 the ripeness varied from 
ripe to overripe, exemplified by the three degrees of ripeness to the right 
in Fig. 1A. Strawberries were grown in coconut coir in a table-top system 
with automatic watering and nutrient in an open polytunnel (Haygrove 
Ltd., UK) located in the south-eastern part of Norway. All strawberries 
were first analyzed with RS before chemical and sensory analysis. In B1, 
only RS and chemical analysis were performed, and the entire straw-
berry was used for chemical analysis. In B2, RS, chemical and sensory 
analysis were performed. Then a quarter of the berry, cut lengthwise, 
was used for chemical analysis, while the remaining three quarters were 
used for sensory analysis (Fig. 1B). 

2.2. Spectroscopic analysis 

Raman spectra were collected in duplicates from the surface of the 

strawberry on the same side as the solar radiation (front, Fig. 1. C) and 
on the opposite side (back, Fig. 1. D). A Kaiser RamanRXN2™ Multi- 
channel Raman analyzer (Kaiser Optical Systems, Inc., Ann Arbor, MI, 
USA) with a spectral resolution of 5 cm− 1 was used. The spectrometer 
was equipped with a 785 nm laser and PhAT probe with a laser spot size 
diameter of 6 mm. The spectra were recorded with a laser power set to 
400 mW in the range 300–1890 cm− 1 with 1.0 cm− 1 intervals. Exposure 
for each spectrum was set to 6 times 10 s. Instrument was controlled 
using iC Raman version 4.1.917 SP2 software (Kaiser Optical Systems, 
Inc., Ann Arbor, MI, USA). Raman spectra from DL-Malic acid (Sigma-
–Aldrich, MO, USA) and citric acid monohydrate (Merck, Darmstadt, 
Germany) were acquired in a water solution of 330 mg/mL using an 
immersion ballprobe (Matrix Solutions, Bothell, WA) suitable for liq-
uids. Instrument settings were the same as for analysis of strawberries, 
with exception of the acquisition time which was changed to 4 times 
20 s. Raman spectra of glucose, fructose and sucrose with the same 
system were recorded and published by Monago-Maraña et al. (2021). 

2.3. Chemical reference analyses 

The berry samples were homogenized, then centrifugated at 39200g 
for 10 min (Avanti J-26 XP, Beckman Coulter, USA) and the supernatant 
collected. The supernatant was used for analyses of TSS, TA and indi-
vidual sugars and acids. 

TSS was determined using a pocket Brix-acidity meter (PAL-BX| 
ACID1, Atago Co., Ltd., Tokyo, Japan). TA was measured in supernatant 
diluted with purified water (1/49, w/w) by the pocket Brix-acidity 
meter. The concentration of TA was expressed as g citric acid equiva-
lents per 100 g. 

Individual sugars and acids were determined using an Agilent 1100 
series HPLC system (Agilent Technologies, Waldbronn, Germany) 
equipped with a diode array detector (DAD) and a refractometer index 
(RI) detector (Model 132; Gilson, Villiers-le-Bel, France) as previously 
described (Woznicki et al., 2017). Supernatant diluted with purified 
water (1/2, v/v) filtered through Millex HA 0.45 µm filters (Millipore 
Corp., MA, USA) was injected (20 μL) and analytes were separated on a 
Rezex ROA-Organic acid H+ (8%) column (300 × 7.8 mm; Phenom-
enex, CA, USA) at 45 ◦C with a mobile phase of 7.2 mmol L− 1 H2SO4 and 
a flow rate of 0.5 mL min− 1. External standards of glucose, sucrose and 
fructose (Chem Service Inc., West Chester, PA, USA), citric, malic and 
shikimic acids (Sigma–Aldrich, MO, USA) and quinic acid (Merck, 
Darmstadt, Germany) were used for quantification. The sugars were 
detected with the RI detector and the organic acids were detected with 
DAD at 210 nm. In B2 there were different number of samples analysed 
for TSS, TA and with HPLC (Table 1.) because there was too little sample 
left after sensory analysis. 

2.4. Sensory analysis 

The sensory properties of the strawberries from B2 were assessed by 
a sensory panel of 10 assessors, trained according to ISO 8586 at Nofima 
(Ås, Norway). A generic descriptive analysis was performed as described 
by Lawless and Heymann (2010) and in accordance with ISO 13299 
(2016). Prior to sensory assessment, the hundred strawberries from B2 
were combined to make 20 aggregated samples, consisting of five 
strawberries each, to have enough of each sample for all sensory as-
sessors. Aggregated samples were put together based on predictions of 
TSS and the ratio between sum of sugars (SS) and sum of acids (SA) from 
Raman spectra and partial least squares regression (PLSR) models 
developed on strawberries from B1. The goal of sorting was to include 
strawberries with similar chemical composition in each aggregated 
sample as well as making the aggregated samples span the entire 
chemical range. This was accomplished by sorting strawberries by 
increasing TSS content, and then grouping the ones with similar SS/SA 
together. Three quarters of each strawberry was cut into smaller pieces 
and mixed so that each sample for the assessors contained pieces from all 

Fig. 1. Example of front side of a strawberry from each ripeness class, from 
unripe, on the left side, through overripe, on the right side (A). Front view of 
strawberry for sensory and chemical analyses (B), where ¾ was used for sensory 
analysis and ¼ was used for chemical analysis (in B2). Strawberry with indi-
cated Raman laser spots shown from front (C) and back (D). 
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the five strawberries included in the aggregated sample. In a pre-test 
session before the main session, the assessors were calibrated on sam-
ples that were considered the most different on the selected attributes 
typical for the samples to be tested. All products were coded with a 
three-digit number in a full balanced design (ISO 8589, 2007). Relevant 
product taste attributes: acidic, sweet, sour, bitter and total taste in-
tensity were evaluated at individual speed on an unstructured 15 cm line 
scale with labelled end points from “no intensity” (1) to “high intensity” 
(9) and registered on a computer system for direct recording of data 
(EyeQuestion, Software Logic8 BV, Utrecht, Netherlands). Tap water 
and unsalted crackers were available for palate cleansing during the 
assessment. 

2.5. Statistics, pre-processing of spectra and data analysis 

Correlations between the different chemical and sensory parameters 
were calculated as Pearson correlation coefficient (r). Raman spectra 
were first smoothed using the Savitzky-Golay algorithm with poly-
nomial order one and eleven points. Spectra were then base-line cor-
rected and fluorescence background was removed using a modified 
iterative 5th order polynomial curve fitting procedure (Modpoly) as 
described by Lieber and Mahadevan-Jansen (2003). The basis for the 
Modpoly method is a least-squares based polynomial curve-fitting 
function, where after the first iteration all Raman peaks with higher 
intensity than the polynomial curve are removed, and a new polynomial 
curve is calculated based on the remaining spectrum. This process is 
repeated until, ideally, there are no points that need reassignment, and 
the resulting baseline spectrum is subtracted from the raw Raman 
spectrum. 

PLSR was used for determining linear relationships between refer-
ence measurements and Raman spectra. PLSR emphasizes information 
in the spectra that is important for explaining variation in the reference 
measurements when making models (Martens & Martens, 2001). PLSR 
calibration models were evaluated by 10-fold venetian blind 
cross-validation. In addition, PLSR models calibrated only on straw-
berries from B1 were used to predict values for strawberries in B2, and 
the other way around, using each trial as independent test-set for 
assessment of model performance. For calibration models on taste at-
tributes the average Raman spectrum from the five strawberries 
included in the aggregated sensory sample were used, and mean in-
tensities for taste attributes were used as reference value. Because the 
sensory dataset contained only 20 samples, leave-one-sample out 
cross-validation was used for evaluation of RS PLSR models. 

The descriptive sensory data were analyzed with analysis of variance 
(ANOVA) using a linear mixed model comprising the factors: strawberry 
sample, assessors, replica, and the second-order interactions. Assessors 
and interactions involving assessors were considered random, whereas 
the other factors were fixed. Mean intensities were calculated, and sig-
nificant differences were checked using TUKEY’s HSD test (p < 0.05). 
The descriptive sensory analyses were done with EyeOpenR in the 

software EyeQuestion (Logic8 BV, Utrecht, Nederland). 
Baseline correction of Raman spectra were carried out using MAT-

LAB R2016b (The MathWorks, Natick, MA). Smoothing of spectra and 
PLSR analysis were conducted using The Unscrambler® X version 10.4 
(CAMO Analytics AS, Norway). Statistical testing was done in Minitab® 
Statistical Software (Minitab LLC, Pennsylvania, USA). 

3. Results and discussion 

3.1. Reference analysis of TSS, sugars and acids 

Concentrations of sugars and acids decreased significantly (p < 0.05) 
from B1 to B2 (Table 1). This seasonal effect on chemical composition 
has also been documented by Schwieterman et al. (2014), where authors 
cited environmental changes or plant maturity as main reasons for the 
change. Standard deviations were relatively large in the dataset because 
samples were selected to span from unripe to overripe and from ripe to 
overripe in B1 and B2, respectively. Correlations between chemical 
parameters are provided in table S1-S3. Note the high correlations be-
tween fructose, glucose and TSS (0.93 < r < 0.99), making them almost 
indistinguishable for modelling purposes. On the other hand, acids and 
sugars were not highly correlated (− 0.26 < r < 0.08), making it theo-
retically possible to model these independently based on Raman spectra. 

3.2. Raman spectra and PLSR 

All raw spectra and two selected pre-processed Raman spectra from 
B1 are provided in Fig. 2. The raw Raman spectra show high fluores-
cence background, largely caused by the seeds on the outside of the 
strawberries, which were impossible to avoid because of the large laser 
spot size, as indicated in Fig. 1. After pre-processing, resolved peaks 
related to chemical composition of the strawberries were apparent and 
many of the peaks could be assigned to sugars, organic acids, and 
anthocyanin. 

Results from cross validated PLSR models were very good to excel-
lent for all chemical components, except for malic acid and sucrose 
(Table 2). Reasons for the poor performance for malic acid and sucrose 
could be that they were present in relatively low concentrations. Cross- 
validation statistics were better for the trial in B1 than in B2, most likely 
due to the larger range in the reference data in B1. When the two 
datasets were merged PLSR results remained good, but in many cases 
extra latent variables (LV) were needed. PLSR models developed indi-
vidually from one of the four spots where Raman spectra were recorded 
resulted in slightly lower accuracy for the single spots compared with 
average of two spots on the frontside or average of two spots on the 
backside, while all spots merged resulted in the best accuracy (Table S4). 
Glucose and fructose were best modeled from Raman spectra recorded 
on the front of strawberries, while all other chemical parameters were 
slightly better modeled from Raman spectra recorded on the backside. 

Interpretation of regression coefficients of selected models (Fig. 3) 

Table 1 
Summary of chemical reference data from Batch 1 and Batch 2.  

Property Batch 1 Batch 2  

n Mean Min Max SD n Mean Min Max SD 

TSS (%)  50  10.12  7.25  15.60  2.23  97  8.33  4.30  15.30  1.41 
TA (%)  50  0.88  0.66  1.19  0.14  96  0.72  0.53  1.02  0.10 
Sucrose (g L− 1)  50  13.17  1.10  27.40  5.25  91  8.46  0.80  18.70  3.63 
Fructose (g L− 1)  50  38.64  23.61  68.21  12.21  91  32.37  15.15  70.58  7.01 
Glucose (g L− 1)  50  35.51  19.40  63.50  11.76  91  28.73  10.90  62.10  6.69 
SS (g L− 1)  50  87.32  52.91  144.16  24.08  91  69.56  26.90  136.10  14.35 
Malic acid (g L− 1)  50  1.91  1.21  2.88  0.38  91  1.43  0.74  2.81  0.32 
Citric acid (g L− 1)  50  8.82  6.40  13.30  1.74  91  6.75  4.60  10.30  1.08 
SA (g L− 1)  50  10.72  7.90  15.90  2.06  91  8.19  5.90  12.20  1.21 
SS / SA  50  8.60  4.11  15.90  3.20  91  8.74  3.49  15.39  2.40 

SD: standard deviation; TSS: total soluble solids; TA: total acidity; SS: sum of sugars; SA: sum of acids. 
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revealed strong association between coefficients and Raman spectra of 
pure chemical components (Fig. S1 and S2). Regression coefficients for 
TSS show a strong link to individual sugars, as seen by peaks at approx. 
630, 1080, 1130 and 1460 cm− 1, but were still different from the 
regression vectors for glucose and fructose, even with high underlying 
correlations. The most prominent peak in the regression vector of TSS 
was at approx. 1460 cm− 1, assigned to C-H, and this may indicate 
importance of combined intensity from all individual sugars, with 

minimal interference from other chemical components in strawberries, 
for the regression vector. Due to their very high correlation (r = 0.99), 
fructose and glucose regression coefficients were almost identical, even 
though the pure component spectra are quite different (e.g., strong 
peaks at 629 cm− 1 and 1265 cm− 1 for fructose, but not for glucose). 
Hence, it is impossible to model these components independently in this 
dataset, and robustness of the models will also most likely be compro-
mised when used for prediction of strawberries where fructose and 

Fig. 2. Raw Raman spectra (A) and two baseline corrected spectra with assignments of peaks (B), where the blue spectrum is from an unripe strawberry (leftmost 
panel in Fig. 1.A) with low total soluble solids and orange spectrum from an overripe strawberry (rightmost panel in Fig. 1.A) with high total soluble solids. As-
signments are made from spectra in Fig. S1 and S2. 

Table 2 
Summary of PLSR RS model performance for chemical reference analyses from Batch 1, Batch 2 and the full data set. R2 and RMSECV were calculated from 10-fold 
venetian blind cross-validation.  

Property Batch 1 Batch 2 Batch 1 and Batch 2  

LV R2 RMSECV LV R2 RMSECV LV R2 RMSECV 

TSS (%)  5  0.94  0.54  6  0.84  0.58  5  0.92  0.56 
TA (%)  5  0.62  0.09  6  0.58  0.06  7  0.68  0.08 
Sucrose (g L− 1)  6  0.41  4.09  6  0.22  3.23  7  0.45  3.62 
Fructose (g L− 1)  3  0.91  3.75  3  0.78  3.27  4  0.88  3.35 
Glucose (g L− 1)  3  0.91  3.48  3  0.79  3.11  4  0.89  3.10 
SS (g L− 1)  3  0.90  7.57  6  0.80  6.44  4  0.88  6.98 
Malic acid (g L− 1)  1  0.36  0.30  1  0.16  0.29  6  0.42  0.32 
Citric acid (g L− 1)  5  0.85  0.69  8  0.61  0.68  10  0.84  0.68 
SA (g L− 1)  5  0.84  0.83  7  0.55  0.82  10  0.81  0.86 
SS / SA  6  0.90  1.01  6  0.77  1.16  6  0.82  1.17 

LV: Latent Variables; R2: Coefficient of determination for cross validated values; RMSECV: Root Mean Square Error of Cross Validation; TSS: total soluble solids; TA: 
total acidity; SS: sum of sugars; SA: sum of acids. 
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glucose are less correlated. Two distinct peaks were visible in citric acid 
regression coefficients, a peak at 945 cm− 1, assigned to C-C-C skeletal 
vibration, and a peak at 1725 cm− 1, assigned to carboxylic acid residues, 
closely mimicking the pure spectrum of citric acid. 

To validate performance of PLSR models independently, perfor-
mance metrics were calculated using PLSR models made from one har-
vest batch to predict the other harvest batch (Table 3). Calibrations on 
samples from B2 performed better than those on samples from B1 judged 
by R2 values. This was contrary to what was expected, because the 
reference range was smaller in B2, leading to extrapolation in the pre-
dictions of B1. On the other hand, there were more samples in B2, 
possibly contributing to increased robustness of the models. Results for 
TSS and individual sugars were very good, except for sucrose, exhibiting 
low RMSEP and bias for each validation set. Models for fructose, 

glucose, TSS and SS had large r2 and R2 values, showing that these 
chemical components can be predicted with little to no bias correction. 
In general, results for individual acids had large biases and as a result 
large RMSEP and low R2, but the r2-values for citric acid and SA were 
good when using B1 as validation set, indicating that it could be possible 
to adjust models (i.e., bias correction) for improved model performance. 
Many of the models for acids had negative R2 values, which may seem 
contradictory, but is made possible by the fact that the large bias con-
tributes to large residuals for predicted values. The reason for better 
models for sugars than for acids may be that sugar content was about one 
order of magnitude higher than acid content, thus giving the largest 
chemical contribution to the Raman spectra. It is noteworthy that even 
though predictions for SA were affected by large biases, prediction of 
SS/SA was still acceptable, because of the high correlation between 

Fig. 3. Regression coefficients for total soluble solids, fructose, glucose, and citric acid from calibration models for the full dataset (Batch 1 and Batch 2). For easier 
comparison, regression coefficients were scaled between − 1 and 1 by dividing all values by the maximum value for each regression coefficient. 

Table 3 
Summary of Raman spectroscopy partial least squares regression model prediction performance on chemical reference analyses from Batch 1 and Batch 2. Prediction 
statistics from models calibrated on the other batch (i.e., partial least squares regression model only calibrated on samples from Batch 1 used to predict samples from 
Batch 2 and the other way around).  

Property Batch 1 Batch 2 

r2 R2 RMSEP Bias r2 R2 RMSEP Bias 

TSS (%)  0.95 0.91  0.66  -0.37  0.84 0.78  0.66  0.34 
TA (%)  0.44 < 0  0.17  -0.13  0.19 < 0  0.11  0.06 
Sucrose (g L− 1)  0.36 < 0  5.49  -3.50  0.25 < 0  5.17  3.62 
Fructose (g L− 1)  0.91 0.89  4.07  0.21  0.76 0.72  3.72  -0.85 
Glucose (g L− 1)  0.92 0.89  3.87  -0.88  0.77 0.74  3.41  0.13 
SS (g L− 1)  0.92 0.85  9.15  -4.84  0.78 0.72  7.64  3.03 
Malic acid (g L− 1)  0.36 < 0  0.60  -0.51  0.20 < 0  0.52  0.43 
Citric acid (g L− 1)  0.82 0.18  1.59  -1.33  0.35 < 0  1.54  1.26 
SA (g L− 1)  0.80 < 0  2.32  -2.10  0.34 < 0  1.93  1.64 
SS /SA  0.86 0.66  1.86  1.38  0.74 0.65  1.42  -0.54 

r2: squared correlation between reference and predicted values; R2: Coefficient of determination for predicted values; RMSEP: Root Mean Square Error of Prediction; 
TSS: total soluble solids; TA: total acidity; SS: sum of sugars; SA: sum of acids. 
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predicted and reference value. 

3.3. Sensory analysis and RS PLSR 

ANOVA analysis of the results from sensory assessment revealed that 
for the three taste attributes acidic, sweet, and sour taste, there were 
significant difference between some of the samples, while there was no 
statistically significant difference between any of the samples for 
bitterness and total taste intensity (Table S5). The general trend was that 
strawberries with high intensity of sweet taste, had lower taste intensity 
of acidic and sour. 

Correlation between taste attributes and chemical parameters 
showed that sugar content, TSS/TA and SS/SA were highly positively 
correlated with sweet taste, while acid content was highly negatively 
correlated with sweet taste (Table S6). The correlation was negative 
between TSS and SS/SA for acidic and sour taste, and the absolute value 
for correlations were lower for acidic taste than for sour taste. Correla-
tion between TSS and sweetness was lower than correlation between 
glucose, fructose or SS/SA and sweetness, indicating that a method 
capable of detailed chemical characterization is superior when pre-
dicting taste of strawberries. It should also be noted that RS PLSR pre-
diction of SS/SA gave higher correlation (correlation coefficient (r) 
= 0.87) than reference measurement of TSS (r = 0.81) and RS PLSR 
predicted values for TSS (r = 0.80). This relation is visualized in Fig. 4, 
where it is evident that the results from sensory assessment of sweetness 
follows the trend of SS/SA more closely than for TSS. Even though the R2 

and RMSEP were not great for TSS and SS/SA for the B2 dataset, the R2 

Pearson values were good, and for sorting purposes within one sample 
set, this is the most important metric. 

RS PLSR models for acidic and sweet taste were poor (0.68 < R2 <

0.70), and the model for sour taste was fair (R2 = 0.85). Nevertheless, 
these models are of sufficient quality to be used for rough screening to 
differentiate strawberries based on their taste and designate them to 
different consumer groups or processing methods. RS PLSR model for 
bitterness and total taste intensity were very poor (R2 < 0), there were 
no significant difference between samples for these two taste parameters 
from the sensory assessment, making modelling almost impossible. 
These models can be seen as indicative of performance at best because 
they are based on a limited number of samples, which were combined 
from five strawberries, making direct connections between RS and 
sensory attributes more indistinct.(Table 4). 

4. Discussion 

When comparing our PLSR results from RS with NIRS for chemical 
composition from the literature it seems that RS performs on par or 
better than NIRS. For TSS both methods performed very well, with NIRS 
giving R2 values of 0.79 on the lower end (Sánchez et al., 2012) and 0.96 
on the high end (Saad et al., 2022). RS performed better than NIRS for 
estimating glucose and fructose, while results were similar for sucrose 
(Nishizawa et al., 2009). For glucose and fructose, this better perfor-
mance can possibly be attributed to the specificity of Raman signals. 

For TA, titratable acidity or acidity results are more varied, but RS 
seems to perform better than NIRS based on most studies. Using NIRS for 
acidity resulted in no models (Mancini et al., 2020), R2 values of 0.54 
(Sánchez et al., 2012) and 0.58 (Amodio et al., 2017), and the peculiar 
outlier with R2 of 0.91 (Saad et al., 2022). The fundamental reason for 
RS performing better for prediction of acids than NIRS is that the 
functional carboxylic group has very low absorptivity in the NIR region 
and that acids are typically present in low concentrations (Williams 
et al., 2006). This increases the requirement for the spectroscopic 
method to be specific for functional groups to distinguish these mole-
cules from others present in the sample. Of note from the current study is 
that the RS PLSR model for citric acid and SA are better than the one for 
TA, indicating that the reference method for TA is not precise enough for 
good PLSR models. 

One factor that can disturb Raman measurements is ambient light, 
which could be solar radiation, artificial lighting, or a combination of 
both. To accommodate for this, measurements could be carried out in a 
dark chamber or by using defined light sources (e.g., LED bulbs emitting 
light at lower wavelengths than the Raman excitation laser) so that it 
does not interfere with the Raman signal, or that it can be easily 
removed by dark subtraction. 

Another issue for implementation of RS is the lengthy acquisition 
times often associated with the technique. In the present study, 60 s was 
used to collect one spectrum, which is too long for practical use in the 
field. However, a study by Lindtvedt et al. (2022) shows that acquisition 
times for RS can be reduced significantly, as low as one to two seconds 
for each Raman spectrum, and still contain relevant chemical informa-
tion of minor chemical components. Four spots were analyzed on each 
strawberry, and results indicate that model performance increased when 
averaging Raman spectra from more spots. It is unclear if this is caused 
by an increase in the signal to noise (S/N) when combining more spectra 
or if the improvement comes from a more representative sample being 
included when more than one spot is used for PLSR models. If this is an 
S/N issue, then changing the measurement scheme will not help much in 
reducing the measurement time or robustness of PLSR models. On the 
other hand, if this is a sampling issue, the analysis time could be reduced 
by moving the strawberry in relation to the Raman laser to cover more of 
the strawberry surface in less time. It is also possible that the sampling 
spots used for RS in the present study are not the best suited for analysis, 
maybe S/N is better in parts of the strawberry where TSS content is 
higher or there are certain parts of the strawberry that are more repre-
sentative of the whole. 

Some of the chemical components exhibited a very high degree of 
covariance, so much so that they could not be modeled independently. 

Fig. 4. Strawberry sample sorting in Batch 2 for sensory assessment. Average 
values for total soluble solids (TSS) (dots) and sum of sugars divided by sum of 
acids (SS/SA) (squares) from Raman predictions using models calibrated with 
samples from Batch 1, shown on the left y-axis, while the sweetness scores 
(triangles) were from sensory assessment, values shown on the right x-axis. 

Table 4 
Summary of Raman spectroscopy partial least squares regression model per-
formance on sensory taste attributes from Batch 2 (n = 20). R2 and RMSECV 
from leave-one-out cross-validation.  

Model metric Acidic Sweet Sour Bitter Total intensity 

LV  9  2  2 1 1 
R2  0.68  0.70  0.85 < 0 < 0 
RMSECV  0.29  0.32  0.21 0.16 0.23 

LV: latent variables; R2: coefficient of determination; RMSECV: root mean 
square error of cross-validation. 
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This is a difficult challenge to address in biological systems, as we need 
to work with the actual variation present at the time of analysis, but it is 
something to keep in mind when analyzing new data to confirm if the 
covariance structures are intact as a part of model maintenance. 

5. Conclusion 

RS was successfully used to make PLSR models for TSS, SS, SA, 
fructose, glucose, citric acid, and SS/SA. PLSR models for TA, sucrose 
and malic acid were not satisfactory. This indicates that RS can be used 
to estimate all major chemical components in strawberries. In addition, 
RS could be used to sort strawberries according to TSS content and SS/ 
SA giving high correlation with sweetness as assessed by a trained 
sensory panel. 
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