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1 Abbreviations and definitions

Table 1: Abbreviations and definitions

Abb Explained
AMI Advanced metering infrastructure
EVO Energy Valuation Organization
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
IEA International Energy Agency
IPMVP The International Performance and Verification Protocol
TVB Tao Vanilla Benchmarking model
BL Broken line model
CW-GB Component-wise gradient boosting
DEA Data Envelopment Analysis
CPT Changing point temperature
ESCO Energy Service Company
ECM Energy conservation measure
CV-RMSE Coefficient of variation root mean square error
GHG Green house gas
HVAC Heating, ventilation, and air-conditioning
PV Photovoltaic panels
EMS Energy management system
M&V Measurement and verification
NPC Net present cost
P&R Prediction and recommendation
LCOE Levelized Cost of Electricity
IPCC Intergovernmental Panel on Climate Change
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3 Abstract

The IPCC Sixth Assessment Report leaves little doubt that we urgently need to respond to be able to reduce

human-induced climate change. The report clearly states that human activities is causing alarming and

widespread disruption in nature and is affecting billions of people. Floods, heatwaves, and droughts are seen

more often than ever, and unfortunately, people who are least able to struggle through are most affected. To

avoid ascending loss of life, infrastructure, and biodiversity we have to quickly make major cuts in greenhouse

gas emissions (GHG) 1.

Buildings worldwide consume some 40% of all produced energy and are significant contributors to GHG

emissions. Hence, energy efficiency retrofitting is a fundamental step in reducing energy consumption. How-

ever, one important barrier that hinders renovation projects is uncertainty regarding the expected savings.

The main objective of this thesis is to contribute to lower that barrier and to deliver reliable methods to

be used to document and monitor energy savings in retrofitting projects. To accomplish this objective, we

present 5 different papers.

In the first article, “Statistical learning to estimate energy savings from retrofitting in the Norwegian food

retail market”, we demonstrate two different statistical methods to estimate energy savings. The first method

is the Tao Vanilla benchmarking method (TVB). The TVB has previously received a lot of attention within

the load forecasting literature, and we argue that with its simple and straightforward specification it should

gain more use within the energy and building sector. The TVB model predicts energy consumption on an

hourly level. We further suggest using the Broken line (BL) model. The BL model use data on a weekly

level, and its underlying logic resembles the approach that many practitioners use when they estimate energy

savings in retrofitting projects. The two methods are applied on 5 different food retail stores that undertook

a retrofitting project in 2021. The results from the retrofitting projects demonstrates considerable energy

savings between 25% and 56%. Furthermore, the estimated energy savings from both models are coinciding.

This indicates that they could jointly be used to gain insight that may lead to more informed decisions for

energy saving projects.

While the approach in the first paper was based on a linear regression framework, the second article, “Quan-

tification of energy savings from energy conservation measures in buildings using machine learning” takes a

somewhat more advanced approach. The paper demonstrates how component-wise gradient boosting (CW-

GB) and the TVB model performs to estimate energy savings in ECMs with low expected savings, typically

below 10 percent. Often the energy savings ECMs with low expected savings are estimated using either
1https://cran.r-project.org/web/packages/segmented/NEWS
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simulation or sub-meters, approaches that add costs to the measurement and verification (M&V) process.

In the proposed CW-GB and TVB models we use readily available data on an hourly level from the main

meter (AMI). The results show that both the TVB and the CW-GB model deliver reliable results. One find

that the CW-GB model has a slightly better predictive power measure through CV-RMSE, and that the

model gives more detailed insight into what variables are most important to explain energy consumption in

the different buildings.

This thesis was written as part of an industrial PhD project in close cooperation with a energy service

company (ESCO). The ESCO is specialized in retrofitting food retail stores. Furthermore, often the ESCO’s

work were for quite large building portfolios (>30 buildings), and within an energy performance contract

(EPC) setting. The EPC made it particularly important to deliver reliable (and understandable) baseline

models. Also, because the retrofitting was done on many buildings at the same time, the request for

baseline models was extensive. The dependency on the energy analyst that undertook the energy savings

analysis may even have sparked some frustration from both the ESCO and the analyst himself! Based on

work from paper 1 and paper 2 it was decided to operationalize the TVB and the BL model into a web

application such that the ESCO could have current and updated baseline models at hand when needed and

be self-sufficient in terms of energy analysis. This process motivated the third article “ShinyRBase: Near

real-time energy saving models using reactive programming”. This paper demonstrates how energy savings

from retrofitting’s in the Norwegian food retail sector is continuously monitored and documented in a web

application. The application is built using open-source tools where the baseline model is delivered through a

reactive programming framework. The web application framework allows for a fast development cycle without

any need-to-know web programming languages like HTML, CSS or JavaScript. The reactive framework

delivers several advantages. First, the stakeholders will always have a current and real-time report on the

savings. Second, complex methodologies are dynamically used by the end-user. Third, increased involvement

by stakeholders and interaction with the analyst related to the methods used in the energy savings analysis

lead to collaborative benefits such as faster disseminating of knowledge. These synergy effect leads to a

better technical understanding from the end user perspective and enhanced practical understanding for the

analyst. Today, the application is used to document and monitor ECMs in several hundred food retail stores.

Each day, the results are used to continuously document energy savings, optimize existing ECMs, and to

detect errors in the technical infrastructure.

The M&V process is conducted after the ECMs are installed. At the same time, the results from baseline

modeling, such as the BL model, may be useful before implementation of the ECMs. In the BL model the

changing point temperature (CPT), and the demand for cooling and heating could be useful input when
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the ESCO performs the audit phase. This phase typically consist of a complete review of all the buildings

technical infrastructure. In the fourth article, “A 3-step framework to benchmark potential and actual energy

savings in retrofitting projects.” we take advantage of the output from the BL models, and conduct a

data envelopment analysis. The paper demonstrates a benchmarking framework to document the effect of

energy savings and efficiency from retrofitting 34 Norwegian food retail stores. The implemented ECMs

consisted of a mix of change of lightning, new coolers, ventilation, freezers, and optimization of the technical

control system. The results show that the output from the BL model is useful when benchmarking energy

efficiency with DEA (using opening hours, and size of the buildings). Analysis during the audit phase is

often refered to as “Prediction and Recommendation” (P&R), as opposed to the M&V that comes after

implemetation of the ECMs. The collaboration with the ESCO showed that very little analytically resources

went into the audit phase, and only after implementing the ECMs the demand for baseline models occurred.

The ESCO had substantial knowledge about the technical infrastructure, however, when benchmarking the

energy efficiency the only performance indicator used was energy intensity (kWh/m2). The fourth paper

finds that it may be useful to extend this perspective when benchmarking energy efficiency in buildings. Our

three-step benchmarking framework offers a tool that the ESCOs can apply to document energy efficiency

and energy savings documentation. The results from the proposed framework showcase the advantages of

different aggregate levels with the duality of actual savings versus the efficiency; we find the methods to be

valuable tools to monitor efficiency and savings throughout the retrofitting project.

In Norway there is a three-part electricity tariff. Electricity cost is divided between a fixed installation cost

(EUR/ installation), consumed electricity (EUR/kWh), and demand charges for capacity usage (EUR/kW).

To reduced demand charges, industrial customers are looking into supplementing PV installations with

batteries to more efficiently reduce peak electricity demand, e.g. peak shaving. The objective of the fifth

article, “Forecasting and technoeconomic optimization of PV-battery systems for commercial buildings” was to

investigate the profitability with peak shaving in Norway for a commercial building. A forecasting algorithm

for load prediction was developed, and the economic value of forecasting was determined for a PV-battery

system. The load forecasting was developed using component-wise gradient boosting and the results from

the model were verified against the TVB model. The economic value of forecasting was determined through

simulations with Homer Energy Software that optimizes the net present cost of the systems. The results

showed that battery storage was only economically beneficial when forecasting was deployed. Moreover,

the cost savings came mainly from reduced demand charges, not from increased self-consumption of PV

electricity.
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4 Norsk sammendrag

FNs klimapanels siste rapport (AR6)2 er forstemmende lesning, men også, til forskningsrapport å være,

usedvanlig tydelig. I rapporten har 700 eksperter fra 90 forskjellige land bidratt og blitt enige. Kort opp-

summert - om vi ønsker å begrense den globale oppvarmingen til 1,5 grad trenger vi kraftige utslippskutt

i alle sektorer - umiddelbart. FNs generalsekretær, António Guterres, kaller den siste klimarapporten en

«skammens rapport». For å sitere Generalsekretærens relativt umilde beskrivelse av dagens situasjon3

Det er på tide å slutte å brenne planeten, og starte å investere i den rikelige fornybare energien

rundt oss

Og om dagens regjeringers og selskapers innsats…

…en katalog av tomme løfter som setter oss på sporet av en verden der det ikke går an å leve

På global basis forbruker bygninger omtrent 40% av all produsert energi, og er dermed en vesentlig bidragsyter

til utslipp av klimagasser. Denne avhandlingen viser at i norsk dagligvare er det mulig å oppnå en energire-

duksjon på mellom 30 til 55% gitt at det installeres ny teknisk infrastruktur i byggene. I all hovedsak handler

denne avhandlingen om hvordan det på en pålitelig måte er mulig å dokumentere og monitorere energire-

duserende tiltak. Tidligere forskning har vist at usikkerhet rundt oppnådd energibesparelse er en barriere

for iverksetting av nye energitiltak. Alle de 5 artiklene i denne avhandlingen omhandler ulike metoder som

kan brukes for å redusere denne barrieren og bidra positivt til økt insentiv for mer energieffektive bygg innen

norsk dagligvare.

Artikkel 1 «Statistical learning to estimate energy savings from retrofitting in the Norwegian food retail

market” demonstrerer to ulike metoder for å estimere energibesparelser; broken line (BL) og Tao Vanilla

benchmarking metoden (TVB). Hensikten med BL er å videreutvikle det som i Norge er den tradisjonelle

tilnærming med bruk av Energi-temperatur kurver (ET-kurver) som dokumentasjon for energibesparelser.

Videre, for BL metoden er data typisk på et ukentlig nivå. Dataene finnes derimot på timenivå, og det er

interessant å forstå likheter og ulikheter mellom disse nivåene når energibesparelsen skal dokumenteres. Vi

anvender derfor TVB modellen på timenivå. For å demonstrere BL og TVB modellene tar vi utgangspunkt

i data fra et nylig gjennomført renoveringsprosjekt for 5 dagligvarebutikker. Disse butikkene fikk i løpet

av høsten 2020 gjennomført omfattende endringer i teknisk infrastruktur. Våre analyser dokumenterer
2https://www.ipcc.ch/report/ar6/wg2/
3https://www.nrk.no/klima/fns-klimapanel_-_-det-er-na-eller-aldri-1.15920016
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besparelser i 2021 fra 25% til 56%; en betydelig reduksjon i energibruken. Vi finner ingen forskjeller av

betydning mellom estimert energibesparelse fra BL og TVB modellen, noe som gir resultatet økt pålitelighet.

Videre finner vi at det virker hensiktsmessig å analysere energibesparelsen på både uke- og timenivå. Ukenivå

gir et overordnet innblikk i hvordan bygget reagerer på temperaturendringer, noe som er viktig når det

planlegges energireduserende tiltak, mens timenivå gir detaljert informasjon om når på døgnet tiltakene

virker best. Dette er viktig informasjon for optimalisering av tiltakene under installasjon og innfasing av ny

teknisk infrastruktur, samt for å kunne identifisere mulige avvik underveis. Metodene som foreslås forenkler

estimering av energibesparelser, og bidrar til økt presisjon og økt innsikt for renoveringsprosjektene.

Artikkel 2 “Quantification of energy savings from energy conservation measures in buildings using machine

learning” demonstrerer hvordan maskinlæring kan brukes til å estimere energibesparelser som et resultat av

energireduserende tiltak i dagligvarebutikker, typisk tiltak som har en relativt lav forventning til reduksjon

i energibruk (<10%). Om man følger en internasjonal standard fra IPMVP brukes ofte simulering eller

undermålere (f. eks direkte måling av energibruk for belysning eller ventilasjon) for å måle energibesparelsen

for denne type tiltak. Både installasjon av undermålere og simulering kan være både tid- og kostnadskrevende.

Vi viser i denne artikkelen at et godt alternativ er å gjennomføre analyse basert på timedata levert fra

byggenes hovedmåler. Vi bruker data fra 11 dagligvarebutikker som fikk gjennomført mindre energitiltak i

2018. Våre resultater viser at både tradisjonelle lineære metoder og maskinlæring gir pålitelige resultater for

estimering av energibesparelser, også når tiltakene gir mindre enn 10% reduksjon i energibruken.

I artikkel 3 “ShinyRBase: Near real-time energy saving models using reactive programming” vises det hvordan

det er mulig, i nær sanntid, å monitorere og dokumentere energibesparelser som et resultat av energitiltak

ved å designe en webapplikasjon basert på open-source og et reaktivt programmeringsparadigme. Designet

og produksjonssettingen av denne applikasjonen er en viktig komponent i det resultatet som arbeidsgiver

forventet levert som en “gjenytelse” for å la en av sine ansatte forske i en 75% stilling i 4 år. Metodisk brukes

TVB og BL modellen, slik som beskrevet i artikkel 1 som et utgangspunkt. Disse metodene programmeres

og operasjonaliseres inn i et energiovervåkningssystem (EOS) på en slik måte at energibesparelsene i ulike

tiltak alltid vil være oppdaterte. Rammeverket som presenteres er svært godt mottatt blant utviklere

og kunder. I dag er denne funksjonaliteten satt i drift og overvåker hver dag energitiltak i flere hundre

ulike dagligvarebutikker. Resultatene fra applikasjonen blir brukt til å dokumentere energibesparelser i

energisparekontrakter, optimalisere innfasing av ny infrastruktur og til tidlig detektering av potensielle feil

i tekniske anlegg.

I artikkel 4 “A 3-step framework to benchmark potential and actual energy savings in retrofitting projects”

foreslår vi et rammeverk for å benchmarke energibesparelser og energieffektivitet. Det finnes en rekke studier
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som studerer både besparelser og effektivitet knyttet til implementering av energireduserende tiltak, men

eksisterende forskning tar ofte utgangspunkt enten i oppnådd energireduksjon eller energieffektivitet. I vår

studie presenterer vi et samlet perspektiv. Vi starter med å gjenbruke TVB og BL modellen fra artikkel 1, og

estimerer både temperatur-knekkpunktene hvor byggene skifter mellom et behov for oppvarming og kjøling,

og graden av kjøle- og oppvarmingsbehov. Disse estimatene er, sammen med byggenes størrelse og åpn-

ingstider, input variabler i en data envelopment analysis (DEA). Vi anvender metoden på 37 dagligvarebygg

som gjennomførte en rekke energisparende tiltak høsten 2020. Vi kalkulerer effektivitetscorene både før og

etter tiltakene. Videre anvendes DEA multiplier modellen, en metode vi ikke har funnet benyttet i liknende

studier, for å studere hvordan inputvariablene påvirker effektivitetsscorene før og etter tiltakene. Resultatene

fra studien viser at rammeverket som vi presenterer bidrar til økt innsikt i hvilke energireduserende tiltak

som fungerer best, både på et detaljert og et aggregert nivå.

I artikkel 5 “Forecasting and technoeconomic optimization of PV-battery systems for commercial buildings”

undersøker vi lønnsomheten med å bruke batterier og PV for å redusere energilastene (“peak shaving”) i

et industribygg. Tariffene, selv om de varierer litt mellom ulike netteiere, er i all hovedsak designet på en

slik måte at byggeier betaler mer for den maksimale lasten i en gitt måned. Det er derfor interessant å

undersøke potensielle metoder for å kutte lastene; derav bruken av batteri og solcellepaneler (PV). Både

TVB og CW-GB modellen (som anvendt i artikkel 2) blir anvendt for å prognostisere maksimale laster.

Prognosene er videre brukt som signaler i et simuleringsprogram for å optimalisere bruken av batterier og

PV for å avlaste energibruk i perioder med høyest etterspørsel. Resultatene viser at batterilagring kun var

økonomisk forsvarlig når det ble anvendt prognosemodeller.
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5 Synopsis

Uncertainty about potential energy savings from retrofitting is a known barrier that hinders new renovation

projects. The purpose of this thesis is to contribute to lower that barrier, increase the attention for energy

conversation measures, and eventually promote action to create more energy efficient buildings - important

components to reduce GHG emissions.

The main objectives of this thesis is to

1. Demonstrate different methods that can be used to document energy savings as a result of retrofitting

projects in the Norwegian food retail sector

2. Develop and set into production in near real-time a web-application (without any knowledge of web

development) that can use the methods from (1) to continuously document and monitor energy savings,

optimize ECMs, and potentially detect errors in the buildings technical infrastructure

3. Combine the methods from (1) with DEA to present a framework that can be used to study the

efficiency in retrofitting projects

9



5.1 Introduction

The IPCC Sixth Assessment Report leaves little doubt that we urgently need to respond to be able to reduce

human-induced climate change. The report clearly states that human activities is causing alarming and

widespread disruption in nature and is affecting billions of people. Floods, heatwaves, and droughts are seen

more often than ever, and unfortunately, people who are least able to struggle through are most affected. To

avoid ascending loss of life, infrastructure, and biodiversity we have to quickly make major cuts in greenhouse

gas emissions (GHG) 4.

Buildings worldwide consume some 40% of all produced energy and are significant contributors to GHG

emissions. If we investigate the different building categories, we find that food retail stores are one of the

largest consumers of energy. For instance, the EIA’s latest commercial buildings energy consumption survey

finds the average energy use for food stores are 524 kWh/m2; the highest energy intensity of any of the

building types (EIA 1999). Furthermore, figure 1 displays the annual temperature corrected specific energy

consumption (kWh/m2) for different building categories in Norway. The category food retail stores has a

consumption of 540 kWh/m2, and is by far the building category with the largest consumption of energy.

Figure 1: Temperature corrected spesific energy consumption (kWh/m2) in 2017. N=3425.

Hence, to reach the 2030 European energy efficiency targets it is vital to reduce the energy consumption

of buildings, and retrofitting is known as an important driver to improve energy efficiency (Galvin 2014).
4https://www.ipcc.ch/report/ar6/wg2/
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Nonetheless, one important barrier that hinders renovation projects is uncertainty regarding the expected

savings (Kontokosta 2016). The main objective of this thesis is to contribute to lower that barrier and

to deliver reliable methods to be used to document and monitor energy savings in retrofitting projects. To

deliver on that objective we have written 5 different papers that demonstrates and presents different methods

and frameworks. To set these 5 papers into context we use the schematic outline in figure 2 recently published

by Grillone et al. (2020) where they review data-driven and deterministic methods to quantify energy savings

and to predict retrofitting scenarios in buildings.

Figure 2: Overview of data-driven applications for energy efficiency in buildings

The two main paths are Measurement and verification (M&V) and Prediction and recommendation (P&R).

The P&R is a process that identifies the most appropriate ECMs for the building under study (Grillone

et al. 2020). Hence, the P&R phase is initiated before implementing any ECMs in a retrofitting project.

The M&V process use measurements to give accurate estimates of energy savings in a building as a result

of implementation of an energy management strategy (Committee 2016). Using data prior to the ECMs

a model is trained and later used to predict the energy consumption after the ECMs given that no ECMs

where undertaken. Comparing the actual energy use with the predicted we can estimate the energy savings

(aka. baseline estimation), perform non-routine detection, and/or estimate uncertainty.

Table 2 positions the 5 papers within this context. Paper 1 and 2 is used to develop and apply baseline
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estimations. Moreover, while the application developed in paper 3 is primarily used for baseline estimation,

it has been used to detect several non-routine events. The near real-time delivery of energy and temperature

data was important to enable this, and as such we have chosen to indicate this by the name M&V 2.0.

Paper 4 is a benchmarking study using hybrid methods, and the proposed 3-step framework is used for

both P&R and M&V. Paper 5, the last paper, is within P&R and use purely data-driven methods to enable

peak-shaving with optimal use of solar panels and batteries.

Table 2: The papers position in the literature

Papers Application Method
Paper 1 M&V Baseline
Paper 2 M&V Baseline
Paper 3 M&V 2.0 Baseline, non-routine detection
Paper 4 M&V/P&R Baseline, hybrid
Paper 5 P&R Purely data-driven

In the next section a closer look at the data used for all the papers is given. Furthermore, the methods

are presented. Next, a summary presentation of the results from the papers are given, together with the

discussion. At last we suggest some relevant future research opportunities and offer a conclusion.

5.2 Data

In Figure 3 an overview of the data pipeline that was used in this PhD project is presented. The energy

data used throughout the 5 papers were collected from Elhub (https://elhub.no/en/). Elhub is a central

IT system to support and streamline market processes in the Norwegian electricity market, but they also

support the distribution and aggregation of metering values for all consumption and production in Norway.

Statnett, the system operator of the Norwegian power system, owns and runs, Elhub AS. Each day the grid

owners has to provide updated energy data from the advanced metering infrastructure system (AMI) to

Elhub. This system gives easy access to high-frequency data, daily updates, and allow for energy savings

being estimated close to real-time (Grillone et al. 2020). The Elhub service was launched in February 2019.

All the energy data from February 2019 and onwards for the 5 papers in this thesis stems from Elhub5.

The energy data from 2018 up until January 2019 is collected from the building energy management system

(EMS) that previously collected data from the grid operators. Temperature data is downloaded from the

Norwegian Meteorological Service (www.met.no). Each stores position (longitude and latitude) is mapped

against a 2.5km x 2.5km grid of Norway. Furthermore, the temperature data gathered is modeled weather
5https://cran.r-project.org/web/packages/segmented/NEWS
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data that use several of the closest weather stations to set the temperature.

Data about the buildings, such as size and opening hours, was collected through an API with the building

owners. All the buildings that are analyzed throughout the 5 papers are Norwegian food retail stores, and

the building owners wanted the store names to be anonymized.

Figure 3: Data pipeline for the PhD project

Figure 4 illustrates two typical weekdays of hourly electricity consumption for one of the food retail stores

from paper 5. The energy consumption follows the same pattern both days. During the night the consump-

tion waver around 150 kW, and when the store opens the load shift to around 200 kW. Also, note the extra

peak (“morning ramp”) when the store opens at 07:00. This is a feature seen in many food retail stores

and is attributed to the shift from night to day-mode for the refrigeration and HVAC system (which is on

“stand-by” when the store is not open).

5.3 Methods

In the following section the methods applied in the 5 papers are presented. Since the research primarily

is centered on measurement and verification (M&V), and in particular baseline estimation (paper 1, 2, 3,

partly 4) the methods sections start with a description of the methods used to estimate energy savings, in

particular the TVB model. Further, non-routine event (NRE) detection is presented. While energy saving

baseline models was the main objective of paper 3 (the web application), we have throughout the project

seen that the web application in many instances was used to detect errors in the technical infrastructure

(e.g. a ventilation running in day-mode during the night). Hence, more details are given within this part of

the thesis.
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Figure 4: Hourly loads (kW) throughout a week

5.3.1 Measurement and Verification

The Efficiency Valuation Organization (EVO) is a non-profit organization whose services is designed to

increase investments in energy efficiency projects worldwide. The EVO is politically, geographically, com-

mercially and technologically neutral. The work they do is primarily directed to practitioners. In 1997, the

EVO published the International Performance and Verification Protocol (IPMVP) (Committee 2016). The

protocol was originally developed to promote investments in renewable energy project around the world,

particularly within energy and water efficiency.

Energy savings cannot be measured directly because savings represent the absence of energy consumption.

Instead, savings are established by comparing energy consumption before and after implementation of energy

conservation measures (eg. change to LED lighting and/or other measures to reduce energy consumption).

To be able to relate the reduction in energy consumption to the ECM it is important to adjust for changes

in conditions between the periods that are compared. This is illustrated in figure 5.

Furthermore, the IPMVP defines best practices to quantify energy savings. Four different options are

available to establish energy efficiency savings:
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Figure 5: Illustration of measurement and verification. Baseline = before the retrofitting, Reporting period=
after the ECM

• Option A: Partially Measured Retrofit Isolation. This option involves use sensors to monitor the

consumption of the equipment affected by the installed ECMs. The consumption is isolated from the

energy use of the rest of the building. The option use partial measurement, which means that that

some parameter(s) are estimated rather than measured.

• Option B: Retrofit isolation. This option is partly equivalent to option A, however no estimations are

allowed ad full measurement of all the relevant parameters is required.

• Option C: Whole building. In this options data from utility meters are used to evaluate the energy

performance of the whole building. Note that this option establish the total savings of all implemented

ECMs and is only applicable in retrofitting projects where savings are expected to have a large impact,

making them distinguishable from energy variations unrelated to the applied measures

• Option D: Calibrated simulation. This option involves using energy modeling software that allows

prediction of energy consumption. Typically, the models used for this option are calibrated to match

the buildings real (metered) data.

In the present thesis option C is used for paper 1-4 (the scope of paper 5 was not to estimate energy savings).

Note that option C is recommended when the expected savings are large, to be able to distinguish the savings

from unrelated energy variation. Notwithstanding, in paper 1 we argue that, at least for retail food stores,

this option may also be used to document energy savings for smaller installed ECMs. This will be discussed

in more detail when discussing the results. Also, the IPMVP option C is the same as option C from the

ASHRAE guideline 14 for measurement of Energy, Demand and water savings (Guideline and Others 2014),

published by the American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE).

The ASHRAE include metrics that can be used to evaluate the reliability of baseline models. Accordingly,
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to measure the accuracy of the models from paper 1-5 the coefficient of variation root mean square error

(CV-RMSE) is calculated. The CV-RMSE is computed in the following way,

𝐶𝑉 − 𝑅𝑀𝑆𝐸 =
∑( ̂𝑌𝑖−𝑌𝑖)2

𝑛−𝑘−1
̄𝑌

where ̄𝑌 is the mean of the energy consumption in the training data (the reference year). 𝑌𝑖 is the actual

energy use in hour 𝑖, ̂𝑌𝑖 is the predicted value of energy use in hour 𝑖 from the model, estimated on the

reference period. Further, 𝑛 is the sample size, and 𝑘 is the number of independent variables in the model.

The ASHRAE guideline requires the CV-RMSE to be below 20% for the model to be accepted if post retrofit

period is less than 1 year, and less then 25% if between 12-16 months after the ECMs.

5.3.1.1 Baseline estimation Throughout this thesis 3 different methods are used for baseline estimation.

First, the machine learning approach, component-wise gradient boosting with penalized splines (CW-GB),

and the details about the estimation is outlined in paper 2. The rationale behind the use of CW-GB

was the model performance in the Kaggle global energy forecasting competition 2012, where the CW-GB

ranked fourth out of 105 participating teams (Taieb and Hyndman 2014). The CW-GB was implemented

using the mboost R package with 5-fold cross-validation (T. Hothorn and Hofner 2018). Furthermore, CW-

GB was tested in the baseline module in the web application (as developed in paper 3). Nonetheless,

the users of the application expected fast estimation of the models, and the CW-GB often took more

than 60 second to compute. At the same time the TVB model performed excellent in terms of the CV-

RMSE values, and only took a few second to compute. Hence, only the TVB model is currently possible

to use in the web application. Anyhow, the mboost package is still actively maintained. For instance,

in the latest mboost version convenience functions for hyper-parameter selection, faster computation of

predictions and improved visual model diagnostics are available. Code base and more details can be found

at https://github.com/boost-R/mboost. Future work testing out new features will be initiated and given

that some initial (unpublished) analysis show that the TVB models is somewhat more challenging to apply

on building categories outside of food retail stores, the mboost may be a promising challenger. These issues

are given more details in the thesis section ‘Identified gaps for future study’.

Second, the broken line model and its details are outlined in paper 1. The main advantages of choosing this

modeling approach were its resemblance with the approach used in the ESCO industry in Norway, combined

with the ease of computation thorough the R package segmented (Muggeo 2022). While not discussed

in paper 3, the segmented package is operationalized into the baseline web application, and is actively
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used by the ESCO, often to check if the results are the same as in the web application TVB model (for a

screenshot from the web application, see figure 12). More details about the segmented package can be found

at https://cran.r-project.org/web/packages/segmented/segmented.pdf. As with the mboost package used in

paper 1, the segmented package is also continuously updated with new features. For example, just recently

(2022-05-30) the package maintainer introduced a function to fit segmented mixed models, i.e. segmented

models with random effects changepoints6.

Third, the Tao Vanilla benchmarking model was used in all 5 papers. The TVB model has previously proven

easy to implement and produce accurate results (Hong 2010). The model has been introduced several times

in the papers. However, due to space limitation in the published papers the exposition has been brief. In

the following section we provide a more detailed introduction.

5.3.1.1.1 The Tao Vanilla benchmarking model The Tao Vanilla benchmarking (TVB) model orig-

inates from Tao Hong’s PhD thesis “Short term electric load forecasting” (STLF) (Hong 2010). In his

dissertation Hong disassembles the major methods that have been used for STLF in the literature and

reassemble the key elements into a multiple linear regression framework that can be applied to STLF. In

particular the TVB is formulated with the use of qualitative variables, polynomial regression, and interaction

regression. The model is a linear regression model with some well specified features,

𝑌𝑡 = 𝛽0 + 𝛽1𝑀𝑡 + 𝛽2𝑊𝑡 + 𝛽3𝐻𝑡 + 𝛽4𝑊𝑡𝐻𝑡 + 𝛽5𝑇𝑡 + 𝛽6𝑇 2
𝑡 +

𝛽7𝑇 3
𝑡 + 𝛽8𝑇𝑡𝑀𝑡 + 𝛽9𝑇 2

𝑡 𝑀𝑡 + 𝛽10𝑇 3
𝑡 𝑀𝑡 + 𝛽11𝑇𝑡𝐻𝑡 + 𝛽12𝑇 2

𝑡 𝐻𝑡 + 𝛽13𝑇 3
𝑡 𝐻𝑡 + 𝛽13𝑇 𝑟𝑒𝑛𝑑 + 𝛽14𝐿𝑜𝑎𝑑𝑡−1

(1)

where 𝑌𝑡 is the actual load for hour 𝑡, 𝛽𝑖 are the estimated coefficients from the least squares regression

method; 𝑀𝑡, 𝑊𝑡 and 𝐻𝑡 are month of the year, day of the week and hour of the day, 𝐿𝑜𝑎𝑑𝑡−1 is the load the

previous hour, and 𝑇 𝑟𝑒𝑛𝑑 is a trend variable. Further, 𝑇𝑡 is the outside temperature for time 𝑡.

To come up with this particular specification of the model Hong tested seven different linear regression

models. The test was demonstrated using the case study of one week ahead hourly forecast for a medium

US utility, and the mean absolute percentage error (MAPE) was used as a performance measure. The model

from (1) was the best performer.

Energy consumption in a retail food store varies based on month, weekday and hour. The energy consumption

is larger during the winter, stores are closed in the weekend, and the consumption is likely to vary between
6https://cran.r-project.org/web/packages/segmented/NEWS
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hours, hence, month, weekday and hour are included in the model. Furthermore, another important variable

is the interaction between Hour and Day. A food retail stores typically opens at 07:00 and closes at 22:00.

The Hour x Day interaction is included to incorporate this feature into the model. This can also be seen in

figure 4 where we see the increase and the decrease in energy consumption during opening and closing hours.

Because the load often increases both when the temperature drops and increases, it is necessary to take

this into account. This could be incorporated with linear piecewise functions. However, that would require

cut-off temperatures which may be different across different buildings. Thus, this is included in the model

using 3rd ordered polynomials of the temperature. Also, the model include interaction effects between the

polynomials of the temperature and the calendar variables Hour and Month, respectively. The rationale

behind this is observed in figure 6 and 7 with scatter plot of load temperatures across month and across

hours. There are observed differences for load versus temperature for both month and hour (while only

sightly) which justifies the inclusion of the interaction.

October November December

July August September

April May June

January February March

−30 −20 −10 0 10 20 30 −30 −20 −10 0 10 20 30 −30 −20 −10 0 10 20 30

100
150
200
250

100
150
200
250

100
150
200
250

100
150
200
250

Temperature (°C)

Lo
ad

 (
kW

)

−20

−10

0

10

20

30
temps

Figure 6: Hourly loads (kW) and temperatures during a year for a food retail store

Note that in (1) both trend and the lagged load (𝐿𝑜𝑎𝑑𝑡−1) of the dependent variable is part of the explanatory

variables. Since baseline models for energy savings should represent only features from the training data the

previous hour load and trend are excluded from any of the TVB models in this thesis.
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Figure 7: Hourly loads (kW) and temperatures between 00:00 and 23:00

In Hong’s thesis the TVB load forecasting performance was tested against possibilistic linear models (PLM)

(Hong 2010, 117) and artificial neural networks (ANN) (Hong 2010, 136). The TVB outperformed both of

these modeling alternatives. However, regarding ANN there has been substantial improvements over the

last decade, additionally, the structural setup of the network has impact on the performance. In the section

“Identified gaps for future study” some further ideas will be promoted.

The TVB was used to produce benchmark scores for GEFCom2012 (Hong, Pinson, and Fan 2014) and was

eventually ranked in the top 25% among over 100 teams. It has also been implemented as a base model in

the commercial software package SAS Energy Forecasting. The same model was used in the weather station

selection framework proposed by Hong, Wang, and White (2015), and in Wang, Liu, and Hong (2016) the

TVB is extended with recency effects.

5.3.1.2 Non-routine event detection Non-routine event detection is often a challenge in the M&V

industry and is prevalent to all the previously introduced baseline estimation methods. Non-routine events

(NREs) are defined as change in the energy use of a building that are not caused by any variation of the

features in the baseline model (Grillone et al. 2020). In a food retail store this may be faults in the meter

readings, unplanned downtime in the technical system or promotional events in the store. These non-routine
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issues are important to detect and adjust as the estimated savings will not be correct without necessary

adjustments. Granderson et al. (2017) point out that these adjustments are often done manually and may

require engineering expertise. Within food retail these events are quite frequent, and the adjustment are

often done in collaboration with the building owners. Nonetheless, while it is not very difficult to do the

actual adjustment, it can be challenging to detect that a NRE has occurred. Often an ESCO has ongoing

projects on several different buildings, and it is not unlikely that NREs bypass unnoticed. Also, as the time

span between the NRE and the energy saving analysis increases this adds to the complexity. It is often

challenging to re-construct events inside a store months later. Services such as Elhub that provides updated

energy data on a daily basis enables current updates of baseline models and simplifies detection of NREs.

In Touzani et al. (2019) they suggest a NRE detection algorithm based on a statistical change point detection

method and a dissimilarity metric. The dissimilarity metric measures the proximity between the actual time

series of the post-retrofit energy consumption and the estimated baseline model. This is novel way of

detecting errors that separates itself from current methods that use individual time series. The authors also

propose that the methodology may be used to detect errors in the technical system. A dissimilarity metric

as proposed by Touzani et al. (2019) would improve the above-mentioned EPC monitor, and will be tested

in future versions of the application.

However, in Touzani et al. (2019), historic energy consumption (before the ECM) is used to predict what the

energy consumption would have been without the installed ECMs. It is the difference between the predictions

and the actual data that is used to detect potential NREs. Yet, an error in the technical infrastructure could

be present in the training data. For instance, suction pressure in a component in the refrigeration system

may have been non-optimal in certain time intervals, and as a consequence the energy consumption larger

than necessary. If such an error (or rather, non-optimal setting) was present, and not detected, during the

training of the model, the above methods will not work. To detect such instances a more general approach

to time-series outlier detection may be applied.

In the R forecast package there is a function that can detect unusual values in a time series7. The function

decomposes the time series into three components: trend, seasonal and remainder:

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡

The idea is to remove seasonality and trend to ease detection of outliers in the remainder. Since we are

working with hourly data that have multiple seasonal patterns we first apply Multiple Seasonal-Trend de-
7https://robjhyndman.com/hyndsight/tsoutliers/
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composition using Loess (MSTL) (Bandara, Hyndman, and Bergmeir 2021). Compared to other methods,

MSTL gives reliable results with low computational cost. The strength of the seasonality is measured through

𝐹𝑠 = 1 − Var(𝑦𝑡 − ̂𝑇𝑡 − ̂𝑆𝑡)
Var(𝑦𝑡 − ̂𝑇𝑡)

.

Given 𝐹𝑠 > 0.6, a seasonally adjusted series is calculated:

𝑦∗
𝑡 = 𝑦𝑡 − ̂𝑆𝑡.

Further, Hyndman points out that the seasonal strength threshold is necessary because ̂𝑆𝑡 may be noisy

and overfitted if there is no underlying seasonality (or if it is weak). Hence, outliers may “disappear” in

the seasonal component. If 𝐹𝑠 ≤ 0.6, then 𝑦∗
𝑡 = 𝑦𝑡. In the next step the trend component is re-estimated

with Friedman’s super smoother to the 𝑦∗
𝑡 data. The outlier is then potentially detected in the estimated

remainder series

𝑅̂𝑡 = 𝑦∗
𝑡 − ̂𝑇𝑡.

Interquartile ranges (IQR) are used to single out the outliers, e.g., if less 𝑄1 − 3 × 𝐼𝑄𝑅. This perspective

is not present if we use the baseline models to detect outlier as in Touzani et al. (2019). Presently, this

approach is not applied within this thesis, but will appear in future versions of the web application that

developed as part of paper 3. A reliable schema for detection NRE is vital to deliver correct estimates of

energy savings.

5.3.1.3 Data envelopment analysis - benchmarking energy efficiency The M&V and the accom-

panying methods have been introduced in the last few pages. Often, in our experience, the M&V phase is

initiated at a stage when the ESCO has already installed the ECMs, and the deadline for delivering the

energy savings analysis is approaching (often in near future…). Hence, the energy analyst is contacted! Nev-

ertheless, there are several good reasons that it may be worthwhile to train the baseline models during the

audit phase when the ESCO is evaluating what ECMs are likely to provide the best energy savings results.

First, training the models “up-front” gives the stakeholders time and opportunity to evaluate the quality of

the energy data. Not rarely, there will be several issues that need to be handled. Missing data, errors in AMI

equipment, information about the stores, and all sort of things that may happen, but should not happen,

inside the stores during the reference period. Thus, data cleaning is vital, and much more well served if done
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during the audit when “everyone” is working on collecting information. Second, the results from training

the models may be useful information during the audit phase.

For example, in the benchmarking paper (paper) 4 the BL model provided the demand for energy consump-

tion for cooling and heating (and the CPT value) through all the buildings in the retrofitting portfolio. This

information could be useful when evaluating the technical infrastructure. This is what motivated paper 4

which is an attempt at using the output from the baseline models throughout a retrofitting project. To tie

things together for benchmarking the energy efficiency data envelopment analysis (DEA) is chosen. The

methods is outlined in detail in paper 4. The R package benchmarking (Bogetoft and Otto 2020) was used

to conduct the DEA.

5.4 Results and discussion

In paper 1 the main objective was to compare and demonstrate the TVB and the BL model, two different

baseline models to estimate energy savings from ECMs. The TVB model predict energy consumption in

buildings on an hourly level, while the BL model use weekly data. The two aggregate levels complement each

other as the results give insights into different aspects of how the ECMs work. This is illustrated in figure

8 for store-id 4391. On the left-hand side of the plot the energy temperature curve estimated with the BL

model is presented. The red arrow illustrates the energy savings in the winter, and the blue arrow the savings

in summer. We see that the savings are larger in the winter. Also, the changing point temperature (CPT) is

6.7 °C. On the other hand, the right-hand side of the figure shows the estimated savings on an hourly level

from the TVB model. The dotted line is the predicted load given that the building performs as before the

installed ECMs. While the BL model gave an overview of the energy savings on a level that can be visualized

for a whole year (using weekly data), the TVB model give more specific details. For instance, store-id 4391

used to have a morning peak around 08:00 (> 200 kW), and as a consequence of the implemented ECMs this

peak has been reduced. Thus, the TVB model gives the opportunity to study the savings from a different

perspective. Which hour gave the largest saving? Are there any hours where the ECMs does not work

as expected? In some cases, information on an hourly level may also be used to optimize the ECMs. For

instance, during our collaboration with the ESCO several stores that had ventilation running on day-mode

during the night was detected using the TVB model.

To conclude, since both modeling approaches and the aggregate levels give useful and complementary insight,

the practical solution is for the ESCOs to use both the BL and the TVB model in ongoing retrofitting projects.

Additionally, if the results from two the models support each other that gives more reliability to the results.
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Figure 8: The BL model versus the TVB model for store-id 4391

On contrary, if the approaches do not support each other, then that again is useful information for further

investigation.

While paper 1 takes a relatively simple approach to estimate the energy savings, the objective of paper 2 is to

investigate how a more modern machine learning approach will perform, and if the additional cost in terms

of complexity and computation can be a worthwhile investment. The paper use component-wise gradient

boosting (CW-GB) to design a baseline model, and the results are compared with the same model that was

applied in paper 1, the TVB model. The demonstration is done on ECMs that was implemented in nine

different retail stores during spring 2017, and the effect of the ECMs were followed through 2018.

In figure 9 the relative variable importance for the 9 stores are presented (as in the paper). For all the

stores the opening hours (hour, temps) are among the most important features to explain the stores energy

consumption. Also, different variants of temperature are important. Naturally, this finding did not come

as a big surprise for any of the stakeholders in the project. However, with a richer feature set available

for the CW-GB model this result could potentially be relevant in future projects. For example, there is

ongoing work to get information about how many customers are in the stores at any given time, revenue (as

a proxy of visitors), technical infrastructure, building envelop, and more detailed climatic data (wind, sun

irradiance). Hence, having these variables as part of the modeling process it might be more useful to fully

understand how the individual variables impact each buildings energy consumption.

The main objective of paper 2 was to compare the TVB model with the CW-GB model, a “simple” model

versus a more modern machine learning approach. The paper demonstrated that both models could reliably

be used to estimate savings from ECMs with expected savings less than 10 %. One advantage of the CW-GB
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Figure 9: Relative variable importance (%) as estimated from the CW-GB model

model was that it can take into account each building’s unique set of energy consumption predictors. Also,

the precision as measured through the CV-RMSE values was slightly better in the CW-GB model for all the

stores. We found that the TVB model was less computationally expensive, while the CW-GB model, given

its iterative nature (finding the set of variables that best explain energy use), took longer to compute.

At last, paper 2 had strict space limitation in terms of the intended audience, hence, the profitability of

the ECMs was not discussed. Nonetheless, table 3 in the paper “Estimated savings - the difference between

actual energy consumption and predicted” presented the kWh in 2018 and the predicted kWh (given no

ECM). For example, Store 3, used kWh 534 160, while the predicted kWh usage was kWh 669 130, thus

the savings was kWh 134 970 for 2018. Further, the monthly spot prices (in NOK) from 2018 up until May

2022 for the price area NO1 (where the stores are located) is displayed in figure 10. As can be seen from

the time series the spot prices have gone through a substantial increase since the start of 2021. The average

price was 0.523 NOK in 2018, and in the last twelve months the average has increased to 1.515 NOK. Thus,

the savings in 2018 is kWh 134 970 * NOK 0.523 = NOK 70 598. Using the spot price average for the last

12 months this saving would have been NOK 204 479. Also, the average installation cost of the ECMs was

NOK 124 894, with NOK 14 410 yearly operating expense. Note that the savings are only estimated for
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2018, but the effect are expected to last for several years. These issues are also raised in the next section of

the thesis were identified gaps for future study are presented as it would be useful to follow the savings from

the ECMs for a longer time period than a year to investigate if the savings maintain or if any diminishing

effects occur.
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Source: https://www.nordpoolgroup.com/en/Market−data1/#/nordic/table

Figure 10: Spot prices (Nordpool) 2018-2022 for area NO1

In paper 3 “ShinyRBase: Near real-time energy saving models using reactive programming” the TVB model

is operationalized into a web application using open-source tools and a reactive programming framework. The

web framework allows for a fast development cycle without any need-to-know web programming languages

like HTML, CSS or JavaScript. While the most important objective with the web application was to make the

ESCO and other stakeholders self-sufficient in terms of setting up energy saving baseline models, another

important point is the flexibility the framework offers. For instance, the R library tidypredict (Kuhn

2020) was used to run predictions from the TVB model inside the database PostgreSQL. Accordingly, it is

straightforward to test other modeling approaches such as random forest, XGBoost or Tree models. 8

Paper 3 focused the attention on how the TVB model was used to automate baseline models in the web

application. However, the BL model that was presented in paper 1 is today operationalized into the web

application that the ESCO use daily. Figure 12 displays a screenshot from the web applications user interface

for baseline models with the BL model. The text in the screenshot is in Norwegian, but in this example

the energy-temperature curve (ET-curve) as estimated from the BL model is for the year 2018 (the user can

choose this in the menu under ‘Referanseperiode’, and the ECM period is configured in ‘Tiltaksperiode’).

The y-axis is the weekly energy consumption, and the x-axis is the average weekly temperature. The red

dots show the energy consumption and the corresponding temperature in the ECM period, while the yellow

dots show the same, but for the last 5 weeks. The distance between the dots and the estimated ET-curve is
8a full list of supported models can be found at: https://github.com/tidymodels/tidypredict
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the energy savings.

The ESCO often use the BL functionality to check if the results are the same as in the baseline models

estimated using the TVB model. Indeed, as found in paper 3, the results from the BL and the TVB model

should coincide.

Also, after setting the baseline module into production in a web application several NREs has occurred.

These were often detected by one of the project owners working on the project, without any structured

approach to investigating the events. To alleviate this process and enable a more automated method to

detect NRE we developed an EPC monitor web dashboard using the R Shiny library described in paper 3

(Chang et al. 2021).

In figure 11 we display a snapshot from the EPC monitor for three of the food retail stores that the ESCO

monitors after implementation of ECMs. The column “% savings” is the aggregated savings for 2022, kWh

baseline is the actual energy consumption, and kWh baseline is the predicted consumption (models trained

using data from 2019). The ESCO had some dismal connotations when we at first used “Beta-coefficient”

and “P-values” as column names, hence, they were reborn as “Trend score” and “Security”, respectively,

and “Security” even as the inverse of the P-value (1-p). The sparklines gives a visual representation of the

weekly savings. Figure 11 clearly shows that two of the stores (Store 10022 and 10023) had a weekly negative

savings trend, with p-values of 0.02 and 0.05, and coefficients of 0.99 and 1.42. On the other hand, store

10020 is doing fine and the savings has increased each week (p-value = 0.00). Although do note that this was

a store where only an optimization of the technical infrastructure was implemented, hence the low average

energy savings of -7,4%.

Figure 11: NRE detection (from 2022-021-021) within the Shiny web application

In our experience this approach has been able to detect several NREs during the last year. For instance, a

ventilation system that was running in day-mode during the night, and AMI meters that stopped working.

As Grillone et al. (2020) points out, if we fail to adjust for NREs the estimated savings may be too high

or too low. On the other hand, the potential adjustment depend on the type of NRE and the retrofitting

contract that the ESCO has with the building owners. Off course, if the AMI meters stops working, it will

obviously look like the savings are larger than actual. However, a non-routine event may also be an error in
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the technical infrastructure, and the ESCO may be responsible to repair.

In summary, the reactive framework delivers three distinct advantages.

1) The stakeholders will always have a current and real-time report on the savings.

2) Complex methodologies are dynamically used by the end-user.

3) Increased involvement by stakeholders and interaction with the analyst related to the methods used in

the energy savings analysis leads to collaborative benefits such as faster disseminating of knowledge

At last, ECMs control-systems, like presented in paper 3 does not operate themselves. It is crucial to educate

persons internally to use and understand the baseline models, and to be able to act on the information.

Often, as Johansson and Thollander (2018) points out, the focus is solely on energy-efficient implementation

of technology, while human behavior is overlooked. This finding is important to take into consideration and

to be able to fully use the potential in a baseline web application.
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The fourth paper “A 3-step framework to benchmark potential and actual energy savings in retrofitting

projects” is an extension of paper 1 and 2, where we analyze not only the energy savings, but also energy

efficiency with the use of data envelopment analysis (DEA). The paper propose a framework for benchmarking

energy efficiency and savings.

During the energy audit the ESCO often visit and collects information about the building(s) that are part

of the retrofitting project. A detailed examination of the technical infrastructure is an important part of

this process. Nevertheless, in our experience, not much analysis is conducted on the energy consumption

of the building during the audit. Often, the only number that is part of the audit phase is the energy

intensity (Yearly kWh / m2) which is used to rank the different buildings. However, it may be of interest to

analyze both current load profiles and efficiency in more details. In paper 4 we argue that it is worthwhile to

train the baseline models during the audit phase, and not postpone this step until the M&V phase. There

are two prevalent advantages to this. First, during the audit phase the ESCO has full attention to the

buildings under contract, and at this stage it is likely to be easier to understand any issues with the data

that will be used to train the baseline models. Often the energy data has issues that needs to be considered

(technical issues with the meters, building/technical infrastructure non-operative for periods, promotional

events). Getting attention to these issues is easier at a time when the ESCO is already working on related

issues. Second, the information that training the baseline models gives may be useful input into the audit

phase. For instance, the ESCO use, among other things, this initial stage to understand the heating and

cooling demand throughout the building portfolio. Accordingly, the BL model and the TVB can give detailed

information about the cooling and heating demand in the buildings.

The above describes the initial stage of the framework proposed in paper 4. Next, a data envelopment

analysis (DEA) is conducted to benchmark the energy efficiency. The efficiency scores from the DEA reflect

not only the size of the buildings, but also opening hours and heating and cooling demand (from the BL

model). The benchmark scores leads to a more correct ranking of the buildings as compared to the standard

way of using energy intensity. Furthermore, the DEA is re-done after the ECMs are installed and have been

in operation for a year. This enables an investigation of the potential change in efficiency scores, and how

these may relate to the actual savings. This may give valuable insights that can be used to improve the

effect of current and future retrofitting projects. For instance, there might be an inefficient heating or cooling

system in some of the stores. Additionally, the accomplished energy savings might not have been realized in

terms of the potential as identified by the efficiency scores. Such issues may require further investigation.

To sum up. The objective of this framework is to have a more holistic approach to the retrofitting project.

Training the baseline models during the audit may give more reliable (and faster reporting) during M&V.
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Further, take advantage of the output from the baseline models in the audit and implementation phase, and

at last, extend the typical energy intensity ranking with more information about the buildings.

In paper 5 “Forecasting and technoeconomic optimization of PV-battery systems for commercial buildings”

the objective was to investigate the profitability with peak shaving (reducing the maximum loads) in Norway

for a commercial building. To optimize profitability it is crucial to have information about when the peak

will occur. Hence, a forecasting algorithm for load prediction was developed, and the economic value of

forecasting was determined for a PV-battery system. The previous TVB and the CW-GB model was applied.

The economic value of forecasting was determined through simulations with Homer Energy Software that

optimizes the net present cost of the systems. The results showed that battery storage was only economically

beneficial when forecasting was deployed.

Finally, the research in this thesis has been conducted in close cooperation with the ESCO, and today the

web application that was developed as part of this work is in daily use to follow the energy savings across

several hundred food retail stores. Additionally, over the last years energy performance contracts (EPC)

has a larger share of the work conducted by the ESCO. Because EPC contracting deliver promised energy

savings to building owners it is critical to have reliable tools to document the savings. For example, Lee,

Lam, and Lee (2015) conducts a survey of 34 ESCOs and 168 retrofitting customers regarding the inherit

risks in EPC contracts. The study finds that ESCOs worry about possible payment default after installation,

uncertainty of baseline measurement, and increase in installation costs in EPC projects. On the other hand,

the customers primary concerns are long payback period, repayment ability and project complexities. By

the same token, all the stakeholders agrees that promotion of successful retrofitting projects is important to

enhance adoption of future EPC contracts.

Documenting energy savings is not the only factor that need to be established to advocate new retrofitting

projects. For instance, Minetto et al. (2018) studied factors within the HVAC market in the food retail

market that could contribute to a faster implementation of energy efficient technology. They find that

increased knowledge about the opportunity to receive public funding and increased knowledge about new

technology are factors that may contribute to this respect. Furthermore, recent research shows that cost

savings is the most important motivation to invest in energy efficient technology in supermarkets in the UK.

Low operating cost is a requirement to keep the food retail prices low. Yet, sustainability and corporate

branding is also an important aspect that drives willingness to invest in new and energy efficient technical

infrastructure (Ochieng et al. 2014). As such, it will be important to bundle these factors into powerful

advertisements to stimulate new projects.
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5.5 Identified gaps for future study

While this thesis is currently at full length, that does not imply that the project is complete. For the duration

of the project several research opportunities have been identified. For example, the energy saving analysis

conducted in the different papers accounted for the first year of the installed ECMs. Notwithstanding, the

lifespan of the ECMs are expected to last for at least 10 years, which is the length of many EPC contracts.

Hence, investigating possible diminishing return of the ECMs is an important topic for future research.

Additionally, over the years maintenance of the technical infrastructure will be more involved. In that

respect statistical models to deliver predictive maintenance is a promising research area. A recent review

can be found in Burak Gunay, Shen, and Newsham (2019). For instance, the reactive framework presented

in paper 3 may be further developed to connect with data from sub-meters (e.g., ventilation, refrigeration)

and to deliver models that can predict possible breakdowns. Such a tool will not only have value from a

research perspective but can potentially be very important to reduce service costs in the food retail sector.

Furthermore, we have seen that the ESCOs energy performance contracts, through several different ECMs,

have delivered considerable energy savings. However, it may be useful to investigate the building owners’

drivers and barriers to further ease adoption of efficient energy conservation measures in new projects. For

instance, Brunke, Johansson, and Thollander (2014) investigates conditions that are associated with the

adoption of energy cost-effective ECMs in the Swedish iron and steel industry. They find that only four of

23 companies invest in ECMs with a payback time of more than three years. While this finding might not be

directly transferable to other industries or countries, it may still be important to consider that the technical

infrastructure in the food retail sector should last for more than 10 years, and that it is important to develop

a strategy to convince the building owners to adapt a longer perspective in their investments. Also, half

the firms that participated in the Brunke, Johansson, and Thollander (2014) study reported insufficient top

management support as important barriers for new ECM projects. Hence, it is important to raise awareness

of energy efficiency within the companies. As such, it would be interesting to study how and if tools like the

ShinyRBase web application (paper 3) can raise awareness for energy efficiency within the company.

Also, as sensors get more prevalent it will likely be less expensive and less complicated to analyze the actual

energy savings using the IPMVP Option B, which is to isolate the installed ECMs and calculate the actual

savings without any estimation. To be sure, technological advances will require new and innovative research

to take advantage of these new and promising data sources.

It is also important to highlight that all the energy savings results throughout the paper was presented as

point values, despite the fact that the results were estimated, and that uncertainty exists. Yet, by providing
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a range of uncertainty it is easier to evaluate the risk associated with investments in the ECMs (Tian et al.

2018). Given that the savings exists as an estimate with a lower and a upper bound a retrofitting business

case may fell short in the lower bound, and be profitable in the upper bound. Subsequent research should

further investigate issues surrounding this estimation uncertainty.

Note also that the TVB, the CW-GB and the BL models applicability have been demonstrated. Nevertheless,

the scope of the demonstration was narrow; only buildings from the food retail sector were involved. It seems

very unlikely that the presented models will work for every building category. Still, the reactive framework

we developed in paper 3 is possible to adapt for different building categories. For instance, several of the

machine learning models that were applied in the ASHRAE Kaggle competition can be implemented and

tested within the same framework as described. Progress within this area may be useful research to develop

baseline models across different building categories.

At last, Franconi et al. (2017) points to three considerations for how to choose the methods for calculating

energy savings. First, regulatory requirements that may well differ between countries and states. Second,

the methods validity in terms of over- and underestimating energy savings. Third, how to strike a balance

towards the methods rigor and reliability versus the costs and the value of the energy savings. There is little

information in the literature about optimal approaches, and contributions would be useful and appreciated.

5.6 Conclusion

The IPCC Sixth Assessment Report urgently stress the importance of major cuts in greenhouse gas emissions.

There is no doubt that human activities cause climate change, and that these changes have led to widespread

disruption in nature and affect billions of people. Globally, buildings consume 40% of all produced energy

and are major contributors to GHG emissions. To that end, energy efficiency retrofitting is an important step

in reducing energy consumption. Still, one important barrier that hinders renovation projects is uncertainty

regarding the expected savings. The main objective of this thesis was to deliver reliable methods to be

used to document and monitor energy savings in retrofitting projects. Through 5 different papers this thesis

has demonstrated different methods to benchmark, document and monitor efficiency and energy savings

as a result of energy conservation measures (ECMs) within the Norwegian food retail sector. The papers

demonstrates that the potential for energy savings is substantial - savings up until 56% is documented. The

average food retail store in Norway consumes 500 000 kWh. Hence, based on the average estimated savings

in this thesis the potential energy reduction is 35%; annually kWh 175 000. Apply this to the 4000 food

retail stores in Norway the energy saving potential is 700 GWh, the same amount of energy that 41 893
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Norwegian households consume.

Through the delivered web application, the ESCO has access to near real-time energy saving models. Result

and reports from the application has been actively promoted in new business cases, and the feedback from the

stakeholders is that the application is an integral part of day-to-day business. The baseline web application

module is today in operation as a tool to document and monitor energy savings for several hundred food

retail stores.

At the start of this project, it was recognized that an important barrier that hinders renovation projects is

uncertainty regarding the expected savings, and that the main objective of this thesis was to contribute to

lower that barrier and to deliver reliable methods to be used to document and monitor energy savings in

retrofitting projects. Through the presented papers it has been demonstrated that statistical models can be

an important component to promote a sustainable and energy efficient food retail sector.
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A B S T R A C T   

Buildings worldwide consume about 40% of all produced energy and are major contributors to GHG emissions. 
Hence, to reach the 2030 European energy efficiency target it is vital to reduce the energy consumption in 
buildings. An important barrier that hinders renovation projects is uncertainty regarding the expected savings. 
The main objective of this paper is to present two different statistical methods to estimate energy savings. The 
two methods are easy to implement for practitioners within the energy retrofitting industry, and at the same time 
has acceptable precision and reliability. The two methods are applied at 5 different food retail stores that un
dertook renovation in 2019. The models are trained on data from 2018 (one whole year before any of the ret
rofitting’s took place) and are further applied to estimate the energy savings in 2021. The first method is the Tao 
Vanilla benchmarking method (TVB). The TVB model predict energy consumption in buildings on an hourly 
level. The model has received a lot of attention within the load forecasting literature and has previously proved 
its performance in machine learning competitions. The TVB has a straightforward specification, and the model 
parameters are easily understood. This is the first study that apply the TVB to estimate energy savings in a large 
retrofitting project within the energy and building sector. The second method relies on a more common industrial 
approach, which is to use weekly data and energy temperature curves to document energy savings. In addition, 
we demonstrate a novel approach of using broken line (BL) models to estimate energy savings. The suggested BL 
approach can simultaneously estimate all the model parameters and yield a full covariance matrix within a 
standard linear regression framework. The results from the retrofitting projects demonstrates considerable en
ergy savings between 25% and 55%. Furthermore, both the TVB and the BL models deliver reliable precision. The 
estimated energy savings from both models are coinciding. This indicates that they could jointly be used to gain 
insight that may lead to more informed decisions for energy saving projects. The TVB model proves to be a 
proficient benchmarking model that can give detailed hourly information about the savings. The BL model is 
used to gain intrinsic details about the buildings varying cooling and heating needs depending on the outside 
temperature during the year.   

1. Introduction 

Globally, the building sector use about 32% of all generated energy, 
51% of the global electricity use and accounted for 19% of all energy- 
related GHG emissions [1]. Within the different building categories 
food retail stores are one of the largest consumers of energy. For 
instance, the EIA’s latest commercial buildings energy consumption 
survey finds the average energy use for food stores are 524 kWh/m2; the 

highest energy intensity of any of the building types [2]. Hence, to reach 
the 2030 European energy efficiency targets it is vital to reduce the 
energy consumption of buildings, and retrofitting is known as an 
important driver to improve energy efficiency [3]. Nonetheless, one 
important obstacle that hinders renovation projects is uncertainty 
regarding the expected savings [4]. 

The work presented in this paper is in close collaboration with a 
medium sized Norwegian energy service company (ESCO) that has 
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specialized in retrofitting food retail stores, and the current research 
focus the attention to energy conservation measures (ECMs) that was 
conducted in 5 different stores during autumn 2020. Thus, one set forth 
to measure the effect of the energy savings as a result of the ECMs for the 
year 2021. All the buildings got new LED-lightning and refrigeration 
systems, additionally one store got a new HVAC system installed. The 
control systems were also renewed and optimized across the stores. The 
average cost of the ECMs was: lighting NOK 100 000, the HVAC system 
NOK 800 000, and the refrigeration system NOK 4 000 000. Also, the 
project incurred administrative cost of NOK 350 000, including an en
ergy audit of the different buildings. 

In Table 1 the size and the electricity consumption for the 5 different 
food retail stores that was retrofitted is presented. Note that the actual 
store names are anonymous in agreement with the ESCO and the 
building owners. The size of some of the stores are quite different with a 
range from 356 m2 to 1514 m2. The store with the largest yearly energy 
consumption is store-id 4391 with a yearly consumption of 1 062 906 
kWh. Also, note that there is a substantial difference in the energy in
tensity measured through kWh/m2. For instance, store-id 4391 has 753 
kWh/m2, while store-id 4103 has 307 kWh/m2, thus a 59% lower energy 
intensity. These measures are often used by practitioners to rank the 
potential energy savings in buildings, hence, one expects the estimated 
savings to correlate with these measures. 

An important concern for practitioners in the retrofitting industry is 
to have reliable methods to document energy savings. Several ap
proaches exist, both deterministic and data-driven. However, many of 
the data-driven methods are quite complex and time consuming to 
conduct. Further, during this research project we have seen that the 
ESCO prefer methods that are easy to understand and to communicate to 
clients - a vital aspect of reporting the savings. For instance, current 
research from field experience show that interpretability of models may 
even keep the clients from accepting complicated models such as arti
ficial neural networks [5]. The ESCO that we worked together with used 
weekly data and linear regression as a basis of modeling what the energy 
consumption would have been without the ECMs. While this method 
worked relatively fine this paper will demonstrate other methods that 
may improve the reliability. Additionally, new advanced metering sys
tems with high-frequency data have led to advanced approaches that 
give new and detailed insights into the effect of retrofitting’s. Since this 
research has been in close collaboration with the ESCO, one of the main 
objectives was to improve their way of estimating energy savings. As 
such, it is difficult to approach commercial actors that over many years 
have been accustomed to their own preferred set of solutions; solutions 
that have served them well. Thus, these issues are approached carefully. 

This paper demonstrates two different methods to estimate energy 
savings, the broken line model (BL) and the Tao Vanilla benchmark 
model (TVB). The BL model use weekly data and is relatively close to the 
ESCO’s established method. Furthermore, the research demonstrate that 
the BL model was uncomplicated to implement, reliable, enhance un
derstanding, and the methods resemblance to the ESCO’s current 
workflow eased the uptake. Second, the TVB model is based on hourly 
data and demonstrates the added benefits and insights that can be 
gained by higher frequency data. 

The BL and the TVB model are then compared in terms of reliability, 

advantages and disadvantages. Previous experiences have shown that 
there is a large energy efficiency potential in the existing building stock, 
and that the potential is mainly untapped. One important reason for this 
is the lack of reliable methodologies to evaluate the effect of energy 
efficiency measures [6]. In that respect one of the objectives of this 
research is to fill that gap. 

1.1. Novelty of the paper 

First, the TVB-model, published in Ref. [7], has been used frequently 
as benchmarking model within the load forecasting literature [8–10], 
and has previously proven to be among the top performers within ma
chine learning competitions. For instance, the model was ranked among 
the best 25 of 100 teams in the GEFCom2012 [11]. In previous research 
the TVB was applied in Ref. [12] to estimate energy savings from ECMs 
with small expected effects. However, in the present paper the TVB is 
used to document energy savings for food retail stores that has imple
mented extensive retrofitting. Given the models previous prediction 
performance, easy implementation, and the lack of use to estimate 
savings in retrofitting projects the present paper promotes the novelty of 
the method, and adds to the already established data-driven tools within 
the M&V industry. 

Second, we use the BL model to estimate the changing point tem
perature (CPT) value, and the cooling and heating slopes. Standard 
methods to estimate non-linear effects, such as regression splines, 
polynomial regression, and non-parametric smoothing are not relevant 
because the CPT values are fixed a priori, and the regression parameters 
are not directly interpretable [13–16]. The BL model is estimated within 
a linear framework and is accessible through the R package segmented 
[17]. The package is easy to implement for practitioners and use of the 
method has previously, as far as the authors has been able to find, not 
been published within the M&V literature. 

Third, the data used in this project is unique and it is the first 
research that document the potential energy savings from the above 
mentioned ECMs in the food retail sector in Norway. Furthermore, lack 
of reliable information may be a barrier for new renovation projects 
[18], and as such, the results from this paper is a novel contribution and 
may advance interest in similar projects. 

This rest of this paper is structured in the following way. First, the 
relevant data is presented. Second, an exposition of the measurement 
and verification (M&V) industry and related research is offered. Third, 
the methods section presents the two models used to estimate the sav
ings. Fourth, the results are presented, implications discussed, limita
tions and suggestions for future research, and at last the conclusion is 
offered. 

1.2. Data - electric load and weather data 

In recent years there has been several breakthroughs in advanced 
metering infrastructure systems, and easier access to high-frequency 
data has even transitioned and renamed the Measurements and Verifi
cation (M&V) industry into M&V 2.0. New metering systems allow for 
energy savings being estimated close to real-time [6]. 

For instance, Statnett, the system operator of the Norwegian power 
system, owns and runs, Elhub AS. Elhub is a central IT system to support 
and streamline market processes in the Norwegian electricity market, 
but they also support the distribution and aggregation of metering 
values for all consumption and production in Norway. Their system 
daily collects energy use on an hourly level. It is obligatory for all the 
Norwegian grid operators to update the Elhub repository each day. The 
service was launched in February 2019. All the energy data from 
February 2019 and on wards for the 5 food retail stores in this paper 

Table 1 
Yearly energy consumption (2018), gross area (m2) and energy intensity (kWh/ 
m2)a.  

Store-id Gross area (m2) Yearly kWhb kWh/m2 

4 103 1 409 431 989 307 
4 097 1 066 545 159 511 
4 479 356 207 713 583 
4 396 1 514 1 061 682 701 
4 391 1 41 1 062 906 753  

a Data collected from meter readings for the whole of the buildings. 
b Energy use one whole year before any retrofittings 
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stems from Elhub.1 The energy data from 2018 up until January 2019 is 
collected from the building energy management system (EMS) that 
previously collected data from the grid operators. Temperature data is 
downloaded from the Norwegian Meteorological Service (www.met. 
no). Each stores position (longitude and latitude) is mapped against a 
2.5 km × 2.5 km grid of Norway. Further, the temperature data gathered 
is modeled weather data that use several of the closest weather stations 
to set the temperature. 

Fig. 1 shows an example of a typical hourly electricity consumption 
for one of the food retail stores in this paper. As can be seen the con
sumption follow the same pattern every day depending on the opening 
hours, except for Sunday when the store is closed. During the night the 
consumption fluctuates around 150 kW, and when the store opens the 
kWh shift to around 200. Also, note the extra peak (often referred to as 
the “morning ramp”) when the store opens at 07:00. This is a feature 
seen in many food retail stores and is attributed to the shift from night to 
day-mode for the refrigeration and HVAC system (which is on “stand- 
by” when the store is not open). 

Furthermore, Fig. 2 shows the same data for the same food retail 
store, but aggregated to a weekly energy use level together with the 
average outside temperature for one whole year. This figure clearly 
demonstrates the relationship between outside temperature and the 
electricity use. In winter the electricity consumption increases due to 
heating demand, and on contrary the energy consumption is much lower 
during the summer months, though there are some “spikes” here and 
there during summer which can be explained by cooling needs in the 
warmest summer days. These features are important to take into 
consideration when building models to predict the energy use in the 
buildings. 

1.3. Measurement and verification 

Measurement and verification (M&V) is the process of using mea
surements to accurately estimate energy savings generated in a building 
as a result of implementation of an energy management strategy [19]. In 
order to compare the energy usage before and after the implemented 
retrofitting, a model of the consumption prior to the retrofitting needs to 
be developed. This model is often referred to as the baseline energy 
model. 

Fig. 3 is an illustration of the measurement and verification process. 
The y-axis represents energy consumption and the x-axis time. The 
vertical dotted line represents the implementation of an energy retro
fitting; let’s say the change of coolers and freezers in a store. The 
expectation is that one will find a substantial decrease in the energy 
consumption as this new equipment is much more energy efficient than 
the old coolers and freezers. The baseline period represents how the 
building consumed energy before the ECMs. In this paper this period is 
the year 2018, decided after a review of the data together with the 
building owners. It is important that the baseline period is representa
tive of the energy consumption in the building, otherwise the mea
surements will not be correct. The solid line represents the actual energy 
use in the building. Note that once the ECMs were implemented the 
energy consumption decrease. Now the question is whether this 
decrease was due to the ECMs or other external factors? For instance, the 
outside temperature might have been very different in the baseline 
period compared to after. This is the reason that a model is needed to 
estimate the energy savings. Imagine that no ECMs were implemented. 
This is represented by the dotted line and is the potential energy use if 
there were no retrofitting’s. The difference between the actual energy 
use and the dotted line is the energy savings, illustrated by the red arrow 
in the graph. 

Within M&V there are various methods and best practices, and there 

also several standards that have been suggested [6]. This paper follows 
the ASHRAE Guideline 14 for measurement of Energy, Demand and 
Water Savings [20]. This protocol suggests best practices to quantify 
energy savings, including metrics to evaluate the validity of the models. 
The protocol has three different options to determine energy efficiency 
savings.  

• Retrofit Isolation: No estimation is allowed. For example, if you install 
a new refrigeration system in a food retail store you need energy data 
on that particular system before and after. This often requires sub- 
meters (sensors) that can collect these data and was not available 
in this study.  

• Whole facility. The present research use meter readings (from Elhub. 
no) to evaluate the energy performance of the whole building. This 
option determines the savings of all the implemented ECMs. This 
option is recommended for projects where the expected savings are 
substantial and is the approach followed in this paper.  

• Whole building Calibrated simulation. Using building energy modeling 
software that allows the prediction of energy consumption. Often 
requires extensive physical data. 

To conform with the ASHRAE protocol the research literature has 
suggested several useful approaches. In the next section an overview of 
relevant research is offered to set the suggested modeling approaches 
into context. 

1.4. Baseline models to estimate energy savings 

There are two different main classes to estimate energy savings: data- 
driven and deterministic models. Data-driven models are statistical 
models that find relationships between a dependent variable (energy 
consumption) and feature variables (air temperature, like in this paper, 
or wind speed, solar irradiance or other external factors that may impact 
energy consumption). The other class is deterministic: typically, a 
detailed simulation model based on the energy transfer flow within the 
building. For example, one established and well-known tool for building 
modeling and simulation is EnergyPlus, which is a freely available en
ergy modeling software. The software has been used to simulate energy 
performance and savings in buildings [21,22], however, since the results 
are based on simulations, and not actual conducted retrofitting’s, the 
savings are theoretical. In the retrofitting business the actors must 
document actual savings. Nonetheless, it is possible to adapt energy 
modeling software into prediction tasks, however the software typically 
requires extensive physical building data, something that may be diffi
cult to acquire, and if possible, may complicate model training [23]. 
Based on this it is attractive to investigate simpler models without a 
strong dependence on physical data, and as such data -driven methods 
may be a useful candidate to simplify prediction. 

Several recent reviews find data-driven methods scalable and more 
effective than traditional approaches [24–27,27–30]. Hence, this paper 
focuses the attention on data-driven methods. Fig. 4 presents an over
view of the different data-driven baseline energy modeling approaches, 
and was the starting point of a recent review of data driven methods by 
Ref. [6]. They separate data-driven methods into three main paths: 
statistical learning, machine learning and Bayesian methods. 

1.4.1. Statistical learning 
The two approaches that is presented in this paper fits within the 

statistical learning path ‘linear and nonlinear regression.’ This path has a 
long history within the M&V industry. In 1986 the PRInceton Score
keeping Method (PRISM) was proposed as the standard method to 
measure energy conservation savings [31]. The PRISM is a piece-wise 
linear regression model with monthly electricity consumption, using 
heating degree-days for weather normalization. The PRISM has been a 
popular approach both with academia and industry and has over the 
years received more than 450 research citations. However, as energy 

1 The data gets pulled each morning from Elhub and stored in a database 
(postgreSQL). 
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Fig. 1. Hourly loads (kW) throughout a week.  

Fig. 2. Weekly energy consumption (kWh) and site specific weekly average temperature (◦C) for a food retail store.  

Fig. 3. Illustration of measurement and verification. Baseline = before the retrofitting, Reporting period = after the ECM.  
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data became more available, models using weekly, daily and hourly data 
was introduced, both using multiple linear regression [32] and 
change-point models [23]. In a more recent study [33] use multiple 
regression with a time-of-week indicator variable (similar to what the 
TVB model described in the next section use) and a piece-wise linear and 
continuous outdoor air-temperature dependence. 

Furthermore, using monthly data [34] used linear regression to es
timate the energy savings of changing the HVAC system in an office 
building, and [35] used both linear and nonlinear regression models to 
document the energy savings as a result of mechanical system retrofit
ting in a healthcare facility. 

As can be seen from Fig. 4 transfer functions and kernel regression 
have their own paths within statistical learning. Transfer function has 
been deployed to estimate energy savings in a building of the University 
of Granada [36], however the method requires the internal temperature 
of the building, and that was not available for any of the buildings in our 
study. Kernel regression was initially proposed by Ref. [37] to improve 
the accuracy of standard linear regression, however there are some 
concerns regarding the methods ability to take into account seasonal 
variations [6]. 

1.4.2. Machine learning 
The second main path of data-driven models is ‘machine learning.’ 

For instance Ref. [12], compares the TVB model and gradient boosting 
in 9 different food retail stores that had implemented ECMs with low 
expected savings. They found that gradient boosting did perform 
somewhat better in terms of accuracy, but both models performed well 
below the ASHRAE CV-RMSE limits set for reliable estimates of energy 
savings for all the buildings. Furthermore, one advantage of the gradient 
boosting approach was that the model enabled to identify a unique 
feature set of the best explanatory variables for each of the buildings. 
One the other hand, the tuning of the model was time consuming, and 

the approach was not easy to communicate to the ESCO. Further, Arti
ficial neural networks (ANN) have seen several applications to estimate 
energy savings. The ANN are easy to implement, but on the contrary are 
not that easy to interpret. Another drawback is that ANN need large sets 
of training data. In Ref. [38] they document energy savings in two hotels 
using ANN models with Levenberg-Marquardt back-propagation. To 
develop the ANN baseline model they used weather, occupancy and 
building operation schedules. 

1.4.3. Bayesian methods 
Bayesian statistics is an approach to parameter estimation based on 

Bayes’ theorem and is quite different from the frequentist approaches 
presented so far in this section. For instance, in the frequentist approach 
you only use the actual data to estimate the energy savings, but in the 
Bayesian approach you integrate prior information about the expected 
savings from the retrofitting’s. In many cases prior information may be 
an advantage for the analysis, however it is also a known limitations of 
Bayesian statistics that the priors may be challenging to justify and can 
be a source of inaccuracy. We are not aware of any Bayesian studies that 
estimate energy savings from the whole-building perspective similar to 
this paper. However [39], applied Bayesian statistics to estimate savings 
of a model-predictive controller for space heating for a Swiss office 
building. They argue that the traditional statistical approach is expen
sive, however, easy access to data through Elhub.no and open meteo
rological data through services such as met.no makes today’s model 
building using frequentist approaches quite inexpensive. 

2. Methods 

This section presents the two methods that will be used to estimate 
the energy savings: broken line models using weekly data, and the TVB 
model using hourly data. 

Fig. 4. Overview of baseline modeling approaches to estimate energy savings.  
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2.1. Broken line models 

Broken line (BL) models are common in many different fields, such as 
toxicology, ecology, epidemiology, and medicine [40,41]. These models 
are used to estimate two straight lines connected at unknown values, 
often referred to as change-points or breakpoints. For example, when the 
outside temperature is cold this typically leads to an increase in a 
building’s energy consumption due to increased demand of heating. In 
the same way the energy consumption increases due to hot temperature 
in the summer when coolers in the stores are in use. The change point, 
changing point temperature (CPT) is the point at which no heating or 
cooling is required. 

The classical methods used to take into account non-linear effects, 
such as polynomial regression, non-parametric smoothing, and regres
sion splines are not applicable because the change-points are fixed a 
priori. Further, regression parameters obtained in regression splines or 
polynomial regression approach are not directly interpretable [42]. 
When the CPT parameters must be estimated, standard likelihood-based 
inference is convoluted by the fact that the log-likelihood is only 
piecewise differentiable and the classical regularity conditions are not 
met [14–16]. In this paper the problem is reduced to a linear framework. 
The CPT relationship between the mean response μ = E[Υ ] and the 
variable Z is modeled by adding in the linear predictor for 

β1Zi + β2(Zi − ψ)+ (1)  

where (Zi − ψ)+ = (Zi − ψ) × I(Zi > ψ) and I( ⋅) is the indicator function 
equal to one when the statement is true. Accordingly, β1 is the left slope, 
β2 is the difference-in-slopes, and ψ is the CPT value. Several challenges 
have previously been described by Ref. [43]. For instance, grid-search 
algorithms have been used to estimate broken-line models, for 
example fitting several linear models and searching for the value that 
corresponds to the model with the best fit. Despite, this is not an optimal 
approach when there is more than one changing point or a large dataset. 
Also, estimating models with fixed changing point may lead the pa
rameters to have to narrow standard errors. 

The R package segmented can estimate and summarize generalized 
linear models with broken line relationships. The package uses a method 
that simultaneously estimate all the model parameters and yields the 
approximate full covariance matrix [17]. For example [44], shows that 
the nonlinear term in equation (1) has an approximate intrinsic linear 
representation. Thus, given an initial guess for the breakpoint (the CPT 
value), ψ , a standard linear framework can be utilized to solve the 
problem. Previous research has established the CPT value for food retail 
stores to be around 7, consequently, ψ = 7 [45]. 

The segmented package estimate model (1) by iteratively fitting the 
linear model 

β1Zi + β2(Zi − ψ̃)+ + (zi > ψ̃)ψ̃ − (2)  

where I( ⋅) = − I( ⋅) and γ is the parameter to be interpreted as a re- 
parameterization of ψ, thus accounts for the breakpoint estimation. At 
each iteration, a standard linear model is fitted, and the breakpoint 
value (CPT) is updated through ψ = ψ + γ̃/β̃2. 

2.2. The Tao Vanilla benchmarking model - estimating the energy savings 

In the previous section an exposition of the BL model, that will be 
applied on weekly aggregate data, was given. For the same purpose of 
estimating energy savings on an hourly level the Tao Vanilla benchmark 
(TVB) model will be used. The TVB model has proven easy to implement 
and produce accurate results [7]. Previously, the TVB model has been 
used for load forecasting by grid operators, a noteworthy exception is 
found in Ref. [12] that estimate energy savings using the TVB model to 
benchmark against component-wise gradient boosting with p-splines 
(CW-GB), in a context where the expected savings target was below 
10%, for instance in smaller implemented ECMs. Both the TVB and the 

CW-GB was found to produce reliable results. The TVB model has the 
following specification: 

Yt = β0 + β1Mt + β2Wt + β3Ht + β4WtHt + β5Tt + β6T2
t

+ β7T3
t + β8TtMt + β9T2

t Mt + β10T3
t Mt + β11TtHt + β12T2

t Ht + β13T3
t Ht

(3)  

where Yt is the actual load for hour t, βi are the estimated coefficients 
from the least squares regression method; Mt , Wt and Ht are month of the 
year, day of the week and hour of the day. Further, Tt is the outside 
temperature for time t. Note that the original TVB model includes trend 
and past loads. However, in this paper the TVB model will reflect the 
energy consumption in food retail stores based on a reference period, 
thus trend and lagged variables are not included as predictors. 

2.3. Model accuracy 

To measure the accuracy of the TVB and the BL models the coefficient 
of variation root mean square error (CV-RMSE) is calculated. The CV- 
RMSE is computed in the following way, 

CV − RMSE =

∑
(Ŷi − Yi)

2

n− k− 1

Y
(4)  

where Y is the mean of the energy consumption in the training data (the 
reference/baseline year). Yi is the actual energy use in hour i, Ŷi is the 
predicted value of energy use in hour i from the model, estimated on the 
reference period. Further, n is the sample size, and k is the number of 
independent variables in the model. This accuracy measure is recom
mended by the ASHRAE [46] and for reliable baseline models the 
CV-RMSE is required to be below 20% for the model to be accepted if 
post retrofit period is less than 1 year, and less then 25% if between 12 
and 16 months after the ECMs. 

3. Results 

In the following section the total estimated energy savings from the 
two different modeling approaches is presented, the TVB and the BL 
model. Furthermore, follows a detailed presentation of the results from 
the two models. 

3.1. Aggregated energy savings 

Table 2 sums up the main findings, both the estimated % savings and 
the CV-RMSE from the two models. First, the ECMs had estimated en
ergy savings ranging from 25% to 56%. Further, note that there are 
hardly any differences in the percent energy savings if using the BL or 
TVB models. Store-id 4391 had the largest estimated saving. That store 
had an actual electricity consumption of 457 000 kWh in 2021, and the 
models predicted that the consumption without the ECMs would have 
been 1 040 015 kWh (BL model) and 1 026 125 for the TVB model. 
Hence, the %-savings was 56% from the BL model, and 55,4% from the 
TVB model. A substantial saving, nonetheless, this was also the store 
with the most potential as measured from the energy intensity (kWh/m2 

pre-ECM, see Table 1). The store with the lowest energy savings was 
store-id 4097 with the estimated savings equal to 24,9% and 25,1%, BL 
versus TVB, respectively. 

Note that the CV-RMSE is less then 25% for all the models, thus well 
within acceptable limits following the previously discussed ASHRAE 
guidelines. 

3.2. BL model - energy temperature curves 

In Fig. 5 the energy temperature curves (ET - curves) are presented 
for the 5 different food retail stores. The y-axis represents the weekly 
energy consumption (kWh) and the x-axis the weekly average outside 
temperature. The BL model was used to estimate the lines that was fitted 
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to the weekly data for 2018 (blue colored round circles). Note the 
changing point temperature (CPT), which is the temperature point 
where the building shifts between heating and cooling needs. It is quite 
some variation for the CPT between the buildings, ranging from 6.7 ◦C to 
15.1 ◦C. The CPT values are valuable in terms of understanding the 
details about the building envelope, e.g. degree of insulation or the ef
ficiency of the heat recovery system. The black rectangular point in the 
curves is the energy consumption and average temperature for all the 
weeks in 2021, thus after the implemented ECMs (note that these were 
not part of the modeling process/fitted lines). Hence, the distance from 
the black rectangular points up to the fitted line is the actual energy 
savings. This is illustrated for store-id 4391 for a winter week and a 
summer week in 2021. The red arrow that extends from week 3 (x-axis, 
temperature − 10.3 ◦C and y-axis, actual energy consumption that week 
of 10 400 kWh) to the fitted line at 28 500 (the kWh given no ECMs). 
Hence, the saving is 28 500 kWh - 10 400 kWh = 18 100 kWh. The 
equivalent numbers for the blue line in a summer week is 7850 kWh 
actual versus 16 000 kWh predicted, a saving of 8150 kWh. The point of 
illustrating this is that the ET - curves gives both a good visual repre
sentation of the heating and cooling demands, and is a method used to 
better understand the seasonal effects of the savings. For instance, since 
store-id 4391 had a new refrigeration system including a very efficient 
heat recovery system it was expected that the ECMs gave more savings in 

the wintertime, as documented in the figure. Both the CPT values and 
the visual representation are unique features of the weekly aggregate 
level. 

3.3. TVB model - savings on the hour 

In Fig. 6 the energy savings results is presented for week 2 in 2021. 
The solid line is the actual load, and the dotted line the predicted load 
given that the building performed as before the implemented ECMs. 
Note that the difference between the lines represent the actual savings. 
There is a substantial savings for all the weekdays. Also, the peak in the 
morning is not present anymore, or at least much less pronounced. The 
TVB model gives a much more detailed understanding of the actual 
savings compared to the BL model. For example, plots like the one 
illustrated in Fig. 6 can even be used to detect and narrow down the 
cause of errors in the technical system. The predictions can spark 
questions like “is the reduced savings between 22:00 and 01:00 due to a 
slower night-mode shift in the ventilation, or could it be that the auto
matic lighting switch is not working properly?” These are questions that 
are much easier to investigate when the savings are presented on an 
hourly level. 

Table 2 
Aggregate energy savings and CV-RMSE results from TVB and BL models.  

Store-Id kWh BL model Actual kWh kWh TVB model CV-RMSE BL CV-RMSE TVB % savings BL % savings TVB 

4391 1 040 015 457 500 1 026 125 0087 0,170 − 56,0 − 55,4 
4396 1 036 211 554 757 1 032 992 0033 0,075 − 46,5 − 46,3 
479 204 767 112 911 202 194 0,056 0085 − 44,9 − 44,2 
4103 417 657 295 295 418 866 0,044 0134 − 29,3 − 29,5 
4097 529 024 397 062 529 776 0,021 0087 − 24,9 − 25,1  

Fig. 5. ET curves for the reference period estimated with the broken line model, and the weeks for 2021 displayed.  
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3.4. TVB model - peak shaving 

Peak shaving refers to measures taken to reduce the electricity loads, 
often at specific hours. There may be several reasons to take this into 
account. For the owners of the food retail stores the grid rent is often 
designed in such a way that the building owners pay for the maximum 
load each month. For instance, if the building had a flat load at 220 kW 
through December 2021, but then suddenly the hour on 16th December 
07:00 was 431 kW, then 431 kW would be what the grid rent was based 
on. 

In Fig. 7 the actual and the predicted (given no implemented ECM) 
average, minimum and maximum loads for each month of 2021 for one 
of the stores using the estimates from the TVB model is plotted. The 
maximum predicted load for November 2021 was 235 kW and the actual 
was 117 kW. This amounts to a load reduction of 235–117 = 118 kW. To 
relate this to the grid rent this store has Vevig AS their grid operator. The 
effect price in the winter months is NOK 55.9. Thus, the ECMs gave a 

savings in November 2021 of 118 kW * 55.9 = NOK 6596. As can be seen 
in the figure the load reduction was substantial across all months of the 
year. This is an important perspective that is not possible to study on a 
weekly level. 

4. Discussion 

Previous research documents that the energy efficiency in the 
existing building stock has a considerable potential, and that the lack of 
reliable methodologies to evaluate the effect of energy efficiency mea
sures may have impaired progress [6]. Incidentally, in the review of the 
baseline models several reliable data-driven methods, both statistical, 
machine learning and from the Bayesian point-of-view are presented. 
Nonetheless, several of these approaches are relatively complex, and 
research has established that interpretability of models may keep the 
clients from accepting black-box models [5]. In other words, it is a bit of 
a paradox. The industry calls for reliability, and when given turns it 

Fig. 6. Actual and predicted loads (given no ECM) from the TVB model.  

Fig. 7. Average, minimum and maximum load (kW) for each month. Results from TVB model, showing the peak shaving that occurred on a monthly basis for the 
store with the largest energy savings. 
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down as too complex! The present paper tries to balance complexity 
versus usability, keeping a steady eye on the reliability of the models in 
terms of predictive power. Hence, a demonstration of two different 
baseline models that clearly demonstrates the potential energy savings 
that retrofitting’s may lead to. Table 1 displays that the difference in 
energy intensity across the stores was substantial, and store-id 4391 was 
identified as the food store with the largest potential for energy savings 
with energy use of 753 kWh/m2. Also, according to the ESCO this store 
was, during the energy audit before the implemented ECMs, identified 
with several technical issues in the control system that lead to a higher 
energy consumption. Hence, in the ECM period the technical system was 
optimized, and the store was renovated with new LED-lights, refriger
ation and HVAC system. The energy savings for 2021 was estimated to 
be 56%, which amounts to almost kWh 550 000. Furthermore, the store 
with the lowest energy intensity was store-Id 4103 with 303 kWh/m2. 
The estimated savings for this store was a kWh reduction of 30%. 

The average food retail store in Norway consumes 500 000 kWh. 
Thus, based on the average estimated savings in this paper the potential 
is a reduction of 35%; annually kWh 175 000. Indeed, apply this to the 
4000 food retail stores in Norway the aggregate yearly savings is 700 
000 000 kWh, 7000 GWh (1 GWh = 1000 000 kWh). In comparison, the 
average Norwegian household has an electricity consumption of 16 079 
kWh.2 Hence, the potential energy savings in the food retail stores 
equals the same amount of energy that 41 893 households consume: or 
rather, a medium sized Norwegian city. Off course, such a direct 
extrapolation may not be entirely correct as there are many confounding 
factors, still it serves as an example to illustrate the scope in the industry. 
The untapped potential is substantial. 

However, in a study by Ref. [18] they find that renovations have a 
low impact on property prices, and lack of reliable information is cited 
as main barriers that hinders renovation projects for residential build
ings. Hence, research that document the savings in different building 
categories may contribute to better understand the potential and make 
the results known to the actors within the industry. For instance, for food 
retail stores the owners often has long-term tenancy agreement, and the 
savings from renovations of the technical systems is expected to last for 
up to 10 years. The ESCO we collaborate with has implemented both the 
BL and the TVB approach, and the ECMs will be followed up yearly. It 
will be interesting to follow the effect of the ECMs over the years and 
gain more knowledge about any possible diminishing effects. 

In practice many of the ESCOs that we have worked with have used a 
basic linear regression model to fit a line to the weekly data, not taking 
into consideration the cooling needs during the summer months. Some 
other ESCO divided the data into a summer dataset and a winter dataset 
and fitted individual lines to these. The broken line model implemented 
in this paper automate this and fits a line that takes into consideration 
both heating and cooling needs, and at the same time finds the CPT 
value. The methods are easy to implement using the R package 
‘segmented’ [17]. A review of relevant literature of energy saving 
models did not find this approach published elsewhere, hence, the 
method is a useful contribution to further automate the ESCOs work
flow. Furthermore, the TVB also proved a useful and reliable method to 
estimate the energy savings on an hourly level. The TVB model has seen 
several applications within the load forecasting literature [7–10]. 
However, within measurement and verification (M&V) in the ESCO in
dustry, the TVB was applied in Ref. [12], but in a different context 
documenting energy savings from ECMs with expected small effects. In 
this paper the method is applied for food retail stores that has undergone 
extensive retrofitting. Further, since the TVB baseline model is estimated 
on an hourly level, this feature allows the analysis of the impact of the 
energy savings in ways that are not possible on other aggregate levels. 
Specifically, a comparison between how the ECMs performs on 

weekdays versus weekends, or when the store is open versus closed. That 
again may be used to benchmark top-performers, and maybe relate that 
to optimal settings within the HVAC steering units. 

4.1. Limitations and suggestions for future research 

In 2019 The American Society of Heating, Refrigerating and Air- 
Conditioning Engineers (ASHRAE) hosted the Kaggle competition 
“Great Energy Predictor III. How much energy will a building 
consume?”3 The competition attracted 4370 participants from 94 
countries. The prize money for the winning team was $25,000. A 
detailed overview of the machine learning workflows and the winning 
teams is presented in Ref. [47]. The top 5 solutions were reproduced by 
Ref. [47] and the accompanying code can be found on github.4 The 
winning solutions are presented in Table 3. As can be seen 4 out of 5 used 
multiple methods and post-processing of data with ensembling and 
weighting. All the winning solutions used Light GBM, three of the 
winning teams used Catboost, and two used XGBoost. 

Some of these methods are quite technical and involving and re
quires a thorough understanding of tuning machine learning models. 
However, it would be very useful to study the relationship between the 
predictive power of these methods and those presented in this paper. 
Furthermore, are there particular methods that are more suitable to 
specific building types? And maybe most important, what is the prac
tical value in terms of the estimated energy savings when you compare 
the winning solutions with simpler methods? Since this competition was 
recent there is a lack of research papers that apply and review these 
issues. Nonetheless, that would be welcomed and useful research for 
applied analysts within the field. 

There is probably no single modeling solution that fits all building 

Table 3 
Kaggle top 5 performing teams - modeling solutions.  

Rank Team Features Modeling Post-processing 

1 Matthew 
Motoki and 
Isamu 
Yamashita 
(Isamu and 
Matt) 

28 features CatBoost, 
LightGBM, and 
multi-layer 
perceptron 

Ensembled the 
model 
predictions 
using weighted 
generalized 
mean 

2 Rohan Rao, 
Anton Isakin, 
Yangguang 
Zang, and Oleg 
Knaub (cHa0s) 

Temporal 
features, 
building 
metadata, 
statistical 
features of 
weather data 

Catboost, 
XGBoost, 
LightGBM, and 
Feed-forward 
Neural 
Network 

Weighted 
average 

3 Xavier 
Capdepon 
(eagle4) 

21 features 
including raw 
weather and 
meta data 

Catboost, 
Keras CNN, 
LightGBM 

Weighted 
average 

4 Jun Yang (不用 
leakage 上分太 
难了) 

23 features 
weather lag 
features and 
aggregates 

XGBoost and 
Light GBM 

Ensembles. 
Weights were 
determined 
using the leaked 
data 

5 Tatsuya Sano, 
Minoru 
Tomioka, and 
Yuta Kobayashi 
(mma) 

Target encoding 
using percentile 
and proportion 
and the weather 
data temporal 
features 

LightGBM Weighted 
average  

2 https://www.ssb.no/energi-og-industri/artikler-og-publikasjoner/vi-br 
uker-mindre-strom-hjemme. 

3 https://www.kaggle.com/c/ashrae-energy-prediction.  
4 https://github.com/buds-lab/ashrae-great-energy-predictor-3-solution-an 

alysis. 
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categories. As such, it seems sensible to approach the modeling process 
with different tools. For food retail stores this paper finds that simple, 
but well specified, linear approaches work well. As [6] points out, the 
advantages of linear and nonlinear regression are that the models are 
easy to interpret and explain, but the models have limitations and may 
be too simple to capture complex relationships. For the ESCO we worked 
together with in this paper interpretation and simplicity was important 
features, and one have demonstrated that both the BL and the TVB 
model gave reliable results. At the same time, there are several other 
variables that may have contributed to more precision in the models. For 
example, in addition to temperature, it would be sensible to test other 
meteorological data such as wind speed, and solar irradiance. Also, the 
number of customers in the stores may impact the energy consumption 
(e.g., increased use of ventilation, door air locks, opening/closing of 
coolers and freezers). 

Furthermore, future research may benefit from incorporating un
certainty measures into the estimated energy savings. As [48], points 
outs, such measures can help the stakeholders make more informed 
decisions. In this paper the difference between the TVB and the BL model 
using the point estimates gave little practical difference. However, it 
would be interesting to investigate if the same finding applies when 
looking at modeling uncertainty. For instance Ref. [49], demonstrates 
that some methods that use both daily and hourly data underestimates 
the uncertainty, and that finding applied somewhat more for the hourly 
models. 

At last, machine learning is often associated with the drawbacks that 
interpretability is demanding. However, the field has made several ad
vances that seem very promising to be able to explain the inner workings 
of machine learning models. For instance Ref. [50], has proposed the 
popular framework LIME.5 The Local Interpretable Model-agnostic Ex
planations (LIME) has received a lot of attention in recent years, the 
aforementioned paper has since its publications in 2016 received almost 
8000 citations. LIME increase interpretability of the model through local 
interpretations, as opposed to global interpretations, the standard way 
to interpret data-driven models. Applied work that implement LIME for 
energy baseline “black-box models” is scarce, and future contributions 
may augment the M&V literature. 

5. Conclusion 

This paper demonstrates two different methods, the BL and the TVB 
model, to estimate the energy savings from retrofitting in 5 different 
Norwegian food retail stores. The technical systems in the stores were 
upgraded with new refrigeration, HVAC and LED lighting. The aggre
gated energy savings ranged from 25% to 56%, hence, substantial sav
ings was documented. The two models used to document the savings was 
trained on the same data, energy consumption and outside temperature, 
but differed in terms of aggregation level. The TVB models was esti
mated on an hourly level and the BL model on a weekly level. There was 
practically no difference between the aggregated savings from the two 
different model approaches, and the precision measured from the CV- 
RMSE was acceptable for both models for all the buildings. The 
advantage of the weekly BL model is that it is easy to compare and 
visualize how changes in outside temperature effect the energy con
sumption. For instance, both the CPT values and the change coefficients 
can be studied across the buildings to gain a better understanding of the 
energy consumption in the buildings. Nonetheless, the hourly TVB 
model has some unique features specific for the hourly level. The savings 
can be studied on a detailed level: which days have the highest savings? 
What about night versus day? Any specific hours that perform worse? 
These are questions that can be answered through models on an hourly 

level. Hence, since both aggregate levels give useful insight, the practical 
solution is for the ESCOs to use both the BL and the TVB model in 
ongoing retrofitting projects. Also, the literature does not seem to offer 
specific advice about which models is preferred to estimate energy 
savings, it seems a worthwhile effort to use both the BL and the TVB 
model on different aggregate levels. If the results from two the models 
support each other that gives more reliability to the results, also the 
aggregate levels complement each other in terms of enhanced under
standing. However, if the approaches do not support each other, then 
that again is useful information for further investigation, most likely 
some data anomaly that was not foreseen. 
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Abstract
This paper demonstrates how machine learning is used to 
measure energy savings from energy conservation measures 
(ECMs); in particular ECMs with a low expected energy sav-
ing. We develop a model that predicts energy consumption in 
buildings on an hourly level. The model is trained on energy 
data from the main meter before the ECMs took place. The 
model is then used to predict energy consumption after the 
ECMs. The difference between the prediction (the estimated 
energy consumption in the building given no ECMs) and the 
actual usage is the estimated savings. According to the Interna-
tional Performance and Verification Protocol (IPMVP) using 
data from the main meter is a recommended option when the 
collective savings of several ECMs are analysed, and the savings 
are expected to be large. For ECMs where the expected savings 
is less than 10 % the IPMVP recommends system simulation 
or installation of sub-meters to isolate the ECMs. However, 
when implementing smaller ECMs (<10 % expected savings) 
the added cost of installing sub-meters and/or undertaking sys-
tem simulation could turn a positive cost-benefit analysis into 
negative due to the increased cost of measurement and veri-
fication. For this purpose, we show that recent developments 
within predictive modelling will enable the building owners to 
quantify energy savings from ECMs where the expected saving 
is less than 10 %. The model has a feature set of 32 different 
variables that can explain energy consumption in buildings. 
For example, calendar-data, minimum, maximum, and aver-

age temperatures in the past 12, 24 and 36 hours. Based on this 
feature set the model chooses the variables that best explain the 
energy consumption in each building. Results from analysis in 
nine Norwegian grocery stores suggests that our methods are 
able to detect and quantify savings from small ECMs, thus are 
a cost-efficient and viable alternative to simulation and install-
ing sub-meters.

Introduction
The building segment is one of the largest global consumers of 
energy; between 30 and 40 % of the global energy consumption 
occurs in buildings (United Nations Environment Programme, 
2007). Accordingly, more energy efficient buildings represent 
an important opportunity to reduce emissions. In a recent re-
port by the International Energy Agency (IEA) they investigate 
the global potential for energy savings and find that efficiency 
gains alone could allow twice as much economics value from 
the energy it uses compared to today (IEA, 2018).

In order to reduce the environmental impact and costs as-
sociated with investing in energy efficient buildings, several 
energy efficiency programs have been implemented. In Nor-
way, Enova SF (https://www.enova.no/about-enova/), owned by 
the Norwegian Ministry of Climate and Environment works 
towards reduced greenhouse gas emissions, and energy and 
climate technology change. Enova SF has in Norway energy 
efficiency programs that target both commercial and private 
building owners. Energy efficiency programs are often carried 
out through energy service companies (ESCOs) (Satchwell et 
al. 2010). In the energy efficiency industry, measurement and 
verification (M&V) is the practice of estimating savings from 
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different energy conservation measures. The process is crucial 
for building owners, public funders and the ESCOs.

For this purpose, many ESCOs and building owners follow 
the Energy Valuation Organization (EVO) methods to estimat-
ing energy savings. The EVO (evo-world.org/en/about-en/) 
is a non-profit organization that has made The International 
Performance and Verification Protocol (IPMVP) (EVO, 2012), 
which is a framework to measure and verify results from energy 
efficiency projects. The protocol suggests both the terms and 
recommended methods to evaluate energy efficiency projects. 
According to the IPMVP using data from the main meter is 
a recommended option when the collective savings of several 
ECMs are analysed, and the savings are expected to be large. 
For ECMs where the expected savings is less than 10 % the 
IPMVP recommends system simulation or installation of sub-
meters to isolate the ECMs. However, M&V is time-consuming 
and potentially expensive. For example, Jayaweera and Haeri 
(2013) finds that M&V expenses can range from 1 to 5 % of 
the total cost of the energy efficiency project. Further, when 
performing smaller ECMs (<10 % expected savings) the added 
cost of installing sub-meters and/or undertaking system simu-
lation could turn a previous positive cost-benefit into negative 
due to the increased cost of measurement and verification.

In this paper we demonstrate that recent developments 
within predictive modelling may enable the building owners 
to quantify energy savings from ECMs where the expected 
saving is less than 10 % without using sub-meters or system 
simulation. Two different models will be used to estimate the 
energy savings. First, gradient boosting with component-wise 
p-splines (CW-GB). The CW-GB is a non-parametric additive 
model, with in-built variable selection, established with excel-
lent load forecasting abilities. Second, results will be verified 
against an acclaimed benchmarking model, the ‘Tao Vanilla’ 
benchmark (TVB) model. Further, the CW-GB model will 
choose the most important variables from a set of 32 different 
variables that can explain energy consumption in buildings. 
For example, calendar-data, minimum, maximum, and aver-
age temperatures in the past 12, 24 and 36 hours. The models 
are applied to nine Norwegian grocery stores that completed 
ECMs during Spring 2018. Results suggests that the methods 
are able to detect and quantify savings from small ECMs and 
provide a cost-efficient and reliable alternative to simulation 
and installing sub-meters.

We start the paper with a figure that illustrates what we are 
trying to accomplish using load forecasting techniques. In Fig-
ure 1 we present the energy savings for a whole week in one 

of the grocery stores that undertook ECMs. The ECMs were a 
control-system to optimize energy efficiency through chang-
es in the heat-recovery and ventilation system (controlling 
fan-speed and heating), cooling of cold drinks in-store, door 
air locks and heating cables in the entrance ramp. The aver-
age cost of the ECMs was €13,000, with €1,500 yearly oper-
ating expense. The expected energy savings was estimated to 
be around a 10 % reduction in energy usage compared to not 
implementing the ECMs. The ESCO made the estimate based 
on previous experience from other ECM projects where the 
energy savings were estimated using expensive measurement 
methods (system simulation and sub-meter energy data). Fig-
ure 1 shows the loads after implementation of the ECMs for 
every hour between September 24th and September 30th, 2018. 
The solid line shows the actual loads (kW). We can clearly see 
the pattern of the opening hours; the rising energy use around 
07:00, and the reduction around closing hours at 21:00. The 
dotted lines show the CW-GB and the TVB models developed 
in this paper. The models were trained using data for 2017, and 
then the estimated energy usage was ‘forecasted’ for the period 
after the ECMs. All the ECMs were completed during Spring 
2018. In Figure 1 we see that both the TVB and the CW-GB 
model follows each other relatively closely. The difference be-
tween the actual usage (solid line) and the two models are the 
estimated savings. The actual usage for the displayed week was 
8,586 kWh, and the predicted usage from the TVB model was 
10,208 kWh and for the CW-GB 9,851 kWh. Thus, the TVB 
models predict an energy saving of 16.5 % and the CW-GB of 
12.8 %. On September 27th at 18:00 the actual load was 62 kW. 
The predicted value from the TVB model was 92 kW. This indi-
cates energy savings of 33 % at this particular hour. Differently, 
the CW-GB predicted a value of 84 at that hour, thus indicating 
23 % energy savings. We can see the same pattern September 
27th and September 28th. Note that the actual energy consump-
tion during non-operating hours (night-time) is much higher 
than the model’s predictions, thus the ECMs gave an increase 
in energy this particular night. This could indicate a potential 
short-term error in the set-up of the ECM. 

As we shall see later in this paper, comparing the actual loads 
with the predicted loads (the loads given no ECM) has a num-
ber of useful applications. The aggregate savings in the period 
after the implemented ECMs is one obvious application. How-
ever, monitoring the actual loads versus the predicted loads 
on an hourly level can be useful to optimize the ECMs dur-
ing the phase-in period. For example, at what hours does the 
ECM achieve most energy savings, and is there any potential 

� Figure 1. Comparing TVB versus CW-GB against actual energy use after ECM.
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at other hours of the day/night to improve the performance of 
the ECMs? Also, monitoring the ECMs over time could be im-
portant to detect errors in the technical system, and in a longer 
term (over several years) the predictions may be used to calcu-
late a potential decay rate of the ECMs. 

The following sections describe the data that was used to 
train the models. Further, our modelling strategy is presented 
together with an overview of the literature. Finally, we provide 
the corresponding results from the models, some discussion 
and a conclusion.

Data sources

ELECTRIC LOAD AND WEATHER DATA
Hourly electricity usage is collected from electric meters from 
the advanced metering infrastructure (AMI) system. The values 
from the meters are rounded up to the nearest integer. The data 
is from nine food grocery stores in Norway and consists of two 
years of hourly data, 2017 and 2018. The training data (the refer-
ence period before the ECM took place) is year 2017. Further, 
all the ECM were implemented between March 4th and April 
29th, 2018. The weather data was collected from the Norwegian 
Meteorological Service (www.met.no). Each stores longitude and 
latitude was mapped against a 2.5 km × 2.5 km grid of Norway. 

FEATURES THAT EXPLAIN ENERGY CONSUMPTION IN BUILDINGS
Buildings energy consumption continuously changes together 
with differences in opening hours and holidays, and the fluc-
tuating outside temperature. Buildings need heating when the 
weather is cold, and cooling when it is warm. These variables 
are important to understand energy consumption in buildings. 
Figure 2 shows the weekly energy consumption together with 
the average weekly temperature for one of the stores. There is 
a strong time-of-year effect, with peak demand during winter 
and increased demand during warm summer weeks.

Figure 3 shows hourly loads throughout a week. The figure 
reveals the morning start-up around 04:00, and the morning 
ramp-up that peaks around 07:00, and the evening setback that 
starts at off-hours at 21:00. Also, this store has closed on Sun-
days, where the loads fluctuates around 57 kW. 

Weather and calendar data (opening hours, holidays) are 
crucial data to understand energy consumption in buildings. 
Table 1 gives a description of the potential features that might 
impact the energy consumption in buildings. These variables 
are available for the CW-GB model, and the algorithm will se-
lect the set of variables that best predict each building’s energy 
consumption. However, the TVB model will have a fixed set of 
variables, as described in the next section of the paper.

Models for load forecasting
Load forecasting has several useful applications. First, forecast-
ing may improve the understanding of how energy consump-
tion in a building changes between years. Second, quantifica-
tion of energy savings from ECMs, and third, detect anomalies. 
In 1986, the PRInceton Scorekeeping Method (PRISM) was in-
troduced as a standard method to measure ECM savings (Fels 
and Others 1986). The PRISM is a simple piece-wise linear 
regression model with monthly electricity consumption and 
heating degree-days. As energy data became more available, 
models using daily and hourly data were proposed, both us-
ing multiple linear regression (Katipamula, Reddy, and Clar-
idge 1998) and change-point models (Haberl and Thamilseran 
1998). Furthermore, Claridge (1998) discusses many of these 
approaches, such as linear regression, simulations and neural 
network models. Taylor, Menezes and McSharry (2006) com-
pare seasonal ARIMA, neural networks, double seasonal expo-
nential smoothing, and principal component analysis (PCA) 
methods, each with their own strengths and weaknesses. 
Granderson et al. (2009) describe non-linear approaches, such 
as nearest-neighbor models and locally-weighted regression, 

�Figure 2. Load (kW) and temperature for the year 2017 for store number 7.
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�
Figure 3. Hourly loads (kW) throughout a week.

Table 1. Variables used in the CW-GB model to train/learn the energy consumption in buildings (before any ECMs are implemented).

Name of predictor Description
weekday Weekday (Monday–Sunday)
hour Current hour
month Current month
weekday_x_hour Interaction between hour and weekday
holiday Holiday (=1 if holiday)
temps20 Outdoor temperature above 20 °C = 1, else 0
hourTemps Interaction between hour and temperature
monthTemps Interaction between month and temperature
temps1-temp12 12 variables, temperature lagged 1–12 hours
temp24 Temperature lagged 24 hours
temp48 Temperature lagged 48 hours
temp.avg.12h Average temperature past 12 hours
temp.avg.1d Average temperature past 24 hours
temp.avg.2d Average temperature past 48 hours
temp.avg.3d Average temperature past 72 hours
temp.avg.7d Average temperature past 7 days
temp.24.previous Average temperature past 24 hours, lagged 24 hours
temp.min.1d Lowest temperature past 24 hours
temp.min.2d Lowest temperature past 48 hours
temp.min.7d Lowest temperature past 7 days
temp.max.1d Highest temperature past 24 hours
temp.max.2d Highest temperature past 48 hours
temp.max.7d Highest temperature past 7 days
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Mathieu et al. (2011) use multiple regression with a time-of-
week indicator variable (similar to what we use in the TVB 
model described in the next section) and a piece-wise linear 
and continuous outdoor air-temperature dependence, while 
recently Touzani, Granderson, and Fernandes (2018) use gradi-
ent boosting based on decision trees. In this paper, we propose 
to estimate energy savings with models that were previously 
established to perform well in competition with other models, 
namely TVB and CW-GB. Both of these methods have been 
rigorously tested to perform well in competition with more 
than a 100 other models. None of these methods have, as far as 
we have been able to ascertain, previously been used to estimate 
energy savings. A more detailed introduction of the two models 
follows in the next two sections.

COMPONENT-WISE GRADIENT BOOSTING WITH PENALISED SPLINES
Boosting has a history of excellent prediction performance 
within statistics and machine learning (Schapire and Freund 
2012). Further, Bühlmann and Yu (2003) developed compo-
nent-wise gradient boosting to handle models with a large set 
of independent variables. In this paper we use component-
wise gradient boosting with penalised splines (P-splines) (Büh-
lmann and Hothorn 2007). Boosting yields data-driven vari-
able selection, implicit penalization and shrinkage of effect 
estimate. Boosting is also robust against multicollinearity and 
flexible in terms of modelling different types of effects (Mayr 
and Hofner 2018). Ben Taieb and Hyndman (2014) used 
CW-GB in the Kaggle global energy forecasting competition 
2012, where the CW-GB ranked fourth out of 105 participat-
ing teams. The following is a more detailed overview of the 
applied procedure:

We label the outcome variable, energy consumption, y and 
the predictors (temperature variables and calendar data) x1, …, 
xp. The objective is to model the relation between y and X : = (x1, 
…, xp)T, and to estimate the “optimal” prediction of y given x. 
To achieve this objective, we minimize the loss function ρ(y,f) 
∈ ! over a prediction function f depending on x. Since we use 
a generalised additive models (GAM) the loss function is the 
negative log-likelihood function of the outcome distribution. 
In the gradient boosting the objective is to estimate the optimal 
prediction function f*, defined by

 (1)

where it is assumed that ρ, the loss function, is differentiable 
with respect to f.

1. Start the function estimate  .

2. Determine the set of base-learners. Each of the base-learners 
act as a modeling alternative for the predictive model. We 
set the number of base-learners equal to P and m = 0.

3. Increase m by 1

a. Compute the negative gradient   of the loss func-
tion and evaluate it at   . This gives 
the negative gradient vector

 

d. Fit each of the base learners individually to the negative 
gradient vector. Estimate the negative gradient um for all 
the vectors of the predicted values P.

e. This step selects the base-learner that fits um.

f. The current estimate is updated by setting  
 where 0 < v ≤ 1.

4. Steps 3 and 4 are iterated until mstop is reached.

In step 3c) and 3d) the algorithm performs variable and model 
selection. There are two hyper parameters that needs to be es-
timated, M, the number of steps, and v, a step length factor. 
However, Friedman (2001) shows that a small v can prevent 
overfitting. We set v = 0,15 and m = 500.

THE TAO VANILLA BENCHMARK MODEL 
The results from the CW-GB model is compared against the 
TVB model. This model was first published in Hong (2010) 
and was later used as a benchmark model in the GEFCom2012 
load forecasting competition (Hong, Pinson, and Fan 2014). 
The model performed among the best 25 of 100 teams. Also, 
TVB is integrated as a standard load-forecasting model in the 
commercial software package SAS Energy Forecasting. The 
model is a multiple linear regression model

Yt = β0 + β1Mt + β2Wt + β3Ht + β4WtHt + β5Tt  
+ β6Tt

2 + β7Tt
3 + β8TtMt + β9Tt

2Mt + β10Tt
3Mt  

+ β11TtHt + β11Tt
2Ht + β11Tt

3Ht  (2)

where Yt is the load forecast for hour t, βi are the estimated coef-
ficients from the least squares regression method; Mt, Wt and 
Ht are month of year, day of the week and hour of the day. Fur-
ther, Tt is the temperature corresponding to time t. Note that 
the original TVB model includes trend and past loads. In this 
study the model will reflect how a particular building perform 
based on a reference period, thus trend and lagged predictors 
are not included.

The Coefficient of Variation Root Mean Square Error CV(RMSE) 
is used as a measure of the variability between the actual and 
predicted values and will be used to rank TVB versus CW-GB. 
CV(RMSE) is computed in the following way:

 (3)

where   is the mean of the number of measured energy values 
in the training data, Yi is the actual energy usage in hour i, 
is the predicted value of energy in hour i, n is the sample size, 
and p is is the number of features in the model. The models are 
implemented using the ‘mboost’ R package with 5-fold cross-
validation (T. Hothorn and Hofner 2018).

Results

RELIABILITY OF THE MODELS
Table 2 shows the CV(RMSE) for both the CW-GB and the TVB, 
in addition to the percentage difference between the two mod-
eling alternatives. For store number 2 both models have the same 
CV(RMSE) with 0.112, other than that all the CW-GB models 
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perform better than the TVB. The average percentage improve-
ment is 2 %, and the maximum percentage improvement is 5 %. 

The American ‘ASHRAE’ guidelines specifies that the 
CV(RMSE) calculated on the training period should be less 
than 0.25 if 12 months of post-measure data are used (Ameri-
can Society of Heating, Refrigeration and Air Conditioning En-
gineers 2014). The results from both CW-GB and TVB are well 
below for all the nine stores, thus both the modelling approach 
performs well in terms of estimating energy savings. 

Variable importance
Each store has its own “optimal” set of features chosen by the 
CW-GB variable selection procedure. Figure 4 plots the rela-
tive variable importance from the fitted CW-GB model for each 
of the stores. The 5 most important variables, after excluding 
(weekday_x_hour), for each store are shown. The interaction 
variable between weekday and hour, (weekday_x_hour), is ex-
cluded from the plot because it ‘hides’ the effect of the other 

variables. It is by far the most important variable to explain en-
ergy consumption because it models the stores opening hours. 
Investigating the other variables there is some variation in terms 
of what variable is most important. For four of the stores the 
variable ‘month’ is second most important (after weekday_x_
hour). This would likely be due to changing temperatures in the 
different seasons. In the other stores temp2 (temperature lagged 
2 hours, reflecting some thermal inertia in the building enve-
lope), holiday, and the interaction variable ‘hour, temps’ is sec-
ond most important. It is somewhat surprising that ‘hour, temps’ 
is such an important variable. However, the ventilation system is 
set up to run in reduced performance mode when the stores are 
closed. During opening hours, the system will consume more 
power to heat or cool air depending on the outside temperature. 
Interestingly, store number four has the maximum temperature 
the past 7 days (temp.max.7d) as third most important, while 
store number 9 has the minimum temperature past 7 and past 
2 days among the most important variables. 

Table 2. CV(RMSE) for VTB and CW-GB.

Store number: CV(RMSE) CW-GB CV(RMSE) TVB % improvement
Store 1 0.125 0.129 3.10
Store 2 0.112 0.112 0.00
Store 3 0.086 0.087 1.15
Store 4 0.090 0.093 3.23
Store 5 0.097 0.098 1.02
Store 6 0.088 0.089 1.12
Store 7 0.133 0.134 0.74
Store 8 0.116 0.119 2.52
Store 9 0.132 0.139 5.04

�
Figure 4. Relative importance of the different variables.
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AGGREGATED ENERGY SAVINGS
In Table 3, the aggregated energy savings results for the ECMs 
for each of the nine stores are presented, along with actual de-
mand (kWh 2018) and predicted demand in the period after 
the ECMs. The calculations are based on the difference between 
the actual demands and the predicted demand for each hour, 
aggregated over the entire ECMs period (from Spring 2018, up 
until December 2018). The average percentage reduction for 
the 9 stores from CW-GB is 12.28 %, while 12.3 % from TVB. 
There is little difference in the aggregated savings from the CW-
GB and the TVB models. In store number 9 the percentage 
reduction in energy as a result of the ECMs is 2.6 %, while the 
same store had a 2.9 % reduction according to TVB. On the 
other hand, store number 3 had an estimated percentage reduc-
tion of 20.1 % (from both models). 

Weekly energy savings
For building owners (and ESCOs) it is important to continu-
ously monitor the impact of the ECM. Figure 5 shows a weekly 
savings report for the 9  stores. The figure shows the weekly 
percent energy reduction (based on the difference between the 
actual and the predicted energy consumption that week. For 
example, in several of the stores the % savings trend is trend-
ing upward (store number: 2, 6, 7, 8). To phase in and opti-
mize a new control-system for heating, cooling and air locks 
is a continuous learning process that may take several months 
after launch. That may explain the improved performance over 
time as learning enhances the ECM project. Furthermore, both 
store number 9 and 4 (since week 40) is for many of the weeks 
performing worse than what the store would have used if the 
ECM had not been implemented. The estimated weekly savings 
from TVB and CW-GB follows each other closely (correlation 
= 0.94), but the CW-GB seems to be more ‘stable’ – look at the 
discrepancy in week 19 in store number 7, and week 31 for 
store number 2 and 3. 

Figure 6 shows how comparing actual versus predicted loads 
can be used to both estimate the average energy savings across 
different days and hours, and to optimize the ECM. For exam-
ple, the actual loads after ECM implementations has a steeper 
morning-ramp start up than the predicted values (05:00–
08:00), indicating a further energy savings potential. Further, 
on Thursdays the actual loads are higher than the predicted 
during nighttime. Also, on Sunday afternoon the actual loads 
are larger than the predicted, something that might indicate an 
inefficient setup of the ECM these hours. Thereupon, moni-

toring the ECMs on an hourly level can indicate which hours 
that savings are greatest. For example, does the ECM provide 
greater impact at off-hours or operating hours, or weekdays 
versus weekends?

Discussion
In this study a general approach to model energy savings in 
buildings is developed. We demonstrate that CW-GB is a meth-
od that can reliably be used to estimate savings from ECMs with 
expected savings less than 10 %. The model takes into account 
each building’s unique set of energy consumption predictors. 
Moreover, the approach delivers a better performance than the 
TVB model for all 9 stores. Nevertheless, both the TVB and 
the CW-GB model fulfil the requirements from the ASHRAE 
guideline (CV(RMSE) < 25 %). We find that the TVB model is 
less computationally expensive, while the CW-GB model, given 
its iterative nature (finding the set of variables that best explain 
energy use), takes somewhat more computation time. Still, the 
CW-GB for one store, with a year of training data, only takes 
about a minute to run on a modern computer. Thus, both mod-
els are feasible as part of the M&V process. One disadvantage 
with the suggested approach is that it is not possible to isolate 
the individual ECMs that took place. For example, was the tun-
ing of the ventilation system a better energy efficiency measure 
than controlling the heating cables in the entrance ramp? To 
answer that question sub-meters should be installed. It may 
also be possible to schedule the system to turn on and off the 
different ECMs such that they operate individually at different 
days. In that way it may be possible to use the same data and 
approach as in this paper to analyse each ECMs separately.

As Figure 4 displayed, different buildings have different 
sets of features that explain the energy consumption. Given 
that the CW-GB model performed somewhat better than the 
TVB implies that it is useful to allow the modelling process 
to be able to choose among different features when the model 
is trained. Also, it could be useful to carefully investigate and 
compare what variables are important across different stores. 
For example, if it turns out that the interaction variable ‘hour, 
temps’ has no effect; it might be worth investigating if reduced 
performance mode in the ventilation system is actually work-
ing properly.

Over recent years energy data from the main meters have 
become readily available, and many sources of meteorological 
weather data have become freely available. Furthermore, in Feb-

Table 3. Estimated savings – the difference between actual energy consumption and predicted.

Store 
number: kWh 2018

CW-GB  
Predicted kWh 2018

TVB  
Predicted kWh 2018 % CW-GB Savings % TVB Savings

Store 1 374,388 410,224 406,851 8.7 8.0
Store 2 331,275 384,743 388,220 13.8 14.7
Store 3 534,160 669,130 668,539 20.1 20.1
Store 4 489,173 548,803 551,569 10.8 11.3
Store 5 311,820 340,389 339,905 8.4 8.2
Store 6 300,065 355,427 355,618 15.6 15.6
Store 7 345,161 405,694 405,246 14.9 14.8
Store 8 280,668 331,796 330,487 15.4 15.0
Store 9 190,195 195,195 195,917 2.6 2.9
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�Figure 5. Estimated weekly savings for the 9 stores.

Figure 6. Actual loads and predicted loads for store number 4 in week 39.�



4. MONITORING AND EVALUATION FOR GREATER IMPACT

 ECEEE SUMMER STUDY PROCEEDINGS 765     

4-320-19 SEVERINSEN, HYNDMAN

not part of the model development. However, in the grocery 
sector, and in particular in our study, many of the stores had 
other energy consuming activities (in-store promotion, and 
smaller ECMs) that varied between 2016 and 2017, thus making 
the model testing with 2017 data infeasible. Nevertheless, the 
gradient boosting model in this paper uses 5-fold cross-valida-
tion within the training data and the TVB model uses a fixed set 
of variables. This reduces the chances of overfitting.

Conclusions
A trustworthy process of M&V is important to understand and 
improve energy efficiency measures. This paper has demon-
strated that both the TVB and the CW-GB can be used to esti-
mate energy savings from ECMs with expected energy savings 
around 10 %. In many ECM projects methods such as system 
simulation and installing sub-meters have been used to esti-
mate energy savings. However, these methods are potentially 
expensive and time consuming. The methods demonstrated in 
this paper have practical value for ESCOs and buildings own-
ers to provide proof of energy savings achieved and contribute 
with information that can be used to optimize the ECMs on an 
hourly level. The methods are based on readily available data 
from smart meters and freely available meteorological data. 
Also, from a Norwegian perspective, the launch of Elhub (a 
central repository for all smart meters in Norway) could con-
tribute to better access, data quality and increased use of the 
data to analyze ECMs.
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ruary 2019, the Norwegian Elhub (elhub.no) will be launched. 
It is a central repository for data from all electricity meters in 
Norway, and all the Norwegian grid operators are required to 
send data to the repository on a daily basis (hourly loads). The 
Elhub is owned by Statnett, the system operator of the Norwe-
gian energy system, which again is owned by the Norwegian 
state. The increasing availability of data from smart meters, and 
meteorological data such as outside temperatures, paired with 
new development within predictive modelling, has given new 
approaches to reliably estimate energy savings from ECMs. 
Table 2 in the result section shows that it is possible to detect 
energy savings using both the TVB and the CW-GB model. The 
CW-GB turned out slightly more precise than the TVB from 
a CV(RMSE) perspective, but both models performed well 
enough to reliably estimate savings (according to the ASHRAE 
guidelines). Further, the availability of data (updated every day) 
has also made it possible to continuously ‘score’ the actual loads 
with predicted loads. This again can be used to set up a web-
based monitoring system to estimate energy savings, optimize 
ECMs and detect anomalies. Figure 7 shows an example of a 
web-based application where the user can ‘zoom’ in on the data 
and systematically get an overview of the performance of the 
ECMs. Future research will explore more of these opportuni-
ties, including automatic error detection.

Note, that we have approached the modelling task a bit differ-
ently from the classical train-test development of models. For 
example, when Touzani, Granderson, and Fernandes (2018) 
models the energy savings using a gradient boosting model with 
a decision tree, the model was developed on two years of data 
prior to the ECM. The model was trained on one year of data 
two years prior to ECM and tested on data one year before the 
ECM. The model was further used to predict the loads. This ap-
proach is very sensible for a modelling perspective. To prevent 
overfitting the model is trained, then tested, and at last applied 
in production for prediction purposes for time-series that was 

� Figure 7. Example web-application. The predicted loads and corresponding temperatures.
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ShinyRBase: Near real-time energy saving models using 
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H I G H L I G H T S  

• Demonstration of an open-source tool using a reactive programming framework for measurement and verification and energy saving models. 
• Fast development cycle without any need-to-know web programming languages like HTML, CSS or JavaScript. 
• A use case documents energy savings in 40 different Norwegian food retail stores.  

A R T I C L E  I N F O   

Keywords: 
Real-time energy savings evaluation 
Building energy retrofitting 
Measurement and verification 2.0 
Data driven models 
Tao Vanilla Benchmarking model 

A B S T R A C T   

To document energy savings from retrofitting a building, a reliable baseline model is needed. The development 
and implementation of the baseline model is an important step in the measurement and verification (M&V) 
process. Usually, an energy analyst enters the stage, collects data, do the estimation and delivers the baseline 
model. The modeling work of the energy analyst is done on either a proprietary or open-source statistical 
software, often using a coding script. If stakeholders want an updated report on energy savings, the analyst must 
re-do the whole process, for example on a monthly basis. This workflow is based on an imperative programming 
paradigm. The analyst holds on to the code that performs the analysis and re-run the code when agreed upon. 
The consequence of this workflow is that stakeholders are dependent on the energy analyst and that updated 
energy savings results must be planned and scheduled. However, emerging M&V 2.0 technologies enables 
automation of the energy saving reports. This paper demonstrates how energy savings from retrofitting’s in the 
Norwegian food retail sector is continuously monitored and documented in a web application. The application is 
built using open-source tools where the baseline model is delivered through a reactive programming framework. 
As an energy savings baseline model, the Tao Vanilla benchmarking model (TVB) was set into production in the 
web application. The TVB is a linear regression model with well specified features, easy to interpret and has a 
history of excellent prediction performance. The proposed web application framework allows for a fast devel
opment cycle without any need-to-know web programming languages like HTML, CSS or JavaScript. The reactive 
framework delivers several advantages. First, the stakeholders will always have a current and real-time report on 
the savings. Second, complex methodologies are dynamically used by the end-user. Third, increased involvement 
by stakeholders and interaction with the analyst related to the methods used in the energy savings analysis leads 
to collaborative benefits such as faster disseminating of knowledge. These synergy effect leads to a better 
technical understanding from the end user perspective and enhanced practical understanding for the analyst. 
Finally, the paper presents an integrated look at the energy kWh savings versus the cost of the retrofitting’s.   

1. Introduction 

The Intergovernmental Panel on Climate Change (IPCC) objective is 
to provide governments with scientific information to develop climate 

policies. The IPCC has a 195 member countries and thousands of con
tributors. The IPCC scientists assess thousands of published scientific 
papers each year, and the most recent report is summarized with the 
following quote, 
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It is unequivocal that human influence has warmed the atmosphere, 
ocean and land. Widespread and rapid changes in the atmosphere, 
ocean, cryosphere and biosphere have occurred [1]. 

The building sector worldwide uses about 32 percent of all generated 
energy and 19 percent of energy-related greenhouse emissions [2]. 
Research show that the potential for increased efficiency in terms of 
energy cuts are some 30 to 40 percent [3]. Green buildings receive a lot 
of attention, especially in new design construction. And many new 
building standards have been developed internationally. For example, 
the German Passiv House Institute (PHI), Net Zero from the Interna
tional Living Futures Institutes, Leadership in Energy and Environ
mental Design (LEED), and R-2000 by Natural Resources Canada. In 
Norway the standards NS 3700 for residential buildings and the NS 3701 
for non-residential buildings apply. These standards are important to 
make sure that the environmental impact of new buildings stay as low as 
possible. Still, only about 1 to 3 percent of old buildings are replaced per 
year [3], thus the existing buildings will still be around in the foresee
able future. According to Statistics Norway the existing building stock in 
Norway is 4.23 million, and more than 2.6 million of these buildings are 
non-residential [4]. The number of buildings globally and the potential 
for energy reductions makes retrofitting an important addition to cut 
greenhouse gas emission and support the Paris climate agreement. Also, 
according to analysis by the Rockefeller Foundation and Deutsche 
Bank’s climate change shop the business opportunity in retrofitting is 
substantial. An investment in the United States of $279 billion in ret
rofitting buildings could yield more than $1 trillion in energy savings 
over ten years. This equals 30 percent of the countries annual spending 
on electricity, and represents a created potential of more than 3.3 
million cumulative job years of employment. Nonetheless, the existing 
upgrade rate is only 2.2 percent each year [3,5]. 

In this paper we collaborate with a medium sized Norwegian energy 
service company (ESCO) that has specialized in retrofitting within the 
retail food sector. The ESCO has recently agreed upon an energy per
formance contract (EPC) for 40 Norwegian food retail stores. The con
tract includes a yearly guaranteed energy savings target, and the ESCO 
also handles all the energy related issues within the contract period, 
including service and maintenance. The energy conservation measures 
(ECM) were implemented in the autumn of 2020 and consisted of a mix 
of the following: change to more efficient LED lightning, new coolers 
and/or freezers, new heating, ventilation and air conditioning (HVAC) 
and/or optimization of the stores control systems. The contract has a 10- 
year duration, and the first year of measuring the energy savings is 2021. 

The main contribution of this paper is to demonstrate how to docu
ment and monitor energy savings using a dynamic web application 
based on a open-source reactive programming framework. The devel
opment of the application has been done in collaboration with the ESCO 
and other stakeholders in the EPC project over a two year period. The 
implementation of the application as a means of setting up baseline 
models and monitoring the energy savings for the 40 food retail stores 
has led to several synergy benefits; both collaborative and practical. The 
energy savings results from the modelling process was seen in real time 
in the application, on an hourly basis, and automatically updated each 
day. As a results of this there was no dependency on a energy analyst. 
The reports was always up-to-date, and the knowledge sharing between 
participating parties with different skill sets resulted in better baseline 
models. There was quick detection of unwanted energy increases and 
follow up of potential errors in the buildings technical system. In short; 
the web application gave the users a more coherent and reliable process 
of documenting the energy savings. This is in line with both [6] and [7] 
who find that web applications facilitate efficient collaboration between 
scientists and stakeholders and that the cross collaboration between 
researchers and easy dissemination of results is important for external 
validity [8]. 

Today, there are several web-based systems available that can 
monitor the energy consumption in buildings, but they do not offer any 
advanced modeling solutions, and are often based on proprietary 

software [9]. Open-source solutions are not common, and previous so
lutions focus on visualisations and reporting of electricity consumption, 
and does not offer baseline energy saving models [10,11]. Up until 
recently there has been little available research or case studies that 
document the use of M&V 2.0 energy saving estimation [12]. However, 
in 2018 [13] presented a residential energy management system, 
reEMpy, that is based on Python. This system is also aimed to energy 
service companies (ESCOs) to provide a solution that may be used to 
assess the energy needs of real life use cases by evaluating different 
algorithmic models, including load forecasting. Nonetheless, our solu
tion differs in terms of the approach. Our proposed framework does not 
offer code for a final ready-made applications, but a reactive coding 
framework to allow quickly prototyping new functionality and baseline 
energy saving models in close collaboration with end-users. Further
more, [14] proposes a platform for real-time M&V of energy perfor
mance. The platform computing tier is developed using the Java 
development toolkit within the Eclipse software. Conversely, the reac
tive framework presented in this paper requires no prior development 
skills. Also, in [14] the platform is demonstrated on one utility, while the 
usecase for the presented framework, ShinyRBase, is given for 40 food 
retail stores. 

The web application ShinyRBase, was developed and implemented 
using R, a free software environment for statistical computing and 
graphics [15]. R is one of the most popular programming languages for 
statistics. Furthermore, the R library Shiny [16] was used to develop the 
reactive programming framework. Shiny makes it very easy to build 
interactive web applications straight from R without any need to know 
HTML, CSS or JavaScript. Additionally, Shiny makes it straightforward 
to use more than 18.000 available packages for a wide range of appli
cations1 [17]. For example, the popular R packages ggplot [18] and 
dygraphs [19] is used as tools for interactive visualization and to 
enhance user interaction with the baseline energy savings model. Also, 
tidypredict [20] is implemented to save and run predictions for the 
relevant models inside a database. As will be shown the reactive appli
cation gives offers a number of advantages to promote M&V 2.0. The 
Shiny library, which is the main component in the application, has been 
in active development since 2016 and has more than 5000 unique peer 
reviewed works to promote user interaction with scientific research 
[21]. 

1.1. Novelty of the paper 

The novel contributions of the present papers are threefold. First, the 
application is developed in collaboration with implementers and utili
ties. The reactive programming framework, as opposed to the impera
tive paradigm, offers a flexible and dynamic application that easily can 
be adapted to different building types. For instance, the vast number of R 
libraries can be integrated to deliver on changing M&V environments. 
To be able to convince investors in energy efficiency projects it is critical 
to provide current and trustworthy energy savings calculations. In that 
respect, the proposed reactive framework in this paper contributes to the 
current literature. 

Second, the application is demonstrated on a use case continuously 
monitoring and documenting the energy savings of a large retrofitting 
project for 40 Norwegian food retail stores. This is the first paper that 
document the energy savings of a renovation project of this scale within 
the food retail sector in Norway. Previous research has established that 
uncertainty regarding the expected savings is a major obstacle that 
hinder renovations projects [46]. As such, the reactive framework and 
the documented energy savings in this paper is an example that may 
motivate new renovation projects, and ultimately produce cost savings 

1 https://cran.r-project.org/web/packages/#:~:text=Currently%2C%20the 
%20CRAN%20package%20repository%20features%2018316%20available% 
20packages. 

A. Severinsen and Ø. Myrland                                                                                                                                                                                                               



Applied Energy 325 (2022) 119798

3

and a reduction of GHG emissions. 
Third, the baseline model used to estimate energy savings in the web 

application is a linear regression model, the Tao Vanilla Benchmarking 
model (TVB). The model was first published in [23], and was later used 
in the GEFCom2012 load forecasting competition as one of the top 25 
performing contributions [24]. The TVB model is evaluated through the 
guidelines outlined in The International Performance Measurement and 
Verification Protocol (IPMVP), developed by the Efficiency Valuation 
Organization (EVO) [25]. In particular, the IPMVP measure “option C: 
whole building” is applied. Hence, data from utility meters are used to 
evaluate the energy performance of the whole building. Note that this 
option establishes the total savings of all implemented ECMs. In previous 
research the TVB was used in [26] to document energy savings from 
retrofitting’s with small expected effects. Further, [27] use the TVB 
model to document energy savings in 5 different Norwegian food retail 
stores that undertook major retrofitting’s. However, in the present paper 
the TVB is implemented to document energy savings for food retail 
stores within a reactive framework, near-real time for 40 different 
stores. Given the models previous prediction performance, easy imple
mentation, and the lack of use to estimate savings in retrofitting projects 
the present paper promotes the novelty of the method as a benchmark 
model, and adds to the already established data-driven tools within the 
M&V industry. 

The paper is split into 6 different sections. In the first section a 
presentation of the ESCO and details about the EPC contract and the 
food retail stores is given. Second, an overview of the data and the 
features that will be used for the TVB models. Third, the TVB model and 
the measures used for model performance is outlined. Furthermore, the 
fourth section gives a detailed presentation on how the Shiny library’s 
reactive programming framework is used to implement the TVB model. 
Fifth, the energy savings results from the EPC project is presented. The 
results are shown as they appear in the web application. Finally, the 
findings linked to both individual and synergy effects of this project 
based on user interaction with the application is given. Also, future 
development improvements that would have given the application more 
value is presented, both from a scientific and a practitioners point-of- 
view. 

1.2. The ESCO and the energy performance contract 

The energy service company (ESCO), Ohmia Retail AS, is a medium 
sized Norwegian company. The company has developed a product that is 
marketed towards the food retail sector in Norway as ‘Energy as a ser
vice.’ The customer pays a fixed monthly fee and need not to worry about 
necessary equipment investments, insurance and maintenance. Thus, 
Ohmia Retail takes full responsibility for all the stores technical infra
structure; freezers, coolers, lighting, and the HVAC system. For the food 
retailer this is a great asset as they can maintain their primary activity, 
food retail. The ESCO has signed an Energy performance contract (EPC) 
that includes a guaranteed energy savings for a building portfolio of 40 
food retail stores in Norway. The contract has a 10 year duration, and 
started January 1st 2021. Hence, to document and monitor the guar
anteed energy savings it is important for both the ESCO and the 
customer to utilize reliable methods. Historically the ESCO has used very 
basic methods to document savings, based on degree day normalization 
and often using quarterly reports. Thus, the ESCO had great interests in 
methods that could improve their monitoring workflow, which again 
motivated this research project. 

1.3. Building portfolio, electric load and weather data 

Norway has a central repository, Elhub (elhub.no), that daily collects 
energy use on an hourly level for almost all commercial and household 
buildings using the advanced metering (AMI) system. It is mandatory for 
all the Norwegian grid operators to update the central repository every 
day. This service was launched in February 2019. All the energy data 

from February 2019 and onward for the 40 buildings in this paper 
originates from Elhub. The energy data from 2018 up until January 2019 
is collected from the building energy management system that was in 
operation before the launch of Elhub. Outside temperature data is 
collected from the Norwegian Meteorological Service (https://www. 
met.no). Each stores position (longitude and latitude) is mapped against 
a 2.5 km × 2.5 km grid of Norway. The temperature data used in the 
model stems from the closest weather stations. All energy and weather 
data is downloaded automatically on an hourly level on a daily basis into 
a PostgreSQL database. The PostgreSQL is an open-source object-rela
tional database with more than 30 years of active development [28]. 
This database has a central role in this project. The results from the 
baseline model is stored, documented and used for daily predictions, all 
within the database. The next sections present the model and the 
framework used to set the model into production. 

2. Methods 

2.1. Estimating energy savings - the baseline model 

To estimate the energy savings this paper follows the International 
Performance Measurement and Verification Protocol (IPMVP) option C: 
whole building”. Thus, data from utility meters are used to evaluate the 
energy performance of the whole building [25]. In particular hourly 
energy and temperature data is used to train a baseline energy saving 
model. This process involves choosing representative energy data for 
one whole year before any retrofitting is conducted, and then train a 
model to predict (after the retrofitting) what the energy consumption 
would have been without the ECMs. Furthermore, the Tao Vanilla 
benchmark (TVB) model [23] is used to estimate energy savings. Some 
energy conservation measures, for example changing to LED lights, may 
have an expected savings target below 10 %. In these cases the EVO 
recommends using sub meters as a means of documenting the savings. 
However, in this project there was no data available from sub-meters. 
Nonetheless, [26] finds that the TVB model is a good candidate to es
timate savings that are below 10 %. Moreover, The TVB model is a well 
specified regression model and easy to estimate and understand. The 
following model specification is used: 

Yt = β0 + β1Mt + β2Wt + β3Ht + β4WtHt + β5Tt + β6T2
t +

β7T3
t + β8TtMt + β9T2

t Mt + β10T3
t Mt + β11TtHt + β12T2

t Ht + β13T3
t Ht 

where Yt is the actual load for hour t, βi are the estimated coefficients 
from the least squares regression method; Mt, Wt and Ht are month of the 
year, day of the week and hour of the day. Furthermore, Tt is the outside 
temperature corresponding to time t. Note that the original TVB model 
includes trend and past loads. In this study the TVB model will reflect 
how a specific building perform based on a reference period, thus trend 
and lagged predictors are not included. The simplicity of model choice 
has several advantages for implementation in the web application. Also, 
as seen in the next section all the models were estimated within the web 
application. 

Because the load often increases when the temperature drops and 
when the temperature increases, it is necessary to take this into account. 
This could be incorporated with linear piecewise functions. However, 
that would require cut-off temperatures which may be different across 
different buildings. Thus, this is included in the model using 3rd ordered 
polynomials of the temperature. Also, the model includes interaction 
effects between the polynomials of the temperature and the calendar 
variables *Hour* and *Month*, respectively. The rationale behind is 
that energy loads may be different when the temperature varies, and 
there might be differences across different months and hours. 

Furthermore, to come up with the model specification, in his thesis 
[23], Hong tested seven different linear regression models. The testing 
was demonstrated using the case study of one week ahead hourly fore
cast for a medium US utility, and the TVB model was found to have best 
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performance. Furthermore, the TVB load forecasting performance was 
also tested against possibilistic linear models (PLM) [23], p. 117] and 
artificial neural networks (ANN) [23], p. 136]. The TVB outperformed 
both modeling alternatives. 

The performance of the TVB models is measured with the coefficient 
of variation root mean square error (CV-RMSE). The CV-RMSE is calcu
lated as follows: 

CV − RMSE =

∑
(Ŷi − Yi)

2

n− k− 1

Y 

where Y is the mean of the measured energy consumption in the 
training data (the reference year). Yi is the actual energy use in hour i, Ŷi 

is the predicted value of energy use in hour i from the TVB model, 
estimated on the baseline period. Furthermore, n is the sample size, and 
k is is the number of features in the model. This performance measure is 
recommended by the IPMVP [25]. However, the guideline does not 
propose a definite threshold that defines a good baseline model. The CV- 
RMSE has received some critique because the RMSE increase with both 
the average absolute error and the variance error, which is not desirable 
[29]. Still, since this paper does not compare between models the CV- 
RMSE is a good indicator to measure the performance of the models 
between different training data and different buildings. Furthermore, a 
“rule-of-thumb” where the CV-RMSE should be below 25 % is applied. In 
the next section when the web application and the reactive framework is 
presented it is also shown that within the application it is easy to switch 
reference year (training data) between the last three years, and the 
corresponding change in CV-RMSE can be seen instantly. Setting up the 
model and choosing reference year was done in collaboration with both 
the ESCO and the building owners. Large CV-RMSE (greater than25 %) 
was immediately inspected through visualizations of the data in the 
reference period and could in many instances be led back to the food 
store being out of operation and/or some extraordinary activity, for 
example in-store promotion activities. Consequently, the CV-RMSE was 
actively used to understand the modeling results together with the 
stakeholders, and for many buildings this collaboration led to a change 
of reference year and/or a better understanding of the actual data used 
as training data, eg. missing and/or unusual data. 

2.2. The reactive framework energy monitoring solution 

This section presents the reactive framework that was used to 
develop the web application that documents and monitors energy sav
ings. The ESCO and their customers typically depends on an energy 
analyst to deliver the analysis that documents the energy savings in a 
project. The usual way of delivering results from statistical models is 
based on imperative programming, e.g. when c = a+b then c is assigned 
the sum the terms a,b. If a, b changes then c needs to be re-evaluated to 
change. However, reactive programming will allow c to be updated 
instantly when a, b change [30]. This reactivity is the main idea behind 
the R library Shiny [16]. Shiny helps the energy analyst to promote real- 
time user interaction with the analysis through a user interface (UI). The 
Shiny reactive framework allows user input to be evaluated dynamically 
via the user interface, and the library comes with pre-defined templates 
for web based user interfaces. This avoids the need to learn web based 
programming languages such as HTML and/or JavaScript. However, in 
contrast to the reactive framework, an analyst would write a script that 
runs all the necessary analysis to deliver a report of the energy savings. 
Then the analyst has to re-do all the analysis on a regular basis, often 
monthly. The script is re-run and a new updated report is produced. This 
way of working is referred to as imperative programming. One example 
of this is seen in the below R and SQL code sequence (comments indi
cated with a #). In short, the analyst;  

1. Selects data needed for the analysis. In this case this means writing 
an SQL code that extracts energy and temperature data (store_id, 

date_hour, temperature, kWh) from a database table. The buildings 
id’s and the date intervals has to be specified by the analyst. The 
query is then run to pull data into a dataset train, using an R function 
from a database connection library DBI::dbGetQuery(pool, sql).  

2. A formula for the baseline model is defined (in this case the TVB 
model).  

3. The regression model is run (through the R function lm) and the 
results is stored in the object TVB_estimates for further inspection. 

2.3. Imperative code sequence  

# Step 1 - pull data from database to R as specified by script 
sql <- ( 
“SELECT 
store_id, hour, temperature, kwh 
sum(timeseries_interval_observations.value) AS kwh 
FROM energy_data 
WHERE id IN (’6754′,’6789′) 
AND date BETWEEN ’2019–01-01′ AND ’2019–12-31′;“ 
) 
train <- DBI::dbGetQuery(pool, sql)  

# Step 2 - define the formula for linear regression model 
TVB_formula <- as.formula(“kwh ~ hour*weekday + month +
hour*temperature + hour*temperature^2 +
hour*temperature^3 + month*temperature +
month*temperature^2 + month*temperature^3′′) 
# Step 3 - run the linear regression 
TVB_estimates <- lm(TVB_formula, data = train)  

Now, let us look at how the imperative programming approach is 
handled by R using the Shiny library to create a reactive framework with 
some simple user inputs in a web application. There are 6 steps involved;  

1. The analyst set up the input fields that the user can access and 
interact with in the user interface (UI). Shiny has pre-canned UI el
ements that is used to define the UI (radio buttons, date range input 
fields, checkbox, etc). In addition, the data analyst sets up a UI 
element to display the analysis (tables, graphics, text). In this 
simplified example this is only a output field for text where the an
alyst plans to show the model coefficients from the TVB model.  

2. The server environment is defined.  
3. Data is selected based on the UI inputs from step 1.  
4. The formula is set up (same as in the imperative script).  
5. The regression model is run. Every time the user chose new input in 

the UI, this step is instantly re-run.  
6. Set up a render statement to be passed back and displayed in the UI. 

As for this example; the linear regression models coefficients. 

This was a basic workflow example. Yet this process only adds a few 
lines of extra R code, but turns the analysis into an web application that 
can be used to interactively chose stores and train data for the TVB 
models. The part of the web application that will be presented in the 
results section is about 1000 lines of code. This includes functions to 
handle pulling and pushing data between R and the database and code 
for error handling. Strictly speaking, it would be possible to write the 
application with some 500 lines of code. Hence, in contrast to other web 
application this is quite efficient. 

2.4. Reactive code sequence  

# Step 1 - Define UI 
ui <- fluidPage( 
titlePanel(“Reactive code sequence”), 
sidebarLayout( 
checkboxGroupInput(ns(“selected_meters”), ’Main meter(s)’, choices = NULL), 
dateRangeInput( 
“Referenceperiod:”, 
start = ref_start_date, 

(continued on next page) 
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(continued ) 

end = ref_end_date, 
), 
mainPanel( 
textOutput(“SQL_model_scoring”) 
) 
)  

# Step 2 - Define server environment 
server <- function(input, output) {  

# Step 3 - pull data inta a R dataframe with a reactive expression 
train_data <- reactive({ 
sql <- glue::glue_sql( 
“SELECT 
hour, month, temperature, kwh 
sum(timeseries_interval_observations.value) AS kwh 
FROM energy_data 
WHERE id IN ({metering_points*}) 
AND date BETWEEN {date_from} AND {date_to};“, 
.con = pool, 
.envir = list( 
metering_points = selected_meters(), # user selected store 
date_from = ref_start_date, # user chosen from-date 
date_to = ref_end_date # user chosen to-date 
)) %>% 
DBI::dbGetQuery(pool, sql)  

# Step 4 - define formula for linear regression 
TVB_formula <- as.formula(“kwh ~ hour*weekday + month +
hour*temperature + hour*temperature^2 +
hour*temperature^3 + month*temperature +
month*temperature^2 + month*temperature^3′′)  

# Step 5 - run linear regression and translate the coefficients to SQL. 
# Reactive expression. Will re-run every time a user change the input fields. 
model_coefficients_as_sql <- reactive({ 
train <- train() 
TVB_estimates <- lm(TVB_formula, data = train_data) 
sql_statement <- tidypredict::tidypredict_sql(TVB_estimates, dbplyr:: 

simulate_postgres()) 
return(model_coefficients_as_sql) 
}) 
output$SQL_model_scoring <- renderText({ 
print(model_coefficients_as_sql) 
}) 
}  

In Fig. 1 the reactive framework used to design the web application is 
presented. 

The web application framework consists of 7 different steps.  

1. Data from the Elhub repository (energy data on an hourly level from 
the main meter) is stored in a PostgreSQL database. The database is 
updated daily. This step takes place outside the R/Shiny reactive 
framework. However, the R library RPostgreSQL [31] handles data 
transfer between the database and R.  

2. Modeling in R. This step is based on user inputs in the Shiny web 
application. The user chose the relevant building and the period to be 
used as training data. This is the reference period before the imple
mented ECMs. Typically, this would be one whole year of data (en
ergy consumption and temperature data) before the installed ECMs. 
The user then chose the period to be predicted based on the trained 
model. This involves choosing the date that the ECMs were installed, 
and the period to be analyzed. Once these choices are made the app 
automatically runs the TVB model, the CV-RMSE is calculated and 
presented and the ECM period is scored and visualized (both the 
actual energy use and the predicted, the difference between these 
being the savings). Fig. 2 shows the UI that is available to the users. 
The blue line is the predicted kWh, while the red line is the actual 
energy consumption.  

3. The R library tidypredict [20] reads the current model from step 2, 
creates a list objects with the necessary components to run pre
dictions, and builds a formula based on the list object.  

4. The R library dplyr [32] evaluates the formula through its database 
backend dbplyr and translates the code into SQL.  

5. The translated SQL is stored in a text field in the database with 
additional details about the building, main meters, and the data used 
for the models. Not only will this SQL statement be available for 
continuously scoring new data, but it also works as a documentation 
for future reference of the model.  

6. A cron job (automated Linux job scheduler) wakes up every morning 
when new data is stored in the database, pulls out the stored SQL 
from step 5 and use the new data and the SQL statement for new 
predictions. Hence, the energy savings from the last 24 h in added 
continuously.  

7. The predictions are stored in the database (on an hourly level). This 
way the database is always updated with the most current data to 
calculate the energy savings. All the tables and visualizations in the 
application is based on this; hourly visualizations and aggregates of 
the results. 

See Fig. 2 for a closer look at the UI from step 2 where the user in
teracts with the web application. In this particular example the reference 
year was 2018, and the ECM period was 2021. It is important to choose a 
year for training the TVB model that is representative of each building’s 
energy usage before the installed ECMs. CV-RMSE is the “technical” 
indicator that guides the model making. However, the interactive user 
interface that pictures a year of energy and temperature data on an 
hourly level together with the prognosis from the TVB model made the 
modeling process more intuitive for the non-analytical building owners 
and the ESCO. They could observe how changing the reference base 
impacted the prognosis after the ECMs made the process of setting the 
reference data for the 40 buildings easier. This interactivity in the pro
cess was found to break down the complexity barrier and connect the 
stakeholders to the modeling process for increased collaborative 
benefits. 

The entire model building process was done together with the ESCO 
and the building owners. First, a building under scrutiny was chosen, 
then year of reference was set. The reference year within the portfolio 
was either 2018, 2019 or 2020. The effect on choosing any of these could 
be seen immediately by comparing the predicted and the actual values in 
the time series plot of the UI. For example, one could train a model on 
energy data from 2018 and then predict the energy consumption in 
2019. Given no ECMs in 2019 the actual value and the predictions 
should follow each other closely. This exercise generated a lot of very 
useful discussions - both for the building owner and the analyst. For 
example, the CV-RMSE was above 25 % for many of the models. Often, Fig. 1. Reactive framework.  
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this could be related to issues such as; missing data, in-store promotion, 
fault with the AMI energy meters and/or some other unusual building 
activity. The visualizations was either performed using the R library 
ggplot2 [18] or the interface to dygraphs described in [19]. 

3. Results 

3.1. Energy savings 

After a user has set up a baseline model with reference data and the 
ECM period, accepted the CV-RMSE and stored the baseline model, the 
stores end up in the web application as seen in Fig. 3. This table presents 
an example from the web application of three of the stores (Store-id 
1831, 1832, 1834) with the largest energy savings. The savings are 
aggregated between 2021 and 01-01 and the current date. The table is 
updated every day based on the last 24 h. As can be seen the savings 
range from 45.1 % − 29.0 %. Also, the reference dates, ECM dates and 
the CV-RMSE for each underlying model are displayed. Additionally, the 
savings are presented in three different ways. First, the total savings 
(field: ‘Estimated savings’), which is the actual kWh usage minus the 
predicted in the ECM period. Second, the results the last 5 weeks is 
presented as a bar plot in the field ‘Savings last 5 weeks (kWh).’ Each bar 
represents a week. The bars are colored green if saving energy, and red if 
actual energy use is above the predicted level. This gives the end user a 
way of quickly comparing the aggregated result with the results over the 
last 5 weeks. For example, store ‘1831′ in the first row has a total energy 
saving of 45.1 %, but only a 1.6 % savings the last 5 weeks. For this 
particular store this was somewhat expected as the implemented ECMs 
was related to winter ECM, since the store had changed the heating 
system. However, Fig. 3 also shows the savings the last 72 h as bars (each 
bars equals an hour; green color if saving, and red if higher use than 
predicted). This indicates that the store needs further investigation into 
possible causes of higher than expected energy usage. 

Table 1 presents the aggregated results for each of the stores ECMs 
for the first 11 months of 2021, from January 1st 2021 up until 

November 30th 2021. The three stores with the largest percent energy 
savings where those with store-id 1522, 1249, and 1520 with energy 
savings reductions of 46 %, 48 % and 56 %, respectively. However, 
compared to many of the other stores within this building portfolio the 
stores undertook quite extensive ECMs, such as both change of lighting, 
HVAC and the refrigeration system. The three stores with the lowest 
energy savings where store-id 1572, 1538 and 1653. These three stores 
actually had an increase in the energy use when comparing with the 
reference year. However, these results are due to the ESCO replacing oil 
boilers with heat pumps to heat the buildings (in 2021), hence the in
crease in electricity consumption. These issues are regulated in the EPC 
contract. The aggregated results are available to the ESCO at any time in 
the web application, and updates daily. Every month the ESCO generates 
a report from the dashboard and has a review meeting together with the 
customer. 

Furthermore, the ESCO wanted a web dashboard that could be used 
to follow the energy savings in more details from day to day. To deliver 
on that a visualization that displays the average energy savings for all 24 
h of the day, but also split into all week days, ia developed. As can be 
seen from the top bar plot in Fig. 4 the savings are at its peak at 10:00 
with a reduction in energy usage of 25 %. In general it is best at opening 
hours between 07:00 and 21:00. Further, one may study the savings for 
each individual day, were Sunday is best (-21,3%) and Tuesday worst 
(-14.5 %). Also, note that the savings are very low during Tuesday 
evening and night, and at its worst negative (red bar) on Tuesdays at 
23:00. Visual inspection gives a quick overview of the performance of 
the ECMs and potential for detecting errors and faults. 

3.2. Cost-Benefit analysis 

So far in this paper one have only considered the actual electricity 
consumption (kWh) savings. However, from the ESCO point of view, 
translating these savings into profitability is important. In the EPC 
project the profitability analysis have been ad hoc and based on 
manually collecting the relevant data, costs, electricity prices and grid 

Fig. 2. User interface example of TVB in the web application.  
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rent, and then performing the analysis in a spreadsheet. However, since 
the underlying data mostly is available through web API’s and is 
continuously updated it is a natural next step to develop a profitability 
dashboard as an extension of the web application. Thus, in this section 
the available data is presented, prices and rent, and how these can be 
integrated with the kWh savings (as reported in the previous section). 
And at last a benefit cost analysis that should be relatively straightfor
ward to implement in the ShinyRBase web application is offered. 

3.3. Electricity prices and grid rent 

Electricity prices in the end-user market in Norway comprise of 
physical power and grid rent for transmission of the electricity by the 
local grid company. Nord Pool spot is the marketplace for physical 
electricity contracts, and is the place where the Norwegian electricity 
spot prices are set. The electricity prices used in this paper were 
downloaded from Nord Pools website as a spreadsheet.2 However, they 
do have available an API that can be used to automate this step within an 
application.3 Furthermore, the second price component of electricity 
consumption is grid rent. The food retail stores in this paper belongs to 
different grid owners, and to simplify-one of the largest grid owners in 
the area, Vevig AS is chosen, as a basis for calculating grid rent for all of 
the relevant stores. A summary of Vevig’s tariffs is presented in Table 2 
below. For further details please see: https://vevig.no/nettleie-og-vil
kår/nettleie-næring. 

The effect prices are weighted based on months. For instance, in 
January, February, November and December these weight equals 1. 
Further, between March and October the weights vary from 0.9 to 0.6. 
Hence, given a store with a maximum load of 210 kW in March the effect 
price is 210 × 0.9 × 55.9 = 10 564. Hence, there is a “penalty” for larger 
loads in the colder months. The end user’s total electricity bills also 
consists of a fee earmarked for the energy fund Enova SF’s (owned by the 
Ministry of Climate and Environment) work to reduce greenhouse gas 
emission and to strengthen security of supply. There is also a variable fee 
for electricity certificates. This fee depends on the developments in the 
electricity certificate market. At last there is a consumption tax on 
electricity. 

It is not easy to automate the collection of grid rent data. There are 
more than 100 grid owners in Norway and many of them have different 
grid rent pricing strategies. Nonetheless, the pricing scheme often follow 
the same pattern as presented for Vevig. Hence, summer prices versus 
winter prices, and typically a penalty for larger loads, in particular in the 
winter. Probably the best solution would be to develop a user interface 
in the web application where the grid rent is based on user input. 

3.4. Benefit cost analysis 

In this section a closer look at the benefit cost analysis is presented. 
Unfortunately, due to confidentiality issues we are not allowed to share 
the details behind the actual cost elements. However, it is still found 
useful to propose a general method on how to approach this EPC project, 

in particular as the customer pays a monthly fee that includes the 
guaranteed energy savings, but also service and maintenance over a 10 
year period. The results presented in this section is for the period 
January 1, 2021 - November 30, 2021, thus an 11 month period. 

Usually when investigating the profitability of a project one can look 
at the Present Value (PV). This is defined as: 

PV = X0 +
∑T

t=1

Xt

(1 + r)t 

where X0 is the initial cost of the project, Xt is the net cash flow 
generated by the project for t = 1, ...,T periods, and r is the discount 
rate. However in this case, there is no initial cost like an investment in 
new equipment. This is done by the ESCO, and the customer pays a 
monthly lump sum for all 40 stores for the 10 years of the energy per
formance contract. 

This “subscription” to energy savings and new improved equipment 
through the energy contract makes the standard way of looking at cost/ 
benefit measures obsolete. The monthly lump sum cost paid by the 
customer to the ESCO can be considered an annuity over the 10 year 
period. It is like leasing a car. The monthly payment covers the ESCO’s 
investments in the contract in addition to their profits. The benefits for 
the customer, since there is no initial investments, are “avoided” costs. 
These benefits for the customer are taken into account by looking at the 
investments costs by the ESCO. The customer gets benefits from reduced 
electricity costs and avoided administrative costs for equipment 
maintenance. 

In terms of the actual implemented ECMs, all the stores changed to 
more efficient LED lightning, nine stores got new refrigeration systems, 
five stores got new heating, ventilation and air conditioning (HVAC). In 
addition the customer avoids insurance costs on the refrigeration system. 

In order to calculate the benefits the present value (P) of an annuity 
based on the investments (PV) by the ESCO is calculated as: 

P = PV ×
r
k

1 −
(
1 + r

k

)− nk 

where r is the annual interest rate, k is the number of compounds per 
year (12 months), and n is the number of years. 

As an example, if you need to invest space(100000) (PV) in new lights 
in a store today, the present value (P) of an annuity at monthly in
stallments (k) for 10 years (n) at 2.5 % interest (r) is 942.7 per month. 

The project has run for 11 months. In Fig. 5 (panel A) the monthly 
benefit cost ratio (BCR) is calculated. The benefits consists of two parts. 
The value of savings in energy costs. This is a variable part. And the fixed 
benefits from “avoided” costs as discussed above. 

The average BCR is 1.48. Further, there is an increase in the ratio the 
last four months. The average percentage savings in kWh is some 13.52 
% (panel B). This indicates that the variable component in the BCR is the 
price of electricity. Also, panel C shows that there is an increase in the 
average price of electricity. In the same panel (C) one also see that the 
variable portion of the BCR is above one in September. 

The finding that electricity costs is contributing a relative high share 
in the benefit cost calculations is interesting, even when the energy 
savings in this period is between 11 and 16 %. One might expect higher 
electricity prices in the future, making the contributions of energy sav
ings relatively large in the cost benefit perspective. Note also that before 
the building owner singed up for the EPC project they handled the 

Fig. 3. Energy savings as presented in the web application.  

2 https://www.nordpoolgroup.com/4ab28c/globalassets/marketdata-excel- 
files/elspot-prices_2021_hourly_nok.xls.  

3 https://www.nordpoolgroup.com/trading/api/. 
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insurance, service and maintenance internally. This was often a time 
involving process, and for many food retailers taking away the burden of 
handling this is also important to recognize - an element difficult to 
integrate into the benefit cost analysis. 

All the analysis in this section was conducted using the R library 
lifecontingencies [33], and as such the library is easy to fully integrate 
into the Shiny web application. Also, the library has many other options 
for financial analysis that may be incorporated. 

4. Discussion 

Developing the ShinyRBase framework and application outlined in 
this paper has been a two year research project in close cooperation with 
the ESCO. Weekly status meetings were done throughout the process. 
The application was in fully operation in January 2021. Hence energy 
savings for the 40 food retail stores has been monitored on a day to day 
basis since then. Note that the savings are estimated in the context of 
measuring energy use at the whole facility. The interaction when setting 
up the baseline model has resulted in knowledge sharing for both sides. 
First and foremost, the main objective from the ESCO points of view was 
to have a web application that could be used to closely follow the energy 
savings, and to make sure that they complied with the guaranteed sav
ings as agreed upon in the EPC contract. The ESCO did not share in
formation about how they approached the energy audit and the 
calculations of the potential energy savings within the buildings under 
study. Often, in the audit stage of the retrofitting project simulations of 
the energy savings could be conducted through software such as Ener
gyPlus.4 It would be useful to have access to such simulations as a 
comparison between the simulations and the predicted savings could be 
used to adjust the simulations, and to enhance the understanding of the 
effect of the retrofitting. Also, the provided energy data was only for the 
whole building, and access to sub-meters (e.g., ventilation, refrigeration, 
lighting) could further improve the energy saving analysis. 

Furthermore, during 2021 the application was used to discard 
training data due to high CV-RMSE (visual inspection). In this process 
the application detected: lights that were on during the night, ventila
tion that was running in day-mode during night, in-store promotions in 
the training data, AMI meters that stopped working or had an technical 
error that resulted in to much reported electricity, and errors in the 
Elhub data repository that gave zero electricity reported, but also some 
very high levels of energy consumption (large hourly peaks). Some of 
these errors would have been possible to detect with a standard energy 
monitoring system (EMS) and/or through more standard reports from a 
energy analyst. However, the continuously real-time aspect that the web 
application enabled has been a great advantage to facilitate such find
ings. At the same time, building owners may benefit from other auto
mated approaches such as occupant-building interaction via smart 
zoning of thermostatic loads or demand management via distributed 
control. Still, extending the use of energy savings baseline models such 
as TVB (within a reactive programming paradigm) may prove additional 
information that can be used to detect potential errors in the technical 
infrastructure. For instance, given that a model was trained on data 
from, for example, the refrigeration system within a time span when the 

Table 1 
Energy savings as of November 30 2021.  

Store- 
ID 

Ref. year CV- 
RMSE 

Tot. 
kWh 

Tot. prog. 
kWh 

Savings 
(kWh) 

Savings 
(%) 

1522 2018 0,178 413 
439 

934 539 − 521 100 − 55,760 

1249 2018 0,086 262 
384 

508 378 − 245 994 − 48,388 

1520 2018 0,078 505 
378 

940 101 − 434 723 − 46,242 

1546 2018 0,088 100 
448 

183 416 − 82 968 − 45,235 

1560 2019 0,131 388 
999 

579 186 − 190 187 –32,837 

1555 2018 0,139 259 
624 

378 003 − 118 379 − 31,317 

1551 2018 0,114 652 
130 

901 184 − 249 054 − 27,636 

1524 2018 0,09 345 
700 

476 985 − 131 284 − 27,524 

1573 2019 0,124 1 429 
274 

1 967 
543 

− 538 269 − 27,357 

1562 2018 0,136 861 
749 

1 172 
593 

− 310 844 − 26,509 

1563 2019 0,108 361 
473 

467 376 − 105 903 –22,659 

1526 2018 0,086 350 
440 

452 670 − 102 230 –22,584 

1557 2018 0,077 285 
757 

369 029 − 83 272 –22,565 

1531 2019 0,073 184 
752 

229 118 − 44 366 − 19,364 

1556 2018 0,096 222 
500 

275 873 − 53 373 − 19,347 

1566 2018 0,106 561 
216 

693 902 − 132 686 − 19,122 

1681 2018 0,138 182 
268 

223 251 − 40 983 − 18,357 

1569 2020 0,213 978 
826 

1 192 
884 

− 214 057 − 17,945 

1548 2018 0,122 109 
926 

133 574 –23 648 − 17,704 

1536 2018 0,119 91 541 110 778 − 19 237 − 17,366 
1540 2018 0,101 204 

746 
241 196 − 36 450 − 15,112 

1528 2018 0,125 346 
505 

398 251 − 51 746 − 12,993 

1731 2018 0,143 1 324 
183 

1 512 
011 

− 187 828 − 12,422 

1564 2018 0,087 426 
011 

484 579 − 58 569 − 12,087 

1552 2018 0,149 549 
568 

623 214 − 73 646 − 11,817 

1554 2018 0,129 255 
964 

289 778 –33 814 − 11,669 

1533 2019 0,171 877 
886 

988 021 − 110 135 − 11,147 

1529 2018 0,107 132 
523 

147 924 − 15 400 − 10,411 

1542 2018 0,121 80 213 88 055 − 7 842 − 8,905 
1549 2018 0,093 104 

823 
112 850 − 8 027 − 7,113 

1545 2018 0,122 217 
618 

233 760 − 16 143 − 6,906 

1547 2018 0,136 213 
985 

223 827 − 9 842 − 4,397 

1553 2019 0,118 198 
001 

206 148 − 8 147 − 3,952 

1640 2019 0,073 718 
989 

744 872 − 25 883 − 3,475 

1558 2018 0,102 259 
053 

258 983 70 0,027 

1532 2018 0,127 100 
878 

99 774 1 104 1,106 

1527 2018 0,1 2 594 
299 

2 547 
885 

46 414 1,822  

Table 1 (continued ) 

Store- 
ID 

Ref. year CV- 
RMSE 

Tot. 
kWh 

Tot. prog. 
kWh 

Savings 
(kWh) 

Savings 
(%) 

1653 2018 0,11 129 
735 

127 324 2 411 1,893 

1538 2018 0,095 157 
216 

152 955 4 261 2,786 

1572 2019 0,189 580 
417 

545 210 35 208 6,458  

4 https://energyplus.net. 
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system was running under optimal settings, the prediction can be set 
into production and the running difference between the actual energy 
consumption may be an indication of some non-optimal setting in the 
system. 

Working together with the different stakeholders, the ESCO and the 
building owners, has surely increased the overall knowledge about the 
drivers of energy savings within the EPC project. These synergy effects 
ended up in a more usable web application, and as a tool for error 
detection. The app in itself has integrated the different stakeholders in 
ways that otherwise would have been difficult. Hence, the reactive 
framework streamlines the M&V process and deliver significant value. 
These findings echo the study by [34]. Furthermore, an important 
feature of M&V 2.0, as [12] also notes, in many energy efficiency pro
jects there is a time lag between implementation of the ECMs and the 
evaluation of the savings. This lag hinders on-going changes in the ECMs 
that may further reduce the energy savings, e.g. optimize the control 
units in a HVAC. For ESCOs that has energy saving contracts the op
portunity to identify and correct these failures may increase payments. 

The ShinyRBase application was used with the following workflow. 
The user choose a baseline model based on a reference year. Then the 
model was evaluated using the CV-RMSE and by visual inspection of the 
actual versus predicted energy consumption on an hourly level. When 
the user was happy about the quality of the model they saved the model. 
The model was then automatically scored on a daily basis when new 
energy and temperature data was stored in the database. This was 
repeated for each of the 40 stores. The stakeholders used a web dash
board where they could monitor energy savings, both aggregated, the 
last 5 weeks and the last 72 h. This process was not flawless. There were 
several models whose predictions made little sense. However, this was 
either when the CV-RMSE was larger than 25 %, or when predictions 

was made using temperatures in the ECM period that was not present in 
the training data. Today, the application handle this with some basic 
rules that rolls back the predictions made when the feature space is not 
“fully covered.” The roll back is very basic and just takes the last pre
dictions (1 h back). But so far this has been a successful workaround. 

4.1. Alternative baseline models 

What about the TVB model and the potential need for more advanced 
models in operation? In this research this is an issue approached very 
carefully. Current research from field experience show that interpret
ability of models may keep the clients from accepting a black-box model 
(ex. artificial neural network) [35]. Furthermore, throughout this proj
ect it has been important to balance the scientific perspective with the 
stakeholders practical perspective. For example, it has not been easy to 
argue for more advanced models as the end-user already had concerns 
about the TVB model. Typically, the users wanted to use available 
development resources to enhance the visualization and layout in the 
application. Nonetheless, the modeling approach should be further 
developed taking into consideration more recent research findings. For 
instance, as [36] points out, a one-size-fits-all model is not realistic to be 
reliable across different building types. Hence, the web application 
should make it easier to compare models of different complexity because 
the user instantly gets a visualizations of the black-box model, for 
example a time-series plot with the actual values versus the predicted 
values. The visuals is a potential solution to break down this barrier. For 
instance, particle swarm optimization, similar to what was implemented 
in [14] could be integrated into the reactive framework through R li
braries such as pso or psoptim [37,38]. 

The methods that are currently reviewed and tested is based on the 
main findings from the ASHRAE 2019 Kaggle competition “Great Energy 
Predictor III. How much energy will a building consume?”5 This 
competition attracted 4,370 participants from 94 countries. The prize 
money for the winning team was $25,000. A detailed overview of the 
machine learning workflows and the winning teams are presented in 
[39]. The top 5 solutions were reproduced by [39] and the 

Fig. 4. Optimization - following the energy savings over days and hours.  

Table 2 
Vevig grid rent tariffs.  

Description Price 

Fixed price (NOK, monthly) 2048 
Effect price (NOK) 55.9 
Winter (Øre) 0.063 
Summer (Øre) 0.042 
Consumption tax (Øre) 0.1669 
Enova SF energy fund (NOK, yearly 800  

5 https://www.kaggle.com/c/ashrae-energy-prediction. 
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accompanying code can be found on github.6 The winning solutions are 
presented in Table 3. As can be seen 4 out of 5 used multiple methods 
and post-processing of data with ensembling and weighting. All the 
winning solutions used Light GBM, and three of the winning teams used 
Catboost, and two used XGBoost. 

The methods used to compete in the Kaggle competitions are quite 
technical. However, the winning solutions where all coded in Python 
[40], which is also open-source, and the code for the winning solutions 
can found in the above mentioned github repository for easy repro
duction. The teams used pre-canned solutions (modules) to train the 
models, and replication in other settings should therefore be relatively 
straightforward. For example, all models are also available in R; 
lightgbm [41], xgboost [42], catboost (not part of CRAN yet, but can be 
downloaded as a development version from the catboost.ai website7), 
MLP (multi-layer perceptron) [43]. Most of the ensambling and 
weighting can be handled in the stacks package [44]. In a bi-lingual R 
and Python team, or if a method is only available in Python it is possible 
to use the R package reticulate [45], which provides a comprehensive 
set of tools for interoperability between Python and R. For example you 
can call Python from within R, translate between R and Python objects 
and there are flexible bindings to different versions of Python, both 
virtual and Conda environments. 

As previously mentioned it is beneficial to have the coefficients from 
the models saved into a database for in-database continuously scoring 

Fig. 5. BCR and energy savings in the first 11 months of the EPC project.  

Table 3 
Kaggle top 5 performing teams - modeling solutions.  

Rank Team Features Modeling Post-processing 

1 Matthew 
Motoki and 
Isamu 
Yamashita 
(Isamu and 
Matt) 

28 features CatBoost, 
LightGBM, and 
multi-layer 
perceptron 

Ensembled the 
model 
predictions 
using weighted 
generalized 
mean 

2 Rohan Rao, 
Anton Isakin, 
Yangguang 
Zang, and Oleg 
Knaub (cHa0s) 

Temporal 
features, 
building 
metadata, 
statistical 
features of 
weather data 

Catboost, 
XGBoost, 
LightGBM, and 
Feed-forward 
Neural 
Network 

Weighted 
average 

3 Xavier 
Capdepon 
(eagle4) 

21 features 
including raw 
weather and 
meta data 

Catboost, 
Keras CNN, 
LightGBM 

Weighted 
average 

4 Jun Yang (不用 
leakage 上分太 
难了) 

23 features 
weather lag 
features and 
aggregates 

XGBoost and 
Light GBM 

Ensembles. 
Weights were 
determined 
using the leaked 
data 

5 Tatsuya Sano, 
Minoru 
Tomioka, and 
Yuta Kobayashi 
(mma) 

Target encoding 
using percentile 
and proportion 
and the weather 
data temporal 
features 

LightGBM Weighted 
average  

6 https://github.com/buds-lab/ashrae-great-energy-predictor-3-solution-an 
alysis.  

7 https://catboost.ai/en/docs/installation/r-installation-binary-installation. 
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and monitoring of the ECMs. This is in the application handled by the 
package tidypredict, where xgboost, random forest and tree models are 
already a part of the tidypredict library. However, catboost, light-GBM 
and MLP is presently not possible to translate into SQL. Still, running 
predictions inside databases based on this is relatively straightforward 
to implement. While future work will carefully review these methods 
potential to improve the baseline models, the question raised by the 
ESCO several times along the project, “will more advanced modeling 
approaches enable the application to deliver more reliable results?” 
must also be recognized. To answer this there is a need to balance pre
dictive accuracy versus the value of a slightly better model. For instance, 
[29] points out that because of cost and constraints, the stakeholders are 
less prone to embrace innovations from a modeling point of view. Often 
they chose a very simplified model to estimate energy savings (eg. just 
one temperature variable). This is important to take into consideration. 
For example, the ESCO in this study was used to using energy - tem
perature curves from weekly aggregated data with a regression model 
based on only the average weekly temperature as an independent vari
able. In this study, the web application made it much easier for the 
ESCO’s transition from this model to an hourly based TVB model. To 
illustrate, they were given the chance to play around with the TVB 
model and to compare the overall results with the ET-curves (which 
gave very similar results). This comparison gave the user confidence as 
well as they could also see the extra benefits of looking at the results 
from an hourly perspective. 

4.2. Baseline models in web applications - advantages and disadvantages 

The advantages and disadvantages to deliver analytics using a web 
application instead of as a static report from an energy analyst can be 
divided into two phases; the development phase and the phase when the 
application is in production. During development one find that:  

1. The stakeholder is closely involved in deciding what information will 
be presented in the application, and is able to try early versions of the 
app interactively. This leads to a strong ownership for the end 
product. However, this phase requires more involvement and is time 
consuming.  

2. Different parties have different skill-sets, and working together 
during the development process means that those skill-sets are re
flected in the application. These are collaborative benefits that may 
be challenging to achieve otherwise. Because the application is real- 
time and dynamic there is an instant feedback from the users that 
may be difficult to capture in a workflow where the analysis is 
delivered as a static report. This interactivity was found to “trigger” 
curiosity and need for more information. It is easier for the user to 
“play” with the application than to order a new report with more 
information. 

Several advantages were found during the phase where the appli
cation is finished and set into production:  

1. The results are available at the users convenience. 
2. Increased efficiency for the analyst and the stakeholder. Less repet

itive work for the analyst and no user dependence on the analyst to 
deliver.  

3. The models are documented in the database for easy reproduction 
and daily scoring. 

4. Because it is possible to closely follow the ECM’s actual versus pre
dicted consumption on an hourly level in real-time, the application is 
not only used to monitor the energy, but also to optimize parts of the 
technical system.  

5. Several errors in the technical system was quickly detected. 

Furthermore, the reactive framework as offered by the Shiny appli
cation and adjoining R libraries enabled fast prototyping of different 

solutions, web dashboards and ways to visualize and report on the TVB 
model. Compared to the imperative programming scheme with static 
reports and a strict dependence on the energy analyst the proposed 
framework has proven valuable. 

5. Conclusions 

This paper demonstrates the development of a web application, 
ShinyRBase, using a reactive framework to document and continuously 
monitor and benchmark energy savings for 40 food retail stores in 
Norway. Using open source tools, R, Shiny and adjoining libraries, this 
process was relatively straightforward, compared to the more standard 
way of delivering energy savings report. There is no need to know 
HTML, CSS or JavaScript to do this. The reactive framework within the 
Shiny library and the automated way of developing a user interface 
handled those aspects. The end-user was trained to make them self- 
sufficient in terms of setting up baseline models for the different 
buildings and to continuously monitor the energy savings. The baseline 
models was based on a well specified linear regression, the Tao Vanilla 
Benchmarking model. 

Complex methodologies was instantly used by the end user without 
the need of advanced computation skills. The development and the use 
of the application promoted collaboration between practitioners (the 
ESCO and the customers) and the researcher/analyst. This collaboration 
resulted in an app that was fit for purpose because of the advise and the 
on-going interactive use from the collaborators. The advantages was 
twofold. First, during development the stakeholders took part of the 
process, which resulted in increased ownership and engagement. The 
different participating parties had different skill-sets, and working 
together during development those skill-sets ended up in a final appli
cation that was more relevant. Second, after the application was in 
production there were several other advantages compare to using a 
standard report to follow the energy savings. The users could look into 
the results at their own convenience, and always had fresh and current 
updates that was easy to monitor. Thus, a more efficient workflow for 
both the energy analyst (less repetitive work) and the end users (self- 
sufficient). The parameter estimates from the linear regression models 
for the different stores was saved in a table in the database (as a SQL 
query). This worked both as a documentation of the models, and as a 
useful way of scoring and updating the results every day. Hence, having 
the models documented in a database gave both easy and reliable 
reproduction of the models. Finally, since the results was always current 
and it was easy to closely monitor the savings, it was also easy to detect 
when the savings trended negatively. This enabled the users to quickly 
detect several errors in the technical system, such as ventilation in day- 
mode during night and lights that was not turned off. Some caveats 
should be mentioned. Even though the Shiny app simplifies the process 
of setting up a reactive framework there are still some added complexity. 
This way of working is more involved and time-consuming during the 
development phase, and running the app in production mode requires 
knowledge about setting up a server environment. 
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Abstract

This paper demonstrates a 3-step benchmarking framework to document the effect of energy savings

and efficiency from retrofitting Norwegian food retail stores. This is accomplished in collaboration with

an energy service company (ESCO). During autumn 2020 the ESCO undertook a retrofitting project for

34 food retail stores. The proposed framework follows the same order as a retrofitting project typically

is conducted: the audit, implementation, and measurement and verification. In the first step (during

the audit) a data envelopment analysis (DEA) is used to establish the energy efficiency before any

of the energy conservation measures (ECMs) are installed. At the same time a novel energy saving

baseline model is developed, the Broken line model (BL). Baseline models are normally introduced

after implementing the ECMs in the measurement and verification phase. However, training baseline

models during the audit phase may reveal important information about the condition of the technical

infrastructure in terms of the demand for cooling and heating. In the second step the Tao vanilla

benchmarking model (TVB) is used to estimate the energy savings on an hourly level. The results are

used to adjust the ECMs during the implementation phase. This optimize the energy saving potential and

reveal plausible non-routine events. In the third and last step during the measurement and verification

phase the DEA is redone with data one year after the implemented ECMs. In this step the energy

savings are esimated using both the BL and the TVB model to assure the energy saving results. This

enables a perspective where it is possible to investigate the efficiency change together with the energy

savings. This last step use the weights from the DEA multiplier model to analyze the change in the

input variables (demand for heating and cooling) across the retrofitting project. The results from the

proposed framework show that DEA, together with baseline models, can be a valuable tool for the ESCO

to monitor and advance the different stages of a retrofitting project, and eventually give new insights

into how to prioritize and adjust ongoing ECMs.

Keywords— Energy efficiency, savings evaluation, data envelopment analysis, building energy retrofitting,

Measurement and verification, Data driven models, Broken line models, Tao Vanilla Benchmark model
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Abbreviations— ASHRAE;American Society of Heating; Refrigerating and Air-Conditioning Engineers,

DEA; Data Envelopment Analysis, MV; Measurement and Verification; BL; Broken line model, TVB; Tao

Vanilla Benchmarking model, ESCO; Energy Service Company, GHG; Green house gas, HVAC; Heating,

ventilation, and air conditioning, ECM; Energy Conservation Measures, CPT; Changing point temperature,

CV-RMSE; coefficient of variation root mean square error

1 Introduction

The latest IPCC Sixth Assessment Report clearly states that it is critical to initiate measures to be able to

reduce human-induced climate change, and that human activities is causing pervasive disruption in nature

that affects billions of people. Hence, it is of major importance to quickly make extensive cuts in greenhouse

gas emissions (GHG).1

Globally, buildings consume some 40% of all produced energy and as such cause large scale GHG emissions

[1]. Moreover, a substantial amount of this energy consumption may have been wasted due to faults in

the design and the construction of the buildings, and in particular building operation [2,3]. Among the

different building categories food retail stores are one of the largest energy users. In Norway the average

energy consumption for food retail stores are 540 kWh/m2, and is by far the category with the largest

energy use intensity [4]. As such, to increase energy efficiency renovation projects has an important role, and

food retail stores represent an attractive target to reduce energy consumption and increase energy efficiency

[5]. Still, uncertainty regarding the expected savings has previously deterred new retrofitting projects [6].

Consequently, for building owners with a large portfolio of buildings it is fundamental to have reliable

methods to analyze the potential energy savings within the existing buildings, and moreover, to document

the actual energy savings after implementation of energy conservation measures (ECMs). One may answer

questions such as: are the accomplished savings as expected given the initial efficiency? What was the main

driving parameters behind the savings, and are there any identified variables that can increase the savings?

The energy performance in a building demonstrates the quality of a building in energy use [7,8]. The

performance is often assessed through Energy Performance Indicators (EPI). The most prevalent for many

buildings, food retail stores included, is energy use intensity (EUI), e.g. kWh/m2. Floor area is a strong

indicator of energy use. However, as [9] points out, a limitation of this method is that other energy related

features are not taken into account. For instance, the weather is an important component to fully understand

the energy use within a building. When it is cold outside heating increase, and on warm days the demand
1https://www.ipcc.ch/report/ar6/wg2/
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for cooling increase. Because of this, EUI, is often complemented by comparing buildings within the the

same climatic zone, hence, a normalized EUI. Still, floor area and weather are not the only variables that

affect the energy consumption in a building. Depending on building category, opening hours, occupancy and

technical infrastructure may be other important components to fully understand the energy use.

To study the impact of different variables on energy efficiency in retrofitting projects one approach is to use

data envelopment analysis (DEA). Nonparametric DEA is a mathematical programming technique used to

find an efficiency frontier which consists of the most energy efficient buildings. DEA has the advantage that

it can be used to identify factors that can be used to create effective renovation strategies.

In general, several papers have conducted DEA to investigate efficiency in the energy sector. For instance,

[10] research the energy efficiency in 277 Chinese cities with the use of slack-based DEA. They find that

there is major disparity in energy efficiency between the cities. Moreover, [11] investigate the efficiency of

rice farmers with regard to energy use in rice production in India. The findings from this paper show that

11.6% of the total input energy could be saved through better use of power tillers and improved machinery.

Furthermore, [12] use DEA to study energy inputs and cucumber yield in selected greenhouses in Iran and

finds that 12 out of 18 greenhouses were efficient and that 8.5% of the overall resources could be saved by

improving the performance of the inefficient greenhouses.

More specifically, within the building sector a number of different benchmarking approaches have been

proposed. For instance, [13] use DEA to benchmark green building attributes to achieve maximum green

points with limited capital. Furthermore, [14] use DEA to evaluate the efficiency of 47 government office

buildings in Taiwan. The study finds that the average energy performance was 65%, hence an average

saving potential of 35%. The analysis uses standard regression analysis to temperature adjust the energy

consumption before the conducted DEA. Further, in a subsequent study [15] prepares the data for DEA with

the use of cluster analysis to classify buildings into different climate cluster. Across the climatic zones the

study finds efficiency scores of 0.5, 0.56, and 0.56. Thus, a substantial energy savings potential. Furthermore,

[16] propose a two-stage DEA energy benchmarking method. The first stage conducts a DEA which integrate

a common degree-day approach to take into account temperature differences between the buildings, and the

second stage use Tobit-regression for a detailed efficiency analysis. In the study they demonstrate the

benchmarking methods in 189 residential buildings. In a more recent study within the food retail sector,

[17] conduct DEA for 137 Norwegian retail stores. The detected inefficiency was 28% compared against an

efficient rank of 32 stores.

The above benchmarking studies all reveal substantial inefficiencies and as such a promising capacity for

energy savings within the building sector. Nonetheless, while it is vital to detect any inefficiencies during the
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audit phase of a renovation project, to fully understand how to approach the estimated inefficiencies actual

implemented energy conservation measures (ECM) and estimation of the energy savings after a retrofitting

project provide useful insights and a more coherent view on the expected savings.

In this paper we demonstrate a novel benchmarking framework that is designed to document energy savings

and energy efficiency in retrofitting projects of food retail stores. The framework is designed to be used

throughout the different phases of the renovation project: the energy audit, implementation, and at last,

measurement and verification (M&V). To accomplish this, we work together with a medium sized Norwegian

energy service company (ESCO) that has specialized in retrofitting within the food retail sector. The ESCO

recently signed an energy performance contract (EPC) for retrofitting 34 Norwegian food retail stores. The

contract includes a yearly guaranteed energy savings target, was active from 1 January 2021 and has a

10-year duration. Within this period the ESCO handles all the energy infrastructure within the stores,

including service and maintenance. The proposed framework is used in the project to document both the

potential energy savings as documented in the initial energy audit, to optimize implementation of the energy

conservation measures (ECMs), and finally to establish the actual energy savings in the M&V phase. The

framework consists of 3 stages illustrated in 1. The illustrated stages are,

1. A broken line model (BL) is trained on a reference year before the implemented ECMs. Weekly data

is used. The BL model has three purposes during the audit phase. First, it is used to understand the

buildings heating and cooling needs, including the changing point temperature (CPT). Second, the

estimated kWh cooling and heating is passed on to the DEA analysis for efficiency analysis. The BL

model is later used as a baseline model to estimate the energy savings after the implemented ECMs.

2. The Tao Vanilla benchmarking (TVB) model is trained on the same data as the BL model, however

hourly data is used. The objective of the TVB model is, as with the BL model, to estimate energy

savings after the implemented ECMs. The estimated accuracy of the TVB model should coincide with

the BL model, and provide additional reliability for the estimated energy savings. However, in this

particular step the model is used to optimize installation of the ECMs during the implementation

phase. For instance, the hourly level allows us to study the energy savings in terms of the actual hours

when the savings is at its highest versus lowest, changing opening hours (open versus a closed store),

and in weekdays and weekends. In particular, this is important during the implementation stage for

ongoing optimization of the ECMs.

3. In the final step the DEA model is redone one year after the implemented ECMs. The constant returns

to scale (CRS) model is used to calculate efficiency scores before and after the implemented ECMs.
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Hence, one can demonstrate the change in efficiency as a result of the ECMs. The model outputs

are the size of the buildings (m2) and opening hours; two important variables that may explain the

energy consumption in food retail stores. In addition, the following three inputs are included in the

DEA model: energy consumption for heating, cooling and the remainder. Furthermore, to strengthen

interpretability the DEA multiplier model find how these three inputs relate to the efficiency scores.

This final step allows an investigation into how the energy savings relate to the efficiency. For example,

with this perspective, one finds groups of food retail stores within the building portfolio with the same

energy savings, the same implemented ECMs, but with different DEA efficiency. Those results may

be used to improve the ECMs to gain more efficient buildings in terms of energy consumption. The

calculated multiplier model weights (ux) for heating, cooling and the remainder can be used to compare

both across the food retail stores, and between different measurements (before and after the ECMs).

In this way it is possible to gain a better understanding of the underlying drivers that determine

the efficiency. For instance, a low weight on heating in relation to cooling and the ‘rest’ means that

this store should investigate the causes behind the energy consumption consumed by heating. In the

results section we will indicate “worst” performers and enhance the interpretation of the ux weight

with energy-temperature signatures from the BL model.

Figure 1: Framework for benchmarking energy efficiency and savings

1.1 Novelty of the paper

Previous building energy efficiency studies that use DEA primarily focus the attention to the audit phase of

renovation projects. Although being able to identify the energy performance is essential to create effective

retrofitting strategies, it is significant to be able to track the efficiency change throughout a retrofitting

project. In the present study a DEA is conducted during the audit of the building portfolio, and than
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re-done one year after the ECMs were installed. Additionally, the DEA multiplier model is used to review

the efficiency changes of the DEA input variables. Hence, it is possible to gain a better understanding of the

underlying drivers that determine the efficiency (e.g. an inefficient cooling or heating system), and identify

untapped energy savings. As far as the authors has been able to establish this is the first paper that study

the change in the efficiency before and after a implemented renovation project, and that apply the multiplier

model to facilitate a more comprehensive study of efficiency and energy savings.

Second, the audit phase and the benchmarking of the energy efficiency within the building portfolio prompts a

list of recommended energy conversations measure (ECMs). In the current study 34 buildings are retrofitted,

and the energy savings are documented using the BL and the TVB model. Typically, baseline models are

developed during the M&V phase. However, output from these models is used as input to the DEA model

to improve energy savings. The integrated use of DEA as a benchmarking methods, combined with the

baseline models (TVB and BL) advance knowledge about the relationship between energy efficiency and

energy savings. The present paper offers a collective perspective for efficiency versus savings.

The following sections first describe the ESCO and the implemented ECMs. The methods are then outlined;

the broken line model, the TVB model and the CRS-DEA multiplier model. Furthermore, the results are

presented. At last, a discussion of the findings, limitations, and the conclusion.

1.2 Data pipeline - electric load, weather data and building characteristics

The launch of advanced metering infrastructure (AMI) has created the opportunity to analyze energy data

in near-real time and on a more granular level, often referred to as M&V 2.0. In Norway this is handled by

a central repository, Elhub (elhub.no), that daily collects energy use on an hourly level (15 min interval will

be available in May 2022) for commercial and household buildings using the AMI system. It is mandatory

for all the Norwegian grid operators with daily update to a central repository. Furthermore, temperature

data is collected from the Norwegian Meteorological Service (www.met.no). Each stores position (longitude

and latitude) is mapped against a 2.5km x 2.5km grid of Norway. Further, the temperature data gathered

is modeled weather data that use several of the closest weather stations to set the temperature. The size of

the buildings was collected from an API set up by the store owners. These automated processing and access

to data enable delivery of current and updated savings to stakeholders [18].

The collected data and the analytics conducted in this paper is presented in fig 2. The data from Elhub,

met.no and the store owners API is continuously saved in a database, and further imported into R [19].

Finally, the DEA, TVB and BL analysis was conducted in R and the accompanying Benchmarking library
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[20].

Figure 2: Data pipeline for benchmarking

2 Methods

2.1 Broken Line Models

To estimate the relationships between energy consumption and temperature for each building broken-line

(BL) models will be used. For instance, when the outside temperature increases this commonly leads to an

increase in a buildings energy consumption due to increased use of cooling. By the same token, the energy

consumption increases due to cold temperature in the winter because of increased use of heating. The change

point, changing point temperature (CPT) is the point at which there is no demand for cooling or heating.

Furthermore, traditional methods used to account for non-linear effects, such as regression splines or poly-

nomial regression are not suitable because the CPT values are set a priori. Also, the estimated regression

parameters from can not be interpreted directly [21]. When the CPT parameters must be estimated, stan-

dard likelihood-based inference is complicated due to the log-likelihood is only piecewise differentiable and

the classical regularity conditions are not met [22–24].

The is approached by reducing the above issues to a linear scheme. The CPT relationship between the mean

response µ = E [Υ] and the variable K is modeled by including the linear predictor for

β1Ki + β2(Ki − ψ)+ (1)

Where (Ki −ψ)+ = (Ki −ψ)× I(Ki > ψ) and I(·) is the indicator function equal to one when the statement

is true. Hence, β1 is the left slope, β2 is the difference-in-slopes, and ψ is the CPT value. A number of
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challenges has been described by [25]. Often, grid-search algorithms have been used to estimate similar

models, for instance fitting several linear models and searching for the value that coincide to the model

with the better fit. Still, this is not the best approach when there are numerous changing points, or a large

dataset.

In this paper the open-source R package segmented is used to estimate the BL models [26]. The package

estimate model (2) by repeatedly fitting the linear model

β1Ki + β2(Ki − ψ̃)+ + (zi > ψ̃)ψ̃− (2)

where I(·) = −I(·) and γ is the parameter to be interpreted as a re-parameterizaton of ψ, thus accounts

for the breakpoint estimation. At each iteration, a standard linear model is fitted, and the breakpoint value

(CPT) is updated through ψ = ψ + γ̃/β̃2. An applied example of this approach can be seen in [27], where

energy savings in 5 different Norwegian food retail stores were estimate, and the model proved reliable results.

2.2 Baseline Model - Estimating the energy savings

The TVB models has previously been validated as easy to implement and produce accurate results [27,28].

Furthermore, the models has also proven reliable when the expected energy savings target is below 10%, for

instance in smaller implemented ECMs [29].

The following specification is used:

Yt = β0 + β1Mt + β2Wt + β3Ht + β4WtHt + β5Tt + β6T
2
t +

β7T
3
t + β8TtMt + β9T

2
t Mt + β10T

3
t Mt + β11TtHt + β12T

2
t Ht + β13T

3
t Ht

where Yt is the load for hour t, βi are the estimated coefficients from the least squares regression; Mt, Wt

and Ht are month of the year, day of the week and hour of the day, respectively. Furthermore, Tt is the

outside temperature for time t. In Hong’s TVB model past loads and trend was included as explanatory

variables. Nonetheless, in the present research the TVB model will model the energy consumption in stores

based on a reference period, hence lagged variables and trend are not included as features.

The accuracy of the models is measured through the coefficient of variation root mean square error (CV-

RMSE). The CV-RMSE is calculated in the following way,
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CV −RMSE =

∑
(Ŷi−Yi)2

n−k−1

Ȳ

where Ȳ is the mean of the energy demand in the reference data. Furthermore, Yi is the energy use in hour

i, Ŷi is the predicted energy use in hour i from the TVB model. Also, n is the sample size, and k is is the

number of explanatory variables in the model.

2.3 Data Envelopment Analysis

The non-parametric DEA method first introduced by [30] measures the relative efficiency between homoge-

neous units by estimating a composite score for each unit under consideration. The Charnes, Cooper and

Rhodes (CCR) model assumes constant returns to scale (CRS), allowing possible scaling of units in the

analysis. This implies allowing units of different size to be compared. Further, [31] developed the model

to account for variable returns to scale (VRS). Assuming variable return to scale, the Banker, Charnes and

Cooper (BCC) model ensures that units in the analysis will be compared to other units of similar size.

The method calculates efficient utilization of resources by applying mathematical programming. One of the

advantages of the method is the ability to incorporate multiple inputs and multiple outputs. DEA, unlike

parametric methods, do not require an a priori functional form. The main disadvantage is its sensitivity

to individual units that are not comparable, and as such a thorough investigation of possible outliers is

necessary for a reliable result. Efficient units obtain a score of 1 (100 percent), while inefficient units receive

a score less than one but greater than zero. The objective is to minimize input (maximize output) holding

output (input) fixed.

Investigating energy efficiency, the term decision-making unit (DMU) represents the different food retail

stores, and the objective is to minimize energy consumption, hence an input oriented model. Considering a

set of K observations of DMUs, each DMUk (k ∈ K), uses m inputs xk = (xk
1 , ..., x

k
m) ∈ R⋗

+ to produce n

outputs yk = (yk
1 , ..., y

k
n) ∈ R⋉

+. By creating a piece-wise linear approximation DEA determines an efficient

frontier or best practice frontier by these K observations and returns an efficiency estimate for each DMU.

Following [32] the input-oriented VRS multiplier model is specified for DMU0 as follows:
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max
u,v,ϕ

vy◦ + ϕ

s.t. ux◦ ≤ 1

− uxk + vyk + ϕ ≤ 0, k = 1, . . . ,K

ϕ ∈ Φ(γ).

(3)

where Φ(vrs) = R and Φ(crs = 0). For the input-oriented CRS multiplier model there is no restriction on

λ1, ..., λk and the problem may be formulated as

max
u,v,ϕ

vy◦

s.t. ux◦ ≤ 1

− uxk + vyk ≤ 0, k = 1, . . . ,K

ϕ ∈ Φ(γ).

(4)

The scalar ϕ is the cost for not having constant returns to scale. The value weights ϕ, u and v selected

by the DEA program put the evaluated unit in the best possible light compared to the other units. The

dualization thus supports the popular view that DEA puts everyone in the best possible light [32].

Hence, the idea is to ensure that high outputs accrue from low inputs. The calculated weights (ux) for

heating, cooling and ‘the rest’ can be used to compare both across the food retail stores, and between different

measurements (before and after the ECMs). In this way it is possible to gain a better understanding of the

underlying drivers that determine the efficiency. For instance, a low weight on heating in relation to cooling

and the ‘rest’ means that this store should investigate the causes behind the energy consumption consumed

by heating. In the results section we will indicate “worst” performers and enhance the interpretation of the

ux weights with energy-temperature signatures from the BL model.

3 Results

This section starts with a presentation of the results from the hourly TVB model. The model was used

to give detailed insights on an hourly level how the ECMs performed. Furthermore, we look at the results

from the standard approach that the ESCO used to document energy savings, the BL model. At last, the
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efficiency scores from the CRS-DEA model together with the cooling and the heating weights are presented.

This part also pulls in two aggregate energy savings from the TVB model and the BL model - necessary to

validate the two models, and to be able to compare the energy savings with the efficiency scores.

3.1 TVB Baseline model

In figure 3 we present an example of how the results from the TVB hourly model can be applied. This

particular model was trained for store-id ‘1522,’ using 2018 as a reference year, and the example show

predictions between December 1st 2021 and December 17th 2021. The stippled line is the actual hourly kWh

energy use, and the solid line is the prognosis. The difference between these lines are the actual savings (given

that the building performs as in the reference year). For instance, December 3rd at 08:00 the prognosis was

185 kWh and the actual usage 87. Hence, at this particular hour a 98 kWh saving. However, at December

5th 14:00 the actual usage was 54 kWh and the prognosis 74 kWh, hence a 20 kWh saving. The TVB model

thus demonstrates that the savings can be narrowed down on a detailed level. After working together with

the building owners and the ESCO to establish reference years for the 34 food retail stores, we trained the

TVB model for all the buildings and estimated the savings for 2021 (up until December). The aggregated

savings are presented in table 1.

Furthermore, the model reliability was tested against the CV-RMSE, which is recommended by the IPMVP,

and accordingly should be below 25% for the model to be accepted [33]. Large CV-RMSE (>25%) was

flagged and inspected through visualizations of the data in the reference period. Often large CV-RMSE

could be led back to the food retail store being out of operation and/or some other uncommon activity, for

instance in-store promotion activities. Consequently, the CV-RMSE was actively used to understand the

modeling results together with all the involved stakeholders. As a results, this collaboration led to a change

of reference year for many buildings, and/or a better understanding of the actual data used as training data,

e.g. missing and/or unusual observations. Also, the TVB was use during implementation of the ECMs. This

according to the second step in the framework. In this phase the TVB improved several of the ECMs as the

ESCO was able to quickly analyse the savings and accordingly adjust the ECMs.

3.2 Broken line model

As discussed previously the standard approach for the ESCO was to use a one variable model to estimate

the energy savings, using a weekly aggregate for the energy consumption and the outside temperature. To

be able to compare the results from this approach with the TVB model we have estimated the BL model for
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Figure 3: TVB baseline model for store-id ’1522’ between December 01 2020 - December 17 2021. TVB
model based on data for 2018

the same 34 buildings with the same reference year. Figure 4 show 8 of these models, the 4 top performers

in terms of energy savings in the left row and the bottom 4 in the right row. For instance, for store-id ‘1522’

the y-axis shows the weekly kWh consumption, and the x-axis shows the average outside temperature. The

BL-model was estimated using the reference data (the solid dots in the ET - curve). Further, we also plot

the weeks up until December 2021 (the ‘x’- dots = the ECM period). The distance from the different weeks

in the ECM periods (the ‘x’) up to the ET - curve line is the energy savings for that week. The aggregated

savings from the BL model are presented together with the corresponding savings from the TVB model in

table 1.

3.3 Data envelopment analysis - efficiency and energy savings

3.3.1 Energy savings

The overall energy savings effect of the implemented ECMs, as presented in table 1 gives an average energy

savings of -17.6%. There is relatively little practical difference between the results from the hourly TVB

and the weekly BL models. For instance, the Pearson’s product-moment correlation between the two models

estimated energy savings is 0.997, with p-value < 0.000. Also, there does not seem to be any pattern in the

difference; no over or under prediction. Still, there are some noteworthy differences, e.g. for store-id ‘1560’

the TVB model gives an energy savings of -33.5% versus -30.9% from the BL model. The CV-RMSE for

the TVB model was 14%, while the corresponding value for the BL model was 17%. A further inspection

of the potential cause for these differences revealed that the first two weeks of 2018 (the reference year)

had an unusual low energy consumption compared to other comparable weeks, likely due to some errors

in the technical system. In figure 4 these two weeks for id ‘1560’ is displayed in the ET - curve (circled

in with stippled lines). Discussing these anomalies with the ESCO and the customer (who agreed this

was not normal) led to an agreement to impute those two weeks. Likewise, for store-id ‘1548’ there was
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Figure 4: ET curve for the reference periode estimated with the broken line model with weeks after ECMs
displayed as ’x’. Top 4 performers in terms of energy savings on the left top, bottom 4 on the right row.
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a difference of 1.7%, the TVB model savings was estimated at -17.5% (CV-RMSE = 14%) and the BL at

-15,8%. (CV-RMSE = 17%). Thus, the TVB model had a somewhat higher precision for both of these

examples.

3.3.2 Energy efficiency

The efficiency scores from the DEA is presented in table 1. The column ‘CRS Ref.’ gives the efficiency scores

before the installed ECMs, and the column ‘CRS 2021’ after. The average efficiency scores both before and

after the installed ECMs were 74%. Given that the retrofitting project generated an average energy savings

of 17,6%, it is a surprising finding that the overall efficiency was not affected. This finding will be further

examined in the discussion.

The results are sorted by the percent energy savings as estimated by the TVB baseline model. We can see

that store-id ‘1522’ and ‘1520’ has a reduction in the energy consumption of -55.8% and -46.2%, respectively.

Both of these stores had implemented three different ECMs; change to more efficient LED-lights, and change

of the HVAC and the refrigeration system. Furthermore, the DEA revealed that these stores had an efficiency

of 43 and 41% before the implemented ECMs (CRS Ref), indicating that the stores had great potential for

energy reduction, and store-id 1522 had a positive change in the efficiency (49,5%) that corresponded to the

energy savings (55,8%/TVB model).

In terms of energy savings several of the stores did actually have a slight increase in the energy consumption

(Store-id ‘1558,’ ‘1527,’ ‘1532’ and ‘1538’). However, two of these stores, ‘1532’ and ‘1538’ had the oil boiler

that was used for heating replaced by a heat pump. Thus, electricity and not oil is used for all the heating.

Hence, the increase in the overall electricity consumption. These issues are also regulated in the EPC contract

between the ESCO and the customer. This finding is reflected in the DEA result as both of these stores were

on the DEA front before the implemented ECMs and ended up with a lower efficiency score in 2021 (from

1 to 0.76 and 0.92, respectively). Nonetheless, we find that these two stores according to the DEA analysis

had a low potential for energy savings given that they were already at the front. Furthermore, store ‘1558’

had changed their lights to efficient LED, but did not show any decrease in electricity consumption and the

efficiency score was approximately the same in the reference year and in 2021. It turns out that the ESCO

had several technical issues with this particular store. The control system for the ventilation did not work

optimal and several fixes are currently being set in operation to deal with this issue.
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Table 1: Aggregate results from TVB, broken line and DEA-CRS

Store-Id % change TVB % change BL CRS Ref. CRS 2021 % change eff. Refrigeration HVAC
1 522 -55,8 -55,4 0,43 0,65 49,5 1 1
1 520 -46,2 -46,2 0,41 0,54 30,9 1 1
1 546 -44,9 -45,3 0,89 1,00 13,0 1 0
1 560 -33,5 -30,9 1,00 0,73 -26,9 0 0
1 555 -30,9 -30,3 1,00 1,00 0,0 1 0
1 551 -28,8 -29,5 0,51 0,44 -14,1 0 0
1 573 -27,4 -26,7 0,85 0,89 4,4 0 0
1 524 -26,7 -26,8 0,81 0,63 -22,2 1 0
1 562 -26,4 -26,5 0,65 0,81 24,7 0 0
1 563 -22,8 -22,4 0,60 1,00 65,5 0 0
1 557 -22,4 -22,2 0,51 0,57 11,2 0 0
1 556 -19,5 -19,5 0,59 0,72 21,1 0 0
1 531 -19,1 -19,2 0,75 0,67 -11,7 0 0
1 566 -19,1 -19,2 0,58 0,73 26,3 0 0
1 569 -18,2 -18,7 0,92 0,74 -19,2 0 0
1 548 -17,5 -15,8 0,89 1,00 12,4 0 0
1 536 -17,3 -16,7 1,00 1,00 0,0 0 0
1 540 -15,4 -15,4 0,69 0,67 -3,2 0 0
1 528 -13,0 -13,6 0,69 0,60 -12,1 1 0
1 731 -12,4 -12,5 1,00 1,00 0,0 0 0
1 564 -12,0 -11,7 0,65 0,70 7,0 0 0
1 552 -11,9 -11,9 0,50 0,67 33,3 0 0
1 554 -11,3 -11,2 0,66 0,64 -3,4 0 1
1 533 -10,8 -10,6 0,44 0,30 -31,9 0 0
1 529 -10,5 -11,5 0,81 0,72 -11,4 0 0
1 542 -9,1 -11,0 1,00 1,00 0,0 0 0
1 549 -7,4 -7,2 1,00 1,00 0,0 0 0
1 545 -6,9 -5,7 0,74 0,66 -10,1 0 0
1 547 -4,2 -4,9 0,72 0,77 7,9 0 0
1 640 -3,1 -1,9 0,60 0,50 -16,7 0 0
1 558 0,4 -2,4 0,66 0,60 -8,0 0 0
1 527 1,6 1,1 0,61 0,50 -19,4 0 0
1 532 2,0 2,6 1,00 0,76 -23,7 0 0
1 538 2,7 2,5 1,00 0,92 -7,5 0 0

15



3.3.3 UX weights

In table 2 we present the UX weights from the multiplier model before (ref.) and after (2021) the implemented

ECMs. For example, the weight for heating (UX Heat ref.) was 0,0 for store-id ‘1522’ and in the reference

period that weight increased to 0,789 after the implemented ECMs (UX Heat 2021). This implies that part

of the increase in the DEA-CRS efficiency scores can be attributed to a improvement in the heating system.

The same finding can be seen for store-id ‘1546.’ Note that the weights sum to 1. These findings are further

summarized in figure 5.

To perform research an on actual EPC retrofitting project poses some challenges as there are bound to

be events that are difficult to foresee. Some of these issues are summarized in table 3. Note for instance

the results for store-id ‘1532’ and ‘1538.’ Both of these had their oil boilers phased out, and a heat pump

installed for heating. Hence, this particular ECM actually increased the overall energy consumption of these

two stores. During the ECM period there was also several examples of technical errors that substantially

affected the energy consumption. For instance, store-id ‘1560’ had an error in the ventilation control unit

that prevented the switch between night and day mode. Also, store-id ‘1563’ had to repair the steering unit

for the snow smelting system. Both of these issues were detected from the TVB baseline model (the model

was automatically updated every day to be able to quickly detect errors). Some of these issues are naturally

regulated in the EPC project contract, but it is still much easier to discuss these issues with the customer if

quickly detected.

In figure 5 we present the change in the UX weights after the ECMs for the top 4 and bottom 4 performers

in terms of energy savings. For example, store-id ‘1522’ had a 56% energy savings from the implemented

ECMs (new LED lightning, refrigeration and HVAC). The store had an increase of 0.789 for the heating

weights (ux.heating), hence the increase in efficiency can partly be explained by improvement in the energy

consumption that was used for heating. Referring back to the ET - curves in figure 4 storeid ‘1522’had a

much lower increase in the energy consumption in the colder months compared to the reference period (after

the installed ECMs). The same comments applies for store-id ’1546’ where ux.heating increased with 0.709.

4 Discussion

The discussion is divided into four parts according to the steps in the proposed framework. In the first

section the output from the BL model, and the DEA efficiency scores from the audit phase is presented.

Second, the results from the energy savings as estimated in the BL and the TVB model are presented. Third,
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Table 2: UX weights for cooling, heating and rest from the DEA Multiplier model before (ref) and after
implemented ECMs (2021)

Store-Id UX Cool ref. UX Cool 2021 UX Heat ref. UX Heat 2021 UX Rest ref. UX Rest 2021
1 522 0,106 0,083 0,000 0,789 0,89 0,129
1 520 0,175 0,000 0,017 0,126 0,81 0,874
1 546 0,030 0,021 0,000 0,709 0,97 0,270
1 560 0,035 0,000 0,000 0,000 0,96 1,000
1 555 0,306 0,024 0,000 0,881 0,69 0,095
1 551 0,746 0,000 0,254 0,000 0,00 1,000
1 573 0,237 0,000 0,000 0,071 0,76 0,929
1 524 0,637 0,000 0,363 0,158 0,00 0,842
1 562 0,866 0,527 0,134 0,473 0,00 0,000
1 563 0,226 0,184 0,000 0,485 0,77 0,331
1 557 0,040 0,074 0,000 0,385 0,96 0,541
1 556 0,125 0,569 0,006 0,264 0,87 0,167
1 531 0,217 0,000 0,001 0,044 0,78 0,956
1 566 0,168 0,597 0,014 0,403 0,82 0,000
1 569 0,285 0,000 0,001 0,000 0,71 1,000
1 548 0,124 0,094 0,000 0,597 0,88 0,309
1 536 0,010 0,352 0,056 0,080 0,94 0,568
1 540 0,475 0,282 0,525 0,336 0,00 0,382
1 528 0,237 0,000 0,001 0,114 0,76 0,886
1 731 0,253 0,651 0,000 0,244 0,75 0,105
1 564 0,201 0,353 0,000 0,464 0,80 0,183
1 552 0,146 0,167 0,008 0,679 0,85 0,154
1 554 0,084 0,046 0,000 0,454 0,92 0,500
1 533 0,162 0,000 0,000 0,000 0,84 1,000
1 529 0,064 0,000 0,000 0,066 0,94 0,934
1 542 0,179 0,530 0,036 0,103 0,78 0,367
1 549 0,016 0,024 0,059 0,548 0,93 0,428
1 545 0,000 0,000 0,000 0,000 1,00 1,000
1 547 0,085 0,000 0,000 1,000 0,92 0,000
1 640 0,000 0,000 0,113 0,062 0,89 0,938
1 558 0,085 0,000 0,000 0,044 0,92 0,956
1 527 0,238 0,000 0,000 0,107 0,76 0,893
1 532 0,112 0,083 0,007 0,459 0,88 0,458
1 538 0,055 0,225 0,005 0,300 0,94 0,475
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Table 3: Unplanned events and other issues affecting the energy efficiency and savings

Store-Id Comment
1560 Repair of the ventilation control unit
1551 Got HVAC and refreigeration system from discontinued store. Almost new system
1562 Optimized heat exchanger, district heating kicked in, thus electric consumption down
1563 Repair of the steering unit for the snow smelting system
1557 Cooling disks changed, customer own cost
1531 Oil boiler phased out, expected larger increase in energy consumption
1558 A difficult store. Lots of minor technical issues not resolved
1532 Oil boiler phased out, heatpump installed
1538 Oil boiler phased out, heatpump installed

Figure 5: Change in UX weights after ECM
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the DEA efficiency scores from when the ECMs have been in effect for a year is discussed, together with a

comparison of the change in efficiency from the year before the implemented ECMs. The multiplier model

is applied to accommodate this discussion. At last a general discussion of the framework is offered.

4.1 Step 1: Broken line and energy efficiency

The M&V process is often conducted after the ECMs are installed. However, the results from baseline

modeling, such as the BL model, may be useful before implementation of the ECMs. In the BL model the

changing point temperature (CPT), and the demand for cooling and heating could be useful input when

the ESCO performs a complete review of all the buildings technical infrastructure (the audit phase). For

instance, in figure 4 the BL model was used to produce the ET-curves for 8 different stores (sample of

the portfolio under study). While the main objective of this plot was to visualize and estimate the energy

savings, the ET-curve for the year before the installed ECMs give useful insight about the heating and

cooling demand. This may be seen by comparing store id 1527 and 1538. While the CPT value is about the

same around 10°C, the demand for heating is quite different, and the ET-curve for store 1527 has a much

steeper curve for heating. Ranking the building portfolio based on heating and cooling demand across the

portfolio may give useful insights into the condition of the technical infrastructure (HVAC), but may also

indicate differences in the building envelope. Additionally, training the baseline models during the audit

phase, and not postpone this step until the M&V phase, gives two prevalent advantages. First, during the

audit phase the ESCO has full attention to the buildings under contract, and at this stage it is likely to

be easier to understand any issues with the data that will be used to train the baseline models. Often the

energy data has concerns that needs to be considered (technical issues with the meters, building/technical

infrastructure non-operative for periods, promotional events). Getting attention to these issues is easier at

a time when the ESCO is already working on related issues.

Also note that previous studies use default published values for CPT. In the U.S. this value is 18 degree

Celsius, which is the value used in a previous benchmarking study of residential buildings [16]. However,

food stores often have a technical system that is used for cooling, heating and heat recovery. Depending

on building material, geographic location, building size and the age and condition of the technical system

the CPT values may be quite different between buildings, thus using a default value may lead to incorrect

calculation of weather effects on the energy consumption. Hence, estimating the CPT values from the BL

model gives reliable insight into the CPT differences. For instance, [17] finds that the median CPT value for

95 food retail stores in Norway was 6.8°C, while [34] find the equivalent for office buildings to be 11 °C.
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Furthermore, the CPT has often been used as a reference to calculate the degree days, both heating and/or

cooling degree days. The degree days represents a measure that is often used to normalize weather effects

between buildings in different temperature zones. For example, this is the approach that [16] use in their

benchmarking study. Nonetheless, since the CPT values varies across food retail stores using a fixed CPT

value may decrease the precision of the estimated cooling and heating degree days.

At last, previous research has established that the stakeholders, due to cost and constraints, are less likely to

embrace innovations from a modeling point of view, and that a one temperature variable model to estimate

energy savings is quite standard [35]. Also, as [36] finds, interpretability is important to gain acceptance

from clients. As such, the BL model was easy to interpret through the ET-curves, and the results was

communicated effectivly.

4.2 Step 2: TVB and Optimization

In figure 3 an example of the TVB hourly model was presented. The TVB model shows that the savings

can be constricted on a detailed level. Furthermore, the data pipeline allowed the frequency of the analysis

to be updated on a daily level. This approach enabled detection of issues that may otherwise have been

overlooked, e.g. lights that are on during the night or a ventilation system that runs in day-mode during

night, or other non-optimal settings. Hence, the ESCO could closely monitor the performance of the newly

installed ECMs and make ongoing adjustments.

Furthermore, the model reliability was tested against the CV-RMSE, which is recommended by the IPMVP,

and accordingly should be below 25% for the model to be accepted [33]. Large CV-RMSE (>25%) was

flagged and inspected through visualizations of the data in the reference period. Often large CV-RMSE

could be led back to the food retail store being out of operation and/or some other uncommon activity, for

instance in-store promotion activities. Consequently, the CV-RMSE was actively used to understand the

modeling results together with all the involved stakeholders. As a results, this collaboration led to a change

of reference year for many buildings, and/or a better understanding of the actual data used as training data,

e.g. missing and/or unusual observations.

4.3 Step 3: DEA efficiency and the energy savings

In table 1 the energy savings from the BL and the TVB model were presented. The results across the

portfolio of 34 food retail stores varies between an effect of the ECM where the lowest performing store had

an increase of +2.7% energy consumption (store-id 1538) to the best performing store which had a decrease
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in energy consumption of 55% (store-id 1522). Still, there is no practical difference between the results

from the TVB and the BL model. This is reassuring and gives the results credibility. Furthermore, this

also corresponds with the findings in [27] where the BL model was compared with the TVB model across

5 different food retail buildings. Note that the only ECM implemented in store-id 1538 was optimization

of the unit that controlled the HVAC. Discussing this finding with the ESCO it was found that some of

the control units did not work as expected, and ongoing work to address this was commenced. While the

retrofitting project generated an average energy savings of 17,6%, the average efficiency scores both before

and after the installed ECMs were 74%. The expectation up front from the ESCO was that the efficiency

would increase. Despite, during the project many unplanned events occurred. In particular, substituting oil

boilers with heat pumps in three of the stores increased the energy consumption. More details about these

events are given in table 3. Thus, it would make sense to estimate what the energy consumption would have

been in the reference year if the heating was not handled by an oil boiler. However, the information about

this came about during the project, and was initially not planed.

Furthermore, investigating the individual stores efficiency score is useful to better understand the effect of

the savings. For example, comparing store-id ‘1522’ and ‘1520’ with the other stores the efficiency scores

attained for these two stores had the largest potential, hence it was logical that the actual reductions in

energy savings reflected the potential. We also find that the efficiency scores compared to the reference period

with the ECM period increased for these two stores by 30.9% and 49.5%. Interestingly the largest efficiency

gain was for the store with a somewhat lower energy reduction. It is not easy to point to a particular cause

for this difference, however it may be sensible for the ESCO to analyze in further detail the implemented

ECMs in these two stores to gain a better understanding of the differences to improve results for similar

projects in the future.

Finally, table 2 and figure 5 present the UX weights from the multiplier model before (ref.) and after (2021)

the implemented ECMs. For example, the weight for heating (UX Heat ref.) was 0,0 for store-id ‘1522’ and

in the reference period that weight increased to 0,789 after the implemented ECMs (UX Heat 2021). As

mentioned previously, this may imply that the part of the increase in the DEA-CRS efficiency scores can be

attributed to an improvement in the heating system. The same finding can be seen for store-id ‘1546.’ Note

that the weights sum to 1. Furthermore, a low weight on heating in relation to cooling means that this store

should investigate the causes behind the energy consumption consumed by heating.

21



4.4 General discussion

A retrofitting project often starts with an audit of the building portfolio under contract. This involves a

complete review of the technical infrastructure in the buildings. It is important to map the condition of the

different components and to clarify which ECMs are prioritized and how the installation should progress. The

potential for energy savings are often substantial. For instance, previous studies find that energy consumption

from HVAC could save 40% of building energy without compromising occupant thermal comfort [37]. Other

studies within the Norwegian food sector has documented savings between 25% and 55% [27]. Furthermore,

during the audit phase the energy performance is often been evaluated with energy use intensity (EUI,

e.g. kWh/m2). However, a number of other important variables may affect energy consumption. The IEA

Annex 53 project sets fourth six factors that determine energy performance: (1) climate, (2) building envelop,

(3) building services and energy systems, (4) building operation and maintenance, (5) occupants’ activities

and behavior and (6) indoor environmental quality provided [38]. In this paper the attention was focused on

climate, opening hours and the difference in demand for cooling and heating (a proxy for building envelop,

but also as part of the energy system).

When an ESCO signs an EPC contract several issues can complicate the partnership with the customer.

The contract for the 34 stores studied within this paper has a length of 10 years. Consequently, it is vital to

have a strict regulated contract that covers as many different scenarios as possible. However, is it not easy to

foresee all possible issues that may arise over such a time span. Because of this it is essential to have reliable

and appropriate methods to document the savings and the energy efficiency as a result of the project. The

demonstrated framework within the paper may be used to accomplish such a task, leading to a more more

holistic analytically approach where the joint effect of both estimated savings and efficiency are taken into

account.

The collaboration with the ESCO showed that very little analytically resources went into the audit phase,

and only after implementing the ECMs the demand for baseline models occurred. The ESCO had substantial

knowledge about the technical infrastructure, however, when benchmarking the energy efficiency the only

performance indicator used was energy intensity (kWh/m2). Our proposed 3-step framework find that it

may be useful to extend this perspective when benchmarking energy efficiency in buildings. The framework

offers a tool that the ESCOs can apply to document energy efficiency and energy savings documentation; we

find the methods to be valuable tools to monitor efficiency and savings throughout the retrofitting project.
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4.5 Limitations and future research

The IEA Annex 53 project sets fourth six factors that determine energy performance: (1) climate, (2)

building envelop, (3) building services and energy systems, (4) building operation and maintenance, (5)

occupants’ activities and behavior and (6) indoor environmental quality provided [38]. In the present study

only climate, opening hours and cooling and heating demand was used to benchmark the efficiency. However,

more detailed information about the building envelop, the occupants, and maintenance would improve the

efficiency scores. Additionally, it would be interesting to use data from sub-meters as input variables in the

DEA (e.g. ventilation, lighting, refrigeration). Inclusion of these new input variables could enhance insight

about how individual ECMs contribute to energy efficiency. Hence, future research that integrates these

features into the benchmarking analysis will be useful.

Further, trustworthy calculations of energy savings are critical to convince stakeholders in energy efficiency

projects of the benefit and the cost-effectiveness of the investments [39]. Recent research have offered several

solutions that automate this process and delivers energy savings in near real-time [40–42]. However, previous

research within this area focus the attention solely on energy savings, and not efficiency. It would be very

useful if such tools integrated the efficiency perspective as that would give a broader use case through the

retrofitting project.

At last, a drawback of DEA is that it relates residuals to inefficient units. Moreover, due to its nonparametric

nature it can not provide a specific equation that relates the input and output [43]. To improve these defects,

the stochastic frontier analysis (SFA) approach has been tested in several previous studies to evaluate energy

efficiency performance [44–46]. A replication of the efficiency scores that was produced with DEA within

this paper using SFA would be a welcome future contribution.

5 Conclusions

In this paper we have demonstrated a 3-step framework that Energy Service companies can use to document

both the energy savings and the energy efficiency in retrofitting projects. This has been accomplished using

data from a Norwegian ESCO who signed an EPC project for 34 food retail stores. The chosen framework

was designed and tested in close cooperation with the ESCO to enable optimized outcome of the project,

and the framework follows the logic workflow in retrofitting proejcts: (1) audit, (2) implementation, (3)

Measurement and Verification. In the starting phase during the energy audit of the building portfolio the

CRS-DEA efficiency is useful to enhance understanding of the potential energy savings. Furthermore, using
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the ET - curves from the BL model was useful to gain a better understanding of the demand for heating

and cooling in the food retail stores.

During implementation the TVB model provided detailed information on an hourly level, which enabled the

ESCO to continuously optimize and adjust the ECMs during the implementation phase.

Furthermore, after the implemented ECMs both the TVB and the BL model served several purposes. First,

both models was used to estimate the aggregated energy savings. The overall results from the models were

similar, which gave the results reliability. The final step consisted of conducting a CRS-DEA on the data

after the implemented ECMs, and to compare the results of the efficiency scores before and after the ECM.

In that context the aggregated savings from the TVB/BL model was presented, and the ESCO could then

relate the actual energy savings to the potential savings, and the change in efficiency as a result of the ECMs,

and through the DEA multiplier model at the same time relate cooling and heating to efficiency.

Documenting energy savings and efficiency in large building portfolios over many years requires a solid

framework that can be used both as a documentation tool for the customer, and at the same time continuously

give useful insights that the ESCO can use on a day-to-day basis. As such, the proposed 3-step framework

may serve that objective well.
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Abstract
The cost structure of electricity tariffs varies among countries. 
In Norway, it is being modified from a two-part tariff, where 
the cost is divided between a fixed installation cost (EUR/
installation) and a cost for consumed electricity (EUR/kWh), 
to a three-part electricity tariff where customers additionally 
pay demand charges for capacity usage (EUR/kW). To combat 
demand charges, commercial customers are looking into sup-
plementing PV installations with batteries to more efficiently 
reduce peak electricity demand, i.e. peak shaving. A crucial 
part of the complete energy system is also the energy manage-
ment, where forecasting improves efficiency and economics. 
The objective of this work was to investigate the profitabil-
ity with peak shaving in Norway for a commercial building. 
A forecasting algorithm for load prediction was developed, 
and the economic value of forecasting was determined for a 
PV-battery system. The load forecasting was developed us-
ing component-wise gradient boosting and the results from 
the model were verified against a renowned benchmarking 
load forecasting model. The economic value of forecasting 
was determined through simulations with Homer Energy 
Software that optimizes the net present cost of the systems. 
The results showed that battery storage was only economi-
cally beneficial when forecasting was deployed. Moreover, 
the cost savings came mainly from reduced demand charges, 
not from increased self-consumption of PV electricity. It was 
also discussed that the application of forecasting in an en-

ergy management system could be divided into three phases. 
One phase where forecasting is deployed to dimension energy 
system components in an early stage, one monthly forecast 
overview that identifies height and frequency of maximum 
peaks, and finally one high-resolution forecast that operates 
the battery on an hourly basis. Altogether, such an energy 
management system could additionally also be used by utility 
grid owners to schedule demand response actions for power 
quality control.

Introduction
The cost structure of electricity tariffs varies among countries. 
In Norway, it is being modified from a two-part tariff, where 
the cost is divided between a fixed installation cost (EUR/in-
stallation) and a cost for consumed electricity (EUR/kWh), to 
a three-part electricity tariff where customers additionally pay 
demand charges for capacity usage (EUR/kW). The demand 
charge reflects purchased energy per time unit, i.e. kWh/h. 
Simshauser (2016) argues that this three-part tariff is more ef-
ficient and reflects both cost elements of electricity distribu-
tion, capacity and energy. Fridge et al. (2018) took this study 
further and performed an analysis of how different electricity 
tariffs affect cost distribution between micro-grid owners and 
electricity distribution grid owners. They found that two-part 
tariffs encourage grid destabilization. Although the three-part 
tariff has not been fully implemented in Norway, commercial 
customers are billed for demand charges. A shift to the three-
part tariff would create winners and losers (Simshauser 2016), 
and thus, there is a need for assessing the potential for cost 
savings by cutting the peak demand, i.e. peak shaving.
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5. SMART AND SUSTAINABLE COMMUNITIES

To combat demand charges, commercial customers are 
looking into supplementing PV installations with batteries to 
more efficiently perform peak shaving. However, the current 
PV installations do not usually include batteries, but as battery 
prices decline (IRENA 2017), it becomes interesting to consider 
a co-optimization of PV-battery systems. Comello et al. (2018) 
analyzed the profitability for PV-battery systems and found that 
systems with low-cost storage would be profitable. Indeed, the 
cost of storage is vital for profitability. To the authors’ knowl-
edge, no similar study has been conducted for the commercial 
sector in Norway.

Installation of the physical PV and batteries alone will not 
result in optimal solutions. A crucial part of the complete 
system is also the energy management, which is the control 
that eventually will improve efficiency and economics while 
reducing emissions. One conceptual framework for such a 
system was presented by Zhao et al. (2010) and includes both 
a cyber and a physical system. Forecasting is a crucial feature 
of the cyber-part and it has been shown to increase revenues 
from PV-battery systems, although it was highlighted that the 
actual benefits are strongly dependent on site-specific bound-
ary conditions such as feed-in-limit, feed-in-tariff etc. (Litjens 
2018).

Therefore, this work was initiated to investigate the profit-
ability with peak shaving in Norway for a commercial building. 
There were two specific objectives, first to develop a forecasting 
algorithm for predicting electric load, and second to determine 
the economic value of using forecasts for efficient battery con-
trol. 

Method

LOAD FORECASTING
To forecast the energy load for 2018, data from 2017 was used 
to train the model. Hourly electricity usage was collected from 
electric meters from the advanced metering infrastructure 
(AMI) system. Further, weather data on an hourly level was 
collected from the Norwegian Metrological Service1.

Two different modelling techniques were used. First, the 
Tao vanilla benchmark model (TVB). This model was first 
published in Hong (2010) and was later used as a benchmark-
ing model in the GEFCom2012 load forecasting competition 
(Hong, Pinson, and Fan 2014). The model performed among 
the best 25 of 100 teams. In the commercial software pack-
age SAS Energy Analytics, the TVB model is integrated as a 
standard load forecasting method. Further, because of the rela-
tively straightforward specification and proved predictive per-
formance the model is a good candidate to test other models 
against. The model is a multiple regression model

Yt = β0  + Yt–1 + β1Mt + β2Wt + β3Ht + β4WtHt + β5Tt  
+ β6Tt

2  + β7Tt
3 + β8TtMt + β9Tt

2Mt + β10Tt
3Mt  

+ β11TtHt + β11Tt
2Ht + β11Tt

3Ht (1)

where Yt is the load forecast for hour t, βi are the estimated co-
efficients from the least squares regression method; Mt, Wt and 

1. www.met.no

Ht are month of year, day of the week and hour of the day. Fur-
ther, Tt is the temperature corresponding to time t. Note that 
we make two different TVB models, one with and one without 
the lagged dependent variable, Yt–1. 

This has some very important implications for how it is pos-
sible to apply the model in production. Without Yt–1 it is pos-
sible to predict as long as a year ahead (given that the model 
was trained on one year of data) and that the model is fed some 
realistic temperatures series for the different seasons. However, 
using Yt–1 we have to continuously score the model based on 
the latest data each hour. This will ‘predict’ any sudden “peaks” 
after the actual “peak”. 

In the next section, we present the gradient boosting ap-
proach. Previous research with boosting demonstrates excel-
lent prediction performance within statistics and machine 
learning (Schapire and Freund 2012). Further, Bühlmann 
and Yu (2003) developed component-wise gradient boosting 
(CW-GB) to handle models with a large set of independent 
variables. In this paper, we use component-wise gradient boost-
ing with penalised splines (P-splines) (Bühlmann and Hothorn 
2007). Also, boosting is robust against multicollinearity and 
flexible in terms of modelling different types of effects (Mayr 
and Hofner 2018). A similar approach was used by Taieb and 
Hyndman (2014) in the Kaggle global energy forecasting 
competition 2012 and ranked fourth out of 105 participat-
ing teams. Next, we provide a more detailed overview of the 
procedure.

We label the outcome variable, energy consumption, y and 
the predictors (temperature variables and calendar data) x1, 
…, xp. The objective is to model the relation between y and X : 
= (x1, …, xp)T, and to estimate the “optimal” prediction of y 
given x. To achieve this objective, we minimize the loss func-
tion ρ(y,f) ∈ ! over a prediction function f depending on x. 
Since we use a generalized additive model the loss function is 
the negative log-likelihood function of the outcome distribu-
tion. In the gradient boosting the objective is to estimate the 
optimal prediction function f*, defined by

 (2)

where it is assumed that ρ the loss function, is differentiable 
with respect to f.

1. Initiate the function estimate  .

2. Determine the set of base-learners. Each of the base-learners 
acts as a modelling alternative for the predictive model. We 
set the number of base-learners equal to P and m = 0.

3. Increase m by 1

a. Compute the negative gradient  of the loss func-
tion and evaluate it at   . This gives 
us the negative gradient vector

 

b. Fit each of the base learners individually to the negative 
gradient vector. We estimate the negative gradient um 
for all the vectors of the predicted values P.

c. This step selects the base-learner that fits um.
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d. The current estimate is updated by setting  
  where 0 < v ≤ 1.

4. Steps 3 and 4 are iterated until mstop is reached.

and p is the number of features in the model. In step 3c) and 
3d) the algorithm performs variable and model selection. 
There are two hyperparameters that need to be estimated, 
M, the number of steps, and v, a step length factor. However, 
Friedman (2001) shows that a small v can prevent over fitting. 
We set v=0.15 and M=400. Further, the CW-GB had 32 differ-
ent variables available (temperature data, holidays, calendar 
data) and the algorithm then chose the best set of variables 
from these.

ENERGY SYSTEM OPTIMIZATION
A grid-connected commercial building in the retail sector lo-
cated in Norway was chosen for this study. The yearly elec-
tricity consumption was about 2,900 MWh. The volatility of 
the consumption profile can be used as an indication of the 
profitability with peak shaving. Lind et al. (2017) found that the 
coefficient of variation (CV) can be used to give the consump-
tion profile a score, where buildings with high CV-values have 
a higher probability of benefiting from peak shaving. CV-value 
is calculated as the standard deviation to the average value, and 
the object in this work had a low score of 0.37. 

Homer Energy
The economic value of forecasting was determined using the 
commercial software Homer Pro and Homer Grid. Homer is an 
acronym for Hybrid Optimization of Multiple Energy Resourc-
es. Both software programs were developed by Homer Energy 
to simulate, optimize, and perform a sensitivity analysis of on- 
and off-grid micro grids (Lambert et al., 2006, Bahramara et al. 
2016]. Homer optimizes the system based on minimizing the 
objective function Net Present Cost (NPC), which is the value 
of all the costs the system incurs over its lifetime, minus the 
present value of all the revenue it earns over its lifetime. Costs 
include capital costs, replacement costs, O&M costs, and the 
costs of buying power from the grid. Revenues include salvage 
value and grid sales revenue.

Economic value of forecasting
Four cases were designed to determine the value of forecast-
ing. 

Case A was simulated in Homer Pro with a cycle charging 
dispatch strategy, which is common today in systems with lit-
tle renewable power generation. Cycle charging means that 
whenever a generator is running, in this case, grid or PV, the 
battery is charged until it reaches a specified state of charge, in 
this case, 95 %. Moreover, there is no forecasting applied, and 
hence no control to capture excess PV electricity or to avoid 
grid charging of battery. During case A, the capacity of both PV 
and battery were optimized to determine optimal component 
dimensioning for a case without forecasting. 

Case B was simulated in Homer Grid with a forecasting 
dispatch controller. The forecasting feature is not included in 
Homer Pro. The intention with case B was to determine the op-
timal battery size if forecasting was applied to a building where 
PV had already been installed based on optimization without 
forecasting. Therefore, the optimal PV size from case A was 

applied and only the battery component was optimized. The 
forecasting controller sees 48 h ahead and determines how to 
use the system components for demand charge reductions and 
energy arbitrage while serving the electrical load.  

Case C was similar to Case B but here also the PV compo-
nent was optimized, thus a complete co-optimization of PV 
and battery using the forecasting controller in Homer Grid. 

Case D was simulated in Homer Pro to show how the project 
economics are affected if forecasting is not applied to a system 
that was dimensioned based on an optimal case, i.e. case C. 

Modelling constraints
The system components included in the optimization are 
PV, battery, converter, load, and power grid. The PV com-
ponent is modelled as polycrystalline silicon 60  cell mod-
ule (Jinko JKM275-60). The model included temperature 
effects and a derating factor (losses from wiring, soiling, 
snow cover, and degradation) of 92  %. Solar irradiance 
and temperature data were imported through Homer from 
the NASA Surface Meteorology and Solar Energy database 
and included monthly global horizontal radiation, averaged 
from July 1983 to June 2005. The modules were simulated to 
face south with a tilt of 20 °. The installation cost was set to  
1,020 EUR/kWp and the costs related to operation and main-
tenance were neglected. Lifetime was set to 25  years, even 
though the effective lifetime of the PV system may be sub-
stantially longer. 

The battery component was modelled as a generic Li-ion 
with 90 % round-trip efficiency and with a C-rate of 1 and 
3 for charging and discharging, respectively. The initial state 
of charge was set to 50 % and minimum state of charge to 
10 %. The lifetime of the battery was set to either 15 years or 
3,000 cycles, whichever comes first. The cost of installation 
was set to 310 EUR/kWh and replacement of the battery was 
set to 150 EUR/kWh (IRENA 2017). The converter was mod-
elled as a generic system converter with an efficiency of 96 %. 
The inverter and rectifier capacities were equally large and the 
installation cost was included in the cost of PV and battery 
components. 

The grid component was designed to reflect the local condi-
tions. Electricity prices (EUR/kWh) consisted of spot prices, util-
ity fee, demand charge fee, and a specific cost/benefit price for the 
building owner. Historical prices from 2017 were imported from 
Nordpool (Nordpool). The cost of power (EUR/kW) was set to 
15 EUR/kW for December–February, 8 EUR/kW for March and 
November, and 2 EUR/kW for April–October. 

The project lifetime of the simulation was set to 25 years, the 
interest rate to 3.5 %, and the inflation rate to 2 %. The fore-
casting dispatch strategy applied in the optimizations uses both 
load, PV, and price forecasting. This paper shows results on suc-
cessful load forecasting, but do not analyse the possibilities of 
PV and price forecasting. However, price forecasts for the next 
24 h are available on Nordpool (Nordpool) and can be incor-
porated into an actual dispatch strategy. Forecasting of PV pro-
duction has been studied elsewhere (Chun Sing et al. 2017) and 
seems to give accurate results. The incorporation of these three 
forecasting algorithms would enable an optimization similar to 
the one used by Homer Grid. It should still be mentioned that 
real forecasts are not 100 % accurate, in contrast to the “perfect 
foresight” that Homer applies. 
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Results and discussion

LOAD FORECASTING
The results of the forecasts from the two different modelling 
strategies are described in the following figures. Figure 1 shows 
the TVB and the CW-GB model when the dependent variable 
lagged one hour is used as an explanatory variable. The TVB 
model is included because it has a previous track record of good 
load forecasting abilities; hence it is useful to compare the CW-
GB results against a benchmark. As can be seen from Figure 1 
both the TVB and the CW-GB models follows the actual load 
(kW) closely. The CW-GB and the TVB has a CV(RMSE) equal 
to 0.114 and 0.124, respectively. For example, ‘ASHRAE’ speci-
fies that the CV(RMSE) should be less than 25 % if 12 months 
of post-measure data are used (American Society of Heating, 
Refrigeration and Air Conditioning Engineers 2014). The 
CV(RMSE) for both the models are well below the ASHRAE 
requirements. However, from a practical perspective using Yt–1 
is challenging in production. The models need to be updated 
every hour and will not be able to predict a sudden “peak” in 
demand.

Figure 2 shows the TVB and the CW-GB model without Yt-1 
as an explanatory variable. Both the models follow each other 

relatively close, but the predictions are not as good as the mod-
els with the lagged dependent variable. Also, the predictions are 
far from the actual loads the first 9 days of January but perform 
somewhat better for the rest of January. The CV(RMSE) for the 
CW-GB is 0.323 and 0.367 for the TVB. However, the actual 
building that these two models were developed for had a lot of 
different equipment installed, many of which were used on an 
ad hoc basis, thus difficult to predict.

ECONOMIC VALUE OF FORECASTING
Table 1 presents the four different cases that were evaluated and 
highlights four main points based on optimization of NPC. First, 
the NPC was lowest for case C where all components were co-
optimized using a 48 h forecasting horizon. During a 25-year 
period it would save about EUR 10,200 compared to case A with 
standard cycle charging battery control, and EUR 61,300 com-
pared to case D where forecasting is not applied. Second, the bat-
tery is only economically beneficial if forecasting is applied. The 
difference in NPC is small but applying forecasting do also allow 
for a larger PV capacity. Third, PV and battery should be co-
optimized since battery size affects optimal PV capacity. Fourth, 
installation of a system optimized using forecasting results in the 
highest NPC if standard cycle charging control is used.

�

�
 Figure 2. Actual loads (kW) for January 2018, and the predicted loads from TVB and CW-GB models, both models without the dependent 
variable lagged 1 hour.

Figure 1. Actual loads (kW) for January 2018, and the predicted loads from TVB and CW-GB models, both models with the dependent 
variable lagged 1 hour.



5. SMART AND SUSTAINABLE COMMUNITIES

 ECEEE SUMMER STUDY PROCEEDINGS 953     

5-342-19 FAGERSTRÖM ET AL

The benefits of forecasting arise from both increased self-
consumption of PV electricity and reduced costs with peak 
shaving. Sales of PV electricity was reduced from 512  kWh 
(Case A) to 94 kWh (Case B) when forecasting was applied and 
shows consequently that increased self-consumption is not the 
reason to why battery and forecasting make economic sense. 
Total PV production for Case C was about 338 MWh. Table 2 
summarizes monthly peak shaving levels for the different cases, 
as well as monthly demand charge savings for Case C. The max-
imum peak shaving occurred for Case C in October where the 
co-optimized PV-battery system shaved 32 % of the monthly 
peak, which is in line with results from Leadbetter and Swan 
(2012) that presented peak reduction between 28 and 49 %. 
There was however some months with low peak reductions. 
In terms of economics, it is seen in Table 2 that Case C saves 
between 1,680 and 60  EUR/month due to reduced demand 
charges. Table 2 further shows that Case D did not achieve ef-
ficient peak shaving even though the system components were 
the same size as Case C. This shows that accurate forecasting is 
crucial to achieving a low-cost system. 

Energy storage behind-the-meter, as shown in this paper, is 
a way to cut costs for the building owner through peak shav-
ing. Another possibility for building owners to cut payback time 
of behind-the-meter storage is to rent storage capacity to the 
power grid to enable control of power grid stability in front-
of-meter. Whether the battery capacity presented in this paper 
would be useful for this purpose, was not analysed. Chun Sing et 
al. (2017) studied large-scale PV-storage installations and con-
cluded that energy storage could limit stability issues related to 

frequency and voltage. A lab-scale experiment for such a system 
was conducted by Young-Jin et al. (2017) with promising results. 
The implementation of such features would require new busi-
ness models, but it is speculated that through an energy man-
agement solution as presented in this work, it would be possible 
for buildings to have a time-stamped forecast of net power pur-
chase from the grid. This way, it would be possible to schedule 
actions to control power grid stability, not only by the temporal 
shutdown of equipment as is the case for certain larger indus-
trial customers, but also by distributing power from behind-the-
meter battery to power grid. Ranaweera et al. (2017) presented a 
battery control method that could serve such a purpose.

Setting up an efficient energy management system for a 
building might consist of three phases. First, a robust dimen-
sioning of system components (PV, battery, inverters) in an 
early stage. This phase is covered in the current paper. Second, 
there is a need for a monthly overview that identifies the maxi-
mum peak that will set the cost for the month. Both height 
of peak (kW) and timing (day) of month should be identified. 
This forecast should also provide a frequency of these peaks, 
i.e. whether they occur once or several times a month. Results 
from this paper show that both TVB and CW-GB with Yt-1 is 
efficient for this overview. Third, a higher resolution forecast, 
preferably down to 15 minutes, should identify how to operate 
the battery on a day-to-day basis. Results from this paper show 
that model TVB and CW-GB without Yt-1 may have potential, 
but the building in the current study had some unexplained 
variation that was difficult to predict. Forecasting both the 
monthly peak and the day-to-day high-resolution peak is im-

Table 1. System dimensioning and project lifetime economics.

Table 2. Monthly level of peak shaving reduction for the different cases, in % and in EUR.

Control PV (kWp) Battery (kWh) COE* (EUR/kWh) NPC** (M EUR) Optimization

A) Cycle charging 240 0 0.0652 3.92 All components

B) Forecasting 240 135 0.0650 3.91 Only battery

C) Forecasting 322 135 0.0649 3.91 All components

D) Cycle charging 322 135 0.0658 3.97 No components

* COE denotes Levelized Cost of Electricity. ** NPC denotes total Net Present Cost.

Month Case A Case B Case C Case D
Peak 

reduction 
(%)

Peak 
reduction 

(%)

Peak 
reduction 

(%)

Demand 
Charge 
Saving 
(EUR)

Peak 
reduction 

(%)

January 0 12 12 1,680 5 
February 0 9 9 950 0 
March 0 11 11 630 0 
April 0 6 6 60 0 
May 9 15 15 170 9 
June 10 27 27 350 10 
July 6 17 18 170 8 
August 7 20 22 200 8 
September 14 23 24 170 15 
October 7 29 32 220 9 
November 9 26 26 830 11 
December 0 17 17 1,580 0 
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portant to get the most economic gains out of the system. There 
might be no reason to discharge the battery during hours where 
the demand is much lower than the monthly peak, although it 
might be beneficial to charge the battery during hours with low 
electricity price or to capture excess PV electricity. However, 
if new business models are introduced that allows the energy 
storage owner to sell electricity back to the power grid in order 
to control power grid quality, it might be more beneficial to 
use the battery for both peak shaving and power grid control. 

Conclusion
Based on the results from this work, the following conclusions 
are highlighted: 

• Accurate forecasting of electricity demand can be per-
formed with both the TVB and the CW-GB model, but for 
the building in this study Yt-1 is crucial as a predictor, hence 
the model will be challenging in production

• During the design of PV-battery systems, the components 
should be co-optimized.

• Battery storage was only economically beneficial when fore-
casting was deployed. 

• Energy management with forecasting improved profitability 
and potentially between EUR 10,200–61,300 can be saved 
during a 25-year period.

• For the optimal case, most of the savings came from peak 
shaving, not from increased self-consumption.
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