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Abstract

Gas hydrates represent one of the main flow assurance issues in the oil and gas
industry as they can cause complete blockage of pipelines and process equipment,
forcing shut downs. Previous studies have shown that some crude oils form hydrates
that do not agglomerate or deposit, but remain as transportable dispersions. This
is commonly believed to be due to naturally occurring components present in the
crude oil, however, despite decades of research, their exact structures have not yet
been determined. Some studies have suggested that these components are present
in the acid fractions of the oils or are related to the asphaltene content of the oils.
Crude oils are among the worlds most complex organic mixtures and can contain
up to 100 000 different constituents, making them difficult to characterise using
traditional mass spectrometers. The high mass accuracy of Fourier Transform Ion
Cyclotron Resonance Mass Spectrometry (FT-ICR MS) yields a resolution greater
than traditional techniques, making FT-ICR MS able to characterise crude oils to a
greater extent, and possibly identify hydrate active components.

FT-ICR MS spectra usually contain tens of thousands of peaks, and data treatment
methods able to find underlying relationships in big data sets are required. Machine
learning and multivariate statistics include many methods suitable for big data. A
literature review identified a number of promising methods, and the current status
for the use of machine learning for analysis of gas hydrates and FT-ICR MS data
was analysed. The literature study revealed that although many studies have used
machine learning to predict thermodynamic properties of gas hydrates, very little
work have been done in analysing gas hydrate related samples measured by FT-ICR
MS.

In order to aid their identification, a successive accumulation procedure for increas-
ing the concentrations of hydrate active components was developed by SINTEF.
Comparison of the mass spectra from spiked and unspiked samples revealed some
peaks that increased in intensity over the spiking levels. Several classification meth-
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ods were used in combination with variable selection, and peaks related to hydrate
formation were identified. The corresponding molecular formulas were determined,
and the peaks were assumed to be related to asphaltenes, naphthenes and polyethy-
lene glycol. To aid the characterisation of the oils, infrared spectroscopy (both
Fourier Transform infrared and near infrared) was combined with FT-ICR MS in a
multiblock analysis to predict the density of crude oils. Two different strategies for
data fusion were attempted, and sequential fusion of the blocks achieved the highest
prediction accuracy both before and after reducing the dimensions of the data sets
by variable selection.

As crude oils have such complex matrixes, samples are often very different, and many
methods are not able to handle high degrees of variations or non-linearities between
the samples. Hierarchical cluster-based partial least squares regression (HC-PLSR)
clusters the data and builds local models within each cluster. HC-PLSR can thus
handle non-linearities between clusters, but as PLSR is a linear model the data
is still required to be locally linear. HC-PLSR was therefore expanded into deep
learning (HC-CNN and HC-RNN) and SVR (HC-SVR). The deep learning-based
models outperformed HC-PLSR for a data set predicting average molecular weights
from hydrolysed raw materials.

The analysis of the FT-ICR MS spectra revealed that the large amounts of infor-
mation contained in the data (due to the high resolution) can disturb the predictive
models, but the use of variable selection counteracts this effect. Several methods
from machine learning and multivariate statistics were proven valuable for predic-
tion of various parameters from FT-ICR MS using both classification and regression
methods.
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Sammendrag

Gasshydrater er et av hovedproblemene for Flow assurance i olje- og gassnæringen
ettersom at de kan forårsake blokkeringer i oljerørledninger og prosessutstyr som
krever at systemet må stenges ned. Tidligere studier har vist at noen råoljer danner
hydrater som ikke agglomererer eller avsetter, men som forblir som transporterbare
dispersjoner. Dette antas å være på grunn av naturlig forekommende komponenter
til stede i råoljen, men til tross for årevis med forskning er deres nøyaktige strukturer
enda ikke bestemt i detalj. Noen studier har indikert at disse komponentene kan
stamme fra syrefraksjonene i oljen eller være relatert til asfalteninnholdet i oljene.
Råoljer er blant verdens mest komplekse organiske blandinger og kan inneholde opp-
til 100 000 forskjellige bestanddeler, som gjør dem vanskelig å karakterisere ved bruk
av tradisjonelle massespektrometre. Den høye masseoppløsningen Fourier-transform
ion syklotron resonans massespektrometri (FT-ICR MS) gir en høyere oppløsning
enn tradisjonelle teknikker, som gjør FT-ICR MS i stand til å karakterisere råoljer
i større grad og muligens identifisere hydrataktive komponenter.

FT-ICR MS spektre inneholder vanligvis titusenvis av topper, og det er nødvendig å
bruke databehandlingsmetoder i stand til å håndtere store datasett, med muligheter
til å finne underliggende forhold for å analysere spektrene. Maskinlæring og multi-
variat statistikk har mange metoder som er passende for store datasett. En litteratur
studie identifiserte flere metoder og den nåværende statusen for bruken av maskin-
læring for analyse av gasshydrater og FT-ICR MS data. Litteraturstudien viste
at selv om mange studier har brukt maskinlæring til å predikere termodynamiske
egenskaper for gasshydrater, har lite arbeid blitt gjort med å analysere gasshydrat
relaterte prøver målt med FT-ICR MS.

For å bistå identifikasjonen ble en suksessiv akkumuleringsprosedyre for å øke kon-
sentrasjonene av hydrataktive komponenter utviklet av SINTEF. Sammenligninger
av massespektrene fra spikede og uspikede prøver viste at noen topper økte sam-
men med spikingnivåene. Flere klassifikasjonsmetoder ble brukt i kombinasjon med
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variabelseleksjon for å identifisere topper relatert til hydratformasjon. Molekyl-
formler ble bestemt og toppene ble antatt å være relatert til asfaltener, naftener og
polyetylenglykol. For å bistå karakteriseringen av oljene ble infrarød spektroskopi
inkludert med FT-ICR MS i en multiblokk analyse for å predikere tettheten til råol-
jene. To forskjellige strategier for datafusjonering ble testet og sekvensiell fusjoner-
ing av blokkene oppnådde den høyeste prediksjonsnøyaktigheten både før og etter
reduksjon av datasettene med bruk av variabelseleksjon.

Ettersom råoljer har så kompleks sammensetning, er prøvene ofte veldig forskjellige
og mange metoder er ikke egnet for å håndtere store variasjoner eller ikke-lineariteter
mellom prøvene. Hierarchical cluster-based partial least squares regression (HC-
PLSR) grupperer dataene og lager lokale modeller for hver gruppe. HC-PLSR kan
dermed håndtere ikke-lineariteter mellom gruppene, men siden PLSR er en lokal
modell må dataene fortsatt være lokalt lineære. HC-PLSR ble derfor utvidet til
convolutional neural networks (HC-CNN) og recurrent neural networks (HC-RNN)
og support vector regression (HC-SVR). Disse dyp læring metodene utkonkurrerte
HC-PLSR for et datasett som predikerte gjennomsnittlig molekylvekt fra hydroly-
serte råmaterialer.

Analysen av FT-ICR MS spektre viste at spektrene inneholder veldig mye infor-
masjon. Disse store mengdene med data kan forstyrre prediksjonsmodeller, men
bruken av variabelseleksjon motvirket denne effekten. Flere metoder fra maskin-
læring og multivariat statistikk har blitt vist å være nyttige for prediksjon av flere
parametere from FT-ICR MS data ved bruk av både klassifisering og regresjon.
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1 Introduction

During transportation of oil and gas from the well to the production site, ice forma-
tions can occur in the pipelines and these ice formations are known as gas hydrates.
This section will go through the chemistry involved in the formation of gas hydrates,
the oil industries´ effort to avoid them and how the work presented in this thesis
can contribute to an increased understanding of their formation.

1.1 Gas hydrates

Gas hydrates are crystalline structures where smaller guest molecules are trapped in-
side cages formed by water molecules through hydrogen bonding at low temperatures
and high pressures [1, 2]. The gasses involved are usually light hydrocarbons such
as methane, ethane, propane, and iso-butane, in addition to carbon dioxide (CO2)
and hydrogen sulphide (H2S), where one or more enter the hydrate cages during
formation. Hydrates are mainly formed as one of three crystallographic structures
described by the comprising number of cages, where the smallest is dodecahedron
referred to as sI, the second tetrakaidecahedron referred to as sII, and hexakaidec-
ahedron referred to as sH, but hydrates can also exist in other sizes and shapes
[3]. The gas composition is of relevance to gas hydrate formation, deciding which
hydrate structures are formed, which gasses that enter the hydrate cages and the
overall thermodynamics. Gas hydrates can lead to complete blockage of pipelines
and production equipment and are therefore among the main flow assurance issues
in the oil and gas industry.

Although gas hydrates have been known for over 200 hundred years, with Sir
Humphry Davy’s discovery in 1810 [4], Hammerschmidt was the first to acknowledge
their presence and start explaining the "freezing" of water in gas pipelines [5]. This
marks the start of the modern research on hydrate thermodynamics and in later
years hydrate formation kinetics [6]. Gas hydrates in the oil and gas industry have,
since their discovery, been treated with addition of chemicals or by operating out-
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side the hydrate region by controlling the pressure and/or temperature. Currently,
the most common strategy for hydrate inhibition is the use of thermodynamic in-
hibitors (THIs). THIs are chemicals such as methanol, ethanol or glycols, and these
inhibitors shift the hydrate curve towards lower pressures at hydrate inducing tem-
peratures, enabling production at lower temperatures without the formation of gas
hydrates [7, 8]. For this type of inhibitor to work, 20-50% relative to the mass of the
water phase is needed. Its premise is that without sufficient amount of THI, hydrate
formation is expected and the inhibitor is therefore always present in the pipelines.
Another promising strategy is the use of low dose hydrate inhibitors (LDHI) which
consist of kinetic hydrate inhibitors (KHI) and anti-agglomerants (AAs) [9]. The
purpose of the AAs is to form a slurry of gas hydrates dispersed in the oil phase,
which can be transported through the pipelines without the particles aggregating
together or depositing on the pipe surface. AAs can perform at higher subcool-
ings than KHIs, making them applicable even for deep water use. Subcooling is
the process of lowering the temperature of a liquid below its freezing point, with-
out forming solids. Different types of AAs exist, but they are usually surfactants
that either stabilise an emulsion or bind to the hydrate surface and alter it from
hydrophilic to hydrophobic, and thereby disrupt growth [10]. The latter of the two
types is the most commonly used, and usually consists of quaternary ammonium
surfactants where the part that binds to hydrates consists of to or more n-butyl,
n-pentyl or iso-pentyl groups [7]. A KHI on the other hand, binds to the hydrate
surface, decreasing the crystal formation process by preventing growth, in order to
delay formation long enough to reach the storage facility without causing blockage
[11, 12]. KHI formulations consist of water-soluble polymers with functional groups
that can create hydrogen-bonds to water molecules or gas hydrate surfaces, and a
hydrophobic group either adjacent to or bonded directly to each amide group [13].
However, for an LDHI to be efficient, it must be surface active and able to adsorb
to the surface or interact with the hydrate cages of the dispersed hydrate particles.
They are also highly dependent on the composition of the oil, where high contents
of some components can depreciate the effect of the LDHIs. A typical concentration
for an LDHI injection is 0.1-1 wt% relative to the water phase.

However, operating outside the hydrate region is not always possible, and the ad-
dition of chemicals poses an environmental threat and an increase in production
costs. Moreover, the addition of chemicals can deteriorate the quality of the oil.
As drilling and oil extraction technologies have improved, oilfields in subsea areas
where hydrate forming conditions are frequent have become more common. The oil
industry is therefore in need of an environmentally friendly, non-destructive solution
which can deal with subsea conditions.
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When blockage of a pipeline occurs, the production has to shut down while the gas
hydrate plug is removed. Removal of hydrates is associated with high risk and high
cost, and is usually handled by dissociating the plug using either depressurisation,
injection of chemicals that generate heat, thermal methods such as electrical heating,
or mechanical methods such as coiled tubing or drilling [2, 14]. During the dissoci-
ation process, the hydrate plug can detach from the pipe wall and move down the
pipeline. In extreme cases detached hydrates can act as projectiles, damaging pipes
or equipment, they are therefore treated with great care and should be avoided.

1.2 Production chemistry

Production chemistry constitutes managing the chemical reactions of the phases
produced between the reservoir and refinery, with the aim of maximising the flow
assurance in the system. Flow assurance is the process of ensuring successful and
economical flow from reservoir to end user. Production chemistry deals with issues
such as fouling problems; deposition of unwanted matter in a system, problems re-
lated to physical properties; foams, emulsions or viscous samples, corrosion related
issues and environmental issues; oil discharge or for instance hydrogen sulphide gas.
Although non-chemical approaches such as heating, insulation, filtering or altering
the flow can be used in some cases, chemical additives often have to be applied in
addition to fully resolve or rectify these issues. Production chemicals are mainly
classified as inhibitors which minimise fouling or remove deposits, process aids to
improve the separation of gas from liquids and water from oil, corrosion inhibitors
or chemicals with other benefits such as environmental compliance. During the
transportation of oil and gas from well to reservoir for instance, chemicals such as
drag reducers, depressants, odorising additives, hydrate inhibitors, surfactants, cor-
rosion inhibitors, scale inhibitors and paraffin inhibitors are added [15]. Many of
the production chemicals are environmentally challenging, toxic to the surrounding
environment and with restricted or slow biodegradability. In recent years, the focus
on hazardous production chemicals has increased and most regions now have envi-
ronmental regulations. However, these regulations vary between regions. Norway is
part of a Harmonised Mandatory Control Scheme valid for the North-East Atlantic
areas, which includes regular testing of produced water for toxic components and
residues of production chemicals, to keep them under the legal levels [16]. These reg-
ulations are valid for the entire North Sea and are considered to be the most complex
environmental regulations for toxicity, biodegradation and bioaccumulation.

Green chemistry is an emerging area, focusing on the development of products and
processes which reduce or eliminate the use of hazardous chemicals, with particular
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focus on the environmental impact of chemistry. A substantial amount of work
has been done to develop production chemicals designed to be "greener", more
environmentally friendly, and adhering to the regulations, but they usually have
lower performance [10]. Reducing toxicity and bioaccumulation of the chemicals,
and increasing the biodegradability are important focus areas.

1.3 Emulsions

Production of crude oils, most often involve co-production of a mixture of gas, water,
oil and solid particles, where the oil and water often form emulsions and the solids
can be suspended in the liquid. In an emulsion containing colloidal solid particles
or droplets, it is likely that one of the liquids will wet the solids more than the
other liquids [17]. Emulsions are mixtures of two or more liquids that are normally
immiscible, where one phase is dispersed in another, continuous phase. The phase
with droplets is referred to as the dispersed phase, while the phase they’re suspended
in is referred to as the continuous phase. In crude oils, emulsions are either water
continuous (oil-in-water) or oil continuous (water-in-oil), and they are stabilised by
components inherent in the crude oil or by the addition of chemicals [18]. In a crude
oil system, emulsions are created when oil and water come in contact and there is
sufficient mixing, or when an emulsifying agent (also called emulsifier) is present
which reduces the energy needed to increase the systems interface during mixing,
i.e creating droplets. In the oil industry emulsions are normally undesired as the
phases have to be separated before refining, which increases the production costs.
Surfactants are commonly used as emulsifying agents and added during production
to break the emulsions, as well as keep them from forming during extraction and
transportation. The surfactants can also be adsorbed to the particle surface of
suspensions, where they can alter the wettability of the particle and induce different
emulsion behaviours. Figure 1.1 shows a water-in-oil and a oil-in-water emulsion
and how a surfactant with a hydrophilic head as hydrophobic tail can adsorb to the
droplets. The colloidal particles suspended in the liquid can also adsorb to droplets,
and thereby stabilise the emulsions.
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Figure 1.1: Illustration of oil-in-water and water-in-oil emulsions, and how a surfactant with a
hydrophilic head and hydrophobic tail will stabilise the emulsions by adsorbing to the oil and
water molecules.

The hydrate plugging in crude oil systems has, in addition, previously been related
to the wettability state of the hydrate particles when formed, where oil-wet (hy-
drophobic) particles are associated with transportable dispersions and water-wet
(hydrophilic) with aggregation of hydrate particles and a higher potential for plug-
ging [19]. The surface energy, measuring the intramolecular interactions of a solid,
has an impact on wetting, adsorption and adhesion on the hydrate, where oil-wetted
particles tend to stabilise water-in-oil emulsions while water-wetted particles tend
to stabilise oil-in-water emulsions. The wettability of a solid, like a hydrate particle,
immersed in oil is determined by the contact angle of a water drop on the horizon-
tal surface under thermal equilibrium. The wettability of a clean hydrate surface
would be towards water and thus result in a higher potential for agglomeration and
plugging, as gas hydrate particles initially are water-wet. However, naturally oc-
curring components in the crude oil can affect the wettability of hydrate particles
by adsorbing to the hydrate, making them oil-wet and altering the hydrate surface
towards hydrophobic. Oil-wet hydrate particles will no longer be exposed to water
bridging and will disperse into the oil phase as smaller particles, something that will
most often alter the inversion point and properties of the emulsion.

Accordingly, the wettability of hydrate particles can be altered when formed in a
crude oil system, by interaction (adsorption or inclusion) of hydrate-active com-
ponents. The degree of alteration of the wettability will depend on the crude oil
composition, since variation is attributed to differences in the type and/or amount
of surface active components that adsorb to the hydrate surface [20].
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1.4 Crude oil chemistry

Crude oils are among the worlds most complex organic mixtures [21] which in ad-
dition to the relatively high mass of their components, makes detailed analysis dif-
ficult. This is because many traditional analytical techniques does not have high
enough resolving power to separate a large number of species, or mass ranges that
cover large masses. Crude oils are formed from organic material situated under sed-
imentary rocks, subjected to heat and high pressures over long time periods. The
composition of the oil is therefore dependent on the types of organic material and
its constituents. Naturally, different geographical regions have organic materials
with varying composition and it has been shown that the composition of the oils is
dependent on their geographical origin [22]. However, there are some similarities;
all oils are organic and the composition of crude oils normally consists of 83-87 %
carbon, 10-14 % hydrogen and varying small amounts of nitrogen, oxygen, sulphur
and metals such as nickel and vanadium [23]. The most common constituents are
alkanes, cycloalkanes and aromatic hydrocarbons, generally containing between 5
and 40 carbon atoms per molecule. These constituents can all be parts of a ho-
mologeous series. A homologeous series is a sequence of compounds with a fixed set
of functional groups, which therefore have similar chemical and physical properties,
while being separated by a fixed mass unit. E.g. in an alkane series, either straight
or branched, from one alkane to the larger alkane next in line, one CH2, 14u, is
added to the molecule.

One way to gain an understanding of the molecular structures of crude oil con-
stituents is through the double bond equivalent (DBE). The DBE is a measure of
the number of double bonds and rings in the molecular formula, and can be calcu-
lated for a molecule with elemental formula CcHhNnOoSs by

DBE = c− h

2
+

n

2
+ 1 (1.1)

DBE does not however denote double bonds between other elements than carbon,
hydrogen and nitrogen, as shown by Equation 1.1. The crude oil constituents can
be sorted according to the DBEs, and along with the hydrogen-carbon (H/C) ratios
and the molecular formulas, interpretations of the molecular structures for each
component can begin to emerge.

Due to the complexity of the oils, it is often expedient to separate the chemical
constituents of interest from the remainder. One method for dividing the crude oils
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into distinct fractions is the SARA (Saturates, Aromatics, Resins and Asphaltenes)
fractionation scheme developed by Jewel et al [24]. In SARA, the oil sample is
separated into four main chemical classes based on solubility and polarity, as listed in
Table 1.1. The resin and asphaltene fractions are similar, but the asphaltene fraction
has higher molecular weight [25, 26]. The asphaltene fraction also contains the
largest percentage of heteroatoms (oxygen, sulphur and nitrogen) and organometallic
constituents (nickel, vanadium and iron) [27].

Table 1.1: The four SARA fractions and the chemical composition of each fraction.

Constituent Composition
Asphaltenes Condensed aromatic rings with heteroatoms and

cyclic unsaturated compounds (with alternating
double bonds and substituted alkyl chains)

Resins Polar compounds often containing heteroatoms
(such as nitrogen, oxygen or sulphur)

Aromatics Aromatic rings (unsaturated rings)
Saturates Saturated hydrocarbons (straight chained or branched)

non-polar compounds

Crude oils are often categorised according to their geographical origin, the American
Petroleum Institute (API) gravity scale and sulphur content. For instance, a crude
oil is considered light if it has low density and heavy if it has high density. Density
is inversely related to the API scale, where the lighter the oil is, the higher the API
gravity. API gravity is a measure of the density of a petroleum liquid relative to
water, through its specific gravity, i.e. a measure of a liquids density compared to
water. The API gravity for a sample is calculated by

◦API =

(
141.5

specific gravity

)
− 131.5 (1.2)

The API can to a degree also be related to the amount of aromatics and compounds
containing heteroatoms, like asphaltenes and resins [28]. A high content of aromat-
ics is related to heavy oils and lower APIs, while light oils have a higher alkane
content [29]. The differences in composition between the density fractions make
the oils easily distinguishable, and are important for the oil price. The higher the
alkane content of the oil is, the more gasoline and diesel fuel can be produced. Con-
sequently, light oils receive a higher price than heavy oils. Additionally, crude oils
are considered as "sweet" when they have a low content of sulphur and "sour" if
they contain substantial amounts of sulphur. Sweet oils are more desirable because
they require less refining to reduce the sulphur content which is toxic to the environ-
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ment and corrosive. Accordingly, all the above contribute to the unique molecular
composition of each crude oil.

1.4.1 Asphaltenes

The asphaltene fraction constitute the most complicated components of crude oils,
they are highly surface active in addition to being the largest, densest and most polar
[30]. They do not have a specific chemical formula, and the individual molecules vary
in the number of atoms contained in the structure. Asphaltenes can be regarded as
a collective term for a solubility fraction of molecules with similar solubilities. The
exact molecular structures for this group of molecules are difficult to determine,
but are generally regarded to comprise of mainly poly-aromatic ring structures with
heteroatoms (oxygen, nitrogen and sulphur), small amounts of metallic constituents
(nickel, vanadium and iron) and aliphatic side chains. One of the reasons for the
difficulties in determination of molecular structures is that the molecules aggregate
in solution. The degree of aggregation is highly dependent on the source of the as-
phaltene, the surrounding chemistry and physical environment, and the underlying
mechanisms are still unclear [31]. However, after the development of high resolution
methods such as Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
(FT-ICR MS), asphaltene structures have been slightly more illuminated. The cur-
rent general consensus is that the masses of asphaltenes mainly lie in the range
500 Da to 1000 Da with an average of ∼750 Da [30]. It is worth to note that for
asphaltene characterisation, thousands of different molecular structures exists, and
this can simply be regarded an average of all the individual ashpaltene molecules.

1.4.2 Naphthenic acids

Naphthenic compounds are found in the resin fraction and consist of a complex
mixture of alkyl-substituted acyclic and cycloaliphatic carboxylic acids with the
general formula CnH2n+zO2 where n corresponds to the number of carbon atoms
and z specifies the hydrogen deficiency from ring formation [32]. Naphthenic acids
constitute about 2-4 % of the average crude oil composition [33]. Molecular weights
between 115-1500Da have been reported with an average weight between 300-500Da
[34]. In light crude oils naphthenic acids are usually present at low concentrations,
while the concentrations are higher in heavier oils [35].

Some naphthenic acids have been shown to contribute to corrosion of metals and
formation of metal salts called naphthenates, which can stabilise or even precipitate
emulsions [36]. As naphthenic acids have amphiphilic structures, they tend to par-
tition between the oil phase and the water phase, remaining at the interface. This

8



is however dependent on the molecular size, structure and pH [37].

Additionally, some napththenic acid species have been proven to be toxic and car-
cinogenic, and can therefore have detrimental effects on the environment. They are
especially toxic for aquatic life, and efforts have to be made to avoid leakages from
offshore instalments to the surroundings. Tetrameric acids (so called ARNs) are
one of the more problematic of the high mass naphthenic acid species, containing
four carboxylic groups (8 oxygen atoms). ARNs can form interfacial gels using their
four carboxylic endings to cross-link calcium ions and produce an insoluble salt,
easily adherable and with high interfacial activity. Because of the high number of
carboxylic groups ARNs are among the most toxic naphthenic acid species.

1.5 Naturally occurring hydrate active compounds

Through field experience and laboratory experiments, it became evident that some
crude oils form hydrates that do not agglomerate or deposit, but remain as trans-
portable particles [38]. The most common explanation is that this is due to naturally
occurring components in the crude oil with hydrate active properties, that render the
surface of the particles to be hydrophobic. One possibility is that these compounds
have the ability to adsorb to the hydrate surface, preventing the agglomeration
of the hydrates [39]. Another possibility is that parts of a molecule, for example
butyl/pentyl groups, penetrate open 51264 cavities on the hydrate surface and can
even become embedded in the hydrate surface as the hydrate grows around the alkyl
groups [7]. Despite decades of investigation, their exact structures have not yet been
determined in detail.

However, some previous studies have suggested that these natural inhibitors may be
contained in the petroleum acid fraction [38, 40, 41, 42, 43, 44, 45] which has also
shown surface activity towards hydrate surfaces. Borgund et al. [41] and Erstad et
al. [45] showed experimentally the anti-agglomerating properties of some petroleum
acid fractions, and therein naphthenic acid compounds [41]. Naphthenic acids have
also been shown to stabilise water-in-oil emulsions [46].

The acidic constituents in crude oils have been shown to be products of biodegra-
dation [47] and studies have indicated that biodegradation of the oil in the reservoir
may be necessary for the formation of water-wet hydrates [39]. It has further been
suggested that the level of the biodegradation is an important factor for the hydrate
plugging tendency of the crude oils [20]. During aerobic biodegradation, aliphatic
hydrocarbons are consumed by bacteria, producing carbonic acids. These acids are,
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by their amphiphilic nature, surface active compounds and can dramatically change
the properties of the oils. Anaerobically degraded oils on the other hand, have
proved to alter the wettability of the gas hydrates to be oil-wet, leading to a lower
tendency for the gas hydrates to agglomerate or deposit to the pipe wall, and thus
a lower plugging tendency [45]. Additionally, Høiland et al. [20] showed that some
of the components acting as natural hydrate inhibitors are produced by the bacteria
and that the type of inhibitor compound present is more important than the amount
[48, 49].

Similarly, the asphaltene fractions are known to possess self-aggregating properties
that can stabilise some crude oil systems [50], and some asphaltenes can alter the
plugging potential of hydrates [51, 30]. It has been shown that the asphaltene
fractions able to stabilise systems prone to form transportable slurries often are
more polar, with higher oxygen content, higher acidity and lower DBEs [52]. Other
studies have suggested that the possible hydrate activity of asphaltenes is related to
their sulfoxide content [53].

1.6 Research aim and objectives

This thesis is part of a larger project with the primary objective to develop new
fundamental knowledge of how natural components in crude oils affect gas hydrate
properties. This knowledge can be used for increased safety and reduced costs related
to the management of gas hydrates during oil production. The main goal of this
work was to develop methods that could contribute to identify naturally occurring
hydrate active components from FT-ICR MS spectra. To accomplish this, a set of
secondary objectives with measurable goals were defined:

• Identify hydrate-active oil components from FT-ICR MS spectra of crude oils

• Develop new data science methods for correlating FT-ICR MS spectra to crude
oil properties

• Correlate structures and concentrations of hydrate-active components to the
wetting properties of the oil

• Transfer the accumulated knowledge and developed methods to project part-
ners for further use

The exact structures of these hydrate active components have not yet been deter-
mined in detail, although many hypotheses exist regarding their compositions. The
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complexity of the matrix of crude oils makes their identification a challenge, and FT-
ICR MS is one of the few mass spectrometers able to handle such highly complex
samples. FT-ICR MS allows for more detailed analysis of crude oils, which could
make it possible to quantify masses which previously have been undetected. How-
ever, this high mass accuracy results in very high-dimensional data. In recent years,
chemometrics have become more frequently used by chemists with the increase in
the sensitivity of instruments and the following increase in data amounts [54]. Data
analysis for large, complex data sets is not as commonly used in the oil and gas in-
dustry, but the use has increased in recent years [55]. The main aim of this project
was therefore to use machine learning to come one step closer to the identification
of hydrate active components. To investigate the current state of the use of machine
learning in the field of gas hydrates, a literature study was performed. The results
are shown in Paper I [56], where a text mining study of the Scopus database [57]
was performed followed by a text analysis study to identify the main topics in the
extracted articles.

An additional goal was to develop new methods to facilitate the extraction and
identification of hydrate active components. A successive accumulation procedure
(spiking) with the aim of accumulating the components was developed with the
hope of increasing their concentration [58, 59]. In Paper II [60] and Paper III [59]
variable selection was used to identify the variables related to hydrate formation
from FT-ICR MS spectra and their molecular formulas were interpreted. Vari-
able selection was continued into Paper IV where the densities of crude oils were
predicted from FT-ICR MS, Fourier Transform Infrared (FTIR) and Near-infrared
(NIR) spectroscopy. NIR and FTIR measurements were included in the study to
assess whether they could provide any additional information or improve the mod-
els, as FT-ICR MS yielded poor prediction accuracy. The variable importance in
projection (VIP) for each variable was used to identify important variables and eval-
uate their chemistry. Two multi-block techniques using different ways of fusing the
data were compared to Partial Least Squares Regression (PLSR) in an attempt to
use the additional information from the IR measurements to improve the accuracy
and interpretability of the model.

Another part of the project was to develop new, generally applicable, machine learn-
ing methods. In Paper V the Hierarchical Cluster-based Partial Least Squares Re-
gression (HC-PLSR) developed by Tøndel et al. [61], was expanded into deep learn-
ing using convolutional neural networks (CNNs), recurrent neural networks (RNNs)
and support vector regression (SVR). These methods should model non-linear and
heterogeneous data better than PLSR, which is a linear regression method. How-
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ever, neural network based methods need substantial amounts of data for training to
create stable and well validated local models, and the project did not generate suf-
ficient gas hydrate related data to test these methods. A previously published data
set containing FTIR measurements of raw materials from chicken, turkey, salmon
and mackerel was therefore used in Paper V. When more data has been generated
on oil systems, HC-CNN, HC-RNN and HC-SVR should be valuable methods for
analysis of crude oil data as well.

1.6.1 Time consumption and chemical usage reduction

One of the main goals of chemometrics is to use statistical methods for fast and
reliable analysis of spectroscopic data to replace time consuming wet chemistry
methods, thereby reducing chemical consumption. As described previously in this
chapter, hydrate inhibition uses large amounts of chemicals where many of them are
toxic to the surrounding environment. However, naturally occurring components
inhibiting hydrate formation are already present in the oil, and if they could be
utilised, the need for addition of chemicals could be reduced. Many of the analysis
methods for determining crude oil properties are still complicated, as well as time
and chemical consuming. For instance, the developed method for measuring the
wetting properties for a crude oil takes on average one week and it is difficult to
ascertain the accuracy of the measurements in contrast to spectroscopic techniques,
which are fast and highly reproducible. One such spectroscopic technique is FT-ICR
MS, and relating crude oil and hydrate properties to FT-ICR MS spectra will allow
for faster determination of the plugging potential when the crude oil forms hydrates.
In the following chapters the mass accuracy and advantages of FT-ICR MS will be
demonstrated.

1.6.2 Further use of developed methods

The work presented in this thesis was part of a knowledge-building project to in-
crease the understanding of chemical properties of crude oils, specifically related to
naturally occurring hydrate active components. The project was a collaboration be-
tween SINTEF, the Norwegian University of Life Sciences, and industrial partners
Equinor ASA, OMV (Norge) AS, Wintershall DEA Norge and TotalEnergies funded
by the Research Council of Norway. Funding was received from the PETROMAKS
2 program aiming at petroleum-oriented knowledge-building projects for industry,
with the project number: 294636 and project title “New Hydrate Management: New
understanding of hydrate phenomena in oil systems to enable safe operation within
the hydrate zone”. An important part of this work was therefore to transfer the
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acquired knowledge and developed methods to all project partners for further use.
It was therefore of great importance to develop efficient, well performing models,
and easily understandable code which can also be used by personnel having little
programming expertise in the future.
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2 Theory

To identify the naturally occurring hydrate active components, oil samples were
measured using FT-ICR MS and machine learning was applied to analyse the re-
sulting data. Infrared spectroscopy was also utilised for crude oil characterisation
to compare it´s effectiveness to that of FT-ICR MS. In this chapter an introduction
into all applied methods are given.

2.1 Mass spectrometry

Mass spectrometry (MS) is an analytical technique where ions are produced and
measured by their the mass-to-charge (m/z) ratio and presented in a mass spectrum.
For the m/z-ratio in mass spectrometry, the m refers to the mass of the ion while z
refers to the number of charges of the ion. Therefore, when the number of charges
on the ion is one, the m/z-ratio equals the molecular mass of the ion. In MS, a
sample is ionised into charged fragments before being separated by subjection to an
electric or magnetic field. This is the ion analyser which separates the ions according
to their mass. The resolution of the MS technique is determined in the analyser,
and this is dependent on the type used and its geometry. Various types of analysers
exist, and they are often separated into two broad groups. One group contains
scanning analysers, where ions of different masses are transmitted successively along
a time scale. This group consists of magnetic sector instruments which only allow
ions with a given m/z ratio to pass through at a time, or quadrupole instruments
with oscillating electric fields [62]. Another group generally allows for simultaneous
transmission of all ions, and includes the dispersive magnetic analyser, time-of-flight
analysers and the trapped-ion mass analysers consisting of ion traps, ion cyclotron
resonance and orbitrap instruments. In the final step, the desired ions selected in
the analyser are detected in a detector and presented in the mass spectrum, which
is a record of the abundance of each ion reaching the detector plotted against the
ions m/z values.
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2.2 FT-ICR MS

Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) [63] is
a type of mass analyser that determines the m/z-ratio of ions based on the cyclotron
frequency of the ion in a fixed magnetic field. The mass accuracy for FT-ICR MS
is sub ppm and the mass spectral resolution can be above 10 million (at m/z=400),
which allows identification of a large number of different polar and non-polar groups
[64, 65, 66]. In an FT-ICR MS analysis, ions are detected simultaneously within
a detecting interval by the ion cyclotron resonance frequency they produce when
they rotate in a magnetic field. This provides an increase in signal-to-noise (S/N)
ratio compared to traditional mass spectrometers. A schematic illustration of how
an FT-ICR MS instrument works is shown in Figure 2.1. A sample is introduced
and ionised before the ions are trapped in a magnetic field by electric trapping
plates. The ions are then excited at their resonant cyclotron frequencies to a larger
cyclotron radius by an oscillating electric field orthogonal to the magnetic field.
When the ions are rotating at their cyclotron frequency they create a charge which
is detected by the detection plates when the ions come in close proximity. The
resulting signal is a transient or interferogram, consisting of a superposition of sine
waves. The transients are the frequencies of the ion oscillations, measured as time-
domain signals and presented in an interferogram. The signals are then extracted by
performing Fourier transformation, first into a frequency spectrum, and after mass
correction, to a mass spectrum.
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Figure 2.1: Schematic illustration of a FT-ICR MS instrument with the ion trapping, detection,
signal generation and conversion.
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2.2.1 General principle

Trajectories of ions are curved in a magnetic field, and if the velocity of the ion is low
and the field is intense, the radius of the trajectory becomes small [62]. This means
that the ions become "trapped" on a circular trajectory in the magnetic field. When
an ion of mass m and charge q (the cyclotron charge of the ion) moves in a spatially
uniform magnetic field B with a velocity of ν, it rotates around the magnetic field
direction [67] as shown in figure 2.2.

+ -

BB

Figure 2.2: Ion cyclotron motion for positive and negatively charged ions moving in a magnetic
field, B

The ions rotate in a plane perpendicular to the direction of the spatially uniform
magnetic field B, and positive and negative ions orbit in opposite directions. The
cyclotron rotational frequency (ωc) is given by

ωc =
qB

m
(2.1)

The ion completes a circular trajectory of 2πr with a frequency (νc) which is calcu-
lated as

νc =
ωc

2πr
(2.2)

All ions of a given m/z-ratio rotate at the same ion cyclotron resonance (ICR)
frequency, which is independent of the velocity, a property that makes ICR especially
amenable for mass spectrometry. The ion frequency is relatively insensitive to kinetic
energy, meaning that focusing the translational energy (the energy of the ions due
to their translational motion) is not essential for precise determination of the ions
m/z-ratio. Therefore, the centripetal force (F), the force acting on an object in a
curvlinear motion directed towards the axis of rotation or centre of curvature, for
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an ion with mass m becomes

F = qνB (2.3)

Correspondingly, the ions centrifugal force (F ’), which is a pseudo force acting in a
circular motion along the radius, directed away from the centre, becomes

F
′
=

mν2
c

r
(2.4)

The ion then stabilises on a trajectory resulting from the balance of these two forces

qνcB =
mν2

c

r
(2.5)

This is equal to

qB =
mνc
r

, (2.6)

relating back to the relationship in Equation 2.1. As the quadrupolar electrical field
used to trap the ions is in an axial direction, this relationship is only approximate.
The axial electrical trapping results in axial oscillations within the trap, with the
(angular) frequency

ωt =

√
qα

m
, (2.7)

where α is a constant similar to the spring constant of a harmonic oscillator and
is dependent on the applied voltage, and the dimensions and geometry of the ion
trap. The applied electric field and the resulting axial harmonic motion reduce
the cyclotron frequency and introduce a second radial motion, magnetron motion,
which occurs at the magnetron frequency. The cyclotron motion is still the used
frequency, but the relationship between Equation 2.1 and 2.7 is not exact because
of the magnetron motion. The natural angular frequencies of motion are

ω± =
ωc

2
±
√(ωc

2

)2
− ω2

t

2
, (2.8)
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where ωt is the trapping frequency due to the axial electrical trapping, ω+ is the
reduced cyclotron (angular) frequency and ω− is the magnetron (angular) frequency.
ω+ is typically measured in FT-ICR.

The advantage of the FT-ICR as a mass analyser, is that the m/z-ratio is experimen-
tally manifested as a frequency. As frequencies can be measured more accurately
than other experimental parameters, FT-ICR MS is able to achieve higher resolution
and thereby also higher mass accuracy than other types of mass measurements [67].

2.2.2 Resolution of FT-ICR MS spectra

The resolution of FT-ICR MS is often described as the full width of a spectral
peak at half-maximum peak height (∆m50%) for FT-ICR MS spectra in the mass
domain. The resolving power for a molecule’s FT-ICR MS signal is therefore defined
as m/∆m50% constituting the mass resolving power [68]. The frequency resolving
power is, based on the relationship in Equation 2.1, equal to the mass resolving
power except from a negative sign

ω

∆ω50%

= − m

∆m50%

(2.9)

The mass resolving power can also be thought of as the number of cyclotron orbits an
ion makes during the data acquisition period [69]. It is therefore desirable to confine
the ions to the ion trap as long as possible after excitation to achieve maximal mass
resolving power.

2.2.3 The Fourier Transform (FT)

The FT is a mathematical transformation that decomposes functions depending on
space or time into functions depending on spatial frequency or temporal frequency.
For each frequency, the magnitude (absolute value) of the complex value represents
the amplitude of a constituent complex sinusoid with that frequency, and the ar-
gument of the complex value represents that complex sinusoid’s phase offset. If a
frequency is not present, the transform has a value of 0 for that frequency [68].

2.2.4 Ionisation techniques

Several different ionisation techniques can be used in combination with FT-ICR
MS, and for crude oils the most common are Electrospray Ionisation (ESI) and
Atmospheric Pressure Photoionisation (APPI). ESI is achieved by applying a high
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voltage to a liquid passing through a capillary tube inducing highly charged droplets
[70, 62]. The liquid, often 1-10µL, is passed through a capillary needle where a
potential difference of typically 3-6 kV is applied between the end of the capillary and
a cylindrical electrode approximately 0,3-2 cm apart. The liquid becomes a fine mist
with highly charged droplets when leaving the capillary, and can either be positively
or negatively charged depending on the applied voltage. In positive mode, formic
acid is added to the liquid to aid ionisation by protonating basic neutrals, while
in negative mode ammonium hydroxide is added to deprotonate acidic neutrals,
resulting in lower background noise. ESI can produce multiple charges of the ions
and the number of 13C isotope peaks appearing within a single unit on the m/z scale
defines the number of charges on the ion [71].

APPI is performed by exposing the sample to photons emitted from an ultraviolet
(UV) light source [72, 64, 73]. The liquid consisting of analyte and solvent is vapor-
ised by a nebuliser probe, a probe which disperses the sample, creating a fine mist
under temperatures as high as 500°C. The molecules are then ionised using a vacuum
UV lamp at atmospheric pressure (105 Pa) and excited, creating the ionised state.
Molecules in both the analyte of interest and the solvent are likely to be ionised,
and the emission energy of the UV lamp should therefore be in the range between
the ionisation potential of the analyte and the ionisation potential of the solvent
and air component, thus reducing the amount of impurities. In positive mode, both
molecular ([M+·]) and protonated ions ([M +H]+) are generated. During negative
mode, the ions of the molecular species are produced by either proton abstraction or
adduct formation. The predominant ions are the molecular species ions ([M−H]−),
which are the ions corresponding to the fatty acids (Rn − COO−) present in the
sample [62]. APPI is not suitable for compounds with low thermal stability and is
sensitive to aromatic compounds and sulphur containing compounds.

ESI and APPI are popular ionisation techniques as they both can analyse liquids
directly from a high performance liquid chromatography (HPLC) column. The two
are also defined as soft ionisation techniques because very little fragmentation occurs
during ionisation. A disadvantage of ESI is the formation of adducts consisting of
analyte and metal ions and this is especially common for compounds with oxygen or
sulphur atoms in an orientation where complex formation with alkali metal ions is
possible [74]. For crude oil samples, seawater is usually present in the sample matrix
and sodium adducts are therefore often observed. When production chemicals are
present in the sample, they can infer greatly on the produced mass spectra. If
foreign constituents are ionised before introduction to the ionisation source, the
ionisation of the analyte in the source is overshadowed. When these ions enter the
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detection chamber, they can saturate the detector and suppress the signal from
the ionised analyte, leading to lower and in extreme cases no signal. One example
of this is polyethylene glycol (PEG) which is a hydrophilic molecule with formula
C2nH4n+2O2n+1 often used to elongate molecules to alter their solubility. PEGs are
common in production chemicals as lubricants, shale stabilisers and demulsifiers [15].
During analysis of the work presented in Paper II and III, PEG was observed in
the mass spectra from ESI(+)-FT-ICR MS and several PEG related structures were
selected as important variables. However PEGs have low thermal stability, and are
therefore not observed when heating is applied in APPI.

2.3 Infrared spectroscopy (IR) spectroscopy

In IR, the interaction of infrared radiation with matter by absorption, emission or
reflection is measured. The spectra are associated with transitions between vibra-
tional energy levels, where functional groups can be identified by their characteristic
vibration frequencies [71]. IR is rapid, non-invasive and requires minimal sample
preparations. A mass m vibrating with a frequency ν at the end of a fixed bond,
illustrates the range of values for the vibrational frequencies of various chemical
bonds

ν =

√
k

m
(2.10)

Here, k is a measure of the strength of the bond. However, the ends of a chemical
bond are not fixed, rather there are two masses (m1 and m2) involved where both
are able to move. The m in Equation 2.10 is therefore determined by

1

m
=

1

m1

+
1

m2

(2.11)

Following this, for equal molecules, C-H bonds will have higher stretching frequencies
than C-C bonds, which again have higher frequencies than C-halogen bonds and O-
H have higher frequencies than O-D. Since k increases with increasing bond order,
the relative stretching frequencies of carbon-carbon bonds have the order C≡C >
C=C > C−C. These generalisations and Equations 2.10 and 2.11 show how different
chemical groups can be separated and shown in an IR spectrum.

IR covers the region from approximately 14000 cm-1 to 20 cm-1, which can be di-
vided into three; the far-infrared region (400-20 cm-1), the mid-infrared region (4000-
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400 cm-1) and the near-infrared region (14000-4000 cm-1).

2.3.1 Fourier transform infrared (FTIR) spectroscopy

FTIR covers the mid-infrared region (4000-400 cm-1). In a FTIR spectrometer a
source of infrared light, emitting radiation throughout the whole of the selected
frequency range, is divided into two beams of equal intensity. One or both of the
beams are then passed through a sample. If both are passed through, one of them is
made to traverse a longer path. The two beams are then combined, which produces
an interference pattern that is the sum of all the interference patterns for each
of the wavelengths in the beam [71]. The differences in the two paths are changed
systematically so that the interference patterns change, producing a detectable signal
varying with optical path differences which are modified by the selective absorption
of some frequencies by the sample. The sum of the interference pattern in the
time domain is known as an interferogram, containing information about all the
frequencies absorbed by the sample. The interferogram is then fourier transformed
into a spectrum with absorption plotted against wavenumber. Figure 2.3 shows a
schematic illustration of an FTIR spectrometer.

Detector

Sample

cell

Computer

Spectrum

IR source

Fixed

mirror

Moving 

mirror

Figure 2.3: Schematic illustration of a FTIR spectrometer with the IR source. How the radiation
is passed through the sample using the mirrors creating the interference pattern is shown.

In FTIR spectra of crude oils, the absorption bands from C-H bonds from groups
containing aromatics, oxygen, sulphur and nitrogen usually dominate the spectra
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[75].

2.3.2 Near-infrared (NIR) spectroscopy

NIR covers the near-infrared region (14000-4000 cm-1). NIR can typically penetrate
deeper into a sample than FTIR, but the absorption bands are typically 10-100 times
weaker, resulting in a loss in sensitivity. NIR is therefore mainly suitable for quanti-
tative analysis and has more limitations when it comes to identification of chemical
groups [76]. Most NIR spectrometers record all wavelengths simultaneously, thereby
removing the need for any moving parts such as the moving mirror in Figure 2.3.

The NIR region is useful for crude oil analysis, as many of the absorption bands
observed in this region come from combinations or overtones of carbon-hydrogen
stretching vibrations, something that makes NIR suited for analysis of hydrocarbon
functional groups [77, 78]. The lower specificity observed in NIR when compared
to FTIR, is due to overlapping absorption bands, and lower sensitivity due to large
variations in chemical groups causing small spectral changes [79]. However, the
advantages of NIR for determining physical and chemical properties of crude oils
over conventional analyses is well-established [80].

2.3.3 Preprocessing of the spectra

IR spectra are susceptible to non-linearities introduced by light scattering and base-
line shifts [81]. Light scattering occurs when electromagnetic radiation is forced to
deviate from its trajectory due to localised non-uniformities. As IR spectroscopy is
based on measuring the amount of radiation absorbed by the sample, loss of light
due to scattering poses a problem for interpretation of the data, as it is difficult to
determine if the radiation power is lost due to chemical absorption or scattering.
The term "baseline shifts" refers to an additive effect, i.e. an offset, in the spectra,
along the absorption axis. This effect is often an indication of variations due to par-
ticle size, differences in density or porosity, or the presence of air bubbles. However,
many of these unwanted non-linear effects can be completely removed by proper
preprocessing of the spectra. The aim of preprocessing methods can for instance
be to improve subsequent exploratory analysis and multivariate modelling, and to
force the data to obey Beer-Lamberts law [82]. The simplest transformation is the
linearisation of transmittance to absorbance (log(1/T)) according to Beer-Lamberts
law, which states that the relationship between the concentration and absorbance
of the solution is linear. For a transparent sample containing a number of absorb-
ing chemical constituents (J ) obeying Beer-Lamberts law, the theoretical chemical
absorbance spectrum for a sample (ai) measured over a range of wavenumbers (ν̃)

23



can thus be assumed to be a linear combination of the absorbance contributions of
J

ai = ci,1kT
1 + · · ·+ ci,jkT

j + · · ·+ ci,JkT
J , (2.12)

where ci,j is the concentration and kj is the absorbtivity spectrum of the j -th con-
stituent. To approximate the physical effect of scattering, the measured absorbance
spectrum (ai) for each sample can be modelled as a scaled version of the ideal spec-
trum. This is the basis for Multiplicative Scatter Correction (MSC) [83, 84], where
undesirable scatter effects are removed before data modelling. In the MSC model,
physical and chemical contributions to the measured absorbance spectra are sepa-
rated in accordance with electromagnetic theory. The absorbance spectra for each
sample (Ai) is modelled by including a constant baseline offset and a scaling effect

Ai(ν̃) = ai + bi · Aref (ν̃) + ϵi(ν̃), (2.13)

where a is the constant baseline offset, b is the scaling parameter and Aref is a refer-
ence spectrum. The reference spectrum should contain the main chemical features
of the absorbance. The mean of all spectra in the data set is often used as the
reference, as IR spectra of a group of samples often have similar shape. The differ-
ences between the measured spectra and the reference are contained in the residuals
(ϵ), and can be used as a measure of the chemical variations between spectra. All
the parameters are estimated by Least Squares (LS). When the baseline offset and
scaling parameters are determined for each sample, the corresponding spectra can
be corrected according to

Ai,corrected(ν̃) =
Aref − ϵi(ν̃)

bi
(2.14)

However, the light scattering effect depends on the wavenumber ν̃, and therefore
a smooth polynomial wavenumber dependency should be considered. Accordingly,
MSC was expanded into Extended Multiplicative Signal Correction (EMSC) [85,
86], which includes a second order polynomial fitting to the reference spectrum and
fitting of a baseline of the wavenumber axis. This is done by including diν̃

2 in the
model
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Ai(ν̃) = ai + bi · Aref (ν̃) + ciν̃ + diν̃
2 + ϵi(ν̃) (2.15)

The additional parameters are again estimated by LS, and are simply added to the
model before the spectra are corrected by

Ai,corrected(ν̃) =
Aref (ν̃)− ai − ciν̃ − diν̃

2

b
(2.16)

EMSC can also be expanded to correct for a priori knowledge from the spectra of
interest or spectral interference of interest. This is the advantage of EMSC; that
any term, both chemical and physical, which requires correction, can be included as
shown by

Ai(ν̃) = ai + bi · Aref (ν̃) + ciν̃ + diν̃
2 + gj,i ·Bj + ϵi(ν̃) (2.17)

Where B j can be any term, for instance wavenumber related, weights from some
regression, concentrations etc. The term is added to the correction as the polynomial
term was added in Equation 2.16. This shows that EMSC is a versatile method,
efficient for removing unwanted effects in the spectra. However, the parameters for
EMSC are determined using LS regression, which means that collinearities in the
spectra to be corrected, can pose an issue.

Additionally, inverse versions of MSC and EMSC have been developed, Inverse Scat-
ter Correction (ISC) and Extended Inverse Signal Correction (EISC), which aim to
be even more flexible preprocessing techniques [87]. Instead of regressing Ai(ν̃) on
Aref (ν̃) and then reversing this model in the signal correction step, the inverted ISC
and EISC regress Aref (ν̃) directly on Ai(ν̃) and use this model directly in the signal
correction step [88]

Aref (ν̃) = ai + bi · Ai(ν̃) + ϵ(ν̃) (2.18)

The parameters are estimated by LS and correction of the spectra is done by

Ai,corrected = ai + biAi(ν̃) (2.19)

In MSC/EMSC the residuals ϵj are minimised horizontally, as the noise is modelled
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on the individual spectra, while in ISC/EISC, ϵj are minimised vertically, as the
noise is modelled on the reference spectra [87]. This difference in how the spectra
are modelled also makes the ISC/EISC more computationally demanding, as the
corrections for each spectrum has to be calculated individually, as opposed to the
MSC/EMSC which uses one reference spectrum for all corrections.

A Savitzky–Golay (SG) filter is a spectral derivation technique consisting of a digital
filter which can be applied to data with the aim of smoothing it, in order to increase
the precision of the data without distorting the signal [89]. In SG, adjacent data
sub-sets are fitted to a low degree polynomial. In order to find the derivative at
a centre point, a polynomial is fitted in a symmetric window and the parameters
for this polynomial are then calculated as the derivative of any order of this func-
tion. The value of the derivative is subsequently used as the derivative estimate for
this centre point [81]. This operation is then applied to all points in the spectra
sequentially. The highest derivative that can be determined is dependent of the
degree of polynomials used during the fitting. As SG uses a symmetric window for
smoothing, the number of data point on each side of the center has to be the same.
Consequently, a number of points at each end of the spectrum are neglected during
the preprocessing. This number of points is equal to the number of points used
for smoothing minus one. Usually spectra contain enough information so that the
loss of these few point are negligible, however, filter methods using asymmetrical
windows are also available.

Finding the optimal preprocessing technique for a data set can be difficult, many
methods exits and often have several parameters that needs tuning. This section
has only introduced some of the most common techniques. Trial and error has tradi-
tionally been the method of determining the best preprocessing, however, ensemble
preprocessing methods removing the need for manual determination of parameters,
are becoming more frequent [90, 91].

2.4 Interpretation of spectra

Interpretation of the spectra is important to understand the chemical composition of
a sample. The positions of the peaks corresponding to different chemical constituents
are different for the various spectroscopic techniques, and in this section an overview
of how to interpret spectra from FTIR, NIR and FT-ICR MS is presented.
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2.4.1 FTIR

In IR, the position of a peak in the spectrum is dependent on the chemical shift of
the molecule. A complex molecule has both vibrational modes involving the whole
molecule, and localised vibrations of the individual bonds. The localised vibrations
are useful for identification of functional groups, in particular the stretching vibra-
tions for O-H and N-H single bonds, double and triple bonds, and in FTIR most of
them occur above 1500 cm-1. The remaining single bonds have absorption bands at
frequencies below 1500 cm-1, often containing a large number of peaks. The positions
of these peaks are characteristic for the molecule, and the composition of peaks in
this area can therefore reveal the chemical structure of the sample. This means that
the region above 1500 cm-1 shows absorption bands that can be related to several
functional groups, while the region below gives the characteristic fingerprints of the
molecules, and is therefore called the fingerprint region.

The stretching vibrations of single bonds to hydrogen show absorption in the higher
frequencies in the spectra due to the low mass of hydrogen. This applies to C-H,
O-H and N-H, starting at 2700 cm-1 for C-H and increasing in the order above, to
approximately 3500 cm-1. However, the C-H peak usually does not reveal impor-
tant information, as most organic compounds contain C-H bonds. Triple bonded
molecules, C≡C and C≡N, usually absorb in the area between 2260-2100 cm-1. Fi-
nally, double bonded molecules, C=C, C=O and C=N, absorb in the area between
1800-1650 cm-1.

The absorption bands described above are the vibrations of individual bonds. Many
vibrations also exist as coupled vibrations of two or more components in the molecule.
Coupled stretching can be divided into asymmetric and symmetric stretching based
on the bending modes, i.e. the interaction of the atoms in the compounds. Cou-
pled stretching, both asymmetric and symmetric, can be found in many groups
such as primary amines, caboxylic anhydrides, carboxylate ions and nitro groups,
all of which have two equal bonds close together. Aromatic rings also have cou-
pled vibrations, and can be identified by two or three bands around 1600-1500 cm-1,
corresponding to most six-membered aromatic rings. They also have bands in the
fingerprint region at 1225-950 cm-1 and at 900 cm-1, and this band was previously
used to identify substitution patterns [71].

From the described vibrations it is possible to interpret the peaks in the spectra.
Figure 2.4 shows the absorption bands observed in FTIR.
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Figure 2.4: Absorption bands in FTIR

2.4.2 NIR

In NIR, the interpretation is not as simple due to broad, overlapping and non-specific
absorption bands. The NIR bands are not related to particular molecules, but rather
represent molecular bonds, mainly the C-H, O-H and N-H bonds. Additionally, in
the NIR range, the overtones occurring when the molecule transitions from the
ground state to an exited state are visible as spectral bands. These are referred to
as the overtone bands, where two of the exited states have bands occurring in the
NIR region. However, the overtone bands are lower than the fundamental bands
from the molecule in its ground state.

In a NIR spectrum, the single bond C-H stretching and bending vibrations for CH2

and CH3 have absorption bands between 4500-4000 cm-1. The first overtone for
the C-H stretching is observed between 6050-5500 cm-1, and a weak absorption is
centred at 7000 cm-1 for the combination of bending and stretching. The second
overtone bonds for C-H stretching are centred at 8000 cm-1. The fundamental vibra-
tions of unsaturated groups absorb in weak bands between 4750-4500 cm-1, which
include double and triple bonds. For N-H stretching vibrations the fundamental
bands are observed between 4700-4545 cm-1, while the first overtone bonds absorb
between 7015-6625 cm-1. Additionally, a second overtone can be observed just below
10 000 cm-1.

Baseline shifts are often observed in NIR. For crude oil analysed using NIR, it
is common to see baseline offsets and a slope between 9000-6500 cm-1, which are
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characteristic for asphaltene containing samples. These effects correspond to the
tail of the absorption bands in the visible region due to transitions of electrons,
caused by π − π∗ and n-π∗ transition of asphaltene molecules [92]. The offset can
also be attributed to light scattering due to asphaltene aggregation [77], and the
spectral distortion is increasing along with the asphaltene content.

2.4.3 FT-ICR MS

For MS, the positions of the peaks in the spectra are based on the m/z-ratios of
the molecules, and when the formed ion has a charge of 1, the m/z-ratio is directly
related to the mass of the molecule.

To be able to interpret peaks in a MS spectrum accurately, their molecular formu-
las have to be identified using a suitable spectra processing software. Although,
there are some chemical groups that have been determined to appear in certain
masses. For instance, asphaltenes have an average mass of ∼750Da, meaning that
asphaltenic molecules can be identified by peaks around m/z 750. Another chemi-
cal group is naphthenic acids, with an average mass between 300-500 Da [34]. The
ARNs have high molecular masses of 1200-1250Da due to the many carboxylic acid
groups. DBE is important for interpretation, since it reveals the number of double
bonds or rings in the molecule.

2.5 Choice of spectroscopic method

The various spectroscopic methods are apt at measuring different properties of a
sample. For instance, the two ionisation techniques, ESI and APPI, in combination
with FT-ICR MS, measure disparate molecules in the sample. ESI is most efficient
with polar molecules mainly consisting of heteroatom-containing components [70],
while APPI characterises more of the non-polar molecules, which constitutes ap-
proximately 90 % of the crude oil components [93]. APPI can also positively charge
cycloalkanes and aromatic species to aid their detection. Additionally, the mode of
the ionisation has an effect; in postive mode, ESI is able to detect asphaltenes, hy-
droxyl groups and amines/amide bonds while in negative mode, ESI detects oxygen
species containing acidic or carboxylic groups . For APPI, in positive mode NOx

and other nitrogen species are prominent, while negative mode ionises oxygenated
groups such as acids, but usually with higher degrees of unsaturation (higher DBEs)
than in ESI [94].

For the IR spectroscopic methods, FTIR spectra are usually dominated by the ab-
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sorption bands from C-H bonds and groups containing aromatics, sulphur, oxygen
and nitrogen [75]. In NIR spectra, functional groups such as methylenic, oleifinic
and aromatic C-H bonds are usually more prominent, and the bindings involved are
C-H, O-H and N-H.

When determining which methods to use for a given sample, several things have to
be taken into consideration. Among these are time, complexity of the sample ma-
trix, the compounds of interest and the desired outcome. Mainly, the IR spectrum
identifies functional groups, while a mass spectrum gives the molecular formula. Ad-
ditional analysis techniques not discussed in this work use the ultraviolet spectrum
from which conjugated systems can be identified, and nuclear magnetic resonance
spectra which identify how the atoms are connected.

2.6 Machine learning

Machine learning is a sub-field of artificial intelligence devoted to building models
that leverage data to improve the performance on a defined set of tasks [95, 96]. The
main aim of a machine learning method is to learn information from a data set and
then perform accurately on new unseen data. A typical pipeline is shown in Figure
2.5, and consists of collecting and preprocessing of data, training and testing of the
model and finally, deploying the model through prediction on new data.

Figure 2.5: Schematic illustration of a machine learning pipeline, with data collection, preprocess-
ing, model training, testing, deployment and prediction. Reprinted from Gjelsvik et al. [56].

Machine learning can be divided into two main groups, supervised and unsupervised
learning. Unsupervised learning refers to methods which attempt to learn patterns
from unlabelled data. This is implemented by the model mimicking the data and
then using the errors in the estimated output to correct its weights and bias. The
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two most common unsupervised methods are Principal Component Analysis (PCA)
and clustering. Supervised learning, on the other hand, deals with labelled data,
and the methods aim to map the input variables to the output labels. New samples
are predicted based on the input-output information learned from the training data.
Supervised learning can again be separated into two categories based on the desired
response. When the response is continuous, regression analysis is used, while when
the response is a discrete class label, classification is used. A wide range of supervised
methods exist based on various algorithms which can be optimised for different
types of data. Additionally, some algorithms can be used for both classification
and regression tasks with only minor modifications. The following sections will
go through some commonly used machine learning and multivariate methods for
identification of connections in the data and prediction of desired properties.

2.7 Unsupervised learning

2.7.1 Clustering

Clustering is the exercise of grouping samples in such a way that the samples in
the same group, or cluster, are more similar to each other than they are to the
samples in another group. It is commonly used for pattern recognition and many
different algorithms exist. Clustering is often based on the samples´ proximity to
each other, and the main idea is that samples are more related to the nearby ones
than samples far away in the sample space, and a cluster can be described as the
maximum distance needed to connect parts of the cluster. Figure 2.6 illustrates how
clustering methods are applied to find groups of similar samples in the data.

Original data Clustered data

x x

y y

Clustering

= centroids

Figure 2.6: Illustration of clustering of a data set with three groups of similar samples.

The different clustering methods are separated based on the algorithms they use
to determine cluster distributions. Among the most common methods are con-
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nectivity based models, most often referred to as hierarchical clustering [97]. In
hierarchical clustering, hierarchies of clusters are built based on either an agglom-
erative approach, where the samples start as single elements and are merged into
clusters based on their distances to each other, or a divisive approach, starting with
the full data set as one single cluster and dividing it into different clusters. The
merges and splits are determined in a greedy manner, i.e. the locally optimal choice
is determined at each point, and the results from the clustering are presented in
a dendrogram, with different cluster distributions appearing at different distance
thresholds (thresholds for how close samples need to be for them to be defined as
members of the same cluster). Thereby a hierarchy of cluster solutions is created.
Any valid measure of distance can be used as the metric for determining dissim-
ilarities between samples, and where clusters should be agglomerated or divided.
Additionally, a linkage criterion is used to specify the dissimilarities of sample sets
as a function of the pairwise distances between observations in the sets. The various
linkages and distance metrics have large impacts on the results of the clustering,
where the distance determines which samples are most similar, while the linkage
criterion determines the shape of the clusters. The most common linkage criteria
are single-linkage, which uses the shortest distance between a pair of observations
in two clusters, complete linkage, which uses the distance between the farthest pair
of observations in two clusters, and average linkage, which adds up the distances
between each pair of observations and divides by the number of pairs for an average
inter-cluster distance.

Another commonly used approach to clustering is centroid-based clustering, such as
K-Means clustering, where each cluster is represented by a central vector. When k
clusters are defined, K-Means clustering partitions the observations into k clusters
where each observation belongs to the cluster that has the nearest mean [98, 99].
This mean is often referred to as the cluster centroid. K-Means clustering minimises
the variance within clusters, determined by the squared distances. The clustering
distributions are determined by alternating between two steps. First each observa-
tion is assigned to the cluster with the nearest centroid, and then the centroids for
each cluster are recalculated as the mean over all cluster members. The algorithm
has converged when samples no longer are assigned to new clusters. The centroids
are often initialised at random. K-means uses hard clustering, where the sam-
ples belong to one cluster, but centroid-based methods can also use soft clustering,
where samples receive a likelyhood of belonging to each cluster, as in Fuzzy-C-Means
(FCM) clustering [100, 101].

In density-based clustering, the clusters are defined as areas of higher data density
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than the rest of the data set. Samples in sparse areas are usually considered as
noise or border points, and these areas are used to separate the clusters. The most
popular density-based method is Density-based spatial clustering of applications
with noise (DBSCAN), where samples with many neighbours (high density) are
grouped together and samples alone in low-density areas are marked as outliers
[102].

Another clustering approach is Spectral clustering (SPC) [103] which uses the spec-
trum (eigenvalues) of the similarity matrix of the data to reduce dimensionality, so
that the clustering can be done in fewer dimensions. The similarity matrix consists
of the relative similarities for each pair of points in the data set found through a
kernel with a distance measure. SPC is useful when the structure of the clusters is
non-convex, when the centra and spreads of the clusters give a poor description of
the properties of the clusters.

2.7.2 Principal Component Analysis (PCA)

PCA is a commonly used dimensionality reduction and visualisation technique where
large and high-dimensional data are decomposed into fewer dimensions, while pre-
serving the maximum amount of information [104]. The dimensionality reduction is
done by projecting each data point on to the first few Principal Components (PCs).
The first PC is the linear combination of the original variables that explains the
largest part of the variance in the data set. The second component explains the
second largest part of the variance, and is orthogonal to the first PC, and so on
until all the variance in the data is explained. PCA can be used prior to other data
analysis methods in order to increase accuracy, overview and interpretation. The
data set (X ) is decomposed into a subspace of latent variables representing the main
features of variance as shown by

X = x̄ +TAPT
A + EA, (2.20)

where PA are the loadings and orthonormal eigenvectors of (X − x̄ )T (X − x̄ )
minimising the covariance between the X -variables after A Principal Components
(PCs). The scores (TA) are orthogonal and calculated by

TA = (X − x )PA (2.21)

The error term in Equation 2.20 (EA) is often referred to as the residuals and
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contains all the variance that cannot be explained by the model. The residuals are
determined from

EA = X − x̄ −TAPT
A (2.22)

Figure 2.7 shows how the two PCs for a data set with two variables will be positioned.

Variable 1

Variable 2

PCA

PC1
PC2

Variable 1

Variable 2

Figure 2.7: Illustration of the orthogonality of the two PCs for a data set with two variables.

PCA is commonly used for pattern recognition, however it is not optimised for sep-
arating classes, as it does not give a measure of distance. For such tasks, clustering
is the appropriate choice.

2.8 Supervised learning

2.8.1 Ordinary Least Squares (OLS) regression

OLS is a regression method for estimating the unknown parameters in a linear
regression model. OLS minimises the sum of squares of the differences between the
observed values and the values predicted by the linear function of the independent
variables as shown by

y = Xβ + ϵ (2.23)

In OLS, the regression coefficients (β̂) are estimated from
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β̂ = (X TX )−1X Ty (2.24)

A major drawback with OLS regression is that the matrix inversion used in the
calculation of the regression coefficients requires the regressors (X ) to be linearly
independent or uncorrelated. OLS also requires that the number of samples is larger
than the number of variables, which is most often not the case when analysing data
from e.g. FT-ICR MS. This makes OLS regression unsuitable for many data analysis
problems. Two commonly used strategies to overcome this problem are using latent
variables which represent linearly independent phenomena and regularisation.

2.8.2 Partial Least Squares Regression (PLSR)

In PLSR [105, 106] the variables are reduced to a smaller set of uncorrelated com-
ponents, similarly to in PCA, and Least Squares is performed on the reduced data.
This is done by decomposing large data sets into a subspace of latent variables
(scores and loadings) representing the main features of co-variance between X (re-
gressors) and Y (response). PLSR has the advantage over OLS that it can handle
multivariate and multicollinear data in both X and Y . The decomposition of X and
Y is done simultaneously and iteratively, taking co-linearities in Y into account.
For X the decomposition is shown in Equation 2.25 and for Y in Equation 2.26.

X = x̄ +TAPT
A + EA (2.25)

Y = ȳ +U AQT
A + FA (2.26)

Here A denotes the number of PLS components used and EA and FA are the
error terms using A components. The loading weight matrix (W A) maximises the
covariance between X and Y by maximising the covariance between the scores, T
and U , with A components. The scores are orthogonal as shown by

TA = XW A(PT
AW A)

−1 (2.27)

The loadings for X (PA) are calculated by Equation 2.28, while the loadings for Y
(QA) are calculated by Equation 2.29. The direction for the first component (W 1)
is obtained by maximising the covariance, and the scores along this axis is calculated

35



by Equation 2.27, before X is regressed onto the estimated scores in order to obtain
the loadings. The product of the scores and loadings is then subtracted from X . The
same procedure is carried out for Y and the Y -loadings (Q1). The direction of the
second component is found in the same way, only using the residuals after subtraction
of the first component instead of the original data. This process continues until the
desired number of components (A) are extracted, or until the number of components
reaches either the number of samples or the number of variables.

PT
A = (T T

AT
T
A)

−1T T
A(X − x̄ ) (2.28)

QT
A = (T T

AT
T
A)

−1T T
A(Y − ȳ) (2.29)

The error term for X (EA) is calculated as for PCA in Equation 2.22 and the error
term for Y (FA) is calculated by

FA = Y − ȳ −TAQT
A (2.30)

The regression coefficients (BA), which are measures of the impact of variations in
the various regressors on the respective response variables, are calculated by

BA = W A(PT
AW A)

−1QT
A (2.31)

Prediction of Y for a new sample (X new) is then obtained by Equation 2.32, where
b0 is the intercept.

Y pred = b0 +X newBA (2.32)

PLSR is particularly well suited for data sets where the number of variables sub-
stantially exceeds the number of samples and when there is multicollinearity among
the variables.

2.8.3 Hierarchical cluster-based regression

In local modelling, a set of models are built based on the data where each model
represents a sub-space of the problem space. The sub-space can for instance be
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a cluster or some other grouping of the data, and the problem space is where the
analysis is performed, possibly based on a set of rules or a set of regression models.

Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR) [61] is a lo-
cally linear extension of PLSR where samples are separated into clusters and PLSR
models are created for each cluster. HC-PLSR utilises the abilities of clustering
methods to collect similar samples into clusters to achieve models with increased
prediction abilities. The advantage of PLSR is the efficient and fast ways it finds
latent variables in the data. However, PLSR is a linear model, and can therefore
struggle to perform well on data with non-linear interrelationships. Although HC-
PLSR allows for modelling of non-linearities between the clusters, the data is still
required to be locally linear for the local PLSR models to perform well. Additionally,
the input space the data lies in can exist in different planes, be high-dimensional,
low-dimensional, linear, non-linear etc. Simple non-linearities can be handled by
the addition of polynomial terms in the regressor matrix, or by the local modelling,
but some types of non-linearities cannot be modelled by PLSR. In such cases, there
is a need for methods able to handle more complex structures. Neural networks
and support vector machines are powerful for modelling large non-linear data sets,
but neural networks often require deep and complex networks to achieve adequate
prediction. Neural networks are described in detail in section 2.10. Deep networks
contains numerous parameters and need large amounts of computational power to
converge. For local modelling, smaller networks can be implemented without loos-
ing predictability, and in most cases both predictability and interpretability are
improved. Thus, there are many advantages of expanding local modelling into deep
learning to handle non-linear data.

In HC-PLSR, a global PLSR model is first fitted to the data set with the optimal
number of components determined by cross validation. The X scores from the
global PLSR model are then clustered using FCM, and a local model is built within
each cluster, with its parameters determined by cross validation. New samples are
projected into the global model and classified into one of the clusters based on their
X scores, and finally predicted using the selected local model. The local modelling
procedure is shown in Figure 2.8.
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Figure 2.8: Illustration of the local modelling procedure.

Real world data have unknown underlying structures, and the aim of machine learn-
ing models is often to identify and model these structures. Local modelling based
on clustering merits from dividing the observations into groups without using any
previously known information, and then building models based on similarities in the
data. Thereby, these underlying structures are somewhat directly modelled, and
can be interpreted from the differences between the local models.

2.8.4 Support Vector Machines (SVMs)

SVMs [107] are supervised learning methods that analyse data for classification or
regression analysis. SVMs are well suited for learning tasks where the number of
variables is large compared to the number of observations in the training set. SVMs
are automatically regularised using Tikhonov regularisation, also named Ridge re-
gression, which is explained in section 2.8.7.

For classification, SVMs construct a hyperplane or a set of hyperplanes in a high
dimensional space to separate the observations into two groups [108]. SVMs map
the training data to points in space where the gap between the two groups is max-
imised. New test samples are then mapped into the same space and predicted into
a class based on their positions in relation to this gap. The gap is quantified by
the hyperplane, and the goal is to find the hyperplane that has the largest distance
(margin) to the nearest data point belonging to any of the two classes. The margin
is defined as the distance between the separating hyperplane (decision boundary)
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and the training samples that are closest to this hyperplane. Data points that lie
on the margin are known as support vector points, and the solution is represented
as a linear combination of only these points. Decision boundaries with large mar-
gins tend to have a lower generalisation error, while decision boundaries with small
margins are more prone to overfitting. SVMs can also be used for classification in
multi-class (more than two classes) problems by distinguishing between one of the
labels and the rest (one-versus-all) or between every pairs of classes (one-versus-
one). For one-versus-all, classification of new samples is done by a winner-takes-all
strategy, where the classifier with the highest-output function assigns the class. For
one-versus-one, classification follows a max-wins strategy, where every classifies as-
signs the new sample to one of the two classes, and the class with the most assigned
samples determines the classification.

SVMs can be applied to nonlinear classification problems by using the so-called
kernel trick, where the original space is mapped into a much higher-dimensional
space where the observations can be more easily separated. To achieve this, a
mapping function φ is used, as shown in Figure 2.9. The hyperplanes in the higher-
dimensional space are defined as the set of points whose dot product with a vector
in that space is constant.

Figure 2.9: The kernel trick to handle non-linear problems. Reprinted from Gjelsvik et al. [56].

In Support Vector Regression (SVR), the hyperplane is the line that is used to
predict the continuous output, shown in Figure 2.10. SVR basically considers the
points that are within the decision boundary lines and the regression line is then
the hyperplane that has a maximum number of points.
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Figure 2.10: Illustration of the hyperplane and decision boundaries in SVR. Reprinted from Gjelsvik
et al. [56].

2.8.5 Decision Trees (DTs)

DTs [109, 110] are attractive models when interpretability is important, and consist
of a tree root, internal nodes, branches and leaf nodes. DTs ask a series of questions,
and generate decision rules based on these. The model seeks to find the smallest
set of rules that is consistent with the training data. In general, the rules have the
form: if condition1 and condition2 and condition3 then outcome.

The rules are chosen to divide observations into segments that have the largest
difference with respect to the target variable. Thus the rule selects both the variable
and the best breaking point to separate the resulting subgroups maximally. The
breaking points of variables are found using significance testing (F- or Chi-square
with Bonferroni corrections) or reduction in variance criteria. To avoid overfitting,
one often has to prune the tree by setting a limit for the maximal depth of the tree. A
leaf can no longer be split when there are too few observations, the maximum depth
(hierarchy of the tree) has been reached, or no significant split can be identified. It
is assumed that observations belonging to different classes have different values in at
least one of their variables. DTs are usually univariate, since they use splits based
on a single feature at each internal node, but methods are available for constructing
multivariate trees [111].
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Figure 2.11: Illustration of decision trees. Reprinted from Gjelsvik et al. [56].

To improve the prediction of the DT, a boosting method can be applied. Boosting
is an ensemble method for improving predictions of a weak learning algorithm [112].
The weak learners are trained sequentially, trying to improve upon its predecessor.
When boosting is applied to a tree, each tree is dependent on prior trees and the
algorithm learns by fitting the residuals from the prior trees. One example of a
boosting method is XGBoost (eXtreme Gradient Boosting) [113]. In XGBoost,
trees are built at every iteration, always minimising the prediction error of the
classifier, while introducing a penalty function to utilise the computational power
more efficiently.

2.8.6 Random Forest (RF)

In DTs, the initial selected split affects the optimality of variables considered for
subsequent splits. Ensemble tree models grow trees with varying initial splits, and
use either a voting or the average of the predictions for each new data point across all
trees. The ensemble is less prone to overfitting and other problems than individual
DTs, and generally performs better. RF [114, 115, 116] is an example of such an
ensemble tree method. For RF, each tree is based on a random subset of the data
and variables, selected by bootstrapping. Bootstrapping is a sampling process where
random samples are drawn from the original samples a large number of times, with
replacement. Each tree makes a prediction, and for classification problems, the final
prediction is determined by majority voting, where the vote distribution can be used
to develop a nonparametric probabilistic predictive model. For regression problems,
the final prediction is determined by averaging of the individual predictions. When
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used for variable selection, the change in prediction accuracy when the values of
a feature are randomly permuted among observations (using permutation feature
importance explained in section 2.11) gives estimates of the importance of each
feature.

Majority voting/

Averaging

Tree 1 Tree 2 Tree n

Data

…

Prediction Prediction Prediction

Final result

Bootstrapping

Figure 2.12: Illustration of RF. The variables are selected by bootstrapping and each tree makes
a prediction. The final result is determined by majority voting for classification and averaging for
regression.

2.8.7 Regularisation-based methods

The aim when using regularisation is to find a balance between a too simple and
a too complicated model, the optimal solution shown in Figure 2.13. The model is
simplified by adding constraints, i.e. regularisation terms, that shrink the coefficient
estimates and minimise the adjusted loss function. Regularisation is often used to
reduce overfitting and in highly complex modelling problems. The efficiency of these
methods comes from the reduction of the generalisation error of the models, making
them more general for prediction of new samples. The shrinkage of the coefficients
also makes regularisation very useful for feature selection purposes. This section
will present the most commonly used regularisation-based methods.
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Underfitting Optimal Overfitting

Figure 2.13: Illustration of underfitting and overfitting. Regularisation strives to find the optimal
solution as a balance between underfitting and overfitting.

2.8.8 Ridge Regression

In Ridge regression [117], the sum of the squares of the regression coefficients (β)
is forced to be less than a fixed value, which shrinks the size of the coefficients.
Ridge regression is often used when the variables are highly correlated. In these
cases the ridge coefficient estimates are often more precise than those from OLS, as
the variance and mean square estimators are often smaller. The aim of OLS is to
minimise

RSSOLS =
n∑

i=1

(
y i − β0 −

p∑

j=1

βjx ij

)2

, (2.33)

while in Ridge regression a regularisation term is added, resulting in the minimisa-
tion of

RSSRidge =
n∑

i=1

(
y i − β0 −

p∑

j=1

βjx ij

)2

+ λ

p∑

i=1

β2
j , (2.34)

where λ ≥ 0 is a penalty term which is often found by cross-validation. This gives
Equation 2.35 and 2.36.

BOLS = (X TX )−1X TY (2.35)

BRidge = (X TX + λI)−1X TY (2.36)
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Hence, Ridge regression handles multicollinearity in the regressor (X ) matrix, while
OLS regression does not. Ridge is also referred to as L2-regularisation or Tikhonov
regularisation.

2.8.9 LASSO

In LASSO (least absolute shrinkage and selection operator) [118], the estimates of
the regression coefficients are obtained using L1-constrained least squares. This
forces the sum of the absolute values of the regression coefficients to be less than a
fixed value, which forces certain coefficients to be set to zero. LASSO is a feature
selection method, since variables having zero regression coefficients are omitted from
the model. Both variable selection and regularisation are used to select a reduced
set of the known covariates, enhancing the prediction accuracy and interpretability
of the model. In LASSO the regression solution is found by minimising

RSSLASSO =
n∑

i=1

(
y i − β0 −

p∑

j=1

βjx ij

)2

+ λ

p∑

i=1

βj (2.37)

2.8.10 Elastic Net

Elastic net [119] combines the L1 and L2 penalties of the Ridge and LASSO methods
linearly. For large data sets where the number of variables is much larger then
the number of samples, LASSO exhibits some limitations. The number of selected
variables saturates around the number of samples, and LASSO often selects only
one variable from groups of highly correlated variables, ignoring the remainder. In
Elastic net, these limitations are surpassed by the addition of the quadratic part
(β2

j ) from Ridge in the penalty term. This penalty term makes the loss function
more convex, therefore giving it a unique minimum. The regression solution for
Elastic net is found by minimising

RSSEN =
n∑

i=1

(
y i − β0

p∑

j=1

βjx ij

)2

+ λ1

p∑

i=1

β2
j + λ2

p∑

i=1

βj (2.38)

In Elastic net, highly correlated variables will tend to have similar regression coef-
ficients, which creates a grouping effect that is desirable in many applications.
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2.9 Multiblock

Multiblock analysis is a way of utilising several different data sources to gain a deeper
understanding of samples. The aim of multiblock methods is to find complementary
information from multiple sources of data to improve the predictive accuracy or
interpretability of the models [120]. Multi-block data can be multiple analyses of
the same samples, for instance with different analytical tools to achieve a better
understanding of physical or chemical properties. Figure 2.14 shows how the data
can be structured in a multiblock analysis.
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Blocks

…

Figure 2.14: Illustration of how the data can be structured for multiblock analysis, with i samples
and n blocks.

Several different techniques exist for combining data for multiblock analysis. The
data can for instance be concatenated according to a shared mode, for instance if
the same samples are measured using different analytical techniques, sample is the
shared mode, or the same variables are measured and then variable is the shared
mode. Another way is to analyse the data sequentially, extracting important in-
formation from one block before moving to the next block. The difference between
the methods lies in how the constraints are applied during the decomposition, lead-
ing to different orthogonality properties and thereby different independence of the
common and distinctive parts [121]. The idea behind finding common and distinct
variation in the blocks of data is to separate and quantify the different sources of
variation spread across all blocks [122]. The interpretation of the different sources of
variation can then lead to a reconstruction of the system. Common variation can be
comprehended as the variation associated between data sets while distinct variation
can be regarded as the variation which is unique for each data set.

Many sources of data requires preprocessing in order to achieve optimal analyses as
discussed previously in this work. For multiblock analysis, preprocessing of data is
divided into inter-block and intra-block preprocessing. It is an important aspect of
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analysis, as some multiblock methods tend to favour the block with larger variations,
causing model bias [120]. Proper weighting and scaling of the blocks can therefore
increase the model interpretation and the predictive accuracy.

2.9.1 Multiblock Partial Least Squares Regression (MB-PLSR)

In MB-PLSR, global scores are extracted by maximising the covariance with the
response variables, and the extracted global scores are then used in ordinary least
squares regression to obtain the predictive models [123, 124]. The data sets are
fused by concatenating the individual blocks, after dividing by the square root of
the number of variables in each block (

√
Jm). MB-PLSR with super-score deflation

of the response starts with an ordinary PLSR on the concatenated blocks, followed
by a block-wise extraction of block-weights, block-scores and block-loadings [125].
The prediction is obtained from the PLSR model on the concatenated blocks along
with the super-weights, -scores, -loadings and Y -scores and -loadings. The block-
loading weights (wm) are then obtained from the original block data (Xm) by

wm =
X T

mu
(uTu)

, (2.39)

where u are the y scores. The block-scores (tm) are obtained from

tm =
Xm√
Jm

w ∗
m, (2.40)

where Jm are the variables for block m and w *
m are the normalised weights (w ∗

m =

wm/ ∥ wm ∥). Finally, the block-loadings (pm) are obtained by Equation 2.41.

pm =
XT

m√
Jm

· tm
tTmtm

(2.41)

Figure 2.15 shows a schematic illustration of how the super-weights, -scores, -
loadings and block-weights and -scores are calculated in MB-PLSR.
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Figure 2.15: Schematic illustration of MB-PLSR, where the data are concatenated by a shared
sample mode, and super-scores and -loadings are calculated from the blocks to achieve maximum
covariance.

MB-PLSR uses the same number of components for all the blocks. In cases where the
dimensionalities of the blocks are very different, the number of components may not
be optimal for all the blocks which can complicate the interpretation [126]. However,
this also makes for simpler models predicting only on one set of components, making
the modelling less susceptible for overfitting.

2.9.2 Sequential Orthogonal Partial Least Squares Regression (SO-PLSR)

In SO-PLSR, the blocks of data are incorporated one at a time to evaluate their in-
cremental contribution by letting the method sequentially search for improvements
of predictions using additional and orthogonal information provided by the subse-
quent blocks [127, 128]. This is done by applying PLSR to the first block, and
extracting the scores (T 1) and loadings (P1) for block 1, followed by an orthogo-
nalisation of the second block (X 2) as shown in Equation 2.42 for X 2 and for Y in
Equation 2.43.

X2,orth = (I −T 1(T T
1 T 1)

−1T T
1 )X 2 (2.42)

Y orth = (I −T 1(T T
1 T 1)

−1T T
1 )Y (2.43)

In the next step, a new PLSR model is fitted to the Y -residuals from the first PLSR,
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and the orthogonalised X 2, orth. This step is repeated for all additional blocks, with
the addition that all previous blocks are included in the orthogonalisation step.
Block one and two are concatenated for this purpose, T12 = [T1 T2] and T12 used for
orthogonalisation of block three (X 3) by Equation 2.44 and Y in Equation 2.45.

X 3,orth = (I −T 12(T T
12T 12)

−1T T
12)X 3 (2.44)

Y orth∗ = Y orth − (I −T 2(T T
2 T 2)

−1T T
2 )Y (2.45)

Y is computed by summing the predictions of the individual regressions by Equation
2.46.

Y pred = T 1QT
1 +T 2QT

2 +T 3QT
3 + F (2.46)

Figure 2.16 shows all the steps in the SO-PLSR algorithm where PLSR models are
fitted, and how the orthogonalisation is implemented.
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Figure 2.16: Schematic illustration of the SO-PLSR algorithm, starting with a PLSR model from
which the scores are used to orthogonalise the second block, which is then fitted to a new PLSR
model. The scores from the first and second PLSR model are used to orthogonalise the third block
before it is fitted to a new PLSR model.

SO-PLSR is designed to handle blocks of different complexity and type; it can handle
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both varying numbers of variables and differences in dimensionality. Additionally,
SO-PLSR is invariant to block-scaling. The order of the blocks are of importance
in SO-PLSR, contrary to in MB-PLSR, and changing the order will have an impact
on the solution.

2.10 Deep learning

Deep learning models are machine learning models based on artificial neural net-
works, which aim at mimicking the structure and decision making of the human
brain. Artificial neural networks (ANNs) [129, 130, 131] are computing systems
consisting of nodes called artificial neurons, which have connections between them
that are often initialised at random and adjusted by backpropagation [132, 133].
ANNs use neurons in multiple layers to progressively extract higher level features
from the data, and then backpropagation uses the prediction error to calculate the
gradient of the loss function with respect to the weights in the network. The neu-
rons are typically placed in an input layer, one or more hidden layers and an output
layer. In each layer, the input data is transformed into a more abstract and com-
posite representation, learning from the data in each step. A widely used type of
composition is the nonlinear weighted sum given by

f(x) = K

(∑

i

wigi(x)

)
, (2.47)

where K is the activation function, wi are the weights and gi are the different func-
tions that are combined in the network. The weights are numerical values attached
to each input variable conveying the importance of that corresponding variable when
predicting the final output. Weights are calculated at each neuron by applying a
specific function to the input values received from the previous layer, also determin-
ing how strongly each of the neurons affect the others. Weights with high values
indicate that the variables have high impacts on the target value and contrary, the
variables with low weight have a low impact on the target. The bias shifts the
activation function which introduces non-linearities in the model. The learning con-
sists of iteratively adjusting the weights and bias. Finally, the summation function
combines the weights and the inputs to calculate the output. How each part of the
network works together to predict the response (ypred) is shown in Figure 2.17.
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Figure 2.17: Illustration of the composition of an ANN, how the input data is transformed by the
various functions combined in the network and the activation function to predict the output.

A typical ANN is trained with experimental data where the output usually is a non-
linear function of the input data after learning a pattern, and creating a prediction
model [134]. ANNs are self learning, meaning that the network can adjust weights
when a new situation is introduced, leading to more flexible predictions than tradi-
tional regression models. Still, the network needs manual tuning to determine the
optimal number of layers and neurons, which yields good predictions without over-
fitting. Deep Neural Networks [135] are ANNs with multiple hidden layers between
the input and output layers, as for instance the network shown in Figure 2.18.
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Figure 2.18: Schematic illustration of a neural network with an input layer, hidden layers and an
output layer. Reprinted from Gjelsvik et al. [56].
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Neural networks are used in a wide range of tasks, from computer vision to speech
recognition, video games and medical diagnosis. Several new specialised versions of
neural networks have emerged to handle these various tasks more efficiently. For
instance Convolutional Neural Networks (CNNs) for computer vision and Recurrent
Neural Networks (RNNs) for applications such as language modelling.

2.10.1 Convolutional Neural Networks (CNNs)

CNNs are deep neural networks which use convolutions to extract information in one
or more hidden layers [136, 134]. CNNs are regularized versions of fully connected
networks and consist of an input layer, hidden layers (mainly convolutional layers,
pooling and fully connected layers) and an output layer, as illustrated in Figure 2.19.
In the convolutional layers, the data is organised in a feature map where the weights
are connected to the previous layer. In a CNN the vectors of weights and bias are
called filters and represent the particular features of the input, and are used to filter
for patterns in the data. The pooling layer semantically merges similar features,
reducing the dimension of the representation [134]. Commonly used in pattern
recognition, CNNs are good feature extractors as they learn the most important
features by themselves. In contrast to PLSR, CNNs can handle non-linear data.
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Figure 2.19: Schematic illustration of a CNN with an input layer, convolutional layers with an
appropriate activation function, pooling layers, batch normalisation, a flatten layer, a dense layer
and an output layer.

Pattern recognition is of high interest in analysis of spectroscopic data as it is as-
sumed that different parts of the spectra are chemically connected, and these con-
nections are often of high importance.
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2.10.2 Recurrent Neural Networks (RNNs)

RNNs are often used for sequential or time-series data, feeding the output from
one layer as input to the next layer [137, 138]. Like CNNs, the RNNs learn from
the training input, but the RNNs use internal states (memory) to impact inputs
and outputs with previous information. Therefore, RNNs have strong capabilities
of capturing contextual data from a sequence. In an RNN, the input sequence is
processed one element at a time with the memory in the hidden units retaining
information on all the elements in the sequence [134]. Figure 2.20 shows how the
recurrence happens in a RNN; the hidden layers are structured in the same way as
in Figure 2.18, but with each layer updating with the previous information.
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Figure 2.20: Schematic illustration of a RNN with an input layer, hidden layers and an output
layer. How the recurrence functions is also shown.

In the case of chemical spectra, the peaks are often connected to adjacent peaks or
can appear in certain patterns, which is why pattern recognition methods such as
CNNs and RNNs can give good prediction models.

2.11 Variable selection and feature importance

For data sets with a large number of variables or features, it is often assumed
that some variables are irrelevant or redundant and can be removed without loss
of information. The term variable is more common in statistics, while the term
features is common in machine learning. They both refer to the columns of a data
set and are used interchangeably in this thesis.

Variable selection is the process of selecting a subset of relevant variables to use
when constructing a model. Removing redundant variables can improve the pre-
diction ability of the model, ease interpretation and reduce the computational cost
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during modelling. For spectroscopic data, a large number of molecules present in
the samples are detected, but in many cases only a few of them are actually related
to the response. Identification of the relevant variables in the data set is therefore
of high interest. Several regression and classification methods have built-in feature
importance measures which can be utilised to select those which have the strongest
relationships to the response. For instance, in regularisation, the constraints give
weights to the variables, and in LASSO, the regression coefficients of unimportant
variables are even set to zero. PLSR however, does not have such an in-built mea-
sure and Variable Importance in Projection (VIP) is therefore often used for variable
selection in PLSR models [139].

2.11.1 Variable Importance in Projection (VIP)

VIP scores are calculated as the weighted sum of squares for the PLSR weights,
which take the amount of explained variance in Y into account for each extracted
latent variable. VIP scores can therefore be used to select the variables that con-
tribute the most to the explanation of the variance in Y . Since the variance explained
by each component can be calculated by q2

jt
T
j t j, the VIP score for a variable K can

be calculated by

V IPK =

√√√√√n

∑A
j=1 q

2
jt

T
j t j
(

wkj

∥wj∥

)2

∑A
j=1 q

2
jt

T
j t j

, (2.48)

where (w kj/ ∥ w j ∥)2 represents the importance of the k -th variable, wherein w j is
the weight vector, wkj is the k -th element of w j. Additionally, q j are the loadings
and t j is the score vector from PLSR with A components. Variables with VIP
scores greater then 1 are generally considered as important, however this limit is
sensitive to non-relevant information in X [140] and should therefore be evaluated
individually for each task.

2.11.2 Permutation feature importance

Permutation feature importance [115] is another measure of the importance each
variable has for the response, which is often used for methods without built-in
variable selection. Permutation feature importance is a model inspection technique
that identifies important variables based on changes in the prediction accuracy when
a variable is randomly shuffled (permuted). If the prediction accuracy of the model
decreases significantly when a variable is randomly shuffled, this indicates that the

53



variable is important for the model’s ability to predict the response. Similarly, if the
prediction accuracy is unaffected when a variable is randomly shuffled, the variable
is not important for the prediction. The importance of the variables is calculated
from

i j = s − 1

K

K∑

k=1

sk,j, (2.49)

where s is the reference prediction accuracy of the model with the original features,
sk,j is the prediction accuracy of the models with shuffled variables and K is the
number of variables.

However, the work does not stop with simply identifying a variable as important.
The main interest for many problems is to identify what makes this variable im-
portant. By investigating the selected variables’ position in the spectra, chemical
groups can be identified, which can lay the foundation for new knowledge of the
problem at hand.
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3 Experimental methods

To identify hydrate active components and relate FT-ICR MS spectra to crude oil
properties associated with hydrate formation, experimental data was needed. Two
methods for determining hydrate chemistry were further developed from previously
established experimental procedures. Additionally, the density of the crude oils was
measured and related to spectroscopic data. In this section all experimental methods
used to generate data are described, and their shortcomings are pinpointed.

3.1 Fluid systems

The fluid systems used for the hydrate experiments consisted of water, a crude
oil and a synthetic natural gas, to imitate the contents of an oil pipeline. The
water phase consisted of 3.5% NaCl in tap water. This was done to only introduce
monovalent ions, and thereby generalising the water chemistry compared to the
water during production, avoiding any unwanted reactions by bivalent ions such
as Ca2+ [36]. Ca2+ can bind to acidic groups in the oils and this could have an
effect on the detection of hydrate active components if these are present in the acid
fractions of the oils. The ARNs can also cross-link with Ca2+ and precipitate to
disturb the experiments. There are small amounts of Ca in tap water (on average
20mg/L in Trondheim where the studies were conducted), but since these amounts
are smaller than in production water, it was assumed that they would not cause
any unwanted reactions. The gas phase consisted of a mixture of 86/8/6 mol% of
methane, ethane and propane respectively (Linde Gas AS) with a mixture tolerance
(accepted deviation from target value) of 10% and an analysis uncertainty of 2%.
This gas phase was chosen as it contains the gases most commonly involved in gas
hydrate formation.

Hydrate formation was performed experimentally by SINTEF, using a 200mL high-
pressure Sapphire Cell (Top Industrie), shown in Figure 3.1, placed inside a temper-
ature controlled chamber. The temperature was measured using a PT-100 element
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positioned at the bottom of the cell. A connected stirrer mixed the phases to cre-
ate a fully dispersed system. The cell was fitted with a Hy-Lok FT Micron Tee
Filter with a 150µm sintered stainless steel filter element. A probe inserted from
the top was used to measure the conductivity in the liquid phase. Gas filling was
controlled using an IN-FLOW HI-Press MFC mass flow controller (Bronkhorst). A
Bosch video camera was used for monitoring and capturing videos of the cell. On
average five different water cuts were tested for each oil to determine where the
hydrate formation occurred. The water cut is the ratio of water compared to the
total volume of the system.

Figure 3.1: Wetting Index cell used for hydrate formation experiments with stirrer, temperature
regulation, pump and camera. Picture by Martin Fossen.

3.1.1 Successive accumulation of hydrate active components

A successive accumulation procedure was developed by Fossen et al. [58], based on
the procedure by Borgund et al. [39], with the aim of increasing the concentration of
the hydrate active components. A schematic illustration of the procedure is shown
in Figure 3.2. The procedure started with a fresh oil sample which was added to the
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cell with the water phase at a given water cut and pressurised with a hydrocarbon
gas phase. The pressure was set to 65 bar and the temperature was lowered to
2◦C while stirring the liquid to ensure a homogeneous dispersion. By cooling the
system at high pressure, the hydrate formation region will eventually be reached
and with subcooling, the system will form hydrates. The systems were, in most
cases, kept at low temperature over night, to ensure hydrate formation to approach
towards equilibrium. The phase not associated with hydrates, referred to as the
bulk phase, was drained through the bottom of the cell. The pressure difference of
the cell and the ambient pressure conditions outside the cell were the driving forces
for draining. The hydrate phase was retained by the filter, so that only water and
oil not associated to hydrates were drained. After this draining of the bulk phase,
the cell was depressurised and the temperature was increased, causing dissociation
of the hydrate phase remaining in the cell. This resulted in a now liquified hydrate
phase, consisting of an oil and a water phase that had been associated to the gas
hydrates. The hydrate phase was then mixed with fresh oil and water at a ratio
ensuring the same water cut as the previous run, and the hydrate formation and
draining procedure were repeated. Small samples were taken from both the bulk
phase and the hydrate phase at each step for analysis by FT-ICR MS.

Oil + Brine + HC gas 

Appropriate WC

Hydrate formation

Oil and water (O&W)

Not associated to hydrates (bulk)

Sampling for FT-ICR MS

Hydrates remaining in cell

O&W from hydrate phase

Sampling for FT-ICR MS

Spiked O&W

Keeping original WC

Hydrate formation

Filtration

Mixing hydrate O&W with fresh O&W

Depressurisation and melting

This step was

repeated 5 times

Figure 3.2: Schematic illustration of the successive accumulation experiment for spiking of the
hydrate phase.

As each hydrate formation step was allowed to proceed over night, each accumulation
cycle lasted one day. The oils tested using this procedure were accumulated at least
four times, and all steps required manual handling. Consequently, this is a time and
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resource demanding procedure.

3.1.2 Wetting Index experiments

The wettability of the hydrate particles can be expressed as the Wetting Index (WI)
for an oil, which is a measure of the emulsion inversion point with and without
hydrates present. A WI procedure for determining the emulsion inversion point for
hydrates was developed by Høiland et al. [141] and improved by Fossen et al. [58].
The emulsion inversion point is the point where the phases shift from one being the
dominant phase to the other being the dominant phase. Oil- and water-continuous
emulsions are defined as homogeneous samples, and the inversion from oil- to water-
continuous is followed by an abrupt change in the viscosity of the oil-continuous
emulsion to an intermediate region where the samples have the appearance of an
inhomogeneous mix of both emulsions. This intermediate region is often referred
to as the inversion range. The further transition to water-continuous is quantified
as the amount of water needed for the emulsion to change from an inhomogenous
mixture to a homogeneous one. The emulsion inversion point is regarded as the
volume fraction of water at which the emulsion converts from oil-continuous to the
intermediate region.

When the emulsion inversion point shifts towards higher water cuts after hydrate
formation, the hydrates are oil-wetted and when the water cut shifts to lower water
cuts, the hydrates are water-wetted. This follows the principles of Bancroft [142].
The WI is defined as the normalised difference in inversion point with and without
hydrates present, represented by a number between -1 and +1. Positive values indi-
cate oil-wetted systems with little or no probability of plugging, and negative values
indicate water-wetted systems with a high potential for plugging. The absolute value
of the WI number is expected to be of importance, and a higher positive or nega-
tive value indicates higher degrees of oil-wetted or water-wetted hydrate particles,
respectively.

Experimentally, the WI for each sample was measured as follows: The cell was first
filled with oil and water according to the selected water cut, with a total liquid
content of 160 ml. Then the cell was pressurised with the hydrocarbon gas phase
to 65 bar. Stirring at a rate of 25 Hz was applied to disperse the liquid phases,
while cooling the system at constant pressure until hydrates were formed. This
process took approximately 12 hours. The cooling rate was on the order of 8 K/hour.
Hydrate formation was detected based on the changes in temperature measurements
of the liquid phase and visual inspection. In some cases the temperature showed
no clear change upon hydrate formation, and then changes in the conductivity and
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visual inspection were used to verify hydrate formation instead. The conductivity is
the main information needed to determine the WI, and high conductivity indicates
a water continuous system, while a low conductivity indicates an oil continuous
system. The point of phase inversion (∆φinv

w ) is considered as the volume fraction of
water where the emulsion converts from oil continuous to be in the inversion range,
and is determined from the conductivity measurements. The inversion point for
determining the WI (∆φ∗) is calculated and normalised by

∆φ∗ =
∆φinv

w

∆φmax

, (3.1)

where ∆φmax describes the maximum possible variation for the inversion point in
systems without hydrates ∆φ0

w. For high conductivities, ∆φinv
w >0, and ∆φmax is

calculated by

∆φmax = 1−∆φ0
w (3.2)

while for low conductivities, ∆φinv
w <0, and ∆φmax is equal to ∆φ0

w.

3.1.3 Measurement uncertainties

The uncertainty of the WI method has not been systematically tested nor are stan-
dard deviations calculated. However, since multiple water cuts in close proximity
were tested, uncertainties or irregularities in the determination of the continuous
phase were detected and the water cut re-checked by a duplicate test to control
the consistency of the method. Additionally, during the WI experiments, it was
discovered that oils measured previously in another project 2 years prior, received
completely different WIs. One possible explanation for this could be that storing
the oil has an effect on the composition of the oil, and that these results might not
be representative for a fresh oil. The reason for this deviation was not further inves-
tigated. It is difficult to evaluate the accuracy of these measurements as they are
heavily dependent on the composition of the crude oils. The external parameters
such as temperature, pressure and stirring are controlled to create an equal system
for all oils, but hydrate formation is still affected by the oil composition.
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3.2 Density measurements

Density was measured using a Sigma 703D by Biolin Scientific using the associated
density probe. All samples were measured at room temperature during a period of
1 week. The measurements were conducted as follows: First the density ball was
placed on the hook before taring, and the density should then read 1.2e-3 g/ml, i.e.
the density of air. The beaker was then filled with the fluid oil sample and placed
so that the stagnant density probe was fully immersed in the sample. Lastly, the
density value on the display was recorded. The density was measured three times
per sample and the value was reported as the average of the three repeats. Between
each measurement, the density probe was cleaned with toluene and acetone and dried
with an air pistol. The instrument power was turned on at least 30 minutes before
the first sample was measured to reduce variation caused by instrument heating.

3.3 FT-ICR MS analysis

For FT-ICR MS, the samples were prepared by diluting 20µL of sample in 980µL
dichloromethane (Supelco Suprasolv for gas chromatography MS). From this diluted
sample, 20µL were diluted further in 980µL of a 1:1 mixture of toluene (Sigma-
Aldrich CHROMASOLV for HPLC 99.9%) and methanol (Baker analyzed LC-MS
Reagent). The samples were diluted a total of 100 times and from each diluted
sample, 100µL were injected using a High Performance Liquid Chromatography
(HPLC) system as the introduction device. This was done to inject a steady flow
over a given period of time to assure a good collection of spectra. In this work, the
samples were injected over a time period of 10 minutes. The samples were analysed
in three parallels each. For each parallel, 220 spectra were collected and the data
for each parallel was given as the average over all 220.

3.3.1 Data Preparation

Before data analysis, preprocessing of the raw data is required. The data from each
sample was first combined into a bucket table using Bruker Compass ProfileAnalysis
2.1 [143]. Bucketing is the process of removing unwanted variations in peak posi-
tions due to changes in shifts during analysis. This is usually done by dividing the
spectrum into equally sized parts, namely buckets, integrating the intensity values
in each bucket and annotating this value to the bucket [144]. However, when doing
so, small peaks adjacent to large peaks become overshadowed and diminished, thus
resulting in a loss of sensitivity. Still, FT-ICR MS has such a high mass accuracy
that this reduction in sensitivity is negligible. It rather reduces the amount of peaks
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and thereby also the dimension of the data set, something that could be beneficial
for data analysis. The settings in ProfileAnalysis can be set in numerous ways, and
based on previous information, the settings in this work were as follows: Normali-
sation was set to the sum of bucket values in the analysis, no baseline or smoothing
was used, the S/N threshold was set to 4, the relative intensity threshold was 0.01
and the absolute intensity threshold was 100. Based on this, the average peak list
was calculated.

Normalisation is a common way to preprocess FT-ICR MS spectra and consists of
dividing each spectrum by an estimation of its spectral intensity. This can be done
with regards to a selected area, the maximal peak in the spectrum, a specific spectral
point, spectral length or the sum of the spectral values. When the normalisation is
set to the sum of the bucket values in the analysis, each sample will be normalised
to have the same total intensity over all the peaks.

The signal-to-noise ratio (S/N) can be used as a measure for the detector perfor-
mance, as it conveys information about the lower limit of detection [145]. The
smallest signal that can be attributed to an analyte is commonly regarded to have
a S/N of 2 of more. During the experiments presented here, the S/N was set to 4
to disregard the smallest peaks as their inclusion would have contributed to more
noise in an already large data set.

The threshold is defined as the size of the signal exceeding the noise level, and is
used to determine the start and the end of a peak. The ideal threshold should be
low enough to trigger the start of a peak when the signal is just slightly higher
than the noise, and high enough to prevent noise from being mistaken as a peak.
This setting is the intensity threshold in ProfileAnalysis. In this work, the relative
intensity threshold was set to 0.01, and the absolute intensity threshold to 100. This
means that the signal had to have an intensity of 10% (relative) or 100 (absolute)
higher than the noise to be included as a peak.

The focus area of the FT-ICR MS method is set to m/z 250, which is where the
largest abundance of peaks are expected to occur. This means that the sensitivity
of the instrument decreases over m/z 1000, simply because this area is far away from
the focus area, causing more noise in the measured peaks for high masses. It is more
difficult to determine molecular formulas for molecules with masses over 1000Da.
Additionally, high masses have a higher possibility to ionise with multiple charges.
The system is set to avoid multiple charges, but multiple charges are not completely
uncommon in the higher masses.
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3.3.2 Irregularities in the spectra

During analysis of the ESI(+) FT-ICR MS spectra, it was discovered that some
spectra had peaks with substantially higher intensity than the remaining spectra.
These spectra also had fewer peaks and a shape which is not common for oil spectra.
During inspection of the peaks in spectra with these effect, it was discovered that
the distance between many of the peaks was m/z 44.026 which is the weight of a
C2H4O molecule. This is also the difference between chains of polyethylene glycol
(PEG) molecules, as the differences between molecules in a PEG series is a C2H4O
group. The hypothesis is therefore that these shape irregularities in the spectra were
caused by the presence of PEG in the samples. Figure 3.3 shows an example of an oil
spectrum with the shape characteristic for crude oils shown in blue, and an example
of a spectrum for a sample likely containing a PEG series shown in red. From Figure
3.3, the differences in intensity between regular oil spectra and spectra containing
PEG are shown, with a maximum intensity of 1.49 in the oil spectrum and 1.211

in the spectrum containing PEG. During the work in Paper II and Paper III,
peaks with molecular formulas corresponding to PEGs were selected by the variable
selection methods. It is not unlikely that other production chemicals could be found
in the spectra as well, although in this work only PEGs were revealed.
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Figure 3.3: Spectrum with the shape characteristic for crude oils in blue and the spectrum of a
sample containing PEG in red, with the differences in intensity indicated at the top of the spectra.

Another issue was uncovered when the replicates for the samples were compared.
The measurements for the replicates for each sample were not consistent, exposing
some type of non-linearity in the system. This is shown in Figure 3.4, where the
left plot shows how the data should be if the replicates were in agreement, and the
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right plot illustrates the non-linearities present in some of the samples. This could
possibly be due to non-linearities in the form of signals with odd-numbered multiples
of the fundamental reduced frequency from Equation 2.8, caused by variations in
the time-domain signal magnitude as a function of the ion cyclotron orbital radius,
referred to as harmonic signals [67]. These harmonic signals can increase the number
of peaks in the spectra and interfere with identification of other fundamental signals
which are low in magnitude. One hypothesis is that these effects can be remedied
in the same way as non-linearities are handled in IR spectra, with preprocessing.
However, the underlying cause should be determined first to evaluate whether this
could be handled directly. As of now, what causes these effects in some of the
samples is unknown.
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Figure 3.4: The three replicates for two samples plotted against each other. The left plot shows one
sample where the replicates are in agreement and the right plot shows a sample with non-linearities
present.

3.4 IR analysis

IR analysis was performed by applying 20µL of crude oil onto the detection window
of a PerkinElmer Frontier FTIR/NIR Spectrometer, an instrument capable of mea-
suring all ranges in the IR region. When set to NIR mode, the instrument operates
in the range 15 800-2000 cm-1 and for FTIR mode it operates from 8300-400 cm-1

[146]. The advantages of these methods are that the analysis is fast, requires none
or minimal sample preparations and is non-destructive.

The FTIR measurements were taken over the range 4000-800 cm-1, while the NIR
measurements were taken over the range 12800-4000 cm-1. The resolution for both
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methods was 4 cm-1 with 16 scans for each sample. The final spectra for each sam-
ple was the average of the 16 scans with a background spectrum subtracted. For
data analysis, the spectra from FTIR were combined to one data set and the data
from NIR to another. The data sets were then preprocessed by EMSC and/or Sav-
itzky–Golay depending on the degree of removal of non-linearities achieved in each
of the data sets.
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4 Summary of the papers

In this work, machine learning was used with the aim of identifying naturally oc-
curring components related to hydrate formation, where the high mass accuracy of
FT-ICR MS was utilised to obtain detailed spectra of crude oils. In this section a
summary of the work presented in the papers and the rational behind each paper
will be given. In Paper I a literature review revealed that little work has been done
to identify naturally occurring hydrate active components from FT-ICR MS spectra
using machine learning. Therefore, a feasibility study was done in Paper II to test
the proficiency of various variable selection methods for this purpose. As this was
successful, we expanded on this work by including additional methods in Paper
III, and several molecules which were related to hydrate formation were identified.
However, the prediction accuracies in Paper II and Paper III were not high, and
FTIR and NIR were included in Paper IV to further characterise the oils. Lastly,
new methods able to handle large variations in the relationships between X and Y ,
and non-linearities were developed in Paper V.

4.1 Paper I

Current overview and way forward for the use of machine learning in the field of
petroleum gas hydrates

To gain an overview of the current status of the use of machine learning in the field
of gas hydrates, a literature study was performed. As the main aim of this project
was to identify naturally occurring hydrate active components, a literature search
was done to find all literature where machine learning had been used to identify
hydrate active components from FT-ICR MS spectra, which returned zero publi-
cations. Therefore, the search was expanded to all literature regarding machine
learning on gas hydrates. FT-ICR MS was included in the search string to establish
a link between gas hydrates and analysis of crude oils. Several machine learning
methods were hypothesised to be useful in this context, and their names were there-
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fore also included in the search. The included methods were Principal Component
Analysis, Partial Least Squares Regression, Decision Trees, Random Forest, Arti-
ficial Neural Networks, Convolutional Neural Networks, Support Vector Machines,
regularisation, Bayesian Networks and K-Nearest Neighbours. The results showed
that both the field of gas hydrates and FT-ICR MS had limited publications, how-
ever, both showed an increasing trend over the last few years. For gas hydrates,
ANNs were most commonly used, while for FT-ICR MS, PCA was the most com-
monly used method. A text analysis study was performed to group the search results
according to different topics.

The text analysis revealed that even though quite restrictive search terms were used,
many of the topics in the literature were not relevant for gas hydrates and crude
oil analysis. From the relevant topics, several publications from both fields were
determined to be of value for future research regarding identification of hydrate
active components from crude oils. They were further evaluated with the aim of
identifying trends and gaps in the research.

The retrieved literature showed that for gas hydrates, machine learning has mainly
been used for determination of thermodynamic properties for hydrate formation.
Additionally, many of the papers were based on data sampled from the literature,
and in most of the cases, the same data sources were used. This leads to low diversity
in the results, and it became apparent that more experimental data is needed. The
thermodynamic properties of hydrate formation have been thoroughly evaluated al-
ready, and it could therefore now be time for creation of other types of data, for
instance data where hydrate formation is related to the chemical properties of the
oil. For FT-ICR MS, machine learning has mainly been used for crude oil charac-
terisation, however, most studies did not expand past PCA and visualisation using
unsupervised methods. As FT-ICR MS spectra contain such large amounts of data,
many machine learning methods could be beneficial to yield a deeper understanding
of the spectra.

This review showed that several machine learning methods have been tested and
proven effective for analysis of thermodynamic properties of gas hydrate related
samples, and for chemical properties of data from FT-ICR MS. However, at the time
this search was carried out, no studies existed in the cross section between the two.
To fully understand the formation mechanisms of gas hydrates, it is important to
understand the chemistry that is involved. We therefore believe that characterising
gas hydrate related crude oil samples, could provide valuable insights.
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4.2 Paper II

Identifying components related to hydrate formation by machine learning-based vari-
able selection

The FT-ICR MS spectra usually contain between 10 000-25 000 peaks due to the
high mass accuracy of the instrument. It is highly unlikely that all these peaks are
related to the response, and some peaks could even be noise, reducing the prediction
ability of the model. It is therefore of interest to reduce the data set by removing
the unimportant variables, and at the same time identify the variables which are
important so that their chemistry can be interpreted. Variable selection can be used
to find the variables which contribute the most to the response in a data set. In
Paper II, tree based methods such as Decision Trees, Random Forest, Bagging
and Boosting, as well as regularisation based methods such as LASSO and Ridge
Regression were tested with the aim of identifying naturally occurring components
in crude oils related to hydrate formation. These methods were selected as they are
apt at handling data where the number of variables are larger than the number of
samples, which is the case for most FT-ICR MS data sets.

Two oil samples (anonymised to A and J2) were subjected to the successive accu-
mulation procedure measuring six spiking levels for oil A and 4 spiking levels for
oil J2. The WI was also measured for the two oils, resulting in the value +0.44 for
oil J2, indicating that J2 forms transportable hydrates, and 0 for oil A, indicating
that hydrates formed in oil A can be either transportable or plugging. Samples were
measured in three parallels using ESI(+)-FT-ICR MS, both for bulk samples and hy-
drate samples. PCA showed that there was a difference between the spiked samples
and the crude oils, and between some of the spiking levels. To investigate whether
any components were accumulated during the spiking procedure, the mass spectrum
for an unspiked sample was subtracted from each spiking level. This should show
an increase for peaks where an accumulation had occurred. Some peaks emerged as
interesting from this analysis.

Classification was performed with the sample origin as the response, either from
bulk (0) or from hydrate (1). The results showed that Boosting yielded the best
classification accuracy. For each of the methods, the five variables (m/z-ratios) se-
lected as the most important, the corresponding proposed molecular formulas, DBEs
and H/C-ratios were determined, in addition to which oil samples the selected vari-
ables appeared in. The results showed that some of the selected variables probably
corresponded to asphaltenes and some variables could possibly be sulfoxides. Sul-
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foxides have previously been shown to be correlated with agglomeration of hydrates,
and could therefore be related to the WI for oil A which indicates that it can form
plugging hydrates. This conference paper was written to investigate the possibilities
for using variable selection to identify important components from the FT-ICR MS
data.

4.3 Paper III

Using machine learning-based variable selection to identify hydrate related com-
pounds from FT-ICR MS spectra

Paper II showed the possibilities for using variable selection for identification of
naturally occurring hydrate active components. The study was expanded and one
more oil (anonymised to I) was included. The successive accumulation was also
performed for oil I, resulting in five spiking levels. The WI for oil I was measured
to be 0.31. Bulk samples and hydrate samples from the three oils, oil A, J2 and I,
were measured in three parallels each using ESI(+)-FT-ICR MS. PCA showed that
the oils were different after the spiking procedure. Comparison of the mass spectra
revealed that some peaks were increasing in intensity for oil A and I, however this
was not observed for oil J2.

The most promising methods from Paper II, Decision Trees, Random Forest,
LASSO and Gradient Boosting, were included in this study with an addition of
new methods, PLS-DA and XGBoost. As in Paper II, classification was performed
using the sample origin as the response, i.e. whether they were from the bulk phase
(0) or from the hydrate phase (1). PLS-DA was determined to be the best perform-
ing classification method over 25 different training and test sets. During this analysis
we discovered that the prediction accuracies of the models were very dependent on
the composition of the training set. Some combinations of training and test set per-
formed very well and some extremely poorly. The models were therefore validated
using several training and test set splits, and a study was performed, splitting the
data set into training and test sets 25, 50, 75 and 100 times, to determine a fair
number of splits. The results showed that increasing the number of splits above 25
did not affect the standard deviation significantly. The variables selected in all of
the 25 models were considered as important, and their molecular formulas, DBEs,
H/C-ratios, corresponding adducts and molecular weights were estimated based on
the m/z values.

The results showed that several of the variables could correspond to asphaltenic
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structures, while many were determined to be PEG stemming from oil chemicals.
Both the PCA and the comparisons of the mass spectra showed that the successive
accumulation increased the concentration of some compounds in the hydrate phases
for oil A and I. Some of these variables were also selected as important from the PLS-
DA. The selected variables´ effects on hydrate formation were evaluated with regards
to the WI of the crude oils. Additionally, the lack of peaks with increasing intensity
in the mass spectra for J2 after accumulation, together with the high positive WI
for J2, indicates that this oil is saturated with hydrate active components so that
the spiking procedure did not change the composition of the oil.

In summary, our results showed that it is possible to identify components related to
hydrate formation. However, more work should go into determining their molecular
structures in detail, as the molecular formulas could correspond to a large number
of different structures (the larger the mass, the larger the number of possibilities).

A major aim of this project was to establish a connection between the FT-ICR MS
spectra and crude oil properties. To accomplish this goal, regression models were
built to predict the WI from FT-ICR MS spectra. However, during the project
period WI was measured for only 17 oils. All attempts to build useful models were
unsuccessful, which can be attributed to the low number of available samples and
also the previously discussed uncertainties in the measurements. Building models on
few data points makes validation challenging and makes it difficult to see connections
and draw conclusions. The spiking data was possible to correlate to the FT-ICR MS
spectra using classification, but these data also yielded large deviations, as shown in
Paper III. Some of these modelling issues can also be attributed to the complexity
of the oils and their large geographical differences, in that oils from different locations
have such varied chemical compositions that this alone can dominate the analyses.

4.4 Paper IV

Multiblock analysis combining data from FT-ICR MS, FTIR and NIR spectroscopy
improves prediction of the density of crude oils

Crude oils are extremely complex with a large number of constituents and therefore
difficult to characterise in full, even with the high mass accuracy of FT-ICR MS.
The studies in Paper II and III showed the difficulties in modelling this type of
data with mediocre prediction accuracies and large variations in prediction accu-
racies for different training/test set combinations. FTIR and NIR have previously
been used extensively for crude oil characterisation as well [147, 148], and these
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methods were therefore compared to APPI(+)-FT-ICR MS in Paper IV. Combin-
ing different complementary measurement techniques yields a more comprehensive
characterisation, as properties not measured by one technique can be captured by
another. Previous studies have shown the effect of comparing different ionisation
sources [94, 149, 150], however no studies have been done previously to compare
crude oil measurements from mass spectrometry to infrared spectroscopy. Measure-
ments from ESI(+)-FT-ICR MS were also supposed to be included in this study, but
due to the irregularities discovered between the replicates of the spectra described
in section 3.3.2 the ESI(+) measurements were excluded.

APPI(+)-FT-ICR MS, FTIR and NIR were therefore used to characterise 42 crude
oils, and the oils densities were measured. Prediction models using Partial Least
Squares Regression (PLSR) on the data from each analysis technique (single-block
PLSR) and the multiblock methods Multiblock Partial Leas Squares Regression
(MB-PLSR) and Sequential Orthogonal Partial Least Squares Regression (SO-PLSR)
on fused data were compared to predict the density from the spectra. Additionally,
variable selection through variable importance in projection (VIP) was performed
to reduce the data set, but more importantly, identify variables of high importance
to the response. Density is highly related to the chemical structure of the samples,
and it was therefore of interest to evaluate the chemistry of the selected variables
to examine whether the three methods highlighted similar compound groups. The
two multiblock methods, MB-PLSR and SO-PLSR, use two different procedures for
fusing data, and both were compared to single-block PLSR to evaluate the benefit
of using data from more than one spectroscopic technique.

The results showed that the multiblock methods did improve the prediction for the
three data sources, both before and after variable selection. FTIR received the
highest prediction accuracy in the single-block PLSR analysis, indicating a higher
correlation between the FTIR peaks and density than in the other two blocks. The
overall best performing prediction model was SO-PLSR using the variables selected
from the single-block methods.

The selected variables from each method were compared and chemical groups related
to density, such as naphthenic acids, aromatic groups and alkanes, were identified.
Naphthenic acids and aromatic groups are related to heavy oils and high densities,
while larger amounts of alkanes are related to light oils and low densities. The
comparison of the selected variables from the three PLSR stategies showed that
SO-PLSR consistently selected variables related to high densities, while single-block
PLSR and MB-PLSR more often selected variables related to low densities. This
is highly interesting since SO-PLSR also outperformed single-block PLSR and MB-
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PLSR.

4.5 Paper V

Hierarchical cluster-based deep learning

In Paper II-III, PCA showed that the crude oils were vastly different, which was
expected due to the highly complex matrix of crude oils. This was illuminated by the
low predictive abilities of the models. Local modelling has the abilities of handling
large inhomogeneity and variability in data sets, and was therefore believed to be
valuable for improving the prediction. Unfortunately, too few samples were available
in time to train and test the method on hydrate related samples.

Local modelling is based on the concept of dividing the data into smaller groups and
fitting a model to each group, assuming that this will result in better fitting models
for data with dissimilar relationships between X and Y . The division of samples
can be based on a priori information, however, this is usually not available for
real world data. Hierarchical Cluster-based Partial Least Squares Regression (HC-
PLSR) was developed by Tøndel et al. and utilises the capabilities of clustering
to group similar data points, and creates one PLSR model for each cluster. New
samples are classified into one of the clusters and predicted using the corresponding
local model. However, PLSR is a linear method and requires that the data is locally
linear within each cluster. For some data sets this is not the case, and here HC-
PLSR will perform poorly. To overcome these issues with non-linearities in the local
models, the HC-PLSR method was expanded into deep learning by the creation of
HC-CNN, HC-RNN and HC-SVR. Neural networks handle non-linearities through
applying non-linear functions to the weights during training, while SVR handles
non-linearities though non-linear kernels.

To evaluate the hierarchical cluster-based deep learning models, FTIR measure-
ments of raw material films from hydrolysed fish and poultry consisting of 28 known
subgroups were used. Chicken, turkey, salmon and mackerel samples were hydrol-
ysed with various enzymes, with the aim of predicting the molecular weight during
the enzymatic hydrolysis. The results showed that the local deep learning and SVR
models outperformed HC-PLSR.

The advantage of PLSR over deep learning lies in the easy interpretation offered by
scores and loadings. Deep learning models are considered as "black boxes" - it is
nontrivial to interpret how the neurons work together to create the output. In an
attempt to compare the results from the local networks and HC-SVR to HC-PLSR,
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methods for identifying important variables for each model were implemented. For
HC-CNN and HC-RNN, VarGrad [151, 152] was used, which adds small amounts of
noise to each variable and monitors the effect the noise has on the output. Permu-
tation Feature Importance was used for SVR, permuting one variable at a time and
evaluating the resulting change in prediction accuracy. The visualisation revealed
that samples containing similar chemical groups were clustered together, and the
important features from the four methods highlighted these differences in chemi-
cal groups. The peaks determined as important were related to known absorption
bands for dry-film FTIR spectra. This shows that the local models were able to find
clusters and build models based on differences in the chemical composition of the
samples without using any prior knowledge.

In order to avoid overfitting, the number of clusters should be kept relatively low. It
is also advantageous to keep the number of PLSR components low, to ease the clus-
tering and subsequent interpretation of the models. In this study, HC-PLSR needed
a higher number of clusters than HC-CNN, HC-RNN and HC-SVR, as expected, to
be able to better handle the heterogeneity in the data.

Paper V is currently a manuscript and we are working on including another test
case based on simulated data to provide further proof of concept for the HC-deep
learning methods.
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5 Conclusion

One of the main contributions of the thesis to the field of gas hydrate research has
been to use machine learning to establish a link between FT-ICR MS spectra and the
identification of naturally occurring hydrate active components in crude oils. Several
crude oil constituents which have previously been related to hydrate formation were
during this work identified from the spectra by various variable selection methods. A
literature review revealed that no papers were previously published where machine
learning was applied to FT-ICR MS spectra of gas hydrate related samples with
the intent of identifying naturally occurring hydrate active components. Hence, this
field had not been explored much previously.

In this thesis, a number of methods for analysing FT-ICR MS spectra have been
demonstrated. FT-ICR MS data can be difficult to work with as the high mass
accuracy causes the spectra to contain large amounts of peaks, which not all methods
are able to handle. Additionally, in both Paper II and Paper III, the prediction
models based on FT-ICR MS data gave surprisingly low prediction accuracies. It
was expected that it would be relatively easy to build models on FT-ICR MS data
with all the chemical information contained in the spectra. However, this was not
the case, neither for ESI ionised molecules or APPI ionised molecules. In Paper
IV on the other hand, the effect of reducing the FT-ICR MS data set using variable
selection showed a significant increase in the prediction ability of the PLSR model on
the APPI(+) FT-ICR MS data. This is a strong indication that the spectra might
contain too much information, causing the relevant parts to be overshadowed. This
work therefore demonstrated that using variable selection could be highly beneficial
for this type of data.

One of the aims of the main project this work is a part of was to utilise the WI
measurements to evaluate whether an oil will be plugging or not. As FT-ICR MS
spectra contain such vast amounts of information, it was assumed that the spectra
also contain the information needed to predict the plugging potential for hydrates.
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Before commencement of the data analysis performed in this thesis, it was therefore
expected that machine learning models could be built to replace the WI measure-
ments with FT-ICR MS measurements. Since the WI measurements are time and
resource consuming, very few tests were completed in the course of the project.
Nevertheless, many attempts were made to create a model which could correlate
the WI data to FT-ICR MS spectra, but all were unsuccessful. All methods de-
scribed in this thesis were attempted, with and without variable selection, and even
autoencoders, which are profound at reducing noise in the data, were attempted.
Attempts to relate the WI to the FTIR and NIR data were also unsuccessful. If any
hydrate active components are present in the oils, one hypothesis is that they exist
in very low concentrations. Low concentrations can make their identification and
quantification difficult amongst the large amounts of peaks in a spectrum. Another
possibility is that the components acting as natural inhibitors are not the same for
different oils. For one oil it could be asphaltenic compounds which inhibit agglom-
eration, while in another oil it can be naphthenic acids. Such differences make it
difficult for a machine learning model to detect a pattern, and there might not even
be a pattern. However, since very few samples were available, it is also difficult to
make any conclusions, other oils could have exhibited completely different results,
or with more oils there might have been enough of a pattern to detect correlations.
These unsuccessful attempts can also indicate that there is not a strong enough
relationship between WI and FT-ICR MS spectra to be able to create models.

The thesis further contributed to the field by the creation of new non-linear ap-
proaches to local modelling. The work done in this thesis displayed the difficulties
in building models on FT-ICR MS spectra from crude oils. It is believed that some
of these difficulties arise from the differences between the oil samples. The chem-
ical composition of oils can be very different and composition also effects the oils
relationship to the responses used in this work. The previously established local
modelling procedure HC-PLSR was therefore believed to be proficient for such data,
as its main premise is to separate the data into groups of similar data and build one
model for each group. However, PLSR is a liner model, and to handle non-linear
data, the HC-PLSR procedure was expanded into deep learning and SVR. When
more data is available the proficiency of these methods can also be displayed on
samples related to hydrate formation.

74



6 Suggestions for future work

The main focus of this work was to identify components from FT-ICR MS related
to naturally occurring hydrate anti-agglomerants. The results presented in this
thesis identify possible groups related to hydrate active components, and describe
methods which can be used for this purpose. However, this is a difficult task with
many road blocks which have also been illuminated. In this section some suggestions
are presented for how the work from this thesis can be taken further.

The variable selection methods tested in Paper II and III were shown to be effective
for identifying components related to naturally occurring hydrate active components
and some possible molecular formulas were suggested. To further determine the
molecular structures of these compounds, they can be fragmented using the FT-
ICR MS. The large masses of some of the selected components imply that their
molecular formulas can correspond to a large number of different structures. With
fragmentation, the molecules are split up into smaller sections, and their patterns
can be used to determine the parent molecule. When some molecules are identified,
they can be added to a crude oil, and whether the compound is able to alter the
hydrate formation and specifically the wettability of the system can be evaluated.

As indicated above, both the WI and the spiking procedures are quite time con-
suming, and the amount of available data was therefore limited in this project. The
complex matrix of crude oils means that samples and their measured spectra can
exhibit large differences, making them difficult to model together. Therefore, the
local modelling procedures in Paper V were developed in an attempt to improve
the predictive abilities of the models. However, we did not have enough oil data
to test these methods on hydrate related FT-ICR MS spectra. When more data is
available the local models should be tested, as they should be able to better account
for complex non-linearities in the data.

An effort should be made to correct the replicate issue observed in the FT-ICR MS
spectra. We were not able to ascertain why this is happening during this work,
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and further investigation to identify the reason behind could hopefully reveal more
answers. Until the reason is discovered, these issues could possibly be rectified
by preprocessing methods traditionally used for IR spectra, such as EMSC/EISC.
Various preprocessings were tested, where some did reduce the observed differences
between the replicas, but further work is needed to evaluate their effect and if the
preprocessing improves the subsequent models prediction abilities.
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A B S T R A C T

Gas hydrates represent one of the main flow assurance challenges in the oil and gas industry as they can lead to
plugging of pipelines and process equipment. In this paper we present a literature study performed to evaluate
the current state of the use of machine learning methods within the field of gas hydrates with specific focus on
the oil chemistry. A common analysis technique for crude oils is Fourier Transform Ion Cyclotron Resonance
Mass Spectrometry (FT-ICR MS) which could be a good approach to achieving a better understanding of the
chemical composition of hydrates, and the use of machine learning in the field of FT-ICR MS was therefore
also examined. Several machine learning methods were identified as promising, their use in the literature
was reviewed and a text analysis study was performed to identify the main topics within the publications.
The literature search revealed that the publications on the combination of FT-ICR MS, machine learning and
gas hydrates is limited to one. Most of the work on gas hydrates is related to thermodynamics, while FT-ICR
MS is mostly used for chemical analysis of oils. However, with the combination of FT-ICR MS and machine
learning to evaluate samples related to gas hydrates, it could be possible to improve the understanding of
the composition of hydrates and thereby identify hydrate active compounds responsible for the differences
between oils forming plugging hydrates and oils forming transportable hydrates.

1. Introduction

Gas hydrates are crystalline structures where smaller guest
molecules are trapped in cages formed by water molecules that are
held together by hydrogen bonds [1]. Gas hydrates are among the
main flow assurance issues when producing oil and gas, especially
subsea or in cold locations, because they can lead to complete blockage
(plugging) of pipelines and process equipment forcing the operator to
shut down the production [2]. The most common, yet very conserva-
tive, hydrate strategy states that the positive driving forces for hydrate
formation, i.e. high pressure and low temperature, should be avoided.
In practice this requires determination of the thermodynamic region
where hydrate formation occurs in order to keep the system outside
this pressure–temperature region. [3].

For hydrate inhibition on the other hand, the most common strat-
egy is currently the use of thermodynamic inhibitors (THIs). These
inhibitors shift the hydrate curve towards higher pressures at hy-
drate inducing temperatures, enabling production at lower tempera-
tures without the formation of gas hydrates [4,5]. Common inhibitors
are organic chemicals, such as methanol and monoethylene glycol
(MEG) dosed at concentrations of 20%–50% of the mass relative to the

∗ Corresponding author.
E-mail address: elise.lunde.gjelsvik@nmbu.no (E.L. Gjelsvik).

water produced [4]. The premise of their application is that gas hydrate
formation is expected, and therefore the inhibitors are always present
in the pipelines. Another promising strategy for hydrate management is
the injection of low dose hydrate inhibitors (LDHI) [6]. The two main
types of LDHIs are the kinetic hydrate inhibitors (KHI) which alter the
kinetics during the hydrate formation, and the anti-agglomerants (AAs)
which alter wettability of the hydrate particles and prevent them from
sticking together. A typical concentration for an LDHI injection is 0.1–
1 wt % relative to the water phase [4,7]. For the AAs the purpose is
to form a slurry of gas hydrates dispersed in the oil phase that can
be transported through the pipelines without the particles aggregating
together or depositing to the pipe wall. However, for an AA to be
efficient, it must be surface active and able to adsorb to the surface
or interact with the hydrate cages of the dispersed hydrate particles.
The purpose of KHIs, on the other hand, is to delay the formation
of hydrates long enough to reach the storage facility without causing
blockage [8]. The KHI binds to the hydrate surface, decreasing the
crystal formation process by preventing the growth of hydrate crystals
nuclei [9].
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However, through laboratory experiments spurred by field expe-
rience, it became evident that some crude oils did not experience
plugging when gas hydrates were formed [10]. Instead, the hydrates
behaved more like dry particles that could be transported without any
issues [11]. The explanation set forth was that some crude oils contain
naturally occurring components that interact with the gas hydrates
rendering the surface of the particles hydrophobic. One hypothesis is
that these components have the ability to adsorb to the hydrate surface,
preventing agglomeration of hydrates and the potential plugging of
the pipeline [12]. Another hypothesis is that parts of a molecule, for
example butyl/pentyl groups, penetrate open cavities on the hydrate
surface (of 512 64 SII cages) and can become embedded in the surface as
the hydrate grows around the alkyl groups [4]. The current status of the
search for the type and structures of natural hydrate inhibitors is that
they have not yet been characterised in detail [2,11–13]. Some previous
studies have suggested that these natural inhibitors may be contained
in the petroleum acid fraction [11,14–17] which has been shown to
include a large amount of naphthenic compounds. Borgund et al. [15]
and Erstad et al. [18] showed experimentally the anti-agglomerating
properties of some petroleum acid fractions.

Similarly, the asphaltene fractions are known to possess self-
agglomerating properties that can stabilise some crude oil systems [19]
and some asphaltenes can alter the plugging potential of crude oils [20,
21]. It has been shown that the asphaltene fractions able to stabilise
systems prone to form transportable slurries are often more polar,
with higher oxygen content, higher acidity and lower double bound
equivalents (DBEs) [22]. Other studies have suggested that the possible
hydrate activity of asphaltenes is related to their sulfoxide content [23].

The overall goal of this review was to establish a baseline for the
current status of the use of machine learning in the field of petroleum
gas hydrates. A part of this study was to identify work related to
naturally occurring hydrate inhibitors in crude oils where machine
learning methods have been used. It was, however, shown that this
research was extremely limited, resulting in only one publication [24].
Therefore, the methodologies described are related to the thermody-
namic aspects of gas hydrates and the chemical analysis of crude oils.
Fourier Transform Ion Cyclotron Mass Spectrometry (FT-ICR MS) has
a high mass accuracy which could be utilised for analysis of properties
related to gas hydrates. FT-ICR MS was therefore included in this
review to establish a link between aspects of gas hydrates and analysis
of crude oils.

2. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
(FT-ICR MS)

The complex mixtures of crude oils and the relatively high masses of
their components make detailed identification difficult with most mass
spectrometers. However, with the high mass accuracy of FT-ICR MS,
more detailed analysis of crude oil samples are possible [25,26]. In FT-
ICR MS the mass-to-charge (m/z) ratio of ions are determined based on
the cyclotron frequency of the ions in a fixed magnetic field. The mass
accuracy for FT-ICR MS is sub ppm and the mass spectral resolution
can be above 10 million (at m/z = 400), which allows identification
of a large number of different polar groups [27–29]. In an FT-ICR MS
analysis, ions are detected simultaneously within a detecting interval by
the ion cyclotron resonance frequency they produce when they rotate
in a magnetic field. This provides the increase in signal-to-noise ratio
compared to traditional mass spectrometers.

There are several different ionisation techniques to be used in
combination with FT-ICR MS. For crude oils, the most common are
electrospray ionisation (ESI) and atmospheric pressure photo ionisa-
tion (APPI) as they ionise polar compounds efficiently [27,30]. ESI
is achieved by applying a high voltage to a liquid passing through a
capillary tube inducing highly charged droplets [31]. In positive mode,
formic acid is added to the solution aiding ionisation, while in negative
mode ammonium hydroxide is added resulting in lower background

noise. APPI is performed by exposing the analytes to photons emitted
from a UV lamp [27] and in positive mode, both molecular ([𝑀+⋅]) and
protonated ions ([𝑀 +𝐻]+) are generated. During negative mode, the
ions of the molecular species are produced by either proton abstraction
or adduct formation. The predominant ions are the molecular species
ion ([𝑀 − 𝐻]−), which is the ion corresponding to the fatty acids
(𝑅𝑛 − 𝐶𝑂𝑂−) present in the sample [31]. APPI is sensitive to aromatic
compounds and sulphur containing compounds.

FT-ICR MS has previously been used widely for crude oil charac-
terisation [27,32–38]. For instance, Qian et al. [39,40] showed that
positive and negative mode ESI-FT-ICR MS are able to characterise
different aspects of crude oils. In negative mode it was identified
over 3000 chemical formulas of acids and acidic compounds, while in
positive mode over 3000 unique elemental compositions of Nitrogen-
Containing Aromatic Compounds were identified, illustrating the high
accuracy of FT-ICR MS. The large data sets constituting FT-ICR MS
spectra, require data treatment methods able to handle big data and
find underlying relationships.

The objective of this review is to provide an overview of the
machine learning methods used within the field of gas hydrates, with
specific focus on the oil chemistry. First, we performed a text mining
study to show the previous research areas of focus and expose potential
gaps within. The aim of text mining is to scrape a web page of text
related to a predefined keyword. We accessed all relevant publications
from the Scopus Search database [41] and the most common and
promising methods in literature are discussed. Additionally, methods
commonly used for analysis of FT-ICR MS data in other fields which
we believe could make valuable contributions to analysis of gas hydrate
related samples, were identified. If correlations between hydrate-active
components responsible for non-plugging crude oil systems and oil
composition can be determined, this can be utilised as a parameter base
for improved hydrate management strategies, better decision support
tools and pipe flow simulations.

3. Text mining

To achieve an overview of the current status of machine learning
methods within the field of petroleum gas hydrates the following
questions were defined, of which the answers should give a thorough
understanding of the field.

• Q1: Within which fields of gas hydrate research are machine
learning used?

• Q2: What type of machine learning methods are used in the
literature?

• Q3: What are the challenges in the field of gas hydrates using
machine learning?

• Q4: How can machine learning improve the field of gas hydrate
research?

3.1. Search strategy

For the text mining, we used the Scopus Search API from the pyblio-
metrics library [42] in Python, which searches the Scopus database,
containing over 78 million records within the fields of life sciences,
social sciences, physical sciences and health sciences [43]. The search
can be defined in different ways, searching for keywords, abstracts,
title, doi, url, etc. Our approach was to search for selected words within
either the keywords, titles or abstracts. To ensure that all relevant
references were collected, the resulting literature was compared to
results in Web of Science.

First a search was performed with the combination of gas hydrates,
FT-ICR MS, natural inhibitors and machine learning, resulting in zero
publications. The term natural inhibitor was removed and a search with
gas hydrates, FT-ICR MS and machine learning was performed, which
resulted in only one publication, a study performed by the authors of
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Fig. 1. Comparison of publications on the machine learning methods from Table 1 within the fields of gas hydrates and FT-ICR MS and number of publications retrieved.

Table 1
Overview of searches, each method was searched in combination with gas hydrate and
FT-ICR MS to find all literature related to the methods.

Subjects Methods

Gas hydrates Principal Component Analysis (PCA)
FT-ICR MS Partial Least Squares (PLS)

Decision Trees (DT)
Random Forest
Artificial Neural Network (ANN)
Support Vector Machine (SVM)
Convolutional Neural Network (CNN)
Regularisation/LASSO/Elastic Net/Ridge Regression
Bayesian Networks (BN)
K-Nearest neighbours (KNN)

this review [24]. Two new searches were therefore performed with gas
hydrates plus machine learning and FT-ICR MS plus machine learning.
This resulted in 45 publications for gas hydrates and 9 for FT-ICR
MS. As very few publications were found, it was assumed that most
publications do not use the term machine learning and only mention
the methods used. Therefore, several machine learning methods were
used as input in new searches. An overview of the methods included is
presented in Table 1.

The resulting search phrases were as follows for gas hydrates
‘TITLE-ABS-KEY((gas W/1 hydrate*) AND ((machine learning method)
OR (method abbreviation)))’ and for FT-ICR MS ‘TITLE-ABS-KEY((ft-icr
W/1 ms) AND ((machine learning method) OR (method abbreviation)))’.
The ‘W/1’ ensures that the words are only one term apart and the
* allows for different endings of the word, for instance s for plural
notations. Duplicates of publications were removed.

A search was also performed for natural inhibitors with all the
methods mentioned in Table 1 for both gas hydrates and FT-ICR MS,
which resulted in zero publications.

To evaluate the use of mass spectrometry (MS) in the field of
gas hydrates, a search was performed with mass spectrometry and gas
hydrates which resulted in 2045 publications. To evaluate how many of
these that were related to machine learning, a search with the methods
presented in Table 1 was performed with both mass spectrometry and
gas hydrates. This search resulted in 11 publications and all the 11
publications were also present in the results from the gas hydrate search
with the machine learning methods.

The text mining study revealed that no other review paper exists on
the topic of machine learning methods within the field of petroleum
hydrates.

Text analysis was performed within the results of the two searches
to find trends in the topics mentioned in the publications. The t-
distributed stochastic neighbour embedding (t-SNE) technique was
used to visualise the data. In t-SNE, similar data are grouped close
together based on the stochastic neighbour embedding, while dissimilar
data are more distant [44].

4. Results

The results from the two searches, gas hydrates and FT-ICR MS,
with the methods in Table 1, are shown in Fig. 1. From the search
of gas hydrates in combination with the methods from Table 1, 184
publications were retrieved and from FT-ICR MS and the methods in
Table 1, 104 publications were retrieved. The publications returned by
the text mining study are reported in the supporting information.

In Fig. 2 the publications on machine learning methods within the
fields of gas hydrates and FT-ICR MS are plotted by publication year.
Fig. 2 shows that there has been an increase in machine learning based
research within both fields in the recent years. The first publication
for gas hydrates was in 1998, and the first paper on use of machine
learning within FT-ICR MS is from 2006. As FT-ICR MS has become
more publicly available in the recent years, it is not surprising that the
amount of publications have increased recently.

The amount of publications within each method is shown in Fig. 3.
For gas hydrates, ANN is the most common machine learning method
used, followed by SVM and PCA. For FT-ICR MS, the most common
method is PCA followed by PLSR, the remaining methods have very few
publications each and several of the methods had zero publications.

4.1. Text analysis study

A text analysis was performed, and a t-SNE plot of topics within
the gas hydrate publications are shown with three topics in Fig. 4.
The most common words for each topic are shown in the word clouds
in Fig. 5. Fig. 4 shows that Topic 2 (orange) has the most entries of
the three. The word clouds show that Topic 2 contains words such as
‘gas’, ‘hydrate’, ‘prediction’ and words associated with ANNs, ‘artificial’,
‘neural’ and ‘network’. Topic 3 contains words associated with natural
hydrates and some entries of ‘network’, while Topic 1 contains words
associated with seismic and water analysis. From this analysis it is likely
that the publications of interest with regards to machine learning and
prediction of petroleum gas hydrates are within Topic 2 and natural
gas hydrates within Topic 3.
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Fig. 2. The retrieved publications published by year, for gas hydrates in blue and FT-ICR MS in orange. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3. Pie chart of the methods from Table 1 in combination with gas hydrates to the left and FT-ICR MS to the right with number of publications for each method in parenthesis.

A text analysis for the FT-ICR MS publications was also performed
and the t-SNE plot with 3 topics is shown in Fig. 6. As t-SNE models
similarities and dissimilarities, it is clear from Fig. 6 that Topic 1 (blue)
is very different from Topic 2 (orange) as they are on the opposite sides
of the plot, with Topic 3 (green) as a bridge between them. The most
common words for each topic are shown in the word clouds in Fig. 7.
Topic 1 is associated to oil spectroscopy and contains words from FT-
ICR MS, Topic 2 contains words associated with organic matter analysis
and Topic 3 contains metabolomic analyses. The machine learning
studies performed on crude oils are therefore likely within Topic 1.

4.2. Classification vs. Regression

Machine learning can be used for analysis and visualisation of trends
and allows identification of underlying phenomena in a data set. A
typical pipeline for machine learning is displayed in Fig. 8. The process
starts with collection of data, pre-processing, training of the model,
testing of the model and finally deployment of the model through

prediction from new data. The reader should seek out general textbooks
for an introduction to machine learning [45,46].

Machine learning can be separated into two categories based on
the desired response. When the response is continuous, regression
analysis is used, while when the response is a discrete class label
classification is used. Some algorithms can be used for both classi-
fication and regression tasks with only minor modifications. For gas
hydrate purposes, both regression and classification methods are of
interest. Which method to use is dependent on the type of data and
the desired response to be predicted. For instance, when predicting
thermodynamic properties of crude oils regression methods are most
commonly used, as the desired prediction often is temperature, pressure
or other measurements on the continuous scale. Classification methods
are commonly used when samples are to be predicted based on their
similarities to the defined classes. For instance when classifying oils into
different types, properties etc.

In the following section, the methods included in the literature study
and relevant references will be discussed to achieve an overview of the
use of machine learning for analysis of petroleum related gas hydrates.
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Fig. 4. t-SNE plot with three topics of the text analysis of machine learning publications on gas hydrates.

Fig. 5. Word clouds for each of the three topics and their most common words from the gas hydrate publications, with Topic 1 in blue, Topic 2 in orange and Topic 3 in green.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. t-SNE plot with three topics of the text analysis of machine learning publications on FT-ICR MS. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 7. Word clouds for each of the three topics and their most common words, from the FT-ICR MS publications, with Topic 1 in blue, Topic 2 in orange and Topic 3 in green.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Schematic illustration of a machine learning pipeline, with data collection, pre-processing, model training, testing, deployment and prediction.

4.3. Ordinary Least Squares (OLS)

OLS is a regression method for estimating the unknown parameters
in a linear regression model. OLS minimises the sum of squares of the
differences between the observed value and the value predicted by the
linear function of the independent variable as shown by Eq. (1).

𝒚 = 𝑿𝛽 + 𝜖 (1)

The coefficients (𝛽) can be estimated from Eq. (2).

𝛽 = (𝑿𝑇𝑿)−1𝑿𝑇 𝒚 (2)

A major drawback with OLS regression is that the matrix inversion
used in the calculation of the regression coefficients requires the re-
gressors to be linearly independent or uncorrelated. It also requires
that the number of samples is larger than the number of variables,
which is most often not the case when analysing data from FT-ICR
MS. This renders OLS regression unsuitable for many data analysis
problems. Two commonly used strategies, outlined below, to overcome
this problem are (i) use of latent variables which represent linearly
independent phenomena and (ii) regularisation.

4.4. Latent variable-based methods

4.4.1. Principal Component Analysis (PCA)
PCA [47] decomposes a large data set X into a subspace of la-

tent variables representing the main features of variance as shown
by Eq. (3).

𝑿 = 𝑿𝐼𝑛𝑤𝑔𝑡𝑋 (3)

where X In is the data set with shape (N, K) for N samples and K
variables, and wgtX are the statistical weights balancing the sum of
squares for the K X -variables in X , which has the shape (N, K). PCA
is an effective dimension reduction technique that gives overview of
large data sets and can be used prior to other data analysis methods in

order to increase accuracy, overview and interpretation. Eq. (4) shows
the PCA model for A Principal Components (PCs).

𝑿 = �̄� + 𝑻 𝐴𝑷 𝑇
𝐴 + 𝑬𝐴 (4)

where 𝑷𝐴 are the loadings and orthonormal eigenvectors of (𝑿 −
�̄�)𝑇 (𝑿 − �̄�) minimising the covariance between the X -variables after
A PCs. The scores (TA) are orthogonal and calculated by Eq. (5).

𝑻 𝐴 = (𝑿 − 𝒙)𝑷𝐴 (5)

The error term in Eq. (4) is 𝑬𝐴 which is calculated by Eq. (6).

𝑬𝐴 = 𝑿 − �̄� − 𝑻 𝐴𝑷 𝑇
𝐴 (6)

PCA has commonly been used to identify correlations between
analytical data and the properties of crude oils particularly from FT-ICR
MS spectra as shown by the text mining study [48–52]. For instance,
Hur et al. [49] analysed positive and negative mode APPI-FT-ICR MS
spectra from 20 crude oils by PCA and identified differences between
the oils based on their chemical composition. Moreover, their study
showed a strong relationship between peaks in the mass spectra and the
chemical properties of the oils indicating the potential for predicting
crude oil properties from mass spectra.

4.4.2. Partial Least Squares Regression (PLSR)
PLSR [53] decomposes large data sets into a subspace of latent

variables (scores and loadings) representing the main features of co-
variance between X (regressors) and Y (response). Both X and Y can be
multivariate. X has the same input model as for PCA shown in Eq. (3).
As PLSR also takes the response into account, as opposed to PCA, there
is an input model for Y which is shown in Eq. (7).

𝒀 = 𝒀 𝐼𝑛𝑤𝑔𝑡𝑌 (7)

where Y In is the response with shape (N, J) for N samples and J
response variables and wgtY are the statistical weights balancing the
sum of squares for the J Y -variables in Y , which has the shape (N, J).
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The decomposition of X and Y is done simultaneously and iteratively,
taking co-linearities in Y into account. For X the decomposition is
shown in Eq. (8) and for Y in Eq. (9).

𝑿 = �̄� + 𝑻 𝐴𝑷 𝑇
𝐴 + 𝑬𝐴 (8)

𝒀 = �̄� + 𝑼𝐴𝑸𝑇
𝐴 + 𝑭𝐴 (9)

where A denotes the number of Principal Components (PCs) used
and EA and FA are the error terms using A PCs. The loading weight
matrix (WA) maximise the covariance between X and Y by maximising
the covariance between T and U with A PCs. The scores (TA) are
orthogonal as shown by Eq. (10).

𝑻 𝐴 = (𝑿 − �̄�)𝑾 𝐴 (10)

The loadings for X (PA) are calculated by Eq. (11) while the
loadings for Y (QA) are calculated by Eq. (12).

𝑷𝐴 = (𝑻 𝑇
𝐴𝑻

𝑇
𝐴)

−1𝑻 𝑇
𝐴(𝑿 − 𝒙) (11)

𝑸𝐴 = (𝑻 𝑇
𝐴𝑻

𝑇
𝐴)

−1𝑻 𝑇
𝐴(𝒀 − 𝒚) (12)

The error term for X (𝑬𝐴) is calculated as for PCA in Eq. (6) and
the error term for Y (𝑭𝐴) is calculated by Eq. (13).

𝑭𝐴 = 𝒀 − �̄� − 𝑻 𝐴𝑸𝑇
𝐴 (13)

The regression coefficients (BA), which are measures of the im-
pact of variations in the various regressors on the respective response
variables, are calculated by Eq. (14).

𝑩𝐴 = 𝑾 𝐴𝑸𝑇
𝐴 (14)

Prediction of Y for a new sample (Xnew) is then obtained by Eq. (15)
where b0 is the intercept.

𝒀 𝑝𝑟𝑒𝑑 = 𝒃0 +𝑿𝑛𝑒𝑤𝑩𝐴 + 𝑭𝐴 (15)

PLSR has been widely used for analysis of mass spectra in a variety
of application areas, including for gas hydrates and FT-ICR MS. Vaz
et al. [51] correlated the chemical composition of crude oil from FT-
ICR MS data with the total acid number (TAN), using PLSR and support
vector machines (SVMs) as multivariate calibration methods. In Terra
et al. [54] negative-ion mode electrospray ionisation, ESI(-)-FT-ICR MS
was coupled to PLSR and variable selection methods to estimate the
TAN of Brazilian crude oil samples. They showed that it was possible to
relate the selected variables to their corresponding molecular formulas,
thus identifying the main chemical species responsible for the TAN
values. In Hemmingsen et al. [16] TAN values were also used as a
response for PLSR to predict the acidic properties of the crude oils.

Terra et al. [55] predicted basic nitrogen and aromatics contents
in crude oil, using positive ion mode laser desorption ionisation (LDI)
coupled to FT-ICR MS and PLSR with variable selection based on com-
petitive adaptive reweighted sampling (CARS) in a procedure called
CARSPLS regression.

Lozano et al. [56] used PLSR and genetic algorithm variable se-
lection on APPI(+)-FT-ICR MS data for quantitative analysis of crude
oils and their fractions. They estimated the API gravity and Conradson
Carbon Residue of Colombian crude oil and vacuum residue (VR)
samples with high accuracy.

PLSR can also be used for classification problems, for instance in the
combination with discriminant analysis (DA), as PLS-DA. Two common
DA methods are Linear Discriminant Analysis (LDA) and Quadratic
Discriminant Analysis (QDA) which model the class conditional distri-
bution of the data 𝑃 (𝑋|𝑦 = 𝑘) for each class k. Predictions are obtained
by using Bayes’ rule, and the class that maximises this conditional
probability is selected. The class priors 𝑃 (𝑦 = 𝑘) (the proportion of
instances of class k), the class means and the covariance matrices are
then estimated from the training data.

In Chua et al. [57] PLS-DA was used in tandem with PCA to analyse
crude oil spill data from gas chromatography techniques. The PLS-
DA and PCA combination accurately characterised the crude oil spill
samples, overcoming the shortcomings of the traditional methods.

Likewise, Melendez-Perez et al. [58] utilised PLS-DA for analysis
of ESI(-)-FT-ICR MS spectra of lacustrine oil and marine oil sam-
ples aiming towards comparing and classifying the samples. Results
show that FT-ICR MS coupled with PLS-DA has potential to reveal oil
characteristics more clearly.

Gjelsvik et al. [24] was the only publication from the text mining
results regarding natural inhibitors. In this study, machine learning-
based variable selection was used to identify components related to gas
hydrate formation and PLS-DA emerged as the best performing method.
This study showed that it is possible to identify features from FT-ICR
MS spectra related to hydrate formation.

Accordingly, PLSR have already been shown to be able to predict
chemical properties of crude oils, and PLS-DA has been shown to be
able to classify crude oils samples with high accuracy.

4.4.3. Hierarchical Cluster-based Partial Least Squares Regression (HC-
PLSR)

One promising extension of PLSR is the HC-PLSR [59] method,
which is a locally linear regression method based on separating the
observations into clusters and generating local PLSR models within
each cluster. A global PLSR model comprising all observations is first
made, and the observations are clustered based on the scores from this
PLSR model. Local PLSR models are then made within each cluster.
New observations are projected into the global model and classified
based on their predicted X -scores. Prediction of the response is based
on either the closest local model or a weighted sum of all local models.
HC-PLSR can be used with any clustering and classification method.
HC-PLSR allows for local analysis within each cluster, and represents
a way to handle highly nonlinear relationships between the regressors
and the response.

4.4.4. Artificial Neural Networks (ANNs)
ANNs [60–62] are computing systems consisting of nodes called ar-

tificial neurons, between which the connections have numeric weights
that are often initialised at random, and adjusted by backpropagation.
Backpropagation uses the prediction error to calculate the gradient
of the loss function with respect to the weights in the network. The
neurons are placed in different layers, typically an input layer, one
or more hidden layers, and an output layer. A widely used type of
composition is the nonlinear weighted sum given by Eq. (16).

𝑓 (𝑥) = 𝐾

(∑
𝑖
𝑤𝑖𝑔𝑖(𝑥)

)
(16)

where K is the activation function (some predefined function, such as
the hyperbolic tangent or a sigmoid function), 𝑤𝑖 are the weights and 𝑔𝑖
are the different functions that are combined in the network. As ANNs
use self learning, the network can adjust weights when a new situation
is introduced, which leads to more flexible predictions than traditional
regression models. ANNs are trained with experimental data where the
output is a nonlinear function of the input data after learning a pattern
and creating a prediction model [63]. Deep Neural Networks [64] are
ANNs with multiple hidden layers between the input and output layers,
as shown in Fig. 9. These can contain many layers of nonlinear hidden
units.

Elgibaly and Elkamel [65,66] were the first to develop ANNs to
predict thermodynamic conditions and suitable inhibitors for gas hy-
drate systems. Their network performed well compared to previous
prediction methods based on traditional statistics and experimental
data analysis, but showed signs of overfitting supposedly due to lack
of experimental data. Chapoy et al. [67] used feed-forward neural net-
works (FNNs) to predict hydrate stability zones achieving a reasonable
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Fig. 9. Schematic example of a neural network with input layer, hidden layers and output layer.

model, but also pointing out deficiencies in the experimental data as a
weakness of the study.

Ghavipour et al. [68] constructed an apparatus that measured spe-
cific gravity of different gas mixtures and pressure during a hydrate
formation process. ANNs were then used to predict the hydrate forma-
tion conditions by a network with two hidden layers and 10 neurons
in each layer, validated with Leave-One-Out cross validation.

Several studies have in the recent years used ANNs to predict
hydrate formation conditions [69–71]. The purpose of these types of
predictions is to identify the conditions where gas hydrates are formed
and avoid operation within this region.

4.4.5. Support Vector Machines (SVMs)
SVMs [72] are supervised learning methods that analyse data for

classification or regression analysis. SVMs are well suited for learning
tasks where the number of variables is large compared to the number
of observations in the training set.

For classification, SVMs construct a hyperplane or a set of hyper-
planes in a high-dimensional space to separate the observations into
two groups [73]. The goal is to find the hyperplane that has the
largest distance (margin) to the nearest data point belonging to any
of the two classes. The margin is defined as the distance between the
separating hyperplane (decision boundary) and the training samples
that are closest to this hyperplane. Data points that lie on the margin
are known as support vector points, and the solution is represented as
a linear combination of only these points. Decision boundaries with
large margins tend to have a lower generalisation error, while decision
boundaries with small margins are more prone to overfitting.

SVMs can be applied to nonlinear classification problems by using
the so-called kernel trick, where the original space is mapped into a
much higher-dimensional space where the observations can be more
easily separated. To achieve this, a mapping function 𝜑 is used, as
shown in Fig. 10. The hyperplanes in the higher-dimensional space are
defined as the set of points whose dot product with a vector in that
space is constant.

In Support Vector Regression (SVR), the hyperplane is the line that
is used to predict the continuous output, shown in Fig. 11. SVR basically
considers the points that are within the decision boundary lines and the
regression line is then the hyperplane that has a maximum number of
points.

SVMs are the second most commonly used methods for gas hydrates.
Cao et al. [74] developed an SVM model for predictions of gas hydrate
formation conditions, in combination with selection algorithms to op-
timise the process parameters for the SVM. Qin et al. [75] used both
SVM and ANNs to predict gas hydrate plugging risks from flowloop and
field data with SVM outperforming the ANN.

Fig. 10. The kernel trick to handle non-linear problems.

Rashid et al. [76], Mesbah et al. [77], Ghiasi et al. [78] and Yarveicy
and Ghiasi [79] created SVM models with a linear modification of
the SVM algorithm known as the least squares support vector ma-
chine (LSSVM) to predict thermodynamic properties of gas hydrate
systems. One drawback with SVMs is the large number of quadratic
computations performed to analyse the data, requiring high computa-
tional power, but LSSVM overcomes this due to the less complicated
calculation methods [80].

As previously mentioned, Vaz et al. [51] predicted the TAN from
FT-ICR MS spectra with SVM performing better than both PLSR and uni-
variate methods. SVM is thereby able to both predict thermodynamic
properties of hydrates and chemical properties of crude oils.

4.4.6. Decision Trees (DTs)
DTs [81,82] are attractive models when interpretability is impor-

tant, and consist of a tree root, internal nodes, branches and leaf nodes.
DTs ask a series of questions, and generate decision rules based on
these. The model seeks to find the smallest set of rules that is consistent
with the training data. In general, the rules have the form: if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1
and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛2 and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛3 then outcome. Fig. 12 shows an illustration
of a decision tree model.

The rules are chosen to divide observations into segments that have
the largest difference with respect to the target variable. Thus the
rule selects both the variable and the best break point to separate the
resulting subgroups maximally. The break points of variables are found
using significance testing (F- or Chi-square with Bonferroni corrections)
or reduction in variance criteria. To avoid overfitting, one often has to
prune the tree by setting a limit for the maximal depth of the tree.
A leaf can no longer be split when there are too few observations,
the maximum depth (hierarchy of the tree) has been reached, or
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Fig. 11. Illustration of the hyperplane and decision boundaries in SVR.

Fig. 12. Illustration of decision trees with the root node, sub-trees, decision nodes, branches and leaf nodes.

no significant split can be identified. It is assumed that observations
belonging to different classes have different values in at least one of
their variables. DTs are usually univariate, since they use splits based
on a single feature at each internal node, but methods are available for
constructing multivariate trees [83].

To improve the prediction of the DT, a boosting method can be
applied. Boosting is an ensemble method for improving predictions of
a weak learning algorithm [84]. The weak learners are trained sequen-
tially, trying to improve upon its predecessor. When boosting is applied
to a tree, each tree is dependent on prior trees and the algorithm learns
by fitting the residual of the prior trees. One example of a boosting
method is XGBoost (eXtreme Gradient Boosting). In XGBoost, trees
are built at every iteration, always minimising the prediction error
of the classifier while introducing a penalty function to utilise the
computational power more efficiently.

4.4.7. Random Forest (RF)
In DTs, the initial selected split affects the optimality of variables

considered for subsequent splits. Ensemble tree models grow trees
with varying initial splits, and use either a voting or the average of
the predictions for each new data point across all trees. The vote

distribution can be used to develop a nonparametric probabilistic pre-
dictive model. The ensemble is less prone to overfitting and other
problems of individual DTs, and generally performs better. RF [85–
87] is an example of such an ensemble tree method. For RF, each tree
is based on a random subset of the data and variables (selected by
bootstrapping). The change in prediction accuracy when the values of
a feature are randomly permuted among observations gives estimates
of the importance of each feature.

Tree models and boosting are among the most common regression
and classification methods, and has been used for gas hydrates and
crude oil analysis. Song et al. [88] used a gradient boosted regression
tree algorithm to predict hydrate phase equilibrium conditions in the
presence of various salts, organic substances or water. The model was
compared to an ANN, where the regression tree achieved the best
prediction model for gas hydrates’ phase equilibrium conditions in the
presence of various salts or organics.

In Acharya and Bahadur [89] RF and XGBoost were used to pre-
dict gas hydrate dissociation temperatures in the presence of hydrate
inhibitors and precursors achieving good predictions.

Lovatti et al. [90] proposed two strategies for the use of RF and data
reduction techniques for NMR spectra of petroleum samples. The study
compared the NMR spectra to the TAN values of the petroleum, and
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the method was able to identify a relationship between the TAN and
specific regions in the spectra.

4.4.8. Naive Bayes (NB) classification
A Bayesian network (BN) is a probabilistic model that represents

a set of random variables and their conditional independence via a
directed acyclic graph (DAG). Using e.g. Chi-squared and mutual infor-
mation tests, one can find the conditional independence relationships
among the variables and use these relationships as constraints to con-
struct a BN. BNs can take prior knowledge into account, by e.g. setting
a certain node as root node or leaf node, thereby applying knowledge
of nodes that are direct causes or effects of other nodes. This results
in nodes that are not directly connected to another node, or that two
nodes are independent.

The probabilistic parameters are encoded into a set of tables, one
for each variable, in the form of local conditional distributions of a
variable given its parents. The joint distribution can be reconstructed
by multiplying these tables (given the independencies encoded into the
network). BNs are DAGs whose nodes represent random variables that
may be e.g. observable quantities or latent variables. Edges (connec-
tions) represent conditional dependencies, and each node is associated
with a probability function.

Naïve Bayesian networks are very simple BNs which are composed
of DAGs with only one parent (representing the unobserved node) and
several children (corresponding to observed nodes), where the child
nodes are assumed to be independent. Naïve Bayes (NB) classification
may be impaired by probabilities of 0, but this can be avoided by using
a Laplace estimator.

The assumption of independence among child nodes is most often
not valid, but this can be corrected for by adding extra edges to include
some of the dependencies between the variables. In this case, the
network has the limitation that each feature can be related to only one
other feature [91]. Selective Bayesian classifiers [92] include a feature
selection stage to remove irrelevant variables or one of the two totally
correlated variables.

Shi et al. [93] used a variational Bayesian neural network for
probabilistic deepwater natural hydrate gas dispersion modelling of
simulated data. Combined with a convolutional neural network, the
model performed well.

Bayesian networks have been used for risk and safety assessment of
storing and transportation of crude and heavy oil. For example, Zhang
et al. [94] used BNs to evaluate the leak safety of heavy oil gatherings
in pipelines. BNs find the probability for leakage and fuzzy set theory
evaluates the consequences of the leakage.

4.4.9. k-nearest neighbours (KNN) classification
KNN [95] locates the k nearest observations to the observation to be

classified (e.g. by an exhaustive search algorithm) based on the chosen
distance metric, and identifies the most frequent class membership
among the neighbours. The number k is specified by the user, and the
right choice of k is crucial to find a good balance between overfitting
and underfitting. Weights are assigned to the contributions of the
neighbours in a majority voting to predict the classes, so that the nearer
neighbours contribute more to the average than the more distant ones.

KNN is fundamentally different from the other supervised classifiers
described here, in that it is a so-called lazy learner. KNN does not
learn a discriminative function from the training data but memorises
it instead. The main advantage of such a memory-based approach is
that the classifier immediately adapts as we collect new training data.
However, the computational complexity for classifying new samples
grows with the number of samples in the training data set and storage
space can hence become a challenge when working with large data sets.

Only two instances where KNN were used related to gas hydrates
were found. Xu et al. [96] used KNN regression, SVM, RF and XGBoost
for the prediction of hydrate formation temperatures achieving good
predictions with all methods.

Amin et al. [97] used KNN to predict hydrate equilibrium conditions
to CO2 capture. The model was simple but showed good predictions
with low errors, indicating that KNN is a valuable method for analysis
of gas hydrate thermodynamics.

4.5. Regularisation-based methods

Another group of machine learning methods that we find promis-
ing for identification of hydrate active compounds in crude oils is
regularisation-based methods, which are very useful for feature selec-
tion purposes. The most commonly used regularisation-based methods
are Ridge regression [98], LASSO (least absolute shrinkage and selec-
tion operator) [99] and Elastic net [100]. Regularisation-based versions
of PLSR are also available, which have shown promise in feature selec-
tion, such as Sparse-PLS [101]/Soft-Threshold PLS [102] and Powered
PLS [103]. These may have advances over other regularisation-based
methods in cases where interpretation is important, due to the possi-
bilities to gain overview of complex data sets through decomposition
of the data into a lower-dimensional subspace of latent variables.

4.5.1. Ridge regression
Ridge regression is also known as L2-regularisation. In Ridge, the

sum of the squares of the regression coefficients (𝛽) is forced to be less
than a fixed value, which shrinks the size of the coefficients. Ordinary
least squares (OLS) minimises Eq. (17).

𝑅𝑆𝑆𝑂𝐿𝑆 =
𝑛∑
𝑖=1

(
𝒚𝑖 − 𝛽0 −

𝑝∑
𝑗=1

𝛽𝑗𝒙𝑖𝑗

)2

(17)

while Ridge regression minimise Eq. (18).

𝑅𝑆𝑆𝑅𝑖𝑑𝑔𝑒 =
𝑛∑
𝑖=1

(
𝒚𝑖 − 𝛽0 −

𝑝∑
𝑗=1

𝛽𝑗𝒙𝑖𝑗

)2

+ 𝜆
𝑝∑

𝑖=1
𝛽2𝑗 (18)

where 𝜆 ≥ 0 is a penalty term which is often found by cross-validation.
This gives Eqs. (19) and (20).

𝐵𝑂𝐿𝑆 = (𝑿𝑇𝑿)−1𝑿𝑇 𝒀 (19)

𝐵𝑅𝑖𝑑𝑔𝑒 = (𝑿𝑇𝑿 + 𝜆𝐼)−1𝑿𝑇 𝒀 (20)

Hence, Ridge regression handles multicollinearity in the regressor
(X) matrix, while OLS regression does not.

4.5.2. LASSO
In LASSO, the estimates of the regression coefficients are obtained

using L1-constrained least squares. This forces the sum of the absolute
values of the regression coefficients to be less than a fixed value, which
forces certain coefficients to be set to zero. LASSO is a feature selection
method, since variables having zero regression coefficients are omitted
from the model. In LASSO Eq. (21) is minimised.

𝑅𝑆𝑆𝐿𝐴𝑆𝑆𝑂 =
𝑛∑
𝑖=1

(
𝒚𝑖 − 𝛽0 −

𝑝∑
𝑗=1

𝛽𝑗𝒙𝑖𝑗

)2

+ 𝜆
𝑝∑

𝑖=1
𝛽𝑗 (21)

4.5.3. Elastic net
Elastic net combines the L1 and L2 penalties of the Ridge and LASSO

methods linearly as given by Eq. (22).

𝑅𝑆𝑆𝐸𝑁 =
𝑛∑
𝑖=1

(
𝒚𝑖 − 𝛽0

𝑝∑
𝑗=1

𝛽𝑗𝒙𝑖𝑗

)2

+ 𝜆1
𝑝∑

𝑖=1
𝛽2𝑗 + 𝜆2

𝑝∑
𝑖=1

𝛽𝑗 (22)

In Elastic net, highly correlated regressors will tend to have similar
regression coefficients, which creates a grouping effect that is desirable
in many applications.

Landgrebe and Nkazi [104] used traditional L1/L2 in order to
reduce overfitting of the neural network, but dropout regularisation
proved more effective.
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In Singh et al. [105] Ridge Regression (L2) was used among other
methods to estimate gas hydrate saturation in sedimentary systems
from well-logs by NMR measurements. L2 achieved good accuracy and
was one of the best performing methods. This is an indication that L2
could also perform well with other spectroscopic data of gas hydrate
related samples, such as FT-ICR MS spectra.

Similarly, other regularisation methods have been used in com-
bination with spectroscopic data previously. In Fu et al. [106] both
Sparse-PLS and Elastic net were used for wavelength selection on
data from NIR spectroscopy of corn and gasoline. Both methods select
intervals of wavelengths, where Elastic net selects a smaller model,
while Sparse-PLS achieves a higher accuracy. Finding the wavelengths
closely related to the response could significantly improve a prediction
model.

4.5.4. Convolutional Neural Networks (CNNs)
CNNs are deep neural networks which use convolutions to extract

information in one or more of the hidden layers [63]. CNNs are
regularised versions of fully connected networks. In a convolutional
layer, the data is organised in a feature map where the weights are
connected to the previous layer. These weights are used to filter for
patterns in the data. Commonly used in pattern recognition, CNNs are
good feature extractors by learning the most important variables by
itself.

CNNs can be a valuable tool for instance for the analysis of mass
spectrometry data. Lv et al. [107] used CNNs to analyse peak informa-
tion in tandem mass spectrometry (MS/MS). This method outperformed
others such as SVMs, PCA, deep neural networks and XGBoost. Due
to the nature of the convolutional filters, CNNs are able to learn both
the peak shape and the m/z values, achieve greater robustness for low
signal-to-noise ratios and can allow for a higher-level representation of
lower-level features representing patterns [108]. Hence, CNNs could be
very useful for analysing FT-ICR MS data.

Kim et al. [109] used CNNs for saturation modelling from X-ray
CT images. The 1-dimensional CNNs performed well, but the method
shows difficulties in determination of optimal parameters for the CNNs.

Li et al. [110] constructed a neural network based on a variational
autoencoder with convolutional layers to predict pore size distributions
in subsurface shale reservoirs. The method showed good predictions
and although this is not directly related to gas hydrates, gas hydrates
are analysed in a similar manner, indicating that CNN could be a
valuable method given an optimal parameter search.

4.6. Data used in literature

The data used in many of the machine learning models previously
developed in the field of gas hydrates have been sampled from the liter-
ature. In this review, a number of the cited articles discussed are based
on data sampled from other publications [65–67,69–71,74,77,78,88,89,
96,104]. These references are mainly based on thermodynamic data,
concerning prediction of gas hydrate formation/dissociation conditions
and phase equilibrium measurements. Sloan and Koh [1] present an
extensive list of experimental data which are frequently used by the
authors sampling experimental data from the literature [65–67,69,71,
104]. Consequently, the models from these authors are based on the
same data. This can result in shortcomings, as the errors in predictions
from these models approximate the errors of the experiments. Addition-
ally, where the data are deficient, extrapolation has to be performed
which decreases the accuracy of the predictions [3]. It is therefore clear
that there is a need for more experimental data. New experimental
data should fill the gaps in already published data, and as many of the
models are based on thermodynamic properties, other aspects of gas
hydrates could be valuable to examine closer. Better understanding of
the mechanisms and the molecular composition related to the inhibi-
tion/dissociation of gas hydrates, could lead to strengthened prediction
models for the thermodynamic, physical and chemical properties of gas
hydrates in the future.

5. Conclusions and future perspectives

In this paper a text mining study was performed to evaluate the
use of machine learning methods within the field of gas hydrates with
specific focus on the oil chemistry. An evaluation of FT-ICR MS was
included in the study to establish a link between aspects of gas hydrates
and analysis of crude oils. Several machine learning methods were
identified as promising and their use in the literature was evaluated.
For studies regarding gas hydrates, predictions of thermodynamic prop-
erties were most common, while FT-ICR MS was used for analysis of
oil chemistry and chemical properties. Most of the publications on
thermodynamic properties of gas hydrates were also created using the
same data sources. It could therefore be beneficial to explore other
areas of gas hydrate research using machine learning in the future.
Although there is little literature describing the use of FT-ICR MS to
characterise gas hydrates, the text mining results show that FT-ICR
MS has been used to characterise crude oils for some time and with
success. Therefore, with the combination of FT-ICR MS and machine
learning, it may be possible to identify the hydrate-active compounds
responsible for the differences between oils forming plugging hydrates
and oils forming transportable hydrates. This can be done by relating
the composition of the oil, determined by FT-ICR MS to information
regarding hydrate formation. The methods presented in this paper
successfully predicted thermodynamic properties in gas hydrates or
chemical properties from FT-ICR MS, and the methods could therefore
be tested with the aim of predicting chemical properties from gas
hydrate related samples. We believe that an approach which is able
to predict hydrate behaviour may lead to new knowledge about natural
gas hydrate inhibitors. The development of a universal method to iden-
tify natural components which inhibit, or work as AAs for gas hydrates
would contribute to new understanding and decision making tools in
the field of gas hydrate flow assurance and management strategies. This
could lead to better decision support tools and better risk evaluations
for transportation of crude oils with gas hydrates present.

The text mining study revealed that the amount of research using
machine learning to analyse both gas hydrate and FT-ICR MS data is
still limited, but research on both topics have increased in recent years.
For FT-ICR MS, most publications used PCA for analysis of the data, and
several of the publications used the chemical composition data to build
machine learning models instead of using the mass spectra directly.
Identifying relationships and building models based on the mass spectra
requires less pre-processing steps and could therefore be advantageous
and could be explored further.
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Abstract

Gas hydrates represent a major flow assurance challenge in the O&G industry as
they can cause plugging or complete blockage of a production pipeline. Experiments
have shown that some crude oils form gas hydrates that remain as transportable par-
ticles in a slurry. This is commonly believed to be due to naturally occurring polar
components in the crude oil rendering the surface of the particle hydrophobic. The
composition of these components are still not identified. In this study, Fourier trans-
form ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyse
crude oil samples. Machine learning-based variable selection was applied to find com-
ponents in the data related to hydrate formation and the best performing model was
determined to be gradient boosting. The FT-ICR MS raw spectra of the spiking lev-
els were compared to non-spiked samples to identify changes in composition during
the spiking procedure. Principal component analysis showed a difference between the
crude oils and the spiked samples. The five most important variables were selected
from decision trees, random forest, gradient boosting, bagging, least absolute shrink-
age and and selection operator (LASSO), Ridge regression and permutation feature
importance for the best performing model. Molecular formulas, double bond equiva-
lent (DBE) and hydrogen-carbon (H/C) ratios were determined for each of the selected
variables and evaluated, in an attempt to identify hydrate related components.

Introduction
Gas hydrates are one of the main flow assurance issues during production of oil and gas, as
they can agglomerate into larger masses or deposit on the pipe wall, with the potential of
completely blocking the system. Most commonly, gas hydrates are treated with addition of
chemicals such as thermodynamic inhibitors and low dosage hydrate inhibitors (LDHIs),
or by operating outside the hydrate region, by controlling the pressure and/or tempera-
ture. However, operating outside the hydrate region is not always possible or economically

1



feasible, and an addition of large amounts of chemicals has a negative environmental im-
pact. Previous experiments have shown that some crude oils form gas hydrates not prone
to plugging, but remain as transportable particles in a slurry [1, 2]. A commonly accepted
explanation is that some crude oils contain polar components with hydrate active proper-
ties altering the surface of the particles to be hydrophobic. This type of natural inhibitors
has been investigated for a long time, yet their exact structures have not been determined
[3, 4, 5]. It has been suggested that these components are present in the acid fraction of
the crude oils [6, 7, 8] which has been shown to contain a substantial amount of napthenic
compounds [9, 10].

Comparatively, it has been shown that some asphaltene fractions in crude oil have self-
agglomerating properties that stabilise the water-in-oil emulsions leading to increased prob-
ability of deposition on pipe walls [11]. Consequently, asphaltenes can change the plugging
potential of some crude oils [12, 13].

Crude oils are highly complex organic mixtures, and with the high resolution of Fourier
Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) it is possible to
analyse and identify a large number of polar groups including compounds present in low
concentrations [14]. FT-ICR MS has previously been used extensively for crude oil char-
acterisation [15, 16, 17, 18, 19, 20, 21, 22]. For example, Qian et al. [23, 24] showed that
ESI FT-ICR MS was able to identify more than 3000 chemical formulas of acid contain-
ing compounds in negative mode, and more than 3000 unique elemental compositions of
nitrogen containing aromatic compounds in positive mode.

In this study machine learning-based variable selection methods were applied to highly
detailed FT-ICR MS spectra with the objective of identifying naturally occurring hydrate
inhibitors.

Experimental
Successive spiking of the hydrate phase

A successive accumulation procedure (spiking) was performed with the aim of accumulat-
ing possible hydrate active components. The procedure is shown schematically in Figure 1.
In short, a fresh oil sample was added to a high-pressure sapphire cell from Top Industrie
(France), located at SINTEF Multiphase Flow Laboatory in Trondheim, with the water and
the gas phase pressurised to 65 bar. The temperature was lowered to 2◦C while stirring, to
provide the conditions necessary for hydrate formation for the specific fluid systems. The
formation was normally allowed to proceed over night to come as close to the maximum
hydrate formation as possible. Draining of the bulk phase, the liquid not associated to the
hydrates, was done through the bottom of the cell, under pressure retaining the gas hydrate
phase using a Hy-Lok FT Micron Tee Filter with a 150 µm sintered stainless steel filter
element. Once the bulk phase was drained, the cell was depressurised and the tempera-
ture was increased leading to melting (dissociation) of the gas hydrate phase which was
drained from the cell and collected. Small samples of the oil and water phase were taken
from the bulk phase and the hydrate phase for FT-ICR MS analysis. The remaining liquid
was mixed with fresh oil and water at a ratio maintaining the same water cut as the first

2



test and then the hydrate formation was repeated. By conducting this procedure multiple
times for a given oil, generations with possibly increased concentration of hydrate active
oil components could be accumulated.

Figure 1: Schematic illustration of the successive accumulation procedure.

FT-ICR MS analysis

For the FT-ICR MS analysis, the oil samples were prepared by dissolving 20 µL sample
in 980 µL of dichloromethane and 20 µL diluted sample was added to 980 µL of a 1:1
mixture of toluene and methanol. Then, 100 µL was injected into the FT-ICR MS at a
flow of 10 µL/min through a Agilent 1290 Infinty HPLC system. Three parallels were
analysed for each sample. The mass spectra were acquired using SINTEF’s Bruker Solarix
XR Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) (Bruker
Daltonik GmbH, Germany) equipped with a 12 Tesla magnet (Bruker Biospin, France)
located in Trondheim. Its resolution is 450 000 at m/z 400. The FT-ICR was equipped with
an electrospray ion source (ESI) operating in positive mode and the mass range was set to
150-3000 m/z.

PCA
PCA [25] is an unsupervised method for data reduction where a large data set X is decom-
posed into a subspace of latent variables. Scores (T) and loadings (P) represent the main
features of variance as shown by equation 1.

X = x̄+
A

∑
a=1

tXap
′
a = x̄+TXAP

′
A +EA (1)

A denotes the number for Principal components (PCs) used and EA is the error term
using A PCs. The score vectors are orthogonal.
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Variable selection methods
Variable selection is the process of selecting a subset of relevant variables for use when con-
structing a model. When a data set contains a large amount of variables, it is often assumed
that the data contains irrelevant or redundant variables that can be removed without loss of
information. This can improve the prediction ability of the model and reduce the compu-
tational cost during modelling. Variable selection can also be used to identify the features
with the highest importance in the model. In this paper, variable selection methods such
as Permutation feature importance, Decision trees, Random forest, Boosting, Bagging and
regularisation methods such as Ridge regression and LASSO were used to predict whether
the samples were related to the hydrate or the bulk phase, and to identify components in
the data related to hydrate formation with the hypothesis that there could be systematic
differences in these spectra possible to distinguish with the proposed methods.

Permutation feature importance

Permutation feature importance is a model inspection technique that identifies important
variables based on changes in the prediction accuracy when a variable is randomly shuffled
(permuted) [26]. If the prediction accuracy of the model decreases significantly when a
variable is randomly shuffled, this indicates that the variable is important for the model’s
ability to predict the response. Similarly, if the prediction accuracy is unaffected when a
variable is randomly shuffled, the variable is not important for the prediction. The impor-
tance of the variables is calculated from equation 2.

i j = s− 1
K

K

∑
k=1

sk, j (2)

Where s is the reference prediction accuracy of the model with the original features,
sk, j is the prediction accuracy of the models with shuffled variables and K is the number of
variables.

Decision Trees (DTs)

DTs [27, 28] are models where decisions are made by asking a series of questions and
generating decision rules based on these. These models consist of a tree root, internal
nodes, branches and leaf nodes. They aim to find the smallest set of rules that is consistent
with the training data. In general, the rules have the form: if condition1 and condition2
and condition3 then outcome and are chosen to divide observations into segments that have
the largest difference with respect to the target variable. Therefore, the rule selects both
the variable and the best break point (usually selected by significance testing or reduction
in variance criteria) for maximal separation of the resulting subgroups. Figure 2 shows an
illustration of a decision tree model.
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Figure 2: Illustration of decision trees

To avoid overfitting, the trees often have to be pruned by setting a limit for the maximal
depth. A leaf can no longer be split when there are too few observations, the maximum
depth (the hierarchy of the tree) has been reached, or no significant split can be identified.
It is assumed that observations belonging to different classes have different values in at
least one of their features. DTs are usually univariate, since they use splits based on a
single feature at each internal node.

Random forest (RF)

In DTs, the initial selected split effects the optimality of variables considered for subsequent
splits, making these methods prone to overfitting and other problems. This can be handled
by introducing RF [29, 26, 30], an ensemble tree method where each tree is based on a
random subset of the data and its features (selected by bootstrapping). The advantage of
ensemble trees is that the trees are grown with varying initial splits, and either a voting or
the average of the predictions for each new data point across all trees is used. The vote
distribution can be used to develop a non-parametric probabilistic predictive model. The
change in prediction accuracy when the values of a feature are randomly permuted among
the observations gives estimates of the importance of each feature.

Ensemble learning

Ensemble learning combines weak classification models with the main idea that many mod-
els in combination perform better than one model alone [31].

Bootstrap aggregating (bagging) [29] is an ensemble learner where random subsets of
the data set are generated and models are trained individually based on these bootstrapped
data sets. The ensembles overall decision is achieved by aggregating the results from the in-
dividual models. This leads to a reduction in the risk of overfitting as the method combines
different models built from different subsets of the available data.

Boosting [32] is an ensemble learner where weak learners are trained sequentially, try-
ing to improve upon its predecessor. The classifiers emphasise errors made by the previous
classifier, aiming at decreasing the model bias. Boosting learners combine underfitting
models with low prediction accuracy with the aim of improving the final prediction. Gradi-
ent Boosting [33, 34] is one boosting method where trees are built in every iteration, always
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minimising the prediction error of the classifier. This combination of several smaller trees
forms a stronger learner able to fit larger parts of the data than a simple decision tree can.

Regularisation

Another group of machine learning methods valuable for variable selection purposes are
regularisation-based methods, the most common being Ridge regression [35], LASSO
(least absolute shrinkage and selection operator) [36] and Elastic net [37].

Ridge regression

Ridge regression is also known as L2-regularisation. In Ridge, the sum of the squares of
the regression coefficients is forced to be less than a fixed value, which shrinks the size of
the coefficients. Ordinary least squares (OLS) minimises equation 3,

RSSOLS =
n

∑
i=1

(yi −β0 −
p

∑
j=1

β jxi j)
2 (3)

while Ridge regression minimises equation 4.

RSSRidge =
p

∑
i=1

(yi −β0 −
p

∑
j=1

β jxi j)
2 +λ

p

∑
i=1

β 2
j = RSSOLS +λ

p

∑
i=1

β 2
j (4)

where λ ≥ 0 is a penalty term which is often found by cross-validation. This gives
equation 5 and 6.

BOLS = (X
′
X)−1X

′
Y (5)

BRidge = (X
′
X +λ I)−1X

′
Y (6)

Hence, Ridge regression handles multicollinearity in the regressor (X) matrix, while
OLS regression does not.

LASSO

In LASSO the estimates of the regression coefficients are obtained using L1-constrained
least squares. This forces the sum of the absolute values of the regression coefficients to
be less than a fixed value, which forces certain coefficients to be set to zero. LASSO is
a feature selection method, since features having zero regression coefficients are omitted
from the model. LASSO minimises equation 7.

RSSLASSO =
n

∑
i=1

(yi −β0 −
p

∑
j=1

β jxi j)
2 +λ

p

∑
i=1

| β j |= RSSOLS +λ
p

∑
i=1

| β j | (7)
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Elastic Net

Elastic net combines the L1 and L2 penalties of the Ridge and LASSO methods linearly as
given by equation 8.

RSSEN =
n

∑
i=1

(yi−β0

p

∑
j=1

β jxi j)
2+λ1

p

∑
i=1

β 2
j +λ2

p

∑
i=1

| β j |= RSSOLS +λ1

p

∑
i=1

β 2
j +λ2

p

∑
i=1

| β j |

(8)
In Elastic net, highly correlated regressors will tend to have similar regression coeffi-

cients, which creates a grouping effect that is desirable in many applications.

Variable importance score

For each of the variable selection methods a variable importance score can be computed,
which is a measure of the variables’ relative importance in the prediction model. These
scores therefore reflect which variables are the most relevant for the target and which vari-
ables are of least importance.

The variable importance score can also be used to improve the prediction model by
including only the variables with high scores in the model.

Data Analysis

Two oil samples (A and J2) from the Norwegian continental shelf were received from the
project partners. The wetting index for oil J2 was determined by Fossen et al. in [38] to
be +0.44 and the same procedure was used to determine the wetting index for oil A to be
0. The samples underwent the successive accumulation procedure resulting in 26 samples
with different spiking levels, 6 spiking levels for oil A and 4 spiking levels for oil J2.
The samples were analysed by FT-ICR MS. The response consisted of a vector containing
information of the samples origin, i.e. whether it was extracted from the bulk phase or from
the hydrate phase during the successive accumulation procedure. Several different variable
selection methods were tested to attempt to find features related to hydrate formation.

A bucket table was created of the data set using Bruker Compass ProfileAnalysis 2.1.
The statistical methods were implemented using Python 3.8 and its machine learning pack-
ages. Molecular formulas were determined using Bruker Compass DataAnalysis 5.0 and
their molecular structures were investigated using SciFinder. All models were validated
using training and test sets.

Results and discussion
PCA

Each of the oil samples were analysed by PCA and the resulting scoreplot of the first
principal component (PC1) and the second principal component (PC2) for oil A is shown
in Figure 3. The scoreplot to the left shows the samples from the bulk phase, and the plot
to the right shows the samples from the hydrate phase, coloured by their corresponding
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spiking levels. Both plots show that the spiking level of the samples increases along PC2,
meaning that the spiking level is explained by PC2. The crude oil sample and the spiked
samples are separated along PC1. Hence PC1 explains the difference between the crude oil
and the samples that have undergone the successive accumulation procedure.

Figure 3: Scoreplot from PCA for oil A where samples from the bulk phase are shown in the left plot and the
samples from the hydrate phase are shown in the right plot. The crude oil is marked with x.

The results from the PCA of oil J2 are shown in Figure 4. The scoreplot to the left
shows the samples from the bulk phase, and the plot to the right shows the samples from
the hydrate phase, coloured by their corresponding spiking levels. The results are to a high
degree similar to those for oil A. PC1 explains the difference between the spiked samples
and the crude oil samples. PC2 explains the spiking levels, but the groupings for the spiking
levels of oil J2 are not as clear as for oil A.

Figure 4: Scoreplot from PCA for oil J2 where samples from the bulk phase are shown in the left plot and the
samples from the hydrate phase are shown in the right plot. The crude oil is marked with x.

We see clearly from the scoreplots for both oil A and J2 that the crude oil is distin-
guishable from the spiking samples both in the bulk phase and in the hydrate phase. The
successful accumulation procedure therefore alters the composition of the oil sufficiently
to observe this separation between the spiking levels and the crude. This suggests that there
is an accumulation of hydrate active components.
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Comparing raw spectra

To investigate differences between the spiking fractions, the average raw spectra for each
spiking sample were compared to a sample which had not been spiked. This was performed
by subtracting the spectra of a sample removed before the successive accumulation from
the spectra of the remaining spiked samples to identify a possible increase or decrease in
any of the peaks during the accumulation. The results for oil A are shown in Figure 5.
Three m/z values appeared to increase as the spiking level increased: 326.38, 469.31 and
229.14. Table 1 shows the molecular formulas for these compounds, their double bond
equivalent (DBE) numbers, which is the degree of unsaturation of the molecule, and their
hydrogen-carbon (H/C) ratios. Two of the compounds have DBE numbers of 0 (m/z 326.38
and 229.14) meaning that they are saturated. It is therefore likely that they are paraffins.

Figure 5: Raw spectra of oil A from hydrate phase compared to spiking level 0
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m/z Formulae DBE H/C
326.38 C22H48N 0 2.18
469.31 C22H50N4OSV 4 2.72
229.14 C10H22NaO4 0 2.20

Table 1: The m/z values in oil A that increased as spiking level increased, their molecular formula, DBE and
hydrogen-carbon ratio.

Spiking level 0 was also compared to the remaining spectra for oil J2 and the results are
shown in Figure 6. For oil J2 no distinct m/z values increased with increasing spiking level.
However, Figure 6 shows that for spiking level 2, 3 and 4, the area between 400 and 600
m/z increased, indicating that the variables of interest with regards to hydrate formation
may lie in this area. Another possible explanation is that this oil is saturated with hydrate
active components, and the spiking procedure therefore does not change the composition
of the oil to any significant extent.

Figure 6: Raw spectra of oil J2 from hydrate phase compared to spiking level 0
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Variable selection methods

Several variable selection methods such as decision trees, random forest, bagging, gradient
boosting, and regularisation methods such as LASSO and ridge regression, were tested with
the aim of finding components related to hydrate formation. The samples were classified
as either bulk (0) or hydrate (1). The accuracy scores for each of the classification methods
are shown in Figure 7. Figure 7 shows that the best performing prediction model is gradient
boosting which achieves the highest prediction accuracy score of 0.7. Figure 7 shows that
two of the other tree based methods, decision trees and random forest, also perform well.
Tree based models often outperform linear models when the variables in the data are highly
correlated to each other. This can be remedied by using regularisation and for this data set,
ridge regression improves the model considerably compared to LASSO regularisation. The
gradient boosting model seems to be able to create a model well fitted to the differences,
e.g different spiking levels and two different oils that this data contains.

Figure 7: Accuracy scores for the different classification methods

For each of the variable selection methods the five m/z-values that received the highest
variable importance scores were extracted and are shown in table 2. Permutation feature
importance was applied to the best performing model, gradient boosting. Molecular for-
mulas corresponding to these m/z-values were determined and their molecular structures
were investigated to identify commonalities in the selected variables. Table 2 shows a large
range in the m/z-values selected as important by the variable selection methods, stretching
from 243.20 to 781.56 and the carbon chains ranges from C10 to C46. The DBE numbers
show that two of the selected variables are saturated while the remaining variables have
DBE numbers between 1 and 25. Inspection of the suggested molecular structures revealed
mostly long chained hydrocarbons with increasing number of rings as the DBE number
increases. Seawater is present in the samples and therefore, some of the variables selected
contain sodium complexes. Some of the oils contain sulphur and a three consist of a metal
complex with vanadium.
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The average weight of asphaltenes is ∼750 Da, and some of the selected m/z-values
lie in the range of 709-782 indicating that these could be asphaltenes, apart from the two
(m/z 716.62 and 781.56) with DBE numbers of 0. The asphaltene fractions able to stabilise
water-in-oil emulsions are often more polar, with higher oxygen content and thereby higher
acidity and lower DBEs [39]. Agglomeration have also been related to the presence of
sulfoxides (OxSy) [40], which can be seen in all of the m/z ratios between 709-782 where
all are detected in oil A. This corresponds well with the wetting index for oil A of 0, which
means that it can be a plugging oil.

The mass spectra were inspected to identify which samples contained the selected m/z-
values. From table 2 it is clear that most of the selected variables are in either oil A or oil J2.
Which sample each m/z-value is detected in is described in Appendix A. As the response
used in the machine learning methods is whether the sample is related to hydrate formation
or not, the variables selected by the methods should be related to hydrate formation. How-
ever, if the oil samples are too different, the differences will overshadow the underlying
effects between the response and the variables, and variables separating the samples will
be selected. As this data set only contains two oils, it is difficult to determine which of
these effects are evident in these variables.

It was not possible to determine the molecular formulas for the last five variables, m/z
436.57, 545.84, 545.72, 436,67 and 545.83. The spectra showed that these peaks were
only detected in four of the samples from oil J2, and are most likely peaks stemming from
background contamination or instrument noise.
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m/z Formula DBE H/C Detected in Method
388.19 C18H30NO8 5 1.67 A
709.47 C41H73O3S3 12 1.78 A J2 Permutation
460.24 C31H30N3O 19 0.97 J2 feature importance
422.22 C16H32N5O8 4 2.0 J2
716.62 C39H91N3O2SV 0 2.33 J2
608.41 C29H58N3O10 3 2.0 A
618.56 C40H76NOS 6 1.90 A Random forest
320.21 C21H26N3 11 1.24 J2
781.56 C33H90N6O4S3V 0 2.73 A
766.69 C46H97NNaOS2 3 2.11 A
709.47 C41H73O3S3 12 1.78 A J2
351.16 C11H31N2O6S2 2 2.81 J2 Boosting
243.20 C13H27N2O2 2 2.08 J2
357.17 C10H25N6O8 2 2.5 J2
571.47 C32H69N2NaOV 1 2.16 A J2
641.37 C30H58N4NaO5S2 8 1.93 J2
588.40 C39H50N5 18 1.28 A Bagging
392.31 C22H43NNaO3 6 1.95 A
655.24 C40H35N2O7 25 0.88 A
340.11 C15H14N7O3 13 0.93 A
463.25 C18H35N6O8 5 1.94 J2
753.50 C40H70N6NaO4S 11 1.75 A LASSO
382.22 C18H33NNaO5 3 1.83 A
436.57 ND J2
436.57 ND J2
545.84 ND J2
545.72 ND J2 Ridge Regression
436.67 ND J2
545.83 ND J2

Table 2: Table of the five m/z values selected as most important from each method, their molecular formulas,
DBE numbers, hydrate-carbon ratio and in which oil the m/z values are detected. Molecular formulas that
could not be identified are labelled ND.

Future work
In this study, several m/z-values were determined by the machine learning-based variable
selection methods to have a higher relevance to the differences between samples from the
hydrate phase and samples from the bulk phase. To try to pinpoint the exact molecular
structures of the selected m/z-values, the peaks will be isolated by FT-ICR MS and frag-
mented. This will make it easier to identify the structures of complicated molecules. When
the compounds are found, they can be tested with the oils to evaluate how their presence
changes the characteristics of the oils and the formation of hydrates.

13



In this study only two oil samples were examined. The successive accumulation proce-
dure will be performed for additional oils and the methods presented in this paper will be
used to identify important variables. The results will be compared between all oils with the
aim of identifying component groups that are related to hydrate formation. The possible
presence of one common compound between the oils will be investigated. The ultimate
aim of the work is to conclude on an optimal method which identifies components related
to hydrate formation based on the spiking procedure and FT-ICR MS data.

Conclusion
Several machine learning-based variable selection methods were tested with the aim of
finding components related to hydrate formation. The best performing prediction model
was gradient boosting with an accuracy score of 0.7. The m/z-values of highest importance
for the response were identified from all models and their molecular formulas were deter-
mined to attempt to identify a group of molecules related to hydrate formation. Some of
the variables were identified as possible asphaltenic structures and believed to contribute to
the wetting index of 0 for oil A.

Identifying the variables in the oils that are important for the formation of hydrates takes
us one step closer to identifying the nature and molecular structure of naturally occurring
hydrate active components.
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Abstract

The blockages of pipelines caused by agglomeration of gas hydrates is a major flow assur-

ance issue in the oil and gas industry. Some crude oils form gas hydrates that remain as

transportable particles in a slurry. It is commonly believed that naturally occurring compo-

nents in those crude oils alter the surface properties of gas hydrate particles when formed.

The exact structure of the crude oil components responsible for this surface modification

remains unknown. In this study, a successive accumulation and spiking of hydrate-active

crude oil fractions was performed to increase the concentration of hydrate related com-

pounds. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) was

then utilised to analyse extracted oil samples for each spiking generation. Machine learning-

based variable selection was used on the FT-ICR MS spectra to identify the components

related to hydrate formation. Among six different methods, Partial Least Squares Discrimi-

nant Analysis (PLS-DA) was selected as the best performing model and the 23 most impor-

tant variables were determined. The FT-ICR MS mass spectra for each spiking level was

compared to samples extracted before the successive accumulation, to identify changes in

the composition. Principal Component Analysis (PCA) exhibited differences between the

oils and spiking levels, indicating an accumulation of hydrate active components. Molecular

formulas, double bond equivalents (DBE) and hydrogen-carbon (H/C) ratios were deter-

mined for each of the selected variables and evaluated. Some variables were identified as

possibly asphaltenes and naphthenic acids which could be related to the positive wetting

index (WI) for the oils.

Introduction

One of the major flow assurance challenges in the oil and gas industry is the formation of gas

hydrates and their agglomeration, causing complete blockage of pipelines [1]. Gas hydrates are

formed under low temperatures and high pressures, as guest molecules are trapped inside and

help stabilise crystalline cages consisting of water molecules held together by hydrogen bonds.
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Remediation methods consists of thermodynamic inhibitors (methanol, ethanol or glycols),

low dosage hydrate inhibitors (LDHIs), or by ensuring operation outside the hydrate region by

controlling the pressure and/or temperature [2]. However, operating outside the hydrate

region is not always possible or economically feasible and chemicals have negative environ-

mental impacts and should be avoided if possible. Previous experiments have shown that some

crude oils form gas hydrates that do not agglomerate or deposit, but remain as transportable

particles [3–5]. This can be explained by the existence of naturally occurring components in

the crude oils with hydrate active properties that can interact with and alter the surface wetting

properties of the hydrate particles from being hydrophilic to becoming hydrophobic, thus pre-

venting agglomeration [6]. Despite a lot of research on the topic, the nature and structure of

the hydrate active components in crude oils have not yet been determined in detail.

To prevent agglomeration of the hydrate particles, their wettability state must be controlled.

Oil-wet particles are hydrophobic and associated with non-aggregating and thus flowable dis-

persions, while water-wet particles are hydrophilic and associated with aggregating hydrate

particles with a higher potential for plugging [7]. The particles’ wettability can be affected by

the crude oil composition by adsorption or inclusion of components naturally occurring in

crude oil to the hydrate surface.

Petroleum acids have shown surface activity towards hydrate surfaces. It has therefore been

suggested that naturally occurring hydrate inhibiting components are present in the acid frac-

tions of crude oils [8–11]. Furthermore, the acid fractions have been shown to contain large

amounts of naphthenic acid compounds [12]. They consist of a complex mixture of alkyl-

substituted acyclic and cycloaliphatic carboxylic acids with the general formula CnH2n+zO2

where n corresponds to the number of carbon atoms and z specifies the hydrogen deficiency

from ring formation [13]. Comparatively, asphaltene fractions are known to possess self-

agglomerating properties and can stabilise oil-wetted systems [14]. It has been shown that the

asphaltene fractions able to stabilise oil-wetted systems often are more polar, with higher oxy-

gen content, higher acidity and lower DBEs [15]. Other studies have suggested that the possible

hydrate activity of asphaltenes is related to their sulfoxide content [16]. Accordingly, some

asphaltenes can alter the plugging potential of crude oils [17, 18].

The complex mixture and relatively high masses of the components in crude oils make it diffi-

cult to identify single components with most mass spectrometers. However, with the high mass

accuracy of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS)

more detailed analysis of crude oils with the ability to identify a large number of polar groups,

including compounds present in low concentrations, is possible [19]. FT-ICR MS has previously

been used extensively for crude oil characterisation [20–27]. Qian et al. [28, 29] showed that elec-

trospray ionisation (ESI) FT-ICR MS was able to identify more than 3000 chemical formulas of

nitrogen containing aromatic compounds in positive mode. Additionally, studies have shown

that asphaltenes can be characterised by positive mode ESI FT-ICR MS [30–32].

With the highly detailed spectra derived from FT-ICR MS, there is a need for powerful data

analysis methods to efficiently extract valuable information and disregard unimportant infor-

mation. The present work describes the use of machine learning-based variable selection for

the identification of naturally occurring hydrate inhibitors from ESI positive FT-ICR MS spec-

tra and relating the selected variables to the wettability state of the respective crude oils.

Materials and methods

Fluid system

The crude oils used originated from the Norwegian continental shelf and were used as received

unless specifically mentioned. The water phase consisted of 3.5 wt% NaCl in tap water, thus
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containing only monovalent ions in the water-phase, which simplifies the water chemistry

avioding possible unwanted reactions by bivalent ions such as Ca2+ [33]. The gas phase was a

mixture of 86/8/6 mol% of methane, ethane and propane respectively (Linde Gas AS) with a

mixture tolerance of 10% and an analysis uncertainty of 2%.

Experimental set-up

The autoclave used in the experiments was a 200 mL high-pressure sapphire cell (Top Indus-

trie) owned by SINTEF AS, placed inside a temperature controlled chamber. The temperature

was measured using a PT-100 element positioned at the bottom of the cell. A connected stirrer

mixed the phases to create a fully dispersed system. The cell was fitted with a Hy-Lok FT

Micron Tee Filter with a 150 μm sintered stainless steel filter element. A probe inserted from

the top was used to measure the conductivity in the liquid phase. Gas filling was controlled

using an IN-FLOW HI-Press MFC mass flow controller (Bronkhorst).

Successive accumulation of hydrate active components

A successive accumulation procedure (spiking) was performed with the aim of accumulating

possible hydrate active components. A schematic illustration of the procedure is shown in

Fig 1. The method developed by Fossen et al. [34] was based on Borgund et al. [6] which pre-

sented the same procedure, but with a non-pressurised system using tetrahydrofuran as

hydrate former. The procedure started with a fresh oil sample which was added to the cell with

the water phase at a given water cut and pressurised with a hydrocarbon gas phase. The pres-

sure used for the current study was 65 bar. The water cut is the ratio of water compared to the

total volume of the system. The temperature was lowered to 2˚C while stirring the liquid to

ensure a homogeneous dispersion. By cooling the system at high pressure, the hydrate forma-

tion region will eventually be reached, and given enough sub-cooling, the system will form

hydrates. For the current tests, the system was kept at low temperature over night, to ensure

hydrate formation. When hydrates had formed, and the reaction allowed to reach equilibrium,

Fig 1. Schematic illustration of the successive accumulation experiment for spiking of the hydrate phase.

https://doi.org/10.1371/journal.pone.0273084.g001
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the phase not associated with hydrates, called the bulk phase, was drained through the bottom

of the cell. The driving force for draining was the pressure difference of the cell and the ambi-

ent pressure conditions outside the cell. The hydrate phase was retained by the filter, so only

water and oil not associated to hydrates were drained. Once the bulk phase was drained, the

cell was depressurised and the temperature was increased, leading to dissociation of the

hydrate phase which was drained and collected, resulting in an oil and a water phase that had

been associated to the gas hydrates. The now liquid hydrate phase was then mixed with fresh

oil and water at a ratio ensuring the same water cut as the previous run, before repeating the

hydrate formation and draining procedure. Small samples were taken from both the bulk

phase and the hydrate phase at each step for analysis by FT-ICR MS.

Wetting index experiments

A wetting index (WI) procedure for determining the emulsion inversion point was developed

by Høiland et al. [35] and advanced by Fossen et al. [34]. In short, the WI is obtained from

determination of the inversion point of the emulsions with and without hydrates present.

When the emulsion inversion point shifts towards higher water cuts after hydrate formation,

the hydrates are oil-wetted, and when the shift is towards lower water cuts, the hydrates are

water-wetted. This is in accordance with the principles of Bancroft [36]. The WI is defined as

the normalised difference in inversion point with, and without hydrates present, represented

by a number between -1 and +1. Positive values indicate oil-wetted systems with little or no

potential of plugging, while negative values indicate water-wetted systems with a high potential

of plugging. The absolute value of the WI number is expected to be of importance, and a

higher positive or negative value indicates higher degrees of oil-wetted or water-wetted hydrate

particles.

FT-ICR MS analysis

For the FT-ICR MS analysis, the samples were prepared by dissolving 20 μL sample in 980 μL

dichloromethane. 20 μL of the diluted sample was then added to 980 μL of a 1:1 mixture of tol-

uene and methanol. 100 μL were injected onto the FT-ICR MS using a Aglient 1290 Infinity

HPLC system as the introduction device. The 100 μL were injected over a period of 10 minutes

with a flow of 10 μL per minute. The mass spectra were acquired using a Bruker Solarix XR

FT-ICR MS (Bruker Daltonik GmbH, Germany) equipped with a 12 Tesla magnet (Bruker

Biospin, France) owned by SINTEF and located in Trondheim (resolution: 450 000 at m/z

400). The FT-ICR was equipped with an electrospray ion source (ESI) operating in positive

mode with the mass range set to 150–3000 m/z.

3 oil samples (anonymised to A, J2 and I) underwent the successive accumulation proce-

dure resulting in 41 samples of different spiking levels. 6 spiking levels for oil A and 5 spiking

levels for oil J2 and I. The samples were analysed by FT-ICR MS in three parallels each. For

each sample, 220 spectra were collected.

Data treatment

A bucket table was created of the data using Bruker Compass ProfileAnalysis 2.1. The settings

in ProfileAnalysis was as follows: the average peak list was calculated, normalisation was set to

the sum of bucket values in analysis, no baseline or smoothing, S/N threshold of 4, relative

intensity threshold of 0.01 and absolute intensity threshold of 100. The resulting data set con-

sisted of 123 samples and 27600 variables between m/z 148.44 and 1001.66.
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Principal Component Analysis (PCA)

PCA [37] is an unsupervised method for data reduction where a large data set X is decomposed

into a subspace containing linear combinations of the original variables as shown in Eq 1.

X ¼ XInwgtX ð1Þ

Where XIn has the shape (N, K) and is the mass spectra for N oil samples with K X -variables

and X has the shape (N, K) which are the balanced spectra for N oil samples with K variables.

Eq 2 shows the PCA model for A Principal Components (PCs).

X ¼ �x þ TAPT
A þ EA ð2Þ

Where PA are the loadings and orthonormal eigenvectors of (X � �xÞTðX � �xÞ with shape (K,

A), minimising the covariance between the X -variables after A PCs. The scores (TA) are

orthogonal as shown by Eq 3 andwil have shape (N, A).

TA ¼ ðX � xÞPA ð3Þ

The error term in 2 is EA which is calculated by Eq 4.

EA ¼ X � �x � TAPT
A ð4Þ

Variable selection methods

Variable selection is the process of selecting a subset of relevant variables to use when con-

structing a model. When a data set contains a large number of variables, it is often assumed

that the data contains irrelevant or redundant variables that can be removed without loss of

information. Removing them can improve the prediction ability of the model and reduce the

computational cost during modelling. Variable selection can also be used to identify the fea-

tures with the highest correlation to the response, i.e. the most important variables.

In this paper, variable selection methods such as Partial Least Squares Discriminant Analy-

sis, Decision Trees, Random Forest, Boosting, and LASSO (Least Absolute Shrinkage and

Selection Operator) regularisation were compared with the aim of predicting whether the sam-

ples were related to the hydrate or the bulk phase. An attempt was made to identify compo-

nents in the data related to hydrate formation with the hypothesis that there could be

systematic differences in the spectra which the proposed methods could be able to distinguish.

Partial Least Squares Discriminant Analysis (PLS-DA). PLS-DA [38] decomposes large

data sets into a subspace of latent variables consisting of scores and loadings which represent

the main features of covariance in the data. The latent variables are found by a maximisation

of the covariance between the features, X and the response, Y. X has the same input model as

for PCA, shown in Eq 1. As PLS-DA also takes the response into account as opposed to PCA,

the input model for Y is shown in Eq 5.

Y ¼ Y InwgtY ð5Þ

Where YIn has the shape (N, J) and is the input categorical variables (0 or 1) for N oil samples

with J categorical variables, wgtX are the statistical weights for balancing the sum of squares for

the Y variables and Y is the balanced data with shape (N, J) for N oil samples with J Y -vari-

ables. The decomposition of X is taken into account, resulting in Y relevant latent variables.

This is shown by Eqs 6 and 7.

X ¼ �x þ TAPT
A þ EA ð6Þ
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Y ¼ �y þ UAQT
A þ FA ð7Þ

Where A denotes the number of PCs used and EA and FA are the error terms using A PCs.

Plotting of these latent variables provides overview of co-variations both within and between

model inputs and outputs. The loading weight matrix (WA) maximises the covariance between

X and Y by maximising the covariance between T and U after A components. The scores (TA)

are orthogonal as shown by Eq 8.

TA ¼ ðX � �xÞ �WA ð8Þ

The loadings for X (PA) are calculated by Eq 9 while the loadings for Y (QA) are calculated

by Eq 10.

PA ¼ ðT
T
ATT

AÞ
� 1TT

AðX � xÞ ð9Þ

QA ¼ ðT
T
ATT

AÞ
� 1TT

AðY � yÞ ð10Þ

The error term for X (EA) is calculated as for PCA in Eq 4 and the error term for Y (FA) is

calculated by Eq 11.

FA ¼ Y � yTAQT
A ð11Þ

The regression coefficients (BA), which are measures of the impact of variations in the vari-

ous features on the respective response variables, are calculated by Eq 12.

BA ¼WAQT
A ð12Þ

Prediction of Y is then obtained by Eq 13 where b0 is the intercept.

Ypred ¼ b0 þ XnewBA þ FA ð13Þ

When Y is categorical and the problem is classification, Linear Discriminant Analysis

(LDA) is used to predict the class membership of the samples from the PLS-DA component

construction by encoding the class membership of the observed variables in X into 0 or 1 [39].

PLS-DA can be used for variable selection by calculation of the Variable Importance in Pro-

jection (VIP) for each X variable in the PLS-DA model. The VIP score summarises the influ-

ence of the individual X variables on the PLS-DA model and are calculated as the weighted

sum of squares for the PLS-DA weights wj which takes the amount of explained variance in Y
into account for each extracted latent variable. VIP therefore gives a measure that can be used

to select variables which contribute the most to the explanation of the variance in Y. The VIP

score for variable K can be calculated from Eq 14.

VIPK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

PA
j¼1

B2

j t
T
j tj

wkj

k wj k

 !

PA
j¼1

B2

j t
T
j tj

v
u
u
u
u
t ð14Þ

Where B is the regression coefficient matrix, wj is the weight vector, wkj is the kth element of

wj and tj the score vector from the PLS-DA model with A PCs. A variable with a VIP score

greater then 1 are generally considered as important, however this limit is sensitive to non-rel-

evant information in X [40]. In this study, the threshold for selecting variables were deter-

mined as the point where the VIP-values flatten out, which was found to be 5.
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Decision Trees (DTs). DTs [41, 42] are models where decisions are made by asking a

series of questions and generating decision rules based on them. These models consist of a tree

root, decision nodes, branches and leaf nodes. They aim to find the smallest set of rules that is

consistent with the training data. In general, the rules have the form: if condition1 and condi-
tion2 and condition3 then outcome and are chosen to divide observations into segments that

have the largest difference with respect to the target variable. Therefore, the rule selects both

the variable and the best break point (usually selected by significance testing or reduction in

variance criteria) for maximal separation of the resulting subgroups.

To avoid overfitting, the trees often have to be pruned by setting a limit for the maximal depth.

A leaf can no longer be split when there are too few observations, the maximum depth (the hierar-

chy of the tree) has been reached, or no significant split can be identified. It is assumed that obser-

vations belonging to different classes have different values in at least one of their features. DTs are

usually univariate, since they use splits based on a single feature at each internal node.

Random forest (RF). In DTs, the initial selected split effects the optimality of variables

considered for subsequent splits, making these methods prone to overfitting and other prob-

lems. This can be handled by introducing RF [43–45], an ensemble tree method where each

tree is based on a random subset of the data and its features (selected by bootstrapping). The

advantage of ensemble trees is that the trees are grown with varying initial splits, and either a

voting or the average of the predictions for each new data point across all trees is used. The

vote distribution can be used to develop a non-parametric probabilistic predictive model. The

change in prediction accuracy when the values of a feature are randomly permuted among the

observations gives estimates of the importance of each feature.

Ensemble learning. Ensemble learning combines weak classification models with the

main idea that many models in combination perform better than one model alone [46].

Boosting [47] is an ensemble learner where weak learners are trained sequentially, trying to

improve upon its predecessor. The classifiers emphasise errors made by the previous classifier,

aiming at decreasing the model bias. Boosting learners combine underfitting models with low

prediction accuracy with the aim of improving the final prediction. Gradient Boosting [48, 49]

is a boosting method where trees are built in every iteration, always minimising the prediction

error of the classifier. This combination of several smaller trees forms a stronger learner able

to fit larger parts of the data than a simple decision tree can. XGBoost (eXtreme Gradient

Boosting) [50] is another boosting method based on gradient boosting, which introduces a

penalty function in the boosting algorithm and utilise the computational power more effi-

ciently, reducing the computation times.

Regularisation. Another type of machine learning method valuable for variable selection

purposes is the regularisation-based method LASSO (least absolute shrinkage and selection

operator) [51].

LASSO. In LASSO the estimates of the regression coefficients are obtained using L1-con-

strained least squares. This forces the sum of the absolute values of the regression coefficients

to be less than a fixed value, which forces certain coefficients (βj) to be set to zero. The variables

which have their regression coefficients set to zero, are omitted from the model. LASSO mini-

mises Eq 15 where the ordinary least squares (OLS) problem is the first term with β0 as the

intercept, and the second term l
Pp

i¼1
jbjj is the regularisation term.

RSSLASSO ¼
Xn

i¼1

ðyi � b0 �
Xp

j¼1

bjXijÞ
2
þ l
Xp

i¼1

jbjj ð15Þ
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Variable importance score. For each of the variable selection methods a variable impor-

tance score can be computed, which is a measure of the variables’ relative importance in the

prediction model. These scores therefore reflect which variables are the most relevant for the

target and which variables are of least importance.

The variable importance score can also be used to improve the prediction model by includ-

ing only the variables with high scores in the model.

Data analysis

All statistical methods were implemented using Python 3.8 and its machine learning packages.

The response consisted of a vector containing information of the samples origin, either

extracted from the hydrate phase or from the bulk phase. For the linear models, PCA, PLS-DA

and LASSO, the data set was standardised (standard deviation = 1) and mean centered

(mean = 0). For PLS-DA, the optimal number of components were selected by splitting the

training set into two, 70% for calibration and 30% for validation, and finding the most com-

monly selected number of components by calculating the accuracy over 25 splits. All methods

were validated using 25 different training and test set splits with 70% in the training set and

30% in the test set. Molecular formulas were determined using Bruker Compass DataAnalysis

5.0. From the peak corresponding to the m/z of the variables selected, the formula best fitting

to the peak was chosen.

Results

Wetting index experiments

The three oils underwent the WI experiment and their WIs were calculated. The WI for oil A

was shown to be 0, indicating that it has no clear plugging tendency. Oil J2 and I were deter-

mined to have positive WIs of 0.44 for oil J2 and 0.31 for oil I, indicating that they have low or

no tendency of plugging. The resolution of the measurements in terms of water cut were 10

volume%. This gives an accuracy of the measurement of ±0.05 volume% and thus a corre-

sponding uncertainty in the measured WIs. Evaluation of the sensitivity of the water cut reso-

lution on the WIs was not performed in this study.

PCA

Each of the oil samples were analysed by PCA and the resulting scoreplot of the first Principal

Component (PC1) and the second Principal Component (PC2) for the data set is shown in

Fig 2 where the samples are identified by the oil they originated from. The same scoreplot is

shown in Fig 3 with the samples distinguishing the individual spiking levels. In both figures,

the samples from the bulk phase are shown in the plot to the left and the samples from the

hydrate phase are shown in the plot to the right. Fig 2 shows the differences between the three

oils, and PC1 shows the difference between the samples from oil J2 and the samples from the

two other oils, A and I. Additionally, PC1 shows a separation between the samples that have

undergone the spiking experiment, and the crude oil samples which are clustered around 0.

PC2 shows differences in the spiking samples from oil A and I. The spiking samples for oil J2

are clustered at 0 for PC2.

Fig 3 shows the differences between the spiking levels along PC2.

Comparing mass spectra

To investigate differences between the spiking levels of the hydrate phase in each of the oils,

the mass spectra from each spiking level were compared to a sample which had not been
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spiked. This was only performed for the hydrate phase as it was assumed that the hydrate active

components would be present in this phase. An average spectrum was calculated from the tree

parallels for each spiking level and for samples removed before the spiking experiment. The

sample removed before spiking is referred to as spiking level 0. The mass spectra for spiking

level 0 was subtracted from the spectra for the remaining spiking levels for each of the oils. The

results for oil A are shown in Fig 4. From Fig 4, four m/z values appeared to have an increasing

trend as the spiking levels increased for oil A. They are shown in Table 1 with the molecular

formula, double bond equivalent (DBE), the degree of unsaturation of the molecule, the hydro-

gen-carbon (H/C) ratios, which adduct the molecule has, either sodium (Na) or hydrogen

(H+) and the molecular weight.

Fig 2. PCA scoreplots with samples from the bulk phase shown in the left plot and samples from the hydrate phase shown in the right plot.

Samples are coloured according to which crude oil they originated from and the crude oils have the symbol x.

https://doi.org/10.1371/journal.pone.0273084.g002

Fig 3. PCA scoreplots with samples from the bulk phase shown in the left plot and samples from the hydrate phase shown in the right plot.

Samples are coloured by spiking level and the crude oils have the symbol x.

https://doi.org/10.1371/journal.pone.0273084.g003
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Fig 4. Mass spectra of samples from the hydrate phase for oil A with spiking level 0 subtracted from each of the spiking levels

1–6.

https://doi.org/10.1371/journal.pone.0273084.g004
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The results with spiking level 0 subtracted from the remaining spiking levels for oil J2 are

shown in Fig 5. For oil J2 no distinct m/z values increased with increasing spiking levels.

The results with spiking level 0 subtracted from the remaining spiking levels for oil I are

shown in Fig 6. From Fig 6, two m/z values appeared to have an increasing trend as the spiking

level increased for oil I. They are shown in Table 2 with molecular formula, DBE, H/C-ratio,

which adduct the molecule has and the molecular weight. Additionally, the variable m/z

156.44 increased, but this is an ion with charge three from the m/z 469.32 peak and is therefore

not reported.

Variable selection

Several variable selection methods such as Decision Trees, Random Forest, Gradient Boosting,

XGBoost, LASSO regularisation and PLS-DA through VIP were tested with the aim of finding

components related to hydrate formation. The samples were classified by their origin, whether

they were sampled from the bulk phase (0) or from the hydrate phase (1). During the data

analysis, it was discovered that the accuracy of the models depended on the composition of the

training and test sets. This is an indication that the samples have such large variation between

them that some compositions of the training set are not able to predict the test set. This was

overcome by running 25 different training and test set combinations. The variable selection

methods were tested on all variables to evaluate which method predicted the samples most

accurately. The accuracy scores of the test set for each of the six methods are shown in Fig 7,

where the accuracy is defined as the fraction of correctly classified samples. The distributions

in accuracy for each method is shown by the bars in Fig 7. The best performing model was

PLS-DA with an accuracy of 0.62 ± 0.12.

The performance for each of the variable selection methods is shown in Table 3. Each time

a model was fitted to a new training and test set, the variables selected by the model were

extracted. Variables that were selected by several different training/test sets are more likely to

be related to hydrate formation. For the best performing variable selection method, PLS-DA,

26 variables were selected as important by all of the 25 models out of the total 27600 variables

in the data set. However, during inspection of the m/z-values, it became apparent that two of

the variables referred to the same peak. Additionally, two variables were the corresponding iso-

tope peak, for m/z 393.30 (isotope peak: 394.30) and 469.32 (isotope peak: 470.32). The vari-

ables were combined, resulting in 23 unique selected variables which are shown in Table 4

with molecular formula, DBE, H/C-ratio, which adduct the molecule has and molecular

weight.

Table 1. Peaks increasing for oil A.

m/z Formula DBE H/C Adduct Molecular formula

273.17 C12H26O5 0 2.17 Na 250.1780

397.18 C18H30O8 4 1.67 Na 374.1941

457.28 C22H42O7 2 1.91 Na 434.2880

469.31 C28H46O4 10 1.64 Na 446.3244

The m/z values with increasing trend as spiking levels increased for oil A, their molecular formula, DBE, H/C-ratio, which adduct the molecule has, Na or H+, and the

molecular weight

https://doi.org/10.1371/journal.pone.0273084.t001
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Fig 5. Mass spectra of samples from the hydrate phases for oil J2 with spiking level 0 subtracted from each of the spiking

levels 1–5.

https://doi.org/10.1371/journal.pone.0273084.g005
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Fig 6. Mass spectra of samples from the hydrate phase for oil I with spiking level 0 subtracted from each of the spiking levels

1–5.

https://doi.org/10.1371/journal.pone.0273084.g006
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Discussion

The results from this work indicated that using machine learning-based variable selection, it is

possible to identify components related to hydrate formation. Several methods were tested,

and PLS-DA was determined as the best performing method with an accuracy of 0.62 ± 0.12

over 25 different training and test set splits. To determine a representative range, 25, 50, 75

and 100 training and test set splits were run. This sensitivity evaluation indicated that increas-

ing the amount of splits above 25 would not affect the standard deviation significantly. Vari-

able selection models can be prone to overfitting as they consume degrees of freedom, but

when using an independent test set, overfitting of the models are counteracted. For each of the

25 times a new model was fitted, the variables selected as important by the model, based on

their variable importance score, were extracted. The variables were extracted from the model

with the highest accuracy score as that is the model that most accurately predicts the differ-

ences between the bulk samples and the hydrate samples, and therefore selects the variables

with the highest probability of being related to hydrate formation.

From PLS-DA, 23 variables were selected as important by all of the 25 models and they

were identified with their molecular formula, DBE and H/C-ratio. The variables selected ran-

ged from m/z 271.19 to 763.61 and the carbon chains from C9 to C49. The DBE numbers show

Table 2. Peaks incresing for oil I.

m/z Formula DBE H/C Adduct Molecular formula

273.17 C12H26O5 0 2.17 Na 250.1780

469.32 C28H46O4 10 1.64 Na 446.3396

The m/z values with increasing trend as spiking levels increased for oil I and their molecular formula, DBE, H/C-ratio, which adduct the molecule has, Na or H+, and

the molecular weight.

https://doi.org/10.1371/journal.pone.0273084.t002

Fig 7. Accuracy scores for the variable selection methods with error bars showing the standard deviation over 25

training/test set splits.

https://doi.org/10.1371/journal.pone.0273084.g007
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6 saturated variables, with DBE of 0, and the highest DBE was 10. The average weight of

asphaltenes is *750 Da [52], and some of the selected m/z-values were in the range 705–763,

indicating that these could be asphaltenes. The asphaltenes with hydrate inhibiting properties

often have higher oxygen and sulfoxide content, higher acidity and lower DBEs [15, 53]. All of

the possible asphaltenic structures exhibit these properties, and could thereby be related to the

positive WI for oil J2 and I. Further studies on the oil samples by extracting and analysing the

Table 4. The variables selected by PLS-DA through VIP.

m/z Formula DBE H/C Adduct Molecular weight

271.19 C13H28O4 5 2.15 Na 248.1988

273.17 C12H26O5 0 2.17 Na 250.1780

313.24 C17H32N2O3 3 1.88 H+ 312.2491

326.38 C22H47N 0 2.14 H+ 325.3709

353.27 C19H38O4 1 2.00 Na 330.2770

357.26 C18H38O5 0 2.11 Na 334.2719

359.24 C17H36O6 0 2.12 Na 336.2512

360.32 C22H43NO 2 1.95 Na 337.3345

361.22 C16H34O7 0 2.13 Na 338.2305

381.30 C21H42O4 1 2 Na 358.3083

393.30 C22H42O4 2 1.91 Na 370.3083

397.18 C18H30O8 4 1.67 Na 374.1941

401.29 C26H40OS 9 1.53 H+ 400.2710

408.31 C22H43NO4 2 1.95 Na 385.3291

425.41 C26H52N2O2 2 2.00 H+ 424.4029

445.31 C22H46O7 0 2.09 Na 422.4029

451.19 C21H29O9 6 1.52 Na 328.2046

457.28 C22H42O7 2 1.91 Na 434.2880

469.31 C24H46O7 2 1.92 Na 446.3244

469.32 C28H46O4 10 1.64 Na 446.3396

705.58 C42H82O4S 4 1.95 Na 682.5934

750.52 C36H81N3O7SV 2 2.25 H+ 749.5157

763.61 C45H80N4O3 8 1.78 Na 740.6180

Table of the 23 m/z values selected in every of the 25 PLS-DA models, their molecular formulas, DBE numbers, hydrate-carbon ratio, which adduct the molecule has,

sodium or (Na) or hydrogen (H+), and the molecular weight.

https://doi.org/10.1371/journal.pone.0273084.t004

Table 3. Performance of the variable selection methods.

Method Accuracy Standard deviation No. of variables selected No. of variables selected in every model

PLS-DA 0.62 0.12 132 26

Decision Trees 0.53 0.13 98 0

Random Forest 0.54 0.09 24929 44

Gradient Boosting 0.54 0.10 12364 0

XGBoost 0.53 0.09 786 0

LASSO 0.58 0.09 334 0

Performance for each variable selection method, their average accuracy, standard deviation, the number of variables selected during the 25 models and the number of

variables that were selected in every model.

https://doi.org/10.1371/journal.pone.0273084.t003
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asphaltenes may confirm this. One variable, m/z 469.32, follows the general molecular formula

for naphthenic acids. Other m/z values appear to have properties that could possibly define

them as naphthenic acids, two or more oxygen molecules, DBEs indicating unsaturation and

H/C-ratios below 2. As naphthenic acids are suggested to be related to hydrate active compo-

nents [8], it is therefore likely that they contribute to the positive wetting index for oil J2 and I.

Several of the selected variables have molecular formulas corresponding to CnH2n+2 and have a

DBE of zero. They have carbon chains between C12 and C22 and contain either large amounts

of oxygen (O5 or more) or nitrogen. It is therefore probable that these are polyethylene glycol

(PEG) molecules stemming from production chemicals used to treat flow assurance issues dur-

ing extraction and processing of the crude oil [54].

By conducting the successive accumulation procedure for a given oil, generations with pos-

sibly increased concentration of hydrate active components could be accumulated. The oils

with positive WI, likely to exhibit non-plugging properties, should thereby achieve an increase

in the components related to anti-agglomeration, making their identification easier. The PCA

scoreplots in Fig 2 show that the crude oils are distinguishable from the spiking samples in

both the bulk phase and the hydrate phase. Additionally, the PCA scoreplots in Fig 3 show that

the different spiking levels are separated, indicating that there were differences between the

samples extracted from each spiking level. The spiking procedure therefore altered the compo-

sition of the oils. The variables selected by PLS-DA were also identified as increasing in the

hydrate phase spiking fractions for oil A and I supporting the theory of accumulation.

The mass spectra for oil J2 in Fig 5 showed that no distinct m/z values increased as the spik-

ing levels increased. However, for spiking level 2, 3, 4 and 5, the area between m/z 400 and 600

increased, indicating that the variables relevant for hydrate formation could lie in this m/z

region. Another possible explanation could be that this oil is saturated with hydrate active

components, and the spiking procedure therefore would not change the composition of the

oil. This fits well with the WI of +0.44 for oil J2, indicating little or no plugging. It is therefore

likely that oil J2 contains more hydrate active components than the oils with lower WI.

The results from the variable selection methods showed that the two linear methods,

PLS-DA and LASSO, achieved higher accuracy scores than the tree-based methods. Linear

methods are more robust and less susceptible to changes in the data. As there were variations

in the accuracy for the models using different training and test set splits, the tree-based meth-

ods were likely affected negatively.

The molecular formulas presented in this paper are only suggestions of the most likely

molecular formulas from the DataAnalysis software. As the mass of the molecule increases, the

amount of possible structures and formulas also increases. Accordingly, the uncertainty of the

suggested formulas increases with the mass of the molecule. Nonetheless, the structures give

an indication of the nature of the molecules related to hydrate formation, and can be used to

indicate whether they are i.e. asphaltenes, acids or alkanes.

For any complex data matrix, there are often assumptions that some of the data is noise and

unrelated to the desired prediction. With the methodology presented in this paper, we show

that it is possible to extract relevant information from complex data and relate it to the chemi-

cal composition of the samples. Thus, the proposed methods can be used in any application

where there is a need for extracting, identifying and evaluating important variables.

Further studies

When the m/z values of components related to hydrate formation are identified, the next step

will be to determine the molecular structures with higher certainty. This can be done by isola-

tion and fragmentation by FT-ICR MS, making it easier to identify the structures of
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complicated molecules. When the compounds are found, they can be tested with the oils to

evaluate how their presence changes the characteristics of the oils and the formation of

hydrates.

Conclusion

In this study, machine learning-based variable selection was used to identify components

related to hydrate formation. A successive accumulation procedure was performed to increase

the concentration of the hydrate active components. PCA demonstrated the difference

between the spiking levels and the crude oils, establishing that the spiking procedure alters the

sample composition significantly, suggesting that hydrate active components have been accu-

mulated. Variable selection methods such as Decision Trees, Random Forest, Gradient Boost-

ing, XGBoost, LASSO regularisation and PLS-DA through VIP were tested to identify the

hydrate active components. The best performing prediction model was obtained using

PLS-DA which gave an average accuracy of 0.62±0.12 over 25 different training and test set

combinations. From the 25 models, 23 variables were selected as important in every model,

and their molecular formulas were determined in an attempt to identify molecules related to

hydrate formation. Some of the variables were identified as possible asphaltenic structures

which could be related to the positive WI for the oils.

Identifying variables in the oil related to hydrate formation takes us one step closer to iden-

tifying the naturally occurring hydrate active components.

Supporting information

S1 Fig. Experimental set-up. Picture of the autoclave used for the hydrate formation and spik-

ing experiments. It consists of a sapphire cell between two titanium grad II flanges. Pressure,

temperature and conductance is measured inside the sapphire cell. A motor is mounted above

the cell driving a stirrer through a magnetic connection.

(PDF)

S2 Fig. Determining the threshold for VIP Plotting of the VIP values for the 25 PLS-DA

models with 20 components. The curve flattens around 5 which was selected as the threshold.

(EPS)

S3 Fig. Determining the optimal training/test set split. Accuracy scores for the classification

methods showing the mean accuracy over 25, 50, 75 and 100 training/test set splits and stan-

dard deviations.

(EPS)
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Abstract

Crude oils are among the world’s most complex organic mixtures containing
a large number of unique components which many analytical techniques lack
resolving power to characterise. Fourier Transform Ion Cyclotron Resonance
Mass Spectrometry (FT-ICR MS) offers a high mass accuracy, making detailed
analysis of crude oils possible. Infrared (IR) spectroscopic methods such as
Fourier Transform Infrared (FTIR) and Near-infrared (NIR), can also be used
for crude oil characterisation. The three methods measure different properties
of the samples, and different data sources can often be combined to improve
prediction accuracy of models. In this study, Partial Least Squares Regres-
sion (PLSR) models for each of the three methods (single-block PLSR) were
compared to Multiblock PLSR (MB-PLSR) and Sequential and Orthogonalised
PLSR (SO-PLSR), with the aim of predicting the density of crude oils. Variable
importance in projection (VIP) was used to identify the important variables for
each method, as spectroscopic data often contains irrelevant variation. The
variables were interpreted to evaluate their underlying chemistry and to check
whether consistency could be found between the variables selected from the
spectroscopic techniques for the single-block and multiblock methods. Combin-
ing the different blocks of data increased the prediction abilities of the models
both before and after variable selection, and SO-PLSR using a reduced data set
resulted in the best prediction model.

Keywords
Multiblock; Partial Least Squares Regression; Fourier Transform Ion Cyclotron Res-
onance Mass Spectrometry; Infrared Spectroscopy; Crude oil; Petroleomics
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1 Introduction
Crude oils are among the world’s most complex mixtures, which makes detailed char-
acterisation difficult [1, 2]. They are made up of saturated and unsaturated hydrocar-
bons with small amounts of heteroatoms (nitrogen, oxygen and sulphur) and metallic
constituents. Crude oil properties such as density, viscosity or boiling point are often
used as measures for rapid assessments of crude oils, as they are determined by the
chemical composition of the oil, and thereby related to the crude oil components [3].
Chemometric methods have been used for identification of crude oil properties for
decades [4, 5, 6], and the field of Petroleomics [2] arose from identification of crude
oil components using high-resolution mass spectrometry.

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS)
offers a high mass accuracy and has previously been used extensively for crude oil
characterisation, as the connected resolution power makes it capable of more detailed
analysis compared to traditional mass spectrometers [2, 7, 8, 9, 10, 11, 12, 13, 14].
The mass accuracy of FT-ICR MS is sub-ppm, and the mass spectral resolution can
be above 10 million (at m/z = 400), which allows for better separation and enables
identification of a large number of different chemical groups [15, 16]. Accordingly,
FT-ICR MS is regarded as the most efficient technique for crude oil analysis. Atmo-
spheric pressure photoionisation (APPI) is the ionisation source shown to yield the
most detailed mass spectra compared to other commonly used ionisation sources for
FT-ICR MS, as APPI is efficient at characterising both non-polar molecules, which
constitutes approximately 90% of crude oil composition, and polar molecules [17].

However, infrared spectroscopy (IR) has also been used extensively for prediction
of crude oil properties with good results [18, 5, 19]. Near infrared (NIR) and mid
infrared (FTIR) spectroscopy use the infrared region of the electromagnetic spectrum.
IR methods measure the amount of light a sample absorbs at each of the selected
wavelengths based on molecular vibrations [20]. For crude oils, the FTIR spectra are
usually dominated by the absorption bands from C-H bonds and groups containing
aromatics, sulphur, oxygen and nitrogen [21]. In NIR spectra, functional groups such
as methylenic, oleifinic and aromatic C-H bonds are usually more prominent, and the
bonds involved are C-H, O-H and N-H. However, NIR is limited when it comes to
identification of chemical groups and is more suited for quantitative analysis [22].

Several studies have compared various ionisation techniques (ESI/APPI etc.) or
ionisation modes (positive/negative) for FT-ICR MS, demonstrating that the most
comprehensive characterisation of crude oils is achieved when using more than one
ionisation technique/mode [23, 24, 25]. This raises the question of what can be
gained by using more than one spectroscopic technique. The various spectroscopic
methods measure different parts of a sample and can reveal different properties of
the oils. It has been shown that combining data sources measuring complementary
information can improve the predictive accuracy or interpretability of a model [26],
and multiblock analysis is one way to utilise several different data sources to gain
a deeper understanding of the samples. For instance, Dearing et al. [27] used data
fusion to combine three spectroscopic techniques for characterisation of crude oils,
and illustrated the benefits of combining data from different sources, but did not
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consider mass spectrometric techniques.
Another important aspect of spectroscopic techniques is that the data generally

contains variation not related to the response, which can diminish the predictive abil-
ities of a model. It is therefore of interest to remove non-relevant variables and keep
only those that have an effect on the response. These can be viewed as the important
variables, and interpreting them and identifying their corresponding chemistry, is of
great importance when trying to understand the mechanisms of a system. Finding
the important variables is referred to as variable selection, and has been frequently
used for spectroscopic data [28, 29].

In this study, two multiblock methods based on two different data fusion tech-
niques, Multiblock Partial Least Squares Regression (MB-PLSR) and Sequential and
Orthogonalised Partial Least Squares Regression (SO-PLSR) were compared to single-
block Partial Least Squares (PLSR), with the aim of predicting the density of crude
oils from FT-ICR MS and IR data. An additional goal was to evaluate the gain
of using multi-block methods to add information from IR to FT-ICR MS data, and
whether this could improve the characterisation of crude oil properties. Variable Im-
portance in Projection (VIP) was used to remove irrelevant variables and identify
important peaks which were interpreted to evaluate whether some of the methods
identified the same chemical structures.

2 Materials and methods

2.1 Density measurements

Density is closely related to the chemical structure of a sample and is a measure
often used by the petroleum industry to evaluate the quality of the oil through the
American Petroleum Institute (API) gravity. API gravity is related to density via
specific gravity and categorises oils into density levels of light, medium and heavy.
Density is fairly easy to measure, it is closely related to the chemical composition of
the sample, and has been shown to correlate well with both IR [5] and FT-ICR MS
spectra [30]. Density was therefore used as the response in this study.

The density of 42 crude oils was measured by a Sigma 703D instrument from
Biolin Scientific using the associated density probe. All samples were measured at
room temperature within a period of 1 week, under the same ambient conditions.
The instrument power was turned on at least 30 minutes before the first sample was
measured to reduce variation caused by instrument heating. The measurements were
conducted as follows; first, the density ball was placed on the hook before taring and
the density should read 1.2e-3 g/ml, i.e., the density of air. The beaker was then filled
with the liquid oil sample and then moved upwards until the stagnant density probe
was fully immersed in the sample and the density value on the display was recorded.
The density was measured three times per sample and the average of the three was
reported including the standard deviation. Between each measurement, the density
probe was cleaned with toluene and acetone and dried with an air pistol.

The measured densities were in the range 0.759-0.960 g/mL.
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2.2 IR analysis

FTIR and NIR analyses were performed by applying 20µL of crude oil onto the detec-
tion window of a PerkinElmer Frontier FTIR/NIR Spectrometer. In this instrument,
NIR mode operates in the range 15 800-2000 cm-1 and FTIR mode operates from
8300-400 cm-1 [31]. For both FTIR and NIR mode, 16 scans were acquired with reso-
lution 4 cm-1; for FTIR in the range 4000 cm-1 to 800 cm-1 and for NIR in the range of
12800 cm-1 to 4000 cm-1. After preprocessing (as described below), the NIR spectra
were cut to contain only the region between 9550-4000 cm-1, in order to remove noise
observed between 12800-9550 cm-1.

2.2.1 Preprocessing of IR spectra

Both the FTIR and NIR spectra were preprocessed with three different procedures
to identify the most optimal method for data analysis. The different preprocessing
procedure were:

• Raw data (no preprocessing)

• Extended Multiplicative Signal Correction (EMSC) [32, 33] with 2nd order poly-
nomial correction, using the mean spectrum as the reference

• EMSC (same settings as above) and Savitzky-Golay (SG) [34] 2nd derivative
smoothing (with window width 15 pt and 3rd order polynomial smoothing)

For each procedure, the preprocessed data were either standardised and mean-
centred or just mean-centred. The settings for EMSC and SG were chosen based
on a preliminary exploration of the data, where the above settings achieved the best
degree of smoothing and baseline correction (with respect to predictive accuracy in
the following analysis).

2.3 FT-ICR MS analysis

For the FT-ICR MS analysis, the samples were prepared by dissolving 20µL sample in
980µL dichloromethane, and 20µL of this diluted sample were then added to 980µL
of a 1:1 mixture of toluene and methanol. 100µL were injected onto the FT-ICR MS
using an Agilent 1290 Infinity High-performance Liquid Chromatography (HPLC)
system as the introduction device over a period of 10 minutes with a flow of 10µL
per minute. The mass spectra were acquired using a Bruker Solarix XR FT-ICR MS
(Bruker Daltonic GmbH, Germany) equipped with a 12 Tesla magnet (Bruker Biospin,
France) owned by SINTEF AS and located in Trondheim, Norway (resolution 450 000
at m/z 400). The FT-ICR mass spectrometer was equipped with an atmospheric
pressure photoionisation ion source (APPI) operating in positive mode, with the
mass range set to m/z 150-3000. All samples were measured in three replicates, and
for each sample, 220 spectra were collected and the final spectrum reported as the
average over the 220.
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2.3.1 Data treatment

Before analysis of the FT-ICR MS data, the spectra were combined into a bucket
table. Bucketing is the process of removing variations in peak positions due to changes
in shifts during analysis [35]. Bruker Compass ProfileAnalysis 2.1 [36] was used
for the bucketing with the following settings: normalisation was set to the sum of
bucket values in the analysis, no baseline or smoothing was performed, the signal-to-
noise (S/N) threshold was 4, the relative intensity threshold was set to 0.01 and the
absolute intensity threshold was 100. The average was calculated over the parallels
for each sample, resulting in a data set with 42 samples and 23800 variables between
m/z 147.51 and m/z 1008.92.

Molecular formulas were determined for each spectrum using Bruker Compass
DataAnalysis 5.0 [37]. The settings were as follows: as APPI was set to positive
mode, the ions of interest were the molecular ions (M and M+H), the lower limit of
atom detection was set to C6H6 and the upper limit of atom detection to O3S3N3. This
means that molecular formulas containing less than 6 carbons or 6 hydrogens would
not be suggested, and neither would formulas with more than 3 oxygens, 3 sulphur
atoms or 3 nitrogens. These limits were based on previous knowledge of commonly
observed and plausible molecular formulas in similar samples. Electron configuration
was set to both, with an isotopic fit factor (mSigma) of 100, determining how well
the peaks fit the isotopic pattern of the suggested molecular formulas. The resulting
molecular formulas were combined into one list for comparison to the variables selected
by each method.

2.4 Data analysis

2.4.1 Partial Least Squares Regression (PLSR)

PLSR [38, 39, 40] decomposes large data sets into a subspace of latent variables
(scores and loadings) representing the main features of co-variance between the re-
gressors (X ) and the response (Y ). PLSR is a commonly used method in chemomet-
rics, and particularly valuable for data with few samples and many variables. The
decomposition of X and Y is done jointly and iteratively, taking co-linearities in Y
into account. For X the decomposition is shown in Equation 1 and for Y in Equation
2.

X = x̄ +TAPT
A + EA (1)

Y = ȳ +TAQT
A + FA (2)

where A denotes the number of PLS components used and EA and FA are the
residual terms using A components. The loading weight matrix (W A) maximises
the covariance between X and Y by maximising the covariance between T and U
with A components. The scores (TA) are orthogonal, and are calculated by Equation
3.
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TA = XW A(PT
AW A)

−1 (3)

The loadings for X (PA) are calculated by Equation 4, while the loadings for Y
(QA) are calculated by Equation 5.

PT
A = (T T

AT
T
A)

−1T T
A(X − x̄ ) (4)

QT
A = (T T

AT
T
A)

−1T T
A(Y − ȳ) (5)

The error terms for X (EA) and Y (FA) are calculated by Equation 6 and
Equation 7, respectively.

EA = X − x̄ −TAPT
A (6)

FA = Y − ȳ −TAQT
A (7)

The regression coefficients (BA), which are measures of the impact of variations in
the various regressors on the respective response variables, are calculated by Equation
8.

BA = W A(PT
AW A)

−1QT
A (8)

Prediction of Y for a new sample (X new) is then obtained by Equation 9, where
b0 is the intercept.

Y pred = b0 +X newBA (9)

2.4.2 Multiblock analysis

Several different techniques exist for combining data for multiblock analysis. The
data can for instance be concatenated according to a shared mode, usually with the
sample mode acting as the shared mode, or the data can be analysed sequentially,
extracting important information from one block before moving to the next block
[41]. In the current study, MB-PLSR and SO-PLSR were tested as representatives of
the two mentioned strategies. Both methods are based on linear coefficients for the
variables with the general formula given by Equation 10.

Y = X 1B1 +X 2B2 + · · ·+XNBN + F (10)

where X are the predictor blocks, Y is the response, B are the regression coef-
ficients and F the residuals. The difference between the two methods lies in how
the constraints are applied during the decomposition, leading to different orthogo-
nality properties and thereby different independence of the common and distinctive
parts. In addition to accomplishing the tasks of the regular single-block techniques,
multiblock methods have the advantage of finding common and distinct information
present, originating from the different sources of data [42]. Common variation can be
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comprehended as the variation associated between data sets, while distinct variation
can be regarded as the variation which is unique for each data set.

2.4.3 MB-PLSR

In MB-PLSR, global scores are extracted by maximising the covariance with the
response variables, and the extracted global scores are then used in ordinary least
squares regression to obtain the predictive models [43, 44]. The data sets are fused by
concatenating the individual blocks, after dividing by the square root of the number of
variables in each block (

√
Jm). MB-PLSR with super-score deflation of the response

starts with an ordinary PLSR on the concatenated blocks, followed by a block-wise
extraction of block-weights, block-scores and block-loadings [45]. The prediction is
obtained from the PLSR model on the concatenated blocks along with the super-
weights, -scores, -loadings and Y -scores and -loadings. The block-loading weights
(wm) are then obtained by Equation 11 from the original block data (Xm).

wm =
X T

mu
(uTu)

(11)

where u are the y scores. The block-scores (tm) are obtained by Equation 12.

tm =
Xm√
Jm

w ∗
m (12)

where Jm are the variables for block m and w *
m are the normalised weights (w ∗

m =
wm/ ∥ wm ∥). Finally, the block-loadings (pm) are obtained by Equation 13.

pm =
XT

m√
Jm

· tm
tTmtm

(13)

Figure 1 shows a schematic illustration of how the super-weights, -scores, -loadings
and block-weights and -scores are calculated in MB-PLSR.
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Figure 1: Schematic illustration of MB-PLSR, where the data are concatenated by a shared sample
mode, and super-scores and -loadings are calculated from the blocks to achieve maximum covariance.

MB-PLSR applies the same number of components for all the blocks. In cases
where the dimensionalities of the blocks are very different, the number of components
may not be optimal for all the blocks. However, this allows for simpler models predict-
ing only on one set of components, thus decreasing the susceptibility for overfitting.

2.4.4 SO-PLSR

In SO-PLSR, the blocks of data are incorporated one at a time to evaluate their
incremental contribution by letting the method sequentially search for improvements
of predictions using additional and orthogonal information provided by the subsequent
blocks [46, 47]. This is done by first applying PLSR to the first block and extracting
the scores (T 1) and loadings (P1), followed by an orthogonalisation of the second
block (X 2), as shown in Equation 14 for X 2 and for Y in Equation 15.

X2,orth = (I −T 1(T T
1 T 1)

−1T T
1 )X 2 (14)

Y orth = (I −T 1(T T
1 T 1)

−1T T
1 )Y (15)

In the next step, a new PLSR is fitted to the Y -residuals from the first PLSR
and the orthogonalised X 2, orth. This step is repeated for all additional blocks, with
all previous blocks included in the orthogonalisation step. Block one and two are
concatenated for this purpose, T12 = [T1 T2] and T12 used for orthogonalisation of
block three (X 3) by Equation 16.

X 3,orth = (I −T 12(T T
12T 12)

−1T T
12)X 3 (16)

Y orth∗ = Y orth − (I −T 2(T T
2 T 2)

−1T T
2 )Y (17)
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Y is computed by summing up the predictions of the individual regressions by
Equation 18.

Y pred = T 1QT
1 +T 2QT

2 +T 3QT
3 + F (18)

Figure 2 shows all the steps in the SO-PLSR algorithm where PLSR models are
fitted, and how the orthogonalisation is implemented.

X1

X2
orth

X3
orth

X2
orth =

orth(X2|T1)

X3
orth =

orth(X3|T1,T2)

Y

pT
1,m

pT
2,m

pT
3,m

t1,m

t2,m

t3,m

PLSR Orthogonalisation

Figure 2: Schematic illustration of the SO-PLSR algorithm, starting with a PLSR model from which
the scores are used to orthogonalise the second block, which is then fitted to a new PLSR model.
The scores from the first and second PLSR model are used to orthogonalise the third block before
it is fitted to a new PLSR model.

SO-PLSR is designed to handle blocks of different complexity and type, including
varying numbers of variables and varying dimensionality. Additionally, SO-PLSR
is invariant to block-scaling. The order of the blocks is of importance in SO-PLSR,
contrary to in MB-PLSR, and changing the order will have an impact on the solution.
In this study, the APPI(+)-FT-ICR MS data was used as the first block, since the
aim was to uncover whether additional techniques to FT-ICR MS could increase the
information that can be extracted from the data and the resulting predictive ability.

2.4.5 Variable selection

Variable Importance in Projection (VIP) is a commonly used method for variable
selection in PLSR [48, 49, 50], and is a measure of the influence of the individual X
variables on the PLSR model. VIP has also been shown to be efficient for multiblock
methods. For example, Biancolillo et al. [51] showed that VIP outperformed other
variable selection methods when combined with both SO-PLSR and MB-PLSR.
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VIP scores are calculated as the weighted sum of squares for the PLSR weights,
which take the amount of explained variance in Y into account for each extracted
latent variable. VIP scores therefore select the variables that contribute the most to
the explanation of the variance in Y . Since the variance explained by each component
can be calculated by q2

jt
T
j t j, the VIP score for a variable K can be calculated from

Equation 19.

V IPK =

√√√√√n

∑A
j=1 q2

jtTj t j
( w kj

∥w j∥

)2

∑A
j=1 q2

jtTj t j
(19)

where (w kj/ ∥ w j ∥)2 represents the importance of the k -th variable, wherein w j is
the weight vector, wkj is the k -th element of w j. Additionally, q j are the loadings
and t j is the score vector from PLSR with A components.

2.4.6 Selecting the VIP threshold

If a variable has a VIP score greater than 1, it is generally considered as important.
However, this threshold is sensitive to non-relevant information in X , and may have
to be altered depending on the data [52]. The absorption in the IR spectra and the
intensities of the peaks in FT-ICR MS have different values even after preprocessing
and standardisation. Therefore, it is also natural that the methods have different
VIP threshold values.

The threshold for each method was selected by fitting a model with the optimal
number of components, selected by leave-one-out cross-validation (LOOCV), and ex-
tracting the VIP values. A search was performed over the VIP values, including 10
different thresholds between the lowest VIP value, where all variables were included,
and the highest VIP value, where only one variable was included. For each of the
thresholds, the selected variables were fitted in a reduced model and the optimal
threshold was determined from the highest proportion of explained variance R2. If
two thresholds were separated by a small change in R2, the threshold giving the lowest
amount of variables was selected.

2.4.7 Software

Data preprocessing was done using Python 3.8, while all statistical methods were
implemented using R 4.2.2 [53] with the pls [54], plsVarSel [48] and multiblock [55]
packages. All methods were validated using LOOCV, and the optimal number of
components for each method was selected from the highest R2 after LOOCV.

3 Results and discussion
This study was separated into three parts; in the first part the different preprocessing
methods were compared to evaluate their effects on the prediction models, and to
select the optimal method for each block. The single-block predictions for FT-ICR
MS, FTIR and NIR were then compared to MB-PLSR and SO-PLSR, before variable
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selection was performed using VIP based on the single-block PLSR models. The
reduced single-block models were then compared to MB-PLSR and SO-PLSR on the
variables selected by single-block PLSR. In the last part, VIP was applied to MB-
PLSR and SO-PLSR to evaluate how this would change the predictions, and which
variables that were selected. All selected variables for the single-block and multiblock
methods were interpreted to evaluate whether any commonalities or chemical groups
related to the response could be identified.

Figure 3 shows the raw data for the three blocks, FT-ICR MS, FI-IR and NIR,
before preprocessing. The scales were different for the three blocks, even after pre-
processing, and therefore each block was scaled using the Frobenius norm prior to the
analysis.

Figure 3: Raw data for the three data sources, FT-ICR MS, FTIR and NIR.
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3.1 Comparison of preprocessing methods

It is not given that the same preprocessing technique is optimal for all three types of
data (FT-ICR MS, FTIR and NIR). Therefore, to evaluate the optimal preprocessing
technique for each block, various combinations were tested. The APPI(+) FT-ICR
MS data was tested with and without standardisation, while for FTIR and NIR,
the raw data, EMSC preprocessed data and EMSC plus SG preprocessed data were
tested with and without standardisation. The preprocessing methods were evaluated
based on the highest R2 value after PLSR validation with LOOCV. MB-PLSR is
very sensitive to block-scaling, and to perform optimally, the blocks have to be on
similar scales. The search was therefore split into two variants, one where each block
was mean-centred and standardised, and a second where the blocks were only mean-
centred. Each search was tested on single-block PLSR, MB-PLSR and SO-PLSR,
where the optimal preprocessing was selected as the combination which yielded the
highest R2 value, averaged over single-block PLSR, MB-PLSR and SO-PLSR.

For FT-ICR MS and NIR, the inclusion of standardisation was optimal. How-
ever for FTIR, standardisation gave a slight decrease in R2, but this was relatively
small compared to the differences in R2 for FT-ICR MS and NIR with and without
standardisation. For FT-ICR MS and NIR, standardisation significantly improved
the predictions. The combination that yielded the highest mean R2 was therefore
standardisation of all blocks, in addition to EMSC preprocessing for NIR. These pre-
processings were used for the remainder of the analysis. The detailed results from the
searches are included in the supporting information.

3.2 Comparison of single-block PLSR to MB-PLSR and SO-
PLSR

In the next part of the study, single-block PLSR models on the data from FT-ICR
MS, FTIR and NIR were compared to MB-PLSR and SO-PLSR models. PLSR was
first performed for the individual blocks, before VIP was applied to select relevant
variables in each block, and a reduced model was fitted based on this selection. Each
block was standardised and mean-centred prior to analysis. The multiblock methods
were then tested first on the fused full data from all blocks, and then on the variables
selected from the single-block analysis. In SO-PLSR, FT-ICR MS was selected as the
first block, FTIR as the second and NIR as the third, based on the amount of chemical
information, where FT-ICR MS is expected to contain the most, while NIR contains
the least. The prediction accuracies for the single-block PLSRs were compared to
the R2 values obtained with MB-PLSR and SO-PLSR to evaluate the gain of using
multiblock methods. The results for all methods are shown in Table 1.
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Variable
selection
method

Procedure Selected
variables
APPI

Selected
variables
FTIR

Selected
variables
NIR

R2 No.
PCs

No FT-ICR MS 23800 - - 0.651 10
variable FTIR - 3201 - 0.874 4
selection NIR - - 11101 0.486 4

MB-PLSR 23800 3201 11101 0.835 8
SO-PLSR 23800 3201 11101 0.856 1,4,3

Variables FT-ICR MS 1344 - - 0.874 20
selected FTIR - 1060 - 0.905 20
from NIR - - 1060 0.740 7
single-
block

MB-PLSR 1344 1060 1060 0.897 4

SO-PLSR 1344 1060 1060 0.912 3,4,3
Variables
selected
from
multiblock

MB-PLSR 3651 3201 1012 0.896 12

SO-PLSR 12950 866 5019 0.912 0,4,5

Table 1: Results of single-block PLSR, MB-PLSR and SO-PLSR without variable selection, with
variable selection from the single-block methods and with variable selection from MB-PLSR and
SO-PLSR. Under ’Procedure’, FT-ICR MS, FTIR and NIR indicate single-block analysis of the
respective blocks, while MB-PLSR and SO-PLSR indicate the respective multiblock method on
fused data. The number of selected variables for each method (when refitting on selected variables)
is indicated, and ’-’ indicates exclusion of that block.

In Figure 4, the variables selected from single-block PLSR are highlighted in pink
over the raw spectra for FT-ICR MS and FTIR, and preprocessed NIR spectra. The
results from the single-block PLSR model for FT-ICR MS showed an increase in
R2 from 0.651 to 0.874 with a reduction in the number of variables from 23800 to
1344, i.e., 5.6% of the variables, when performing variable selection. Most of the
selected variables were gathered in two areas, in m/z∼350-300 and m/z∼550-500,
and a few variables were found below m/z 200 and around m/z 700-750. For FTIR,
1060 variables were selected, showing a slight increase in R2, which already was high
with all variables included. The selected variables were all positioned between ∼1700-
800 cm-1, ∼1850-1750 cm-1 and ∼2830-2950 cm-1. Interestingly, the baseline shifts at
3000-4000 cm-1 were not selected as important. Lastly, in NIR, 1060 variables were
selected and these were spread throughout the spectra, but with a higher abundance
between 6500-9500 cm-1. None of the peak maxima were selected, but several of the
minima were selected, for instance at ∼8900 cm-1, ∼7700 cm-1 and ∼6800 cm-1.
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Figure 4: The variables selected from the single-block PLSR models are shown by the pink lines.
VIP thresholds for selection were individually optimised for FT-ICR MS, FTIR and NIR.

FTIR gave the lowest reduction in the number of variables after variable selection,
and it was also the analysis technique with the fewest variables in the original data
set. In addition, FTIR had the highest R2 with the full data of 0.875, which is quite
good in itself, and it therefore makes sense that there is little to gain by removing a
large number of variables.

For the multiblock methods, MB-PLSR and SO-PLSR achieved R2 values of 0.835
and 0.856, respectively, when using the full data set. This was lower than single-block
PLSR for FTIR, but higher than for both FT-ICR MS and NIR. When fitting the
reduced data using MB-PLSR and SO-PLSR, the R2 values increased to 0.897 and
0.912, respectively. The R2 value of 0.912 for SO-PLSR was the highest achieved of
all the predictions using the variables selected from the single-block analysis.
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3.3 Variable selection from MB-PLSR and SO-PLSR

In the second part of the study, VIP was applied to the multi-block methods to
identify which variables MB-PLSR and SO-PLSR deemed important. For MB-PLSR,
VIP selected variables from the global model on the concatenated data, and the VIP
threshold was determined from the global model and applied to each block. The
reduced data set was then fitted to a new MB-PLSR model to evaluate the effect of
the variable selection.

For SO-PLSR, VIP was applied to select variables after each PLSR modelling,
meaning that for block two (FTIR) and block three (NIR), the VIP scores were
determined after orthogonalisation. The VIP threshold for SO-PLSR was then de-
termined from the global model, after all blocks had been fitted to the SO-PLSR
model, meaning that one threshold was selected and applied to all blocks. The VIP
threshold was then used to determine the selected variables from each block. The
reduced data set was fitted to a new SO-PLSR model to evaluate the effect of the
variable selection.

For MB-PLSR, Figure 5 shows the variables selected as important for each block
highlighted by the pink lines. MB-PLSR selected all variables as important in FTIR,
3651 for FT-ICR MS and 1012 for NIR. This could be due to the scaling that happens
during concatenation of the blocks in MB-PLSR, where each block is divided by the
root of the number of variables in each block. As the FTIR data has the fewest
variables of the three blocks, this scaling will have less impact than in the other two
blocks, which can mean that the FTIR variables have higher values and thereby exceed
the VIP threshold, so that all of them are selected. However, even though a higher
number of variables were selected than for the variable selection in the single-block
analysis, the R2 value was approximately the same.
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Figure 5: The variables selected from the MB-PLSR model are shown by the pink lines for the three
blocks, FT-ICR MS, FTIR and NIR. The VIP threshold was determined from the global model and
then applied to the individual blocks.

For SO-PLSR, Figure 6 shows the variables selected as important for each block
highlighted by the pink lines. SO-PLSR selected the largest total amount of variables;
12950 for FT-ICR MS, 866 for FTIR and 5019 for NIR. But when the new SO-PLSR
model was fitted to the reduced data set, the model selected zero components from
the FT-ICR MS block, meaning that it did not find anything of importance from this
block. As the variable selection in SO-PLSR was done from the global model, the
components used for selection were 1 for FT-ICR MS, 4 for FTIR and 3 for NIR.
The R2 however, was the same when using the variables selected from SO-PLSR and
when using the variables selected from the individual blocks.

The results show that SO-PLSR consistently outperforms both single-block PLSR
and MB-PLSR. The lowest amount of variables were selected from the single-block
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PLSR methods, yet achieving the highest R2 with SO-PLSR.

Figure 6: The variables selected from the SO-PLSR model are shown by the pink lines for the three
blocks, FT-ICR MS, FTIR and NIR. The VIP threshold was determined from the global model and
then applied to the individual blocks.

An interesting difference between the variables selected in SO-PLSR compared to
the variables selected in MB-PLSR and in single-block PLSR, can be seen in the FT-
ICR MS block. Where MB-PLSR and single-block PLSR selected mainly variables
with low m/z-ratios, SO-PLSR showed a high abundance of selected variables between
m/z 750-1000. The density of a sample is dependent on the size of the molecules, and
large molecules contribute to higher densities. For FTIR, less importance is given to
the variables below 1500 cm-1 in SO-PLSR than in single-block PLSR. Additionally,
in SO-PLSR, variables occurring in the baseline shift area were selected, as opposed
to in single-block.
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3.3.1 Alternative selection methods

The above results were based on a global variable selection strategy for SO-PLSR, but
other strategies for variable selection also exist. As SO-PLSR is a sequential method,
the variable selection can also be implemented in a sequential manner, where the
variables are selected after each PLSR modelling, and the reduced data is used to
orthogonalise the next block. In this strategy, the selection for the first block will
be the same as for a single-block PLSR model. This was implemented in this study
as well, and resulted in a high R2 value of 0.955 with 1344 variables selected from
FT-ICR MS, 30 from FTIR and 10232 for NIR. The fact that only 30 variables were
selected after the orthogonalisation of the FTIR block can be due to that all the
chemical information in FTIR was also found in the variables selected in FT-ICR
MS. Additionally, almost all variables were selected from the NIR block, meaning
that very little information from NIR was captured in FT-ICR MS. These selections
make little sense when compared to the variable selections from single-block and MB-
PLSR, and the global strategy for variable selection from SO-PLSR was therefore the
one selected in this study.

3.4 Interpretation of the peaks

For many chemical applications, the main interest is to identify what makes a variable
important, not just to determine that it is important. Visualisation of the selected
variables’ positions in the spectrum can be a tool to aid interpretation of the variables.
In the last part of this study, an effort was made to interpret the selected variables
and connect them to the underlying chemistry affecting the density of the oils. Crude
oils with high densities are known to contain more poly-aromatic and heteroatom-
containing compounds and to have a relatively lower content of alkanes (saturates),
while light crudes often contain more alkanes [56]. Additionally, positive correlations
between the amounts of nitrogen-containing compounds, N1 and N1O1 and density
have been found [8].

3.4.1 FTIR

For FTIR, important peaks for interpreting spectra are for instance the spectral bands
between 3500-2700 cm-1, commonly referred to as the hydrogen stretching zone, where
the vibrational frequencies of C-H, N-H and O-H manifest. Triple bonds between
C≡C and C≡N appear in the region between 2260-2100 cm-1, while double bonds
between C=C, C=N and C=O appear around 1800-1650 cm-1. The spectral area
below 1500 cm-1 is called the fingerprint region, and single bonds, C-H bending and
some benzene ring derivative bonds determine the type of functional groups located in
this area. The aromatic region is also in the fingerprint region, and appears between
1000-400 cm-1, showing the presence of aromatic rings in the samples [57, 58].

The variables selected from the FTIR block in single-block PLSR and SO-PLSR
mainly coincide with the peaks observed at ∼3000-2800 cm-1, the hydrogen stretch-
ing zone showing alkanes, the peaks observed at 1470 cm-1 and 1450 cm-1, and the
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remaining of the fingerprint region. As observed in Figure 5, MB-PLSR selected
all variables from FTIR as important. From the single-block variable selection, the
entire fingerprint region was determined to be important, and as this is the region
determining the characteristics of an oil, it likely has a large effect on establishing the
differences between the oils. For the variables selected in SO-PLSR, some parts of
the fingerprint region were not selected, but the entire aromatic region was selected.
This was expected, since higher amounts of aromatic components are associated with
higher molecular weights and densities, especially if the aromatic rings are condensed,
like for resins and asphaltenes.

3.4.2 NIR

Even though NIR is more limited when it comes to characterisation of chemical
groups, there are some notable peaks for crude oil characterisation [59]. Among these
are the spectral bands at 4500-4000 cm-1, which correspond to the combination of C-H
stretching and bending of CH2 and CH3. The weak band between 4750-4500 cm-1 can
be assigned to the combination of fundamental vibrations in unsaturated groups. In
NIR, the overtones occurring when the molecule transitions from the ground state to
the exited state are visible as spectral bands. The first overtone of the fundamental
C-H stretching mode is observed between 6050-5500 cm-1, and the weak absorption
centred at 7000 cm-1 is due to the combination of the C-H fundamental binding and
stretching first overtone modes. Lastly, the bond centred at 8000 cm-1 can be at-
tributed to the second overtones of C-H stretching. Additionally, baseline offset and
a baseline slope are common in NIR, and for crude oils, this often occurs at 9000-
6500 cm-1. These effects are characteristic for asphaltene-containing samples.

The largest abundance of selected variables from the variable selection in NIR
were present in the areas above 7000 cm-1. These results were consistent between the
three methods single-block PLSR, MB-PLSR and SO-PLSR. Inspection of the raw
spectra in Figure 3 showed that both baseline offsets and slopes were visible, indicating
the presence of varying amounts of asphaltenes and possibly other components with
condensed ring structures, except for in four samples not exhibiting a baseline slope.
The NIR data set was the block with the largest variations between the selected
variables. Single-block PLSR, MB-PLSR and SO-PLSR selected many of the same
areas, but slightly different peaks were identified as important for each area. It is,
however, interesting that the spectral bands associated with C-H stretching, which
are mainly indications of alkanes, showed low importance for all methods. Some
spectral bands were selected at ∼4500-4400 cm-1, corresponding to alkane stretching
and bending, and in the first overtone centred at 5500 cm-1, in single-block PLSR.
SO-PLSR, on the other hand, selected the variables corresponding to the spectral
bands for unsaturated groups at 4750-4500 cm-1.

3.4.3 FT-ICR MS

The interpretation of MS spectra is different from that of IR spectra. While IR
is sectioned into groups of similar characteristics, the position of a peak in an MS
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spectrum is related to the mass of the compound. The m/z for a peak is directly
corresponding to the mass when the charge of the molecule is 1, and as APPI ionises
molecules to a charge of 1, the peak position reveals the mass of the molecule. To be
able to interpret peaks in an MS spectrum accurately, their molecular formulas have
to be identified using a suitable spectral processing software. However, some chemical
groups have been shown to appear in certain masses. For instance, asphaltenes have
an average mass of ∼750Da, meaning that asphaltenic molecules are seen as peaks
around m/z 750. Naphthenic acids, with an average mass between 300-500 Da [60],
are usually only found in low concentrations in light oils, but in higher concentrations
in heavy crude oils, and then often in the form of high-density naphthenes [61].
Another important factor in interpreting peaks in an MS spectrum is the double
bond equivalent (DBE) for the molecule. The DBE is a measure of the degree of
unsaturation present in the molecule, and reveals the number of rings or double bonds
present. As it is known that light oils mainly contain saturated alkanes, they will have
low DBEs, while heavy oils containing many aromatic groups or many double-bonded
side chains, will have high DBEs.

For all methods, many of the selected variables were present in the m/z area
300-400, which corresponds to the average mass of naphthenic acids. For single-block
PLSR and MB-PLSR, a few variables were also selected between m/z 650-750, i.e., the
asphaltene area. For SO-PLSR, Figure 6 shows that a higher abundance of variables
was selected above m/z 750, and the variables below this value were more sparsely
selected. As mentioned above, higher molecular weights lead to higher densities.

Molecular formulas could be determined for 1905 of the variables selected over
all three methods, and these were positioned in the m/z area 165-918. A high mass
implies a large number of possible combinations of chemical groups, which makes it
more difficult to determine the molecular formula. Many variables are isotope peaks,
and in this study, molecular formulas were only calculated for monoisotopic peaks.
An isotope peak refers to the peak for isotopes in the molecule, for instance, 13C or
2H. Each molecular peak can usually have up to 4 isotope peaks, meaning that many
of the selected variables probably are parts of isotope patterns, and are therefore
simply reflections of the molecular peak. For the determined molecular formulas, the
number of carbon atoms ranged from 9-61, with 24 being the most frequent. The
DBEs for the determined molecular formulas ranged from 0-31, with seven being the
most frequent value. The DBEs also revealed that 66.6% of the molecules had DBEs
lower than 10, indicating a moderate complexity and density of the ring structures,
corresponding to lighter and medium oils. The remaining DBEs between 10-31 could
be responsible for the high densities of the heavy oil samples. This fits well with the
measured densities, where 71.4% are below 0.90 g/mL.

The variables selected as important in APPI(+) FT-ICR MS which were identified
with molecular formulas by Compass DataAnalysis are included in the Supporting
Information.
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4 Conclusion
In this study, the density of crude oils was predicted from APPI(+) FT-ICR MS,
FTIR and NIR spectra. MB-PLSR and SO-PLSR were tested to evaluate the gain
of fusing the data with multiblock methods. For each method, VIP was utilised to
identify important variables, and the effects of the selected variables on the density,
and thereby the oil chemistry, of the samples were interpreted.

For the prediction of density from single-block analysis of the individual blocks,
the FTIR data block yielded the highest prediction accuracy, indicating that the
strongest relationship to density can be found in the FTIR area. FT-ICR MS was,
due to the high mass resolution, expected to contain more chemical information than
FTIR and NIR, and therefore expected to be more accurate. The prediction accuracy
does increase after variable selection, suggesting that the full spectra contain too many
peaks not related to the response which therefore diminish the predictive power of
the model. For the NIR data, the prediction accuracy also increased significantly
after using variable selection to reduce the number of variables. This indicates that
removal of redundant or irrelevant variables is important when analysing data from
both FT-ICR MS and NIR.

Out of the three PLSR-based methods, SO-PLSR had the highest prediction accu-
racy after variable selection, both when using variables selected from the single-block
analysis and with variables selected from the SO-PLSR itself. This illustrates the
advantage of fusing data from several sources compared to using data from only one
analytical technique. During interpretation of the variables, it was discovered that
SO-PLSR more frequently selected variables corresponding to aromatic groups, as op-
posed to MB-PLSR and single-block PLSR. Higher contents of aromatic groups have
been related to higher densities, and the fact that SO-PLSR consistently performed
better than single-block and MB-PLSR shows that SO-PLSR selected more relevant
parts of the spectra. This indicates that the spectral regions corresponding to aro-
matics are the most efficient to use when predicting density, which also corresponds
with the literature.

This study showed that fusing data from multiple spectroscopic sources increases
the prediction ability compared to separate analysis of the individual blocks. This
illustrates the potential of multiblock analysis for more complicated prediction prob-
lems.
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Abstract

Prediction models based on data with large inhomogeneity or collinearity often
perform poorly because relationships between groups in the data dominate the model.
This can be overcome by splitting the data into smaller clusters and creating a local
model within each cluster. In this study, the Hierarchical Cluster-based Partial Least
Squares Regression (HC-PLSR) procedure was expanded to deep learning. Hierarchi-
cal Cluster-based convolutional neural networks (HC-CNNs), Hierarchical Cluster-
based recurrent neural networks (HC-RNNs) and Hierarchical Cluster-based Support
Vector Regression models (HC-SVRs) were implemented and tested on spectroscopic
FT-IR data. The data consisted of FT-IR measurements of raw material dry films from
chicken, turkey, mackerel and salmon after enzymatic hydrolysis, for prediction of
average molecular weight during hydrolysis. The deep learning models, HC-CNN,
HC-RNN and HC-SVR outperformed HC-PLSR, showing the disadvantage of PLSR
for non-linear data. An interpretation of the importance of the features for predicting
the response based on measures provided by each of the methods was done to evaluate
the similarities and differences between the prediction models.

Keywords
Local modelling; Fuzzy C-Means clustering; Spectral clustering; Hierarchical agglomer-
ative clustering; Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR);
Hierarchical deep learning

1 Introduction
For complex data sets with large inhomogeneity or collinearity, prediction models often
perform poorly. In these cases, the relationships between groups in the data dominate
the model and the prediction approaches the average of the closest group [1]. An impor-
tant step in achieving a good prediction model, is to identify and model these underlying
structures. Poor prediction can also occur when there are several different competing inter-
relationships overshadowing the prediction problem of interest. Real world data often have
unknown structures and hidden relationships which can be difficult to model. To overcome
this problem, the data can be split into smaller clusters of more homogeneous data. If the
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split is successful, the estimation of the relationships among both variables and observa-
tions will achieve an improved prediction. The split can be based on any criterion, i.e. be
manually determined or assigned by a clustering algorithm. The clustering can find the
hidden structures without having any prior knowledge about the data. This approach yields
a set of models, one for each cluster, where each of them are fitted to the data within that
cluster, overcoming the shortcomings of a model based on all the data.

Local linear approaches for modelling large and complex data sets have been shown to
work well, and Partial Least Squares Regression (PLSR) have been used in several studies
where the data has been divided based on prior knowledge [1, 2, 3, 4, 5, 6, 7]. However,
the data does not always have known groups to base the separation on, and then other
approaches are required. For instance, Tøndel et al. [8, 9] created a hierarchical PLSR
model (HC-PLSR), where the observations were assigned into clusters based on Fuzzy
C-Means (FCM) clustering which assumes no prior knowledge about the data structure.
Fuzzy clustering methods have also been developed within a framework that determines
the optimal number of clusters [10, 11].

The advantage of PLSR is its efficient ways of finding latent variables in the data fast
and reliably. Nevertheless, a potential pitfall when it comes to PLSR, is that this is a
linear model, while the data could have non-linear interrelationships where PLSR struggle
to perform well. The input space the data lies in can exist in different planes, be high-
dimensional, low-dimensional, linear, non-linear etc. Even though simple non-linearities
can be accounted for by e.g. including polynomial terms in the regressor matrix, and more
abrupt non-linearities can be handled by local modelling, some types of non-linearities can
not be modelled using PLSR. In such cases, there is a need for a method able to handle
more complex structures, as even with HC-PLSR, it is a requirement that the data are at
least locally linear.

Neural networks are powerful when it comes to modelling non-linear and large data
sets. However, the more complex the data becomes, the deeper the network needs to be
to achieve adequate prediction. A deep network contains numerous parameters and uses
large amounts of computational power to converge. For local modelling, smaller networks
can be implemented without loosing predictability, rather increasing predictive power. The
interpretability of the model is also higher for simpler models, and the risk of overfitting
decreases.

In this study, the framework for HC-PLSR was extended to deep learning based models
in an attempt to improve the predictive power further. Local Convolutional Neural Net-
works (CNNs), Recurrent Neural Networks (RNNs) and Support Vector Regression (SVR)
models were created and compared to the local PLSR models.

1.1 Partial Least Squares Regression (PLSR)
PLSR and its algorithm have previously been described rigorously in the literature [12,
13, 14, 15]. In short, PLSR decomposes large data sets into a subspace of latent variables
(scores and loadings) representing the main features of covariance between X (regressors)
and Y (response), where both X and Y can be multivariate. PLSR uses inter-correlations
between the response variables to stabilise the model, and does not require that the variables
are linearly independent. The latent variables, the PLS components (PCs), represent the
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most relevant subspaces of the regressors. This is beneficial as it makes PLSR able to
handle a wide range of data, including chemometric data, where the number of features
often exceeds the number of samples.

1.2 Convolutional Neural Networks (CNNs)
CNNs is a type of deep neural networks which uses convolutions to extract information
in one or more hidden layers [16, 17]. CNNs are regularized versions of fully connected
networks and consist of an input layer, hidden layers (mainly convolutional layers, pooling
and fully connected layers) and an output layer. In the convolutional layers, the data is
organised in a feature map where the weights are connected to the previous layer. These
weights are used to filter for patterns in the data. The pooling layer semantically merges
similar features, reducing the dimension of the representation [17]. Commonly used in
pattern recognition, CNNs are good feature extractors as they learn the most important
features by themselves. In contrast to PLSR, CNNs can handle non-linear data.

1.3 Recurrent Neural Networks (RNNs)
RNNs is a type of neural networks often used for sequential or time-series data, feeding
the output from one layer as input to the next layer [18, 19]. Like CNNs, the RNNs learn
from the training input, but the RNNs use internal states (memory) to impact inputs and
outputs with previous information. Therefore, RNNs have a strong capability of capturing
contextual data from a sequence. In a RNN, the input sequence is processed one element
at a time with the memory in the hidden units retaining information on all the elements in
the sequence [17]. In the case of chemical spectra, the peaks are often related to adjacent
peaks or can appear in certain patterns, which is why pattern recognition methods such as
CNNs and RNNs often achieve good prediction models for this type of data.

1.4 Support Vector Regression (SVR)
In SVR, a hyperplane or a set of hyperplanes are constructed in a high-dimensional space to
separate the observations in the training set [20, 21, 22]. The aim is to find the hyperplane
that has the largest distance (margin) to the nearest data point. The margin is defined
as the distance between the separating hyperplane, the decision boundary, and the training
samples that are closest to this hyperplane. The hyperplane is used to predict the continuous
output and the regression solution is the hyperplane that has the maximum number of data
points. Decision boundaries with large margins tend to have a lower generalisation error,
while decision boundaries with small margins are more prone to overfitting. This makes
SVRs proficient at handling non-linearities in data and as the hyperplanes are constructed
in a high-dimensional space, SVR can handle data which cannot be separated in the first
two or three dimensions.
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2 Material and methods

2.1 Fuzzy C-Means clustering (FCM)
Cluster analysis consists of assigning data into groups in a way that the data points in the
same group are as similar to each other and as dissimilar to data points in other groups as
possible. These clusters are defined based on a similarity measure, for instance, distance,
connectivity or intensity. In Fuzzy clustering, each data point can belong to more than one
cluster, where cluster membership probabilities define to which degree a sample belongs to
the different clusters. The closer to the centroid the sample is, the higher the membership
probabilities become. The FCM algorithm [23, 24] chooses a number of clusters where
probabilities for being in the clusters are assigned randomly to each data point. This is
repeated until the algorithm has converged, i.e. until the changes in the probabilities no
longer exceed the set sensitivity threshold. The centroid is then computed for each cluster
and finally, the membership probabilities for each sample for being in each of the clusters
are computed.

2.2 Alternative clustering techniques
Spectral clustering (SPC) [25] uses the spectrum (eigenvalues) of the similarity matrix of
the data to reduce dimensionality, so that the clustering can be done in fewer dimensions.
The similarity matrix consists of an assessment of the relative similarity for each pair of
points in the data set. SPC is useful when the structure of the clusters is non-convex, when
the center and spread of the cluster give a poor description of the properties of the cluster.

In hierarchical agglomerative clustering (HAC) [26], nested clusters are built by suc-
cessive merging or splitting. This hierarchy of clusters can be presented as a dendrogram,
where the branches consist of unique clusters for each sample, merging as pairs of clusters
are combined until all samples of the data set are incorporated into one cluster, the root.
The distance between two subsets of the data is called the linkage distance and represents
the distance between samples in the clusters, and thereby also the cluster regions.

2.3 Local modelling
Implementation of the local modelling was based on the HC-PLSR procedure developed
by Tøndel et. al [8]. First, a PLSR model was built using all observations in the training
set, and the optimal number of PCs was determined using a Leave-One-Out cross valida-
tion (LOOCV) to reduce the risk of overfitting. The selection of PCs was done based on the
minimum cross-validated mean squared error (MSE) over the LOOCV models to create the
global PLSR model. The X-scores for the samples from the global PLSR model were then
clustered by FCM using Euclidean distance. The optimal number of clusters were deter-
mined using LOOCV on the training set. For clusters containing less than 10 samples, the
samples were reassigned based on their membership probabilities, until they were placed
in a cluster with more than 10 samples.

For each of the determined clusters, local models (PLSR, CNN, RNN and SVR) were
calibrated individually using LOOCV to find the optimal local model parameters (PCs
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for PLSR, training length and epochs for CNN and RNN and hyperparameters for SVR).
New (test set) observations, were projected into the global PLSR model and their X-scores
were calculated. The resulting X-scores were then classified into the appropriate clusters
based on FCM, Linear Discriminant Analysis (LDA) [27], Quadratic Discriminant Analy-
sis (QDA) [28] or Naive Bayes classification (NB) [28]. Prediction of the response for the
new observations was done using the local model for the assigned cluster. The resulting
predictions were compared to those obtained using the global PLSR, CNN, RNN and SVR
models to evaluate the improvements achieved using the local modelling.

In addition to FCM, several other clustering methods were fitted to the data to evaluate
the clustering proficiency. HAC and SPC showed some interesting clusters that differed
from FCM, and they were implemented in the algorithm. Local modelling using HCA
and SPC for clustering instead of FCM were created and the results were compared to the
results using FCM. The remaining methods did not yield a meaningful groupings of the
data and were therefore rejected. All cluster distributions are presented in the supporting
information.

All statistical methods were implemented using Python 3.8 and its machine learning
packages. FCM was implemented using the fuzzy-c-means package [29]. All calculations
were done on the Orion High Performance Computing Center (OHPCC) at the Norwegian
University of Life Sciences (NMBU).

2.4 Visualising important features
To evaluate which features the CNN and RNN estimated to be important during building
of the local models, an effort was made to visualise the gradients for each of the local
models. This visualisation was based on the variational gradient method (VarGrad) [30, 31]
which previously has shown good results compared to similar visualisation methods [32].
Jenul et al. showed that this method works well for determining importance of blocks
in a multiblock data set [33], and this procedure was therefore adapted to determine the
importance of features. In VarGrad, a small random noise (using the Numpy Random
Generator) is added to the input layer and then the gradient function for each feature is
estimated. The resulting variation in the gradient indicates which of the features the output
from the network is most dependent on. These features are deemed important, and their
effect on the prediction can be evaluated.

For PLSR, the loadings gives an overview of which features that accounts for the vari-
ation explained by the response. SVR on the other hand, does not have a built in method
for feature evaluation, and therefore permutation feature importance was used. Permuta-
tion feature importance is a model inspection technique that identifies important features
based on changes in the prediction accuracy when a feature is randomly shuffled [34]. If
the prediction accuracy of the model decreases significantly when a feature is randomly
shuffled, this indicates that the feature is important for the models ability to predict the
response. Similarly, if the prediction accuracy is unaffected, the feature is not important
for the prediction.
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2.5 Data
The data set used to compare the methods consists of Fourier-transform infrared spec-
troscopy (FT-IR) measurements of raw material dry films from chicken, turkey, salmon
and mackerel hydrolysed by six different enzymes, and was retrieved from Kristoffersen et
al. [3]. The pre-processing was performed using Savitzky-Golay 2nd derivative smoothing
(with window width 11 pt and 3rd order polynomial smoothing) followed by extended mul-
tiplicative signal correction (EMSC) with 2nd order polynomial correction, with the mean
spectrum as reference. Lastly, the spectra were cut to contain the region between 1800
cm-1 and 700 cm-1 based on prior knowledge about the relevance of different parts of the
spectra.

All samples were measured in replicates, and the average spectrum was calculated over
the replica for each sample, resulting in 332 unique samples. The data set included in-
formation about 28 different subgroups consisting of the six enzymes used for hydrolysis
combined with the 4 different raw materials. To gain an understanding of the data, the
mean of the samples for each animal and mean of the samples for each enzyme was plot-
ted. This was done for both the raw data and for the pre-processed data, and the spectra
are shown in Figure 1. The enzymes used were Alcalase, Papain, Protamex, Flavorzyme,
Corolase 2TS, additionally some of the mackerel samples were self-hydrolysed (labelled
NaN in Figure 1). The response to be predicted was the average molecular weight (Mw)
during the enzymatic hydrolysis of the raw materials. The data was mean centred (mean
of 0) before PLSR and mean centred and standardised (mean of 0, std of 1) before CNN,
RNN and SVM. The data was divided into training and test sets with half of the data set (50
%) in each. This split was chosen to get a good representation for each of the 28 groups in
both the training and test data. Determination of the parameters for the global PLSR model
and all local models was done on the training data.
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Figure 1: FT-IR spectra of the mean of the samples for each animal and mean of the samples for each enzyme.
The mean raw spectra for each animal (A), the mean pre-processed spectra for each animal (B), the mean raw
spectra for each enzyme (C) and the mean pre-processed spectra for each enzyme (D).

2.6 Model parameters
The CNN consisted of one convolutional layer with 5 filters and a kernel size of 11, the
Exponential Linear Unit (Elu) as the activation function, and one max pooling layer. The
RNN consisted of two recurrent layers, the first with return sequences activated on 32
nodes, the second on 16 nodes and activation Elu in the recurrent layers and linear activation
in the last dense layer. For CNN and RNN, the networks were trained on 1000 epochs, and
the number of epochs used were determined by LOOCV on the training set, for both the
global model and the local models. The SVM used a grid search to find the local model
parameters from linear, rbf or sigmoid kernel with the regularisation parameter between
0.0001 and 1000000.
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3 Results
A global PLSR model was built on the training data from the FT-IR data set, and using
LOOCV, the optimal number of components was determined to be 28. The screeplot in
Figure 2 shows the first 50 PCs, and illustrates that after 5 PCs, the increase in total ex-
plained variance is small. Therefore, an additional restraint that each included component
should account for more than 1 % of the explained variance was added. With this con-
straint, the optimal number of components was determined to be 11, explaining 93.34 %
of the variance. A PLSR scoreplot of the first three PC’s is shown in Figure 3 where A
and C are coloured by the enzyme used for hydrolysis while B and D are coloured by the
animal the raw material originates from. The scoreplot shows the distributions of samples
and how the data is clustered based on prior knowledge. The first three components explain
67.36 % of the variance, however there are no easily separable clusters, either for animal
or enzymes.
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Figure 2: PLSR screeplot of the explained variance for the first 50 PCs
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Figure 3: PLSR scoreplot where in the plots to the left (A and C) samples are coloured by hydrolysis enzyme,
while in the plots to the right (B and D) samples are coloured by animal of origin. The top plots (A and B)
show PC1 against PC2 while the lower plots (C and D) show PC1 against PC3.

3.1 Optimal number of clusters
To identify the optimal number of clusters to use, models with 2-10 clusters were cali-
brated using the training set. The training data was divided into a calibration set (50 %)
and a validation set (50 %) where the calibration set was used to calibrate the local models
using LOOCV. The samples in the validation set were then classified and predicted by the
respective local models. This was done to validate the classification done by FCM, LDA,
QDA and NB. The validation was done by test set validation instead of LOOCV, because
of the high computational time and demand of running 166 models 166 times. The results
are shown in Figure 4. The optimal number of clusters for each method was determined
using the maximum of the mean prediction accuracy (R2) over the four classification meth-
ods and confirmed by visual inspection of Figure 4. The optimal number of clusters was
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determined to be 3 for PLSR and 2 for CNN, RNN and SVR as all the four classification
methods achieved high R2 values. For higher numbers of clusters, the classification mod-
els are fluctuating and for HC-PLSR and HC-CNN they even show a decreasing trend in
classification accuracy. Additionally, with the limited amount of samples available, a high
number of clusters will mean few samples in each cluster, something that yields poorer
predictions/generalisability. The risk of overfitting clearly increases with an increasing
number of clusters.

The distributions of samples in cluster 2-10 for all the clustering methods tested are
shown in the supporting information along with the figures determining the optimal number
of clusters for HAC and SPC.
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To evaluate the properties of the clusters, scoreplots from PLSR with results from FCM
using 2 and 3 clusters are shown in Figure 5. For the 2-cluster model, there were 77 samples
in cluster 1 and 89 samples in cluster 2. For the 3-cluster model, there were 65 samples
in cluster 1, 57 in cluster 2, 44 in cluster 3. However, the clusters are not similar to those
given by animal type or enzyme from Figure 3.
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Figure 5: PLSR scoreplot showing the FCM results using the optimal number of clusters; 2 for SVR, CNN
and RNN (A and C) and 3 for PLSR (B and D). The top plots show PC1 against PC2 (A and B) while the
bottom plots show PC1 against PC3 (C and D).

3.2 Prediction
With the optimal number of clusters determined for HC-PLSR, HC-CNN, HC-RNN and
HC-SVR, the local models were trained and applied on the test set. The performance of the
models over the four classification methods is shown in Table 1. The results from the FCM
clustering were compared to those from HAC and SPC to evaluate whether a different
clustering technique could find more informative clusters. The global models were also
applied to the test data to evaluate the effect of the local modelling. FCM was unable to
classify samples when using HAC and SPC, as the FCM did not have the possibility to train
on labels, and was therefore not able to assimilate the clusters from the other two methods.
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Model FCM LDA QDA GNB # clusters Global model Clustering
HC-PLSR 0.696 0.654 0.691 0.804 3 0.797 FCM
HC-CNN 0.748 0.737 0.759 0.732 2 0.795 FCM
HC-RNN 0.810 0.798 0.814 0.818 2 0.836 FCM
HC-SVR 0.850 0.831 0.871 0.812 2 0.871 FCM
HC-PLSR - 0.593 0.641 0.710 2 0.797 HAC
HC-CNN - 0.787 0.795 0.786 2 0.795 HAC
HC-RNN - 0.781 0.779 0.789 2 0.836 HAC
HC-SVR - 0.858 0.879 0.843 2 0.871 HAC
HC-PLSR - 0.824 0.844 0.736 4 0.797 SPC
HC-CNN - 0.752 0.776 0.771 2 0.795 SPC
HC-RNN - 0.799 0.808 0.823 2 0.836 SPC
HC-SVR - 0.860 0.871 0.848 2 0.871 SPC

Table 1: R2-scores for HC-PLSR, HC-CNN, HC-RNN and HC-SVR for their optimal number of clusters
using FCM, HAC and SPC.

3.3 Important features
The important features for each of the local modelling methods were visualised as a heatmap
and the mean pre-processed spectra for the corresponding cluster were overlayed to sim-
plify the interpretation. For HC-PLSR, the important features were visualised using the
loadings for each of the local models, and the results are shown in Figure 6. For each of
the local models in HC-CNN and HC-RNN, VarGrad was applied to identify the important
features. The results for CNN are shown in Figure 7, where the important features are yel-
low and the unimportant are blue. For RNN, the results are shown in Figure 8. Lastly, for
HC-SVR, the important features were obtained using permutation feature importance for
each local model, and the results are shown in Figure 9.

In dry-film FTIR spectra, prominent hydrolysis markers are ∼1400 cm-1 corresponding
to carboxylate (COO-), 1516 cm-1 to ammonia (NH+

3), ∼1550 cm-1 to amide II and ∼1650
cm-1 to amide I [3, 35, 36].

From Figures 7 and 8, it is easy to spot the peak corresponding to the carboxylate-group
at ∼1400 cm-1, and in the HC-CNNs, this peak has a light yellow colour indicating that
it is given weight by the networks in both clusters, but slightly more in cluster 1. For the
HC-SVRs, this peak also has a lighter yellow colour for both clusters, and it is lighter and
therefore of higher importance in cluster 2. For the HC-PLSR models, this peak is lightest
in cluster 3.

The spectra show that the samples with a large effect from the ammonia peak at 1516
cm-1 are placed in cluster 1, and in HC-CNN and HC-RNN, this peak is deemed important.
In HC-SVR, this peak is of higher importance in cluster 2. In HC-PLSR these samples are
placed in cluster 3, which is also where this peak is most important.

The amide II groups at ∼1550 cm-1, show importance in cluster 1 for all methods and
in cluster 2 for HC-SVR and HC-PLSR. Lastly, the samples with a larger peak at ∼1650
cm-1, are placed in cluster 1, and this peak seems to have a higher importance in cluster
1 compared to cluster 2 for HC-CNN, HC-RNN and HC-SVM, while for HC-PLSR this
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peak is important in all three clusters.
The models seem to find a peak of importance at ∼1350 cm-1 and at ∼1100 cm -1, and

cluster 2 in HC-CNN shows a strong importance of a peak at ∼900 -1. ∼1350 cm-1 could
possibly correspond to nitro groups, ∼900 cm-1 could be aromatic rings and ∼1100 cm -1

could be ether absorption [37]. All could be heteroatom subtitutions (for example oxygen,
sulphur or nitrogen groups) as well. These three areas are in the fingerprint region, between
1400-700 cm-1, which usually contains a large number of peaks, which is also noticeable
by how the local models all highlight different parts of this area. Additionally, peaks in the
fingerprint region often correspond to asymmetric stretching vibrations which also could
explain the peaks at ∼1350, ∼1100 and ∼900 -1.

14



8001000120014001600
Wavelengths [cm(-1)]

−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003

−0.002

0.000

0.002

Cluster 1A)

−0.2

−0.1

0.0

0.1

0.2

0.3

8001000120014001600
Wavelengths [cm(-1)]

−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003

−0.002

0.000

0.002

Cluster 2B)

−0.1

0.0

0.1

0.2

8001000120014001600
Wavelengths [cm(-1)]

−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003

−0.002

0.000

0.002

Cluster 3C)

−0.1

0.0

0.1

0.2

L adings PLSR

Figure 6: Visualisation of feature importance for the HC-PLSR with three clusters, with the mean spectra of
the samples in the corresponding cluster overlayed. Important features are coloured yellow and unimportant
are blue.
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Figure 7: Visualisation of feature importance for the HC-CNN with two clusters, cluster 1 in A and cluster
2 in B, with the mean spectra of the samples in the corresponding cluster overlayed. Important features are
coloured yellow and unimportant are blue.
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Figure 9: Visualisation of feature importance for the HC-SVR with two clusters, cluster 1 in A and cluster
2 in B, with the mean spectra of the samples in the corresponding cluster overlayed. Important features are
coloured yellow and unimportant are blue.

4 Discussion
In this study the previously established HC-PLSR model was expanded into deep learning
and SVRs for non-linear predictions of heterogeneous data. The methods were tested on
an FT-IR data set of raw materials from poultry and fish. The results showed that HC-
CNN, HC-RNN and HC-SVR yielded better predictions than HC-PLSR. This indicates
that the linearity in PLSR represents a disadvantage as the data set used here probably is
not locally linear in structure, and hence HC-PLSR is not performing as well as the deep
learning-based hierarchical methods. HC-PLSR also needs a higher number of clusters
than the other methods to handle non-linearities in the data, since this lies intrinsic in the
other methods.

The different classification methods used to assign labels to the test set samples yielded
varying prediction results. Over all the methods, QDA has the most unstable predictions
and particularly when using 6 clusters. The difference between LDA and QDA is that
in LDA, it is assumed that each class share the same covariance matrix, while QDA has
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no such assumption. This makes LDA simpler with fewer parameters to determine, and
therefore when there are few samples in the data set, which is the case here, LDA tends
to perform better than QDA. For all classification methods, HC-RNN achieved a slight
increase in R2 compared to the global models.

The visualisation of the feature importance shows that there are differences when it
comes to which samples that are assigned to the various clusters. Additionally, the local
models evaluate different features as important between the clusters. However, the clusters
determined by the clustering methods used here show no similarities to those based on prior
knowledge.

Local modelling also allows for simpler models, models with a low number of PCs,
few convolutional layers etc. to predict with high accuracy, while simultaneously easing
interpretation. The best prediction results for both the global CNN and RNN models is
achieved with 3 layers, which is higher than what was found optimal for the local models.
However, in order to avoid overfitting, the number of clusters used should be kept relatively
low. Additionaly, as the number of clusters increases, the number of empty clusters also
increases since clusters with less than 10 samples are removed. This can result in more
unstable predictions. The data set used in this study has a limited number of samples and it
is therefore an advantage to keep the number of clusters used low. However, the prediction
methods can handle unlimited numbers of clusters, the limitations only lie in the number of
samples. In HC-PLSR, using a low number of PCs is beneficial for the clustering, creating
simpler clusters and subsequent models. With either method, one should strive to keep the
model complexity as low as possible, but without sacrificing prediction accuracy, both to
limit the risk of overfitting and to ease interpretation.

For the deep learning models, a disadvantage is that the data set has to be large enough
for training and validation. Small data sets can result in unstable networks, especially if the
number of features is substantially larger than the number of samples. As the parameters
for the global model and for the local models are determined using LOOCV, the training
of the models is time consuming. The training data used here contains 166 samples which
therefore also is the number of models needing to be built. However, once the models are
trained, prediction of the response for new samples is fast.

Expansion of the HC workflow to deep learning has the advantage of being able to
handle any kind of data. In data which consists of chemical spectra, different parts of the
spectra are often connected by for instance homologeous series, isotope peaks, adjacent
groups or chemical bonds, which are essential for the identification and analysis of chem-
ical structures. Creating models which can easily detect these patterns even in data sets
with large differences between the samples, is of great value. The comparison of the local
models to the global models can illuminate structures in the data which the global model
is not able to capture. The local models can also be used to identify problem areas in the
data if any of the clusters yield significantly poorer prediction abilities than the remaining
clusters.

The local modelling procedure described in this paper is fully automatic, i.e. no prior
information about groups in the samples is required. This is an advantage when the struc-
tures in the data are unknown. Additionally, our results show that the models achieve a
high prediction accuracy even without using prior knowledge.
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