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Abstract

Transcranial magnetic stimulation (TMS) is a non-invasive method of stim-
ulation that acts on the brain and is used for both medical and scientific
purposes. By accurately simulating what happens inside neurons affected
by TMS the results of patient treatment may improve.

To understand what happens during TMS, it is important to have a look
at the physics involved. The basic principle is that a time-varying current
through a loop of coiled metal wire produces a magnetic field, which in-
duces electric fields. These electric fields then affect neurons. The physics
is described in further detail using what appears to be the established con-
sensus. Although there seems to be an established consensus for the basic
physics involved, all the processes that takes part in TMS are yet to be
fully understood.

Following the path set by others and describing each step in great detail,
a model has been created that calculates the current induced inside the
neuron, where the neuron is represented as a series of compartments. This
induced current is then inserted into compartmental simulation models and
the development of the membrane potential of the neuron is simulated for
a period of time. The peak current through the coil for these simulations
was adjusted to fit the peak magnetic flux density measured for some TMS
coils of about 2 Tesla.

The model is made with isolated neurons in mind, but more complex
situations could be handled by allowing NEURON to simulate with extra-
cellular potentials and calculating those potentials, although this is outside
the scope of this thesis.

The long term goal is to eventually include computational tools for mag-
netic stimulation of neurons in the toolkit of LFPy.
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Sammendrag

Transkraniell magnetisk stimulering (TMS) er en ikke-innvaderende stimu-
leringsmetode som p̊avirker hjernen og blir brukt innen medisin og forskn-
ing. Ved å simulere hva som skjer p̊a innsiden av nevroner ved bruk av TMS
p̊a en nøyaktig m̊ate kan pasientbehandling ved bruk av TMS forbedres.

For å forst̊a hva som skjer ved TMS er det viktig å undersøke den in-
volverte fysikken. Grunnprinsippet er at det sendes en tidsvarierende strøm
gjennom en løkke best̊aende av en spole i metall som produserer et mag-
netfelt. Dette magnetfeltet vil indusere elektriske felter og disse elektriske
feltene vil p̊avirke nevroner. Fysikken vil bli beskrevet i detalj ved hjelp av
det som virker å være den etablerte konsensusen, men til tross for dette er
ikke alle prosessene ved TMS fullt forst̊att.

Ved å følge i andres fotspor og samtidig forklare hvert steg nøye, har det
blitt laget en modell for den induserte strømmen p̊a innsiden av et nevron.
Nevronet i denne modellen er delt opp i flere små kamre. Den induserte
strømmen blir deretter satt inn i en simuleringsmodell basert p̊a en slik
kammermodell og utviklingen av membranpotensialet simuleres over tid.
Strømtoppene gjennom spolen under simulering vil bli brukt til å justere
modellen slik at den passer med en maksimal magnetisk flukstetthet p̊a ca.
2 Tesla, som er blitt målt for noen spoler under TMS.

Modellen er basert p̊a isolerte nevroner, men mer komplekse situasjoner
kan h̊andteres ved å regne ut de ekstracellulære potensialene. Deretter kan
disse simuleres i NEURON, men dette er utenfor denne oppgavens omfang.

Det fremtidige målet er å inkludere beregningsmessige verktøy for mag-
netisk stimulering av nevroner i LFPy.
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Chapter 1

Introduction

The human brain contains about 86 billion neurons and most of these neu-
rons communicate with thousands of other neurons within neural circuits.
These neural circuits are parts of bigger neural networks and together with
nerves, found in all parts of the body, they are what we call the nervous
system. The nervous system handles everything from sensory information
and memory to physical movement including heartbeats [19]. As the control
center of the nervous system, the complexity of the human brain speaks for
itself.

To explore how something as complex as the brain works, information
must be gathered through measurements. There are several technologies
available that measure different aspects of the activity in the brain and
these can be divided into invasive methods (putting foreign objects into
the brain) and non-invasive methods (the tools used are kept outside the
body). For use on living humans the non-invasive methods offered by brain
imaging (i.e. MRI, MEG/EEG, PET, fMRI [5]) is widely used.

In addition to measurements, external sources can be used to stimulate
parts of the brain for both medical and scientific purposes. Like the classi-
fication used for measurements, external stimuli can also be separated into
invasive and non-invasive methods.

Transcranial magnetic stimulation (TMS) is one such non-invasive method
of stimulation. It works by sending a time-varying current through a loop
of coiled metal wire (formed as one or more circular shapes) placed close
to the target area outside the skull. The time-varying current through the
coil will then produce a magnetic field which induces electric fields inside
the brain. These electric fields, in turn, stimulate areas inside the brain
affecting local activity. The most commonly used coil-shapes are either a
circle or a figure eight [17] [16].

Even though repetitive TMS (rTMS) has been used in a range of medical
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1. Introduction

Figure 1.1: Illustration of Transcranial Magnetic Stimulation (TMS).
The figure illustrates how a time-varying current passing through a looped coil on
the outside the skull produces a magnetic field that induces electric fields inside
the brain. Source: Wikimedia Commons, Public Domain [22].

treatments for neurological disorders (like depression, Alzheimer’s disease
and movement disorders), the results of the treatment is highly variable.
To improve upon this, more detailed computational models of the induced
electric fields inside the brain may play an important role [16].

In modern neuroscience the use of computational models have become
an important tool to aid in reasoning and to explore how neural behaviour
can be connected to measurements from experiments [14]. By using already
existing computational tools like LFPy [1] [6] and NEURON [2], alongside
a manually created compartmental model using Python [3] syntax, results
should be reproducible and transparent.

The goal of this thesis is to gain an understanding of the physics involved
in magnetic stimulation of a neuron and create a computational model that
can be used to simulate such a scenario based on existing papers and adjust
to known TMS setups. A longer term goal is the inclusion of such tools in
the LFPy toolkit.
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Chapter 2

Theory

This chapter will explain the basic electric properties of a neuron and how
a slice of the cell membrane can be represented as a resistor-capacitor (RC)
circuit. It will then describe how a series of such circuits can be used in
compartmental modelling. At the end of the chapter a generalized cable
equation for magnetic stimulation will be derived.

2.1 Electric Properties of Neurons

Neurons consist of a cell body called the soma, dendrites that receive signals
from other neurons and axons where signals are sent out to other neurons, as
illustrated in Figure 2.1. Both the sending and receiving of signals happen
through synapses that connect axons to dendrites.

The cell membrane of a neuron is a vital part of its electric proper-
ties with its lipid bilayer and its ion channels controlling the flow of ions
through the membrane. The electric potential of a neuron is defined as
the potential difference across the cell membrane. The resting membrane
potential (or equilibrium potential) is the potential of a neuron when it is
in an inactive state. This potential is around -65 mV and indicates that
the potential is more negative on the inside of the membrane than on the
outside [14]. Neurons can be excitatory, meaning the signals they send will
make the receiving neurons more likely to spike (send a signal of their own)
or inhibitory, meaning the signals they send will make the receiving neurons
less likely to spike [19].

As illustrated in Figure 2.2, the membrane consists of both passive and
active parts. The passive parts, the lipid bilayer and the passive ion chan-
nels, work on the principle of ion diffusion caused by differences in ion
concentrations and electrical drift current caused by potential differences.
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2. Theory

Figure 2.1: Illustration of a neuron. Shows the structure of a neuron,
including its axon, dendrites and cell body, usually referred to as the soma.
The cell nucleus is inside the soma. Synapses are located at the points where
the neuron comes into contact with other cells. Edited, original illustration by
Blausen.com staff (2014) [20].

Figure 2.2: Illustration of a patch of membrane from a neuron. Shows
the lipid bilayer with its hydrophilic ends (orange spheres) and its hydrophobic
ends (purple threads). The additional passageways in purple and green represent
the ion channels in the membrane. The purple being active channels (ion pumps)
and the green being passive channels (ion diffusion), Illustration by Blausen.com
staff (2014) [21].
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2.1. Electric Properties of Neurons

While the active parts are the active ion channels that typically changes
behaviour based on the membrane potential. These active ion channels play
an important role when it comes to the creation of an action potential [14].

The action potential is produced when the membrane potential of a neu-
ron reaches a certain threshold. The neuron then sends this action potential
as a signal to other neurons which causes those neurons receiving the signal
to either increase or decrease their own chance of firing an action potential
depending on whether the neuron sending the signal is an excitatory or
inhibitory neuron [14].

Axial currents in the intracellular medium (cytoplasma) along a neurite
(an axon or a dendrite) will generally obey Ohm’s law:

Ia =
Va

ra
. (2.1)

Here Ia is the axial current [A], Va is the potential difference along the
neurite [V] and ra is the axial resistance [Ω] [14]. The currents through
the cell membrane are not as easily described as the axial currents, because
the different parts of the membrane, like ion channels and the membranes
ability to accumulate charge, affects its electric properties.

When current passes through the cell membrane it can accumulate
charge, acting like a capacitor. The amount of charge is given by:

q = cmVm. (2.2)

Here q is the amount of charge [C], cm is the membrane capacitance [F] and
Vm is the potential difference across the membrane [V] [14]. The current is
the same as the rate of change of charge and is given by the derivative of
equation (2.2) with respect to time:

Ic =
dq

dt
= cm

dVm

dt
. (2.3)

The movement of ions through the cell membrane can be explained
by using the Goldman-Hodgkin-Katz (GHK) equations. The GHK cur-
rent equation can be simplified to a circuit approximation that generally
gives useful approximations (for most ions) at membrane potentials that
cell membranes are typically exposed to (−100 mV to 50 mV):

IX = gX(Vm − EX). (2.4)

IX is the current of ion X passing through the membrane, gX is the ratio
(with units in conductance per unit area) and EX is the equilibrium poten-
tial of ion X. This means that if the membrane potential Vm is equal to the
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2. Theory

equilibrium potential EX , there will be no ion of type X contributing to
further membrane polarization or depolarization. This way of representing
the ion currents is quasi-ohmic, meaning the linear I-V relation does not
pass through the origin. It is useful in its ability to describe the flow of ions,
but does not fit well for all ion types. If high detail in specific ion flow is
considered important, the quasi-ohmic approximation may not be the best
option [14].

2.1.1 RC Circuit

An RC circuit can only be used to describe the passive properties of a neu-
ron, so it is assumed that the membrane acts like a passive core-conductor
cable. A more complex model can be used to describe the active properties
and the firing of action potentials, like the Hodgkin-Huxley (HH) model
[14].

A slice of the membrane can be represented as an electric circuit con-
sisting of a capacitor and several voltage sources in parallel, where each
voltage source is connected to a resistor in series. The combination of these
voltage sources and resistors represent the ion channels in the membrane
and the capacitor represents the membranes ability to accumulate charge
[14].

This circuit can be simplified by using Thévenin’s theorem, combining
several voltage sources and resistances into a single voltage source and a
single series resistor. The result of this is an RC circuit like the one in Figure
2.3. By using Kirchhoff’s current law (in an electrical circuit, the flow of
currents towards and away from a point is equal) together with equations
(2.3) and (2.4), an expression for each current can be found [14]:

Ia+ Ie = Ica+ Iia

I +
Ie
a

= Ic + Ii

Ii =
Vm − Em

Rm

(2.5)

Ic = Cm
dVm

dt
. (2.6)

Here a is the membrane surface area [m2], I is the sum of current through
the membrane [ A

m2 ], Ic is the capacitive current [ A
m2 ], Ii is the ionic current

[ A
m2 ], Ie is the injected current [A], Vm is the membrane potential [V], Em is
the equilibrium potential [V], Rm is the specific membrane resistance [Ωm2]
and Cm is the specific membrane capacitance [ F

m2 ].
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2.2. Compartmental Modelling

Figure 2.3: RC Circuit for a Patch of Membrane. Shows how a patch of
membrane can be represented as an RC circuit and the directions of the currents.
The top leads to the extracellular space (outside the membrane) and the bottom
leads to the intracellular space (inside the membrane). I is the sum of current
through the membrane [ A

m2 ], Ic is the capacitive current [ A
m2 ], Ii is the ionic

current [ A
m2 ], Ie is the injected current [A], a is the membrane surface area [m2],

Em is the equilibrium potential [V], Rm is the specific membrane resistance [Ωm2]
and Cm is the specific membrane capacitance [ F

m2 ].

Assuming the circuit is isolated and combining these two equations gives
an ordinary differential equation (ODE) for the membrane potential Vm [14]:

Cm
dVm

dt
=

Vm − Em

Rm

+
Ie
a
. (2.7)

2.2 Compartmental Modelling

A neuron would have to have the same potential everywhere in the cell
(isopotential) for the RC circuit to be a good model for its behaviour,
but this is generally not the case. A better fit for neuron behaviour is
to split it into many smaller cylindrical compartments and consider each
compartment as isopotential. Thus, the neuron can be represented as a
series of RC circuits (Figure 2.4) for a more detailed model of its behaviour
[14].

The cylindrical compartments have length l [m], diameter d [m] and sur-
face area As = πdl [m2] (ignoring the top and bottom of the cylinder). The
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2. Theory

Figure 2.4: Compartmental Model. Illustrates how several connected RC
circuits can be used to model a cylindrical cable. Each RC circuit represents a
cylinder with diameter d [m], length l [m], surface area A = πdl [m2], specific
membrane capacitance Cm [ F

m2 ], specific membrane resistance Rm [Ωm2], equi-
librium potential EL [V] and Ra is the specific axial resistance [Ωm] between the
compartments/circuits. Figure from Principles of Computational Modelling in
Neuroscience, page 36, by Sterrat et al. (2011) [14].

surface area of the top and bottom are equal and given by Ae =
πd2

4
[m2].

Axial resistance is given by ra = Ral
Ae

= 4Ral
πd2

[Ω], where Ra is the specific
axial resistance (or axial resistivity) [Ωm]. To simplify the representation of
the following equations, it is assumed that all compartments have the same
dimensions. The current flowing into compartment j is given by Kirchhoff’s
current law and Ohm’s law [14]:

IjAs = Ij−1 + Ij+1

=
Vj+1 − Vj

ra
+

Vj−1 − Vj

ra
. (2.8)

From Kirchhoff’s current law and equation (2.8) the following equations can
be used to describe compartment j:

Ic,jAs + Ii,jAs = IjAs + Ie,j

=
Vj+1 − Vj

4Ral
πd2

+
Vj−1 − Vj

4Ral
πd2

+ Ie,j. (2.9)

Combining equations (2.5), (2.6) and (2.9) leads to:

πdlCm
dVj

dt
=

Em − Vj

Rm

πdl

+
Vj+1 − Vj

4Ral
πd2

+
Vj−1 − Vj

4Ral
πd2

+ Ie,j. (2.10)
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2.3. Generalized Cable Equation for Magnetic Stimulation

Dividing equation (2.10) with As = πdl gives:

Cm
dVj

dt
=

Em − Vj

Rm

+
d

4Ra

(
Vj+1 − Vj

l2
+

Vj−1 − Vj

l2

)
+

Ie,j
πdl

. (2.11)

This is the fundamental equation of compartmental modelling and it de-
scribes how a series of RC circuits behave when they represent cylindrical
compartments [14].

The first and last compartment must be handled in a different way
depending on the chosen boundary conditions, where the sealed end con-
dition is a commonly used boundary condition. Under this condition the
assumption is that the currents entering or exiting at the ends are negligible
because the areas involved are very small, leading to very high resistances.
In practise, this is modelled as Vstart−1 = Vstart for the first compartment
and Vend = Vend+1 for the last compartment [14].

2.3 Generalized Cable Equation for

Magnetic Stimulation

The models in this thesis make use of the following theory building up to
the cable equation for magnetic stimulation, not the equation itself. The
final part of the theory has been included for discussional purposes. This
section is based on the work of S. Nagarajan and D. M. Durand (1996) [8].

A time-varying magnetic field will induce electric fields in a volume
conductor (an axon in this case). Assuming quasi-static conditions [10],
[12], [15], these fields can be described using Maxwell’s equations [13]:

∇ · E⃗ = 0 (2.12)

∇× E⃗ = −∂B⃗

∂t
. (2.13)

The induced electric field E⃗ has two components; a primary component
that is represented as a vector potential A⃗ and can be considered a direct
effect of the applied magnetic field, and a secondary component that is
represented as a scalar potential V and can be considered an indirect effect
of the applied field due to charge separation on surfaces [13]:

E⃗ = −∂A⃗

∂t
−∇V. (2.14)

Choosing a gauge (also known as gauge fixing) is a complicated math-
ematical field, but can in a very simplified comparison be thought of as
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2. Theory

choosing reference points. By choosing the Coulomb gauge, the primary
component satisfies both equations below [13]:

∇ · A⃗ = 0 (2.15)

∇× A⃗ = B⃗. (2.16)

Assuming no external current sources in the intracellular or extracellular
regions of the volume conductor. The secondary component then satisfies
Laplace’s equation [13]:

∇2V = 0. (2.17)

Expanding equations (2.15) and (2.17) in cylindrical coordinates [13]
and assuming radial symmetry will result in the following equations being
independent of the angular derivative [8]:

Primary:

∇ · A⃗ =
1

ρ

∂

∂ρ
(ρAρ) +

�
�

��1

ρ

∂Aφ

∂φ
+

∂Az

∂z
∂Az

∂z
= −1

ρ

∂

∂ρ
(ρAρ). (2.18)

Secondary:

∇2V =
1

ρ

∂

∂ρ

(
ρ
∂V

∂ρ

)
+

�
�

�
�1

ρ2
∂2V

∂φ2
+

∂2V

∂z2

∂2V

∂z2
= −1

ρ

∂

∂ρ

(
ρ
∂V

∂ρ

)
. (2.19)

Assume a linear passive core-conductor cable for sub-threshold behaviour
of the intracellular volume [14]. Ohm’s law in the intracellular region of the
volume conductor can then be expressed as:

J⃗i = σiE⃗i. (2.20)

Expanding equation (2.20) in cylindrical coordinates gives:

Ia = 2πσi

∫ br

0

(
−∂Azi

∂t
− ∂Vi

∂z

)
ρ dρ . (2.21)

This is the same as:
razIa = E⃗i. (2.22)
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2.3. Generalized Cable Equation for Magnetic Stimulation

For these equations br is the radius of the cable [m], Ia is the intracellular

axial current [A], raz is the axial resistance per unit length [Ω
m
] and E⃗i is

the induced electric field in the intracellular region [V
m
]. The derivative of

equation (2.21) with respect to z (axial direction):

dIa
dz

= 2πσi

∫ br

0

(
−∂2Azi

∂z∂t
− ∂2Vi

∂z2

)
ρ dρ . (2.23)

Assuming azimuthal symmetry (turning an object around an axis, z in
this case, does not affect the geometry of the object) and by using equations
(2.18) and (2.19), we can rewrite equation (2.23) so that it ends up as an
expression for the transmembrane current per unit length:

dIa
dz

= 2πσi

∫ br

0

(
�
�
�1

ρ

∂2

∂t∂ρ
(ρAρ) +

�
�
�1

ρ

∂

∂ρ

(
ρ
∂Vi

∂ρ

))
�ρ dρ

= 2πσi

[(
br
∂Aρ

∂t
+ br

∂Vi

∂ρ

)
−
(
0
∂Aρ

∂t
+ 0

∂Vi

∂ρ

)]
= 2πσibr

(
∂Aρ

∂t
+

∂Vi

∂ρ

)
= −im. (2.24)

The negative sign comes from the fact that ∇ · A⃗, the divergence of A⃗ at a
point, is the outward flux per unit volume around that point [13].

By linking the membrane current per unit length to a passive membrane,
using a capacitance per unit length Cmz [ F

m
] and a resistance times unit

length Rmz [Ωm], we get:

im = Cmz
∂Vm

∂t
+

Vm

Rmz

. (2.25)

Assuming intracellular potentials vary only along the z axis, equation (2.22)
can be expressed as:

razIa = −∂Azi

∂t
− ∂Vi

∂z
. (2.26)

The transmembrane potential of the secondary component Vm is the
difference between the intracellular and extracellular potentials of the sec-
ondary component, Vi−Ve, caused by charge separation in the volume con-
ductor enveloping the axon. Using this connection (Vi = Vm +Ve) equation
(2.26) can be rewritten as:

razIa = −∂Azi

∂t
− ∂Vm

∂z
− ∂Ve

∂z
. (2.27)
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2. Theory

Combining equations (2.24), (2.25) and (2.27) leads to the generalized cable
equation:

dIi
dz

= −im

∂

∂z

(
1

raz

(
∂Azi

∂t
− ∂Vm

∂z
− ∂Ve

∂z

))
= −Cmz

∂Vm

∂t
− Vm

Rmz

1

raz

∂

∂z

(
∂Azi

∂t
− ∂Ve

∂z

)
=

1

raz

∂2Vm

∂z2
− Cmz

∂Vm

∂t
− Vm

Rmz

λ2 ∂

∂z

(
∂Azi

∂t
− ∂Ve

∂z

)
= λ2∂

2Vm

∂z2
− τ

∂Vm

∂t
− Vm. (2.28)

Here λ2 = Rmz

raz
is the length constant and τ = CmzRmz is the time constant.

The left side of this cable equation consists of the contributors to changes in
transmembrane potential, also known as driving or forcing functions. The
first term, ∂

∂z

∂Aiz

∂t
, is the first spatial derivative of the primary component

of the intracellular field. The second term, ∂
∂z

∂Ve

∂z
, is the first spatial deriva-

tive of the secondary component of the extracellular field. The membrane
thickness is what separates the first term of the the intracellular field and
the first term of the extracellular field from being identical, but since this
distance is in the scale of nanometers, the changes in the field can be con-
sidered insignificant [8]. Because of this, the forcing function can also be
expressed as:

f(z) ∼= λ2 ∂

∂z

(
∂Aze

∂t
− ∂Ve

∂z

)
= λ2∂Eze

∂z
. (2.29)
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Chapter 3

Methods

To simulate how a magnetic field affects a neuron, a model for both the
neuron and the electric fields induced by the magnetic field must be in place.
These models must then be made in an environment that can handle the
simulation. The programming language Python [3] was selected because
of its compatibility with LFPy [1] [6] which simplifies interactions with
NEURON [2] in addition to its open source distribution. The chapter starts
with how the magnetic field is simulated, then looks at how the magnetic
field affects a neuron. It follows with how to find the magnetic flux density
of the simulated magnetic field and how to model the neuron into cylindrical
compartments. At the end of the chapter there will be a table with default
model parameters used for simulations.

3.1 Simulating a Magnetic Field

The magnetic field used in TMS comes from a time-varying current passing
though a coiled loop. This magnetic field will induce electric fields both
inside and outside neurons. The relationship between the magnetic field
and the induced electric fields can be described using Maxwell’s equations
[13]:

∇× E⃗ = −∂B⃗

∂t
. (3.1)

The induced electric field E⃗ in equation (3.1) can, as explained in section
2.3, be expressed as a vector potential and a scalar potential:

E⃗ = −∂A⃗

∂t
−∇V. (3.2)
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3. Methods

Assuming no charge accumulation, the scalar potential V can be consid-
ered insignificant [11], [12], [15]. This leaves the vector potential A⃗, which
is dependant on the number of loops in the coil N , the geometry of the
coil (circle in this case) and the current through the coil I. This can be
expressed as:

A⃗ =
µIN

4π

∫ −→
dI

R
. (3.3)

Here
−→
dI is a current element, µ is the permeability constant and R is the

distance from the current element. The general solution for equation (3.3),
given a circular coil, is [9], [15]:

A⃗ =
µIN

πk

(
rc
ρ

) 1
2
[
K(m)

(
1− 1

2
k2

)
− E(m)

]
θ̂. (3.4)

The functions K(m) and E(m) are elliptic integrals of the first and second
order, while m and k2 are given by the equation:

m = k2 =
4rcρ

(rc + ρ)2 + z2
. (3.5)

Here rc is the radius of the coil, z is the distance from the center of the
coil (0, 0, 0) to the center of the plane parallel to the coil (0, 0, z) and ρ is
the distance from the center of the plane (0, 0, z) to the point (x, y, z). The

direction of A⃗ is given by the unit vector θ̂ which can be found by using the
derivative of ρ with respect to θ:

ρ⃗ =

ρ cos θρ sin θ
z

 ,
∂ρ⃗

∂θ
=

−ρ sin θ
ρ cos θ

0


∣∣∣∣∂ρ⃗∂θ

∣∣∣∣ =√(−ρ sin θ)2 + (ρ cos θ)2 + 02 = ρ
√
1 = ρ

θ̂ =
∂ρ⃗
∂θ∣∣∣∂ρ⃗∂θ ∣∣∣ =

−ρ
ρ
sin θ

ρ
ρ
cos θ

0

 =

− sin θ
cos θ
0

 . (3.6)

The angle θ can be calculated for any point (x, y) in a plane parallel to
the coil by using the function atan2(y, x) included in the math package for
Python and θ̂ is then found by using equation (3.6).

Assuming the coil and the volume exposed to the magnetic field does
not move in relation to each other, the only value that depends on time will
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3.1. Simulating a Magnetic Field

be the current through the coil. From equation (3.2) we can then find an

expression for E⃗:

E⃗ ∼= −∂A⃗

∂t

= −∂I

∂t

µN

πk

(
rc
ρ

) 1
2
[
K(m)

(
1− 1

2
k2

)
− E(m)

]
θ̂. (3.7)

The change in current over time ∂I
∂t

in equation (3.7) causes the magnetic
field from the coil to induce an electric field that is oppositely directed from
the change in current through the coil. This is the reason for the negative
sign in the equation. Splitting the electric field into a spatial function E⃗s

(dependant on spatial variables like position and geometry) and a temporal
funcion Et (dependant on time) results in:

E⃗ = E⃗sEt. (3.8)

The two functions E⃗s and Et are then given by:

E⃗s = −µN

πk

(
rc
ρ

) 1
2
[
K(m)

(
1− 1

2
k2

)
− E(m)

]
θ̂ (3.9)

Et =
∂I

∂t
. (3.10)

The current through the coil can be simulated using an RLC circuit,
which is a circuit consisting of a resistor with resistance R, an inductor
with inductance L, and a capacitor with capacitance C. In this case the
inductor represents the coil. The current in an RLC circuit can either be
overdampened (Figure 3.1a), where the current increases to a maximum
and then reduces to zero, or underdampened (Figure 3.1b), where the cur-
rent also increases to a maximum, but instead of reducing directly to zero,
it oscillates with less amplitude for each maxima and minima. The two
different behaviours can be described with the following equations:

Overdampened:

I(t) = VoCω2e
−ω1t

((
ω1

ω2

)2

− 1

)
sinh(ω2t) (3.11)

ω2 =

√(
Ro

2Lo

)2

− 1

LoC
, ω1 =

Ro

2Lo

. (3.12)
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3. Methods

(a) (b)

Figure 3.1: RLC circuit behaviour. Example of both an overdampened
(a) and an underdampened (b) current in an RLC circuit with V0 = 30 V and
C = 200 · 10−6 F. For the overdampened case Ro = 3 Ω and Lo = 165 · 10−6 H.
For the underdampened case Ru = 0.09 Ω and Lu = 13 · 10−6 H.

Underdampened:

I(t) = VoCω2e
−ω1t

((
ω1

ω2

)2

+ 1

)
sin(ω2t) (3.13)

ω2 =

√
1

LuC
−
(

Ru

2Lu

)2

, ω1 =
Ru

2Lu

. (3.14)

The partial derivative of I(t) with respect to time can then be found for
both cases using the product rule along with other basic rules of derivation:

Overdampened:

∂I(t)

∂t
= VoCω2

((
ω1

ω2

)2

− 1

)
e−ω1t (ω2 cosh(ω2t)− ω1 sinh(ω2t)) . (3.15)

Underdampened:

∂I(t)

∂t
= VoCω2

((
ω1

ω2

)2

+ 1

)
e−ω1t (ω2 cos(ω2t)− ω1 sin(ω2t)) . (3.16)
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3.1. Simulating a Magnetic Field

The constants ω2 and ω1 are still given by equations (3.12) and (3.14) for the
overdampened and underdampened case respectively. The equations (3.15)
and (3.16) can then be used to find ∂I

∂t
for any time t and the induced electric

field can be calculated using equation (3.8). This can then be implemented
in Python syntax to simulate the magnetic field.

The current through the coil is assumed to have an anti-clockwise di-
rection as this corresponds to the positive direction of increasing angles
in the standard cylindrical coordinate system. Should the current instead
be assumed to move through the coil in a clockwise direction, this can be
accounted for by multiplying equations (3.4), (3.7), and (3.9) with (−1).

3.1.1 The Effect of a Magnetic Field on a Neuron

From equation (2.26) in section 2.3 we have an expression that links the
intracellular current with the vector potential of the magnetic field in a
situation where there is assumed to be no accumulation of charge in the ex-
tracellular volume (an assumption used for calculating the induced electric
field in section 3.1). Dividing this by raz [Ω

m
] results in:

Ia = − 1

raz

∂Azi

∂t
. (3.17)

The vector potential of the magnetic field in the axial direction −∂Azi

∂t
can

be expressed as a dot product related to the induced electric field E⃗ [V
m
] by

equation (2.14):

−∂Azi

∂t
= −∂A⃗

∂t
· â = E⃗ · â. (3.18)

The vector â is the unit vector in the axial direction and E⃗ is the induced
electric field. The unit vector â is defined as:

â =
a⃗

|⃗a|
. (3.19)

Combining equations (3.17), (3.18), (3.19) and the fact that |⃗a| is a scalar
value:

Ia =
1

raz

E⃗ · a⃗
|⃗a|

. (3.20)

Since |⃗a| is a distance a [m] in the axial direction that corresponds to the
vector a⃗ [m], then raza is the axial resistance ra [Ω] for this part of the
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neuron. So equation (3.20) can be written as:

Ia =
E⃗ · a⃗
ra

. (3.21)

By using equations (3.8), (3.9) and (3.10) to calculate the induced elec-

tric field E⃗, equation (3.21) is an expression for the induced current inside
the neuron in the axial direction that can be used to simulate the effect of
a magnetic field on a neuron in the situation where there is assumed to be
no charge accumulation in the extracellular volume.

3.1.2 Magnetic Flux Density

A setup for TMS can be made using a magnetic flux density B of up to 2
Tesla on a timescale of less than 1 ms [16] [17]. This value can be found
for a circular coil with radius rc and N number of loops, with a current I
[A] running counter-clockwise through it, by using the following equation,
obtained from using Biot-Savart law on the current through the loop [13]:

B =
µ0NI

2rc
. (3.22)

This magnetic flux density B [T] is found at the center of the coil. Air has a
magnetic permeability µ that is very close to the one for vacuum µ0, so the
difference can be ignored ( µ

µ0
≈ 1). The values for rc and N are coil specific

so the current through the coil I will be the only variable. Equation (3.22)
can then be used to find the magnetic flux density B experimentally by
running the model with different initial potentials V0 across the capacitor
in the RLC circuit and calculating the current I using equations (3.11) and
(3.13).

3.2 Compartmental Model

The basis of a compartmental model is to split something large (a neuron,
or part of a neuron in this case) into many smaller pieces (compartments)
where the inside of each compartment is treated as being isopotential, as
explained in section 2.2. There are several things to consider when creating
a compartmental model, such as the geometry of the object to compart-
mentalize, the placement of the geometry in a coordinate system, changes
in potentials and other details depending on the complexity of the model.
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3.2. Compartmental Model

3.2.1 Passive Compartmental Model

In a passive model like the one of a core conductor cable represented as a
series of RC circuits described in section 2.2, the compartments are usually
represented as cylindrical shapes. This is generally a good representation
of the shape of a neuron and also the basic form used by NEURON. By
making the geometry of the model from input in the form of a .hoc file
containing NEURON syntax for creating compartments, comparisons be-
tween the manually created compartmental model and NEURON will be
simplified. It will also be easier simulate differently shaped structures. An
example of syntax in such a .hoc file could be:

create axon[1]

axon[0] {

nseg = 3

pt3dadd(0, 0, 0, 1)

pt3dadd(120, 0, 0, 1)

}

This would be for an axon with width d = 1 µm and length l = 120 µm.
The center of the first compartment of the axon is placed in the origin and
extends along the x-axis of a Cartesian coordinate system. It consists of one
section (axon[0]) that is divided into three segments (compartments). This
structure is then used in NEURON through LFPy to create the geometry
of the model.

The calculations of the membrane potentials for each compartment
will be handled by the fundamental equation for compartmental modelling
(2.11). The discreet version used to solve it numerically based on the for-
ward Euler method is:

∆Vj =

(
Em − Vj

Rm

+
d

4Ra

(
Vj+1 − Vj

l2
+

Vj−1 − Vj

l2

)
+

Ie,j
πdl

)
∆t

Cm

. (3.23)

Here ∆Vj is the change in potential in compartment j for ∆t = ti+1−ti. The
potential in compartment j for each time step ∆t can then be approximated
by starting at time t = 0 and using:

Vj,t+1 = Vj,t +∆Vj. (3.24)

The induced current in the axial direction of a compartment can be
calculated from equation (3.21) in section 3.1.1. Choosing vector a⃗ to go
from the center of compartment j to the center of the next compartment
j + 1, Ia will then be the induced current [A] and ra will be the axial
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resistance [Ω], both between the endpoints of this vector. Using the induced

electric field E⃗ [V
m
] at the center of the vector a⃗ results in:

Ij,j+1 =
E⃗j,j+1 · a⃗j,j+1

ra
. (3.25)

This equation now calculates the induced current from compartment j to
compartment j + 1. To make use of this in the model, the induced current
must be related to specific compartments. To do this Ij,j+1 is considered
positive in the direction of the vector a⃗j,j+1 (from j to j + 1). A positive
current in this direction points out of compartment j and into compartment
j +1. The current inserted into compartment j is thus considered negative
and equals −Ij,j+1. The current inserted into compartment j from the same
induced current is positive and equals Ij,j+1. The calculation is repeated for
all connections between compartments at all time steps i, resulting in an
array Iinput of the shape (segments, time). This array may then be inserted
into equation (3.23) in place of Ie,j:

∆Vj =

(
Em − Vj

Rm

+
d

4Ra

(
Vj+1 − Vj

l2
+

Vj−1 − Vj

l2

)
+

Iinputj,i
πdl

)
∆t

Cm

.

(3.26)
The output of equation (3.25) when used in the computational model

has been chosen as nA (mV
MΩ

) as this is the unit of current used in NEURON.
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3.3. Table of Default Model Parameters

3.3 Table of Default Model Parameters

For most simulations the parameters in Table 3.1 were used. If different
parameters were used in a simulation, it will be specified in the related
figure. It may also be specified in the related figure if the parameter is of
special interest.

Table 3.1: Default Model Parameters. The table includes the names of the
parameters, the symbols used to represent them in the text, their default values
for the model and what units these values are given in.

Parameter Symbol Value Units

Membrane Resting Potential Em -70 mV

Specific Membrane Capacitance Cm 1 µF
cm2

Specific Membrane Resistance Rm 3 · 104 Ωcm2

Specific Axial Resistance Ra 150 Ωcm
Coil Radius rc 2 cm
Loops in the Coil N 30 -
Capacitance for the RLC Circuit C 200 µF
Resistance for Overdampened RLC Circuit Ro 3 Ω
Inductance for Overdampened RLC Circuit Lo 165 µH
Resistance for Underdampened RLC Circuit Ru 0.09 Ω
Inductance for Underdampened RLC Circuit Lu 13 µH
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Chapter 4

Results

The first part of this chapter will present the simulated induced electric field
and attempt to validate it. Afterwards a manually created compartmen-
tal model will be compared with a passive NEURON model for identical
scenarios. The following part will include simulations with a model for the
input current that supports branching, then there will be a simulation that
support spiking using the Hodgkin-Huxley model in NEURON. The last
simulations will be of a complex neuron structure and at the end of the
chapter a link to the computational code can be found.

4.1 The Induced Electric Field

The induced electric field E⃗ was created from the equations (3.8), (3.9) and

(3.10) in section 3.1. The spatial distribution E⃗s of this field is shown in

Figures 4.1 and 4.2. Darker colors in these figures represents stronger E⃗s at
those points. By looking at the distribution of |E⃗s| in Figure 4.1, it shows

that the value of |E⃗s| is largest in the area close to the coil. In the middle
of the coil the field is zero.

The equation relating the electric field E⃗ to the force F⃗ acting on a
stationary particle q in the electric field is given by:

E⃗ =
F⃗

q
, F⃗ = qE⃗. (4.1)

A positive charge will experience a force in the positive direction of the elec-
tric field [13]. For Figure 4.2 the turquoise color indicates a positive direc-

tional vector of E⃗s along the x-axis (a) and y-axis (b), while the brown color
indicates a negative directional vector along the same axes. This means that
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Figure 4.1: Distribution of the spatial field. The figure shows the absolute
value of the induced spatial field |E⃗s| [ V s

A m ] for the plane z = 1 cm below the
magnetic coil. The coil has radius = 2 cm and N = 30 loops.

a stationary positive charge q placed in the plane z = 1 cm directly under-
neath the top of the coil (corresponding to the coordinates (x, y) = (0, 2)
in Figure 4.1 and 4.2) will experience a force pointing in the positive direc-
tion of the x-axis and the same stationary charge q will experience a force
pointing in the negative y-direction if placed directly underneath the right
side of the coil (corresponding to the coordinates (x, y) = (2, 0) in Figure
4.1 and 4.2).

A circular coil with a time-varying current moving counter-clockwise
through it will produce a magnetic field. In a plane directly beneath the
coil the magnetic field will induce an electric field and the direction of this
induced electric field is expected to point in the opposite direction of the
change in current through the coil. Given a positive change in the current
in the counter-clockwise direction through the coil, the induced electric field
should be directed clockwise at the points directly below the coil. Figure
4.2 indicates that this is true for the simulated induced electric field.

To validate that the manually created compartmental model operates
with the expected vector directions given the spatial distributions in Figure
4.2, an axon with three compartments of the same size (S1, S2, S3) can be
placed with the center of the middle compartment S2 at the four points
Pt = (0, 2,−1) (top), Pr = (2, 0,−1) (right), Pb = (0,−2,−1) (bottom),
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(a)

(b)

Figure 4.2: Distribution of the spatial field in separate directions.
Figure (a) shows the x-direction and figure (b) shows the y-direction of the
induced spatial field E⃗s [ V s

A m ] for the plane z = 1 cm below the magnetic coil.
The coil has radius = 2 cm and N = 30 loops in both cases.
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(a) (b)

Figure 4.3: Illustration of Axon Placement Relative to Coil. All the
axons have width d = 1 µm, the length of each compartment is l = 100 µm, the
coil has radius = 2 cm and the axons are placed in the plane z = 1 cm below
the coil. The axons are placed in such a way that the arrows in (a) points from
compartment S1 to S3 as shown in (b). The axons are also placed so that Pt

(top), Pr (right), Pb (bottom) and Pl (left) corresponds to the center of S2 for
each axon as shown in (a) and (b). The illustrations are not to scale.

Pl = (−2, 0,−1) (left) as illustrated in Figure 4.3. By placing the axons
like this, the expected behaviour for the axons with centers in Pt and Pl is
a change in potential from time t = 0 that is negative in S1 and positive in
S3. For the axons with centers in Pb and Pr the expectation is the opposite,
meaning a change in potential from time t = 0 that is positive in S1 and
negative in S3. The results from simulating the membrane potential of the
four axons with the manually created model are shown in Figure 4.4. These
results confirm that the output of the manually created compartmental
model concur with the expected result.

The induced spatial field E⃗s is only dependant on the structure and
placement of the coil. For a specific coil the amplitude of E⃗ only varies
depending on Et given equation (3.8). Finding an amplitude that is com-
parable to existing data from TMS experiments was done by calculating the
maximum magnetic flux density B of the magnetic field from the coil using
equation (3.22), then fitting a current I through the coil, so that B ≈ 2
Tesla [16] [17]. This was done by keeping the R, L and C components of
the RLC circuit constant and varying the starting potential V0 across the
capacitor C at time t = 0 in equations (3.11), (3.15) for the overdamp-
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(a) (b)

(c) (d)

Figure 4.4: Normalized Membrane Potential for Four Axons. The axons
are placed as described in Figure 4.3. The blue, orange and green curves represent
the first, second and third compartments respectively. All four figures (a-d)
were simulated by the manually created compartmental model with the same
simulation settings and a duration over 3 ms with a time step of 0.01 ms and the
potential was normalized. Resting potential Em = 0 V and an overdampened
current was used. The rest of the simulation properties were as given in Table
3.1.
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ened RLC circuit and equations (3.13), (3.16) for the underdampened RLC
circuit.

The distribution of the maximum absolute value of the induced electric
field created with B ≈ 2 T, for both an overdampened and an underdamp-
ened current through the coil is shown in Figure 4.5. From this figure the
maximum absolute value for the induced electric field |E⃗| is in the range of
200 - 300 V

m
.
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(a)

(b)

Figure 4.5: Distribution of The Maximum Induced Electric Field. The
figure shows the absolute value of the maximum induced electric field |E⃗| [Vm ] for
the plane z = 1 cm below the magnetic coil. The coil has radius = 2 cm and
N = 30 loops. For figure (a) the current through the coil is overdampened and
the potential across the capacitor is V0 = 7500 V at time t = 0 ms. For figure
(b) the current through the coil is underdampened and the potential across the
capacitor is V0 = 700 V at time t = 0 ms. The starting potential difference V0

was found by using a magnetic flux density B ≈ 2 T at the center of the coil.
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4.2 Simulations

In this section several simulations will be completed and their results shown.
The first simulations compare the manually created passive compartmental
model with a passive NEURON model. The next part includes more com-
plex structures that allow branching and a look at how the changes in mem-
brane potential scale with axon diameter. The latter parts of this section
will include a simulation using the Hodgkin-Huxley model with NEURON
to look at spiking behaviour and it will end with simulations of a complex
neuron.

4.2.1 Comparing Simulations

The manually created compartmental model only supports passive simula-
tions (no spiking) and single sections, so NEURON was also set to simulate
passively and an axon without branches was chosen. A manual compart-
mental model is more transparent in its handling of potentials and currents
than using NEURON, but it is also far less flexible and more prone to er-
rors. To compare the output of the manual compartmental model with the
output from NEURON, two axons were placed in different positions rela-
tive to the coil and with varying compartment sizes. The axons were then
simulated with the same parameters in the manual compartmental model
and in NEURON. Input to NEURON through LFPy was done as in the
code below:

cell_parameters = {

’morphology’: ’simple_axon.hoc’,

’v_init’: -70,

’nsegs_method’: None,

"tstart": 0,

"tstop": 3,

"dt": 0.01,

"Ra": 150,

"cm": 1,

"passive": True,

"passive_parameters": {"g_pas": 1. / 30000,

"e_pas": -70},

}

The results can be seen in Figures 4.6 and 4.7. There are barely any
distinguishable differences between the membrane potential from the man-
ual simulation and the membrane potential from the NEURON simulation.
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(a)

(b) (c)

Figure 4.6: Comparing Models by Simulating an Axon (1). The axon
was placed with the center of the first compartment in (x, y) = (2.5, 3) cm from
the center of the coil (0, 0) in the plane 1 cm below the coil. The axon extends
for 500 µm along the x-axis and 200 µm along the y-axis, and it is 1 µm wide.
The axon has been divided into five compartments with the same color codes for
the three figures. Figure (a) shows the placement of the compartments in the
xy-plane. Figure (b) shows the membrane potential for the five compartments
from the simulation using the manual compartmental model. Figure (c) shows
the membrane potential for the five compartments from the passive NEURON
simulation. The simulation was run with an overdampened current through the
coil with V0 = 7500 V across the capacitor at time t = 0 ms and all other model
parameters are presented in Table 3.1.

31



4. Results

(a)

(b) (c)

Figure 4.7: Comparing Models by Simulating an Axon (2). The axon
was placed with the center of the first compartment in (x, y) = (−1,−2) cm
from the center of the coil (0, 0) in the plane 1 cm below the coil. The axon
extends for 1000 µm along the x-axis and 1000 µm in the negative y-direction,
and it is 1 µm wide. The axon has been divided into five compartments with the
same color codes for the three figures. Figure (a) shows the placement of the
compartments in the xy-plane. Figure (b) shows the membrane potential for the
five compartments from the simulation using the manual compartmental model.
Figure (c) shows the membrane potential for the five compartments from the
passive NEURON simulation. The simulation was run with an underdampened
current through the coil with V0 = 700 V across the capacitor at time t = 0 ms
and all other model parameters are presented in Table 3.1.
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The effect on the membrane potential from the induced electric field can be
considered small for both axons (< 1 mV).

4.2.2 Simulations of Branching Axons

NEURON handles neuron structure in the form of sections that extend from
point A to point B, then divides those sections into a number of segments
(compartments). Sections are then added together by connecting the start
of a child section Ac to a point Ppc between Ap and Bp on the parent section.
The simulations shown so far have been using straight axons that consists
of a single section divided into several segments.

To validate that the sectional model for the input current works as
expected, it will be compared to the non-sectional model by using three
versions of the same axon. In version one the axon consists of one section
divided into six segments. In version two the axon consists of two sections,
divided into three segments each. In version three the axon consists of six
sections that correspond to one segment each. The first version of the axon
will be simulated with the non-sectional method, and the other two versions
of the axon will be simulated using the sectional model as shown in Figure
4.8.

The results from the test of the sectional model shows that the three
different simulations gave the same membrane potentials for the three dif-
ferently created axons, indicating that the sectional model functions as
expected for non-branching axons.

To validate that the sectional model for the input current works as
expected when used on a branching axon, a Y-shaped axon is placed with
the center of its first compartment in (x, y) = (0, 2) cm in the plane z
= 1 cm below the coil. The two branching parts will be mirror images of
each other across the middle of the axon and they will be pointing along
the positive y-axis in the plane (up). Following the results from the tests
in section 4.1, the expectation is that the end of the left branch will have
a negatively increasing membrane potential from t = 0 ms and the end of
the right branch will have a positively increasing membrane potential from
t = 0 ms. This is caused by the induced electric field in the x-direction Ex

being positive and much stronger than in the y-direction Ey for this area
as shown in Figure 4.2.

Figure 4.9 shows that the expectations for the values of the membrane
potentials in the ends of the left and right branch holds, and because Ey = 0
at x = 0 there is no current inserted from the sectional model into compart-
ments 1 and 2. There is also close to no current inserted into compartment
3, since the effect of the induced electric field E⃗ between compartment 3
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(a) (b)

(c) (d)

Figure 4.8: Comparing The Sectional Model and The Non-Sectional
Model of The Input Current. The axon was placed with the center of the
first compartment in (x, y) = (0, 2) cm from the center of the coil (0, 0) in the
plane 1 cm below the coil. The axon extends for 600 µm along the x-axis and
is 1 µm wide. The axon has been divided into six compartments in various
combinations of sections and segments. Figure (a) shows the placement of the
six compartments in the xy-plane. Figure (b) shows the membrane potential
for an axon with one section and six segments, simulated with the non-sectional
model. Figure (c) shows the membrane potential for an axon with two sections
that are divided into three segments each, simulated with the sectional model.
Figure (d) shows the membrane potential for an axon with six sections that
consist of one segment each, simulated with the sectional model. The simulation
was run with an overdampened current through the coil with V0 = 7500 V across
the capacitor at time t = 0 ms and all other model parameters are presented in
Table 3.1. The simulation ran for 3 ms with 0.01 ms time steps in NEURON.
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4.2. Simulations

(a) (b)

Figure 4.9: Simulation of a Branching Axon. The axon was placed with
the center of the first compartment in (x, y) = (0, 2) cm from the center of the
coil (0, 0) in the plane 1 cm below the coil. Figure (a) shows the location of
the compartments in the three sections of the branching axon. Figure (b) shows
the membrane potential during the simulation. The current through the coil is
overdampened and the potential across the capacitor is V0 = 7500 V at time t = 0
ms and all other model parameters are presented in Table 3.1. The simulation
ran for 3 ms with 0.01 ms time steps in NEURON.

and 4 is almost identical to, but oppositely directed from the effect of E⃗
between compartment 3 and 7 (Ex >>> Ey).

4.2.3 Axon Diameter and Membrane Potential

The relationship between the axon diameter and the maximum membrane
potential is primarily dictated by the equations (3.25) and (3.26) for the
compartmental model. Using these and the definition of ra =

Ral
Ae

= 4Ral
πd2

[Ω]
from section 2.2, the way the maximum potential scales with the diameter
of the compartments can be estimated:

∆Vmmax(d) ≈
d(E⃗ · a⃗)
4Ral2

− d

4Ra

(
∆Vout

l2

)
≈d(E⃗ · a⃗)− d∆Vout

4Ral2

≈d(Einput)− d∆Vout

Aconstant

. (4.2)

Here d∆Vout is the loss of membrane potential to neighbouring compart-
ments, since the compartment in question will have the highest membrane
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(a) (b)

Figure 4.10: Maximum Membrane Potential as a Function of Axon
Diameter. The axon was placed with its center in (x, y) = (0, 2.1) cm from the
center of the coil (0, 0) in the plane 1 cm below the coil. The axon extends for
1 cm along the x-axis and is divided into 100 compartments, each with length
l = 100 µm. Figure (a) shows the location of the axon (blue) in relation to the
coil (grey). Figure (b) shows the maximum membrane potential as a function of
axon diameter. The current through the coil is overdampened and the potential
across the capacitor is V0 = 7500 V at time t = 0 ms and all other model
parameters are presented in Table 3.1. Each simulation ran for 3 ms with 0.01
ms time steps in NEURON.

potential. Einput will stay constant while varying the diameter of the com-
partments. This means that the diameter will increase the change in mem-
brane potential both into and out of the compartment. The higher the max-
imum potential, the bigger the difference between the compartment with
maximum potential and its neighbours. This means that if the diameter d
is doubled, the input dEinput is doubled and d∆Vout is more than doubled,
but since ∆Vout depends on the maximum potential itself, it will not cause
the maximum potential to lower with increasing diameters. Because of this,
the maximum membrane potential as a function of the diameter of the axon
should be a function that increases, but the increase should be less steep
for higher diameters as more of the input current is transferred to nearby
compartments. The results from the simulations of such a relationship is
shown in Figure 4.10 and the maximum membrane potential increases at a
lower rate as the diameter of the axon increases.

Figure 4.11 illustrates the same as Figure 4.10, but for a long axon where
the accumulation of charge at the ends of the axon is negligible, causing
the maximum membrane potential to appear elsewhere. There are slight
changes between the simulations, but the difference in maximum membrane
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(a) (b)

Figure 4.11: Maximum Membrane Potential as a Function of Axon
Diameter in a Long Axon. The axon was placed with its center in (x, y) =
(0, 2) cm from the center of the coil (0, 0) in the plane 1 cm below the coil. The
axon extends for 16 cm along the x-axis and is divided into 500 compartments,
each with length l = 320 µm. Figure (a) shows the location of the axon (blue) in
relation to the coil (grey). Figure (b) shows the maximum membrane potential
as a function of axon diameter. The current through the coil is overdampened
and the potential across the capacitor is V0 = 7500 V at time t = 0 ms and all
other model parameters are presented in Table 3.1. Each simulation ran for 3 ms
with 0.01 ms time steps in NEURON.

potentials are significant between the two cases.

4.2.4 Simulation of an Action Potential

A passive model can give useful data about membrane potentials, but will
not have the ability to create an action potential (spike). To simulate such
an action potential the Hodgkin-Huxley model (HH-model) can be used. It
is also readily available through NEURON.

The original HH-model is based on a squid giant axon, but it can be
used for other axons by fitting certain parameters to experimental data.
It works by handling the different types of ion channels separately. It has
some new parameters compared to the passive compartmental model used
so far, including the equilibrium potential for each ion type Eion and the
probability of an ion type passing through an ion channel (ion conductance)
ḡion. There is also an additional grouping of currents referred to as the leak
currrent lc [14].

Making the HH-model initiate an action potential requires the mem-
brane potential to pass a certain threshold. The settings used for the cal-
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culation of the induced electric field so far will not cause the membrane
potential to pass this threshold in a very long straight axon. To bypass this
the starting potential V0 across the capacitor in the RLC circuit must be
increased by a large amount in addition to the changes in settings caused
by using the HH-model. By using a very long axon (16 cm) that reaches
far outside the the area where the induced electric field is the strongest, the
action potential will not be generated at one of the ends of the axon.

The simulation using the HH-model is visualized in Figure 4.12. This
shows that the axon placed along the x-axis with its center at (x, y) = (0, 2)
cm from the center of the coil experienced the largest positive membrane
polarization at around x = 1.8 cm, since this is where the action potential
originated. The figure illustrates how this action potential propagates along
the axon to the left and right of its source.
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(a)

(b)

Figure 4.12: Visualization of an Action Potential Using the Hodgkin-
Huxley model. The axon was placed with its center in (x, y) = (0, 2) cm from
the center of the coil (0, 0) in the plane 1 cm below the coil. The axon extends
for 16 cm along the x-axis and is divided into 500 compartments, each with
length l = 320 µm and width d = 100 µm. Figure (a) shows the location of the
axon (blue) in relation to the coil (grey). Figure (b) is the visualization of the
membrane potential of a very long axon, each compartment is placed along the x-
axis and its membrane potential is shown for each time step. The current through
the coil is overdampened and the potential across the capacitor is V0 = 30000
V at time t = 0 ms, which gives a maximum magnetic flux density of about 8
Tesla at the center of the coil. The simulation ran for 5 ms with 0.01 ms time
steps using the HH-model in NEURON. HH-model parameters: Ra = 35.4 Ωcm,
Cm = 1 F

cm2 , ḡna = 0.12 S
cm2 , ḡk = 0.036 S

cm2 , ḡlc = 0.0003 S
cm2 , Ena = 50 V,

Ek = −77 V, Elc = −54.387 V and the initial membrane potential was set to -65
V. 39



4. Results

4.2.5 Simulation of a Complex Neuron

All simulations so far have targeted structures that only extend along the
x- and y-axes in a plane below the coil. To simulate a complex neuron,
the structure has to extend along the z-axis as well. Assuming the z-axis is
perpendicular to the surface of the tissue (brain), the z-component of the
electric field induced by the magnetic field is zero according to Tofts 1990
[15]. This means that the only contribution from the z-axis is its effect on
the induced electric field in equation (3.5), reducing the effect of the field
with increasing distance from the coil.

The complex cell structure (morphology) chosen is the Hay-Cell (”cell
#1”) with parameters from Table 3 in Hay et al. (2011) [7]. This cell
was chosen because code for its implementation with LFPy already exists.
The results of the simulations of the neuron is shown in Figures 4.13 and
4.14. The compartments chosen for illustrating the membrane potential is
the soma and a compartment about 500 µm away from the soma along the
y-axis.

The effect of the magnetic field on the membrane potential of the two
compartments is small, but not insignificant, at approximately 2 mV. The
soma is also depolarized in the first simulation in Figure 4.13 and polarized
in the second simulation in Figure 4.14, indicating that different placements
and orientations of the cell may lead to increased or decreased chances of
firing an action potential.
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Figure 4.13: Simulation of a Complex Neuron Represented by The
Hay-Cell (1). The Hay-Cell has been placed with the center of its soma-
compartment at (x, y) = (−1.7, 1.7) cm from the center of the coil. The left
figure shows the position of the cell and the two colorized compartments repre-
sent the soma (blue) and a compartment (orange) in the axon about 500 µm away
from the soma along the y-axis. The right figure shows the development of the
membrane potential for these two compartments. The current through the coil
is overdampened and the potential across the capacitor is V0 = 7500 V at time
t = 0 ms. Each simulation ran for 5 ms with 2−5 ms time steps in NEURON.
Complex neuron based on ”cell #1” with parameters from Table 3 in Hay et al.
(2011) [7].
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Figure 4.14: Simulation of a Complex Neuron Represented by The
Hay-Cell (2). The Hay-Cell has been placed with the center of its soma-
compartment at (x, y) = (1.7,−1.7) cm from the center of the coil. The left
figure shows the position of the cell and the two colorized compartments repre-
sent the soma (blue) and a compartment (orange) in the axon about 500 µm away
from the soma along the y-axis. The right figure shows the development of the
membrane potential for these two compartments. The current through the coil
is overdampened and the potential across the capacitor is V0 = 7500 V at time
t = 0 ms. Each simulation ran for 5 ms with 2−5 ms time steps in NEURON.
Complex neuron based on ”cell #1” with parameters from Table 3 in Hay et al.
(2011) [7].
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4.3. Computational Code

4.3 Computational Code

The code used for these results requires Python 3, NEURON and LFPy.
It does not support systems running Windows, but this can be solved by
using a virtual environment.

All the code is available through Git-Hub:
’https://github.com/Jonasnil/Masters.git’
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Chapter 5

Discussion

Magnetic Field

The simulations utilized a magnetic field from equation (3.4) used by Pashut
et al. 2011 [9] and the parameters of the RLC circuit in Table 3.1 are the
same as the ones used by Pashut et al. 2011 [9] and almost the same as
the ones used by Roth et al. 1990 [12]. The magnitude of the magnetic
field was decided from a peak magnetic flux density of about 2 Tesla during
TMS [16], [17].

The potential across the capacitor in the RLC circuit at the beginning
of a simulation (V0) that was needed to reach a magnetic flux density of
about 2 Tesla ended up being 7500 V for the overdampened circuit and 700
V for the underdampened circuit. By using this V0 the maximum absolute
value of the induced electric field is in the range of 200 - 300 V

m
for both the

overdampened and the underdampened current through the coil as shown
in Figure 4.5. This is on the same scale as in experimental recordings at
around 100 V

m
maximum induced electric field on the cortical surface [16].

This initial potential V0 = 7500 V was a lot bigger than the ones used
by Roth et al. 1990 [12] and Pashut et al. 2011 [9] (V0 = 30 − 36 V),
but the reason for their choice of V0 was not made transparent. In general,
transparency for calculations and parameter choices seemed low for mag-
netic stimulation of neurons, making direct comparisons difficult in many
cases.

Comparing the magnetic field from Figures 4.1 and 4.2 to the ones from
Pashut et al. 2011 [9], shows that they are on the same scale, but Ex and Ey

is oppositely directed. Since the positive direction of the current through
the coil is not specified in their paper it is difficult to find the reason for the
difference, but the testing done for the magnetic field in Figure 4.4 indicates
that the x- and y-distributions in Figure 4.2 are as expected.
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5. Discussion

An assumption for the calculation of the magnetic field that was used,
is that there is no charge accumulation in the extracellular medium. This is
only valid in the case of an isolated neuron, so the current inserted into the
neuron by using equation (3.21) only accounts for the magnetic field from

the primary component −∂A⃗
∂t
, from equation (2.14), affecting the inside of

the neuron. To make the model account for the secondary component of
the magnetic field −∇V , from equation (2.14), the handling of the external
field would have to be included.

As the generalized cable equation for magnetic stimulation (2.28) shows,
the driving forces behind the changes in membrane potential Vm is the

primary part of the magnetic field in the intracellular region
∂A⃗zi

∂t
and the

secondary part of the magnetic field in the extracellular region ∂Ve

∂z
. By

separating the terms in equation (2.26) the input current that the model

handles in equation (3.21) corresponds to the input from the first term −∂A⃗
∂t
,

and the extra current from the other term ∂Ve

∂z
can be handled separately

through equation (2.27):

E⃗ = E⃗prim + Esec (5.1)

E⃗prim = rizIap = −∂A⃗zi

∂t
(5.2)

Esec = rizIas = −∂Vi

∂z
= −∂Vm

∂z
− ∂Ve

∂z
. (5.3)

From these three equations, the existing model for the intracellular field,
equation 5.2, should be compatible with using the extracellular scalar field
from the secondary component to account for the accumulation of charge in
the extracellular medium using equation (5.3). This is because it should be
possible to calculate the two terms separately. The external field can then
be inserted into NEURON and its calculations for external potentials can
be used. Inserting external potentials in NEURON is a relatively simple
process, so the challenge will be finding the correct extracellular potentials
for all compartments.

Another approach could be to handle all the input to a compartment
from the magnetic field through the extracellular calculations in NEURON,
as done by Wang et al. 2018 [18] and Aberra et al. 2019 [4]. This is possible
by using the connection that leads to equation (2.29), which states that the
distance separating the intracellular and extracellular vector potentials from
the primary component in the axial direction is on the scale of nanometers,
and the change in the vector potential over this distance can be considered
insignificant.
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Simulations

The simulations in the first part of Chapter 4 is focused on justifying certain
aspects of the model, like the directions of the induced electric field and
the membrane potential in axons placed at certain locations (Figure 4.4)
as well as the symmetry of a branching axon (Figure 4.9). These results
indicate that the model works as intended, but are not a guarantee for
correct calculations. All input data and calculated values have been shown,
or an explanation has been attempted, so comparisons can easily be made
and most aspects of the models are transparent.

With the maximum absolute value of the induced electric field (|E⃗max| <
300 V

m
) being on the same scale as observed on the scalp during TMS (≈ 100

V
m
) [16], the data from simulations should, in theory, have useful results for

isolated neurons.

The effect of the induced electric field on the axons in Figures 4.10 and
4.11 indicates that areas inside neurons where the movement of currents are
limited or obstructed (resulting in dipoles) will experience a larger change
in membrane potentials than areas where currents can move more freely.
Even in the ends of axons, the changes in membrane potential can still be
considered small (< 3 mV) for axons with diameters of 1 µm that extends
for less than 1000 µm as seen in Figures 4.6, 4.7, 4.8 and 4.9. The changes
in membrane potential for a complex neuron is on the same scale as shown
in Figures 4.13 and 4.14, but small changes in membrane potentials can still
cause action potentials that would not have been initiated otherwise [14].

It is worth noting that the simulations are for only one pulse of TMS
and does not represent the complete treatment used on patients [16].

Challenges

During the comparisons between papers and the creation of both the manual
compartmental model and the model for the input current from the induced
electric field, it was difficult finding all the correct units used for the different
variables. As an example, in this thesis resistance is used in four different
forms, including the specific resistances, and all of them are related to units
of length or area in separate ways. This is also the reason why units are
shown alongside most variables in this thesis.

As already discussed, the lack of transparency for calculations and pa-
rameters seemed low in general and this made it difficult to do direct com-
parisons with papers using the same methods.

The author’s knowledge of communicating with NEURON directly was
not extensive before this thesis. This resulted in some of the solutions used

47



5. Discussion

and steps taken in the code being redundant or having simpler alternatives.
This has not affected the functionality of the models, but the code could
have been made less cluttered. There was also the usual issues involved
in creating computational code, but the bugs were all hopefully found and
fixed.

Magnetic Stimulation and LFPy

The long term goal is to eventually include computational tools for magnetic
stimulation of neurons in the toolkit of LFPy, but in addition to working
correctly, the implementation itself should make sense and be adaptable.

The current code made for this thesis is not the best solution as it
is too hardcoded with one specific coil setup in mind. A better way of
implementing it into LFPy would be to separate the calculations of the
induced electric field from the calculation of the input current. This way it
will be easier to do simulations for different coil shapes and also leaves the
option of supplying the field directly from experimental data recordings.

The next part would then be to calculate the input current. This could
be handled in different ways as described in the discussion about the mag-
netic field, but implementing several solutions should not be an issue.

A simplified example of using such an implementation could then look
like:

# Creating the neuron shape using already existing syntax:

cell = LFPy.Cell(**cell_parameters)

# Calculating the required field for a specific coil:

cell.coil_circle(**coil_parameters)

# Or by supplying the field as data:

cell.supplied_field_data(data_file)

# Then using the previous field to get input currents and

# insert into NEURON as done in this thesis:

cell.calc_input_currents()

# Or using the field to calculate external potentials:

cell.calc_ext_field()

# Then simulate using NEURON as you would normally do:

cell.simulate()
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This example code is primarily for illustrating the steps as an actual imple-
mentation would most likely require less user interaction and be handled
through one function call between the creation of the cell and the simulation
of it.
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