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Summary 
The gut microbiome is a source of great genetic diversity in humans and is prevalent in topics 

concerning human health and diseases. Today, most compositions of human gut microbiomes are 

estimated on 16S amplicon sequencing and shotgun sequencing data. Although 16S amplicon 

sequencing is cheap and fast, it does not gain a taxonomic resolution down to species level like the 

more costly and computationally expensive shotgun sequencing. Reduced Metagenomic 

Sequencing (RMS) has been suggested as an alternative method, as it has been shown to gain a 

taxonomic resolution down to species level and is more cost-effective per sample than shotgun 

sequencing. However, it requires a good reference database. The HumGut genome collection was 

used as a reference database in this thesis, and it contains >30 000 genomes prevalent in a healthy 

human gut. This thesis investigated the taxonomic resolution RMS can achieve using HumGut as 

a reference database. Further, a dataset from the PreventADALL-study was provided, containing 

human gut samples from mother-child pairs. The data was used to investigate whether a vertical 

transmission of Bifidobacterium could be detected in the samples.  

 

The HumGut dataset was divided into subgroups based on the genomes’ genus, as genome 

clustering of all genomes prove to be too computationally demanding. The genomes within most 

genera were able to cluster to a condition value below 10, meaning the lowest possible taxonomic 

resolution was obtained but with the advantage of more stable abundancy estimates which is 

important when investigating vertical transmission. Results indicated that the genera containing 

more RMS fragments per genome returned a higher taxonomic resolution, some even down to 

strain level, while genera with fewer RMS fragments per genome returned a lower resolution, some 

displaying a resolution not much lower than genus level. Bifidobacterium were of the genera that 

obtained a lower taxonomic resolution, resulting in a >98% reduction of genomes after genome 

clustering. As a result, no correlation of Bifidobacterium distribution was found between mother 

and child.  
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Sammendrag 
Tarmflora er en kilde til stort genetisk mangfold i mennesket, og er et svært omtalt emne som 

angår både menneskehelse og sykdommer. Sammensetningen av mikroorganismer i menneskets 

tarm er hovedsakelig basert på 16S amplikonsekvensering og shotgun sekvensering. Selv om 16S 

amplikonsekvensering er billigere og raskere, så får den ikke en taksonomisk oppløsning ned til 

artsnivå som den mer ressurskrevende og tregere shotgun sekvenseringen. Redusert metagenomisk 

sekvensering (RMS) har blitt foreslått som en alternativ metode, da den har vist å kunne få en 

taksonomisk oppløsning ned til artsnivå og er billigere enn shotgunsekvensering. Metoden krever 

en god referansedatabase. I denne oppgaven ble referansedatabasen HumGut brukt. HumGut 

består av genomer som eksisterer i en sunn menneskelig tarm, og har over 30 600 oppføringer. 

Denne oppgaven undersøkte den taksonomiske oppløsningen RMS kan oppnå ved å bruke 

HumGut som referansedatabase. Videre ble prøver fra tarmen til mor-barn par I et datasett fra 

PreventADALL-studien undersøkt. Det ble undersøkt om tegn til vertikal overføing av 

Bifidobacterium kunne påvises i prøvene.  

 

HumGut ble delt inn i grupper basert på genomenes slekt, da klynging av genomer viste seg å være 

for krevende å beregne. Genomene innen de fleste slekter kunne gruppere seg til en tilstandsverdi 

under 10, som betyr at lavest mulig taksonomisk oppløsning ble oppnådd, men med fordelen av 

mer stabile estimater av mengder mikroorganismer i prøvene. Dette er viktig når vertikal 

overføring skal undersøkes. Resultatene indikerte at slektene med flere RMS-fragmenter per 

genom ga en høyere taksonomisk oppløsning, der noen fikk en oppløsning ned på stammenivå. 

Slektene med færre RMS-fragmenter per genom ga en lavere taksonomisk oppløsning, der enkelte 

slekter ikke fikk en oppløsning lavere enn på slektsnivå. Bifidobacterium var en av slektene som 

oppnådde en lavere taksonomisk oppløsning, noe som resulterte i >98% reduksjon av genomer 

etter klyngning. Resultatene indikerte ikke noen direkte sammenheng mellom Bifidobacterium-

sammensetningen mellom mor og barn prøvene.  
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1. Introduction 
 

Microbial communities are found everywhere, from the human gut (Hiseni et al., 2021) and soil 

environments (Handelsman et al., 1998), to extreme environments found in hot springs (Massello 

et al., 2020) and saline lakes (Naghoni et al., 2017). Despite microbe’s small size, they impact life 

on every scale, from small human infections to being a crucial part in cycling elements that are 

critical for sustaining life on earth (American Society for Microbiology, 2003). The study of 

microbial community compositions, and shifts within them, is therefore important to understand 

their role both in humans and our environment. In the past decade, studies of the composition of 

these communities have increased rapidly along with methods to investigate them (Bretweiser et 

al., 2019). There are two well established approaches today: amplicon sequencing and shotgun 

sequencing (Snipen et al., 2021). Studies using methods like these to sequence DNA from a 

community of microorganisms, fall under the field of metagenomics. 

  

1.1 Metagenomics 

An organism’s complete set of DNA is called a genome, and the collection of genomes found in 

an environmental sample is labelled the metagenome of that sample community. The term 

“metagenome” was first coined by Handelsman et al. (1998), when describing the cloning of the 

collective genome of soil microflora. Metagenomics refers to the study of the structure and 

function of a metagenome, and often from a specific community of microorganisms from an 

environment like soil or the human gut. The metagenomes are usually big and intricate, and 

analyzing them can result in large, complex datasets (Breitiwieser et al., 2019). To be able to 

analyze metagenomes one needs, amongst other things, a sequencing technique advanced enough 

to handle such intricate compositions of genetic material. 

  

The introduction of Next-Generation Sequencing (NGS) in the 2000s (Reinartz et al., 2002), 

facilitated the growth and development of the field of metagenomics. NGS was preceded by Sanger 

sequencing, which had been the leading sequencing technique since it was introduced in the late 
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1970s (Sanger, 1977). In Sanger sequencing, isolated DNA strains are sequenced by a terminal 

chain reaction. The technique sequences one DNA fragment at a time, making sequencing of entire 

genomes, let alone metagenomes, an expensive and time-consuming task. Furthermore, the method 

has been dependent on cultivating a pure single-strain bacteria culture to isolate their DNA before 

sequencing (Cermak et al., 2020). A major issue is that only a small minority of microorganisms 

can be cultured in the laboratory (Stewart, 2012), thus, making it hard to discover the likely 

composition of a metagenome using Sanger.  

 

With the development of NGS, came sequencing techniques that did not demand the need of 

culturing microorganisms prior to sequencing them. Wooley & Ye, 2009, even defined 

metagenomics as the study of microbial communities sampled directly from their natural 

environment without prior culturing. Furthermore, NGS technology made it possible to sequence 

many reactions in parallel on a microscopic scale, leading to sequencing becoming faster, more 

cost effective, and less labor intensive than Sanger (Goodwin et al., 2016). In example, the 

sequencing of a human genome was estimated to cost 100 million USD in 2001. Further 

development of NGS technology has reduced this cost to under 1000 USD in 2021 (National 

Human Research Institute, 2021). The faster and cheaper NGS techniques, with its massive parallel 

sequencing, also made it easier to sequence genomes with a much larger read-depth. This is a 

major advantage when analyzing complex compositions like metagenomes, where a higher 

sequencing depth allows for rarer and less abundant genomes to be detected. Today, both amplicon 

and shotgun sequencing are popular techniques to combine with different NGS, like Illumina, to 

sequence metagenomes.  

  

Amplicon sequencing, also known as metabarcoding when applied to metagenomic studies, can 

be applied to reveal the taxonomic composition in environmental samples. The technique targets 

one or multiple marker genes via specific primers and amplifies the genomic area through 

polymerase chain reactions (PCR). The amplified marker genes, dubbed amplicons, are then 

sequenced using a NGS technique, like the Illumina sequencing platform. Typically, the 16S rRNA 

gene is used as a phylogenetic marker gene in amplicon sequencing of microorganisms. This is 

due to the gene being present and highly conserved in almost all prokaryotes, however, it also 
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contains hypervariable regions that demonstrate sequence diversity among different bacteria 

(Schmalenberger et al., 2001). The hypervariable regions are flanked by regions that are highly 

conserved across prokaryotes, allowing the use of universal primers to amplify 16S rRNA across 

a large fraction of prokaryotes (Baker et al., 2003). By sequencing these variable elements in 

microorganisms from an environmental sample, taxonomic composition and estimated relative 

abundances of the sample can be found. On the other hand, using a highly conserved gene like the 

16S rRNA reduces the methods taxonomic resolution (Snipen et al., 2021). This leads to the 

method having difficulties in separating genomes in environmental samples down to species and 

strain resolution.  

 

An alternative method with higher resolution is shotgun sequencing, also known as whole genome 

shotgun (WGS) sequencing. Shotgun sequencing, in broad strokes, involves fragmenting the DNA 

into many small pieces at random, sequencing them, then stitching it back together using 

bioinformatic pipelines. This means unlike amplicon sequencing; shotgun sequencing sequences 

all genomic material in a sample directly with an NGS technique. However, analyzing and 

stitching back together fragments from an entire metagenome leads to a computationally heavier 

and more costly sequencing compared to 16S amplicon sequencing (Sims et al., 2014; Snipen et 

al., 2021). In return, the taxonomic resolution is higher than with 16S sequencing. Using shotgun 

sequencing, taxonomic resolution down to species and even strain level can be found if the species 

and strains are different enough, and if the samples are sequenced deep enough (Durazzi et al., 

2021; Snipen et al., 2021).  

 

Regarding the taxonomic resolution, it should be mentioned that the microbial world is more 

diverse and complex than predicted by scientists who made the taxonomic system centuries ago 

(Bretweiser et al., 2017). This leads to possible ambiguities and struggles when classifying some 

microorganisms after the taxonomic ranking system. The ambiguities, combined with the continual 

development of modern technologies promoting new discoveries, can lead to rapid changes in 

taxonomy for certain microorganisms.  

 



   
 

4 
 

When sequencing metagenomes and deciding on a sequencing method, this trade-off of the 

cheaper 16S amplicon sequencing and the more expensive but higher taxonomic resolution 

shotgun sequencing must be considered. The problem is that in larger studies where a high 

taxonomic resolution is important, shotgun sequencing can be considered too expensive and time 

consuming (Ravi et al., 2018). However, the 16S amplicon sequencing might not be a suitable 

option either due to the lower taxonomic resolution. Therefore, there is motivation to find a method 

that is cheap and relatively fast, like amplicon sequencing, but with a higher taxonomic resolution 

on par with shotgun sequencing. A method named Reduced Metagenomic Sequencing (RMS) has 

been suggested to fill such a position (Liu et al., 2017; Ravi et al., 2018; Snipen et al., 2021).  

 

1.1.2 Reduced Metagenomic Sequencing 

Reduced Metagenomic Sequencing (RMS) is based on double-digested Restriction Site Associated 

DNA sequencing, abbreviated dd-RADseq, combined with Illumina sequencing (Liu et al., 2017; 

Snipen et al., 2021). The method uses sequence specific endonucleases to fragment genomic DNA 

by restriction digestion, thereby reducing the genome sequence space and genome complexity 

(Hess et al., 2020; Snipen et al., 2021). It uses two different restriction endonucleases 

simultaneously, which is referred to as double restriction digestion. The constructed fragments are 

flanked by each targeted restriction site. Following the fragmentation, the fragments are amplified 

by PCR before they are sequenced. It should be noted that the variable lengths and compositions 

of the fragments can lead to variable PCR-amplicon efficiency and biases (Snipen et al., 2021). 

 

RMS has similarities with both shotgun and amplicon sequencing. It creates many different 

fragments with variable number and size between genomes, like shotgun sequencing. However, a 

genome will also produce the exact same fragments and reads each time it is copied, as seen in 

amplicon sequencing. Snipen et al. 2021 showed that RMS can be used to profile microbial 

communities down to species level and even strains in some cases. Strains deemed identical after 

16S sequencing, were clearly discriminated by RMS since the genomes would differ in number of 

RMS fragments by quite a bit. Furthermore, RMS reduces the sequencing efforts compared to 

shotgun sequencing, which also reduces the cost-per-sample (Snipen et al., 2021). Thus, RMS is 



   
 

5 
 

faster and cheaper than shotgun sequencing, but may return a higher taxonomic resolution 

compared to 16S amplicon sequencing.  

 

There can arise difficulties when using the RMS approach to infer taxonomic compositions of 

reads. Just as the amplicons in amplicon sequencing can be clustered to represent some taxon, the 

fragments in RMS may also be clustered. However, each taxa produces variable numbers of 

distinct fragments, making it difficult to infer a taxonomic composition from the clusters alone 

(Snipen et al., 2021). The RMS approach, like the shotgun sequencing approach, requires a 

reference database to map the cluster sequences to create taxonomic profiles.  

 

1.2 HumGut 

The gut microbiome is a source of great genetic diversity in humans, and it is estimated that the 

metagenome of the human gut contains at least 100 times more genes than the human genome 

(Gill et al., 2006). Metagenomic analysis of the gut microbiome can lead to more comprehensive 

examinations into how the gut microbiome is colonized, and how it evolved and contributes to 

both health and disease in humans in response to the environment over time. A major issue in 

studies of the gut microbiome has been the lack of a comprehensive genome collection to be used 

as a reference database when sequencing samples from human gut (Hiseni et al., 2021), and the 

HumGut project sought to rectify this.  

 

The HumGut project aimed to collect the most prevalent prokaryotic genomes found in a healthy 

human gut, in order to function as a reference database (Hiseni et al., 2021).  It includes mostly 

Metagenomic-assembled genomes (MAGs) from human gut, and some RefSeq genomes (O’Leary 

et al., 2016). MAGs are microbial genomes that are reconstructed, de novo, from metagenomic 

data. There are risks when reconstructing a genome this way, as contigs contributing to a MAG 

could derive from a different genome. This could lead to erroneous areas in MAGs, which again 

could lead to variable qualities in genomes constructed this way. 
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Over 5 700 healthy human gut metagenomes were screened to see if they contained any of the > 

490 000 publicly available prokaryotic genomes sourced from RefSeq and the UHGG collection 

(Hiseni et al., 2021). The resulting genomes were scored and ranked by prevalence in the healthy 

human metagenomes. Genomes were clustered to a 97.5% sequence identity resolution, and the 

HumGut collection is comprised of these clustered genomes. Lastly, the HumGut collection was 

found to outperform both standard Kraken2 database and the UHGG collection making it a 

contender as a reference database for human gut samples.  

 

Recent investigations have indicated that a difference in strain level in human gut may be crucial 

for phenotypic differences (Snipen et al., 2021). If a study wants to capture phenotypic differences, 

many samples are often required to capture the biological variation. In order to capture the 

resolution down to strain level, full shotgun sequencing is necessary as the 16S amplicon 

sequencing lacks the higher taxonomic resolution. The cost of using full shotgun sequencing may 

limit the studies requiring many samples, so there is an interest to see if it is possible to use RMS 

to gain the higher taxonomic resolution in a cheaper and faster way. 

 

1.2.1 The Bifidobacterium Genus 

Bacteria from the Bifidobacterium genus were first discovered in the early 1900s by the French 

pediatrician Henry Tissier while working on stools from breast-fed infants (Tissier, 1900; 

Killingstad, 2021).  The bacteria are recognized as GC-rich, gram-positive, anaerobic, non-motile, 

non-spore-forming, polymorphic rods (Wong et al., 2020). This genus is known to have a presence 

in the human gut microbiome in both adults and children. Therefore, it is not surprising that the 

HumGut genome collection contains Bifidobacterium-genomes. There are 328 Bifidobacterium 

genomes present in HumGut, meaning about 1% of the collection comprises of Bifidobacterium 

genomes. 

 

Bifidobacterium is considered important in human gut health due to their role in gut development 

and defense system (Makino et al., 2013), therefore the genus has been the topic of several studies. 

The bacterial genus has been shown to be one of the most abundant in healthy infant guts (Odamaki 
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et al., 2016), and how the bacteria colonize the gut is still a discussed topic. Furthermore, strains 

of Bifidobacterium have been found in breastmilk in mammals, suggesting it is a possible 

transmission route from mother to child (Laursen et al., 2021). The abundance of Bifidobacterium 

in infant gut is shown to decrease after weaning and continues to decrease with age (Odamaki et 

al., 2016).   

 

1.3 Aim of Study 

Today, most compositions of microbial communities are estimated based on 16S amplicon 

sequencing data or shotgun sequencing metagenomic data. There is a trade-off between the two 

methods as amplicon sequencing is cheaper and faster but gains a lower taxonomic resolution than 

the more costly and computationally expensive shotgun sequencing. Reduced Metagenomic 

Sequencing (RMS) has been suggested, as a sort of compromise between the two other methods. 

RMS is more cost-effective than shotgun sequencing and has shown a higher taxonomic resolution 

than 16S amplicon sequencing down to species level, however it requires a good reference 

database (Snipen et al., 2021).  

 

Research on the composition of the human gut usually calls for a higher taxonomic resolution than 

what is gained with 16S amplicon sequencing. However, the more costly shotgun sequencing could 

be quite limiting in large scale studies. There is an interest to see if RMS could be used for these 

research purposes. This thesis aims to answer, 

• To what taxonomic resolution can RMS gain on samples from the human gut using 

HumGut as a reference database? 

 

In addition to the taxonomic resolution, there was also an interest in mapping reads and estimating 

abundances for a genus’ genome-clusters in human gut samples using this approach. To investigate 

this, a dataset containing 16 mother-child samples from the PreventADALL-study was provided 

to this thesis (Carlsen et al., 2018; Nilsen 2022). Bifidobacterium was chosen as a genus, as we 
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know it appears in both mother and child gut microbiomes. The aim with the provided dataset was 

to see, 

• Is there a correlation between the distribution of Bifidobacterium between mother and 

child?  

To detect this, a sufficient taxonomic resolution and good estimates of abundances are most likely 

required.  
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2. Methods 

The data analysis and wrangling were carried out using RStudio 4.0.4 (R Core Team, 2021) on 

NMBU’s high performance computer (HPC) called Orion. The steps using the microRMS R 

package followed “Tutorial 1 – the microbial community composition” found in the package’s 

Readme.md file (Snipen, 2021). All visualizations were made using the ggplot2 package in R 

(Wickham, 2016). The VSEARCH tool was used for clustering genomes and RMS fragments, and 

for mapping reads (Rognes et al., 2016). The most essential R and shell scripts can be found in the 

Appendix. 

 

2.1 The HumGut Data 

HumGut was chosen as a reference database in this thesis to investigate the resolution the RMS 

method has on samples from the human gut (Hiseni et al., 2021). The HumGut collection was 

loaded into R as a data frame with one row per genome and 24 different genome-features as 

columns. As of 03.10.2022, there are 30 614 rows in the data frame, and thus 30 614 genomes in 

HumGut. Not all 24 genome features were needed, so the data frame was filtered to include the 9 

features shown in table 1.  

Table 1: An overview of the selected genome features in the HumGut data frame, and the genome information they 

contain. 

Column name Column information 

genome_id The genome’s unique HumGut ID 

genome_size The genome size in basepairs (L) 

GC The genome’s GC content 

genome_type Assembly type of the genome (MAG, Complete Genome, Contig etc.) 

Source Whether the genome is from UHGG or RefSeq 

ncbi_organism_name The organisms name according to the NCBI database * 

ncbi_tax_id The organisms unique NCBI tax ID 

ncbi_rank The lowest level of taxonomic hierarchy of the genome** 
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path Path to the genome's fasta file directory 

genome_file The genome’s filename. The file is a fna file which is gz compressed. The 

filename is named after the genome’s HumGut ID (genome_id.fna.gz) 

* (Schoch et al., 2020; Sayer et al., 2019) 

** Strain, serotype, subspecies and “no rank” are included as ranks here, although they are not official taxonomic ranks.  

 

2.2 VSEARCH 

VSEARCH is a 64-bit tool that is used for clustering and processing metagenomic data in this 

thesis. According to the article by Rognes et al. 2016, the tool was designed as an alternative to 

the widely used USEARCH tool (Edgar, 2010). Both tools contain most of the same functions, 

however, VSEARCH is open-sourced and has made their 64-bit version free of charge. 

Furthermore, VSEARCH has shown results both better than and on par with results from 

USEARCH (Rognes et al., 2016). Consequently, VSEARCH has been utilized in several of the 

microrms-package functions (Snipen, 2021).  

 

2.2.1 Clustering 

VSEARCH performs de novo clustering of sequences using a greedy and heuristic centroid-based 

algorithm with an adjustable sequence similarity threshold (Rognes et al., 2016). In short, a greedy 

and heuristic algorithm focuses on local optimal solutions, rather than a general optimal global 

solution, gaining the advantage of faster computational time. De novo clustering refers to 

clustering the sequences based on the similarity to the other input sequences, and not to a reference 

database. Consequently, the computational cost of a de novo clustering scales quadratically with 

the number of unique sequences. Further, the input sequences can be processed in different ways 

before clustering, and in this thesis all clustering was done with the cluster_fast option that pre-

sorts the sequences based on sequence length.  

 

In clustering, the input sequence is used as a query in a search against a database of centroid 

sequences (Rognes et al., 2016). As this is de novo clustering, the database is initially empty of 

centroid sequences – so the first sequence is set as the centroid in a cluster and added to the 
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database. Further query sequences are then clustered with the first centroid that shows a similarity 

equal to or above the id threshold, hence the algorithm is heuristic. If the query sequence does not 

match to any centroids, it becomes the centroid of a new cluster which is then added to the 

database. In VSEARCH there is an option to use multi-threaded clustering, meaning several query 

sequences are searched against the database in parallel. If there are two or more query sequences 

that do not find a match in the database, they are compared to each other before giving rise to new 

centroids. Multi-threading is used in this thesis to speed up the clustering process.  

 

2.2.2 Global Pairwise Alignment 

VSEARCH can do a global pairwise sequence comparison which can be used to map reads to a 

database of sequences. The function is called usearch_global, and it performs an initial heuristic 

filtering using shared k-mers, and then makes an optimal alignment of the query and the most 

promising candidate from the database – much like the clustering function (Rognes et al., 2016). 

Comparing k-mers is a faster method to assess the similarity between two sequences, rather than 

the more time-consuming job of aligning them. The k-mers consist of k consecutive nucleotides of 

a sequence, which is set as 8 by default in VSEARCH. That means a sequence of length n contains 

n – k + 1 unique k-mers at most, including overlapping k-mers. VSEARCH counts the k-mers that 

match between the query sequence and the database sequences, counting each k-mer that matches 

only once. The database sequence with the largest number of matching k-mers to the query 

sequence is considered first, and if the alignment indicates a similarity equal to or greater than the 

id-threshold, the query is mapped to the database sequence. Should several database sequences 

have the same amount of matching k-mers, the shortest sequence is considered first.  If the query 

sequence does not match or align to a database sequence over the id-threshold, the query sequence 

is rejected.  

 

2.3 Making the RMS-fragments in silico 

In this section, the RMS-fragments for each HumGut genome were made in silico before they were 

clustered using VSEARCH and a 99% similarity threshold. This resulted in an RMS object for the 

HumGut genomes.  



   
 

12 
 

 

The job of making RMS-fragments for all genomes was divided into several SLURM array-jobs 

on Orion to save computational resources, especially time. A shell script was made to run 307 

array jobs, each calling on the same RScript to mill through and make RMS fragments for a specific 

set of genomes. All jobs, except the last one, iterated through a set of 100 genomes each. The last 

array job iterated through the last 14 genomes in HumGut. Each array job used its SLURM array 

task ID as input to the RScript, instructing which row in HumGut to be the first in its iteration set. 

The output of each RScript was a set of new fasta files, one per genome, containing the genomes’ 

RMS fragments.  

 

Every iteration handled one genome at a time in the RScript’s designated set of genomes. Each 

iteration started with reading the genome’s fasta file into R by using the readFasta()-function from 

the package microseq (Liland et al., 2021). Then, the function GetRMSfragments() from the 

microrms-package was used to make the genomes RMS fragments (Snipen, 2021). The function 

had the genome’s fasta file and unique HumGut ID as input. Further, the default settings for the 

parameters left, right, max and min were used. This meant that the RMS fragments were 

determined by the default restriction enzymes EcoRI (left) and MseI (right), with the cutting motifs 

GATTC and TTAA, respectively. The fragments were also determined to be between 30 (min) 

and 500 base pairs (max), as fragment sizes smaller than 30 or larger than 500 tend to introduce 

length biases in the data (Snipen et al., 2021). The function returns a table where each row is an 

RMS fragment along with two columns; one containing its header, with fragment information like 

the fragment’s unique fragment ID, and the other containing the sequence, which is the actual 

RMS fragment. Lastly, the returned table was written into fasta format by using the writeFasta() 

function from microseq. The function saved the information as a gz compressed .fna file in a 

specified directory, maintaining the genome’s unique HumGut ID as its filename.  

  

Each genome’s expected number of RMS fragments and total number of fragments were added as 

two columns in the HumGut data frame. The expected number of fragments, had this been random 

DNA, was calculated using the genome’s length and GC-content. The GC-content has to be 
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included since the restriction enzymes used in this thesis have GC-poor motifs, meaning the 

genome’s GC-content will influence its number of RMS fragments. The longest of the motifs for 

the two restriction enzymes will be the least likely to occur in the genome sequence, and therefore 

the limiting factor in determining RMS-fragments. In this thesis the longest motif is EcoRI’s 

GATTC, which is used in formula 1 to determine the expected number of RMS-fragments for a 

genome.  

 

(1) 𝐸(𝑛)  =   (
𝑛𝐺𝐶

2
)
2
  ×   (

(1− 𝑛𝐺𝐶)

2
)
4
× 𝑛𝐿 

Where,  

𝐸(𝑛) = the expected number of RMS-fragments in a genome, 

nGC = the GC-content in genome n, 

nL = length of genome n in bp. 

 

The expected number of RMS-fragments was calculated for each genome and added as a column 

to the HumGut data frame. Further, as each RMS fragment is one row in the genome’s RMS 

fragment fasta file, the number of rows in the fasta file was set as the total number of RMS 

fragments for each genome. 

 

Now each genome has a file with its RMS-fragments, however, fragments that are terribly similar 

will be hard to differentiate between when sequencing using RMS. So, if a genome contains several 

similar fragments, or a fragment is similar between several genomes, it will be hard to identify 

where the fragment originated from when sequencing. Clustering these fragments based on 

similarity will give an insight into how many fragments are quite similar and which genomes they 

stem from.  

 

2.3.1 Making RMS Objects from Each Genome’s RMS Fragments 

Several RMS objects were made in this thesis by using the RMSobject() function from the 

microrms package (Snipen, 2021), which in turn uses VSEARCH to cluster fragments by 

similarity. The function takes in RMS fragment fasta files of a selected set of genomes, along with 
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necessary genome information, and clusters its fragments. This results in an R object which is a 

list containing a sparse copy number (cpn) matrix and two tables with cluster (cluster.tbl) and 

genome (genome.tbl) information.  

 

The RMSobject() function has 9 input arguments. Two of the arguments are genome.tbl, a table 

with metadata of the selected set of genomes, and frg.dir, the path to the directory with the RMS 

fragment fasta files. Another input argument is a string containing the VSEARCH executable 

command and, in this case, it was run as a singularity container on Orion. Additionally, the thread 

argument was set to 10 as VSEARCH allows multi-threading. The default settings were used for 

the input arguments, identity, min.length, max.length, verbose and tmp.dir. This means the 

sequence identity for clustering fragments was set to 0.99 (99%), and only fragments of lengths 

between 30 (min) to 500 (max) base pairs were considered. The function also required a temporary 

directory, denoted tmp.dir, to store temporary output which is deleted towards the end.  

 

The function returns an object containing the tibbles Cluster.tbl and Genome.tbl, and the sparse 

matrix Cpn.mat. The Cluster.tbl contains data about all fragment clusters, where each row 

represents a cluster. Information like the unique cluster name (Cluster), and how many 

(N.genomes) and which (Members) genomes contain each fragment are included in the table. 

Genome.tbl is a copy of the input genome.tbl, but also includes the column N_clusters, the number 

of fragment clusters in each genome, and N_unique, how many of the clusters are unique to each 

genome. Lastly, the Cpn.mat is the copy number matrix containing one row for each fragment 

cluster and one column for each genome. The numbers in the matrix represent how many copies 

of a fragment cluster can be found in a specific genome. This number is often 0, and therefore the 

matrix is stored as a sparse matrix. 

 

Making an RMS object for the millions of RMS fragments in HumGut would take a lot of computer 

resources in memory space and time. For every unique RMS fragment added, their distance to 

other fragments is calculated, leading to an exponential time algorithm, O(n) = n2. Therefore, the 
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running time of RMSobject()-function on all HumGut genomes and their RMS fragments was 

estimated using polynomial regression, shown in formula 2, on previously found run times. 

(2) 𝑓(𝑥)  =  𝑐0  +  𝑐1𝑥  +  𝑐2𝑥
2 

Where,  

f(x) = Expected running time of RMSobject(),  

c = a set of coefficients, 

x = number of RMS fragments 

 

The resulting regression equation is fitted to the run times of RMSobject() on 10, 50, 100, 500, 

1000, 5000 random genomes in HumGut. This equation is then used to extrapolate the running 

time of making an object for the over 30 600 genomes in HumGut, however, it should be noted 

that this is just a prediction and there are risks by using extrapolation in regression. Consequently, 

alternative approaches in making an RMS object of a data set as big as HumGut had to be 

investigated, in case the prediction was far off.  

 

2.4 Assigning NCBI Species and Genus to the Genomes 

In further analysis, there was interest in looking into if dividing HumGut into subgroups based on 

taxonomic rank could be an adequate approach to save computational resources. Therefore, the 

genomes’ taxonomic ranks species and genus were assigned. Genus was assigned instead of 

family, as it led to fewer and larger subgroups making further analyzations computationally easier. 

They were assigned by using the genome’s NCBI tax ID and the two dmp-files names and nodes 

from the NCBI taxonomy database (Sayers et al., 2019; Schoch et al., 2020). The two dmp-files 

describe a taxonomic tree, and they are regularly updated as taxonomic names and classifications 

are added, removed, or changed in the database. The names dmp-file contains the names of each 

NCBI tax ID. The nodes file has several columns of information, where each row represents a 

node in NCBI’s taxonomic database. One of the columns contains the parent node of the node in 

question in each row, and by using this information taxonomic branches can be found – from leaf 

to root. Four new columns were added to the HumGut data frame: the genome’s species, the 

species’ NCBI tax ID, the genome’s genus, and the genus’ NCBI tax ID. These columns were then 
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filled by using the names and nodes files and the functions branch_retrieve() and 

branch_taxid2name() from the microclass package (Snipen, 2020).  

 

The taxdump.tar.gz archive file, which is publicly available on NCBI, was downloaded (Schoch, 

2020; Sayers, 2019). It contains several taxonomy files, but only the names and nodes dmp-files 

were used in this thesis. The two selected files were read into R as tibbles using read_names_dmp() 

and read_nodes_dmp() from the microclass package (Snipen, 2020). The genomes in HumGut 

were then iterated through, one row at a time, to fill the four new columns. Each iteration started 

by finding the genome’s taxonomic branch using the branch_retrieve() function from the 

microclass package. The function takes a genome’s NCBI tax ID and the nodes tibble as input and 

returns a list containing the genome’s branch from leaf, input tax ID, to root. The elements under 

the species and genus rank in the list were selected, and their tax IDs were added to their respective 

columns. Furthermore, the names of each genome’s species and genus rank were collected using 

the branch_taxid2names() function and added to the respective name columns. The function takes 

the names dmp and a vector of tax IDs as input and returns a vector containing the tax ID names.  

 

Several tax IDs in HumGut were outdated and were replaced with updated IDs using NCBI’s 

taxonomy database (Schoch, 2020; Sayers, 2019). Furthermore, several genomes had either no 

species or no genus rank. These genomes were excluded since further analysis involved dividing 

HumGut into smaller subsets based on genus. In total, 7410 genomes were excluded. At this point 

HumGut has 23204 genomes and 16 genome features in further analysis. 

 

2.4.1 Making RMS Objects Based on NCBI Assigned Genera 

Due to potential bottlenecks in computer resources when making an RMS object of all RMS 

fragments in HumGut, an alternative approach of clustering the fragments in subgroups was 

investigated. HumGut was divided into groups based on genome's genus. Smaller genera were 

filtered out to avoid groups that were too small for genome clustering. Directories for each of the 

remaining genera were made, and their genomes’ RMS fragment fasta files were copied into them. 
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The RMS objects were made by iterating through a list of the genera and making an object per 

genus the same way and using the same values as in section 2.2.1. This resulted in an RMS object 

which was saved as a single R object (.rds) at the end of each iteration, one per genus.  

 

2.4.2 Performing Genome Clustering on Genera 

In RMS, along with all other sequencing methods, it is difficult to separate between genomes that 

are too similar. Similarity between genomes, in RMS, is the similarity between the columns in the 

cpn matrix in their RMS object. If the columns are similar, the genomes contain similar RMS 

fragments. When sequencing, it can be hard to distinguish to which of the genomes the RMS 

fragments belong. The genome collection is therefore reduced by clustering together genomes that 

are too similar based on their RMS fragment content. This was performed on the RMS object for 

all fragments in HumGut, as well as for the RMS object for each genus. 

 

genomeClustering() from the microrms package, (Snipen, 2021), computes the correlation 

distance between genomes’ copy number matrix and clusters together the genomes that are deemed 

too similar. The function has the RMS object and a max condition value as input. First, the distance 

between all genomes in the RMS object is calculated by subtracting the correlation between each 

genome in the copy number matrix from 1. If genome A has an identical column to genome B in 

the matrix, their correlation is 1 and the distance is 0. On the other hand, if none of genome A’s 

fragments are found in genome B, the correlation is -1 and the distance is 2. After the distances 

are calculated, a hierarchical clustering with complete linkage is performed. The resulting 

dendrogram tree can be cut using a height threshold, producing a unique clustering of the genomes. 

The largest dendrogram height that results in a copy number matrix with a condition value below 

the user-specified tolerance is chosen. Note that the condition value is calculated first after the 

hierarchical clustering is performed. The closer the genomes in the copy number matrix are, the 

higher the condition value is. The unique clustering of genomes is returned as an updated copy 

number matrix in the RMS object.  
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The genomeClustering() function returns the RMS object with the updated copy number matrix, 

with a column per cluster, along with an updated cluster and genome table. The genome table now 

also contains the column “members_genome_id”. The column indicates which of the original 

genomes have been grouped into each cluster, with one of the original genomes representing the 

cluster as the cluster centroid. How many genomes are clustered together depends on the maximum 

tolerated condition value.  

 

Although the genomes are clustered together based on their correlation distance, the final 

clustering must have a condition value under the user-specified threshold. The lowest theoretically 

possible condition value is 1, but this is not achievable in practice. The lower the condition value, 

the harder the clustering is which results in fewer genome clusters, and vice versa with higher 

condition values. The value is important when using the rmscols() from the microrms package to 

estimate the abundance of each cluster in samples (Snipen, 2021). The lower the condition value, 

the more differentiable the genome-clusters are which results in more stable estimates when 

estimating the abundance of each cluster. On a more technical level, the rmscols() inverts the 

covariance matrix of the input RMS object’s copy number matrix in order to estimate the 

abundances. If two genomes are too similar, their copy number matrix columns are also very 

similar. This can lead to the covariance matrix not being able to be inverted, or if it can be inverted 

the similar columns can lead to very unstable results leading to poor estimates. The effect of this 

is measured by the condition value (Snipen, 2021). The reason the condition value is not directly 

used to cluster the genomes is it would mean computing the condition values of all linear 

combinations of clusters. This is quite computationally heavy and would drain a lot of resources, 

time being one of them. However, it should be noted that using correlation distance does not 

necessarily guarantee the problem of too similar genomes is resolved. Two uncorrelated genomes 

might combine into something very correlated to a third genome in the rmscols() function, 

however, in reality this rarely happens (Snipen, 2021). 
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2.5 Analyzing an External Data Set for Bifidobacterium Genomes 

In further investigations, there was an interest to see how RMS with HumGut performed on real-

world samples from the human gut. The samples were processed and mapped to the genome-

clustered RMS object for Bifidobacterium, and the abundances were estimated. These estimated 

abundances were then used to see whether a correlation of the genus content within mother-child 

pairs could be found. 

 

A data set from PreventADALL of human gut samples from 16 mother-child pairs, where all 

children were born vaginally, was provided by Nielsen (2022) (Carlsen et al., 2018). Four samples 

were taken from each mother-child pair, resulting in a total of 64 samples in this data set. The 

samples consisted of a stool sample from the mother, a swab of the child’s skin straight after birth, 

a sample from the child’s meconium (the child’s first stool sample), and a stool sample from the 

child at 3 months. These samples were sequenced, with a high sequencing depth, into fastq-files 

by using RMS combined with Illumina paired-end sequencing. The resulting de-multiplexed fastq-

files were provided along with a metadata table containing the sample information. Important 

sample information included a unique sample ID (sample_id), a unique mother-child ID (nnid), 

and the sample “Age” - meaning what substance the sample contains. 

 

2.5.1 Pre-processing Reads from the External Data Set 

The data consisted of paired-end Illumina reads in fastq file format that needed to be down-

sampled and pre-processed to form a sequence in a fasta file format. VSEARCH was utilized to 

pre-process the reads in each sample’s fastq files, R1 and R2, by quality filtering, merging, 

trimming primers, and finally adding the processed reads to one fasta file per sample. This would 

take a lot of time to do for each sample with their high sequencing depth, so the samples were first 

down-sampled to 1 000 000 reads per sample. Due to the Illumina R1 and R2 fastq file format, 

meaning the reads are in no particular order and each read takes up 4 lines in the file, the first 4 

000 000 lines in the sample fastq file were selected as down-sampled data.  
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After the down-sampling, a pre-processing shellscript was run using 64 array-jobs, meaning the 

script was run 64 times – once for each sample. The pre-processing shell script followed the 

example script found in the tutorial, under “Processing reads”, in the microrms-package 

Readme.md (Snipen, 2021). First, reads that were under 30 bp and exceeded the 0.02 error rate 

were filtered away. The reads were then merged, however, both merged and unmerged reads were 

kept. Lastly, primers were trimmed from the ends of the reads, before the reads were all added to 

a fasta-file named after the sample ID. The script resulted in one gz-compressed fasta file per 

sample.  

 

2.5.2 Mapping Reads to Bifidobacterium 

The readMapper()-function from the microrms package, (Snipen, 2021), was used to map each 

sample’s pre-processed reads to the Bifidobacterium genome-clustered RMS object. The input 

arguments of the function are the RMS object you want to map the reads to, the sample’s fasta file, 

the VSEARCH executing command, and the identity threshold for mapping the reads. The function 

returns the RMS object with an added readcount matrix, and the total number of reads (read_total) 

and number of reads mapped to the object (read_mapped) added as columns in the sample table 

(sample.tbl).  

 

All sample fasta files were mapped to the Bifidobacterium genome RMS object with an identity 

threshold of 0.99. VSEARCH was run as a singularity container through Orion, using the u_global 

function to map the sample’s reads to the fragment cluster centroids in the Cluster.tbl of the 

genome RMS object. The returned readcount matrix had one column for each sample and one row 

for each fragment cluster. Further, the readcounts were not normalized for length biases that might 

have arisen from the RMS amplicons, as there were no prominent biases. The returned RMS object, 

with the added readcount matrix, was used to estimate Bifidobacterium abundances in the samples.  
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2.5.3 Estimating Bifidobacterium Abundances 

The Bifidobacterium abundances were estimated by using the rmscols()-function from the 

microrms package (Snipen, 2021). The function estimates the fraction of each genome in a sample, 

given the read counts and copy number for each amplicon cluster. This is done by using a 

Constrained Ordinary Least Square estimation (Snipen et al., 2021). In short, the function looks 

for linear combinations of genome abundances that best explain the observed readcounts in a 

sample given the cpn matrix. 

 

The Bifidobacterium genomes clustered RMS object, with its cluster copy number matrix (cpn) 

and readcounts matrix (readcount.mat), was used as input. Default settings were used for the 

features trim, fraction of extreme readcounts to be discarded when fitting a linear model, and reltol, 

the relative tolerance for the iterative constrained least square search. The default setting for trim 

is 0, and 10-6 for reltol. The function returns an abundance matrix, abd.mat, with one row per 

genome found in the cpn.mat and one column per sample found in the readcount.mat. In other 

words, the matrix shows the estimated relative abundance of all genomes in the corresponding 

sample.  

 

Lastly, there was an interest to see if the samples from a mother correlated to the samples of the 

corresponding child. This is of interest to see if the RMS method manages to detect vertical 

transmission of Bifidobacterium in the external dataset. The correlation between each child’s 3-

month sample and all the mother samples, a total of 16x16 correlations, was calculated in order to 

see if the child’s sample shows a stronger correlation to its true mother compared to the other 

mothers in the data set. A matrix was made with a child’s 3-month sample correlation per row, and 

the mother per column. The correlation was calculated using the cor()-function in R and its default 

method of Pearson correlation (R Core Team, 2021). The Pearson correlation coefficient can be 

between 1 and –1, where 1 means the samples are positively correlated and –1 means the samples 

are negatively correlated. A correlation of 0 means there is no correlation between the samples. 
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3. Results 
 

3.1 The HumGut Data 

The HumGut dataset contains 30 614 genomes and 1588 species as of October 2022. After making 

the RMS fragments for each genome, genome information across HumGut was studied to gain 

insight into their properties. Some of this information is gathered and displayed in table 2.  

Table 2: Genome Information Across HumGut. It includes the average number of RMS-fragments, expected number of 

RMS-fragments, GC-content, and genome size per genome. The expected number of RMS-fragments is calculated by 

using formula 1 in section 2.3, and it depends on the genome’s individual GC-content and genome size. The table also 

includes the sum of all RMS-fragments, expected sum of RMS-fragments, and the total number of species for all 30 

614 HumGut genomes. Lastly, it contains the sum of all RMS clusters after fragment clustering of all RMS-fragments 

in HumGut. 

Genome Information   

 

 

RMS-fragments 

 

Averages Across HumGut 

466 

 

Standard Deviations 

415 

Expected RMS-fragments 469 255 

GC-content 0.497 0.09 

Genome size (bp) 1 988 419 784 494 

  

Sum Across HumGut 

RMS-fragments 14 279 334 

14 386 198 

 

Sum in RMS object 

Expected RMS-fragments 

 

RMS clusters 5 581 004 

 

Although the average amount of RMS-fragments per genome looks as expected in table 2, with 

there being 466 fragments per genome when it was expected to be 469, the standard deviation of 

415 shows the number of fragments varies a lot between genomes. It varies more than the 

calculated expected number of fragments had it been random DNA, which displays a standard 

deviation of 255. Further, the GC-content seems to be about 50% in genomes as the standard 

deviation is low at 0.09. The genome size varies as well, with the average size being 1 988 400 bp, 

with a standard deviation of 784 500 bp. Lastly, the table shows there are over 14,28 million RMS 

fragments in the entire HumGut database which is just about 100 000 less than expected. After 

clustering the fragments based on 99% similarity, there were 5,58 million RMS fragments - 

reducing the number of fragments by ~2.5-fold.  
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The next step of clustering the HumGut genomes, that were too similar based on their RMS 

fragment content, proved difficult. Clustering involved computing the correlation distance 

between all genomes’ RMS fragment content. Although the fragment-clustering led to a reduction 

in number of fragments by ~2.5 fold, the clustering was still deemed too computationally heavy. 

Even with 1,5 terabytes memory reserved on Orion, genomeClustering() was not able to cluster all 

the genomes in the fragment-clustered RMS object in HumGut. 

 

Since the genome-clustering proved to be too computationally demanding, the genomes were 

ordered into subgroups based on their genus. Only genomes with an assigned genus were kept, 

resulting in 23 204 genomes in a total of 324 different genera. All the subgroups contained a varied 

number of genomes, and 84 of them contained only one genome. Since further analysis involved 

clustering the genomes within each genus, there must be several genomes in the genus in order to 

have genomes to cluster. Therefore, genera containing 10 or less genomes were filtered out, 

resulting in a total of 22 595 genomes in HumGut. These genomes were distributed amongst 127 

genera used in further analysis.  

 

The fragment distribution within different genera was visualized, where smaller (Weisella, 

Eggerthella) and larger (Streptococcus, Clostridium, Faecalibacterium) genome abundant genera 

were chosen along with genera often associated with being present in the human gut microbiome 

(Bacteroides, Bifidobacterium) (figure 1). 
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Figure 1:  RMS-fragments per Mega-bases in Selected Genera. The plot shows RMS-fragments per mega bases (Mb) 

along the y-axis, and the genome GC-content along the x-axis. Each dot represents a genome, and its colour which 

genus it is from. The black line represents the expected number of fragments per Mb depending on the GC-content 

 

The number of fragments in each genome can vary a lot between genera, and in a few genera, they 

also vary within the genus (figure 1). Most genera, like Faecalibacterium and Bifidobacterium 

with high GC-content and relatively few RMS fragments, seem to show consistency in both 

number of fragments and GC-content in their HumGut genomes. By contrast, Clostridium stands 

out the most with a wide range of GC-content in its genomes, and very varied amounts of RMS 

fragments. The genus also shows it has the most genomes in the plot, showing that the genus has 

quite a large presence in HumGut compared to the other genera. Further, none of the genera seem 

to follow the trend of the expected number of fragments. Faecalibacterium and Bifidobacterium 

show, mostly, fewer fragments than expected, while the other genera show, mainly, more.  
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3.2 RMS Objects for HumGut Genomes 
 

3.2.1 All Genomes 

Due to there being over 14 million RMS fragments in HumGut, it was expected that measuring 

the similarity between fragments would take a lot of computer resources like time. Therefore, the 

run time of RMSobject() on all fragments was estimated beforehand. The running time was 

measured on randomized subgroups of genomes in HumGut, and a 2nd degree polynomial 

regression was fitted to the data (formula 2). The regression line was then used to extrapolate the 

runtime of all RMS fragments in HumGut, shown in figure 2. 

 

 

Figure 2: Extrapolated running time of RMSobject(). The actual running time on subgroups of 10, 50, 100, 500, 

1000 and 5000 randomized genomes are shown as dots in the plot. A regression line, shown in red, is fitted to them. 

The regression line from 5000 genomes to 30 600, in blue, shows the extrapolated running times – with the running 

time of 30 600 genomes marked with a blue diamond point. Note both the x and y axis are log10-transformed. 

 

Figure 2 shows a regression line that fits well to the running times of the HumGut subgroups. The 

extrapolated runtime of RMSobject() on all RMS-fragments in HumGut is estimated to take around 

105.23 seconds, which is the equivalent of 2 days. A 95% confidence interval of the predicted 

running time resulted in the interval: [157500, 18600] in seconds, which equivalates to [1.82, 2.15] 
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days. Subsequently, the RMSobject() was run on all RMS-fragments in HumGut, and the running 

time and memory used for the job was noted.  

• Predicted running time of RMSobject() on all RMS-fragments in HumGut: 2 days 

• Actual running time: 11,5 days 

• Maximum amount of memory used at any time during the job: 29.5 Gb 

Since the running time deviated by more than 9 days than predicted, alternative methods to run 

RMSobject on the HumGut genomes was investigated – resulting in making several RMS objects, 

one per genus, instead of making one big object for all HumGut fragments.  

 

3.2.2 RMS Object per Genus 

The RMS fragments for all genomes within a genus were clustered together the same way as for 

all the fragments in HumGut. This resulted in 127 fragment-clustered RMS objects, one per genus. 

This was expected to take a lot less time and be less computationally heavy compared to the 

clustering of all fragments in one go, as the number of RMS fragments is considerably smaller in 

the subgroups. Clustering of all genus RMS objects, separately, took a total of 4.07 hours and 2.7 

Gb of memory. There was an interest to see if the reduction of RMS fragments after clustering in 

the genus subgroups resulted in fewer fragments than if HumGut was divided into subgroups at 

random. 

Table 3: Reduction Factors of RMS Fragments after Clustering in Both Randomized Genomes and Genomes within a Genus. 
The table includes the reduction factor for subgroups of HumGut with 10, 50, 100 and 500 genomes, while the 

reduction factor for all fragments across HumGut is noted at the end. The reduction factor was calculated by 1 - 

(number of RMS fragments after clustering / number of fragments before clustering), so a higher reduction factor 

corresponds to a stronger reduction in number of RMS fragments. The genomes within a genus were random genomes 

from the genus Streptococcus, except the 10 and 100 genome group that were from within a species. 

Number of Genomes Reduction Factor for 

Randomized Genomes 

Reduction Factor for 

Genomes within a Genus 

10 0.01 0.40* 

50 0.05 0.20 

100 0.05 0.79** 

500 0.12 0.52 

1000 0.18 0.63 

All genomes in HumGut          0.61 
 

* The 10 genomes were from Streptococcus vestibularis 

** The 100 genomes were from Sutterella wadsworthensis  
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There seems to be a stronger reduction in RMS fragments when clustering within a genus than if 

the clustering were to happen at random according to table 3. The highest reduction factor for the 

randomized genomes is 0.18 for a group of 1000 genomes. This is lower than the lowest 

reduction factor for the genomes within a genus which is 0.20 for 50 genomes. The highest 

reduction factor is shown for the 100 genomes from the Sutterella wadsworthensis species, 

indicating that the RMS fragment clustering could be higher within species than genera. Lastly, 

the reduction factor for all RMS fragments in HumGut was 0.61 which is on par with the 

reduction factors within a genus. 

 

Further, the clustering of similar genomes in each genus was done directly in an R script and 

took just over an hour. Almost all genera were able to cluster to a condition value of 10, except 

the genera Clostridium and Eggerthella which were only able to cluster with a condition value of 

100. There is an interest to see whether the genomes clustered together were mainly of the same 

species, or if the genomes were clustered together across species within the genus.  

 

 

Figure 3: Number of Species within the Different Clusters in Streptococcus. Each plot displays the number of 

species within a cluster, along the x-axis, and the number of clusters containing the different amounts of species along 

the y-axis. The plots show, respectively, Clostridium, Eubacterium and Streptococcus. Note that the different genera 

have different amounts of genomes and therefore different amounts of clusters displayed in the plot. 
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Mainly 1 or 2 species seem to be represented in most of the genera’s genome clusters (figure 3). 

A cluster contains at most 4 species in Clostridium, 3 in Eubacterium and 6 in Streptococcus. 

These clusters only make up a small fraction of the total genome clusters. It is not possible to say, 

based on figure 3, if the composition of species within the genera is what leads to most genome-

clusters containing one or two species. If one species makes up the majority of a genus in HumGut, 

it is expected that there is a bias towards genome-clusters containing only one species.  

 

 

Figure 4: Number of Clusters Containing One Species in Genome Clusters vs. Random Sampling. Different 

selected genera are along the x-axis, and the number of genome groupings that contain genomes of only one species 

are shown along the y-axis. The red bars show the number of genome clusters that contain genomes of only one species 

in the different genera (based on the genus’ genome clustered RMS object). A random sampling was performed, 

imitating the different genera’s number of clusters and their respective genome content. So i.e., if Eubacterium had a 

genome-cluster containing 3 genomes within the same species, a random sampling of 3 genomes in all Eubacterium 

genomes in HumGut was performed. If the random sampling returned genomes of the same species, 1 was added to 

the genus’ random count shown in the blue bars. This was done for all genome-clusters containing one species in all 

the genera displayed in the plot. 

 

There are more genome clusters than random samples that consist of only one species (figure 4). 

In Bacteroides and Streptococcus, none of the random samples showed groupings of the genome 

containing only one species. Clostridium and Eubacterium showed very few random samples that 
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contained the same species compared to the number of genome clusters. Ruminococcus displayed 

the lowest ratio between genome clusters and random samples of the selected genera.  

 

3.2.3 Reduction Factor in RMS Clustering vs. Genome Clustering within 

Genera 

After the division of HumGut into subgroups based on the genomes’ genera, there were 22 595 

genomes in the dataset. This was reduced to 2270 genome-clusters after genome clustering, 

making a reduction factor of 0.90 when calculated the same way as in table 3. Further, the reduction 

factors of both the RMS fragment clustering and genome clustering were calculated. The results 

for selected genera are presented in figure 5, and the selected genera, along with some of their 

genome information, is displayed in table 4. 

Table 4: Selected Genera and Some of their Genome Information. The table includes all selected genera along with their number 

of genomes, total number of RMS fragments, mean GC-content, mean genome size (bp), and why they were selected. 

Genus N. 

genomes 

N. RMS 

fragments 

Mean GC-

content 

Mean 

genome 

size (bp) 

Why they were selected 

Clostridium 1458 913 496 0.418 1 784 474 High amount of genomes 

& RMS fragments 

Streptococcus 1084 770 723 0.408 1 780 686 High amount of genomes 

& RMS fragments 

Faecalibacterium 2065 183 533 0.589 2 005 077 High amount of genomes 

Collinsella 2227 321 745 0.601 1 813 042 High amount of genomes 

 

Bfidobacterium 328 55 067 0.595 1 564 584 Often linked to the human 

gut* 

Bacteroides 674 708 946 0.464 3 234 251 Often linked to the human 

gut* 

Eubacterium 593 436 794 0.398 1 755 257 Often linked to the human 

gut* 

Enterobacter 49 51 334 0.555 4 698 587 Small genus with few 

genomes 

Weissella 13 10 875 0.442 1 979 807 Small genus with few 

genomes 

Olsenella 54 1620 0.656 1 644 594 Small genus with few 

genomes 
* (Favier et al., 2002) 
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Figure 5: Reduction Factors of both RMS Fragments and Genomes by Genera after Clustering. The reduction 

factors of RMS fragments are displayed along the y-axis, and the reduction of genomes within the genera after genome 

clustering along the x-axis. The reduction factors were calculated by 1 - (number of genomes or fragments after 

clustering / number of genomes or fragments before clustering). 

 

Firstly, the least genome abundant genera of Weissella, Olsenella and Enterobacter showed the 

least reduction in RMS clustering (figure 5). These are also the genera that contain the least amount 

of RMS fragments to begin with (table 4). Collinsella, the most genome abundant genus in 

HumGut, showed the largest reduction in RMS fragments. The genome abundant 

Faecalibacterium and Streptococcus also showed a high reduction of RMS fragments, however, 

note that Bifidobacterium was the genus that showed the next highest reduction after Collinsella.  

 

Finally, Weissella and Enterobacter show no reduction in the number of genomes after genome 

clustering. They genera contain, respectively, 9 species and 4 strains and 42 species and 7 strains. 

Olsenella, on the other hand, shows a strong reduction of 90%. Both Eggerthella and Clostridium, 

the two genera clustered by a higher condition value, show reductions of ~62% and ~86%, 

respectively. The rest of the genera show a reduction > 90%.  
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3.3 The Bifidobacterium Data 
 

3.3.1 The Bifidobacterium Genome Clustered RMS Object 

Reads in the samples from the mother-child external data set were mapped to the Bifidobacterium 

genome clustered RMS object. To begin with, 17 different species, 306 strains and 17 subspecies 

of Bifidobacterium are found in the HumGut database. There are 328 Bifidobacterium genomes in 

HumGut containing a sum of 55 067 RMS fragments, which are reduced to 16 124 centroid 

fragments in the RMS object after fragment clustering. Further, the genomes are reduced 6 

genomes after the genome clustering with a condition value of 10, which corresponds to a 

reduction factor of >98%. The correlation distance between the centroid genomes were calculated 

and displayed as a dendrogram (figure 6). 

 

 

Figure 6: Dendrogram of the Bifidobacterium Centroid Genomes after Genome Clustering. The correlation 

distances between the genomes are shown along the horizontal plane. The different centroid genomes, representing 

their genome cluster, are listed along the vertical plane.  

 

The correlation distances between the 6 genomes are all above 1 when the genomes were clustered 

to a maximum condition value of 10 (figure 6). The genomes are from 5 different species, and two 

of the genomes are even different strains of the Bifidobacterium catenulatum species. Further, the 

condition value of the cpn matrix to the genome clustered RMS object was calculated to 4 using 
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the function conditionValue() from microrms package (Snipen, 2021). The reads from the samples 

of the mother-child data set were mapped against these 6 genomes.  

 

3.3.2 Mapping reads to the Bifidobacterium Genus 

The down-sampled and pre-processed reads from the 64 mother-child samples were mapped to the 

Bifidobacterium genome clustered RMS object (figure 7).  

 

  

Figure 7: Violinplot of the Average Porportion of Readcounts Mapped to Bifidobacterium. The plot displays the 

average relative proportion of reads by sample origin. There are 16 samples per sample origin.  

 

The average readcounts by sample origin showed the highest relative proportion of 

Bifidobacterium reads are found in the samples taken from the child after 3 months, with around 

1-3% of the reads mapping to the genus (figure 7). The meconium samples show the next highest 

abundance of reads but has the most variable Bifidobacterium content in its samples. Relative 

abundance of Bifidobacterium in the mother samples seem more consistent, with most samples 

getting 0.3%-1% mapped reads. Lastly, are the skin samples where most samples show 0.1% reads 

mapped to Bifidobacterium. These readcounts were further used to see to which Bifidobacterium 

genome they map to.  
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3.3.3 Estimated Relative Abundances of Bifidobacterium  

The readcounts and the RMS object’s copy number matrix were used to estimate the abundances 

of Bifidobacterium in the mapped reads. The resulting abundance matrix shows which 

Bifidobacterium genomes the reads map to (figure 8).  

 

 

Figure 8: Estimated Relative Mean Abundances of Different Bifidobacterium-genomes. Of the reads mapped to 

Bifidobacterium, the figure shows which genome they mapped to, and the relative proportion of reads mapped to each 

of those genomes. The relative abundances shown are the mean abundances of the samples from each sample origin. 

The 6 cluster centroid genomes, that the sample fragments are mapped to, are shown on the right. Note two genomes 

are from B. catenulatum species but are different strains.  

 

Bifidobacterium adolescentis, Bifidobacterium longum, Bifidobacterium pseudocatenulatum, and 

B. catenulatum str. 1 are found in all mean relative abundances of the sample origins (figure 8). B. 

catenulatum str. 2 is found in mother and skin samples, and there is a slight band in the 3-month 

samples as well. Few reads in the 3-month and the skin samples seem map to Bifidobacterium 

dentium, where the relative proportion of reads mapped to the genome from the skin samples are 

barely visible. These relative abundances are averages of all mapped reads in all mother-child 

samples, note that they do not display the potential variation between individual samples. 
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Figure 9: Estimated Relative Abundances of different Bifidobacterium-genomes in Selected Mother-Child 

Samples. Of the reads mapped to Bifidobacterium, the figure shows which genome they mapped to, and the relative 

proportion of reads mapped to each of those genomes. Each plot shows the relative abundance of randomly selected 

mother-child samples. The 6 cluster centroid genomes, that the sample fragments are mapped to, are shown on the 

right. Note two genomes are from Bifidobacterium catenulatum species but are different strains. 

 

The estimated relative abundances of Bifidobacterium-genomes in four randomly selected mother-

child samples display that there are variations in which genomes the reads map to between samples 

(figure 9). B. longum and B. pseudocatenulatum, are consistently found in all mother-child 

samples. In all meconium samples, and some 3-month samples, these two species are the only ones 

the sample reads map to. Further, all mother samples and relatively few skin samples contain reads 

that map to B. adolescentis. Lastly, there are variable number of reads that map to the two different 

strains of B. catenulatum, and none of the selected samples that seem to map to B. dentium.   

 

There is an interest to see if there are signs of vertical transmission of Bifidobacterium genomes 

in the mapped samples using RMS. The correlations were calculated between a child’s 3-month 

sample and all the mother samples.  
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Figure 10: Histograms of the correlations between each child’s 3-month sample and all mother samples. Each plot 

represents the 3-month samples from one child and has the mother-child unique nnid as a title. The Pearson 

correlation coefficients are shown along the horizontal plane. The frequency of the different correlations, counts, are 

shown vertically. The black stapled line shows in which bin the correlation to the true mother can be found.  

 

The correlations, including the correlation between true mother and child, seem to vary a lot (figure 

10). There is seemingly no pattern of correlation between a mother and its child’s 3-month sample, 

as both strong positive and strong negative correlations are found. Further, the correlation of a 

child’s 3-month sample and the other unrelated mothers, are spread out showing both positive, 

negative and no correlation between the samples.  
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4. Discussion 
 

4.1 The HumGut Data 

In this thesis, the use of RMS in combination with the HumGut genome collection was explored 

to see whether this could be another tool in investigating the microbial composition of the human 

gut.  Previous studies have shown that RMS could obtain a taxonomic resolution to species level, 

and in some cases even strain level, which is higher than the widely used 16S amplicon sequencing 

(Snipen et al., 2021). The HumGut collection was chosen as a reference database in this thesis. A 

potential bottleneck in this method was the size of HumGut with its 30 614 genomes as of October 

2022. Consequentially, an alternative method in clustering the entire HumGut genome collection, 

by dividing the collection into subgroups based on genera, was investigated.  

 

Information gathered about the HumGut genomes’ fragment content, in table 2, shows that the 

number of RMS fragments can vary a lot between the genomes across the data set. Although the 

averages of expected and actual RMS fragments show a fragment content just beneath 470 

fragments per genome, their standard deviations are quite high being, respectively, 255 and 415 

fragments per genome. Further, the clustering of all 14.2 million RMS fragments in HumGut by a 

0.99 id similarity threshold led to a reduction by ~2.5 fold to 5.58 million fragment-clusters (table 

2). This reduction indicates a lot of the RMS fragments are shared between genomes. However, 

even with the reduction of RMS fragments into fewer fragment clusters, the fragment content was 

still too high to perform genome clustering of all genomes in HumGut. In the genome clustering 

function, a distance matrix is made with the distances between all fragments. This is calculated by 

“unpacking” the sparse copy number matrix from the clustering of the HumGut RMS fragments 

and calculating the distances, resulting in a distance matrix with the dimensions 5.58 million x 

5.58 million. Even 1.5 Tb reserved memory on Orion was not enough to perform the genome 

clustering, indicating that this is not an efficient enough method on data sets as large as HumGut. 

This strengthens the idea of dividing large data sets like HumGut into subgroups in order to cluster 

them.  
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The fragment composition within the selected genera subgroups of HumGut, showed a mostly 

homogenous fragment-density (figure 1). The genome abundant genera Streptococcus and 

Faecalibacterium, as well as the smaller Bifidobacterium and Weisella, show a similar GC-content 

and number of fragments per Mb within the genus. This could be a good sign for the genome 

quality being sufficient in HumGut considering most of the genomes are MAGs. It is expected that 

organisms organized within a genus display genetic similarities, (Gill et al., 2005), and similar 

genomes are expected to produce a similar RMS fragment content (Snipen et al., 2021). Thus, if 

the fragment content of genomes within a genus showed major differences, it could have indicated 

a poor genome quality of the HumGut genomes. On the other hand, a genus that does display a 

wide variety in fragments per Mb for the same GC-content, and vice versa, is Clostridium. 

However, this difference in fragment-distribution is not necessarily due to poor quality in their 

MAGs. Several papers claim that Clostridium contains several genera, as the genomes are quite 

diverse and not deemed phylogenetically coherent (Cruz-Morales et al., 2019; Stackebrandt et al., 

1999). This could indicate that the genomes in Clostridium are quite different which leads to the 

genus’ varied fragment distribution in figure 1.  

 

Furthermore, most genera seem to display more fragments than the expected number of RMS 

fragments with regards to the GC-content and genome size (figure 1). This is somewhat surprising 

as Snipen et al. 2021 found most genomes had fewer fragments than expected in random DNA 

when using RMS. Again, the quality of the MAGs in HumGut could come into question. MAGs 

are usually of lower quality; it could be a reason for the genomes displaying more fragments. 

However, if this were to be the case, it is curious that the fragment-density was so heterogeneous 

within most of the genera. On the other hand, GC-rich genera, like Bifidobacterium and 

Faecalibacterium, show fewer fragments per Mb than expected for the respective GC-content and 

size. This is probably an effect caused by the restriction enzymes, EcoRI and MseI, having AT-

rich target sites. 
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4.2 RMS Objects for HumGut Genomes 
 

The predicted running time of RMSobject() on all ~30 600 genomes, predicted at 2 days, deviated 

a lot from the actual running time of 11.5 days (figure 2). There can be several factors that have 

played into this deviation, however, the exact reason for the delay is not known. Firstly, the running 

time was extrapolated using a 2nd degree polynomial regression on smaller subsets. The 

extrapolated point, in this case the running time of 30 600 genomes, was a lot higher than the 

largest of the given subsets, the running time of 5000 genomes, used as a basis for the 

extrapolation. This increases the risk of imprecise measurement and bringing biases into the 

prediction. Secondly, the function could become quite computationally heavy somewhere between 

the 5000 and 30 6000 genomes making the runtime a lot longer than expected. An initial suspicion 

was a lack of memory set for the task. However, the memory used at any point during the running 

of the clustering shows the function used at most 29.5 Gb when 100 Gb was reserved. At some 

point between 5000 and 30 600 genomes, the number of fragments seem to become too much for 

the VSEARCH algorithm to handle in a time-effective way. Lastly, VSEARCH was not run 

directly in the shell script submitted to Orion. It was run in the Rscript which was called on by the 

shell script submitted to the HPC. There could be delays in running time when running the 

singularity container in such a way.  

 

4.2.2 RMS Object per Genus 

Dividing HumGut into subgroups based on the genomes’ genus resulted in a much faster running 

time of the RMS fragment-clustering, and in fewer RMS fragment-clusters compared to dividing 

HumGut into randomized subgroups (table 3). Similar genomes, like genomes within a genus, are 

expected to share more RMS fragments resulting in a larger reduction in the number of fragments 

after clustering. Table 3 exhibits higher reduction factors in RMS fragments for genomes within a 

genus than for subgroups of random genomes. The highest reduction factor of 0.79 is found in the 

subgroup containing 100 genomes from the species S. wadsworthensis. The highest reduction 

factor within a genus is 0.63 containing 1000 Streptococcus genomes. This supports the fact that 

genomes within a genus are more similar in RMS content, and that genomes within a species 



   
 

39 
 

display even more similarities in their RMS content. From these results, dividing HumGut into 

genera seems more sensible than dividing it at random.  

 

In this thesis all genomes within a genus were attempted clustered with a maximum tolerated 

condition value of 10. Only two of the genera were not able to produce genome-clusters with a 

condition value of 10 or under. The lower the condition value, the harder the clustering is which 

results in fewer genome clusters. In return, when later estimating abundances of the different 

clusters in a sample, the abundancy estimates are more stable since the clusters are easier to 

differentiate. However, the more genomes that are clustered together, the lower the taxonomic 

resolution becomes. Conversely, a higher condition value would return more genome clusters and 

a higher taxonomic resolution, but they would be more similar and harder to distinguish than the 

clusters found with a condition value under 10. This creates a trade-off of either a lower tolerated 

condition value gaining more stable estimates but at the price of a lower taxonomic resolution, and 

a higher tolerated condition value gaining a higher taxonomic resolution but with more unstable 

estimates. If a high taxonomic resolution is of importance, this is an advantage of the RMS method; 

A higher taxonomic resolution can be achieved by tolerating a higher condition value, but then the 

stability of the abundance estimates should be investigated further. This could be done by, e.g., 

calculating the correlation distances between the genome clusters in order to see how similar they 

are. The lower the correlation distances, the more similar they are, and the more unstable the 

abundancy estimates will be.  

 

Clostridium and Eggerthella were the two genera that could not produce a combination of clusters 

with a condition value as low as 10. With Clostridium showing such a diverse number of fragments 

per Mb and GC-content in their genomes (figure 1), it is rather surprising that none of the genome-

cluster combinations can make a condition value of 10 or lower. One would expect a higher 

correlation distance between genomes displaying different RMS fragment contents, which would 

return more distinct genome-clusters and a lower condition value. However, the fact that the 

genomes are clustered based on their correlation distance, and not condition value, could explain 

why Clostridium was not able to achieve a lower condition value. When using correlation distance, 

the distance between pairs of genomes is calculated. However, two uncorrelated genomes might 
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be combined to become very correlated to a third genome during the rmscols() function, leading 

to a higher condition value. This is a potential problem in general when clustering based on 

correlation distances, but previous practical experience suggests that this is problem rarely occurs 

(Snipen, 2021). 

 

Further, there was an interest to see whether the genomes that clustered together were from the 

same species or from different species within the genera. This is important as the species 

compositions of the genome-clusters essentially determine whether a taxonomic resolution down 

to species level can be achieved. If the clusters mainly comprise of genomes from different species, 

the taxonomic resolution is compromised when samples are mapped against these clusters. 

Additionally, if this were the case the quality of the genomes in HumGut could be questioned. It 

is expected that genomes within the same species are clustered together due to genomic similarities 

resulting in similar RMS fragments. This was somewhat shown in table 3, where genomes within 

S. wadsworthensis resulted in the highest reduction factor of 0.79 in its RMS fragment-clustering. 

Figure 3 illustrates that most genome-clusters within the selected genera contain 1 or 2 species, 

indicating genome-clustering follows the species boundaries within genera. There are clusters that 

show a higher species content, at most 6 species are in a cluster of the genera shown in figure 3, 

but they only make up a diminutive fraction of the total genome-clusters. This may not always be 

the case for all other genera as interspecies similarity within genera can vary.  

 

To further investigate whether clusters tend to align with species, the number of clusters containing 

only one species were counted, as seen in figure 4. This count must be compared to how species 

distribute in a random clustering, where groups of genomes are formed randomly. If the random 

count is as high as the genome-cluster count it would indicate a bias in the genus’ species content 

in HumGut, which would weaken the claim that the genomes clustering mainly follow the species 

boundary. However, this is not the case in figure 4 where the random counts are barely visible. It 

strengthens the argument that the genomes tend to cluster based on species, as expected. This could 

further indicate that a taxonomic resolution down to species level can be gained and that the 

HumGut MAGs do not seem to be of very poor quality. 
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4.2.3 Reduction Factor in RMS Clustering vs. Genome Clustering within Genera  

The reduction factor in RMS fragment clustering within genera shows a higher reduction in the 

more genome abundant genera compared to the smaller genera as expected (figure 5). The more 

genomes within the genera, the more possibilities of shared fragments there are which leads to a 

likely higher reduction factor in RMS content compared to genome-poor genera. Bifidobacterium, 

however, is not one of the most abundant genera in HumGut but still displays one of the largest 

reductions in RMS fragment content. This could mean the genomes within Bifidobacterium in 

HumGut are quite similar, sharing a lot of the same RMS fragments.  

 

After the clustering of genomes, most genera show a reduction of >80% in number of genomes 

(figure 5). The harder clustering using a condition value of 10 has led to fewer genome clusters, 

which can explain the high reduction factors within genera. This will most likely come at a price 

with regards to the taxonomic resolution when mapping reads to these genome clusters. It is 

important to highlight that the taxonomic resolution gained with these genome-clusters are the 

lowest possible taxonomic resolution for the different genera due to the low condition value. An 

increase in the condition value will likely lead to lower genome reduction values for the genera. 

 

The 16S amplicon sequencing usually gains a taxonomic resolution on genus level, (Snipen et al., 

2021), and a genus level taxonomic resolution here would mean a reduction factor within the 

genera of 1. That would mean all the genomes within the genus would be clustered together with 

one genome representing them all as the cluster centroid. Some genera come close to 1 here, like 

Faecalibacterium and Bifidobacterium which are GC-rich genera with few fragments (table 4 & 

figure 5). The fewer fragments in the genera could lead to difficulties in differentiating the 

genomes based on their RMS content, leading to a lower taxonomic resolution. On the other hand, 

the smaller genera Weissella and Enterobacter show a reduction factor of 0, meaning none of their 

genomes were clustered together in the genome-clustering. All their genomes are represented as 

their own cluster centroid and are therefore easily differentiable using the RMS method in this 

thesis. Looking at Enterobacter and Weissella’s genome information in table 4, they have the most 
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RMS fragments per genome of the selected genera. Several of the other genera show a genome 

reduction of around 90%, meaning they can gain somewhat deeper taxonomic resolution than 

genus level. Olsenella is one of these, even though it contains few genomes like Enterobacter and 

Weissella. Looking at its RMS fragments, it has considerably fewer fragments per genome 

compared to the other two genera (table 4). Lastly, Clostridium and Eggerthella show lower 

reduction factors, which makes sense as they had a higher tolerated condition number leading to 

more genome clusters. In summary it seems the more RMS fragments per genome, the easier it is 

to differentiate between them. 

 

The HumGut dataset consisted of 22 595 genomes that were reduced to 2270 genome-clusters after 

genome clustering of all the genus subgroups, which corresponds to a reduction factor of 0.90. 

Most of the selected genera displayed a similar reduction factor to this (figure 5). Since genome-

clustering seems to follow the species boundaries by mainly clustering genomes from the same 

species (figure 3 & figure 4), it can be somewhat expected that this trend continues up the 

taxonomy tree. This is somewhat supported by the high reduction factors within genera, (figure 5), 

as genomes within genera cluster more than genomes within random subgroups (table 3). By 

extrapolating this idea, if the clustering of all genomes in HumGut proved possible, its number of 

genome-clusters may not be far off from the sum of genome-clusters in all the genera. If it followed 

a similar reduction factor as for genome clustering within genera, it would result in ~3000 genome-

clusters. There are 1588 species within HumGut, so if the reduction factor is not far off, and the 

maximum tolerated condition value for the genome clustering can be set higher, a taxonomic 

resolution down to species level seems achievable.  

 

4.3 The Bifidobacterium Data 

 

A dataset from the PreventADALL study was provided to this thesis in order to map sample reads 

and estimate abundances for a specific genus (Carlsen et al., 2018; Nilsen, 2022). The 

Bifidobacterium genome-clustered RMS object, clustered with a condition value of 10, was used 

as Bifidobacterium is expected to appear in both mother and child gut microbiomes. The 
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correlation between estimated abundances of a child’s 3-month samples and all mothers were 

calculated to see if there were any signs of transmission of Bifidobacterium between a mother and 

her child.  

 

4.3.1 The Bifidobacterium Genome Clustered RMS Object 

The >98% reduction in Bifidobacterium genomes after genome clustering is not all that 

unexpected. Previously it was shown that the RMS-fragment content in Bifidobacterium genomes 

is lower than expected and that the genomes are GC-rich (figure 1). Further, the high reduction 

factor in their RMS fragment clustering could indicate that their RMS fragment content was similar 

in the genomes (figure 5). A combination of a low RMS-fragment content and their strong 

fragment clustering could explain the clustering of genomes from 328 genomes to 6 genome 

clusters. The resulting 6 genomes seem to be very differentiable with a condition value of 4 and 

large correlation distances (figure 6). 5 of the 17 species were represented as genome cluster 

centroids, and two of the clusters even contained two different strains of B. catenulatum as genome 

cluster centroids. In other words, the two strains are different enough in RMS content that they are 

differentiable by this method. However, as 11 of the species are not represented, it is not expected 

that the genome-clusters only contain one species. Most likely several species have clustered 

together in the genome-clusters, and as a result the RMS method cannot differentiate between 

which of the genomes within the cluster a read maps to. This indicates a low taxonomic resolution 

for Bifidobacterium using the RMS method. 

 

4.3.2 Mapping reads to the Bifidobacterium Genus 

As the reads are only mapped to the Bifidobacterium genome clustered RMS object, the mapped 

readcount will not say anything about what proportion of the entire sample Bifidobacterium 

genomes make (figure 7). So even though the proportion of reads that map to Bifidobacterium are 

low (0.3-4%) in the different samples, it does not mean there are few Bifidobacterium genomes in 

the samples. Since there are on average quite a lot fewer RMS fragments in the genera (figure 1), 

it will take fewer reads to account for an entire Bifidobacterium genome compared to genomes in 

other genera. If one wants to say something about the proportion of Bifidobacterium genomes in 
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the sample, this fragment-bias must be adjusted for to get a more realistic account. Ideally, the 

reads should be mapped to the genome clustering object for the entire HumGut to get the relative 

abundancy of Bifidobacterium. Currently we do not have such an object since the genome-

clustering of all HumGut genomes required too many computing resources.  

 

Further, the readcount bias for Bifidobacterium genomes is the same for all samples. This means 

comparing readcounts between samples from the different sample origins is possible. The 

readcounts show that the 3-month samples display the largest proportion of Bifidobacterium 

genomes, followed by meconium, mother and lastly skin samples (figure 7). This was also found 

by Killingstad 2021, where amplicon sequencing of the ClpC marker gene for Bifidobacterium 

was performed on the same samples. This is another indication that the HumGut Bifidobacterium 

genomes are of good quality, although being MAGs. Lastly, the amount of Bifidobacterium in the 

human gut is expected to lessen with age, (Odamaki et al., 2016), which seems to coincide with 

the readcounts in the mother samples being lower than for the 3-month and meconium samples.  

 

4.3.3 Estimated Relative Abundances of Bifidobacterium  

The estimated relative abundances of the 6 genome clusters in the mapped reads show that B. 

longum is the species most of the sample reads mapped to (figure 8 & 9), especially in meconium 

and 3-month samples. This coincides with literature, claiming B. longum are one of the first 

microbes that colonize the human gut (Diaz et al., 2021; Yao et al., 2021). The mother samples 

also show relatively many reads mapped to B. adolescentis. The species is known to have strains 

that specifically colonize the gut of adult individuals, which would explain the lower abundances 

of the genome-cluster in the other samples (Duranti et al., 2016). Although the reads mapped to 

these genome-clusters, several of the reads will most likely be of other Bifidobacterium species 

and strains that map to other genomes in the genome-clusters than these cluster representatives. 

However, when further investigating the correlation between mother and child samples, the 

estimated abundances of the genome-clusters are more stable. 
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The correlation data shows no trends of vertical transmission of the Bifidobacterium genome-

cluster content from true mother to the child’s 3-month sample (figure 10). The correlation of 

abundances between a child and its true mother almost seems random, with the lowest correlation 

being below –0.6 and the highest above 0.7. Additionally, the correlation of a child’s sample to 

the other mothers seem to vary just as much. If the samples were mapped against Bifidobacterium 

clustered at a higher condition value with more genome-clusters, maybe a trend in correlations 

could be noticed. It should also be noted that the mother samples were taken during their 18th week 

of pregnancy, and the mother's gut microbiome could change drastically in between that time and 

when the child is born. The Prevent-ADALL study was not initially intended for studies of vertical 

transmissions between mother and child (Carlsen et al., 2018). Lastly, most of the Bifidobacterium 

could also simply not be transmitted vertically. Killingstad 2021, also found no association 

between mother and 3-month samples for several Bifidobacterium species. Only B. longum 

showed an association between the mother and the 3-month child samples.  

 

4.4 Conclusion and Future Work 

In this thesis the main aim was to investigate the taxonomic resolution RMS can potentially gain 

using HumGut as a reference database. Unfortunately, it was not possible to obtain a genome-

clustered RMS object for all genomes in HumGut as it proved to take too many computing 

resources than available. Therefore, HumGut was divided into subgroups based on genomes’ 

genus.  

 

When clustering based on genus, instead of for all genomes in HumGut, the taxonomic resolution 

gained within the different genera differs. The genera that contain more RMS fragments per 

genome seemed to gain a higher resolution, with some genera like Weissella even gaining a 

taxonomic resolution down to strain level. Conversely, the genomes that contained few RMS 

fragments per genome, typically GC-rich genomes like Bifidobacterium, tended to gain lower 

taxonomic resolutions not that much lower than genus level. However, these are the results of 

genome clustering with a condition value of 10 or below and therefore the lowest taxonomic 

resolution gained, forming a kind of taxonomic resolution baseline for the different genera using 
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this method. In further studies, higher tolerated condition values should be tested. A higher 

tolerated condition value can lead to more genome clusters and higher taxonomic resolutions. 

Additionally, correlation distances should be investigated to examine the similarities between the 

resulting genome clusters, which could lead to more unreliable abundance estimates. 

 

The clustering of genomes within genera tends to align with species and this trend could follow 

up the taxonomy tree. The clustering of all genomes within HumGut may not be far off from the 

sum of genome clusters in all genera, which would result in ~3060 HumGut genome-clusters. If 

this were to be the case, and since there are under 1600 species within HumGut as well as the 

possibility for adjusting for a higher condition value during genome clustering, a taxonomic 

resolution of HumGut down to species level seems achievable. However, the genome clustering 

of HumGut must be achieved in order to study this further. Unless the RMS fragment clustering 

and genome clustering improves in efficiency to be able to handle datasets as big as HumGut, 

alternative strategies in dividing HumGut into smaller subgroups should be investigated. E.g., as 

mentioned by Lars Snipen (personal communication, December 12, 2022), genome groups that 

share no RMS fragments could be analyzed separately. Since they do not contain any of the same 

RMS fragments, this should not impact the taxonomic resolution.   

 

The PreventADALL mother-child samples showed no signs of vertical transmission when mapped 

to the Bifidobacterium genome clusters. The correlations of Bifidobacterium abundancies between 

the children's 3-month sample and their corresponding mother’s sample differed a lot, and no 

correlation trends were observed. This could be due to Bifidobacterium having a low taxonomic 

resolution with the strict condition value of 10. In further work, if a higher condition value is 

tolerated leading to a higher taxonomic resolution, a trend might be observed. However, it comes 

at a cost of more unstable abundancy estimates which are very important when looking into 

possible vertical transmissions of the genus. Furthermore, the use of different restriction enzymes 

that are less AT-rich could be explored to see if it gains higher taxonomic resolution in GC-poor 

genera like Bifidobacterium. 
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Appendix 

 

Appendix A: Code for Making the RMS Fragments 

A.1: The Shell Script 
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A.2: The R Script 

 

 

 

Appendix B: General Code for Making the RMS Objects 

 

B.1: The Shell Script 
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B.2: The R Script 

 

 

Appendix C: Assigning NCBI Rank 

This script can also be used to assign genus, by replacing “species” by “genus” 
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Appendix D: General Code for Making the RMS Objects 

 

This script tries to cluster the genomes in the RMS object for all genomes in HumGut. A 

modified version of it was used to cluster the genomes within a genus, using these scripts as a 

basis 

 

D.1: The Shell Script 

 

 

D.2: The R Script 
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Appendix E: Pre-processing Script 

The basis of this script is from the Readme.md file for the microrms-package (Snipen, 2021) 
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