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Abstract: Numerous species of pathogenic wood decay fungi, including members of the genera
Heterobasidion and Armillaria, exist in forests in the northern hemisphere. Detection of these fungi
through field surveys is often difficult due to a lack of visual symptoms and is cost-prohibitive for
most applications. Remotely sensed data can offer a lower-cost alternative for collecting information
about vegetation health. This study used hyperspectral imagery collected from unmanned aerial
vehicles (UAVs) to detect the presence of wood decay in Norway spruce (Picea abies L. Karst) at two
sites in Norway. UAV-based sensors were tested as they offer flexibility and potential cost advantages
for small landowners. Ground reference data regarding pathogenic wood decay were collected by
harvest machine operators and field crews after harvest. Support vector machines were used to
classify the presence of root, butt, and stem rot infection. Classification accuracies as high as 76% with
a kappa value of 0.24 were obtained with 490-band hyperspectral imagery, while 29-band imagery
provided a lower classification accuracy (~60%, kappa = 0.13).

Keywords: hyperspectral imagery; UAV; root; butt & stem rot; Heterobasidion; remote sensing;
forest pathology

1. Introduction

Root, butt, and stem rot (RBSR) is a group of fungal diseases that is one of the most
significant forest health issues in Europe and throughout the northern hemisphere. RBSR is
primarily characterized by the decay of tree roots and the lower tree bole, which can result
in reduced tree growth and ultimately lead to tree mortality. In Norway, over 80% of RBSR
is caused by fungi from the genera Heterobasidion and Armillaria [1]. Most of the losses occur
in forests of Norway spruce (Picea abies L. Karst). Two species in the Heterobasidion genus
exist in Norway: Heterobasidion parviporum (Niemelä & Korhonen 1998) and H. annosum
s.s. H. parviporum is more common in Norway and primarily infects spruce trees, although
pines are also somewhat susceptible, while H. annosum s.s. occurs more often in pine than
in spruce. Both species spread via spores and mycelia. Spores can land on tree wounds
caused by logging or storm damage, which allows the fungus to spread to healthy stands
of trees. Once a tree is infected, the fungus can spread through the root network to adjacent
trees (although not directly through the soil) [2].

Armillaria species account for a smaller but significant portion of RBSR infection in
Norway. Compared to Heterobasidion, Armillaria tend to cause more significant hollowing
of the tree bole but are generally limited to a maximum height of 2 m. In comparison, Heter-
obasidion may extend as high as 7 m within the stem. Other fungal species which may cause
RBSR in Norway include Stereum sanguinolentum (Alb. & Schwein.) Fr., Phellinus chrysoloma
(Fr.) Donk, and Climacocystis borealis (Fr.) Kotl. & Pouzar [3]. These species are generally
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believed to account for a small proportion of RBSR cases in Norway. However, Phellinus
chrysoloma can account for a large proportion of infection in high-elevation spruce forests.

In Norway, RBSR is responsible for an estimated 10 million euros in losses for the
forest products industry every year, while Europe-wide losses have been estimated at
over 800 million euros annually [1,2]. Some losses occur due to the reduction in wood
quality in infected trees: logs that could otherwise be used as sawtimber may become
pulpwood or biomass feedstock instead, reducing the price forest owners receive for the
wood. In contrast, other losses occur due to reduced volume growth and tree death.
While H. parviporum, the most common RBSR pathogen in Norway, is rarely fatal (and
only after several decades of infection), H. annosum s.s. and H. irregulare both cause tree
mortality. The latter is also an invasive pathogen in Europe and other places around the
world, with the potential to cause severe ecological damage. There is significant interest
in monitoring the presence of these fungi to facilitate control methods, both for ecological
and financial reasons. Unfortunately, detecting RBSR infection in the field can be difficult
or impossible until the very late stages of infection, and the cost of fieldwork can make
effective monitoring programs cost-prohibitive for large areas [4].

One approach for reducing the cost of monitoring programs is the use of remotely
sensed data. Remote sensing platforms such as satellites, fixed-wing aircraft, and UAVs
facilitate the collection of wall-to-wall data throughout an area of interest, something which
is either impractical or impossible with field surveys. These platforms allow for the use of
cameras that detect infrared light, making possible the detection of changes in vegetation
properties that are invisible to the naked eye. Changes in cellular structure due to stress are
usually apparent in the near-infrared (NIR) portion of the spectrum [5], while changes in
foliar water content are shown in the shortwave infrared (SWIR) [6]. Consequently, remote
sensing can replace expensive sampling methods such as tree coring or felling, which may
be necessary to detect pathogens in the field.

Previous research has examined the use of remotely sensed data for more broadly
studying a variety of plant pathogens and health issues. Much of the work has focused on
the use of passive spectral cameras, both multi-spectral and hyperspectral. Multi-spectral
sensors have been more widely utilized due to their lower cost, while hyperspectral sensors
offer the advantages of collecting information across a wider portion of the electromagnetic
spectrum and of providing finer spectral resolution. Some studies have also incorporated
airborne laser scanning (ALS) data to provide information about changes to crown density
and other structural properties of trees. Leckie et al. used a multi-spectral sensor with
2.5 m resolution to detect jack pine budworm in Ontario, Canada [7]. They found that
classification models using just three bands (red, NIR, and SWIR bands) could provide
classification accuracies greater than 80%. Meng et al., used hyperspectral imagery and ALS
data to detect defoliation in a mixed-pine oak forest due to gypsy moth infestation [8]. Their
analysis used regression models to predict the amount of defoliation, with the best models
delivering R2 values of 0.81. From the hyperspectral imagery, red-edge and near-infrared
bands proved to be the most useful for detecting defoliation.

A few studies have specifically examined spectral information’s use for detecting root
and stem rot fungi in woody plants. Examples include Leckie et al., who classified the
severity of Phellinus weirii infection in Douglas fir with accuracies as high as 80%, and
LeLong et al., who detected the presence of Ganoderma in oil palm [7,9]. This work shows
that detecting root rot diseases with remote sensing is possible. An important caveat is
that both of these diseases cause significant changes in tree foliage, which are visible to the
naked eye, which is not generally true of RBSR in Norway spruce. Kankaanhuhta et al.
attempted to detect the presence of RBSR in forests in Finland [10]. They had some success
with detecting Heterobasidion in pine forests, but not in spruce, a disparity which is likely
due to the greater effect on foliage color in pine trees. Thus, current field-based studies of
RBSR detection cannot settle the question of whether pre-visual detection is possible.

Calamita et al. used a laboratory-based hyperspectral camera to classify grape leaves
based on the presence of Armillaria in the grapevine of origin [11]. They found significant
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differences around 705 nm (the red edge) and 550 nm. They were able to identify both
visibly diseased and infected but visually asymptomatic plants with an accuracy of 90%
and 75%, respectively. This indicates that Armillaria does affect the spectral properties of at
least some woody plants. However, it leaves open the question of whether such differences
will be noticeable in a field setting. Allen et al. classified the presence of RBSR in spruce
trees at a site in Norway using hyperspectral imagery with two different classifiers [12].
Results from this study indicated that detection of RBSR in spruce trees is possible, although
classification accuracies were modest (64%).

UAV-based sensors offer several advantages over sensors mounted on conventional
fixed-wing aircraft. UAVs can be deployed more rapidly and at a lower cost for very
small areas (although costs are higher for large areas). UAVs also allow for more rapid
deployment in response to favorable weather conditions. The low flying height of UAVs
allows for higher spatial resolution than airborne systems. High spatial resolution UAV
imagery has been found to allow for the detection of finer scale variation in plant health
than is possible with satellite-based or airborne sensors [13]. Overall, UAVs are highly
suitable for gathering remotely sensed data on small tracts of land and provide valuable
information for forest owners to aid in management decisions.

Numerous studies have examined using UAV-based sensors to monitor forest pathogens
and other health issues. Otsu et al. detected pine processionary moth defoliation in Spain
using a combination of Landsat 8 and multi-spectral UAV imagery [14]. Zhang et al. pre-
dicted the extent of defoliation on Pinus tabulaeformis Carrière due to the Chinese pine
caterpillar using data from a UAV-based hyperspectral camera [15]. Lin et al. used hy-
perspectral imagery and ALS data to predict damage from pine shoot beetle in Yunnan
pine [16]. Their study found that hyperspectral imagery-based estimates of chlorophyll
levels and ALS intensity metrics were the most significant predictors of pine shoot beetle
infestation. Näsi et al. used a hyperspectral camera with a spectral range of 500–900 nm to
classify Norway spruce trees based on bark beetle infection status (healthy, infested, dead)
with an overall accuracy of 76% [17]. Subsequent work showed that UAV imagery deliv-
ered greater classification accuracies than satellite imagery, likely due to the finer spatial
resolution of the UAV imagery [18]. Honkavaara et al. used multitemporal hyperspectral
and multi-spectral imagery to attempt to detect RBSR and European spruce beetle attacks
at a site in Finland. Their work focused specifically on detecting beetle infestation before
any visible changes in foliage color had occurred, rather than beetle infestation with visible
foliar symptoms. The overall accuracy obtained in their study was around 45%, although
their study used a relatively small sample size, which could have limited the accuracy of
their models. While RBSR-infected trees were included in their classification, detecting
RBSR was not their study’s primary goal [19].

The primary objective of this study was to assess the potential of remotely sensed
data from UAV-based cameras to facilitate the detection of RBSR in Norway Spruce by
producing classification models. Unlike most previous studies of UAV applications in
forest pathology, this study focused solely on pre-visual detection of infection since RBSR
rarely produces visible changes to foliage in Norwegian conditions. Two cameras were
used, allowing for a comparison between two sensor types. With the use of two sensors, it
was hoped that the effect of different spectral regions or numbers of spectral bands on the
accuracy of classification could be assessed. Since the cameras used in this study covered
different wavelength regions, resampling was also performed on one of the images to
enable such comparisons. Based on the spectral data collected from the imagery, trees
were classified according to rot infection status. The second major objective of the study
was to determine which vegetation indices were statistically different between infected
and healthy trees. Such a comparison could also shed light on the physiological changes
induced in spruce trees by RBSR infection.
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2. Materials and Methods
2.1. Study Areas and Remotely Sensed Data

Two study areas were utilized for this study (Figure 1). The first study area is located
in Etnedal, Norway, while the second area is located in Ås, Norway (this site is hereafter
referred to as the Nordskogen site). For the Etnedal site, hyperspectral imagery was
collected on 25 June 2020 from a BDF Systems 1400-SE8 UAV using a HySpex Mjolnir
VS-620 camera (NEO, Oslo, Norway). This camera contains two sensors (V and S), which
collect 490 bands from 400 to 2500 nm. The V sensor covers 400–1000 nm with a 3.0 nm
bandwidth, while the S sensor covers 970–2500 nm with a bandwidth of 5.1 nm. After
processing, the resulting orthoimage had a GSD of 16 cm.
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Figure 1. Location of study areas in southern Norway (left): Etnedal (yellow) and Nordskogen (red).
True color rendering of Etnedal imagery (top right) and Nordskogen (bottom right).

For the Nordskogen site, hyperspectral imagery containing 29 bands from 450 to
895 nm was collected on 23 August 2018 from a DJI S1000+ UAV (DJI, Shenzhen, China) and
the Rikola HSI camera (Rikola, Oulu, Finland). Irradiance measurements were collected
with an Oceanoptics Flame-T-VIS-NIR spectrometer with a CC-3-UV-S cosine receptor
(Oceanoptics, Orlando, FL, USA). Imagery was radiometrically and geometrically corrected,
and co-registered with an algorithm based on the method described by Jakob et al. [20].
An orthoimage was generated via structure-from motion analysis, with a GSD of 8 cm. A
comparison of the sensors used in the two study areas can be found in Table 1.



Remote Sens. 2022, 14, 3830 5 of 16

Table 1. Comparison of sensors used in the study.

Etnedal Nordskogen

Name of Sensor HySpex Mjolnir VS-620 Rikola HSI
Number of Bands 490 29

Spectral Range (nm) 400–2500 450–895
GSD (cm) 16 8

ALS data were acquired in both study areas. For Etnedal, ALS data were collected
on 3 August 2019 using a Leica ALS70-HP system (leica, St. Gallen, Switzerland). The
flying altitude was 1150 m above ground level, and the flight was conducted with a terrain-
following strategy. These parameters resulted in a point density of 17.6 pts/m2. For
Nordskogen, publicly available ALS data (collected in 2014) were downloaded from the
Norwegian Mapping and Cadaster Authority. This dataset was collected with a Riegle
Q780 sensor (Riegle, Horn, Austria) at an altitude of 1030 m above ground level, with an
average point density of 5 pts/m2.

2.2. Field Data

For the Etnedal study area, field data collection occurred in July of 2020 with the
assistance of a cut-to-length harvester. A harvest machine operator recorded field data
indicating rot presence as trees were harvested. As the harvester grabbed each tree, on-
board sensors measured the crane length and angle, which allowed the location of each
tree relative to the harvester to be ascertained. This information was combined with differ-
entially corrected GPS coordinates from a high-accuracy GPS onboard the harvester. By
following this procedure, a complete stem map with average locational errors of <1 m can
be produced [21]. Rot severity was recorded based on a visual assessment by the operator
of the percentage of the stem diameter occupied by rotten wood at each cut. Three severity
classes were used for trees with rot: <21% of the stem diameter, 21–50% of stem diameter,
and >50% of stem diameter. The harvester recorded information on 1685 trees (285 were
infected with rot, 16.9% of the total). In addition to rot status, tree diameter was recorded
at each cut and at 10 cm increments along the tree bole. Tree height was estimated from the
diameter profiles with the aid of taper equations.

Field crews collected ground reference data for the Nordskogen study area after the
trees had already been harvested. Field crews used survey-grade GPS equipment to record
the location of stumps within the harvest site. Rot presence was recorded for all stumps,
while diameter and rot severity were recorded for a subset of the stumps. In total, 1162 trees
were recorded in the field data, of which 142 (12.2%) were infected with rot.

2.3. Methods

Figure 2 presents the scheme of the processing steps adopted in this study. In the
following paragraphs, each step is detailed.

Remote Sens. 2022, 14, 3830 6 of 16 
 

 

 

Figure 2. Scheme of the processing steps adopted in this study. 

2.3.1. ITCs Delineation and Matching 

ALS data (from a separate airborne data collection) were utilized for ITC delineation. 

Delineation was performed with the R package itcSegment [22]. A canopy height model 

(CHM) with a resolution of 0.25 m was created on-the-fly before the identification of local 

maxima in the CHM with a variable-size moving window. These local maxima were used 

as the apexes of the trees, and tree crowns were grown outward until the CHM height 

reached 40% percent of the apex height. 

ITCs were matched to field trees based on the closest three-dimensional Euclidean 

distance. For each ITC, the Z value from the highest ALS point was calculated, along with 

the X and Y coordinates of the centroid. Three-dimensional distances were then calculated 

from each ITC to each field tree, using the GPS coordinates of each tree, along with the 

estimated tree height from the field data. Only tree-ITC pairs with distances of <3 m were 

treated as valid matches. In the Nordskogen study area, only X and Y locations were used 

for matching, as most trees’ height was unknown. For Etnedal, of the 1685 trees, 872 were 

successfully matched to ITCs, while for Nordskogen, the figures were 1162 and 852, re-

spectively. This gives a tree detection rate of 52% for Etnedal and 73.3% for Nordskogen. 

In Etnedal, 164 matched trees (18.7%) were infected with rot; in Nordskogen, 91 (10.7%) 

were infected with rot. 

2.3.2. Spectral Resampling 

To eliminate site effects and allow a more direct comparison of the sensors, a spectral 

resampling was performed on the Mjolnir VS-620 imagery. The orthoimage from the Et-

nedal study was resampled to match the spectral bands from the Rikola HIS camera using 

the ENVI software program. This resampled image was included in the analysis as a third 

dataset. Spectral resampling was performed with a Gaussian model, and the FWHM was 

set equal to the width of each band for the Rikola imagery. 

2.3.3. Feature Extraction 

Features were extracted from the imagery. Three groups of features were considered: 

(i) individual bands; (ii) vegetation indices; and (iii) first and second derivatives (only for 

the Etnedal dataset). All indices (shown in Table 2) were calculated with the ENVI soft-

ware program. Vegetation indices can mitigate the effect of terrain and atmospheric con-

ditions on reflectance values. However, these effects should be non-substantial in this case 

due to the small area covered by the imagery and the short time required for image col-

lection. All vegetation indices used in this study are standard, commonly calculated indi-

ces chosen for their ability to provide information regarding a variety of plant functional 

traits, including various plant pigments (such as chlorophyll and anthocyanins), water 

content, internal leaf structure, and overall greenness. 

Figure 2. Scheme of the processing steps adopted in this study.



Remote Sens. 2022, 14, 3830 6 of 16

2.3.1. ITCs Delineation and Matching

ALS data (from a separate airborne data collection) were utilized for ITC delineation.
Delineation was performed with the R package itcSegment [22]. A canopy height model
(CHM) with a resolution of 0.25 m was created on-the-fly before the identification of local
maxima in the CHM with a variable-size moving window. These local maxima were used
as the apexes of the trees, and tree crowns were grown outward until the CHM height
reached 40% percent of the apex height.

ITCs were matched to field trees based on the closest three-dimensional Euclidean
distance. For each ITC, the Z value from the highest ALS point was calculated, along with
the X and Y coordinates of the centroid. Three-dimensional distances were then calculated
from each ITC to each field tree, using the GPS coordinates of each tree, along with the
estimated tree height from the field data. Only tree-ITC pairs with distances of <3 m were
treated as valid matches. In the Nordskogen study area, only X and Y locations were
used for matching, as most trees’ height was unknown. For Etnedal, of the 1685 trees, 872
were successfully matched to ITCs, while for Nordskogen, the figures were 1162 and 852,
respectively. This gives a tree detection rate of 52% for Etnedal and 73.3% for Nordskogen.
In Etnedal, 164 matched trees (18.7%) were infected with rot; in Nordskogen, 91 (10.7%)
were infected with rot.

2.3.2. Spectral Resampling

To eliminate site effects and allow a more direct comparison of the sensors, a spectral
resampling was performed on the Mjolnir VS-620 imagery. The orthoimage from the
Etnedal study was resampled to match the spectral bands from the Rikola HIS camera
using the ENVI software program. This resampled image was included in the analysis as a
third dataset. Spectral resampling was performed with a Gaussian model, and the FWHM
was set equal to the width of each band for the Rikola imagery.

2.3.3. Feature Extraction

Features were extracted from the imagery. Three groups of features were considered:
(i) individual bands; (ii) vegetation indices; and (iii) first and second derivatives (only for
the Etnedal dataset). All indices (shown in Table 2) were calculated with the ENVI software
program. Vegetation indices can mitigate the effect of terrain and atmospheric conditions
on reflectance values. However, these effects should be non-substantial in this case due to
the small area covered by the imagery and the short time required for image collection. All
vegetation indices used in this study are standard, commonly calculated indices chosen for
their ability to provide information regarding a variety of plant functional traits, including
various plant pigments (such as chlorophyll and anthocyanins), water content, internal leaf
structure, and overall greenness.
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Table 2. List of vegetation indices used in the study. Asterisks (*) indicate a broad-band index. All
others are narrow-band. Indices computed for Nordskogen are indicated with a dagger (†). Formulas
for all indices can be found in Appendix A.

Abbreviation Index Name Reference

NDVI *† Normalized Difference Vegetation Index Rouse et al., 1973 [23]
SRI Simple Ratio Index Birth & McVey 1968 [24]

ARVI * Atmospherically Resistant Vegetation Index Kaufman & Tanre 1992 [25]
RENDVI † Red Edge Normalized Difference Vegetation Index Sims & Gammon 2002 [26]
MRESRI Modified Red Edge Simple Ratio Index Datt 1999 [27]

MRENDVI Modified Red Edge Normalized Difference Vegetation Index Datt 1999
VREI1 † Vogelmann Red Edge Index 1 Vogelmann et al., 1993 [28]
REPI † Red Edge Position Index Curran et al., 1991 [29]

SIPI Structure Insensitive Pigment Index Penuelas et al., 1993 [30]
RGRI *† Red Green Ratio Index Gammon & Surfus 1999 [31]

WBI Water Band Index Panuelas et al., 1993 [32]
NDWI Normalized Difference Water Index Gao 1995 [33]

MSI Moisture Stress Index Ceccato et al., 2001 [34]
NDII Normalized Difference Infrared Index Hardisky et al., 1983 [35]
SGI Sum Green Index Lobell & Asner 2004 [36]
PRI Photochemical Reflectance Index Gamon et al., 1997 [37]

CRI1 † Carotenoid Reflectance Index 1 Gitelson et al., 2002 [38]
CRI2 † Carotenoid Reflectance Index 2 Gitelson et al., 2002
ARI1 † Anthocyanin Reflectance Index 1 Gitelson et al., 2007 [39]
ARI2 † Anthocyanin Reflectance Index 2 Gitelson et al., 2007

For the hyperspectral imagery in Etnedal, the first and second derivatives of the
spectral curve were also calculated for all 490 bands. Because derivatives reflect the shape
of the spectral curve (slope in the case of the first derivative, concavity in the case of the
second derivative), rather than the absolute values of each pixel, they are less influenced by
lighting changes across an image resulting from terrain or camera angle changes. Some
important spectral regions relevant for assessing plant health are defined in terms of
derivatives. An example is the “red-edge,” a portion of the spectrum where reflectance
values rapidly increase, particularly in healthy vegetation. The exact location of the red
edge, as well as the steepness of the spectral curve in this region, can vary depending
on the health of vegetation and chlorophyll content [29]. Previous studies have shown
that spectral derivatives can be used to predict the presence of diseases in trees, including
pine root nematode and RBSR, which motivated their use in this study [12,40]. For each
ITCs, the average value of each feature was computed. Pixels with NDVI lower than 0.55
were excluded from the average to remove the effect of shadows. Initial analysis of the
vegetation indices alone was carried out using the Student’s t-test and Wilcoxon’s rank
sum test to determine which indices were significantly different between infected and
healthy trees.

2.3.4. Feature Selection

Feature selection was performed using a filter method based on the Jeffries Matusita
distance as a distance metric and the sequential forward floating selection as a search
strategy [41]. This approach has previously been used for tree species classification [42].
Feature selection was intended to reduce the dimensionality of the data and avoid model
overfitting. The method does not select a fixed number of features but rather selects
the variables that contain the greatest amount of information up to a certain threshold.
Variables were selected to keep the Jeffries–Matusita distance below the square root of
two, as previous studies have found that selecting additional variables provides little
information [42].
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2.3.5. RSBR Classification

RBSR classification was done using a support vector machine classifier [43]. Class
weights were used as an input for modeling to correct for imbalances in the training data
and ensure that the model performed well for both the rot and rot-free classes, rather than
favoring the rot-free class. SVM modeling was performed with the R package kernlab [44].
Due to the small number of rotten trees in the datasets and the fact that rot severity was not
recorded for all trees in Nordskogen, no attempt was made to classify trees into different
rot severity classes. Each dataset (Etnedal and Nordskogen) was divided into training and
testing sets using a 70/30 split and simple random sampling.

To test the importance of different variable types (average band values, derivatives,
spectral indices), some models used only one variable type, while other models included
all variable types. In addition, each individual index was tested separately to evaluate the
ability of individual indices to predict the presence of rot. It was also hoped that this would
deliver insight into which vegetation properties (leaf moisture content, pigments, etc.) may
be altered by RBSR. For the models with feature selection and individual index-based
models, the penalty parameter C was varied from 1 to 20,000, with fifteen different values
tested (1, 2, 5, 10, 50, 100, 200, 500, 1000, 2000, 5000, 10,000, 12,000, 15,000, 20,000). Higher
values of C will cause the SVM to classify training sample observations more accurately by
penalizing misclassifications more heavily, at the cost of potentially greater overfitting [43].
Models were selected based on their performance according to the kappa statistic.

Different variable combinations were tested in the modeling to assess which variables
were most important for accurate classification (Table 3). In addition to selecting the best
variables from all variable classes (spectral bands, derivatives, and indices, as described
above), we also tested the use of indices alone. Some trials made use of indices selected
according to the feature selection procedures, while others made use of only one spectral
index at a time to assess if any indices were capable of making accurate predictions alone.

Table 3. List of the variable combinations used for SVM modeling.

Variable Combinations Tested

Selection Based on All Features, with variables selected by filtering method
Combination of All Vegetation Indices

Single Vegetation Indices
Single Bands

Single Derivatives (Etnedal only)

3. Results
3.1. Vegetation Indices Analysis

An initial analysis was carried out to see which vegetation indices were significantly
different between rot-affected and rot-free trees, t-tests, and Wilcoxon tests were performed.
Table 4 shows the results of these tests for the original Etnedal imagery, while the results for
Nordskogen and the resampled Etnedal imagery are shown in Tables 5 and 6, respectively.
Most spectral indices showed statistically significant differences for the Etnedal study area,
including indices that are affected by greenness, water content, and certain pigments such
as anthocyanins. By contrast, only the red-edge position index (REPI) showed statistically
significant differences for the Nordskogen study area and only in the case for which a
normal distribution was assumed.
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Table 4. Result of comparison of vegetation index values between rot-infected and rot-free trees using
Student’s t-test and Wilcoxon’s rank sum test for original Etnedal imagery.

Index t-Statistics p (t) w-Statistic (×102) p (w)

NDVI 3.66 <0.001 513 <0.001
SRI 3.22 0.001 510 0.001
EVI 2.70 0.007 507 0.001

ARVI 3.16 0.002 503 0.002
RENDVI 3.78 <0.001 528 <0.001
MRESRI 1.18 0.241 488 0.012

MRENDVI 2.87 0.005 505 0.001
SGI −0.31 0.753 420 0.695

VREI1 3.03 0.003 522 <0.001
REPI 1.28 0.203 450 0.373
PRI 2.09 0.038 482 0.025
SIPI −2.37 0.019 377 0.026

RGRI −2.61 0.010 378 0.028
CRI1 1.33 0.186 456 0.258
CRI2 1.65 0.010 467 0.108
ARI1 −0.72 0.475 430 0.997
ARI2 −2.79 0.006 357 0.002
WBI −0.92 0.360 428 0.952

NDWI 2.40 0.017 506 0.001
NDII 2.28 0.024 488 0.007
MSI −2.49 0.014 366 0.012

Table 5. Result of comparison of vegetation index values between rot-infected and rot-free trees using
Student’s t-test and Wilcoxon’s rank sum test for Nordskogen imagery.

Index t-Statistics p (t) w-Statistic (×102) p (w)

NDVI −1.10 0.274 353 0.397
RENDVI −0.46 0.650 351 0.448

VREI1 0.01 0.990 353 0.378
REPI −2.02 0.046 307 0.217
RGRI 0.86 0.390 327 0.735
CRI1 −0.49 0.630 324 0.629
CRI2 −0.71 0.477 319 0.497
ARI1 −0.33 0.740 336 0.928
ARI2 0.06 0.951 332 0.904

Table 6. Result of comparison of vegetation index values between infected and healthy trees using
Student’s t-test and Wilcoxon’s rank-sum test for resampled Etnedal imagery.

Index t-Statistics p (t) w-Statistic (×102) p (w)

NDVI −0.08 0.933 403 0.925
SRI 4.64 <0.001 499 <0.001
EVI 2.89 0.004 481 0.001

ARVI 4.04 <0.001 487 <0.001
RENDVI 4.74 <0.001 507 <0.001

SGI −0.92 0.361 383 0.302
VREI1 4.68 <0.001 504 <0.001
REPI 1.11 0.268 422 0.127
PRI 2.41 0.017 445 0.069

REPI −2.58 0.011 359 0.036
RGRI 3.03 0.003 465 0.006
CRI1 3.40 0.001 478 0.001
CRI2 −1.81 0.071 400 0.820
ARI1 −3.13 0.002 356 0.025
ARI2 1.65 0.010 467 0.108
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3.2. RSBR Classification

Table 7 shows modeling results from the Etnedal study area, while results from the
Nordskogen area are shown in Table 8. All tables show the five best models for each set of
images according to the kappa statistic. The best model came from the Etnedal site, used
variables of all types (spectral bands, derivatives, and indices) selected according to the
procedures described in the methods section, and delivered an overall accuracy of 75.6%,
with a kappa value of 0.24. Models which only used one category of variables suffered a
substantial decrease in performance, especially for model runs for which only one index
was used. Using all vegetation indices delivered an overall accuracy of 61.0% and a kappa
value of 0.18. The best single-index model used the Moisture Stress Index (MSI), with an
overall accuracy of 72.5% and a kappa value of 0.17.

Table 7. Selected model results from the Etnedal study area.

Variable Combinations PA-No Rot 2 PA-Rot UA-No Rot 3 UA-Rot OA 4 Kappa F1 Score

FS 1 82.3 44.4 87.3 35.1 75.6 0.24 0.39
All Indices 59.7 65.3 85.5 32.2 61.0 0.18 0.43

MSI 80.1 38.3 85.4 30.0 72.5 0.17 0.34
EVI 55.0 72.3 89.9 26.4 58.1 0.16 0.39

NDII 87.2 27.7 84.4 31.9 76.4 0.16 0.30
1 FS-variables chosen by the feature selection algorithm described in the methods section. Selected features were:
Band 1 (410 nm), Band 266 (1364 nm), Band 358 (1834 nm), Band 364 (1865 nm), the first derivatives of bands
367, 376, 399, and 419 (1881, 1927, 2045 and 2147 nm), the second derivatives of bands 19, 28, 46, 132, 334, 342,
367, 482, 483 (463, 489, 542, 792, 1712, 1753, 2469, 2474 nm), and Anthocyanin Reflectance Index 2. All-Indices
indicates that all variables of a given type were used. MSI–Moisture Stress Index. EVI–Enhanced Vegetation Index.
NDII–Normalized Difference Infrared Index. 2 PA: Producer’s Accuracy (%). 3 UA: User’s Accuracy (%). 4 OA:
Overall Accuracy (%).

Table 8. Selected model results from the Nordskogen study area.

Variable Combinations PA-No Rot 2 PA-Rot UA-No Rot 3 UA-Rot OA 4 Kappa F1 Score

FS 1 55.6 79.3 95.9 17.2 60.1 0.13 0.28
All Indices 57.2 75.9 95.3 17.1 59.1 0.13 0.28
RENDVI 84.4 31.0 91.3 18.8 57.7 0.12 0.23

NDVI 77.60 41.4 91.9 17.7 73.8 0.12 0.25
CRI1 61.6 62.1 93.3 15.8 61.8 0.10 0.25

1 FS–variables chosen by the feature selection algorithm described in the methods section. Selected features were:
Band 2 (480 nm), Band 16 (695 nm), NDVI, RGRI, REPI, CRI1, and CRI2. All-Indices indicates that all variables of a
given type were used. RENDVI–red edge normalized difference vegetation index. NDVI–Normalized Difference
Vegetation Index. 2 PA: Producer’s Accuracy (%). 3 UA: User’s Accuracy (%). 4 OA: Overall Accuracy (%).

From the Nordskogen study site, the accuracies obtained were lower than from Etnedal,
with the best classification giving an overall accuracy of 60.1% (kappa value 0.13). In
contrast to the Etnedal study area, using only spectral indices did not significantly affect
classification accuracy or kappa values. The red-edge normalized difference vegetation
index (RENDVI) and NDVI were the two vegetation indices that gave the greatest kappa
values when used alone.

Table 9 shows the results obtained from using the resampled Etnedal imagery. Accura-
cies and kappa values were greater than those from the Nordskogen site but lower than the
original Etnedal imagery. In contrast to the other datasets, the best classification models
were built from single indices rather than a combination of variables.
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Table 9. Select Model results from the Etnedal study area with image resampling.

Variable Combinations PA-No Rot 2 PA-Rot UA-No Rot 3 UA-Rot OA 4 Kappa F1 Score

ARVI 78.0 44.7 85.1 33.3 71.4 0.20 0.38
CRI2 79.6 40.4 84.4 32.8 71.9 0.18 0.36
VREI 70.2 51.1 85.4 29.6 66.4 0.17 0.37

RENDVI 66.5 53.2 85.2 28.1 63.9 0.15 0.37
FS 1 71.2 46.8 84.5 28.6 66.4 0.15 0.36

1 FS–variables chosen by the feature selection algorithm described in the methods section. For this study area,
selected variables were Band 6 (550 nm), Band 22 (735 nm), ARVI, & CRI2. All-indicates that all variables of a given
type were used. ARVI–aerosol resistant vegetation index. CRI2–carotenoid reflectance index 2. VREI: Vogelmann
red edge index. 2 PA: Producer’s Accuracy (%). 3 UA: User’s Accuracy (%). 4 OA: Overall Accuracy (%).

4. Discussion

The results of this paper indicate that detection of RBSR in Picea abies is possible
with UAV-based hyperspectral sensors. However, accuracies and kappa values were
relatively modest. Classification accuracies were greater in the Etnedal study area, where a
490-band hyperspectral sensor was used, than in the Nordskogen study area, where a
29-band hyperspectral sensor was used. Likely explanations include the greater number
of bands and the wider spectral range of the sensor used in the Etnedal study area. The
sensor used in Etnedal contained enough bands with small enough bandwidths to calculate
spectral derivatives, while the camera used in Nordskogen did not. A second explanation
for these results is that the 29-band sensor used in this study covered a narrower portion
of the spectrum than the 490-band sensor (450–895 nm vs. 400–2500 nm). Consequently,
the 29-band camera lacked data from much of the near-infrared spectrum and the entire
shortwave infrared spectrum. Given the importance of these bands for detecting changes
to leaf cellular structure and water content, the difference in spectral coverage remains a
plausible explanation for the difference in classification accuracy between the two sensors.
Future research should aim to control these differences more carefully by using sensors
covering identical portions of the electromagnetic spectrum, ideally in the same study area.

An important limitation of this study is the fact that the imagery was collected from
two separate study areas with different field data collection procedures. Classification
models using resampled imagery from Etnedal provided accuracies that were greater
than the Nordskogen imagery but lesser than the original Etnedal imagery. Furthermore,
only models including spectral bands and derivatives from the original Etnedal imagery
provided greater accuracies than models from the resampled imagery. Models using
spectral indices alone offered identical performance.

Given the difference in classification accuracy between the resampled imagery and the
original 29-band imagery, site effects or field data collection discrepancies may have played
a role in the accuracy differences observed between the study areas. The smaller size of the
Etnedal study area could have also led to a greater spatial correlation between the trees in
the training and testing samples, which could produce higher accuracies at the Etnedal site.
Thus, while this study suggests that hyperspectral imagery with hundreds of bands may
be more effective for RBSR detection than multi-spectral imagery or hyperspectral imagery
with only 20–30 bands, this is not necessarily a universal rule. It may be worthwhile to
test multi-spectral sensors in the future, provided the sensors cover the near-infrared and
shortwave infrared portions of the spectrum. Our analysis of the effectiveness of vegetation
indices for the classification of RBSR offers clues to potential physiological changes caused
by RBSR infection. In the Etnedal study area, the Moisture Stress Index (MSI), Normalized
Difference Infrared Index (NDII), and Enhanced Vegetation Index (EVI) were found to
be the most important indices for detecting RBSR with SVM classification when only a
single vegetation index was used. Both the MSI and NDII are strongly correlated with leaf
moisture content, suggesting that RBSR infection could compromise water transport within
infected trees. EVI is a greenness index that is strongly influenced by canopy structural
variables such as leaf area. This suggests that RBSR is potentially altering the canopy of
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infected trees, possibly through lower foliage density. Such changes to canopy structure
would be consistent with previous studies, which have found changes in crown density
due to RBSR infection [45,46]. If so, these changes in canopy density could potentially
be detected through the use of ALS data, and this should be tested in future research.
ALS offers a greater potential to detect changes in canopy structure than spectral data
and is suitable for both UAV platforms (for small areas) and airborne platforms for large-
scale studies.

In the Nordskogen study area, MSI and NDII were not calculated due to the lack of
necessary infrared bands. The most effective vegetation indices for detecting RBSR in this
study area were the Normalized Difference Vegetation Index (NDVI) and the Red-Edge
Normalized Difference Vegetation Index. These indices are influenced by leaf area and
chlorophyll content, among other variables. This suggests that both foliar pigment content
and total leaf area could be altered by RBSR infection, although additional research would
be needed to assess the extent to which RBSR alters leaf pigments.

Statistical significance tests showed that most vegetation indices exhibited statistically
significant differences between infected and healthy trees in the Etnedal site. These included
indices of vegetation greenness such as NDVI, indices of water content such as NDII and
Normalized Difference Water Index (NDWI), as well as measures of leaf pigments such
as Anthocyanin Reflectance Index 2 (ARI2) and Carotenoid Reflectance Index 2 (CRI2).
Interestingly, while ARI2 and CRI2 were statistically different between infected and healthy
trees, ARI1 and CRI1 were not. One possible explanation is that ARI 2 and CRI2 are
superior for detecting high values of anthocyanins and carotenoids, respectively [38,39]. A
similar phenomenon occurred with leaf water content: NDII and NDWI showed statistical
differences, while the Water Band Index (WBI) did not. Future remote sensing-based
studies of plant health should therefore consider including two or three vegetation indices
for each plant functional trait, rather than just one, as one vegetation index can detect a
change in a specific plant pigment when another index does not. By contrast, vegetation
indices in the Nordskogen site were generally not statistically different between the rot and
rot-free classes. This could be due to the sensor used or confounding site factors.

Even though the accuracies obtained thus far are modest, there is still potential value
in detecting RBSR with UAV-based sensors. In Norway, where RBSR fungi are native
and rarely cause tree death or severe ecosystem disruption, knowing which specific trees
are infected is likely less important than in a context where RBSR fungi are invasive
(such as H. irregulare in Italy), and accurate detection of infected trees is of paramount
importance to allow for severe control measures. Estimating the percentage of trees in
a stand infested with RBSR could help forest owners optimize the timing of harvests to
minimize losses from rot damage. While UAVs are expensive for use over large areas,
their flexibility and low start-up cost make them potentially attractive for small forest
owners. To determine the applicability of these methods for practical forestry, it will be
necessary to test external classification models, i.e., models developed at one study site and
applied to other study sites. If models developed at one site can be applied to others, then
UAV-based imagery could offer a way to detect RBSR without fieldwork. In cases where
RBSR is likely to cause tree death and/or severe ecological damage, greater classification
accuracies than those obtained in this study may be necessary for the classifications to be
useful. Classification accuracies will likely be higher in these contexts since rapid tree death
caused by H. irregulare would be expected to provide a stronger spectral signature than
the slow tree decline caused by RBSR species in Norway. Future research should test this
hypothesis by evaluating the effectiveness of hyperspectral and multi-spectral imagery for
detecting other RBSR species.

5. Conclusions

This study’s results demonstrate that UAV-based multi-spectral and hyperspectral
sensors can be used to detect RBSR infection in Norway spruce trees. Models generated
in this study could potentially be used for mapping RBSR in other areas where identical
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imagery is collected. However, further research is needed to determine the applicability
of these models to external study areas. Classification accuracies were greater when a
490-band camera was used than when a 29-band sensor, although this result may be a
function of the spectral range of the sensors rather than the number of spectral bands.
This suggests that cameras with greater numbers of bands are likely superior for detecting
RBSR, which should be considered when designing future research projects for detecting
pathogenic rot fungi.

Because of the limitations that the use of different sites imposed on the generalizability
of our results; it is recommended that future sensor comparisons should collect imagery
from the same site(s) with all sensors being tested. Future research avenues could also
include using UAV-based imagery to detect RBSR infection in other tree species or the
potential for metrics derived from ALS sensors to improve classification accuracy. In
addition, it may also be desirable for future studies to collect data regarding the presence of
other forest health issues (such as bark beetles) in order to disentangle the effect of different
pathogens or insects on vegetation spectra.
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Appendix A

Vegetation Index Formulas
Note: The letter R, followed by a number, indicates the reflectance at the wavelength

given by the number.
Normalized Difference Vegetation Index

NDVI = (NIR − Red)/(NIR + Red)

Simple Ratio Index
SR = NIR/Red

Atmospherically Resistant Vegetation Index

ARVI = (R800 − [R680 − γ(R450 − R680)])/(R800 − [γ(R450 − R680)])

Red Edge Normalized Difference Vegetation Index

RENDVI = (R750 − R705)/(R750 + R705)
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Modified Red Edge Simple Ratio Index

MRESR = (R750 − R445)/(R705 − R445)

Modified Red Edge Normalized Difference Vegetation Index

MRENDVI = (R750 − R705)/(R750 + R705 − 2*R445)

Vogelmann Red Edge Index 1

VREI1 = R740/R720

Red Edge Position Index
This is the band between 690 nm and 740 nm for which the first derivative is greatest

(i.e., it is the spectral band corresponding to the point on the reflectance curve where the
slope is the greatest).

Structure Insensitive Pigment Index

SIPI = (R800 − R445)/(R800 − R680)

Red Green Ratio Index

RGRI = Sum of reflectance from 600-699 nm, divided by sum of reflectance from 500 to 599 nm

Water Band Index
WBI = R970/R900

Normalized Difference Water Index

NDWI = (R857 − R1241)/(R857 + R1241)

Moisture Stress Index
MSI = R1599/R819

Normalized Difference Infrared Index

NDII = (R819 − R1649)/(R819 + R1649)

Sum Green Index
SGI is the mean reflectance of all bands from 500 nm to 600 nm.
Photochemical Reflectance Index

PRI = (R531 − R570)/(R531 + R570)

Carotenoid Reflectance Index 1

CRI1 = (1/R510) − (1 − R550)

Carotenoid Reflectance Index 2

CRI2 = (1/R510) − (1/R700)

Anthocyanin Reflectance Index 1

ARI1 = (1/R550) − (1/R700)

Anthocyanin Reflectance Index 2

ARI2 = R800*[(1/R550) − (1/R700)]
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