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Introduction 29 

Variation in thermal climate is well known to shape plant distributions by differentially affecting 30 

traits that contribute to lifetime fitness (Lancaster and Humphreys, 2020; Huang et al., 2021). 31 

From an agricultural perspective, increasing ambient temperatures between approximately 12ºC 32 

to 27ºC tend to increase photosynthetic capacity, resulting in an overall increase in energy stores 33 

and plant biomass (Bernacchi et al., 2009; Wigge, 2013). However, the fact that temperatures 34 

outside this range can promote phase transitions between juvenile and adult, and adult vegetative 35 

and reproductive growth (hereafter flowering), means that simply increasing growth 36 

temperatures can lead to delays, or even low yields in the crop (e.g. leaves versus fruits and 37 

seeds) of interest. Understanding phylogenetic patterns of how plants respond to these different 38 

temperatures is becoming critically important as we strive to feed an expected population of 39 

around 9.7 billion by 2050 (UN-DESA-PD, 2019). This need is further amplified by global 40 

warming, where average temperatures will continue to rise over the next century, seasonal norms 41 

will be punctuated by severe weather events such as unseasonal frosts or droughts, and day-night 42 

temperature differentials will be weakened (Cox et al., 2020). 43 

 44 

Research over the past 25 years has elucidated multiple genetic pathways – age, autonomous, 45 

gibberellin response, photoperiod, vernalization, and ambient temperature – that control 46 

flowering time (Simpson and Dean, 2002). All of these pathways converge on the floral pathway 47 

integrator gene FLOWERING LOCUS T (FT) to promote flower production broadly across 48 

angiosperms (Ballerini and Kramer, 2011). The complexity of flowering regulation likely 49 

emerges from the critical nature of matching reproductive development with the appropriate 50 

environmental conditions. Flowers are particularly susceptible to damage by abiotic and biotic 51 

stressors, and in many plants, require active pollinators for adequate seed set (Jagadish et al., 52 

2016). 53 

 54 

In addition to FT, deep functional conservation has been found for many genes within the 55 

photoperiod flowering pathway, such that switches between long-, short-, and neutral-day 56 

flowering are evolving largely through the rewiring of an ancient daylength gene network 57 

(Hayama and Coupland, 2004; Fjellheim and Preston, 2018). By contrast, support for shared 58 

derived temperature pathways is limited (but see Ruelens et al., 2013; Dixon et al., 2019), either 59 
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due to incomplete sampling and/or multiple independent origins, particularly of low temperature 60 

regulated flowering (Amasino 2005; Ream et al., 2012; Preston and Fjellheim 2020). Despite the 61 

potentially stressful nature of low and high temperatures, in many areas of the world these 62 

conditions preempt climates favorable to flowering; as such they can be used as cues to ready 63 

plants for reproduction. Vernalization – defined as an extended period of above freezing cold – 64 

for example, triggers many temperate plants to become competent to inductive signals that will 65 

later provoke flowering (Amasino, 2004). In turn, the ability to respond to vernalization is often 66 

age dependent, and it is becoming clear that the ‘memory’ of vernalization can be influenced by 67 

variation in both low and high temperatures (Zhou et al., 2013; Bouché et al., 2015).  68 

 69 

Here, we provide an update on what is known about the mechanisms underlying temperature-70 

regulated flowering time, their conservation, and their evolution at both the micro- and macro-71 

scale. We will start with an appraisal of evidence for one or more plant thermal sensory systems 72 

and present the emerging picture for recruitment of functionally novel and ancient flowering 73 

time pathway genes in the rewiring or independent origins of ambient, low, and high temperature 74 

regulated phase change. We will focus on how plants have modified their sensitivities to 75 

differences in absolute temperatures, their duration and variation; and assess the importance of 76 

temperature fluctuations in determining plasticity in flowering time. As well as revealing areas of 77 

research required for a better understanding of how past thermal climates have shaped global 78 

patterns of plasticity in plant phase change, we will consider the implications for these 79 

phenological thermal responses in light of global warming. 80 

 81 

THERMAL SENSING MECHANISMS IN PLANTS ARE STILL BEING DISCOVERED 82 

 83 

In addition to being distributed across a broad spectrum of climate zones, from tropical lowland 84 

to temperate and cold desert (Geiger, 1954; Beck et al., 2018), individual plants experience 85 

changes in temperature that mark different seasons, day to night cycles, and even the rapid 86 

cooling of solar irradiation caused by a sudden breeze (Fig. 1) (McClung and Davis, 2010). 87 

Although these changes in temperature are likely to affect cellular physiology in different ways 88 

(e.g. by altering membrane fluidity and protein folding), they are hypothesized to integrate into 89 

bona fide thermal sensory systems, allowing for active signal transduction and downstream 90 
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responses (Lamers et al., 2020). Primary thermal sensors can be defined as those that show short 91 

term alterations in structure or activity directly in response to changes in external temperature, 92 

and that continually transduce signals to the plant to foster longer term responses such as 93 

temperature acclimation, flowering competency, and floral induction (Vu et al., 2019; Lamers et 94 

al., 2020). Current data suggest distinct thermal sensors for ambient, low, and high temperatures 95 

that affect different combinations of downstream signaling pathways, and ultimately growth and 96 

development (Lamers et al., 2020). A number of conserved temperature sensing mechanisms 97 

have been proposed for seed plants, many of which have been reviewed previously (McClung 98 

and Davis, 2010; Guo et al., 2018), and will not be exhaustively discussed here. We will focus on 99 

thermal sensing mechanisms for which there is strongest evidence based on relatively recent 100 

work. 101 

 102 

Ambient temperature sensing 103 

At least some plants can detect subtle changes in ambient temperature through the thermal 104 

reversion of active (Pfr, far-red absorbing) to inactive (Pr, red absorbing) phytochromes (Casal 105 

and Questa, 2018). Most of the evidence for thermal reversion comes from work on 106 

PHYTOCHROME A (PHYA) and PHYB that are found broadly in seed plants (Mathews, 2010). 107 

However, although PHYA and PHYB are widely known as pigment-containing light sensors that 108 

interact with the circadian clock to set daily and annual rhythms, compelling evidence for their 109 

role in light-dependent thermal sensing is so far limited to eudicots (Jung et al., 2016; Klose et 110 

al., 2020; Cao et al., 2021). In Arabidopsis (Arabidopsis thaliana, Brassicaceae), increased 111 

temperatures positively affect the speed of thermal reversion, derepressing epidermal 112 

PHYTOCHROME INTERACTING FACTOR 4 (PIF4) that promotes shoot cell elongation and 113 

flowering, the latter through transcriptional regulation of the florigen FT (Fig. 2) (Kumar et al., 114 

2012; Legris et al., 2016; Kim et al., 2020). In the daytime, PIF4 activity is stabilized by 115 

HEMERA (HRM), allowing thermoresponsiveness during both the light and dark (Qia et al., 116 

2020). 117 

 118 

Thermal reversion in Arabidopsis is also known to be repressed by PHOTOPERIODIC 119 

CONTROL OF HYPOCOTYL 1 (PCH1) and PHYTOCHROME-INTERACTING FACTOR 6 120 

(PIF6) (Smith et al., 2017; Huang et al., 2019), whereas ARABIDOPSIS RESPONSE 121 
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REGULATOR 4 (ARR4) (Sweere et al., 2001) promotes it. Recently it was also found that the 122 

long-day photoperiod flowering pathway protein GIGANTEA (GI) mediates the 123 

photoperiodicity of thermal reversion by attenuating PIF4 function under long-days (Park et al., 124 

2020). Despite this progress in understanding thermal sensing, it is not known how thermal 125 

reversion intersects with the ambient flowering time pathway (see next section and Outstanding 126 

Questions), where higher ambient temperatures often promote faster flowering (but see Verhage 127 

et al., 2017; del Olmo et al., 2019). Furthermore, the lack of evidence for phytochrome-regulated 128 

thermal reversion outside core eudicots, begs the question as to the conservation and number of 129 

origins of this sensing mechanism. 130 

 131 

Low temperature sensing 132 

Recent advances in elucidating the mechanisms involved in low temperature perception in plants 133 

highlight the potential involvement of changes in membrane fluidity, membrane protein activity, 134 

and thermal reversion (Fujii et al., 2017; Guo et al., 2018). For the latter, the same PHYB-135 

mediated detection of ambient temperature change has been hypothesized for cooler 136 

temperatures. However, recent work on the maidenhair fern (Adiantum capillus-veneris) and the 137 

umbrella liverwort (Marchantia polymorpha) also implicate the blue-light receptor phototropin 138 

in the repositioning of chloroplast away from the cell surface at low temperatures, presumably to 139 

avoid light (Fujii et al., 2017). In the case of membrane fluidity, it is posited that low 140 

temperature-induced changes in plasma membranes cause the formation of cytoskeletal bundles 141 

that interact with calcium signaling to trigger a number of signal transduction pathways, 142 

including the C-repeat binding factor (CBF) pathway involved in rapid cold acclimation 143 

(Chinnusamy et al., 2010; Hafke et al., 2013; Liu et al. 2017; Zhang et al., 2020). A potential 144 

direct sensor of chilling in rice (Oryza sativa) is the membrane protein COLD1 that activates the 145 

GTPase activity of RICE G-PROTEIN ALPHA SUBUNIT1 (RGA1) (Ma et al., 2015). Together 146 

these proteins trigger a calcium influx, possibly by directly forming a calcium permeable 147 

channel, again leading to signal transduction of cold response genes. Future work is required to 148 

experimentally test if COLD1/RGA1 is indeed part of a calcium permeable channel, and to 149 

determine if this model extends beyond rice. 150 

 151 

High-temperature sensing 152 
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High temperatures appear to be sensed broadly across plants by heat shock proteins (HSPs) that 153 

work as molecular chaperones for proteins disaggregated by heat and other stressors (Liberek et 154 

al., 2008; Boden et al., 2013). When the hydrophobic regions of water-soluble proteins are 155 

exposed by heat-induced unfolding, they attract hydrophobic residues of HSPs, and together 156 

these promote the action of heat shock factors (HSFs). HSFs bind to heat shock elements (HSEs) 157 

associated with transcription of several genes. These include those that contribute to an 158 

epigenetic memory of heat and auxin biosynthesis required for growth and possibly phase 159 

change (Li et al., 2018; Friedrich et al., 2021). 160 

 161 

VARIATION IN AMBIENT TEMPERATURE SIGNALING AND RESPONSE 162 

 163 

Conservation and diversification of ambient temperature-mediated phase change in the 164 

Brassicaceae 165 

 166 

In many Arabidopsis accessions, warm temperatures can substitute for long-days to accelerate 167 

flowering, but the dual regulation of many ambient temperature-responsive genes/proteins by 168 

photoperiod highlights the close connection between these environmental signals (Klose et al., 169 

2020). As previously mentioned, PIF4 is an important node in the Arabidopsis thermal sensing 170 

pathway, being stabilized as ambient temperatures increase and convert Pfr to its inactive Pr 171 

form. However, PIF4 protein also increases during Pfr degradation in the dark. The role of dark-172 

stabilized PIF4 protein in flowering manifests through its transcriptional activation of FT (Fig. 2) 173 

(Wigge, 2013). At lower ambient temperatures in Arabidopsis, the PIF4 binding site of FT is 174 

blocked by an H2A.Z nucleosome, whereas at higher temperatures this block is lifted (Kumar et 175 

al., 2012). Interesting, although the PIF4-FT regulon is conserved in Brassica rapa 176 

(Brassicaceae), higher ambient temperatures actually increase histone H2A.Z levels at B. rapa 177 

FT, resulting in a negative relationship between temperature and flowering (de Olmo et al., 178 

2019). Arabidopsis PIF4 levels are also negatively regulated by the evening complex (EC) of 179 

EARLY FLOWERING 3 (ELF3), ELF4, and LUX ARRYTHMO (LUX) in a temperature-180 

dependent manner (Fig. 2) (Silva et al., 2020). Recent evidence suggests that warm temperatures 181 

inhibit the EC complex from DNA-binding by reducing the localization of ELF3 to sub-nuclear 182 

foci, thus allowing PIF4 to interact with FT (Ronald et al., 2021). In addition to controlling 183 
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flowering time, it has been hypothesized that the increased activity of PIF4 with warming nights 184 

contributes to concomitant earlier flower bud opening (Jagadish et al. 2016). While intriguing, 185 

the potential mechanism for this remains largely unexplored. 186 

 187 

A second major component of the ambient temperature pathway in both Arabidopsis and 188 

Brassica sp. is mediated by differential expression and splicing of transcription factors that 189 

regulate both repressors and promoters of flowering (Verhage et al., 2017). In the Arabidopsis 190 

Col-0 ecotype, FLOWERING CONTROL LOCUS A (FCA) produces four alternative splice 191 

forms, one of which (lambda) becomes dominant at higher ambient temperatures to specifically 192 

repress the flowering repressor FLOWERING LOCUS C (FLC) (Quesada et al., 2003). Likewise, 193 

at lower ambient temperatures, specific spliceforms of FLOWERING LOCUS M (FLM) and 194 

MADS AFFECTING FLOWERING 2 (MAF2) bind to SHORT VEGETATIVE PHASE (SVP) 195 

to form floral repressor complexes; at higher temperatures FLM-delta and MAF2var2 variants 196 

predominate and no longer bind strongly to SVP (Lee et al., 2013; Posé et al., 2013; Airoldi et 197 

al., 2015). The importance of FLM splicing for local adaptation is evident when comparing 198 

natural Arabidopsis accessions from cool temperate environments. For example, Killean-0 from 199 

Scotland contains an insertion in the first intron of FLC that results in lower abundance of the 200 

beta variant at lower temperatures, resulting in earlier flowering relative to Col-0 (Lutz et al., 201 

2015). Although ambient temperature-regulated alternative splicing appears to be conserved 202 

between Arabidopsis and Brassica, partially through differential splicing of splicing-related 203 

genes, the exact targets of the spliceosome appear to be quite distinct even across ecotypes 204 

(Vertage et al., 2017). 205 

 206 

Evidence for rewiring versus independent origins of ambient temperature-regulated 207 

flowering across angiosperms 208 

Similar to the case in Brassicaceae, angiosperms more broadly show variation in how they 209 

respond to different ambient temperatures. For example, bunch-flowered daffodil (Narcissus 210 

tazetta; Amarylidaceae) is faster, and Chrysanthemum sp. (Asteraceae) and Phalaenopsis 211 

aphrodite (Orchidaceae) slower, in flowering with high ambient temperatures, respectively (An 212 

et al., 2011). Moreover, in many wheat (Triticum sp.) and barley (Hordeum vulgare) (Pooideae, 213 

Poaceae) cultivars, the relationship between ambient temperature and flowering is positive under 214 



 8 

long-days, but negative under short-days (Hemming et al., 2012). Part of this variation might be 215 

due to differences in the range of temperatures that are stressful to each genotype, whereby the 216 

activation of stress response pathways can come at a cost to reproduction (Lin et al., 2019). 217 

Rewiring of ambient stress response pathways is also likely to play a major role, an 218 

understanding of which will require fundamental knowledge on how conserved the ambient 219 

flowering time pathway is across plants. 220 

 221 

In monocots, knowledge on the genetic basis of ambient temperature-regulated phase change is 222 

best understood within grasses, such as sub-tropical rice, and temperate wheat and barley. 223 

However, many questions remain, from the sensor of ambient temperature change to the 224 

transduction pathways that reset whole plant physiology (see Outstanding Questions). As 225 

previously mentioned, the role of PHYB in temperature sensing has not been investigated in 226 

grasses, and no PIF-like genes have been functionally characterized to date (Cao et al., 2021). 227 

On the other hand, members of the grass EC, including ELF3, have been found to increase with 228 

high ambient temperatures in barley (Ford et al., 2016; Ejaz and von Korff, 2017). These data 229 

suggest divergence in high ambient temperature regulation of the EC between Arabidopsis where 230 

it is repressed, and barley where it is promoted. This is despite the fact that the targeted 231 

accessions from both species flowered faster at higher ambient temperatures under long days 232 

(Ejaz and von Korff, 2017; Ronald et al., 2021).  233 

 234 

Two of the key genes that affect grass ambient temperature response in long days are the CCT 235 

domain-containing gene PHOTOPERIOD 1 (PPD-H1) and the MADS-box FRUITFULL (FUL)-236 

like gene VERNALIZATION 1 (VRN1) (Ejaz and von Korff, 2017). PPD-H1 is often considered a 237 

repressor of flowering, as it forms a repressor complex with other CCT domain proteins, such as 238 

CONSTANS1 (CO1), CO2 and possibly VRN2 (Shaw et al., 2020). However, it is becoming 239 

increasingly clear that both photoperiod and temperature can modify these protein-protein 240 

interactions, turning the repressor complex into an activator complex (Zong et al., 2021). In 241 

barley, a functional PPD-H1 allele is required to accelerate flowering at high ambient 242 

temperatures in long days (Ejaz and von Korff, 2017). This acceleration of flowering by PPD-H1 243 

and the activator complex at higher ambient temperatures is exacerbated in a vrn1 background, 244 

suggesting that the repression of functional VRN1 transcripts by high ambient temperatures is 245 
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incomplete (Ejaz and von Korff, 2017). Under short days, ambient temperatures repress wheat 246 

and barley flowering through the VRN2-CCT domain repressor complex, and via a VRN2-247 

independent pathway involving the MADS-box protein ODD SUPPRESSOR OF 248 

OVEREXPRESSION OF CONSTANS 1 LIKE 2 (ODDSOC2) (Hemming et al., 2012). 249 

 250 

In addition to PPD-H1 and VRN1-like genes, studies on the temperate grass Brachypodium 251 

distachyon (Pooideae) have revealed a role for VERNALIZATION INSENSITIVE 3-LIKE 4 252 

(VIL4) in the long day acceleration of flowering at low ambient temperatures (An et al., 2015). 253 

Similar to VIN3 in Arabidopsis, VIL4 works with the POLYCOMB REPRESSIVE COMPLEX 254 

2 (PRC2) to H3K27 methylate its target genes. However, whereas the target of repression of 255 

AtVIN3 is the flowering repressor FLC that inhibits flowering in the absence of vernalizing 256 

temperatures, the BdVIL4 target is miR156 that works in the age pathway to delay the juvenile-257 

to-adult onset that preempts the reproductive transition (An et al., 2015). Interestingly, 258 

transcription of miR156 actually increases at low ambient temperatures in Arabidopsis and the 259 

orchid Phalaenopsis (An et al., 2011), and two related proteins VIL2 and VIL3 in rice repress a 260 

different flowering time repressor in a temperature independent manner (Wang et al., 2013; 261 

Yang et al., 2013). These data demonstrate evolution of crosstalk between the age and ambient 262 

temperature pathways both outside and within grasses. Additionally, they tentatively suggest that 263 

ambient temperature-regulated flowering was an ancient innovation that has been repeatedly 264 

modified through continued adaptation and/or developmental system drift (True and Haag, 265 

2001). The latter conclusion is consistent with angiosperms evolving in (sub)tropical 266 

environments where small fluctuations in ambient temperatures could have signaled oncoming 267 

seasonal shifts in precipitation (Wing and Boucher, 1998). 268 

 269 

Another area of interest in both eudicot and monocot species is the role of ambient temperatures 270 

in synchronization of irregular seed production, or mast flowering, across large geographic areas. 271 

The delta T model proposes that mast flowering is induced when plants experience a positive 272 

difference between previous summer temperatures and the summer prior to that (Kelly et al., 273 

2013). A testable mechanism for this summer memory has been proposed to be epigenetic, either 274 

through promotive epigenetic marks on flowering promoters (e.g. FT) or repressive marks on 275 

flowering repressors (e.g. FLC) (Fig. 3) (Samarth et al., 2020). If this memory can be 276 
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demonstrated broadly across masting species that represent over 37 angiosperm plant families 277 

(Samarth et al., 2020) (see Outstanding Questions), it would be another example of plants 278 

coopting a highly conserved mechanism in convergent trait evolution, and would parallel a 279 

similar winter memory in temperate plants (Luo et al., 2020) (see next section). 280 

 281 

EVOLUTION OF COLD-RESPONSIVE FLOWERING 282 

 283 

In addition to variation in ambient temperatures, plants distributed in temperate and high latitude 284 

areas experience dramatic seasonal shifts in temperature, whereby winter (and often autumn and 285 

spring) temperatures drop below 15ºC (Fig. 1B) (Preston and Sandve, 2013; Casal and 286 

Balasubramanian, 2019). Prior to the onset of freezing, many temperate taxa are made competent 287 

to flower by vernalization that ready them into reproductive development quickly in the spring 288 

(Chouard, 1960; Heide 1994)). Several studies have also proposed that low temperatures regulate 289 

and activate flower formation, since some plants form flower buds during vernalization 290 

(Chouard, 1960; Wang et al., 2009; Kemi et al., 2019; O’Neill et al., 2019; Soppe et al., 2021). 291 

Furthermore, grapevine (Vitis vinifera), sweet cherry (Prunus sp.), and peach (Prunus persica) 292 

plants form flower buds the year before flowering and require a cold period to flower (Engı̇n and 293 

Ünal, 2007; Carmona et al., 2008; Vimont et al., 2019). The lack of a sufficiently cold winter can 294 

also reduce the quantity and quality of fruit production (Atkinson et al., 2013). 295 

 296 

A number of lines of evidence suggest that vernalization responsiveness has evolved multiple 297 

times independently in angiosperms (Preston and Sandve, 2013), such as at the base of Pooideae 298 

grasses (Brooking and Jamieson, 2002; Schwartz et al., 2010; Fiil et al., 2011; Saisho et al., 299 

2011; McKeown et al., 2016), in the Brassicaceae (Stinchcombe et al., 2005), and within the 300 

sugar beet (Betula vulgaris) family Amaranthaceae (Boudry et al., 2002). Less well examined is 301 

the extent to which closely related taxa vary in their vernalization sensitivity and temperature 302 

threshold; the relationship of this variation to climate of origin; and the genetic mechanisms 303 

underlying this variation. In this section, we will briefly outline the molecular basis of 304 

vernalization responsiveness in Arabidopsis and other species, and then turn to evidence for fine-305 

tuning of this winter memory within closely related taxa. 306 

 307 
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Molecular basis for vernalization responsiveness in the Brassicaceae 308 

The molecular basis for vernalization responsiveness has been best described in Arabidopsis and 309 

the process is divided into three parts: initiation, memory and resetting (Fig. 4) (Song et al., 310 

2012). These processes are largely modulated by modification of the flowering repressor 311 

FLOWERING LOCUS C (FLC) (Michaels and Amasino, 1999; Sheldon et al., 2000). Positive 312 

regulation of FLC requires functional FRIGIDA (FRI) alleles, protein products of which attract 313 

transcription factors and chromatin modifiers to the FLC promoter (Johanson et al., 2000; Choi 314 

et al., 2011). In individuals with a vernalization response, FRI activates FLC prior to 315 

vernalization, making plants incompetent to flower (Helliwell et al., 2006; Searle et al., 2006). 316 

During initiation of the vernalization response, silencing of FLC is facilitated by COOLAIR, a 317 

cold-induced RNA that is antisense to FLC mRNA (Swiezewski et al., 2009; Rosa et al., 2016). 318 

Splice variants of COOLAIR and/or other associated proteins interact with FRI to form nuclear 319 

condensates, which are sequestered away from the FLC promoter (Zhu et al., 2021). This initial 320 

loss of FLC transcriptional activation is reversible as the nuclear FRI condensates are reduced 321 

when returned to warm temperatures (Zhu et al. 2021).  322 

 323 

Only following the initiation phase does prolonged exposure to cold induce epigenetic repression 324 

of FLC through a gradual switch from activate to repressed chromatin (reviewed in Hepworth 325 

and Dean 2015). This memory phase is facilitated by the plant homeodomain (PHD) polycomb 326 

repressive complex 2 (PRC2) that removes activating histone marks (i.e. H3K36me3) and adds 327 

repressive histone marks (i.e. H3K27me3) (Yang et al., 2014) (Figs. 3, 4). The PHD-PRC2 328 

complex is recruited by the long non-coding RNA (lncRNA) COLD-ASSISTED INTRONIC 329 

NON-CODING RNA (COLDAIR) and directed to the FLC promoter by another lncRNA, 330 

COLD OF WINTER-INDUCED NON-CODING RNA FROM THE PROMOTER 331 

(COLDWRAP) (Swiezewski et al., 2009; Kim and Sung, 2017). Part of the PHD-PRC2 complex 332 

is VERNALIZATION INSENSITIVE 3 (VIN3) and VERNALIZATION 2 (VRN2) that are 333 

specifically induced transcriptionally by low temperatures (Sung and Amasino 2004; Wood et 334 

al., 2006; De Lucia et al 2008). Epigenetic silencing of FLC is stabilized when PHD-PRC2 335 

increases H3K27me3 levels across the whole of FLC (Yang et al., 2014). At the tissue level, 336 

FLC is gradually repressed over time due to a cell-autonomous switch, causing progressively 337 

more cells to be in a stable, repressed state until saturation has been reached (Angel et al., 2011; 338 
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Angel et al., 2015). In this sense, the modified chromatin and its stabilization by COLDWRAP 339 

functions as a cold memory, even during warm periods. 340 

 341 

Since Arabidopsis is an annual plant, resetting of FLC expression happens during embryogenesis 342 

and involves a series of events that switch the chromatin to an active state in each subsequent 343 

generation (Sheldon et al., 2008). Putative FLC orthologs are the main targets of the 344 

vernalization pathway in other Brassicaceae species too (Wang et al., 2009; Aikawa et al., 2010; 345 

Albani et al., 2012; Baduel et al., 2016; Lee et al., 2018; Kemi et al., 2019; Wang et al., 2020). 346 

However, in contrast to annual Brassicaceae species, FLC is reactivated following transfer back 347 

to warm conditions in perennial Brassicaceae such as Arabis sp. (Kiefer et al., 2017). This 348 

observation indicates a role for FLC in differentiating between different life-history forms. 349 

Furthermore, annual and perennial species of Arabidopsis differ in the age at which they become 350 

responsive to cold temperatures, with perennial species acquiring competency to flower later in 351 

life (Wang et al., 2011; Bergonzi et al., 2013). 352 

 353 

Secondary cold thermosensors are distributed across several Brassicaceae regulatory 354 

networks 355 

Primary thermosensory information acquired by plants across both short (e.g. intraday to diurnal) 356 

and long (e.g. seasonal to interannual) timescales must be continuously integrated and interpreted 357 

by secondary thermosensors, such that it elicits appropriate physiological and developmental 358 

responses. Recent work, combining lab and field studies with mathematical modeling in 359 

Arabidopsis (Antoniou-Kourounioiti et al., 2018; Hepworth et al., 2018; Zhao et al., 2020) 360 

suggests that secondary thermosensing is distributed across distinct molecular networks (Fig. 4). 361 

FLC and VIN3 are central components of the secondary thermosensory machinery operating 362 

during vernalization, both being controlled by several independent thermosensory inputs 363 

operating on different time scales (Antoniou-Kourounioiti et al., 2018; Hepworth et al., 2018). 364 

The initial repression of FLC is independent of VIN3 and involves COOLAIR (Swiezewski et al., 365 

2009; Rosa et al., 2016), but VIN3 soon responds to the absence of warm temperatures to also 366 

downregulate FLC (Hepworth et al., 2018). Over longer time periods of stable cold, the 367 

membrane-associated NAC DOMAIN-CONTAINING PROTEIN 40 LIKE 8 (NTL8) slowly 368 

activates VIN3 transcriptionally to cause its gradual accumulation (Fig. 4; Sung and Amasino 369 
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2004; De Lucia et al., 2008; Zhao et al., 2020). This accumulation contributes to the slow, low 370 

temperature controlled epigenetic silencing of FLC by the PHD-PRC2 complex. These separate 371 

inputs involving the absence of warmth and the progression of cold combine to inform the plants 372 

about seasonal progression. A similar, multi-pathway secondary thermosensing system has also 373 

been suggested for ambient temperature regulation of FT (Kinmonth-Schultz et al., 2018). 374 

 375 

Evidence for rewiring versus independent origins of vernalization responsive flowering 376 

outside of Brassicaceae 377 

In cereals of the grass subfamily Pooideae, major players in the control of vernalization-induced 378 

flowering are distinct from those in Brassicaceae (Fig. 4). However, some FLC-like genes have 379 

been found to be minor players in the Pooideae vernalization response (Ruelens et al., 2013), 380 

such as the short day flowering repressor ODDSOC2 in wheat, barley, and B. distachyon that 381 

downregulates FLOWERING PROMOTER FACTOR1 (FPF1)-like (Greenup et al., 2010; 382 

Sharma et al., 2017). The main repressor of flowering in cereals is the CCT domain protein 383 

VERNALIZATION 2 (VRN2) that works similarly to the MADS-box protein FLC to prevent 384 

precocious autumn flowering via repression of the FT-like gene VRN3 (Fig. 4) (Yan et al., 2004; 385 

Dubcovsky et al., 2006; Trevaskis et al., 2006; Hemming et al., 2008). During vernalization, the 386 

previously mentioned flowering promoter VRN1 is gradually transcriptionally activated through 387 

the replacement of repressive H3K27me3 marks with activating H3K4me3 marks, possibly 388 

stemming from a region in the first large intron (Fig. 3) (Oliver et al., 2009; Sasani et al., 2009; 389 

Oliver et al., 2013). VRN1 provides floral competency by repressing VRN2, and by forming a 390 

positive feedback loop whereby indirect upregulation of VRN3 induces further VRN1 expression 391 

(Yan et al., 2006; Shimada et al., 2009).  392 

 393 

VRN1 is induced by cold across the Pooideae subfamily, which corresponds with an inferred 394 

early origin of vernalization responsiveness within this temperate clade (McKeown et al., 2016). 395 

A direct functional link has also been established between VRN1 and vernalization 396 

responsiveness in core Pooideae species beyond barley and wheat, such as in perennial ryegrass 397 

(Lolium perenne), timothy (Phleum pratense), and fescue (Festuca pratensis) (Petersen et al., 398 

2004; Andersen et al., 2006; Seppänen et al., 2010; Ergon et al., 2013), and in the non-core 399 

Pooideae taxon B. distachyon (Ream et al., 2014). In contrast, although VRN2 expression is 400 
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induced by long days across Pooideae and its protein product represses flowering, VRN1 only 401 

appears to downregulate VRN2 within core Pooideae (Ream et al., 2014; Woods et al., 2016; Xu 402 

and Chong, 2018; Sharma et al., 2020). Indeed, in B. distachyon REPRESSOR OF 403 

VERNALIZATION 1 (RVR1) rather than VRN2 is required for H3K27me3-induced VRN1 404 

repression during autumn (Woods et al., 2017). 405 

 406 

Despite its closer relationship to Brassicaceae than Poaceae, a recent study investigating 407 

Carthamus tinctorius (safflower, Asteraceae) found that a VRN1-like gene (CtFUL) is also 408 

upregulated with CtFT in vernalization responsive (‘winter’), but not vernalization unresponsive 409 

(‘spring’), cultivars (Cullerne et al., 2021). Interestingly, two FLC-like genes CtMAF1 and 410 

CtMAF2 are also differentially expressed between winter and spring lines, but opposite to what 411 

might be predicted; their expression increases with cold for the winter cultivar. This observation 412 

contrasts with closely related chicory (Cichorium intybus), where an FLC homolog, CiFL1, is 413 

downregulated with cold temperatures (Périlleux et al., 2013). In sugar beet, diversification of 414 

two antagonistic FT-like genes have been implicated in the vernalization response (Pin et al., 415 

2010). Taken together, these data suggest the cooption of a similar set of ancestral reproductive 416 

development genes (i.e. MAF-like, FUL-like, CCT domain, and FT-like) multiple times in the 417 

cold adapted flowering of angiosperms. Unlike the case of the ambient temperature pathway, 418 

where developmental system drift from an ancient pathway might be invoked, an ancient origin 419 

of vernalization responsive flowering seems unlikely given that cool-seasonal climates emerged 420 

only in the last 36 million years (Zachos et al., 2001; Preston and Sandve, 2013; Preston and 421 

Fjellheim, 2020). 422 

 423 

Variation in vernalization sensitivity 424 

Some plants display an absolute requirement for vernalization, in that they fail to flower entirely 425 

without cold. Others simply flower later if unvernalized (Amasino, 2004). Either way, the 426 

vernalization response is considered saturated when plants do not flower faster with longer 427 

vernalization periods. The required time to saturate vernalization varies depending on a plant's 428 

local environment and genotype. For example, a latitudinal cline in vernalization sensitivity has 429 

been identified across wide geographic scales in both Arabidopsis and sugar beet, with northern 430 

populations requiring longer vernalization than southern populations to saturate their requirement 431 
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(Boudry et al., 2002; Stinchcombe et al., 2005). Latitudinal differences in vernalization 432 

sensitivity have been linked to variation in initial FLC levels (Hepworth et al., 2020), as well as 433 

differential rates of epigenetic silencing of FLC (Shindo et al., 2006). While latitudinal clines are 434 

considered an indicator of adaptation, further studies are required to link the actual climatic 435 

variables (e.g. length of the growing period and temperature seasonality; Fig. 1) to variation in 436 

saturation times. 437 

 438 

Despite correlations between latitude and vernalization sensitivity across wide geographic 439 

distances, evidence is lacking for this relationship at more local scales. In Arabidopsis, rather 440 

than showing latitudinal clines, populations at the northern edge of the range exposed to 441 

continental climates are more sensitive to vernalization than populations from oceanic climates 442 

(Shindo et al., 2006; Lewandowska-Sabat et al., 2012) (Fig. 5). A possible explanation for this 443 

pattern is that winter temperatures are more variable in coastal versus continental regions, and 444 

thus a longer duration of vernalization is required to both saturate the vernalization response and 445 

predict the real onset of spring (Lewandowska-Sabat et al., 2012; Zhao et al., 2020). To test this 446 

hypothesis, fine-scale data to determine winter temperature variability will be required for a 447 

variety of regions and plant taxa (see Outstanding Questions). 448 

 449 

Temperature thresholds for vernalization 450 

Previous studies have reported that vernalization in germinated plants is optimal at around 5-451 

10°C (Atherton et al., 1990; Rawson et al., 1998; Brooking and Jamieson, 2002; Wollenberg and 452 

Amasino, 2012; Ream et al., 2014; Duncan et al., 2015; Cullerne et al., 2021). At 0°C and above 453 

15°C, vernalization efficiency is greatly attenuated [but see Niu et al., 2004; Cullerne et al., 454 

2021). However, even given a maximum vernalization temperature, vernalization is still efficient 455 

across a range of temperatures, highlighting the ability of plants to respond to and buffer against 456 

a range of temperatures over diurnal, seasonal, and annual timescales. The fact that vernalization 457 

is less efficient below 5°C indicates that in more northern climates of the northern hemisphere 458 

vernalization response will mainly be saturated in the cool autumn months prior to winter itself 459 

(Duncan et al., 2015; Hepworth et al., 2020). The saturation of vernalization response before 460 

snow cover is linked to early flower production in the spring, possibly to avoid herbivory 461 

(Duncan et al., 2015). Whether fine-tuning of temperature sensitivity and vernalization saturation 462 
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can keep up with ongoing climate change is an open question. The answer will require 463 

knowledge of variation in flowering behavior at both the intra- and interspecific level. 464 

 465 

THE IMPACT OF HIGH TEMPERATURES ON FLOWERING 466 

 467 

Heat stress-induced flowering 468 

‘Stressful’ high temperatures can be defined by their negative impacts on growth and yield, and 469 

vary in their lower limits based on the taxon of interest. For example, growth is entirely blocked 470 

at 25°C in temperate broccoli (Brassica oleracea) and at 38°C in sub-tropical maize (Zea mays) 471 

(Hatfield and Prueger, 2015). A delay or succession of growth at high temperatures can 472 

indirectly increase days to flowering, but studies in Arabidopsis and wheat suggest variation in 473 

developmentally (e.g. leaf number)-based flowering time is dependent on genotype 474 

(Balasubramanian et al., 2006; Posé et al., 2013; Dixon et al., 2019). Although few studies have 475 

quantified plant flowering time responses to a range of high temperatures (see Outstanding 476 

Questions), stress in general is known to promote flowering across a diversity of angiosperms, 477 

presumably as a means of reproductive assurance (Takeno, 2016). It is likely that a generic stress 478 

response pathway for flowering exists that incorporates signals such as growth and cellular 479 

damage. However, the importance of heat-specific signals on flowering, such as protein 480 

denaturation and the concomitant activation of HSPs, largely remains to be elucidated.  481 

 482 

High temperatures devernalize plants 483 

It has long been known that in some vernalization responsive plants high temperatures can 484 

remove the memory of winter and cause ‘devernalization’. For example, exposure of winter rye 485 

(Secale cereale; Poaceae) to 35°C for different lengths of time following vernalization leads to a 486 

progressive reversal of the vernalization response (Purvis and Gregory, 1945). A similar 487 

response has also been identified in Arabidopsis (Bouche et al., 2015; Périlleux et al., 2013; 488 

Shindo et al., 2006), chicory (Périlleux et al., 2013) and wheat (Dixon et al., 2019).  However, in 489 

Arabidopsis and chicory, stabilizing the plants at 20°C before transferring them to 30+°C 490 

effectively prevents devernalization (Périlleux et al., 2013; Bouché et al., 2015). 491 

 492 
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The molecular basis of devernalization appears to be the remodeling of chromatin at 493 

vernalization response loci, such as the removal of repressive H3K27me3 marks on Arabidopsis 494 

FLC and histone deacetylation at cereal grass VRN1 (Fig. 3) (Oliver et al., 2013; Bouché et al., 495 

2015). This resetting is akin to that occurring in germline cells and post-flowering meristems in 496 

annuals and perennials, respectively. However, much is still to be learned about whether a 497 

devernalization response necessarily follows from a vernalization response, the degree of 498 

conservation of the devernalization response across angiosperms, and whether this response 499 

evolved from a common high temperature-mediated flowering pathway. From a more ecological 500 

perspective, it is also unclear whether the loss of winter memory through devernalization is 501 

adaptive (see Outstanding Questions). An adaptive explanation seems particularly questionable 502 

given that prolonged high temperatures are unusual during temperate autumns and winters, and 503 

that only long daily periods of low temperatures are vernalizing (Chujo, 1966). On the other 504 

hand, the study of vernalization and devernalization responses has so far been limited to a few 505 

taxa and experimental conditions, and is expected to become more pertinent as extreme weather 506 

events become more of the norm (Neilson et al., 2020).  507 

 508 

FLOWERING TIME IN THE CONTEXT OF GLOBAL WARMING: FUTURE 509 

DIRECTIONS 510 

 511 

As the climate changes and extreme weather events become more common (Neilson et al., 512 

2020), an understanding of the intersection between low and high temperatures on flowering 513 

time across a range of taxa, and in more natural settings, will be important for conservation 514 

planning and crop breeding. As reviewed above, most of our understanding of temperature-515 

induced flowering has focused on temperate species, specifically in relation to vernalizing 516 

conditions. Although much remains unknown about variation in the vernalization response in 517 

relation to how it is sensed, its temperature threshold, and its saturation time, an even greater 518 

knowledge gap remains in how ambient to high temperatures affect flowering outside of 519 

Arabidopsis (see Outstanding Questions). In tropical species, for example, global warming by a 520 

few degrees might shift, lengthen, or shorten flowering time, particularly if species are close to 521 

their upper thermal limits (Kingsolver, 2009; but see Pau et al., 2013). The potential of a high 522 

temperature memory of summer is also an intriguing hypothesis, as is the idea that a temperature 523 
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memory could span multiple seasons in perennial taxa (Fig. 4) (Samarth et al., 2020; see 524 

Outstanding Questions). Exploration of these issues will require a concerted effort by the plant 525 

biology community at multiple taxonomic, geographical, and organizational scales, as well as an 526 

eye to more ‘natural’ lab conditions. 527 

 528 

Advances 529 

• Much recent progress has been made in determining the sensing mechanisms for ambient, 530 

low, and high temperatures, particularly within core eudicots. 531 

• Flowering responses to different temperatures are broadly mediated by long non-coding 532 

RNAs, differential splicing, and chromatin modifications. 533 

• Annual and perennial plants can be distinguished by the reset time of their winter 534 

memory and the age to which they become vernalization responsive. 535 

• Vernalization responsiveness has evolved multiple times through the recruitment of a 536 

conserved set of genes involved in reproductive development. 537 

 538 

Outstanding Questions 539 

 540 

• Are phytochromes involved in temperature sensing outside core eudicots? 541 

• How does the thermal reversion pathway intersect with the ambient temperature 542 

flowering pathway? 543 

• How have ambient stress response pathways been rewired to affect different ambient 544 

temperature flowering responses across angiosperms? 545 

• Do plants have a summer memory? Does it involve the same epigenetic modifications as 546 

the winter memory? 547 

• How important is variation in autumn-winter temperatures in shaping the evolution of 548 

vernalization saturation times? 549 

• How variable are vernalization temperature thresholds within and between species? What 550 

ecological factors drive these patterns? 551 

• Is there a heat stress flowering pathway? Is it conserved across angiosperms? 552 

• Are all vernalization responsive plants devernalizable and is this response to seasonally 553 

unusual high temperatures adaptive? 554 
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Figure Legends 560 

 561 

Fig. 1: Climate maps showing global variation in the length of growing seasons and seasonal 562 

variation in temperature. (A) Temperature seasonality based on the standard deviation of 563 

monthly temperature (ºC) x 100 (BIO4). Red indicates high; blue indicates low. (B) Length of 564 

the growing season in the northern and southern hemispheres as depicted by the last month of the 565 

year with temperatures at or above 15ºC. Both datasets were obtained from the 566 

https://www.worldclim.org (Fick and Hijmans, 2017). 567 

 568 

Fig. 2: Simplified genetic pathway for ambient temperature sensing and flowering response in 569 

Arabidopsis. Plant temperature sensing occurs, at least in part, through the regulation of genes 570 

also involved in the light-sensing and the circadian clock. Solid lines indicate well established 571 

connections, whereas dashed lines show hypothetical connections. Arrowheads denote positive 572 

regulation; bars denote negative regulation. 573 

 574 

Fig. 3: Known and hypothetical temperature-mediated epigenetic modifications in cereal grasses, 575 

Arabidopsis, and masting plants. 576 

 577 

Fig. 4: Similarities and differences in the vernalization genetic flowering pathway between 578 

cereal grasses and Arabidopsis. The Arabidopsis vernalization pathway occurs in three inter-579 

dependent stages: initiation, memory, and resetting. Solid lines indicate well established 580 

connections, whereas dashed lines show hypothetical connections. Arrowheads denote positive 581 

regulation; bars denote negative regulation. 582 

 583 

Fig. 5: Association between coastal-continental habitats and vernalization saturation time in 584 

Norwegian populations of Arabidopsis. Larger bluer circles denote population with higher 585 
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vernalization sensitivity, whereas smaller redder circles denote populations with lower 586 

vernalization sensitivity. Land areas are colored based on Köppen climate classifications (Beck 587 

et al., 2018). 588 
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