| 1                | Update on the Evolution of Temperature Regulated Flowering                                                                                                                                                                                                       |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3           | Short title: Evolution of Temperature Regulated Flowering                                                                                                                                                                                                        |
| 4                | Corresponding author: Jill C. Preston, <u>Jill.Preston@uvm.edu</u>                                                                                                                                                                                               |
| 5<br>6           | Title: Flowering Time Runs Hot and Cold                                                                                                                                                                                                                          |
| 7<br>8<br>9      | Jill C. Preston, <sup>a,2,3</sup> and Siri Fjellheim <sup>b</sup>                                                                                                                                                                                                |
| 0                | <sup>a</sup> Department of Plant Biology, University of Vermont, Burlington, Vermont 05405                                                                                                                                                                       |
| 1<br>2           | <sup>b</sup> Department of Plant Sciences, Norwegian University of Life Sciences, 1430, Ås, Norway                                                                                                                                                               |
| 3                | <sup>1</sup> This work was supported by the USDA   National Institute of Food and Agriculture (NIFA;                                                                                                                                                             |
| 4                | grant no. VT-H02712 to J.C.P.) and the Research Council Norway (grant no.301284 to S.F.)                                                                                                                                                                         |
| 5                | <sup>2</sup> Senior author.                                                                                                                                                                                                                                      |
| 5                | <sup>3</sup> Author for contact: Jill.Preston@uvm.edu                                                                                                                                                                                                            |
| 7<br>8<br>9<br>0 | The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (https://academic.oup.com/plphys/pages/General-Instructions) is Jill C. Preston. |
| 1<br>2<br>3<br>4 | One-sentence summary: Recent advances in understanding the mechanisms underlying plant detection of and adaptation to different temperatures provides tools for breeding and management under global warming.                                                    |
| 5<br>5<br>7      | Author contributions: J.C.P. and S.F. both conceived of the research topic, performed the research, and wrote the paper.                                                                                                                                         |

#### 29 Introduction

30 Variation in thermal climate is well known to shape plant distributions by differentially affecting

31 traits that contribute to lifetime fitness (Lancaster and Humphreys, 2020; Huang et al., 2021).

32 From an agricultural perspective, increasing ambient temperatures between approximately 12°C

33 to 27°C tend to increase photosynthetic capacity, resulting in an overall increase in energy stores

34 and plant biomass (Bernacchi et al., 2009; Wigge, 2013). However, the fact that temperatures

35 outside this range can promote phase transitions between juvenile and adult, and adult vegetative

36 and reproductive growth (hereafter flowering), means that simply increasing growth

37 temperatures can lead to delays, or even low yields in the crop (e.g. leaves versus fruits and

38 seeds) of interest. Understanding phylogenetic patterns of how plants respond to these different

39 temperatures is becoming critically important as we strive to feed an expected population of

40 around 9.7 billion by 2050 (UN-DESA-PD, 2019). This need is further amplified by global

41 warming, where average temperatures will continue to rise over the next century, seasonal norms

42 will be punctuated by severe weather events such as unseasonal frosts or droughts, and day-night

43 temperature differentials will be weakened (Cox et al., 2020).

44

45 Research over the past 25 years has elucidated multiple genetic pathways – age, autonomous, 46 gibberellin response, photoperiod, vernalization, and ambient temperature - that control 47 flowering time (Simpson and Dean, 2002). All of these pathways converge on the floral pathway 48 integrator gene FLOWERING LOCUS T (FT) to promote flower production broadly across 49 angiosperms (Ballerini and Kramer, 2011). The complexity of flowering regulation likely 50 emerges from the critical nature of matching reproductive development with the appropriate 51 environmental conditions. Flowers are particularly susceptible to damage by abiotic and biotic 52 stressors, and in many plants, require active pollinators for adequate seed set (Jagadish et al., 53 2016).

54

55 In addition to FT, deep functional conservation has been found for many genes within the

56 photoperiod flowering pathway, such that switches between long-, short-, and neutral-day

57 flowering are evolving largely through the rewiring of an ancient daylength gene network

58 (Hayama and Coupland, 2004; Fjellheim and Preston, 2018). By contrast, support for shared

59 derived temperature pathways is limited (but see Ruelens et al., 2013; Dixon et al., 2019), either

60 due to incomplete sampling and/or multiple independent origins, particularly of low temperature 61 regulated flowering (Amasino 2005; Ream et al., 2012; Preston and Fjellheim 2020). Despite the 62 potentially stressful nature of low and high temperatures, in many areas of the world these 63 conditions preempt climates favorable to flowering; as such they can be used as cues to ready 64 plants for reproduction. Vernalization - defined as an extended period of above freezing cold -65 for example, triggers many temperate plants to become competent to inductive signals that will 66 later provoke flowering (Amasino, 2004). In turn, the ability to respond to vernalization is often 67 age dependent, and it is becoming clear that the 'memory' of vernalization can be influenced by 68 variation in both low and high temperatures (Zhou et al., 2013; Bouché et al., 2015).

69

70 Here, we provide an update on what is known about the mechanisms underlying temperature-71 regulated flowering time, their conservation, and their evolution at both the micro- and macro-72 scale. We will start with an appraisal of evidence for one or more plant thermal sensory systems 73 and present the emerging picture for recruitment of functionally novel and ancient flowering 74 time pathway genes in the rewiring or independent origins of ambient, low, and high temperature 75 regulated phase change. We will focus on how plants have modified their sensitivities to 76 differences in absolute temperatures, their duration and variation; and assess the importance of 77 temperature fluctuations in determining plasticity in flowering time. As well as revealing areas of 78 research required for a better understanding of how past thermal climates have shaped global 79 patterns of plasticity in plant phase change, we will consider the implications for these 80 phenological thermal responses in light of global warming.

81

## 82 THERMAL SENSING MECHANISMS IN PLANTS ARE STILL BEING DISCOVERED 83

In addition to being distributed across a broad spectrum of climate zones, from tropical lowland to temperate and cold desert (Geiger, 1954; Beck et al., 2018), individual plants experience changes in temperature that mark different seasons, day to night cycles, and even the rapid cooling of solar irradiation caused by a sudden breeze (Fig. 1) (McClung and Davis, 2010). Although these changes in temperature are likely to affect cellular physiology in different ways (e.g. by altering membrane fluidity and protein folding), they are hypothesized to integrate into bona fide thermal sensory systems, allowing for active signal transduction and downstream

91 responses (Lamers et al., 2020). Primary thermal sensors can be defined as those that show short 92 term alterations in structure or activity directly in response to changes in external temperature, 93 and that continually transduce signals to the plant to foster longer term responses such as 94 temperature acclimation, flowering competency, and floral induction (Vu et al., 2019; Lamers et 95 al., 2020). Current data suggest distinct thermal sensors for ambient, low, and high temperatures 96 that affect different combinations of downstream signaling pathways, and ultimately growth and 97 development (Lamers et al., 2020). A number of conserved temperature sensing mechanisms 98 have been proposed for seed plants, many of which have been reviewed previously (McClung 99 and Davis, 2010; Guo et al., 2018), and will not be exhaustively discussed here. We will focus on 100 thermal sensing mechanisms for which there is strongest evidence based on relatively recent 101 work.

At least some plants can detect subtle changes in ambient temperature through the thermal

102

104

#### 103 Ambient temperature sensing

105 reversion of active (Pfr, far-red absorbing) to inactive (Pr, red absorbing) phytochromes (Casal 106 and Questa, 2018). Most of the evidence for thermal reversion comes from work on 107 PHYTOCHROME A (PHYA) and PHYB that are found broadly in seed plants (Mathews, 2010). 108 However, although PHYA and PHYB are widely known as pigment-containing light sensors that 109 interact with the circadian clock to set daily and annual rhythms, compelling evidence for their 110 role in light-dependent thermal sensing is so far limited to eudicots (Jung et al., 2016; Klose et 111 al., 2020; Cao et al., 2021). In Arabidopsis (Arabidopsis thaliana, Brassicaceae), increased 112 temperatures positively affect the speed of thermal reversion, derepressing epidermal 113 PHYTOCHROME INTERACTING FACTOR 4 (PIF4) that promotes shoot cell elongation and 114 flowering, the latter through transcriptional regulation of the florigen FT (Fig. 2) (Kumar et al., 115 2012; Legris et al., 2016; Kim et al., 2020). In the daytime, PIF4 activity is stabilized by 116 HEMERA (HRM), allowing thermoresponsiveness during both the light and dark (Qia et al., 117 2020). 118 119 Thermal reversion in Arabidopsis is also known to be repressed by PHOTOPERIODIC

120 CONTROL OF HYPOCOTYL 1 (PCH1) and PHYTOCHROME-INTERACTING FACTOR 6

121 (PIF6) (Smith et al., 2017; Huang et al., 2019), whereas ARABIDOPSIS RESPONSE

122 REGULATOR 4 (ARR4) (Sweere et al., 2001) promotes it. Recently it was also found that the 123 long-day photoperiod flowering pathway protein GIGANTEA (GI) mediates the 124 photoperiodicity of thermal reversion by attenuating PIF4 function under long-days (Park et al., 125 2020). Despite this progress in understanding thermal sensing, it is not known how thermal 126 reversion intersects with the ambient flowering time pathway (see next section and Outstanding 127 Questions), where higher ambient temperatures often promote faster flowering (but see Verhage 128 et al., 2017; del Olmo et al., 2019). Furthermore, the lack of evidence for phytochrome-regulated 129 thermal reversion outside core eudicots, begs the question as to the conservation and number of 130 origins of this sensing mechanism.

131

#### 132 Low temperature sensing

133 Recent advances in elucidating the mechanisms involved in low temperature perception in plants 134 highlight the potential involvement of changes in membrane fluidity, membrane protein activity, 135 and thermal reversion (Fujii et al., 2017; Guo et al., 2018). For the latter, the same PHYB-136 mediated detection of ambient temperature change has been hypothesized for cooler 137 temperatures. However, recent work on the maidenhair fern (Adiantum capillus-veneris) and the 138 umbrella liverwort (Marchantia polymorpha) also implicate the blue-light receptor phototropin 139 in the repositioning of chloroplast away from the cell surface at low temperatures, presumably to 140 avoid light (Fujii et al., 2017). In the case of membrane fluidity, it is posited that low 141 temperature-induced changes in plasma membranes cause the formation of cytoskeletal bundles 142 that interact with calcium signaling to trigger a number of signal transduction pathways, 143 including the C-repeat binding factor (CBF) pathway involved in rapid cold acclimation 144 (Chinnusamy et al., 2010; Hafke et al., 2013; Liu et al. 2017; Zhang et al., 2020). A potential 145 direct sensor of chilling in rice (Oryza sativa) is the membrane protein COLD1 that activates the 146 GTPase activity of RICE G-PROTEIN ALPHA SUBUNIT1 (RGA1) (Ma et al., 2015). Together 147 these proteins trigger a calcium influx, possibly by directly forming a calcium permeable 148 channel, again leading to signal transduction of cold response genes. Future work is required to 149 experimentally test if COLD1/RGA1 is indeed part of a calcium permeable channel, and to 150 determine if this model extends beyond rice.

151

#### 152 High-temperature sensing

| 153 | High temperatures appear to be sensed broadly across plants by heat shock proteins (HSPs) that       |
|-----|------------------------------------------------------------------------------------------------------|
| 154 | work as molecular chaperones for proteins disaggregated by heat and other stressors (Liberek et      |
| 155 | al., 2008; Boden et al., 2013). When the hydrophobic regions of water-soluble proteins are           |
| 156 | exposed by heat-induced unfolding, they attract hydrophobic residues of HSPs, and together           |
| 157 | these promote the action of heat shock factors (HSFs). HSFs bind to heat shock elements (HSEs)       |
| 158 | associated with transcription of several genes. These include those that contribute to an            |
| 159 | epigenetic memory of heat and auxin biosynthesis required for growth and possibly phase              |
| 160 | change (Li et al., 2018; Friedrich et al., 2021).                                                    |
| 161 |                                                                                                      |
| 162 | VARIATION IN AMBIENT TEMPERATURE SIGNALING AND RESPONSE                                              |
| 163 |                                                                                                      |
| 164 | Conservation and diversification of ambient temperature-mediated phase change in the                 |
| 165 | Brassicaceae                                                                                         |
| 166 |                                                                                                      |
| 167 | In many Arabidopsis accessions, warm temperatures can substitute for long-days to accelerate         |
| 168 | flowering, but the dual regulation of many ambient temperature-responsive genes/proteins by          |
| 169 | photoperiod highlights the close connection between these environmental signals (Klose et al.,       |
| 170 | 2020). As previously mentioned, PIF4 is an important node in the Arabidopsis thermal sensing         |
| 171 | pathway, being stabilized as ambient temperatures increase and convert Pfr to its inactive Pr        |
| 172 | form. However, PIF4 protein also increases during Pfr degradation in the dark. The role of dark-     |
| 173 | stabilized PIF4 protein in flowering manifests through its transcriptional activation of FT (Fig. 2) |
| 174 | (Wigge, 2013). At lower ambient temperatures in Arabidopsis, the PIF4 binding site of FT is          |
| 175 | blocked by an H2A.Z nucleosome, whereas at higher temperatures this block is lifted (Kumar et        |
| 176 | al., 2012). Interesting, although the PIF4-FT regulon is conserved in Brassica rapa                  |
| 177 | (Brassicaceae), higher ambient temperatures actually increase histone H2A.Z levels at B. rapa        |
| 178 | FT, resulting in a negative relationship between temperature and flowering (de Olmo et al.,          |
| 179 | 2019). Arabidopsis PIF4 levels are also negatively regulated by the evening complex (EC) of          |
| 180 | EARLY FLOWERING 3 (ELF3), ELF4, and LUX ARRYTHMO (LUX) in a temperature-                             |
| 181 | dependent manner (Fig. 2) (Silva et al., 2020). Recent evidence suggests that warm temperatures      |
| 182 | inhibit the EC complex from DNA-binding by reducing the localization of ELF3 to sub-nuclear          |
| 183 | foci, thus allowing PIF4 to interact with FT (Ronald et al., 2021). In addition to controlling       |

184 flowering time, it has been hypothesized that the increased activity of PIF4 with warming nights

185 contributes to concomitant earlier flower bud opening (Jagadish et al. 2016). While intriguing,

- 186 the potential mechanism for this remains largely unexplored.
- 187

188 A second major component of the ambient temperature pathway in both Arabidopsis and 189 *Brassica* sp. is mediated by differential expression and splicing of transcription factors that 190 regulate both repressors and promoters of flowering (Verhage et al., 2017). In the Arabidopsis 191 Col-0 ecotype, FLOWERING CONTROL LOCUS A (FCA) produces four alternative splice 192 forms, one of which (lambda) becomes dominant at higher ambient temperatures to specifically 193 repress the flowering repressor FLOWERING LOCUS C (FLC) (Quesada et al., 2003). Likewise, 194 at lower ambient temperatures, specific spliceforms of FLOWERING LOCUS M (FLM) and 195 MADS AFFECTING FLOWERING 2 (MAF2) bind to SHORT VEGETATIVE PHASE (SVP) 196 to form floral repressor complexes; at higher temperatures FLM-delta and MAF2var2 variants 197 predominate and no longer bind strongly to SVP (Lee et al., 2013; Posé et al., 2013; Airoldi et 198 al., 2015). The importance of FLM splicing for local adaptation is evident when comparing 199 natural Arabidopsis accessions from cool temperate environments. For example, Killean-0 from 200 Scotland contains an insertion in the first intron of *FLC* that results in lower abundance of the 201 beta variant at lower temperatures, resulting in earlier flowering relative to Col-0 (Lutz et al., 202 2015). Although ambient temperature-regulated alternative splicing appears to be conserved 203 between Arabidopsis and Brassica, partially through differential splicing of splicing-related 204 genes, the exact targets of the spliceosome appear to be quite distinct even across ecotypes 205 (Vertage et al., 2017).

206

### 207 Evidence for rewiring versus independent origins of ambient temperature-regulated

### 208 flowering across angiosperms

209 Similar to the case in Brassicaceae, angiosperms more broadly show variation in how they

210 respond to different ambient temperatures. For example, bunch-flowered daffodil (Narcissus

- 211 tazetta; Amarylidaceae) is faster, and Chrysanthemum sp. (Asteraceae) and Phalaenopsis
- 212 aphrodite (Orchidaceae) slower, in flowering with high ambient temperatures, respectively (An
- et al., 2011). Moreover, in many wheat (*Triticum* sp.) and barley (*Hordeum vulgare*) (Pooideae,
- 214 Poaceae) cultivars, the relationship between ambient temperature and flowering is positive under

215 long-days, but negative under short-days (Hemming et al., 2012). Part of this variation might be

- 216 due to differences in the range of temperatures that are stressful to each genotype, whereby the
- activation of stress response pathways can come at a cost to reproduction (Lin et al., 2019).
- 218 Rewiring of ambient stress response pathways is also likely to play a major role, an
- 219 understanding of which will require fundamental knowledge on how conserved the ambient
- 220 flowering time pathway is across plants.
- 221

222 In monocots, knowledge on the genetic basis of ambient temperature-regulated phase change is 223 best understood within grasses, such as sub-tropical rice, and temperate wheat and barley. 224 However, many questions remain, from the sensor of ambient temperature change to the 225 transduction pathways that reset whole plant physiology (see Outstanding Questions). As 226 previously mentioned, the role of PHYB in temperature sensing has not been investigated in 227 grasses, and no *PIF*-like genes have been functionally characterized to date (Cao et al., 2021). 228 On the other hand, members of the grass EC, including ELF3, have been found to increase with 229 high ambient temperatures in barley (Ford et al., 2016; Ejaz and von Korff, 2017). These data 230 suggest divergence in high ambient temperature regulation of the EC between Arabidopsis where 231 it is repressed, and barley where it is promoted. This is despite the fact that the targeted 232 accessions from both species flowered faster at higher ambient temperatures under long days 233 (Ejaz and von Korff, 2017; Ronald et al., 2021).

234

235 Two of the key genes that affect grass ambient temperature response in long days are the CCT 236 domain-containing gene PHOTOPERIOD 1 (PPD-H1) and the MADS-box FRUITFULL (FUL)-237 like gene VERNALIZATION 1 (VRN1) (Ejaz and von Korff, 2017). PPD-H1 is often considered a 238 repressor of flowering, as it forms a repressor complex with other CCT domain proteins, such as 239 CONSTANS1 (CO1), CO2 and possibly VRN2 (Shaw et al., 2020). However, it is becoming 240 increasingly clear that both photoperiod and temperature can modify these protein-protein 241 interactions, turning the repressor complex into an activator complex (Zong et al., 2021). In 242 barley, a functional PPD-H1 allele is required to accelerate flowering at high ambient 243 temperatures in long days (Ejaz and von Korff, 2017). This acceleration of flowering by PPD-H1 244 and the activator complex at higher ambient temperatures is exacerbated in a vrn1 background, 245 suggesting that the repression of functional VRN1 transcripts by high ambient temperatures is

- incomplete (Ejaz and von Korff, 2017). Under short days, ambient temperatures repress wheat
- and barley flowering through the VRN2-CCT domain repressor complex, and via a VRN2-
- 248 independent pathway involving the MADS-box protein ODD SUPPRESSOR OF
- 249 OVEREXPRESSION OF CONSTANS 1 LIKE 2 (ODDSOC2) (Hemming et al., 2012).
- 250

251 In addition to PPD-H1 and VRN1-like genes, studies on the temperate grass Brachypodium 252 distachyon (Pooideae) have revealed a role for VERNALIZATION INSENSITIVE 3-LIKE 4 253 (VIL4) in the long day acceleration of flowering at low ambient temperatures (An et al., 2015). 254 Similar to VIN3 in Arabidopsis, VIL4 works with the POLYCOMB REPRESSIVE COMPLEX 255 2 (PRC2) to H3K27 methylate its target genes. However, whereas the target of repression of 256 AtVIN3 is the flowering repressor FLC that inhibits flowering in the absence of vernalizing 257 temperatures, the BdVIL4 target is miR156 that works in the age pathway to delay the juvenile-258 to-adult onset that preempts the reproductive transition (An et al., 2015). Interestingly, 259 transcription of miR156 actually increases at low ambient temperatures in Arabidopsis and the 260 orchid Phalaenopsis (An et al., 2011), and two related proteins VIL2 and VIL3 in rice repress a 261 different flowering time repressor in a temperature independent manner (Wang et al., 2013; 262 Yang et al., 2013). These data demonstrate evolution of crosstalk between the age and ambient 263 temperature pathways both outside and within grasses. Additionally, they tentatively suggest that 264 ambient temperature-regulated flowering was an ancient innovation that has been repeatedly 265 modified through continued adaptation and/or developmental system drift (True and Haag, 266 2001). The latter conclusion is consistent with angiosperms evolving in (sub)tropical 267 environments where small fluctuations in ambient temperatures could have signaled oncoming 268 seasonal shifts in precipitation (Wing and Boucher, 1998).

269

270 Another area of interest in both eudicot and monocot species is the role of ambient temperatures

271 in synchronization of irregular seed production, or mast flowering, across large geographic areas.

- 272 The delta T model proposes that mast flowering is induced when plants experience a positive
- 273 difference between previous summer temperatures and the summer prior to that (Kelly et al.,
- 274 2013). A testable mechanism for this summer memory has been proposed to be epigenetic, either
- through promotive epigenetic marks on flowering promoters (e.g. *FT*) or repressive marks on
- flowering repressors (e.g. FLC) (Fig. 3) (Samarth et al., 2020). If this memory can be

277 demonstrated broadly across masting species that represent over 37 angiosperm plant families

278 (Samarth et al., 2020) (see Outstanding Questions), it would be another example of plants

279 coopting a highly conserved mechanism in convergent trait evolution, and would parallel a

280 similar winter memory in temperate plants (Luo et al., 2020) (see next section).

281

#### 282 **EVOLUTION OF COLD-RESPONSIVE FLOWERING**

283

284 In addition to variation in ambient temperatures, plants distributed in temperate and high latitude 285 areas experience dramatic seasonal shifts in temperature, whereby winter (and often autumn and 286 spring) temperatures drop below 15°C (Fig. 1B) (Preston and Sandve, 2013; Casal and 287 Balasubramanian, 2019). Prior to the onset of freezing, many temperate taxa are made competent 288 to flower by vernalization that ready them into reproductive development quickly in the spring 289 (Chouard, 1960; Heide 1994)). Several studies have also proposed that low temperatures regulate 290 and activate flower formation, since some plants form flower buds during vernalization 291 (Chouard, 1960; Wang et al., 2009; Kemi et al., 2019; O'Neill et al., 2019; Soppe et al., 2021). 292 Furthermore, grapevine (Vitis vinifera), sweet cherry (Prunus sp.), and peach (Prunus persica) 293 plants form flower buds the year before flowering and require a cold period to flower (Engin and 294 Ünal, 2007; Carmona et al., 2008; Vimont et al., 2019). The lack of a sufficiently cold winter can 295 also reduce the quantity and quality of fruit production (Atkinson et al., 2013). 296 297 A number of lines of evidence suggest that vernalization responsiveness has evolved multiple 298 times independently in angiosperms (Preston and Sandve, 2013), such as at the base of Pooideae 299 grasses (Brooking and Jamieson, 2002; Schwartz et al., 2010; Fiil et al., 2011; Saisho et al., 300 2011; McKeown et al., 2016), in the Brassicaceae (Stinchcombe et al., 2005), and within the 301 sugar beet (Betula vulgaris) family Amaranthaceae (Boudry et al., 2002). Less well examined is 302 the extent to which closely related taxa vary in their vernalization sensitivity and temperature 303 threshold; the relationship of this variation to climate of origin; and the genetic mechanisms 304 underlying this variation. In this section, we will briefly outline the molecular basis of 305 vernalization responsiveness in Arabidopsis and other species, and then turn to evidence for fine-306 tuning of this winter memory within closely related taxa. 307

#### 308 Molecular basis for vernalization responsiveness in the Brassicaceae

309 The molecular basis for vernalization responsiveness has been best described in Arabidopsis and

310 the process is divided into three parts: initiation, memory and resetting (Fig. 4) (Song et al.,

311 2012). These processes are largely modulated by modification of the flowering repressor

312 FLOWERING LOCUS C (FLC) (Michaels and Amasino, 1999; Sheldon et al., 2000). Positive

313 regulation of FLC requires functional FRIGIDA (FRI) alleles, protein products of which attract

transcription factors and chromatin modifiers to the FLC promoter (Johanson et al., 2000; Choi

315 *et al.*, 2011). In individuals with a vernalization response, FRI activates *FLC* prior to

316 vernalization, making plants incompetent to flower (Helliwell et al., 2006; Searle et al., 2006).

317 During initiation of the vernalization response, silencing of FLC is facilitated by COOLAIR, a

318 cold-induced RNA that is antisense to *FLC* mRNA (Swiezewski et al., 2009; Rosa et al., 2016).

319 Splice variants of *COOLAIR* and/or other associated proteins interact with FRI to form nuclear

320 condensates, which are sequestered away from the *FLC* promoter (Zhu et al., 2021). This initial

321 loss of *FLC* transcriptional activation is reversible as the nuclear FRI condensates are reduced

322 when returned to warm temperatures (Zhu et al. 2021).

323

324 Only following the initiation phase does prolonged exposure to cold induce epigenetic repression 325 of FLC through a gradual switch from activate to repressed chromatin (reviewed in Hepworth 326 and Dean 2015). This memory phase is facilitated by the plant homeodomain (PHD) polycomb 327 repressive complex 2 (PRC2) that removes activating histone marks (i.e. H3K36me3) and adds 328 repressive histone marks (i.e. H3K27me3) (Yang et al., 2014) (Figs. 3, 4). The PHD-PRC2 329 complex is recruited by the long non-coding RNA (lncRNA) COLD-ASSISTED INTRONIC 330 NON-CODING RNA (COLDAIR) and directed to the FLC promoter by another lncRNA, 331 COLD OF WINTER-INDUCED NON-CODING RNA FROM THE PROMOTER 332 (COLDWRAP) (Swiezewski et al., 2009; Kim and Sung, 2017). Part of the PHD-PRC2 complex 333 is VERNALIZATION INSENSITIVE 3 (VIN3) and VERNALIZATION 2 (VRN2) that are 334 specifically induced transcriptionally by low temperatures (Sung and Amasino 2004; Wood et 335 al., 2006; De Lucia et al 2008). Epigenetic silencing of FLC is stabilized when PHD-PRC2 336 increases H3K27me3 levels across the whole of FLC (Yang et al., 2014). At the tissue level, 337 FLC is gradually repressed over time due to a cell-autonomous switch, causing progressively 338 more cells to be in a stable, repressed state until saturation has been reached (Angel et al., 2011;

Angel et al., 2015). In this sense, the modified chromatin and its stabilization by COLDWRAPfunctions as a cold memory, even during warm periods.

| 342                                                                                                                                                                                 | Since Arabidopsis is an annual plant, resetting of FLC expression happens during embryogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 343                                                                                                                                                                                 | and involves a series of events that switch the chromatin to an active state in each subsequent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 344                                                                                                                                                                                 | generation (Sheldon et al., 2008). Putative FLC orthologs are the main targets of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 345                                                                                                                                                                                 | vernalization pathway in other Brassicaceae species too (Wang et al., 2009; Aikawa et al., 2010;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 346                                                                                                                                                                                 | Albani et al., 2012; Baduel et al., 2016; Lee et al., 2018; Kemi et al., 2019; Wang et al., 2020).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 347                                                                                                                                                                                 | However, in contrast to annual Brassicaceae species, FLC is reactivated following transfer back                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 348                                                                                                                                                                                 | to warm conditions in perennial Brassicaceae such as Arabis sp. (Kiefer et al., 2017). This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 349                                                                                                                                                                                 | observation indicates a role for FLC in differentiating between different life-history forms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 350                                                                                                                                                                                 | Furthermore, annual and perennial species of Arabidopsis differ in the age at which they become                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 351                                                                                                                                                                                 | responsive to cold temperatures, with perennial species acquiring competency to flower later in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 352                                                                                                                                                                                 | life (Wang et al., 2011; Bergonzi et al., 2013).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 353                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 354                                                                                                                                                                                 | Secondary cold thermosensors are distributed across several Brassicaceae regulatory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 355                                                                                                                                                                                 | networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 356                                                                                                                                                                                 | Primary thermosensory information acquired by plants across both short (e.g. intraday to diurnal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 356<br>357                                                                                                                                                                          | Primary thermosensory information acquired by plants across both short (e.g. intraday to diurnal) and long (e.g. seasonal to interannual) timescales must be continuously integrated and interpreted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 356<br>357<br>358                                                                                                                                                                   | Primary thermosensory information acquired by plants across both short (e.g. intraday to diurnal) and long (e.g. seasonal to interannual) timescales must be continuously integrated and interpreted by secondary thermosensors, such that it elicits appropriate physiological and developmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 356<br>357<br>358<br>359                                                                                                                                                            | Primary thermosensory information acquired by plants across both short (e.g. intraday to diurnal)<br>and long (e.g. seasonal to interannual) timescales must be continuously integrated and interpreted<br>by secondary thermosensors, such that it elicits appropriate physiological and developmental<br>responses. Recent work, combining lab and field studies with mathematical modeling in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 356<br>357<br>358<br>359<br>360                                                                                                                                                     | Primary thermosensory information acquired by plants across both short (e.g. intraday to diurnal)<br>and long (e.g. seasonal to interannual) timescales must be continuously integrated and interpreted<br>by secondary thermosensors, such that it elicits appropriate physiological and developmental<br>responses. Recent work, combining lab and field studies with mathematical modeling in<br>Arabidopsis (Antoniou-Kourounioiti et al., 2018; Hepworth et al., 2018; Zhao et al., 2020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>356</li> <li>357</li> <li>358</li> <li>359</li> <li>360</li> <li>361</li> </ul>                                                                                            | Primary thermosensory information acquired by plants across both short (e.g. intraday to diurnal)<br>and long (e.g. seasonal to interannual) timescales must be continuously integrated and interpreted<br>by secondary thermosensors, such that it elicits appropriate physiological and developmental<br>responses. Recent work, combining lab and field studies with mathematical modeling in<br>Arabidopsis (Antoniou-Kourounioiti et al., 2018; Hepworth et al., 2018; Zhao et al., 2020)<br>suggests that secondary thermosensing is distributed across distinct molecular networks (Fig. 4).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>356</li> <li>357</li> <li>358</li> <li>359</li> <li>360</li> <li>361</li> <li>362</li> </ul>                                                                               | Primary thermosensory information acquired by plants across both short (e.g. intraday to diurnal)<br>and long (e.g. seasonal to interannual) timescales must be continuously integrated and interpreted<br>by secondary thermosensors, such that it elicits appropriate physiological and developmental<br>responses. Recent work, combining lab and field studies with mathematical modeling in<br>Arabidopsis (Antoniou-Kourounioiti et al., 2018; Hepworth et al., 2018; Zhao et al., 2020)<br>suggests that secondary thermosensing is distributed across distinct molecular networks (Fig. 4).<br><i>FLC</i> and <i>VIN3</i> are central components of the secondary thermosensory machinery operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>356</li> <li>357</li> <li>358</li> <li>359</li> <li>360</li> <li>361</li> <li>362</li> <li>363</li> </ul>                                                                  | Primary thermosensory information acquired by plants across both short (e.g. intraday to diurnal)<br>and long (e.g. seasonal to interannual) timescales must be continuously integrated and interpreted<br>by secondary thermosensors, such that it elicits appropriate physiological and developmental<br>responses. Recent work, combining lab and field studies with mathematical modeling in<br>Arabidopsis (Antoniou-Kourounioiti et al., 2018; Hepworth et al., 2018; Zhao et al., 2020)<br>suggests that secondary thermosensing is distributed across distinct molecular networks (Fig. 4).<br><i>FLC</i> and <i>VIN3</i> are central components of the secondary thermosensory machinery operating<br>during vernalization, both being controlled by several independent thermosensory inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>356</li> <li>357</li> <li>358</li> <li>359</li> <li>360</li> <li>361</li> <li>362</li> <li>363</li> <li>364</li> </ul>                                                     | Primary thermosensory information acquired by plants across both short (e.g. intraday to diurnal)<br>and long (e.g. seasonal to interannual) timescales must be continuously integrated and interpreted<br>by secondary thermosensors, such that it elicits appropriate physiological and developmental<br>responses. Recent work, combining lab and field studies with mathematical modeling in<br>Arabidopsis (Antoniou-Kourounioiti et al., 2018; Hepworth et al., 2018; Zhao et al., 2020)<br>suggests that secondary thermosensing is distributed across distinct molecular networks (Fig. 4).<br><i>FLC</i> and <i>VIN3</i> are central components of the secondary thermosensory machinery operating<br>during vernalization, both being controlled by several independent thermosensory inputs<br>operating on different time scales (Antoniou-Kourounioiti et al., 2018; Hepworth et al., 2018).                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>356</li> <li>357</li> <li>358</li> <li>359</li> <li>360</li> <li>361</li> <li>362</li> <li>363</li> <li>364</li> <li>365</li> </ul>                                        | Primary thermosensory information acquired by plants across both short (e.g. intraday to diurnal)<br>and long (e.g. seasonal to interannual) timescales must be continuously integrated and interpreted<br>by secondary thermosensors, such that it elicits appropriate physiological and developmental<br>responses. Recent work, combining lab and field studies with mathematical modeling in<br>Arabidopsis (Antoniou-Kourounioiti et al., 2018; Hepworth et al., 2018; Zhao et al., 2020)<br>suggests that secondary thermosensing is distributed across distinct molecular networks (Fig. 4).<br><i>FLC</i> and <i>VIN3</i> are central components of the secondary thermosensory machinery operating<br>during vernalization, both being controlled by several independent thermosensory inputs<br>operating on different time scales (Antoniou-Kourounioiti et al., 2018; Hepworth et al., 2018).<br>The initial repression of <i>FLC</i> is independent of <i>VIN3</i> and involves COOLAIR (Swiezewski et al.,                                                                                                                                                                                                                                                                                             |
| <ul> <li>356</li> <li>357</li> <li>358</li> <li>359</li> <li>360</li> <li>361</li> <li>362</li> <li>363</li> <li>364</li> <li>365</li> <li>366</li> </ul>                           | Primary thermosensory information acquired by plants across both short (e.g. intraday to diurnal)<br>and long (e.g. seasonal to interannual) timescales must be continuously integrated and interpreted<br>by secondary thermosensors, such that it elicits appropriate physiological and developmental<br>responses. Recent work, combining lab and field studies with mathematical modeling in<br>Arabidopsis (Antoniou-Kourounioiti et al., 2018; Hepworth et al., 2018; Zhao et al., 2020)<br>suggests that secondary thermosensing is distributed across distinct molecular networks (Fig. 4).<br><i>FLC</i> and <i>VIN3</i> are central components of the secondary thermosensory machinery operating<br>during vernalization, both being controlled by several independent thermosensory inputs<br>operating on different time scales (Antoniou-Kourounioiti et al., 2018; Hepworth et al., 2018).<br>The initial repression of <i>FLC</i> is independent of <i>VIN3</i> and involves COOLAIR (Swiezewski et al.,<br>2009; Rosa et al., 2016), but <i>VIN3</i> soon responds to the absence of warm temperatures to also                                                                                                                                                                                      |
| <ul> <li>356</li> <li>357</li> <li>358</li> <li>359</li> <li>360</li> <li>361</li> <li>362</li> <li>363</li> <li>364</li> <li>365</li> <li>366</li> <li>367</li> </ul>              | Primary thermosensory information acquired by plants across both short (e.g. intraday to diurnal)<br>and long (e.g. seasonal to interannual) timescales must be continuously integrated and interpreted<br>by secondary thermosensors, such that it elicits appropriate physiological and developmental<br>responses. Recent work, combining lab and field studies with mathematical modeling in<br>Arabidopsis (Antoniou-Kourounioiti et al., 2018; Hepworth et al., 2018; Zhao et al., 2020)<br>suggests that secondary thermosensing is distributed across distinct molecular networks (Fig. 4).<br><i>FLC</i> and <i>VIN3</i> are central components of the secondary thermosensory machinery operating<br>during vernalization, both being controlled by several independent thermosensory inputs<br>operating on different time scales (Antoniou-Kourounioiti et al., 2018; Hepworth et al., 2018).<br>The initial repression of <i>FLC</i> is independent of <i>VIN3</i> and involves COOLAIR (Swiezewski et al.,<br>2009; Rosa et al., 2016), but <i>VIN3</i> soon responds to the absence of warm temperatures to also<br>downregulate <i>FLC</i> (Hepworth et al., 2018). Over longer time periods of stable cold, the                                                                                     |
| <ul> <li>356</li> <li>357</li> <li>358</li> <li>359</li> <li>360</li> <li>361</li> <li>362</li> <li>363</li> <li>364</li> <li>365</li> <li>366</li> <li>367</li> <li>368</li> </ul> | Primary thermosensory information acquired by plants across both short (e.g. intraday to diurnal)<br>and long (e.g. seasonal to interannual) timescales must be continuously integrated and interpreted<br>by secondary thermosensors, such that it elicits appropriate physiological and developmental<br>responses. Recent work, combining lab and field studies with mathematical modeling in<br>Arabidopsis (Antoniou-Kourounioiti et al., 2018; Hepworth et al., 2018; Zhao et al., 2020)<br>suggests that secondary thermosensing is distributed across distinct molecular networks (Fig. 4).<br><i>FLC</i> and <i>VIN3</i> are central components of the secondary thermosensory machinery operating<br>during vernalization, both being controlled by several independent thermosensory inputs<br>operating on different time scales (Antoniou-Kourounioiti et al., 2018; Hepworth et al., 2018).<br>The initial repression of <i>FLC</i> is independent of <i>VIN3</i> and involves COOLAIR (Swiezewski et al.,<br>2009; Rosa et al., 2016), but <i>VIN3</i> soon responds to the absence of warm temperatures to also<br>downregulate <i>FLC</i> (Hepworth et al., 2018). Over longer time periods of stable cold, the<br>membrane-associated <i>NAC DOMAIN-CONTAINING PROTEIN 40 LIKE 8 (NTL8)</i> slowly |

370 2004; De Lucia et al., 2008; Zhao et al., 2020). This accumulation contributes to the slow, low

- 371 temperature controlled epigenetic silencing of *FLC* by the PHD-PRC2 complex. These separate
- inputs involving the absence of warmth and the progression of cold combine to inform the plants
- 373 about seasonal progression. A similar, multi-pathway secondary thermosensing system has also
- been suggested for ambient temperature regulation of *FT* (Kinmonth-Schultz et al., 2018).
- 375

### 376 Evidence for rewiring versus independent origins of vernalization responsive flowering 377 outside of Brassicaceae

378 In cereals of the grass subfamily Pooideae, major players in the control of vernalization-induced 379 flowering are distinct from those in Brassicaceae (Fig. 4). However, some FLC-like genes have 380 been found to be minor players in the Pooideae vernalization response (Ruelens et al., 2013), 381 such as the short day flowering repressor ODDSOC2 in wheat, barley, and B. distachyon that 382 downregulates FLOWERING PROMOTER FACTOR1 (FPF1)-like (Greenup et al., 2010; 383 Sharma et al., 2017). The main repressor of flowering in cereals is the CCT domain protein 384 VERNALIZATION 2 (VRN2) that works similarly to the MADS-box protein FLC to prevent 385 precocious autumn flowering via repression of the FT-like gene VRN3 (Fig. 4) (Yan et al., 2004; 386 Dubcovsky et al., 2006; Trevaskis et al., 2006; Hemming et al., 2008). During vernalization, the 387 previously mentioned flowering promoter VRN1 is gradually transcriptionally activated through 388 the replacement of repressive H3K27me3 marks with activating H3K4me3 marks, possibly 389 stemming from a region in the first large intron (Fig. 3) (Oliver et al., 2009; Sasani et al., 2009; 390 Oliver et al., 2013). VRN1 provides floral competency by repressing VRN2, and by forming a 391 positive feedback loop whereby indirect upregulation of VRN3 induces further VRN1 expression 392 (Yan et al., 2006; Shimada et al., 2009).

393

394 *VRN1* is induced by cold across the Pooideae subfamily, which corresponds with an inferred

395 early origin of vernalization responsiveness within this temperate clade (McKeown et al., 2016).

396 A direct functional link has also been established between VRN1 and vernalization

397 responsiveness in core Pooideae species beyond barley and wheat, such as in perennial ryegrass

398 (Lolium perenne), timothy (Phleum pratense), and fescue (Festuca pratensis) (Petersen et al.,

399 2004; Andersen et al., 2006; Seppänen et al., 2010; Ergon et al., 2013), and in the non-core

400 Pooideae taxon *B. distachyon* (Ream et al., 2014). In contrast, although *VRN2* expression is

- 401 induced by long days across Pooideae and its protein product represses flowering, VRN1 only
- 402 appears to downregulate *VRN2* within core Pooideae (Ream et al., 2014; Woods et al., 2016; Xu
- 403 and Chong, 2018; Sharma et al., 2020). Indeed, in *B. distachyon* REPRESSOR OF
- 404 VERNALIZATION 1 (RVR1) rather than VRN2 is required for H3K27me3-induced VRN1
- 405 repression during autumn (Woods et al., 2017).
- 406

407 Despite its closer relationship to Brassicaceae than Poaceae, a recent study investigating 408 Carthamus tinctorius (safflower, Asteraceae) found that a VRN1-like gene (CtFUL) is also 409 upregulated with CtFT in vernalization responsive ('winter'), but not vernalization unresponsive 410 ('spring'), cultivars (Cullerne et al., 2021). Interestingly, two FLC-like genes CtMAF1 and 411 *CtMAF2* are also differentially expressed between winter and spring lines, but opposite to what 412 might be predicted; their expression increases with cold for the winter cultivar. This observation 413 contrasts with closely related chicory (Cichorium intybus), where an FLC homolog, CiFL1, is 414 downregulated with cold temperatures (Périlleux et al., 2013). In sugar beet, diversification of 415 two antagonistic FT-like genes have been implicated in the vernalization response (Pin et al., 416 2010). Taken together, these data suggest the cooption of a similar set of ancestral reproductive 417 development genes (i.e. MAF-like, FUL-like, CCT domain, and FT-like) multiple times in the 418 cold adapted flowering of angiosperms. Unlike the case of the ambient temperature pathway, 419 where developmental system drift from an ancient pathway might be invoked, an ancient origin 420 of vernalization responsive flowering seems unlikely given that cool-seasonal climates emerged 421 only in the last 36 million years (Zachos et al., 2001; Preston and Sandve, 2013; Preston and 422 Fjellheim, 2020).

423

#### 424 Variation in vernalization sensitivity

Some plants display an absolute requirement for vernalization, in that they fail to flower entirely without cold. Others simply flower later if unvernalized (Amasino, 2004). Either way, the vernalization response is considered saturated when plants do not flower faster with longer vernalization periods. The required time to saturate vernalization varies depending on a plant's local environment and genotype. For example, a latitudinal cline in vernalization sensitivity has been identified across wide geographic scales in both Arabidopsis and sugar beet, with northern populations requiring longer vernalization than southern populations to saturate their requirement 432 (Boudry et al., 2002; Stinchcombe et al., 2005). Latitudinal differences in vernalization

433 sensitivity have been linked to variation in initial *FLC* levels (Hepworth et al., 2020), as well as

434 differential rates of epigenetic silencing of *FLC* (Shindo et al., 2006). While latitudinal clines are

435 considered an indicator of adaptation, further studies are required to link the actual climatic

436 variables (e.g. length of the growing period and temperature seasonality; Fig. 1) to variation in

- 437 saturation times.
- 438

439 Despite correlations between latitude and vernalization sensitivity across wide geographic 440 distances, evidence is lacking for this relationship at more local scales. In Arabidopsis, rather 441 than showing latitudinal clines, populations at the northern edge of the range exposed to 442 continental climates are more sensitive to vernalization than populations from oceanic climates 443 (Shindo et al., 2006; Lewandowska-Sabat et al., 2012) (Fig. 5). A possible explanation for this 444 pattern is that winter temperatures are more variable in coastal versus continental regions, and 445 thus a longer duration of vernalization is required to both saturate the vernalization response and 446 predict the real onset of spring (Lewandowska-Sabat et al., 2012; Zhao et al., 2020). To test this 447 hypothesis, fine-scale data to determine winter temperature variability will be required for a 448 variety of regions and plant taxa (see Outstanding Questions).

449

#### 450 **Temperature thresholds for vernalization**

451 Previous studies have reported that vernalization in germinated plants is optimal at around 5-

452 10°C (Atherton et al., 1990; Rawson et al., 1998; Brooking and Jamieson, 2002; Wollenberg and

453 Amasino, 2012; Ream et al., 2014; Duncan et al., 2015; Cullerne et al., 2021). At 0°C and above

454 15°C, vernalization efficiency is greatly attenuated [but see Niu et al., 2004; Cullerne et al.,

455 2021). However, even given a maximum vernalization temperature, vernalization is still efficient

456 across a range of temperatures, highlighting the ability of plants to respond to and buffer against

457 a range of temperatures over diurnal, seasonal, and annual timescales. The fact that vernalization

458 is less efficient below 5°C indicates that in more northern climates of the northern hemisphere

459 vernalization response will mainly be saturated in the cool autumn months prior to winter itself

460 (Duncan et al., 2015; Hepworth et al., 2020). The saturation of vernalization response before

- 461 snow cover is linked to early flower production in the spring, possibly to avoid herbivory
- 462 (Duncan et al., 2015). Whether fine-tuning of temperature sensitivity and vernalization saturation

- 463 can keep up with ongoing climate change is an open question. The answer will require
- 464 knowledge of variation in flowering behavior at both the intra- and interspecific level.
- 465

#### 466 THE IMPACT OF HIGH TEMPERATURES ON FLOWERING

467

#### 468 Heat stress-induced flowering

469 'Stressful' high temperatures can be defined by their negative impacts on growth and yield, and 470 vary in their lower limits based on the taxon of interest. For example, growth is entirely blocked 471 at 25°C in temperate broccoli (Brassica oleracea) and at 38°C in sub-tropical maize (Zea mays) 472 (Hatfield and Prueger, 2015). A delay or succession of growth at high temperatures can 473 indirectly increase days to flowering, but studies in Arabidopsis and wheat suggest variation in 474 developmentally (e.g. leaf number)-based flowering time is dependent on genotype 475 (Balasubramanian et al., 2006; Posé et al., 2013; Dixon et al., 2019). Although few studies have 476 quantified plant flowering time responses to a range of high temperatures (see Outstanding 477 Ouestions), stress in general is known to promote flowering across a diversity of angiosperms, 478 presumably as a means of reproductive assurance (Takeno, 2016). It is likely that a generic stress 479 response pathway for flowering exists that incorporates signals such as growth and cellular 480 damage. However, the importance of heat-specific signals on flowering, such as protein 481 denaturation and the concomitant activation of HSPs, largely remains to be elucidated. 482

#### 483 High temperatures devernalize plants

484 It has long been known that in some vernalization responsive plants high temperatures can

remove the memory of winter and cause 'devernalization'. For example, exposure of winter rye

- 486 (Secale cereale; Poaceae) to 35°C for different lengths of time following vernalization leads to a
- 487 progressive reversal of the vernalization response (Purvis and Gregory, 1945). A similar
- 488 response has also been identified in Arabidopsis (Bouche et al., 2015; Périlleux et al., 2013;
- 489 Shindo et al., 2006), chicory (Périlleux et al., 2013) and wheat (Dixon et al., 2019). However, in
- 490 Arabidopsis and chicory, stabilizing the plants at 20°C before transferring them to 30+°C
- 491 effectively prevents devernalization (Périlleux et al., 2013; Bouché et al., 2015).

493 The molecular basis of devernalization appears to be the remodeling of chromatin at 494 vernalization response loci, such as the removal of repressive H3K27me3 marks on Arabidopsis 495 FLC and histone deacetylation at cereal grass VRN1 (Fig. 3) (Oliver et al., 2013; Bouché et al., 496 2015). This resetting is akin to that occurring in germline cells and post-flowering meristems in 497 annuals and perennials, respectively. However, much is still to be learned about whether a 498 devernalization response necessarily follows from a vernalization response, the degree of 499 conservation of the devernalization response across angiosperms, and whether this response 500 evolved from a common high temperature-mediated flowering pathway. From a more ecological 501 perspective, it is also unclear whether the loss of winter memory through devernalization is 502 adaptive (see Outstanding Questions). An adaptive explanation seems particularly questionable 503 given that prolonged high temperatures are unusual during temperate autumns and winters, and 504 that only long daily periods of low temperatures are vernalizing (Chujo, 1966). On the other 505 hand, the study of vernalization and devernalization responses has so far been limited to a few 506 taxa and experimental conditions, and is expected to become more pertinent as extreme weather 507 events become more of the norm (Neilson et al., 2020).

508

# 509 FLOWERING TIME IN THE CONTEXT OF GLOBAL WARMING: FUTURE510 DIRECTIONS

511

512 As the climate changes and extreme weather events become more common (Neilson et al., 513 2020), an understanding of the intersection between low and high temperatures on flowering 514 time across a range of taxa, and in more natural settings, will be important for conservation 515 planning and crop breeding. As reviewed above, most of our understanding of temperature-516 induced flowering has focused on temperate species, specifically in relation to vernalizing 517 conditions. Although much remains unknown about variation in the vernalization response in 518 relation to how it is sensed, its temperature threshold, and its saturation time, an even greater 519 knowledge gap remains in how ambient to high temperatures affect flowering outside of 520 Arabidopsis (see Outstanding Questions). In tropical species, for example, global warming by a 521 few degrees might shift, lengthen, or shorten flowering time, particularly if species are close to 522 their upper thermal limits (Kingsolver, 2009; but see Pau et al., 2013). The potential of a high 523 temperature memory of summer is also an intriguing hypothesis, as is the idea that a temperature

| 524 | memory could span multiple seasons in perennial taxa (Fig. 4) (Samarth et al., 2020; see         |
|-----|--------------------------------------------------------------------------------------------------|
| 525 | Outstanding Questions). Exploration of these issues will require a concerted effort by the plant |
| 526 | biology community at multiple taxonomic, geographical, and organizational scales, as well as an  |
| 527 | eye to more 'natural' lab conditions.                                                            |
| 528 |                                                                                                  |
| 529 | Advances                                                                                         |
| 530 | • Much recent progress has been made in determining the sensing mechanisms for ambient,          |
| 531 | low, and high temperatures, particularly within core eudicots.                                   |
| 532 | • Flowering responses to different temperatures are broadly mediated by long non-coding          |
| 533 | RNAs, differential splicing, and chromatin modifications.                                        |
| 534 | • Annual and perennial plants can be distinguished by the reset time of their winter             |
| 535 | memory and the age to which they become vernalization responsive.                                |
| 536 | • Vernalization responsiveness has evolved multiple times through the recruitment of a           |
| 537 | conserved set of genes involved in reproductive development.                                     |
| 538 |                                                                                                  |
| 539 | Outstanding Questions                                                                            |
| 540 |                                                                                                  |
| 541 | • Are phytochromes involved in temperature sensing outside core eudicots?                        |
| 542 | • How does the thermal reversion pathway intersect with the ambient temperature                  |
| 543 | flowering pathway?                                                                               |
| 544 | • How have ambient stress response pathways been rewired to affect different ambient             |
| 545 | temperature flowering responses across angiosperms?                                              |
| 546 | • Do plants have a summer memory? Does it involve the same epigenetic modifications as           |
| 547 | the winter memory?                                                                               |
| 548 | • How important is variation in autumn-winter temperatures in shaping the evolution of           |
| 549 | vernalization saturation times?                                                                  |
| 550 | • How variable are vernalization temperature thresholds within and between species? What         |
| 551 | ecological factors drive these patterns?                                                         |
| 552 | • Is there a heat stress flowering pathway? Is it conserved across angiosperms?                  |
| 553 | • Are all vernalization responsive plants devernalizable and is this response to seasonally      |
| 554 | unusual high temperatures adaptive?                                                              |

555 556 **Funding information** 557 This work was supported by a National Science Foundation award (NSF-2120732 to JCP) and a 558 Research Council Norway award (301284 to SF). 559 560 **Figure Legends** 561 562 Fig. 1: Climate maps showing global variation in the length of growing seasons and seasonal 563 variation in temperature. (A) Temperature seasonality based on the standard deviation of 564 monthly temperature (°C) x 100 (BIO4). Red indicates high; blue indicates low. (B) Length of 565 the growing season in the northern and southern hemispheres as depicted by the last month of the 566 year with temperatures at or above 15°C. Both datasets were obtained from the 567 https://www.worldclim.org (Fick and Hijmans, 2017). 568 569 Fig. 2: Simplified genetic pathway for ambient temperature sensing and flowering response in 570 Arabidopsis. Plant temperature sensing occurs, at least in part, through the regulation of genes 571 also involved in the light-sensing and the circadian clock. Solid lines indicate well established 572 connections, whereas dashed lines show hypothetical connections. Arrowheads denote positive 573 regulation; bars denote negative regulation. 574 575 Fig. 3: Known and hypothetical temperature-mediated epigenetic modifications in cereal grasses, 576 Arabidopsis, and masting plants. 577 578 Fig. 4: Similarities and differences in the vernalization genetic flowering pathway between 579 cereal grasses and Arabidopsis. The Arabidopsis vernalization pathway occurs in three inter-580 dependent stages: initiation, memory, and resetting. Solid lines indicate well established 581 connections, whereas dashed lines show hypothetical connections. Arrowheads denote positive 582 regulation; bars denote negative regulation. 583 584 Fig. 5: Association between coastal-continental habitats and vernalization saturation time in

585 Norwegian populations of Arabidopsis. Larger bluer circles denote population with higher

| 586 | vernalization sensitivity, whereas smaller redder circles denote populations with lower         |
|-----|-------------------------------------------------------------------------------------------------|
| 587 | vernalization sensitivity. Land areas are colored based on Köppen climate classifications (Beck |
| 588 | et al., 2018).                                                                                  |
| 589 |                                                                                                 |
| 590 | References                                                                                      |
| 591 |                                                                                                 |
| 592 | Aikawa S, Kobayashi MJ, Satake A, Shimizu KK, Kudoh H (2010) Robust control of the              |
| 593 | seasonal expression of the Arabidopsis FLC gene in a fluctuating environment. Proc Natl Acad    |
| 594 | Sci USA <b>107</b> : 11632–11637                                                                |
| 595 |                                                                                                 |
| 596 | Airoldi CA, McKay M, Davies B (2015) MAF2 is regulated by temperature-dependent splicing        |
| 597 | and represses flowering at low temperatures in parallel to FLM. PLoS One 10: e0126561           |
| 598 |                                                                                                 |
| 599 | Albani MC, Castaings L, Wötzel S, Mateos JL, Wunder J, Wang R, Reymond M,                       |
| 600 | Coupland G (2012) PEP1 of Arabis alpina is encoded by two overlapping genes that contribute     |
| 601 | to natural genetic variation in perennial flowering. PLOS Genetics 8: e1003130                  |
| 602 |                                                                                                 |
| 603 | Amasino R (2004) Vernalization, competence, and the epigenetic memory of winter. Plant Cell     |
| 604 | <b>16</b> : 2553-2559                                                                           |
| 605 |                                                                                                 |
| 606 | Amasino R (2005) Vernalization and flowering time. Current Opinion in Biotechnology 16:         |
| 607 | 154-158                                                                                         |
| 608 |                                                                                                 |
| 609 | An F-M, Hsiao S-R, Chan M-T (2011) Sequencing-based approaches reveal low ambient               |
| 610 | temperature-responsive and tissue-specific microRNAs in <i>Phalaenopsis</i> orchid. PLoS One 6: |
| 611 | e18937                                                                                          |
| 612 |                                                                                                 |
| 613 | An Y, Guo Y, Liu C, An H (2015) BdVIL4 regulates flowering time and branching through           |
| 614 | repressing miR156 in ambient temperature dependent way in Brachypodium distachyon. Plant        |
| 615 | Physiol Biochem 89: 92-99                                                                       |
| 616 |                                                                                                 |

| 617 | Andersen JR, Jensen LB, Asp T, Lübberstedt T (2006) Vernalization response in perennial         |
|-----|-------------------------------------------------------------------------------------------------|
| 618 | ryegrass (Lolium perenne L.) involves orthologues of diploid wheat (Triticum monococcum)        |
| 619 | VRN1 and rice (Oryza sativa) Hd1. Plant Mol Biol 60: 481–494                                    |
| 620 |                                                                                                 |
| 621 | Angel A, Song J, Dean C, Howard M (2011) A Polycomb-based switch underlying quantitative        |
| 622 | epigenetic memory. Nature 476: 105–108                                                          |
| 623 |                                                                                                 |
| 624 | Angel A, Song J, Yang H, Questa JI, Dean C, Howard M (2015) Vernalizing cold is                 |
| 625 | registered digitally at FLC. Proc Natl Acad Sci USA 112: 4146–4151                              |
| 626 |                                                                                                 |
| 627 | Antoniou-Kourounioti RL, Hepworth J, Heckmann A, Duncan S, Qüesta J, Rosa S, Säll T,            |
| 628 | Holm S, Dean C, Howard M (2018) Temperature sensing is distributed throughout the               |
| 629 | regulatory network that controls FLC epigenetic silencing in vernalization Cell Syst 7: 643-    |
| 630 | 655.e9                                                                                          |
| 631 |                                                                                                 |
| 632 | Atherton JG, Craigon J, Basher* EA (1990) Flowering and bolting in carrot. I. Juvenility,       |
| 633 | cardinal temperatures and thermal times for vernalization. J Hort Sci 65: 423-429               |
| 634 |                                                                                                 |
| 635 | Atkinson CJ, Brennan RM, Jones HG (2013) Declining chilling and its impact on temperate         |
| 636 | perennial crops. Environ Exp Bot 91: 48-62                                                      |
| 637 |                                                                                                 |
| 638 | Baduel P, Arnold B, Weisman CM, Hunter B, Bomblies K (2016) Habitat-associated life             |
| 639 | history and stress-tolerance variation in Arabidopsis arenosa. Plant Physiol 171: 437-451       |
| 640 |                                                                                                 |
| 641 | Balasubramanian S, Sureshkumar S, Lempe J, Weigel D (2006) Potent induction of                  |
| 642 | Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genetics 2: e106            |
| 643 |                                                                                                 |
| 644 | Ballerini ES, Kramer EM (2011) In the light of evolution: a reevaluation of conservation in the |
| 645 | CO-FT regulon and its role in photoperiodic regulation of flowering time. Front Plant Sci 2: 81 |
| 646 |                                                                                                 |

| 647 | Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present                 |
|-----|--------------------------------------------------------------------------------------------------|
| 648 | and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5: 180214      |
| 649 |                                                                                                  |
| 650 | Bergonzi S, Albani MC, Ver Loren van Themaat E, Nordström KJV, Wang R,                           |
| 651 | Schneeberger K, Moerland PD, Coupland G (2013) Mechanisms of age-dependent response              |
| 652 | to winter temperature in perennial flowering of Arabis alpina. Science 340: 1094–1097            |
| 653 |                                                                                                  |
| 654 | Bernacchi CJ, Rosenthal, DM, Pimentel C, Long SP, Farquhar GD (2009) Modeling the                |
| 655 | temperature dependence of C3 photosynthesis. In: Photosystems in Silico: Understanding           |
| 656 | Complexity from Molecules to Ecosystems, Advances in Photosynthesis and Respiration. Laisk       |
| 657 | A, Nedbal, L, Govindjee G, eds, Vol. 29. Dordrecht: Springer, pp 231-246                         |
| 658 |                                                                                                  |
| 659 | Berry S, Dean C (2015) Environmental perception and epigenetic memory: mechanistic insight       |
| 660 | through FLC. The Plant Journal: for cell and molecular biology. doi: 10.1111/tpj.12869           |
| 661 |                                                                                                  |
| 662 | Boden SA, Kavanova M, Finnegan EJ, Wigge PA (2013) Thermal stress effects on grain yield         |
| 663 | in Brachypodium distachyon occur via H2A.Z-nucleosomes. Genome Biol 14: R65                      |
| 664 |                                                                                                  |
| 665 | Bouché F, Detry N, Périlleux C (2015) Heat can erase epigenetic marks of vernalization in        |
| 666 | Arabidopsis. Plant Signal Behav 10: e990799                                                      |
| 667 |                                                                                                  |
| 668 | Boudry P, McCombie H, van Dijk H (2002) Vernalization requirement of wild beet (Beta             |
| 669 | vulgaris ssp. maritima): Among population variation and its adaptive significance. J Ecol 90:    |
| 670 | 693–703                                                                                          |
| 671 |                                                                                                  |
| 672 | Brooking IR, Jamieson PD (2002) Temperature and photoperiod response of vernalization in         |
| 673 | near-isogenic lines of wheat. Field Crop Res 79: 21–38                                           |
| 674 |                                                                                                  |
| 675 | Cao S, Luo X, Xu D, Tian X, Song J, Xia X, Chu C, He Z (2021) Genetic architecture               |
| 676 | underlying light and temperature mediated flowering in Arabidopsis, rice, and temperate cereals. |
| 677 | New Phytol <b>230</b> : 1731-1745                                                                |

| 678 |                                                                                                      |
|-----|------------------------------------------------------------------------------------------------------|
| 679 | Carmona MJ, Chaïb J, Martínez-Zapater JM, Thomas MR (2008) A molecular genetic                       |
| 680 | perspective of reproductive development in grapevine. J Exp Bot 59: 2579–2596                        |
| 681 |                                                                                                      |
| 682 | Casal JJ, Balasubramanian S (2019) Thermomorphogenesis. Annu Rev Plant Biol 70: 321-                 |
| 683 | 346                                                                                                  |
| 684 |                                                                                                      |
| 685 | Casal JJ, Questa JI (2018) Light and temperature cues: multitasking receptors and                    |
| 686 | transcriptional integrators. New Phytol 217: 1029–1034                                               |
| 687 |                                                                                                      |
| 688 | Chinnusamy V, Zhu JK, Sunkar R (2010) Gene regulation during cold stress acclimation in              |
| 689 | plants. Methods Mol Biol 639: 39–55                                                                  |
| 690 |                                                                                                      |
| 691 | Chouard P (1960) Vernalization and its relations to dormancy. Annu Rev Plant Physiol 11:             |
| 692 | 191–238                                                                                              |
| 693 |                                                                                                      |
| 694 | Chujo H (1966) The effect of diurnal variation of temperature on vernalization in wheat. Proc        |
| 695 | Crop Sci Soc Japan <b>35</b> : 187-194                                                               |
| 696 |                                                                                                      |
| 697 | Cox DTC, Maclean IMD, Gardner AS, Gaston KJ (2020) Global variation in diurnal                       |
| 698 | asymmetry in temperature, cloud cover, specific humidity and precipitation and its association       |
| 699 | with leaf area index. Global Change Biol 26: 7099-7111                                               |
| 700 |                                                                                                      |
| 701 | Cullerne DP, Fjellheim S, Spriggs A, Eamens AL, Trevaskis B, Wood CC (2021) A                        |
| 702 | vernalization response in a winter safflower (Carthamus tinctorius) involves the upregulation of     |
| 703 | homologs of FT, FUL, and MAF. Front Plant Sci 12: 639014                                             |
| 704 |                                                                                                      |
| 705 | Danyluk J, Kane NA, Breton G, Limin AE, Fowler DB, Sarhan F (2003) TaVRT-1, a putative               |
| 706 | transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol |
| 707 | <b>132</b> : 1849–1860                                                                               |
| 708 |                                                                                                      |

| 709 | De Lucia F, Crevillen P, Jones AME, Greb T, Dean C (2008) A PHD-polycomb repressive             |
|-----|-------------------------------------------------------------------------------------------------|
| 710 | complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci U S |
| 711 | A 105: 16831–16836                                                                              |
| 712 |                                                                                                 |
| 713 | Del Olmo I, Poza-Viejo L, Pineiro M, Jarillo JA, Crevillen P (2019) High ambient                |
| 714 | temperature leads to reduced FT expression and delayed flowering in Brassica rapa via a         |
| 715 | mechanism associated with H2A.Z dynamics. Plant J 100: 343-356                                  |
| 716 |                                                                                                 |
| 717 | Dixon LE, Karsai I, Kiss T, Adamski NM, Liu Z, Ding Y, Allard V, Boden SA, Griffiths S          |
| 718 | (2019) VERNALIZATION1 controls developmental responses of winter wheat under high               |
| 719 | ambient temperatures. Development 146: dev172684                                                |
| 720 |                                                                                                 |
| 721 | Dubcovsky J, Loukoianov A, Fu D, Valarik M, Sanchez A, Yan L (2006) Effect of                   |
| 722 | photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol 60:    |
| 723 | 469–480                                                                                         |
| 724 |                                                                                                 |
| 725 | Duncan S, Holm S, Questa J, Irwin J, Grant A, Dean C (2015) Seasonal shift in timing of         |
| 726 | vernalization as an adaptation to extreme winter. eLife 4: e06620                               |
| 727 |                                                                                                 |
| 728 | Engin H, Ünal A (2007) Examination of flower bud initiation and differentiation in sweet cherry |
| 729 | and peach by scanning electron microscope. Turk J Agric For 31: 373-379                         |
| 730 |                                                                                                 |
| 731 | Ergon Å, Hamland H, Rognli OA (2013) Differential expression of VRN1 and other MADS-            |
| 732 | box genes in Festuca pratensis selections with different vernalization requirements. Biol Plant |
| 733 | <b>57</b> : 245–254                                                                             |
| 734 |                                                                                                 |
| 735 | Fick SE, Hijmans RJ (2017) WorldClim2: new 1km spatial resolution climate surfaces for          |
| 736 | global land areas. Int J Climatol 37: 4302-4315                                                 |
| 737 |                                                                                                 |

| 738 | Fiil A, Jensen LB, Fjellheim S, Lübberstedt T, Andersen JR (2011) Variation in the               |
|-----|--------------------------------------------------------------------------------------------------|
| 739 | vernalization response of a geographically diverse collection of timothy genotypes. Crop Science |
| 740 | <b>51</b> : 2689–2697                                                                            |
| 741 |                                                                                                  |
| 742 | Fjellheim S, Preston JC (2018) Shedding light on the role of seasonal flowering in plant niche   |
| 743 | transitions. Am J Bot 105: 136-138                                                               |
| 744 |                                                                                                  |
| 745 | Friedrich T, Oberkofler V, Trindade I, Altmann S, Brzezinka K, Lämke J, Bäurle I.                |
| 746 | (2021). Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in      |
| 747 | Arabidopsis. Nature Comm 12: 3426                                                                |
| 748 |                                                                                                  |
| 749 | Fujii Y, Tanaka H, Konno N, Ogasawara Y, Hamashima N, Tamura S, Hasegawa S,                      |
| 750 | Hayasaki Y, Okajima K, Kodama Y (2017) Phototropin perceives temperature based on the            |
| 751 | lifetime of its photoactivated state. Proc Natl Acad Sci USA 114: 9206-9211                      |
| 752 |                                                                                                  |
| 753 | Geiger R (1954) Klassifikation der Klimate nach W. Köppen. In Classification of climates after   |
| 754 | W Koppen Landolt-Bornstein – Zachlenwerte und Funktionen aus Physik Chemie, Astronomie,          |
| 755 | Geophysik und Technik, alte Serie, Vol 3. Springer, Berlin, pp 603–607                           |
| 756 |                                                                                                  |
| 757 | Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009) The molecular biology of seasonal           |
| 758 | flowering-responses in Arabidopsis and the cereals. Ann Bot 103: 1165–1172                       |
| 759 |                                                                                                  |
| 760 | Greenup AG, Sasani S, Oliver SN, Talbot MJ, Dennis ES, Hemming MN, Trevaskis B                   |
| 761 | (2010) ODDSOC2 is a MADS box floral repressor that is down-regulated by vernalization in         |
| 762 | temperate cereals. Plant Physiol 153: 1062–1073                                                  |
| 763 |                                                                                                  |
| 764 | Guo X, Liu D, Chong K (2018) Cold signaling in plants: insights into mechanisms and              |
| 765 | regulation. J Integr Plant Biol 60: 745-756                                                      |
| 766 |                                                                                                  |
| 767 | Hafke JB, Ehlers K, Foller J, Holl SR, Becker S, van Bel AJE (2013) Involvement of the           |
| 768 | sieve element cytoskeleton in electrical responses to cold shocks. Plant Physiol 162: 707-719    |

| 769 |                                                                                                |
|-----|------------------------------------------------------------------------------------------------|
| 770 | Harris BR, Irwin JA, Holm S, Säll T, et al (2018) Absence of warmth permits epigenetic         |
| 771 | memory of winter in Arabidopsis. Nat Commun 9: 639                                             |
| 772 |                                                                                                |
| 773 | Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and                |
| 774 | development. Weath Clim Ext 10: 4-10                                                           |
| 775 |                                                                                                |
| 776 | Hayama R, Coupland G (2004) The molecular basis of diversity in the photoperiodic flowering    |
| 777 | responses of Arabidopsis and rice. Plant Physiol 135: 677-684                                  |
| 778 |                                                                                                |
| 779 | Heide OM (1994) Control of flowering and reproduction in temperate grasses. New Phytol 128:    |
| 780 | 347-362.                                                                                       |
| 781 |                                                                                                |
| 782 | Helliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES (2006) The                      |
| 783 | Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a |
| 784 | high-molecular-weight protein complex. Plant J 46: 183–192                                     |
| 785 |                                                                                                |
| 786 | Hemming MN, Peacock WJ, Dennis ES, Trevaskis B (2008) Low-temperature and daylength            |
| 787 | cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiol 147: 355-366        |
| 788 |                                                                                                |
| 789 | Hemming MN, Walford SA, Fieg S, Dennis ES, Trevaskis B (2012) Identification of high-          |
| 790 | temperature-responsive genes in cereals. Plant Physiol 158: 1439-1450                          |
| 791 |                                                                                                |
| 792 | Hepworth J, Antoniou-Kourounioti RL, Bloomer RH, Selga C, Berggren K, Cox D, Collier,          |
| 793 | Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of       |
| 794 | FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:  |
| 795 | 344–347                                                                                        |
| 796 |                                                                                                |
| 797 | Hepworth J, Dean C (2015) Flowering Locus C's lessons: conserved chromatin switches            |
| 798 | underpinning developmental timing and adaptation. Plant Physiol 168: 1237-1245                 |
| 799 |                                                                                                |

| 800 | Hepworth J, Antoniou-Kourounioti RL, Bloomer RH, Selga C, Berggren K , Cox D, Collier                    |
|-----|----------------------------------------------------------------------------------------------------------|
| 801 | Harris BR, Irwin JA, Holm S, Säll T, Howard M, Dean C (2018) Absence of warmth permits                   |
| 802 | epigenetic memory of winter in Arabidopsis. Nat Commun 9: 639                                            |
| 803 |                                                                                                          |
| 804 | Hepworth J, Antoniou-Kourounioti RL, Berggren K, Selga C, Tudor EH, Yates B, Cox D,                      |
| 805 | Collier Harris BR, Irwin JA, Howard M, et al (2020) Natural variation in autumn expression               |
| 806 | is the major adaptive determinant distinguishing Arabidopsis FLC haplotypes. eLife 9: e57671             |
| 807 |                                                                                                          |
| 808 | Huang E, Chen Y, Fang M, Zheng Y, Yu S (2021) Environmental drivers of plant distributions               |
| 809 | at global and regional scales. Glob Ecol Biogeog <b>30</b> : 697-709                                     |
| 810 |                                                                                                          |
| 811 | Jagadish SVK, Bahuguna RN, Djanaguiraman M, Gamuyao R, Prasad PVV, Craufurd PQ                           |
| 812 | (2015) Implications of high temperatures and elevated CO <sub>2</sub> on flowering time in plants. Front |
| 813 | Plant Sci 7: 913                                                                                         |
| 814 |                                                                                                          |
| 815 | Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS,                                |
| 816 | Charoensawan V, Cotijo S, Kumar M, Grant A, Locke JC, Schafter E, Jaeger KE, Wigge                       |
| 817 | PA (2016) Photochromes function as thermosensors in Arabidopsis. Science 354: 886-889                    |
| 818 |                                                                                                          |
| 819 | Kelly D, Geldenhuis A, James A, Holland EP, Plank MJ, Brokie RE, Cowan PE, Harper                        |
| 820 | GA, Lee WG, Maitland MJ, Mark AF, Mills JA, Wilson PR, Byrom AE (2013) Of mast and                       |
| 821 | mean: differential-temperature cue makes mast seeding insensitive to climate change. Ecol Lett           |
| 822 | <b>16</b> : 90-98                                                                                        |
| 823 |                                                                                                          |
| 824 | Kemi U, Leinonen PH, Savolainen O, Kuittinen H (2019) Inflorescence shoot elongation, but                |
| 825 | not flower primordia formation, is photoperiodically regulated in Arabidopsis lyrata. Ann Bot            |
| 826 | <b>124</b> : 91–102                                                                                      |
| 827 |                                                                                                          |
| 828 | Kiefer C, Severing E, Karl R, Bergonzi S, Koch M, Tresch A, Coupland G (2017)                            |
| 829 | Divergence of annual and perennial species in the Brassicaceae and the contribution of cis-acting        |
| 830 | variation at FLC orthologues. Mol Ecol 26: 3437–3457                                                     |

| 831 |                                                                                              |
|-----|----------------------------------------------------------------------------------------------|
| 832 | Kim D-H, Sung S (2017) Vernalization-triggered intragenic chromatin loop formation by long   |
| 833 | noncoding RNAs. Dev Cell 40: 302-312.e4                                                      |
| 834 |                                                                                              |
| 835 | Kim S, Hwang G, Kim S, Thi TN, Kim H, Jeong J, Kim J, Kim J, Choi G, Oh E (2020) The         |
| 836 | epidermis coordinates thermoresponsive growth through the phyB-PIF4-auxin pathway. Nature    |
| 837 | Comm <b>11</b> : 1053                                                                        |
| 838 |                                                                                              |
| 839 | Kingsolver JG (2009) The well-temperatured biologist. American Naturalist 101: 755-768       |
| 840 |                                                                                              |
| 841 | Kinmonth-Schultz HA, MacEwen MJS, Seaton DD, Millar AJ, Imaizumi T, Kim SH (2019)            |
| 842 | An explanatory model of temperature influence on flowering through whole-plant accumulation  |
| 843 | of FLOWERING LOCUS T in Arabidopsis thaliana. in silico Plants 1: 1                          |
| 844 |                                                                                              |
| 845 | Klose C, Nagy F, Schafer E (2020) Thermal reversion of plant phytochromes. Mol Plant 13:     |
| 846 | 386-397                                                                                      |
| 847 |                                                                                              |
| 848 | Kumar SV, Lucyshyn D, Jaeger KE (2012) Transcription factor PIF4 controls the                |
| 849 | thermosensory activation of flowering time. Nature 484: 242-245                              |
| 850 |                                                                                              |
| 851 | Lamers J, van der Meer T, Testerink C (2020) How plants sense and respond to stressful       |
| 852 | environments. Plant Physiol 182: 1624-1635                                                   |
| 853 |                                                                                              |
| 854 | Lancaster LT, Humphreys AM (2020) Global variation in the thermal tolerances of plants.      |
| 855 | Proc Natl Acad Sci USA 117: 13580-13587                                                      |
| 856 |                                                                                              |
| 857 | Lee C-R, Hsieh J-W, Schranz ME, Mitchell-Olds T (2018) The functional change and             |
| 858 | deletion of FLC homologs contribute to the evolution of rapid flowering in Boechera stricta. |
| 859 | Front Plant Sci 9: 1078                                                                      |
| 860 |                                                                                              |

| 861 | Lee JH, Ryu HS, Chung KS, Pose D, Kim S, Schmid M, Ahn JH (2013) Regulation of                  |
|-----|-------------------------------------------------------------------------------------------------|
| 862 | temperature-responsive flowering by MADS-box transcription factor repressors. Science 342:      |
| 863 | 628-632                                                                                         |
| 864 |                                                                                                 |
| 865 | Lewandowska-Sabat A, Fjellheim S, Rognli O (2012) The continental-oceanic climatic              |
| 866 | gradient impose clinal variation in vernalization response in Arabidopsis thaliana. Environ Exp |
| 867 | Bot <b>78</b> : 109-116                                                                         |
| 868 |                                                                                                 |
| 869 | Li B, Gao K, Ren H, Tang W (2018). Molecular mechanisms governing plant responses to high       |
| 870 | temperatures. J Int Plant Biol 60: 757–779                                                      |
| 871 |                                                                                                 |
| 872 | Li XF, Jia LY, Xu J, Deng XJ, Wang Y, Zhang W, Zhang W-P, Fang Q, Zhang D-M, Sun                |
| 873 | Y, Xu L (2013) FT-like NFT1 gene may play a role in flower transition induced by heat           |
| 874 | accumulation in Narcissus tazetta var. Chinensis. Plant Cell Physiol 54: 270-281                |
| 875 |                                                                                                 |
| 876 | Liberek K, Lewandowska A, Ziętkiewicz S (2008) Chaperones in control of protein                 |
| 877 | disaggregation. EMBO J 27: 328–335                                                              |
| 878 |                                                                                                 |
| 879 | Lin C-W, Fu S-F, Liu Y-J, Chen C-C, Chang C-H, Yang Y-W, Huang H-J (2019) Analysis              |
| 880 | of ambient temperature-responsive transcriptome in shoot apical meristem of heat-tolerant and   |
| 881 | heat-sensitive broccoli inbred lines during floral head formation. BMC Plant Biol 19: 3         |
| 882 |                                                                                                 |
| 883 | Liu Z, Jia Y, Ding Y, Shi Y, Li Z, Guo Y, Gong Z, Yang S (2017) Membrane CRPK1-                 |
| 884 | mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF       |
| 885 | signaling during cold response. Mol Cell 66: 117-128                                            |
| 886 |                                                                                                 |
| 887 | Luo X, He (2020) Experiencing winter for spring flowering: a molecular epigenetic perspective   |
| 888 | on vernalization. J Integ Plant Biol 62: 104-117                                                |
| 889 |                                                                                                 |
| 890 | Luo X, Ou Y, Li R, He Y (2020) Maternal transmission of the epigenetic 'memory of winter        |
| 891 | cold' in Arabidopsis. Nature Plants 6: 1211-1218                                                |

| 892 |                                                                                                      |
|-----|------------------------------------------------------------------------------------------------------|
| 893 | Lutz U, Pose D, Pfeifer M, Gundlach H, Hagmann J, Wang C, Weigel D, Mayer KFX,                       |
| 894 | Schmid M, Schwecheimer C (2015) Modulation of ambient temperature-dependent flowering                |
| 895 | in Arabidopsis thaliana by natural variation of FLOWERING LOCUS M. PLoS Genet 11:                    |
| 896 | e1005588                                                                                             |
| 897 |                                                                                                      |
| 898 | Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo                 |
| 899 | X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K (2015)                     |
| 900 | COLD1 confers chilling tolerance in rice. Cell 160: 1209–1221                                        |
| 901 |                                                                                                      |
| 902 | McClung CR, Davis SJ (2010) Ambient thermometers in plants: from physiological outputs               |
| 903 | towards mechanisms of thermal sensing. Curr Biol 20: R1086-92                                        |
| 904 |                                                                                                      |
| 905 | McKeown M, Schubert M, Marcussen T, Fjellheim S, Preston JC (2016) Evidence for an                   |
| 906 | early origin of vernalization responsiveness in temperate Pooideae grasses. Plant Physiol 172:       |
| 907 | 416-426                                                                                              |
| 908 |                                                                                                      |
| 909 | Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain                         |
| 910 | protein that acts as a repressor of flowering. Plant Cell 11: 949–956                                |
| 911 |                                                                                                      |
| 912 | Monteagudo A, Igartua E, Contreras-Moreira B, Gracia MP, Ramos J, Karsai I, Casas                    |
| 913 | AM (2019) Fine-tuning of the flowering time control in winter barley: the importance of <i>HvOS2</i> |
| 914 | and HvVRN2 in non-inductive conditions. BMC Plant Biology 19: 113                                    |
| 915 |                                                                                                      |
| 916 | Nakano Y, Higuchi Y, Sumitomo K, Hisamatsu T (2013) Flowering retardation by high                    |
| 917 | temperature in chrysanthemums: involvement of FLOWERING LOCUS T-like 3 gene repression.              |
| 918 | J Exp Bot <b>64</b> : 909-920                                                                        |
| 919 |                                                                                                      |
| 920 | Neilson EW, Lamb CT, Konkolics SM, Peers MJL, Majchrzak YN, Doran-Myers D,                           |
| 921 | Garland L, Martinig AR, Boutin S (2020) There's a storm a-coming: ecological resilience and          |
| 922 | resistance to extreme weather events. Ecol Evol 10: 12147-12156                                      |

| 923 |                                                                                                  |
|-----|--------------------------------------------------------------------------------------------------|
| 924 | Niu G, Heins R, Cameron A, Carlson W (2004) Vernalization and devernalization of                 |
| 925 | Campanula "Birch Hybrid" and Leucanthemum xsuperbum "Snow Cap". HortScience 39: 1647-            |
| 926 | 1649                                                                                             |
| 927 |                                                                                                  |
| 928 | Oliver SN, Deng W, Casao MC, Trevaskis B (2013) Low temperatures induce rapid changes in         |
| 929 | chromatin state and transcript levels of the cereal VERNALIZATION1 gene. J Exp Bot 64: 2413-     |
| 930 | 2422                                                                                             |
| 931 |                                                                                                  |
| 932 | Oliver SN, Finnegan EJ, Dennis ES, Peacock WJ, Trevaskis B (2009) Vernalization-induced          |
| 933 | flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1     |
| 934 | gene. Proc Natl Acad Sci U S A 106: 8386–8391                                                    |
| 935 |                                                                                                  |
| 936 | O'Neill CM, Lu X, Calderwood A, Tudor EH, Robinson P, Wells R, Morris R, Penfield S              |
| 937 | (2019) Vernalization and floral transition in autumn drive winter annual life history in oilseed |
| 938 | rape. Curr Biol <b>29</b> : 4300-4306.e2                                                         |
| 939 |                                                                                                  |
| 940 | Pau S, Wolkovich EM, Cook BI, Nytch CJ, Regetz J, Zimmerman JK, Wright SJ (2013)                 |
| 941 | Clouds and temperature drive dynamic changes in tropical flower production. Nature Climate       |
| 942 | Change <b>3</b> : 838-842                                                                        |
| 943 |                                                                                                  |
| 944 | Park Y-J, Kim JY, Lee J-H, Lee B-D, Paek N-C, Park C-M (2020) GIGANTEA shapes the                |
| 945 | photoperiodic rhythms of thermomorphogenic growth in Arabidopsis. Mol Plant. 13: 459-470         |
| 946 |                                                                                                  |
| 947 | Périlleux C, Pieltain A, Jacquemin G, Bouché F, Detry N, D'Aloia M, Thiry L, Aljochim P,         |
| 948 | Delansnay M, Mathieu A-S, et al (2013) A root chicory MADS box sequence and the                  |
| 949 | Arabidopsis flowering repressor FLC share common features that suggest conserved function in     |
| 950 | vernalization and de-vernalization responses. Plant J 75: 390-402                                |
| 951 |                                                                                                  |

| 952 | Petersen K, Didion T, Andersen CH, Nielsen KK (2004) MADS-box genes from perennial               |
|-----|--------------------------------------------------------------------------------------------------|
| 953 | ryegrass differentially expressed during transition from vegetative to reproductive growth. J    |
| 954 | Plant Physiol 4: 439–447                                                                         |
| 955 |                                                                                                  |
| 956 | Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O (2010)            |
| 957 | An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet.        |
| 958 | Science <b>330</b> : 1397-1400                                                                   |
| 959 |                                                                                                  |
| 960 | Posé D, Verhage L, Ott F, Yant L, Mathieu J, Angenent GC, Immink RGH, Schmid M                   |
| 961 | (2013) Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature        |
| 962 | <b>503</b> : 414-417                                                                             |
| 963 |                                                                                                  |
| 964 | Preston JC, Fjellheim S (2020) Understanding past, and predicting future, niche transitions      |
| 965 | based on grass flowering time variation. Plant Physiol 183: 822-839                              |
| 966 |                                                                                                  |
| 967 | Preston JC, Sandve SR (2013) Adaptation to seasonality and the winter freeze. Front Plant Sci    |
| 968 | <b>4</b> : 167                                                                                   |
| 969 |                                                                                                  |
| 970 | Purvis ON, Gregory FG (1945) Devernalization by high temperature. Nature 155: 113–114            |
| 971 |                                                                                                  |
| 972 | Quesada V, Macknight R, Dean C, Simpson GG (2003) Autoregulation of FCA pre-mRNA                 |
| 973 | processing controls arabidopsis flowering time. European Mol Biol J 22: 3142-3152                |
| 974 |                                                                                                  |
| 975 | Rawson H, Zajac M, Penrose L (1998) Effect of seedling temperature and its duration on           |
| 976 | development of wheat cultivars differing in vernalization response. Fields Crop Res 57: 289-300. |
| 977 |                                                                                                  |
| 978 | <b>Ream TS, Woods DP, Amasino RM</b> (2012) The molecular basis of vernalization in different    |
| 979 | plant groups. Cold Spring Harb Sym Quant Biol 77: 105-115                                        |
| 980 |                                                                                                  |

| 981  | Ream TS, Woods DP, Schwartz CJ, Sanabria CP, Mahoy JA, Walters EM, Kaeppler HF,                    |
|------|----------------------------------------------------------------------------------------------------|
| 982  | Amasino RM (2014) Interaction of photoperiod and vernalization determines flowering time of        |
| 983  | Brachypodium distachyon. Plant Physiol 164: 694–709                                                |
| 984  |                                                                                                    |
| 985  | Ronald J, Wilkinson AJ, Davis SJ (2021) EARLY FLOWERING3 sub-nuclear localization                  |
| 986  | responds to changes in ambient temperature. Plant Physiol 187: 2352-2355                           |
| 987  |                                                                                                    |
| 988  | Rosa S, Duncan S, Dean C (2016) Mutually exclusive sense-antisense transcription at FLC            |
| 989  | facilitates environmentally induced gene repression. Nat Commun 7: 13031                           |
| 990  |                                                                                                    |
| 991  | Ruelens P, de Maagd RA, Proost S, Theißen G, Geuten K, Kaufmann K (2013)                           |
| 992  | FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box                |
| 993  | genes. Nat Commun 4: 2280                                                                          |
| 994  |                                                                                                    |
| 995  | Saisho D, Ishii M, Hori K, Sato K (2011) Natural variation of barley vernalization                 |
| 996  | requirements: implication of quantitative variation of winter growth habit as an adaptive trait in |
| 997  | East Asia. Plant Cell Physiol 52: 775–784                                                          |
| 998  |                                                                                                    |
| 999  | Samarth, Kelly D, Turnbull MH, Jameson PE (2020) Molecular control of masting: an                  |
| 1000 | introduction to an epigenetic summer memory. Ann Bot 125: 851-858.                                 |
| 1001 |                                                                                                    |
| 1002 | Sasani S, Hemming MN, Oliver SN, Greenup A, Tavakkol-Afshari R, Mahfoozi S, Poustini               |
| 1003 | K, Sharifi H-R, Dennis ES, Peacock WJ, et al (2009) The influence of vernalization and             |
| 1004 | daylength on expression of flowering-time genes in the shoot apex and leaves of barley             |
| 1005 | ( <i>Hordeum vulgare</i> ). J Exp Bot <b>60</b> : 2169–2178                                        |
| 1006 |                                                                                                    |
| 1007 | Schwartz CJ, Doyle MR, Manzaneda AJ, Rey PJ, Mitchell-Olds T, Amasino RM (2010)                    |
| 1008 | Natural variation of flowering time and vernalization responsiveness in Brachypodium               |
| 1009 | distachyon. Bioenerg Res 3: 38–46                                                                  |
| 1010 |                                                                                                    |

| 1011 | Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino RA, Coupland G (2006)                      |
|------|-------------------------------------------------------------------------------------------------------------|
| 1012 | The transcription factor FLC confers a flowering response to vernalization by repressing                    |
| 1013 | meristem competence and systemic signaling in Arabidopsis. Genes Dev 20: 898–912                            |
| 1014 |                                                                                                             |
| 1015 | Seppänen MM, Pakarinen K, Jokela V, Andersen JR, Fiil A, Santanen A, Virkajärvi P                           |
| 1016 | (2010) Vernalization response of Phleum pratense and its relationships to stem lignification and            |
| 1017 | floral transition. Ann Bot 106: 697–707                                                                     |
| 1018 |                                                                                                             |
| 1019 | Sharma N, Geuten K, Giri BS, Varma A (2020) The molecular mechanism of vernalization in                     |
| 1020 | Arabidopsis and cereals: role of <i>Flowering Locus C</i> and its homologs. Physiol Plant <b>170</b> : 373– |
| 1021 | 383                                                                                                         |
| 1022 |                                                                                                             |
| 1023 | Sharma N, Ruelens P, D'hauw M, Maggen T, Dochy N, Torfs S, Kaufmann K, Rohde A,                             |
| 1024 | Geuten K (2017) A Flowering Locus C homolog is a vernalization-regulated repressor in                       |
| 1025 | Brachypodium and is cold regulated in wheat. Plant Physiol 173: 1301–1315                                   |
| 1026 |                                                                                                             |
| 1027 | Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of                      |
| 1028 | vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci U S A 97:                    |
| 1029 | 3753–3758                                                                                                   |
| 1030 |                                                                                                             |
| 1031 | Shimada S, Ogawa T, Kitagawa S, Suzuki T, Ikari C, Shitsukawa N, Abe T, Kawahigashi                         |
| 1032 | H, Kikuchi R, Handa H, et al (2009) A genetic network of flowering-time genes in wheat                      |
| 1033 | leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING                            |
| 1034 | LOCUS T. Plant J 58: 668–681                                                                                |
| 1035 |                                                                                                             |
| 1036 | Shindo C, Aranzana MJ, Lister C, Baxter C, Nicholls C, Nordborg M, Dean C (2005) Role                       |
| 1037 | of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of                              |
| 1038 | Arabidopsis. Plant Physiol 138: 1163–1173                                                                   |
| 1039 |                                                                                                             |

| 1040 | Shindo C, Lister C, Crevillen P, Nordborg M, Dean C (2006) Variation in the epigenetic           |
|------|--------------------------------------------------------------------------------------------------|
| 1041 | silencing of FLC contributes to natural variation in Arabidopsis vernalization response. Genes   |
| 1042 | Dev <b>20</b> : 3079–3083                                                                        |
| 1043 |                                                                                                  |
| 1044 | Silva CS, Nayak A, Lai X, Hutin S, Hugouvieux V, Jung J-H, Lopez-Vidriero I, Franco-             |
| 1045 | Zorrilla JM, Panigrahi KCS, Nanao MH, Wigge PA, Zubieta C (2020) Molecular                       |
| 1046 | mechanisms of Evening Complex activity in Arabidopsis. Proc Natl Acad Sci USA 117: 6901-         |
| 1047 | 6909                                                                                             |
| 1048 |                                                                                                  |
| 1049 | Simpson GG, Dean C (2002) Arabidopsis, the Rosetta Stone of flowering time? Science 296:         |
| 1050 | 285-289                                                                                          |
| 1051 |                                                                                                  |
| 1052 | Song J, Angel A, Howard M, Dean C (2012) Vernalization - a cold-induced epigenetic switch.       |
| 1053 | J Cell Sci <b>125</b> : 3723–3731                                                                |
| 1054 |                                                                                                  |
| 1055 | Soppe WJJ, Viñegra de la Torre N, Albani MC (2021) The diverse roles of FLOWERING                |
| 1056 | LOCUS C in annual and perennial Brassicaceae species. Front Plant Sci 12: 627258                 |
| 1057 |                                                                                                  |
| 1058 | Stinchcombe JR, Caicedo AL, Hopkins R, Mays C, Boyd EW, Purugganan MD, Schmitt J                 |
| 1059 | (2005) Vernalization sensitivity in Arabidopsis thaliana (Brassicaceae): the effects of latitude |
| 1060 | and <i>FLC</i> variation. Am J Bot <b>92</b> : 1701–1707                                         |
| 1061 |                                                                                                  |
| 1062 | Sung S, Amasino RM (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD           |
| 1063 | finger protein VIN3. Nature <b>427</b> : 159–164                                                 |
| 1064 |                                                                                                  |
| 1065 | Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense           |
| 1066 | transcripts of an Arabidopsis Polycomb target. Nature 462: 799–802                               |
| 1067 |                                                                                                  |
| 1068 | Takeno K (2016) Stress-induced flowering: the third category of flowering response. J Exp Bot    |
| 1069 | <b>67</b> : 4925-4934                                                                            |
| 1070 |                                                                                                  |

| 1071 | Trevaskis B (2010) The central role of the VERNALIZATION1 gene in the vernalization              |
|------|--------------------------------------------------------------------------------------------------|
| 1072 | response of cereals. Funct Plant Biol 37: 479-487                                                |
| 1073 |                                                                                                  |
| 1074 | Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control           |
| 1075 | vernalization-induced flowering in cereals. Proc Natl Acad Sci U S A 100: 13099–13104            |
| 1076 |                                                                                                  |
| 1077 | Trevaskis B, Hemming MN, Peacock WJ, Dennis ES (2006) HvVRN2 responds to daylength,              |
| 1078 | whereas <i>HvVRN1</i> is regulated by vernalization and developmental status. Plant Physiol 140: |
| 1079 | 1397–1405                                                                                        |
| 1080 |                                                                                                  |
| 1081 | True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary               |
| 1082 | trajectories. Evol Dev 3: 109-119                                                                |
| 1083 |                                                                                                  |
| 1084 | United Nations, Department of Economic and Social Affairs, Population Division (UN-              |
| 1085 | DESA-PD) (2019) World Population Prospects 2019: Ten Key Findings.                               |
| 1086 | https://population.un.org/wpp/Publications/                                                      |
| 1087 |                                                                                                  |
| 1088 | Verhage L, Severing EI, Bucher J, Lammers M, Busscher-Lange J, Bonnema G,                        |
| 1089 | Rodenburg N, Proveniers MCG, Angenent GC, Immink RGH (2017) Splicing-related genes               |
| 1090 | are alternatively spliced upon changes in ambient temperatures in plants. PLoS One 12:           |
| 1091 | e0172950                                                                                         |
| 1092 |                                                                                                  |
| 1093 | Vimont N, Fouché M, Campoy JA, Tong M, Arkoun M, Yvin J-C, Wigge PA, Dirlewanger                 |
| 1094 | E, Cortijo S, Wenden B (2019) From bud formation to flowering: transcriptomic state defines      |
| 1095 | the cherry developmental phases of sweet cherry bud dormancy. BMC Genomics 20: 974               |
| 1096 |                                                                                                  |
| 1097 | Wang R, Albani MC, Vincent C, Bergonzi S, Luan M, Bai Y, Kiefer C, Castillo R,                   |
| 1098 | Coupland G (2011) TFL1 confers an age-dependent response to vernalization in perennial           |
| 1099 | Arabis alpina. Plant Cell 23: 1307–1321                                                          |
| 1100 |                                                                                                  |

| 1101 | Wang R, Farrona S, Vincent C, Joecker A, Schoof H, Turck F, Alonso-Blanco C, Coupland             |
|------|---------------------------------------------------------------------------------------------------|
| 1102 | G, Albani MC (2009) PEP1 regulates perennial flowering in Arabis alpina. Nature 459: 423-         |
| 1103 | 427                                                                                               |
| 1104 |                                                                                                   |
| 1105 | Wang Y, Severing EI, Koornneef M, Aarts MGM (2020) FLC and SVP are key regulators of              |
| 1106 | flowering time in the biennial/perennial species Noccaea caerulescens. Front Plant Sci 11:        |
| 1107 | 582577                                                                                            |
| 1108 |                                                                                                   |
| 1109 | Wigge PA (2013) Ambient temperature signalling in plants. Curr Opin Plant Biol 23: 661-666        |
| 1110 |                                                                                                   |
| 1111 | Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2009) Cold- and light-induced               |
| 1112 | changes in the transcriptome of wheat leading to phase transition from vegetative to reproductive |
| 1113 | growth. BMC Plant Biol 9: 55                                                                      |
| 1114 |                                                                                                   |
| 1115 | Wing SL, Boucher LD (1998) Ecological aspects of the Cretaceous flowering plant radiation.        |
| 1116 | Ann Rev Earth Planet Sci 26: 379-421                                                              |
| 1117 |                                                                                                   |
| 1118 | Wollenberg AC, Amasino RM (2012) Natural variation in the temperature range permissive for        |
| 1119 | vernalization in accessions of Arabidopsis thaliana. Plant Cell Environ 35: 2181-2191             |
| 1120 |                                                                                                   |
| 1121 | Wood CC, Robertson M, Tanner G, Peacock WJ, Dennis ES, Helliwell CA (2006) The                    |
| 1122 | Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also    |
| 1123 | includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci USA 103: 14631-14636                     |
| 1124 |                                                                                                   |
| 1125 | Woods DP, McKeown MA, Dong Y, Preston JC, Amasino RM (2016) Evolution of                          |
| 1126 | VRN2/Ghd7-like genes in vernalization-mediated repression of grass flowering. Plant Physiol       |
| 1127 | <b>170</b> : 2124–2135                                                                            |
| 1128 |                                                                                                   |
| 1129 | Woods DP, Ream TS, Bouché F, Lee J, Thrower N, Wilkerson C, Amasino RM (2017)                     |
| 1130 | Establishment of a vernalization requirement in Brachypodium distachyon requires REPRESSOR        |
| 1131 | OF VERNALIZATION1. Proc Natl Acad Sci USA 114: 6623–6628                                          |

| 1132 |                                                                                                     |
|------|-----------------------------------------------------------------------------------------------------|
| 1133 | Xu S, Chong K (2018) Remembering winter through vernalisation. Nature Plants 4: 997–1009            |
| 1134 |                                                                                                     |
| 1135 | Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S,              |
| 1136 | <b>Dubcovsky J</b> (2006) The wheat and barley vernalization gene $VRN3$ is an orthologue of $FT$ . |
| 1137 | Proc Natl Acad Sci USA 103: 19581–19586                                                             |
| 1138 |                                                                                                     |
| 1139 | Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen                  |
| 1140 | JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-              |
| 1141 | regulated by vernalization. Science <b>303</b> : 1640–1644                                          |
| 1142 |                                                                                                     |
| 1143 | Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional              |
| 1144 | cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100: 6263-6268                 |
| 1145 |                                                                                                     |
| 1146 | Yang H, Howard M, Dean C (2014) Antagonistic roles for H3K36me3 and H3K27me3 in the                 |
| 1147 | cold-induced epigenetic switch at Arabidopsis FLC. Curr Biol 24: 1793-1797.                         |
| 1148 |                                                                                                     |
| 1149 | Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations            |
| 1150 | in global climate 65 Ma to present. Science 292: 686-693                                            |
| 1151 |                                                                                                     |
| 1152 | Zhang R, Gonze D, Hou X, You X, Goldbeter A (2020) A computational model for the cold               |
| 1153 | response pathway in plants. Front Physiol 11: 591073                                                |
| 1154 |                                                                                                     |
| 1155 | Zhao Y, Antoniou-Kourounioti RL, Calder G, Dean C, Howard M (2020) Temperature-                     |
| 1156 | dependent growth contributes to long-term cold sensing. Nature 583: 825-829                         |
| 1157 |                                                                                                     |
| 1158 | Zhou C-M, Zhang T-Q, Wang X, Yu S, Lian H, Tang H, Feng Z-Y, Zozomova-Lihová J,                     |
| 1159 | Wang J-W (2013) Molecular basis of age-dependent vernalization in Cardamine flexuosa.               |
| 1160 | Science <b>340</b> : 1097-1100                                                                      |
| 1161 |                                                                                                     |

- 1162 Zhu P, Lister C, Dean C (2021) Cold-induced Arabidopsis FRIGIDA nuclear condensates for
- 1163 *FLC* repression. Nature **599**: 657–661
- 1164
- 1165 Zong W, Ren D, Huang M, Sun K, Feng J, Zhao J, Xiao D, Xie W, Liu S, Zhang H, Qiu R,
- 1166 Tang W, Yang R, Chen H, Xie X, Chen L, Liu Y-G, Guo J (2021) Strong photoperiod
- sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice
- 1168 heading. New Phytol **229**: 1635-1649.

(A) Temperature seasonality

 $^{(B)}\mbox{Last}$  month in growing season with temperatures above  $15^{\circ}\mbox{C}$ 



Fig 1





Fig. 3



Arabidopsis thaliana

Fig. 4



Fig. 5