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Abstract
Arctic ecosystems are changing dramatically with warmer and wetter conditions re-
sulting in complex interactions between herbivores and their forage. We investigated 
how Svalbard reindeer (Rangifer tarandus platyrhynchus) modify their late winter diets 
in response to long- term trends and interannual variation in forage availability and 
accessibility. By reconstructing their diets and foraging niches over a 17- year period 
(1995– 2012) using serum δ13C and δ15N values, we found strong support for a tem-
poral increase in the proportions of graminoids in the diets with a concurrent decline 
in the contributions of mosses. This dietary shift corresponds with graminoid abun-
dance increases in the region and was associated with increases in population density, 
warmer summer temperatures and more frequent rain- on- snow (ROS) in winter. In ad-
dition, the variance in isotopic niche positions, breadths, and overlaps also supported 
a temporal shift in the foraging niche and a dietary response to extreme ROS events. 
Our long- term study highlights the mechanisms by which winter and summer climate 
changes cascade through vegetation shifts and herbivore population dynamics to alter 
the foraging niche of Svalbard reindeer. Although it has been anticipated that climate 
changes in the Svalbard region of the Arctic would be detrimental to this unique ungu-
late, our study suggests that environmental change is in a phase where conditions are 
improving for this subspecies at the northernmost edge of the Rangifer distribution.
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1  |  INTRODUC TION

Arctic ecosystems are changing in response to a warmer and wetter 
climate, leading to complex and varied responses by different species 
(Box et al., 2019; Chapin et al., 2008; Mallory & Boyce, 2018; Post & 
Stenseth, 1999). The warming and lengthening of the Arctic growing 

season has induced plant community shifts, increased primary pro-
duction and in some cases increased the availability of palatable 
forage for herbivores (Elmendorf et al., 2012; Mallory et al., 2020; 
May et al., 2020; Myers- Smith et al., 2020; Post et al., 2009). In 
contrast, winter warming may have adverse effects on forage avail-
ability. Winter precipitation at above- zero temperatures may result 
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in rain- on- snow (ROS) and ice layers that encapsulate vegetation 
(Andrews, 1996; Putkonen & Roe, 2003; Robinson et al., 1998). 
ROS events have resulted in winter starvation of ungulates, such as 
musk- ox (Ovibos moschatus), semi- domesticated and wild reindeer/
caribou (Rangifer tarandus), and climate change is expected to make 
such events more frequent (Forbes et al., 2016; Garrott et al., 2003; 
Kumpula, 2001; Rennert et al., 2009). Although an increased fre-
quency of ROS events has been predicted to destabilize the popula-
tion dynamics of many ungulate species (Forbes et al., 2016; Hansen 
et al., 2010a; Pedersen et al., 2021; Putkonen & Roe, 2003), they 
have been shown to reduce extinction risk by stabilizing the pop-
ulation dynamics in Svalbard reindeer (R. t. platyrhynchus; Hansen, 
Gamelon, et al., 2019).

Svalbard reindeer population densities exhibit interannual vari-
ation caused by density- dependent (i.e., competition for food re-
sources) and density- independent factors (i.e., climate; Hansen, 
Pedersen, et al., 2019; Pacyna et al., 2018). In the most productive 
parts of Svalbard, populations of Svalbard reindeer have increased 
since the turn of the century (Hansen, Gamelon, et al., 2019; Le 
Moullec et al., 2019). The positive population trends have been 
attributed to increased summer temperatures that have led to in-
creased plant productivity and higher forage availability (Hansen 
et al., 2013; van der Wal & Stien, 2014; Vickers et al., 2016). 
Furthermore, a lengthening of the snow- free autumn season allows 
reindeer easier access to food for longer periods of the year and thus 
gain more fat reserves before the winter (Albon et al., 2017; Loe 
et al., 2020). Severe winters have been shown to alter the population 
structure (demography), with elevated mortality in calves, males, 
and old- age classes, and poor calf production the following summer 
(Albon et al., 2017; Peeters et al., 2017). However, the negative ef-
fects of difficult winters are reduced by behavioural responses to 
ROS, such as Svalbard reindeer migrating in search of nearby ice- free 
foraging sites (Loe et al., 2016; Stien et al., 2010).

Climatic impacts on forage availability is one of the main driv-
ers of Svalbard reindeer population dynamics (Albon et al., 2017). 
Optimal foraging theory (OFT; Pyke et al., 1977) predicts that gen-
eralist herbivores will shift from an optimal high- quality diet to one 
that maximizes the quantity of forage when forage resources are re-
duced or inaccessible. Reindeer winter diets are typically dominated 
by energy- rich fruticose lichens (Skogland, 1984), but on Svalbard 
lichens are scarce. Low- quality, energy- poor mosses contribute 
between 30% and 50% to the winter diets of Svalbard reindeer 
(Bjørkvoll et al., 2009; van der Wal, 2006; Węgrzyn et al., 2019). 
However, the low growing stature of mosses is likely to make them 
inaccessible when iced over during ROS events. Some studies have 
tested OFT using the winter diets of Svalbard reindeer and have 
captured a temporal “snapshot” of either the inter- annual dietary 
variability over a couple of years or the direct response to a rare 
extreme event (Beumer et al., 2017; Bjørkvoll et al., 2009; Hansen & 
Aanes, 2012; Hansen, Lorentzen, et al., 2019). For instance, Bjørkvoll 
et al. (2009) concluded that during winters with ROS (2000– 2002), 
Svalbard reindeer forage less on mosses and, instead, prefer plants 
with erect growth forms, such as graminoids, or plants growing in 

more exposed habitats, such as the dwarf shrubs, polar willow (Salix 
polaris) and mountain avens (Dryas octopetala). It is currently unclear 
what the long- term patterns of Svalbard reindeer winter diets are, in 
response to the cumulative impacts of increased population density, 
increased frequency of ROS events, increased summer tempera-
tures and potentially increased forage abundance.

Dietary information at different temporal scales can be effec-
tively inferred using stable isotope analysis (SIA) of different tis-
sues (Ben- David & Flaherty, 2012; Fry, 2006; Rogers et al., 2015, 
2020; Stanek et al., 2017, 2019). Progressive shifts in a herbivore's 
stable isotope (δ13C and δ15N) values reflect dietary changes as a 
result of differential tissue growth and turnover rates: from serum at 
1– 2 weeks → red blood cells at 2– 3 months → muscle at 6– 9 months 
→ → bone over the lifetime (Dalerum & Angerbjörn, 2005; Libby 
et al., 1967; Tieszen et al., 1983). In addition to diet, intrinsic pro-
cesses such as nutritional stress have variable effects on a herbi-
vore's δ13C and δ15N values in different tissues (Barboza et al., 2020; 
Doi et al., 2017; Funck et al., 2020; Parker et al., 2005), and preg-
nancy may deplete serum δ15N in the 2 months preceding birth 
(Barboza & Parker, 2006). SIA was effectively used to verify that 
during extreme icing events coastal populations of Svalbard rein-
deer use marine forage (seaweed; Hansen, Lorentzen, et al., 2019). 
Thus, diets and dietary niches reconstructed from the variations in 
δ13C and δ15N may also indicate how inland populations of Svalbard 
reindeer are and may be capable of adapting their foraging strategy 
to interannual climate variation and climate change.

The overall objective of this study was to identify how Svalbard 
reindeer modify their winter diets in response to long- term trends 
and interannual variation in forage availability over a 17- year period 
(1995– 2012). Svalbard reindeer are the only ungulate in a relatively 
simple food web where they are subjected to insignificant levels of 
interspecific competition and predation. This makes them an excel-
lent study system to evaluate herbivore winter foraging ecology in 
the context of climate change (Hansen, Pedersen, et al., 2019). We 
collected serum from Svalbard reindeer in late winter, which is the 
critical period for their winter survival and reconstructed their diets 
using serum δ13C and δ15N values. Specifically, we asked whether 
Svalbard reindeer's late winter (1) serum isotopic values vary over 
time, (2) dietary composition shows temporal variation, and (3) iso-
topic niche spaces vary over time in terms of area and/or overlap. In 
addition to Bayesian stable isotope mixing and isotopic niche space 
models (Jackson et al., 2011; Parnell et al., 2010), we used linear re-
gressions to explore (4) potential mechanisms that may drive trends in 
serum isotopic values. Furthermore, we evaluated how serum isotopic 
values were associated with variation in forage production (summer 
warming), forage accessibility (ROS), intra- specific competition (popu-
lation density), and intrinsic drivers like nutritional status (body mass) 
and status concerning pregnancy. We hypothesized, that graminoids 
and the deciduous shrub, S. polaris, would increase in the winter diet 
over time, as these plants were expected to increase in their cover 
in Svalbard (Hansen et al., 2010b; van der Wal & Brooker, 2004). 
Furthermore, we hypothesized that the proportion of mosses in the 
diet would decline when covered by ice due to ROS, while plants (i.e., 
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    |  7011HILTUNEN et al.

graminoids) with erect growth forms growing in exposed habitats 
would often be accessible above ice layers and increase.

2  |  MATERIAL S AND METHODS

2.1  |  Study area and species

The study was carried out in Nordenskiöld Land, western Svalbard, in 
the Reindalen valley system (77°– 78°N, 15°– 17°E), which consists of 
three main valleys, Colesdalen, Reindalen, and Semmeldalen, as well 
as smaller side valleys (Figure 1). The vegetation is continuous and 
dominated by low- statured graminoids, dwarf shrubs, and forbs over 
moss carpets (van der Wal & Stien, 2014). The climate on western 
Svalbard is relatively mild for the latitude, and the average July tem-
perature on the coast is 4.8°C (Isfjord Radio, 78°4′N, 13°37′E) and 
in the fjord zone, Longyearbyen, 5.9°C (Svalbard Airport, 78°15′N, 
15°28′E; Johansen et al., 2012). Average February temperatures 
are −12.4°C (Isfjord Radio) and −16.2°C (Svalbard Airport; Johansen 
et al., 2012). The average annual temperatures between 1988 and 

2017 increased by 1.7°C compared to the reference period 1971– 
2000 (Svalbard Airport; Hanssen- Bauer et al., 2019).

Annual precipitation varies across the archipelago and is 337 mm 
on the W coast and decreases to 190 mm in the fjord areas (Førland 
et al., 2011; Johansen et al., 2012; Norwegian Meteorological 
Institute, 2021a). Between 1971– 2017, the average precipitation in-
creased by 4.1% (~4.1 mm) per decade (Svalbard Airport; Hanssen- 
Bauer et al., 2019). In winters, the frequency of precipitation events 
during above- zero temperature periods, ROS events, has increased 
(Figure S11; Peeters et al., 2019) and simultaneously, the duration of 
snow- covered days has decreased from an average of 253 days (1976– 
1997) to 221 (2006– 2020; Norwegian Meteorological Institute, 2021b).

Svalbard reindeer are found across the non- glaciated parts of the 
archipelago (Pacyna et al., 2018; Pedersen, 2017), the highest popu-
lation densities are in Nordenskiöld Land, Edgeøya, and Barentsøya, 
but are highly variable between years (Norwegian Institute for 
Nature Research [NINA], 2021). The Reindalen population increased 
over the study period (1995– 2012) from around 950 female rein-
deer in the late 1990s to about 1300 female reindeer in 2011– 2012 
(Figure S10; Albon et al., 2017).

F I G U R E  1  Location of the study area. (a) A map showing the Arctic with Svalbard delineated with a black polygon and (b) a map of 
Svalbard with Nordenskiöldland delineated with a black polygon. Map lines delineate study areas and do not necessarily depict accepted 
national boundaries. (c) The study area, the Reindalen valley system, consists of the valleys Reindalen (1), Colesdalen (2) and Semmeldalen 
(3). Black stars indicate the locations of the Isfjord Radio and Svalbard Airport meteorological stations, and the triangles indicate the 
vegetation sampling locations in Adventdalen (black) and Semmeldalen (white).
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2.2  |  Svalbard reindeer sampling

Reindeer, 3-  to 15- year- old females, were caught annually in late 
winter (late April to early May) using a net between two snow-
mobiles and restrained without immobilization drugs as part of 
a long- term capture- mark- recapture study (Milner et al., 2003; 
Omsjoe et al., 2009; Stien et al., 2002). During capture, ear tags 
and neck marker straps on each reindeer were used to record the 
individual's identity, then live body mass was measured and preg-
nancy was diagnosed (Ropstad et al., 1999). Blood was collected 
from the jugular vein into plain vacutainers and centrifuged (2000 
RCF, 10 min) within 12 h to retrieve serum. Serum samples were 
obtained from 1995 to 2012, excluding the years 2003 and 2010, 
resulting in a total of 16 sampling campaigns. Altogether 232 sam-
ples were collected from 182 individual reindeer, thus, some in-
dividuals were sampled only once and others up to three times 
during our study period. The number of samples per campaign 
ranged from 10– 21, with the average value being 15. Serum sam-
ples were stored frozen at −80°C until freeze- drying (48 h, −45°C, 
8 mbar, Modulyo 4 K, Edwards).

2.3  |  Forage sources for diet reconstruction

The proportion of the δ13C and δ15N isotopes in reindeer blood 
serum is expected to reflect the diet of the reindeer in the weeks pre-
ceding sampling, that is, late winter (Dalerum & Angerbjörn, 2005; 
Halley et al., 2010; Tieszen et al., 1983). For reconstructing the diets 
of Svalbard reindeer, foliar δ13C and δ15N values of plausible (ter-
restrial) forage plants, including graminoids, mosses, dwarf shrubs  
(S. polaris; D. octopetala), and forbs were obtained from previous stud-
ies (Hansen, Lorentzen, et al., 2019; Zhao et al., 2019). Briefly, plant 
samples were collected in Semmeldalen (77°90′N, 15°20′E) during 
July 2009 and 2013 from Luzula heath and graminoid vegetation 
communities (Zhao et al., 2019), and from reindeer feeding craters in 
Adventdalen (78°10′N, 16°02′E) in March 2013 (Hansen, Lorentzen, 
et al., 2019). Foliar δ13C and δ15N values may vary over time due 
to differences in environmental conditions (Dawson et al., 2002). 
To control for this, vegetation was re- sampled in Adventdalen in 
February 2019 from five randomly selected 4 m2 plots as no feed-
ing craters were observed due to extreme ground icing. The plant 
samples collected were graminoids (n  = 2), mosses (n = 4), S. polaris 
(n = 2), and D. octopetala (n = 5). Forbs (n = 4) were collected as 
they were present in the plots but not present in or collected from 
the craters sampled in 2013. All plant samples were stored frozen 
(−20°C) until drying (60°C, 48 h).

2.4  |  Stable isotope analysis

The dried serum and plant samples were homogenized in a 
TissueLyser II (Qiagen GmbH) at 25 Hz with 5- mm stainless steel 
beads (Qiagen GmbH) that were rinsed with 100% ethanol and 

dried between samples. Powdered serum (0.8– 1.2 mg) and forage 
(3.5– 4.5 mg) samples were weighed into 3.5 × 5 mm tin capsules 
(Elemental Microanalysis Ltd, UK). The serum samples were ana-
lysed at the Environment and Natural Resources Institute Stable 
Isotope Laboratory at the University of Alaska Anchorage (http://
www.uaa.alaska.edu/enri/labs/sils) and the 2019 forage samples 
at the EcoCore Analytical Facility at the Colorado State University 
(https://ecoco re.nrel.colos tate.edu/ecoco re- stabl e- isoto pe- analy sis.
html). δ13C and δ15N values were calibrated against internal standards 
(BWBII keratin, peach leaves, moose [Alces alces], and three- spined 
stickleback [Gasterosteus aculeatus]). All values were referenced to 
the international standards of Vienna Pee Dee Belemnite for δ13C 
and air for δ15N. Analytical error for the samples was ±0.1‰ for 
both C and N. Anthropogenic inputs of C from fossil fuel burning 
has resulted in measurable decreases in atmospheric δ13C known as 
the “Suess effect” (Ben- David & Flaherty, 2012) and some authors 
use a time- dependent correction of −0.022‰ per year based on ice 
core records to account for this change (Hopkins & Ferguson, 2012). 
However, the discrimination of δ13C during photosynthesis in C3 
plants has been found to increase in response to increasing con-
centrations of atmospheric CO2 (pCO2) and decreasing atmospheric 
δ13CCO2 (Schubert & Jahren, 2012). Thus, we used the equation of 
Schubert and Jahren (2012) and annual pCO2 (Tans & Keeling, 2022) 
to correct all serum and forage samples δ13C values to expected 2012 
levels. The full data set compiled for the analyses that follow are 
available from the Dryad Digital Repository (Hiltunen et al., 2022).

2.5  |  Data analyses

All analyses were done in R version 4.05. (R Core Team, 2021) in  
R Studio (version 1.4.1106).

2.6  |  Svalbard reindeer diet reconstruction

The proportions of the different forage sources in the diet over 
time were estimated using Bayesian stable isotope mixing models 
in simmr (R- package simmr version 0.4.5; Parnell, 2019). The perfor-
mance of these mixing models is sensitive to the selection of priors 
and when available, informative priors are recommended (Phillips 
et al., 2014). Informative priors were available from forage species 
found in Svalbard Reindeer rumen contents collected in late winter 
(April/May) during 2000– 2002 by Bjørkvoll et al. (2009). The mean 
percentage of forage species were as follows: graminoids (32%), 
mosses (26%) and S. polaris (24%), forbs (4%) and D. octopetala (4%; 
Table S1).

Tissue discrimination factors (TDFs) or the change in isotope 
ratios between source and consumer are often the weakest link in 
the reconstruction of diets (Bond & Diamond, 2011). In this study, 
TDFs were estimated using SIDER (version 1.0.0.0), an R package 
that incorporates reported TDFs, phylogenetic relatedness, for-
aging ecology, and tissue type into the Bayesian imputation of the 
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most likely TDF values (Healy et al., 2017). The imputed TDFs were 
∆13C = 4.51 ± 1.94‰ and ∆15N = 3.36 ± 1.24‰.

Bayesian stable isotope mixing models are also sensitive to the 
forage source data used. As forage samples were not available for 
the same years and locations as the reindeer serum samples, the 
available forage data were evaluated and grouped according to 
best practice principles (Phillips et al., 2014). That is all used plant 
sources are included, and they match the consumer's samples spa-
tially, seasonally, and temporally as closely as possible (Table S2). 
Four combinations of the source data (Table S3) were tested in 
the stable isotope mixing models. The simmr models were fitted to 
the reindeer serum data from each year separately using a burn- in 
period of 5000 MCMC iterations out of a total of 130,000 itera-
tions of four chains that were thinned to every 50th iteration be-
fore analysis (Parnell, 2019; Parnell et al., 2013). Convergence was 
evaluated using the Brooks- Gelman- Rubin diagnostics (Fernández- 
i- Marín, 2016). Posterior distributions, posterior predictive values, 
credible intervals (CIs), correlation matrices and the deviance infor-
mation criterion (DIC) were all used to check the performance of 
all the models. The models run with the source data from all three 
studies combined (Table 1) were found to be the best performing 
in terms of having the lowest DICs and correlation matrices within 
acceptable ranges (Figures S1– S6; Tables S4– S7).

2.7  |  Svalbard reindeer isotopic niche space 
reconstruction

The isotopic niche spaces of the reindeer were reconstructed for 
all years using SIBER (Stable Isotope Bayesian Ellipses in R package; 
version 2.1.5; Jackson et al., 2011). Standard ellipse areas after small 
sample size correction (SEAC) have a 95% probability of containing 
sampled parameters and were plotted with δ13C and δ15N values in 
bivariate δ- space. We used Bayesian standard ellipse area (SEAB) es-
timates from 104 replicates to test for differences between the years 
through a comparison of the proportion of posterior ellipses (PP) 
that differed between groups. Differences in SEAB were considered 
significant if PP ≥0.95. In addition, the Bayesian CIs derived from 
the SEAB were compared to determine if there were interannual 

differences in niche breadths (Cheeseman et al., 2021). Overlaps 
between the estimated 95% prediction ellipses of all the years were 
determined. Due to the large number of ellipses and comparisons, 
we then focused on two pairs of consecutive years at the beginning 
(1995 [n = 15]; 1996 [n = 10]) and end (2011 [n = 17]; 2012 [n = 21]) 
of the study where the first year had no or little ROS and the second 
year had extreme ROS (>60 mm).

2.8  |  Drivers of the temporal trends in δ13C and 
δ15N values of Svalbard reindeer

As the isotopic signatures varied over the years, we, firstly, per-
formed a post hoc test to inspect for significant differences between 
the years (Tukey's HSD; α = .05). Then, we ran a selection of linear 
mixed- effects models (LMMs) to explore the underlying drivers of 
the variation in the response variables δ13C and δ15N (lme; R- package 
lme4 version 1.1- 27.1; Bates et al., 2015). This modelling approach 
is recommended as it can account for repeated observations from 
the same individual as well as spatial and temporal autocorrelation 
(Zuur et al., 2009). To account for the repeated measurements of in-
dividuals between years as well as the environmental variables only 
differing between years; reindeer identity (ID) and year were fitted 
as random factors using restricted maximum likelihood. The intrinsic 
factors of nutritional status and pregnancy that are known to af-
fect the response variables were incorporated into the null models 
as fixed effect predictor variables. As a proxy for nutritional status, 
we used body mass (Figure S9) in both the δ13C and δ15N models 
while pregnancy status (presence/absence) was used only in the 
δ15N models.

The extrinsic fixed- effect predictor variables used were: (1) 
Population density in the Reindalen valley system the previous 
summer to account for density- dependent competitive effects 
(Figure S10; Albon et al., 2017). (2) ROS (mm), measured as the 
sum of precipitation when the average daily temperature was ≥1°C 
during the winter (1 November to the 31 March), as a proxy for 
ground ice (Figure S11; Peeters et al., 2019). (3) July average air 
temperatures at Svalbard Airport, obtained from the Norwegian 
Meteorological Institute (2021c), as a proxy for summer plant 
biomass production (Figure S12; van der Wal & Stien, 2014). 
Population density and ROS were ln- transformed before being 
fitted as predictor variables in the model for δ13C. Six biologically 
relevant candidate models for variation in δ13C and δ15N were 
developed based on the abovementioned predictor variables 
(Table S12). Models were compared using the conditional Akaike 
information criterion (cAIC) as implemented for the ‘lme4’ package 
in R in the package “cAIC4” (R package cAIC4 version 1.0; Vaida 
& Blanchard, 2005). Models with a ΔcAIC ≤2 were considered 
equally relevant. The proportion of variance explained (R2) by the 
fixed factors alone (marginal R2, R2

LMM(m)
) and by both the fixed and 

random factors (conditional R2; R2
LMM(c)

) were estimated using the 
rsquared function in the package “piecewiseSEM” (R package piece-
wiseSEM version 2.1.2, R; Nakagawa et al., 2017). The fit of the 

TA B L E  1  The δ13C and δ15N values (‰) of the forage plant 
species (Dryas octopetala, Salix polaris) and plant groups (forbs, 
graminoids, mosses) used in the stable isotope mixing models to 
reconstruct the late winter diets of Svalbard reindeer. The values 
present mean ± SD and the data were obtained from Hansen, 
Lorentzen, et al. (2019), Zhao et al. (2019) and samples collected 
during the current study in the late winter of 2019

Forage group n δ13C δ15N

D. octopetala 17 −30.79 ± 0.84 −5.83 ± 1.60

Forbs 13 −29.81 ± 1.30 −4.38 ± 1.82

Graminoids 42 −29.14 ± 1.54 2.07 ± 3.16

Mosses 13 −27.97 ± 1.15 −3.37 ± 0.90

S. polaris 16 −29.57 ± 0.93 −4.18 ± 1.14
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7014  |    HILTUNEN et al.

selected models was assessed graphically by examining the dis-
tribution of the residuals against the fitted values and quantiles  
(R package redres version 0.0.0.9; Goode, 2019).

3  |  RESULTS

Isotopic ratios from serum exhibited interannual variability with δ13C 
predominantly showing a negative temporal trend (estimates slope, 
β = −.05‰, SE = .004, p < .001, Figure 2a) and δ15N showing a posi-
tive temporal trend (estimates slope, β = .07‰, SE = .009, p < .001, 
Figure 2b) over the 17- year study period. The pattern of variation 
resulted in a strong correlation between annual average values of 
δ13C and δ15N (r = −.65, p = .007).

3.1  |  Reconstructed diets of Svalbard reindeer 
based on mixing models

Dietary compositions reconstructed by the selected stable isotope 
mixing model showed interannual variation (Figure 3; Table S7). 
Graminoids were dominant in the late winter diets of the reindeer 

between 1995 and 2012. The proportion of graminoids showed a pos-
itive temporal trend, increasing from 44% (95% CI: 35– 54) in 1995 to 
58% (95% CI: 48– 67) in 2012 (Figure 3a; Table S7). The consumption 
of mosses showed a negative temporal trend, decreasing from 26% 
(95% CI: 16– 38) in 1995 to 18% (95% CI: 11– 24) in 2012 (Figure 3b; 
Table S7). The proportions of S. polaris (Figure 3c; Table S7) remained 
relatively stable between 1995 (22%, 95% CI: 14– 33) and 2012 (18%, 
95% CI: 11– 27). The contribution of forbs and D. octopetala were low 
and did not change over the study period (Table S7).

3.2  |  Svalbard reindeer isotopic niche widths

The isotopic niches reconstructed from δ13C and δ15N values of 
Svalbard reindeer showed isotopic drift over time with high interannual 
variation in overlaps (Figure S7; Table S10). In addition, all year specific 
ellipses (SEAB) differed significantly in size from at least one other year 
(Figure S8; Table S9). The smallest isotopic niche width was for 2006 
(SEAB = 0.19; 95% CI: 0.08– 0.72; n = 14) while the largest was for 2008 
(SEAB = 0.80; 95% CI: 0.32– 3.09; n = 15). The average proportion over-
lap in the period between 1995 and 2000 was 36%, between 2001 and 
2006 the overlap increased to 42% and then further increased to 53% 

F I G U R E  2  The stable isotope values (a) 
δ13C and (b) δ15N in the serum of female 
Svalbard reindeer (n = 232) collected in 
the Reindalen valley system, Svalbard, 
between 1995 and 2012. Boxes and 
whiskers show median, 25%– 75% range, 
interquartile and non- outlier range with 
the filled circles indicating observations 
from individual reindeer. The number of 
observations for each sampling year is 
indicated within brackets and panels (a, b) 
include fitted linear regressions. Note that 
the years 2003 and 2010 had no samples.
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    |  7015HILTUNEN et al.

between 2007 and 2012. Extreme ROS events of greater than 60 mm 
of precipitation were observed in 1996 and 2012, and the overlap be-
tween these two years was 57% (Figure 4; Table S10). In contrast, the 
overlap between these extreme ROS years with the years prior (1995 
and 2011), when no ROS was observed, was 0% between 1995 and 
1996, and 71% between 2011 and 2012.

3.3  |  Drivers of the temporal trends in δ13C and 
δ15N values of Svalbard reindeer

Among the six candidate models describing the relationship be-
tween intrinsic and extrinsic factors and δ13C, we identified three 

models with ΔcAIC ≤2 (Table S11). Of these models, the full model 
that included ROS, July average temperature, population density 
and body mass was selected as a parsimonious model (∆cAIC = 1.75; 
Table S11). The total variance explained by the fixed effects (R2

LMM(m)
 ) 

in the selected δ13C model was only 27%, while 64% of the vari-
ance was explained by both the fixed and random effects (R2

LMM(c)
; 

Table S11). In the selected model, δ13C decreased as ROS, July av-
erage temperature, population density and body mass increased, 
but the effect of July average temperature was not significantly dif-
ferent from zero (Table 2). The fixed effect predictor variables ex-
plained some of the temporal trend in average δ13C, but not all. The 
correlation between year and average δ13C was r = −.75 in the raw 
data and was reduced to r = −.41 when δ13C levels were estimated 

F I G U R E  3  Contributions of (a) graminoids, (b) mosses, and (c) Salix polaris to the diets of Svalbard Reindeer between 1995 and 2012. Note 
that the years 2003 and 2010 had no samples. The diets were reconstructed from the δ13C, and δ15N values of female Svalbard reindeer 
(n = 232) serum collected in the Reindalen valley system, Svalbard. The dietary proportions are presented in box and whisker plots where 
boxes show medians and the 25%– 75% CI range, and whiskers show 2.5%– 97.5% CI range. The diet reconstruction was modelled using the 
R- package simmr (version 0.4.5, Parnell, 2019). For more details, see Supporting Information 1 and Table S7.
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F I G U R E  4  Isotopic niche spaces of 
female Svalbard reindeer in the Reindalen 
valley system, Svalbard during consecutive 
pairs of years at the beginning (1995 
and 1996) and the end (2011 and 2012) 
of the study. In both pairs of years, the 
first year (i.e., 1995 and 2011) had no or 
little rain- on- snow (ROS) and the second 
year (i.e., 1996 and 2012) had extreme 
ROS (>60 mm). The filled circles indicate 
serum δ13C and δ15N values of individual 
reindeer for the different years whereas 
the ellipses are the SIBER standard 
ellipse areas (SEAC) with 95% confidence 
intervals.
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7016  |    HILTUNEN et al.

by the annual average residual values, corrected for estimated fixed 
effects.

Four of the six candidate models identified to explain the tempo-
ral variance in δ15N in response to the intrinsic and extrinsic factors 
were relevant as their ΔcAIC ≤2 (Table S11). As with the δ13C, the 
full model that included ROS, July average temperature, population 
density, body mass and pregnancy was among these parsimoni-
ous models. The total variance in δ15N explained by the full model 
(R2

LMM(c)
 ) was 78% and by the fixed effects alone (R2

LMM(m)
) alone was 

34% (Table S11). Increases in ROS, July average temperature, popu-
lation density and body mass were all associated with increased δ15N 
while pregnancy was associated with reduced δ15N (Table 2). The 
parameter estimate for the effect of population density was not sig-
nificantly different from zero (Table 2). As for δ13C, the fixed- effect 
predictor variables explained some of the temporal trend in average 
δ15N, but not all. The correlation between year and average δ15N was 
r = .58 in the raw data and was reduced to r = .32 when δ15N levels 
were estimated by the annual average residual values, corrected for 
estimated fixed effects. Of all the predictors in the selected models 
for both δ13C and δ15N, only population density and July average 
temperature showed a marked trend over the study period and are 
therefore driving some of the temporal trends in δ13C and δ15N.

4  |  DISCUSSION

In this study, we sampled the serum of Svalbard reindeer between 
1995 and 2012 to identify how the winter diets of a High Arctic 
herbivore have changed in response to long- term climate trends 
and interannual variation, mostly depicted by the “normalization” 
of ROS events, increased summer temperatures and increased 
population density. Preceding work has reported short- term varia-
tions in the summer and winter diets of Svalbard reindeer (Bjørkvoll 

et al., 2009; Hansen, Lorentzen, et al., 2019; Pacyna et al., 2018; 
Zhao et al., 2019). We demonstrate changes in the form of long- term 
trends in the winter diets.

4.1  |  Temporal increase in graminoid consumption 
by Svalbard reindeer

We expected reindeer winter diets to follow OFT and thus the 
changes in the abundance and availability of forage species. 
Consequently, dietary shifts would be expected to parallel the ob-
served increases in greening (Vickers et al., 2016), biomass produc-
tion, and abundance in graminoids (Hansen et al., 2010b; van der Wal 
& Brooker, 2004) on Svalbard and shrubification across the Arctic 
(Myers- Smith et al., 2011, 2020). Accordingly, we found strong sup-
port for increased proportions of graminoids (44% → 58%) and de-
creased proportions of mosses (26% → 18%) in the reindeer late 
winter diets over time, but contrary to our expectations, the propor-
tion of S. polaris did not increase (Figure 3). We also found that the re-
constructed isotopic niches of Svalbard reindeer shifted, expanded, 
and contracted over the years with different ROS conditions in a 
manner suggesting dietary adaptation to more frequently occurring 
ROS and an increasing abundance of graminoids. Furthermore, the 
data suggested that the isotopic niche metrics differed in response 
to ROS in the early years of our study period in comparison to the 
later years. Lastly, we found that population density together with 
climate, that is, summer air temperature and ROS, were important 
drivers of serum isotopic variability highlighting the important 
role of both density- dependent effects and the changing climate 
for the physiology and realized trophic niche of these herbivores. 
Similar to our findings climatic patterns, such as the broad scale 
Arctic Oscillation, have been found to influence caribou and rein-
deer body condition and subsequently population dynamics through 

TA B L E  2  Parameter estimates (β ± SE) from the selected linear mixed- effects models assessing the effects of extrinsic— rain- on- snow 
(ROS), July average temperature and population density— and intrinsic— body mass and pregnancy (only for δ15N)— predictors on δ13C and 
δ15N values of female Svalbard reindeer. Female identity (ID) and year were included as random intercept effects and natural logarithmic (ln) 
transformation was used for ROS and population density in the δ13C model

Model
Random 
effects Variance SD Fixed effects Estimate SE t Value

δ13C ID 0.0080 0.0892 Intercept −18.9653 2.8355 −6.689

Year 0.0474 0.2177 ln(ROS) −0.0755 0.0569 −1.328

Residual 0.0552 0.2350 July average temperature −0.0200 0.0766 −0.261

ln(Population density) −0.7677 0.4427 −1.734

Body mass −0.0072 0.0028 −2.530

δ15N ID 0.1161 0.3408 Intercept 0.8846 0.7452 1.187

Year 0.1073 0.3276 ROS 0.0150 0.0050 2.981

Residual 0.1145 0.3384 July average temperature 0.2039 0.1185 1.721

Population density 0.0004 0.0007 0.628

Pregnancy −0.5031 0.0815 −6.176

Body mass 0.0222 0.0066 3.362

Note: Predictors with non- significant parameter estimates are highlighted in grey.
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effects on the quality of the summer- ranges Svalbard (Aanes et al., 
2002), in Alaska (Joly et al., 2011) and in northern Canada (Mallory 
et al., 2018).

Svalbard reindeer are not the only Rangifer spp. whose winter 
diets have shifted toward more graminoids. A similar trend was 
observed as caribou in the Western Arctic Herd, Alaska consumed 
more graminoids and fewer lichens when the abundance of lichens 
in the foraging habitat declined (Joly et al., 2007). However, these 
findings may not be generalizable across the Arctic, as there is vari-
ation in how well the different Rangifer subspecies can adapt their 
diets to changing foraging ranges and forage availability (Mallory & 
Boyce, 2018). Graminoids are grazing tolerant and adapted to de-
foliation with basal meristems located close to the soil surface and 
indeterminate growth allowing continued biomass production after 
leaf removal by grazers (Barthelemy et al., 2015, 2019; Welker & 
Briske, 1992). They are also relatively tolerant to trampling while 
mosses and dwarf shrubs are more sensitive (Egelkraut et al., 2020). 
Consequently, graminoids benefit both from increased tundra soil 
temperature and increased soil nutrient availability generated by 
higher summer temperatures, a reduction in the insulating shrub 
and moss layer, and more nutrients released from reindeer faeces 
and urine (Aerts et al., 2006; Barthelemy et al., 2019; Egelkraut 
et al., 2020; Marino et al., 2014; Milner et al., 2018; Parsons 
et al., 1995; Sjögersten et al., 2012; van der Wal et al., 2004; van 
der Wal & Brooker, 2004). Via these mechanisms, reindeer grazing 
may induce vegetation state transitions from moss dominated tun-
dra to graminoid dominated tundra thereby increasing the ecosys-
tem productivity and forage quality for reindeer (van der Wal, 2006; 
Ylänne et al., 2018). The increased abundance of graminoids due 
to increased grazing pressure and climate change (van der Wal & 
Brooker, 2004) may facilitate Svalbard reindeer survival, especially 
during winters with ROS. Graminoids are not damaged by ice en-
casement or fluctuating winter temperatures (Bjerke et al., 2017, 
2018) and due to their erect growth form (Parsons et al., 1995), they 
may protrude above the ice layers thus remaining accessible to her-
bivores. Indeed, on Svalbard, increased graminoid and decreased 
moss abundance correlates positively with Svalbard reindeer density 
and increased grazing pressure (Hansen et al., 2010b; van der Wal & 
Brooker, 2004).

Contrary to our prediction, the proportion of S. polaris was sta-
ble with slight interannual variations in the reindeer winter diets 
between 1995 and 2012 (Figure 3). These results were surprising, 
as S. polaris is an abundant species in exposed habitats (ridges and 
heaths; Le Moullec et al., 2019; van der Wal & Stien, 2014) and even 
when encased in ice or exposed to erratic winter temperatures re-
mains undamaged (Le Moullec et al., 2020). Furthermore, Bjørkvoll 
et al. (2009) observed an increase in S. polaris (9%) in the late win-
ter rumen contents between 2000 and 2002. Interestingly, the 
estimated mean proportions of S. polaris in 2001 were the same 
(23%) in both our and Bjørkvoll et al.'s (2009) studies even though 
the methods differ substantially. The rumen contents and faecal 
pellets analysed by Bjørkvoll et al. (2009) tend to inflate the contri-
butions of poorly digestible mosses and woody plants (S. polaris) at 

the expense of highly digestible graminoids (Bjørkvoll et al., 2009; 
Gaare et al., 1977; Staaland, 1984). SIA only detects the contribu-
tions of δ13C and δ15N from digested and assimilated forage, and 
may, therefore, underestimate the use of the poorly digestible plants 
(Ben- David et al., 2001). Nonetheless, there appears to be no change 
in the contribution of S. polaris to Svalbard reindeer diets. Thus it 
may be that the prostrate woody stems and the senescent leaves on 
the ground are ice- encased and inaccessible while in the ice- free ex-
posed habitats the reindeer are actively selecting against S. polaris in 
favour of higher- quality graminoids. These patterns in Svalbard rein-
deer diets follow the premises of OFT under all scenarios and point 
toward increasing proportions of graminoids in their winter diets.

4.2  |  Isotopic niche shifts by Svalbard reindeer

The two- dimensional isotopic niches reconstructed from the 
Svalbard reindeer serum δ13C and δ15N values can be used as a 
proxy for the trophic niche (Bearhop et al., 2004). We found that 
these winter isotopic niches had drifted over time (1995– 2012), with 
high interannual variation in position, breadths (SEAB) and overlaps. 
This suggests that the winter foraging niche of Svalbard reindeer has 
been changing for decades and not only in response to an increased 
frequency in ROS events (Beumer et al., 2017). Our comparisons of 
reconstructed isotopic niches from subsequent high and low ROS 
winters in the early and later phases of our study suggest that the 
foraging strategy of Svalbard reindeer in low ROS years may have 
changed over time to become more like the strategy adopted in high 
ROS years. The temporal trend in the isotopic niche variance is most 
likely due to the increased consumption of graminoids, especially 
when taking into consideration the observed temporal decline in 
global foliar δ15N (Mason et al., 2022). However, the interannual iso-
topic niche variance may be due to the varying availability, selection, 
and utilization of different combinations and proportions of grami-
noid species with contrasting isotopic values such as Alopecurus 
alpina (δ13C: 28.32 ± 1.3; δ15N: 4.95 ± 3.8) or Luzula confusa (δ13C: 
−30.65 ± 0.8; δ15N: 1.63 ± 3.0; Matthews & Mazumder, 2004; 
Staaland, 1984; Yeakel et al., 2016; Zhao et al., 2019).

4.3  |  Extrinsic drivers of the shifts in Svalbard 
reindeer serum isotope values and diets

Preceding work has reported contrasting changes in caribou δ13C 
and δ15N values during winters with body mass declines (Barboza 
et al., 2020; Gustine et al., 2014; Parker et al., 2005) and fat and 
protein reserves are mobilized in response to declining energy and N 
intake (Mänttäri et al., 2013; Reimers, 1984). In the current study, a 
low body mass was on average associated with enriched δ13C values 
and depleted δ15N values, although the effect was small (Table 2). 
In contrast, in 1996 when an extreme ROS event resulted in severe 
starvation and relatively high mortalities (Milner et al., 2003) we ob-
served low body masses, serum δ13C depletion and δ15N enrichment 
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(Figure S9; Figure 2). Still, our results support the findings of pre-
vious studies, in that they suggest that intrinsic processes, such as 
pregnancy, and nutritional status (mobilization of body stores) have 
small contrasting effects on serum δ13C and δ15N values. Dietary 
supplies of energy and N are the largest contributors to the sta-
ble isotope pool in serum (Ben- David & Flaherty, 2012; Fry, 2006; 
Rogers et al., 2015, 2020; Stanek et al., 2017, 2019), consequently, 
shifts in the serum δ13C and δ15N values are most likely due to in-
creased utilization of δ15N enriched and δ13C depleted graminoids 
in late winter. Ultimately, we propose that the main extrinsic envi-
ronmental drivers of Svalbard reindeer serum δ13C and δ15N values— 
population density, summer temperature, and ROS— have acted 
collectively to increase the utilization of graminoids in later winter.

5  |  CONCLUSIONS AND FUTURE 
IMPLIC ATIONS

This long- term study highlights that the foraging behaviour of 
Svalbard reindeer in late winter is changing. Previous studies have 
shown that the increased forage abundance in summer and the 
lengthening of the growing season is likely to counteract the nega-
tive effects of more frequent harsh winters, which traditionally 
have caused forage shortages (Mallory & Boyce, 2018; Mallory 
et al., 2020). Our study shows that changes in the winter foraging 
behaviour suggest that higher- quality food is available. Together 
these changes in the forage quantity, quality, and availability during 
all seasons are all likely to have positive consequences for the diet 
and population growth of Svalbard reindeer and have contributed 
to the doubling of the Reindalen population from 1996 (n ~733) to 
2014 (n ~1758; Albon et al., 2017) as well as the continued increase 
in numbers thereafter (NINA, 2021). The responses of other Rangifer 
populations to the rapidly changing climate in the Arctic are cur-
rently, and also expected to, be varied, thus extreme care should be 
taken when extrapolating the results of the current study to other 
Rangifer subspecies (Mallory & Boyce, 2018). Nonetheless, environ-
mental change seems at present to be in a phase where conditions 
are improving for one of the northernmost Rangifer populations in 
the world and has enabled their late winter diet to change from low- 
quality mosses toward increasingly more available higher- quality 
graminoids.
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