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The use of Bayesian networks (BN) for environmental risk assessment has

increased in recent years as they offer a more transparent way to

characterize risk and evaluate uncertainty than the traditional risk

assessment paradigms. In this study, a novel probabilistic approach applying

a BN for risk calculation was further developed and explored by linking the

calculation a risk quotient to alternative future scenarios. This extended version

of the BN model uses predictions from a process-based pesticide exposure

model (World Integrated System for Pesticide Exposure - WISPE) in the

exposure characterization and toxicity test data in the effect

characterization. The probability distributions for exposure and effect are

combined into a risk characterization (i.e. the probability distribution of a risk

quotient), a common measure of the exceedance of an environmentally safe

exposure threshold. The BN model was used to account for variabilities of the

predicted pesticide exposure in agricultural streams, and inter-species

variability in sensitivity to the pesticide among freshwater species. In

Northern Europe, future climate scenarios typically predict increased

temperature and precipitation, which can be expected to cause an increase

in weed infestations, plant disease and insect pests. Such climate-related

changes in pest pressure in turn can give rise to altered agricultural

practices, such as increased pesticide application rates, as an adaptation to

climate change. The WISPE model was used to link a set of scenarios consisting

of two climate models, three pesticide application scenarios and three periods

(year ranges), for a case study in South-East Norway. The model was set up for

the case study by specifying environmental factors such as soil properties and

field slope together with chemical properties of pesticides to predict the

pesticide exposure in streams adjacent to the agricultural fields. The model

was parameterized and evaluated for five selected pesticides: the three

herbicides clopyralid, fluroxypyr-meptyl, and 2-(4-chloro-2-methylphenoxy)

acetic acid (MCPA), and the two fungicides prothiocanzole and trifloxystrobin.

This approach enabled the calculation and visualization of probability

distribution of the risk quotients for the future time horizons 2050 and
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2085. The risk posed by the pesticides were in general low for this case study,

with highest probability of the risk quotient exceeding 1 for the two herbicides

fluroxypyr-meptyl andMCPA. The future climate projections used here resulted

in only minor changes in predicted exposure concentrations and thereby future

risk. However, a stronger increase in risk was predicted for the scenarios with

increased pesticide application, which can represent an adaptation to a future

climate with higher pest pressures. In the current study, the specific BN model

predictions were constrained by an existing set of climate projections which

represented only one IPCC scenario (A1B) and two climate models. Further

advancement of the BNmodelling demonstrated herein, includingmore recent

climate scenarios and a larger set of climate models, is anticipated to result in

more relevant risk characterization also for future climate conditions. This

probabilistic approach will have the potential to aid targeted management of

ecological risks in support of future research, industry and regulatory needs.

KEYWORDS

bayesian network models, exposure modelling, environmental risk assessment,
pesticides, uncertainty

1 Introduction

Climate change (CC) is expected to shift weather patterns,

and consequently can alter the way water and food resources are

obtained and managed worldwide. Already today, European

assessment for rivers and lakes report that 5–15% of the

monitoring stations show exceedances of environmental

quality standards by herbicides, and 3–8% by insecticides over

the period 2007–2017 (Mohaupt et al., 2020). Nevertheless, in

future pesticides will be extensively used as they will continue to

play a vital role in the food production process and food security

(Popp et al., 2013). Despite thorough regulation of pesticides,

large knowledge gaps continue to hinder risk assessment,

especially when it comes to potential environmental impact of

pesticide mixtures and impacts of climate and regional factors

(Topping et al., 2020; Weisner et al., 2021). In Northern Europe,

predicted increase in plant diseases and insect pests may

consequently lead to higher pesticide use and thereby

occurring concentration of pesticides in the environment

(Kattwinkel et al., 2011; Sutherst et al., 2011; Delcour et al.,

2015). As pesticide environmental fate and exposure scenarios

for Norway and the Nordic countries deviate from EU

predictions due to spatial (regional) or temporal differences

(Stenrød et al., 2008; Holten et al., 2018), the pesticide use,

emissions, exposure and fate are not adequately represented by

the standardized EU model scenarios (Stenrød et al., 2016). To

safeguard environment health better, there is a need to improve

the integration of trend connected to CC into environmental risk

assessments of pesticides, considering both direct effects such as

the shifts in climate conditions and indirect effects such as

changes in pesticide application patterns. This should

subsequently enable better informed risk management.

Current paradigms for environmental risk assessment (ERA)

of pesticides typically aim to take into account the variability of

species sensitivities by estimating a proportion of affected species

in a community, which is used to define a predicted no-effect

concentration (PNEC) of the pesticide (More et al., 2019). The

traditional risk characterization of pesticides usually uses single-

value e.g., toxic exposure ratio derived from the PNEC divided by

the predicted environmental concentration (PEC) to assess

whether a chemical substance poses a risk to the environment

(EC, 2011). In this study, a more general approach was applied

using a risk quotient (RQ) that is calculated as PEC/PNEC, where

a potential risk to the environment is assumed whenever the PEC

exceeds the safe concentration (PNEC) (Bruijn et al., 2002; More

et al., 2019). These derived point estimates may convey an

unjustified sense of accuracy (Rai et al., 2002), as they ignore

many sources of uncertainty such as the variability of pesticides

concentrations in the environment or other factors that influence

the exposure of biota to these chemicals. Especially in Europe,

these traditional methods seek to avoid underestimating risk by

using conservative assumptions (i.e., assessment factors) to

account for various sources of uncertainty (Verdonck, 2003).

This way, protective decision making relies on precautionary

safety margins (Fairbrother et al., 2015). Spatial and temporal

variations in exposure are caused by many factors, including

changing environmental characteristics and contamination

sources (Artigas et al., 2012) that can cause uncertainty. There

is therefore a need for risk assessment methodology to better

account for uncertainty and variability in chemical exposure

(Belanger and Carr, 2020).

Probabilistic risk assessment make use of probability

distributions to characterize uncertainty in all parts of the risk

characterization (EUFRAM, 2006; Mentzel et al., 2021). Ergo,

fully probabilistic risk characterization can better account for

spatial and temporal variability of both chemical concentrations

and species sensitivity (Solomon et al., 2000; Verdonck, 2003;

EUFRAM, 2006; Fairbrother et al., 2015). Several probabilistic

Frontiers in Environmental Science frontiersin.org02

Mentzel et al. 10.3389/fenvs.2022.957926

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.957926


methods have been proposed to characterize risk while including

estimation of stochastic properties and uncertainty (Maertens

et al., 2022). The general responsibility of scientists to

communicate uncertainties has also been highlighted by the

EU (EFSA BFR, 2019). Already 2 decades ago, the use of

probabilistic risk assessment has been recommended for the

European Union (EU) (Jager et al., 2001) but is still not

commonly applied in regulatory risk assessment (Fairbrother

et al., 2015). Probabilistic methods that incorporate distributions

for exposure and effect are e.g., joint probability curves and

quantitative overlap. Generally, probabilistic methods require

more data for calculation of distributions compared to traditional

ERA, but on the other hand probabilistic methods make better

use of available data as well as other sources of information

(Campbell et al., 2000; Verdonck, 2003). However, some of the

results are difficult to communicate and thereby challenging for

decision-makers to interpret and understand (Verdonck, 2003;

FOCUS, 2007), possibly because they are often based on

cumulative distribution curves (EUFRAM, 2006). A Bayesian

network (BN) model has therefore been proposed as a more user-

friendly and intuitive method for supporting probabilistic risk

assessment of pesticides (Mentzel et al., 2021).

In this study, the BN model developed by Mentzel et al.

(2021) was further extended and explored to assess

environmental risk of pesticides under future scenarios. The

extended BN model presented here includes the output of a

pesticide exposure prediction platform for a representative

Northern European area (WISPE; Bolli et al. (2013)) under

different climate and pesticide application scenarios. The main

objective of this study was to develop an approach for

incorporating alternative climate change and pesticide

application scenarios into a probabilistic approach to risk

characterization, based on the available data and information

for a Norwegian case study.

2 Materials and methods

2.1 Approach

2.1.1 Bayesian network model, structure and
implementation

Bayesian methods have been recommended by the European

Food Safety Authority (EFSA et al., 2017) for uncertainty analysis

in the process of identifying limitations in scientific knowledge

and evaluating their implications for scientific conclusion.

Bayesian networks (BNs) are a branch of Bayesian approaches

that have been increasingly used in environmental risk

assessment and management (Aguilera et al., 2011; Moe et al.,

2021b; Kaikkonen et al., 2021). BNs are probabilistic and

graphical models, more specifically directed acyclic graphs

(DAG) (Kanes et al., 2017) that have no feedback loops. The

nodes (variables) are connected through links (potentially causal

relationships) shown as arcs representing conditional probability

tables (CPTs) (Kjærulff and Madsen, 2013). Each node has a set

of alternative states (typically intervals) that are quantified by

probability distributions. To update probability distributions of

the network, the Bayes’ rule is implemented to combine prior

probabilities with new evidence (Carriger et al., 2016). One of the

main benefits of BNs is that all components can be quantified by

probability distributions, which facilitates a probabilistic risk

calculation. Along these lines, BNs can incorporate various

sources of information such as expert opinion, literature and

model outputs, enabling a greater use of available data and

knowledge (Carriger and Newman, 2012; Carriger et al.,

2016). An example of the application of spatial BNs for

probabilistic assessment of pesticide exposure on a field level

has been carried out by Troldborg et al. (2021). Carriger and

Barron (2020) combined probabilistic exposure and effect

characterization into calculation of a probabilistic risk

quotient (RQ) of Mercury for the Florida panther. This

approach to a probabilistic calculation of RQ and associated

uncertainties was further developed by Mentzel et al. (2021), by

using species sensitivity data for the effect characterization to

represent risk to aquatic ecosystems.

The BN conceptual model developed here is based on

Mentzel et al. (2021) and consist of four modules (Figure 1):

1) future scenarios (orange), 2) pesticide exposure (blue), 3) toxic

effect (green) and 4) risk characterization (grey). The scenario

module contains a scenario node that is based on the climate and

pesticide application. These scenarios determine the

instantaneous pesticide concentration and its probability

distribution (pesticide exposure module). This instantaneous

concentration node together with the set time since

application (node) determines the distribution of the time-

specific concentration node, via a log-linear equation. The risk

characterization module composes the exposure/effect ratio node

that together with an appropriate precautionary factor predicts

the probabilities of the RQ intervals. The finalized BN can be

instantiated by selecting a scenario and specifying the time since

application of interest as evidence. Given this evidence,

probability distributions will be updated throughout the

network. The four modules are described in more detail in

Section 2.2.

2.1.2 Exposure sampling and modelling
Measured pesticide exposure concentrations, their

distribution and associated uncertainties are highly influenced

by sampling method, time and rate (Spycher et al., 2018). Data

derived from monitoring has a wide range of uncertainties

through sampling constraints and limited representativeness

(FOCUS, 2017). Yet, a realistic environmental concentration is

vital for reliable environmental risk assessment. This is especially

significant whenever a single number is used without accounting

for uncertainty, but is also influential when trying to derive a

representative exposure distribution as uncertain estimations can
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hinder appropriate decision-making (Wolf and Tollefsen, 2021).

Thence, the EU (Directive 2009/128/EC (EC, 2009a) and

REGULATION (EC) No 1107/2009 (EC, 2009b)) offers the

option to use models to predict environmental concentrations

(PECs) in surface waters. Even if monitoring data are available,

the use of modeling approaches for exposure assessment is

encouraged by EFSA (2017). They have developed the FOCUS

(FOrum for the Co-ordination of pesticide fate models and their

Use) surface water scenarios using themodel tool SWASH, a GUI

for the models PRZM (Pesticide Root Zone Model), MACRO

and TOXSWA (TOXic substances in Surface Waters). PRZM

and MACRO are models frequently used to simulate pesticide

transport in soil while TOXWA simulates the dilution at the edge

of field or drain water concentration from the other two models

in different surface water body types. SWASH takes agricultural

management practices, climate, crops, topography, and soil types

into account (Adriaanse et al., 2017).

For this study, we used the World Integrated System for

Pesticide Exposure (WISPE) platform, which was developed to

evaluate the potential for pesticide exposure to surface waters and

groundwaters (Bolli et al., 2013). The WISPE platform was

configured with scenarios containing crop, soil, and weather

conditions for representative agricultural areas among others in

the EU, USA and Norway. This modelling platform interlinks the

pesticide root zone model (PRZM), an exposure analysis

modeling system (EXAM) (Burns, 2004) and the aquifer

dilution assessment model (ADAM) (Williams, 2010) similar

to TOXWA. The PRZM model simulates the movement of

chemicals within and below the root zone (in unsaturated soil

systems). EXAM is a hydraulic model combined with a chemical

fate and transport model simulating processes in aquatic

environments. It simulates various processes in the aquatic

environment. ADAM is an integrated model which predicts

the chemical dilution, partitioning and persistence to a water

body. EXAM and PRZM are standard models used by USEPA,

and the latter model is also used in European pesticide

registration and risk assessment (REGULATION (EC) No

1107/2009 (EC, 2009b)). In a previous study, the transport of

particles and particle bound pesticides was calibrated for two

field sites representative for Norwegian agricultural areas by Bolli

et al. (2013). The study found that in this northern region the

erosion and transport of particle-bound pesticides are heavily

dependent on the weather conditions such as precipitation

shortly after application or melting-freezing episodes, which

take place in spring and winter. The WISPE platform is based

on many of the FOCUS default setting but was specifically

tailored for northern European conditions and contains e.g.

major Norwegian crops, and plant growth effected by climate

conditions, therefore being better suited as a exposure prediction

tool in this study.

2.2 Bayesian network modules

In the following, the information sources and assumptions

for the four modules of the BN model and the model runs are

described. The software Netica (Norsys Software Corp, www.

norsys.com) was used to construct the BN model. The BN was

constructed with identical node structure and number of states

for all of the selected pesticides, but with different discretization

of the concentration nodes. For each pesticide, the range of the

exposure and effect concentration nodes was adapted to the

distributions derived from the data used for exposure and effect

assessment, respectively. We chose a relatively high number (10)

of intervals to obtain a high resolution of the model. The

concentration nodes were discretized by equidistant intervals

in the log-scale.

The exposure model platform WISPE was run for each

selected pesticide, for three application scenarios and for two

climate models. In the selected case study area, environmental

FIGURE 1
Conceptual model for the risk estimation of a pesticide. Pesticide exposure derives input from the WISPE platform and is determined by the
associated future scenarios. The toxic effect nodes together with the exposure concentration derives the risk quotient under risk characterization.

Frontiers in Environmental Science frontiersin.org04

Mentzel et al. 10.3389/fenvs.2022.957926

http://www.norsys.com
http://www.norsys.com
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.957926


factors such as soil and site parameters together with chemical

properties and climate scenarios were linked to the exposure of a

pesticide by using the WISPE platform. The probability

distribution of pesticide exposure was obtained from predicted

concentrations for multiple years, which enabled accounting for

variability over a longer time period (FOCUS, 2017).

Correspondingly, for the probability distribution of effects, the

range of species sensitivities was determined from available

toxicity data. The RQ node was discretize with a high number

of states, this enabled exploring the differences between

scenarios. A more detailed node description and model

assumptions are given in the following Table 1.

2.2.1 Future scenarios
The agricultural sector manages 3.5% of Norway’s land

area pr. 2021. Being part of northern Europe, Norway has

lower temperatures and a shorter growing season than

central and southern Europe. These climate conditions

restrict the area suitable for grain cultivation. Until the

year 2060, the annual average temperature is expected to

increase by approx. 2°C, with the largest increase in

temperature in winter, and the lowest in summer in

Norway. Consequently, the meteorological growing season

will be longer than the current, with a predicted increase in

growing season of up to 2 months towards the end of the

century (Fuglestvedt, 2016). This may lead to earlier sowing,

ripening and harvest for spring cereals and growing of crop

types that mature later but offer a higher yield potential. CC

is also expected to lead to significant changes in precipitation

with an increase of 8% for annual precipitation at the end of

the century, but with large variation between the cropping

regions in Norway (Olesen and Bindi, 2002). For the

cultivation of grain, not only the amount and intensity of

rainfall is of interest, also its frequency and distribution

throughout the growing season. Other expected CC impacts

are the introduction of new plant pathogens and pests from

southern countries to northern areas while existing will be able

to take advantage of a longer growing season and multiply

faster than before. Also, changes in crop composition may lead

to a change in the occurrence of the diseases and possibly new

host-parasite interactions (Fuglestvedt, 2016). Furthermore,

pesticides efficacy is affected by environmental factors such

as temperature, precipitation and wind (Olesen and Bindi,

2002). In Norway, a longer growing season and more

frequent pest infestations may require the use of more

pesticides. A warmer climate is expected to result in

increased production of winter wheat. The milder cold

season may provide better overwintering conditions for

plant pathogens, which might entail early and more severe

infestation of the crop the following season. The most relevant

measure apart from using resistant crop types is spraying of

fungicides. In addition, early infestations require spraying both

TABLE 1 Bayesian network node description detailing the type of node, the number of states and the method used to parameterize the network.

Node name
(Variable)

Type Number of
states

Explanation and information
source

Climate model Categories 2 Scenario component (parent node)

Period Ranked
categories

3 Scenario component (parent node)

Application Ranked
categories

3 Scenario component (parent node)

Scenario Integers 18 Combination of the scenario components: Scenario = climate scenario + pesticide application
scenario + period scenario

Intercept Log Intervals 5 Maximum environmental concentration (log-transformed), scenario-specific probability
distribution

Time since application Integers 5 Day 1, 2, 5, 21 or 60 for WISPE model prediction (parent node)

Time-specific
concentration Log

Intervals 10 Time-specific environmental concentration (log-transformed), function with scenario-specific slope:
[Intercept Log] + ([slope] x [Time since application]))

Endpoint Categories 2 EC50 (day 1)

NOEC (day 1–61)

Effect concentration Log Intervals 10 EC50: NormalDistribution (mean, sd) or NOEC: NormalDistribution (mean, sd)

Exposure concentration Intervals 10 exp ([Time specific concentration Log])

Effect concentration Intervals 10 exp ([Effect concentration Log])

Exposure/effect ratio Intervals 7 Ratio [Exposure concentration]/[Effect concentration]

Precautionary factor Integers 7 A scaling factor for deriving the risk quotient (parent node)

1, 3, 10, 30, 100, 300, or 1000

Risk quotient Intervals 7 [Exposure/effect ratio] x [Precautionary factor]
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earlier and more frequently during the growing season

(Fuglestvedt, 2016). Based on these considerations, winter

wheat was chosen as the model crop for this study.

A more detailed description of the expected CC for this

region is given by Hanssen-Bauer et al. (2015). In the following,

the future scenarios used to run the WISPE platform are

described.

2.2.1.1 Climate scenarios

In this study, two sets of climate projections were used

originally developed for the site Grue in the south east of

Norway (ca 160 km North-east of Syverud/Ås) under the

GENESIS project (2009–2014, https://cordis.europa.eu/project/

id/226536). Both were derived from the greenhouse gas emission

scenario “A1B” (IPCC, 2000), which was developed to represent a

future world of very rapid economic growth, low population

growth and rapid introduction of new and more efficient

technology, for a spatial resolution of 50 km. The two sets of

climate projections were derived by two global climate models

(GCM) which will be referred to as Climate Model 1 (C1) and

Climate Model 2 (C2). The GCM of C1, “ECHAM5-r3”

(Roeckner et al., 2004), was developed by the Max Planck

Institute for Meteorology, and the GCM for C2, “HADCM3-

Q0” (Gordon et al., 2000), was developed at the Hadley Centre.

Regional climate models (RCMs) are commonly applied to

downscale from the global to more local levels (Jones et al.,

2011; Samuelsson et al., 2011). Here, the same RCM called

RCA3 was used, developed by the Rossby Center at SMHI

(the Swedish Meteorological and Hydrological Institute).

Thereby, C1 represents the regional climate model

“ECHAM5-r3 A1B-SMHI-RCA3” and C2 represents

“HADCM3-Q0 A1B-SMHI-RCA3”.

The climate projections used in this study has several

limitations: the emission scenario and the two climate

models are rather old, and they have not been bias-

corrected for the study area. Moreover, climate

projections should ideally be obtained from a larger

ensemble of climate models rather than one or a few

models (Moe et al., 2022). However, generating a new

and more appropriate set of climate projections was

beyond the scope of this study. Therefore, the climate

projections that were already derived for the WISPE

platform were considered sufficient for the purpose of

demonstrating this BN approach to linking climate

projections, pesticide exposure and risk characterization.

Projections from the two climate models (C1 and C2)

differed in precipitation, temperature, evapotranspiration,

solar radiation and wind. For example, they had different

projected changes in number of days with snow cover and

changes of annual rainfall (Kjellstöm et al., 2011). The

differences between the two climate models are especially of

interest for the chosen days and months of pesticides application.

Based on Mann-Kendall (MK) trend analysis, C1 showed a

positive trend in temperature, evapotranspiration and

precipitation for a 3-days average before the day of pesticide

application. When comparing climate conditions for 10-days

average before day 21 after application, a positive trend was

detected for temperature and evapotranspiration (i.e. the process

of water evaporation from soil and other surfaces through

transpiration from plants). In general, C2 showed no trend

for May, and even a negative trend for October for a 3-days

average before the day of application (see Supplementary Table

S2). The projections from C1 were more consistent with more

recent climate projections for Norway, which show that an

increase in temperature and precipitation can be expected

(Hanssen-Bauer et al., 2015). Consequently, in this paper we

decided to focus mainly on predicted exposure concentration

based on C1.

2.2.1.2 Pesticide application scenarios

The first pesticide application scenario is based on the

current common practice dosage and is referred to as the

“baseline” scenario (see Table 2). The second scenario,

referred to as “baseline-50%“, is inspired by the European

Green Deal, which aim for a 50% reduction of the pesticide

use by 2030 (EC, 2020). The third scenario represents a

potentially increased use of pesticides in the future, for

example due to changing climate conditions and increased

pest pressures (Fuglestvedt, 2016) and is referred to as

“baseline+50%”.

We selected active pesticide ingredients that are all approved

in Norway for crop protection in winter wheat. Two plant

protection products, a herbicide containing MCPA (CAS nr.

94–74-6), fluroxypyr-meptyl (CAS nr. 81,406–37-3) and

clopyralid (CAS nr. 1702–17-6), and a fungicide composed of

trifloxystrobin (CAS nr. 141,517–21-7) and prothioconazole

(CAS nr. 178,928–70-6), were chosen for the purpose of

demonstrating the approach. Inherent properties such as

molecular weight, water solubility, sorption properties (Koc),

degradation half-life (DT50 soil), and vapor pressure, and

Freundlich exponent (1/n), and systemic property e.g. plant

uptake factor, were collected and included in the data asset

(see Supplementary Table S1).

The associated application rate and time of spraying were

used to define the application scenario for the WISPE platform

runs. It was assumed that the herbicide is applied once in the first

half of May (crop growth stage BBCH 13–14; cf. label for Ariane

™ S, Corteva Agriscience), and that the fungicide is applied once

in the first half of October (after sowing and germination of the

winter wheat; cf. label for Delaro SC 325, Bayer Crop Science).

For the calibration of the WISPE platform no tillage was

assumed. Some of the combinations chosen for pesticide

application, e.g. the choice of no soil tilling in combination

with winter cereals, may not be the most common/optimal

agronomic practice and can hence add to some of the

uncertainty in the modelling.
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2.2.2 Pesticide exposure
The scenarios described above were used as input

information for the WISPE platform. Additional settings used

to run the platform are described in the succeeding section. The

exposure distributions used as input for the pesticide exposure

module were based on the predicted exposure concentration

from the WISPE platform.

2.2.2.1 WISPE platform settings

When the WISPE platform was first developed as a tool to

estimate pesticide exposure in ground- and surface water for

Norwegian conditions, two study areas were chosen as

representative field sites to generate data for calibration and

validation of the model (Bolli et al., 2013). In this study, the

Syverud was used as a site scenario, which was developed to

represent larger agricultural areas in South East Norway. The

study site is located on the grounds of the Norwegian University

of Life Sciences (NMBU) in Ås (Supplementary Table S1). The

soil in this study area is classified as loam/silt loam, with 26%

clay, 49% silt, and 25% sand content. The area was formerly

used as a meadow which resulted in a soil structure with high

infiltration capacity, aggregate stability and saturated hydraulic

conductivity (Bolli et al., 2013). For the model simulations the

site was assumed to be ploughed in autumn, with a ploughing

depth of 20 cm. The platform predicts output concentrations

for a stream, pond and ditch with parameters adapted originally

from TOXSWA into the EXAM model.

We have only considered the predicted output for the stream

environment, with the following water body parameters: 1 m

width, 100 m total length, 0.3 m average water depth, 15 mg/L

concentration of suspended solids, 5% organic carbon content,

and 800 kg/m3 dry bulk density (FOCUS, 2015). WISPE was

calibrated for the model crop winter wheat.

2.2.2.2 Exposure prediction platform implementation

The WISPE platform was run according to the previously

mentioned future scenarios and platform settings such as the

selected representative field site, crop type and for the various

time-periods of C1 and C2. The WISPE platform predicted

exposure concentration for 26 years, corresponding to the

26 years over which the model runs. The concentrations were

predicted for instantaneous, 24 h, 96 h, 21, 60 and 90 days.

In the further process, the time-periods were changed into

three periods (year 2000–2030, 2035–2065, 2070–2100) to derive

the distributions (BN input) representing inter-annual variation

within each of the 30-year period. The platform simulated

pesticides to specified unique application conditions for the

two climate models. In total, 18 scenarios were used in the

developed BN per pesticide (Table 3). The following example

shows the log-transformed pesticide concentration against time

since application predicted by WISPE for scenario 11 (Figure 2).

A log-linear equation was fitted to each of the predicted

concentrations time series. Data processing and analysis was

carried out in R (version 4.1.0), using the tidyverse package

(Wickham et al., 2019) and some base R functions (R Core Team,

2020). Within each scenario the slope did not differ significantly

among the years (see Figure 2), therefore the average slope across

years was used to calculate the time-specific concentration for

each scenario (see Supplementary Information SII). The

probability distribution of the instantaneous concentration

(representing inter-annual variation) was used as input in the

conditional probability table (CPT) of the instantaneous

concentration node. This distribution was combined with the

slope to derive the distribution of the time-specific concentration

node (see Supplementary Information SII). In general, the

instantaneous node interval range differed for each selected

pesticide: clopyralid 0.0025–0.6065 μg/L, fluroxypyr-meptyl

0.0111–4.4817 μg/L, MCPA 0.0821–12.1825 μg/L, prothioconazole

0.0302–0.2231 μg/L, trifloxystrobin 0.0235–0.1653 μg/L.

2.2.3 Pesticide effects
Uncertainties related to current effect assessment are often

associated with extrapolation from laboratory to field and inter-

intraspecies variation (Rai et al., 2002) and can also be linked to

the data set size. In traditional regulatory effect assessment, these

uncertainties are usually accounted for by assessment factors to

increase the assumed safe concentration threshold (PNEC). In

this study, two types of effect distribution were derived and used

TABLE 2 Description of application scenarios used in this case study for the five selected pesticides.

Active substance Baseline-50% Baseline Baseline+50%

Dose
active substance (kg/ha)

Dose
active substance (kg/ha)

Dose
active substance (kg/ha)

Clopyralid 0.025 0.05 0.075

Fluroxypyr-meptyl 0.05 0.1 0.15

MCPA 0.25 0.5 0.75

Prothioconazole 0.0875 0.175 0.2625

Trifloxystrobin 0.075 0.15 0.225
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as input in the pesticide effect module. They were based on either

NOEC (no-observed effect concentrations) values or on EC50

(effect concentration for 50% of the test population) values and

collected for each of the selected pesticides. The derived effect

distribution is similar to a species sensitivity distribution (SSD),

representing inter-specific variation in sensitivity to toxicants,

which is used extensively in ecotoxicology (Belanger and Carr,

2020). SSDs are now commonly used as an alternative to the

conservative approach on the basis of the most sensitive species

(lowest NOEC value). They are based on multiple toxicity tests of

different species and thereby reflect interspecies differences in

sensitivity to a chemical. Subsequently, SSDs can be used to

develop a community level threshold (Belanger et al., 2017).

However, SSDs are usually used to derive a single threshold value

such as the HC5 (hazardous concentration to 5% of the species),

as a basis for the PNEC. Here we follow the approach presented

by (Mentzel et al., 2021), to use the whole species sensitivity

distribution in the calculation of the exposure/effect ratio

distribution (Section 2.2.4). Toxicity data were mainly

collected and used from the US EPA ECOTOX

Knowledgebase (https://cfpub.epa.gov/ecotox/search.cfm) and

supplemented with data from Middle Tennessee State

University EnviroTox Database (https://envirotoxdatabase.

org). The EC50 effect distribution was derived from EC50 and

LC50 (lethal dose for 50% of the test population) toxicity data

(Table 4). The NOEC distribution is based on NOEC and NOEL

(no-observed effect level) values, apart from Clopyralid for which

only NOEC toxicity data was available. If multiple values for the

same species occurred in the data set, the mean was used as a data

point to derive the distribution (Mentzel et al., 2021). The

number of observations for this study varied depending on

the chemical, and whether it was an EC50 or NOEC toxicity

test. In this study, we only considered adverse effects such as

TABLE 3 Overview of scenarios used in the Bayesian network model combining the three scenario components Climate model, Period and
Application scenario. For description of the climate models, see Section 2.2.1.1. For definition of the pesticide application scenarios, see Table 2.

Scenario Climate model Period (years) Application scenario

1 C1 2000–2030 baseline

2 C1 2000–2030 baseline+50

3 C1 2000–2030 baseline-50

4 C1 2035–2065 baseline

5 C1 2035–2065 baseline+50

6 C1 2035–2065 baseline-50

7 C1 2070–2100 baseline

8 C1 2070–2100 baseline+50

9 C1 2070–2100 baseline-50

10 C2 2000–2030 baseline

11 C2 2000–2030 baseline+50

12 C2 2000–2030 baseline-50

13 C2 2035–2065 baseline

14 C2 2035–2065 baseline+50

15 C2 2035–2065 baseline-50

16 C2 2070–2100 baseline

17 C2 2070–2100 baseline+50

18 C2 2070–2100 baseline-50

FIGURE 2
Example log-linear regression of the concentration in the
stream predicted by the WISPE platform for MCPA with an
application baseline scenario for the C1 and the time interval
2070–2100.
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TABLE 4 Effect (toxicity) data collected for this study, detailing the effect types per pesticides and the derived EC50 and NOEC natural log(ln) mean
and standard deviation for the natural log distributions.

Pesticide Number of
values

Effect type EC50 (µg/L) NOEC (µg/L)

EC50 NOEC Log Mean Log sd Log Mean Log sd

Clopyralid 7 8 Growth, Population, Reproduction, Development, Mortality 11.45 1.99 7.73 3.67

Fluroxypyr-
meptyl

16 11 Population, Mortality 7.08 2.06 6.03 2.01

MCPA 45 20 Population, Mortality, Growth, Morphology, Development,
Reproduction

9.56 3.11 7.07 2.10

Prothioconazole 11 10 Population, Mortality, Growth 7.41 1.78 6.17 2.00

Trifloxystrobin 19 17 Growth, Development, Mortality, Population, Morphology 4.48 1.72 3.18 1.77

FIGURE 3
Example of the Bayesian network parameterized for fluroxypyr-meptyl, with a baseline+50% application, global climate model C1, time period
of 2035–2056, for a time since application of 1 day and a EC50 based effect distribution.
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mortality, reproduction and growth. The distribution was fitted

using the R package MASS (Venables and Ripley, 2002). The data

preparation was carried out with the R package tidyverse

(Wickham et al., 2019) (see Supplementary Information SIII).

2.2.4 Risk characterization
This module consists of three nodes: exposure/effect ratio, a

precautionary factor and the risk quotient (RQ). In traditional

risk assessment, an RQ higher than 1 indicates a reason for

concern (Bruijn et al., 2002).The assumptions for the node input

are described in Table 1. The BN was run for the different

scenarios and with either an EC50 (and day 1 since application),

representing an acute exposure scenario, or a NOEC distribution

(and day 1–61 since application), representing a chronic

exposure scenario. As explained in Mentzel et al. (2021), the

precautionary factor was introduced as a scaling factor to have a

similar role as the assessment factors, which are frequently used

in risk assessment to obtain a higher safe concentration threshold

(see TGD (SCHEER, 2017)). Thus, a higher assessment factor or

a higher precautionary factor will increase the probability of the

RQ exceeding 1. In traditional risk assessment, the decision on an

appropriate assessment factor is based on evaluation of the

available toxicity test data used to derive the effect

distribution to account for uncertainties in the used data set

and for extrapolation. In the approach presented byMentzel et al.

(2021), an appropriate precautionary factor was found by

calibrating the RQ distribution predicted by the BN to the

single-value RQ of a corresponding traditional risk

calculation. In the case study by Mentzel et al. (2021) it was

found that for a fully probabilistic approach with exposure data

derived from monitoring with infrequent sampling though

reflecting chronic exposure to the ecosystem, and collected

effect e.g. toxicity test (NOECs), the most appropriate

precautionary factor was 30–300. In the current study, some

of the uncertainties associated with the exposure concentrations

were overcome by using predicted exposure concentrations that

enabled the use of peak concentrations in addition to the

declining concentrations over time (see Figure 2). In our view,

this justified the usage of a lower precautionary factor of 1–10. To

account for additional interspecies variation in sensitivity that

TABLE 5 Results from Mann-Kendall trend analysis of the predicted pesticide exposure concentrations for the following WISPE model settings:
climate models C1 and C2; baseline application in May (herbicides) and October (fungicides). The predicted exposure concentration series
represent both acute and chronic conditions (day 1 and 21 since application, respectively). For each series, the overall trend for the whole period of
years 2000–2100 was analyzed. The test statistic τ denotes increasing (τ > 0) or decreasing (τ < 0) trend.

Scenario Climate
model

Days since
application

Pesticide Pesticide
type

Time of
application

Kendall’s τ
coefficient

p
value

1 C1 1 Clopyralid Herbicide May −0.005 0.951

1 C1 1 Fluroxopyr-
meptyl

Herbicide May 0.038 0.634

1 C1 1 MCPA Herbicide May 0.034 0.655

1 C1 1 Prothiocanazole Fungicide October 0.138 0.084

1 C1 1 Trifloxystrobin Fungicide October 0.182 0.024

1 C1 21 Clopyralid Herbicide May 0.006 0.935

1 C1 21 Fluroxopyr-
meptyl

Herbicide May −0.020 0.773

1 C1 21 MCPA Herbicide May 0.048 0.490

1 C1 21 Prothiocanazole Fungicide October 0.039 0.618

1 C1 21 Trifloxystrobin Fungicide October 0.082 0.312

10 C2 1 Clopyralid Herbicide May 0.111 0.142

10 C2 1 Fluroxopyr-
meptyl

Herbicide May 0.159 0.044

10 C2 1 MCPA Herbicide May 0.133 0.078

10 C2 1 Prothiocanazole Fungicide October 0.002 0.983

10 C2 1 Trifloxystrobin Fungicide October −0.054 0.506

10 C2 21 Clopyralid Herbicide May 0.034 0.620

10 C2 21 Fluroxopyr-
meptyl

Herbicide May 0.078 0.269

10 C2 21 MCPA Herbicide May 0.054 0.432

10 C2 21 Prothiocanazole Fungicide October −0.125 0.111

10 C2 21 Trifloxystrobin Fungicide October −0.14 0.080
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was not represented by the relatively small data set on effects, a

more conservative precautionary factor of 10 was applied for all

RQ distributions displayed in this study (see Figure 3).

A Mann-Kendall trend analysis a statistical method that is

rank-based and non-parametric, and widely used in

hydrometeorological time series trend detection (Wang et al.,

2020). The trend analysis was carried out for the predicted

exposure concentration (WISPE platform output) for baseline

application, C1 and C2, Day 1 and 21 since application and for all

of the selected pesticides (see Table 5). A positive trend indicates

an increase of the predicted exposure concentration. The trend

was concluded to be negative whenever the test statistic Kendall’s

τ < 0 and the p < 0.1. The trend was concluded to be positive

when τ > 0 and p < 0.1.

3 Results

3.1 Predicted pesticide exposure

Some of the trends in the projected climate variables such as

mean temperature, precipitation, radiation, evapotranspiration

and wind (see Supplementary Table S2) were also reflected in the

trends of the predicted exposure. The Mann-Kendall trend

analysis showed mostly no significant trends over the whole

range of years (2000–2100), for the different pesticides and

seasons. However, C1 had a positive trend in mean

temperature, precipitation and evapotranspiration in October,

this trend is also reflected in a positive trend of the exposure

concentration of fungicides prothiocanazole and trifloxystrobin

that are applied in October (for C1) (Table 5).

A closer look at the relationship between the

instantaneous exposure concentration and precipitation,

one of the determining climate conditions for the

transport and fate of pesticides, revealed that higher

amount of precipitation was associated with increased

exposure concentration (Figure 4). In addition, there was

a positive interaction between pesticide application and

precipitation, as the effect of precipitation was higher

(steeper slope) when the pesticide application was higher.

This relationship was not further investigated here, but the

pesticide concentrations predicted by the WISPE platform

predictions showed similar temporal trends as the those

described for the climate variables (see Supplementary

Table S2).

3.2 Predicted risk quotient distribution for
various scenarios

The output for each of the settings (evidence) used in this

study has been reported in the Supplementary Information SIV.

It contains a detailed collection of the probabilities for each of

the RQ node intervals depending on the selected evidence. In

the following, the predicted RQ node distributions for the

different scenarios (see Table 3 for reference) are visualized

as stacked bar plots for easy comparison (Figure 5). The RQ was

calculated with an effect distribution based on either NOEC

values (RQNOEC) or EC50 values (RQEC50). This analysis

enabled the identification of periods with higher risk of

environmental effects of individual pesticides or groups of

pesticides.

3.2.1 Risk quotient distribution across the time
since application

For a baseline application scenario, at day 1 the

probability of RQNOEC to be higher than 1 was 1% for

MCPA (Figure 5C), 0.98% for fluroxypyr-meptyl (Figure 5B),

and 0% for Clopyralid (Figure 5A), prothioconazole

(Figure 5C), and trifloxystrobin (Figure 5E). Overall, the

time-specific RQNOEC declines with time since application

(Figure 5). So, at Day 2 probability of RQNOEC to be higher

than 1 decreased to 0.79% for MCPA and 0.65% for

fluroxypyr-meptyl. At Day 5 the RQNOEC to be higher

than 1 decreased further to 0.69% for MCPA and 0% for

fluroxypyr-meptyl. Considering a lower RQ threshold

(corresponding to a higher precautionary factor), the

probability of RQ > 0.1 at Day 1 was highest for MCPA,

followed by fluroxypyr-meptyl, trifloxystrobin, clopyralid

and prothioconazole.

FIGURE 4
Example fluroxypyr-meptyl exposure concentration vs.
precipitation for the three tested application scenarios for a 3-days
sum of precipitation before the day of application (here:
5–7 October for the period 2000–2100).
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3.2.2 Plausible scenarios: Combination of
climate change and pesticide application

A change in pesticide application patterns such as an increase

in the rates or number of applications per season can be

considered as an adaptation to consequences of climate

change (e.g. increased pest pressure). Therefore, the scenario

combining future climate projections (period 2035–2065) with

increased pesticide application was considered as a plausible

scenario. On the other hand, the combination of future

climate projections with reduced pesticide application

represent a scenario more in line with EU’s pesticide policy.

Hence, we compare the RQEC50 of the current time period

(2000–2030) and baseline application with the predicted

RQEC50 for a future time period (2035–2065) as well as

baseline-50% and baseline+50% application scenarios. In

general, the probability of RQEC50 exceeding 1, which

commonly used as a threshold for concern, was low and not

much influenced by the different time periods or application

scenarios.

Focusing on lower RQ thresholds, examples are shown for

the fungicide trifloxystrobin (Figure 6A) and the herbicide

fluroxypyr-meptyl (Figure 6B). Trifloxystrobin had more than

10% probability of RQEC50 exceeding 0.03 for the current

practice. In future, applying less fungicide resulted in a shift

towards lower RQ intervals and an overall decrease in risk. From

the BN prediction, it was observed that applying 50% less resulted

in a shift towards lower RQ intervals, with a probability to be

above 0.3 decreasing from 12.5% to 3.5%. Comparing baseline

FIGURE 5
Example of predicted risk quotient distribution for clopyralid (A), fluroxypyr-meptyl (B), MCPA (C), prothioconazole (D) and trifloxystrobin (E)
over time for 1, 2, 5, 22, and 61 days after application, for the baseline application scenario, climate model C1 and the time interval of 2070–2100 for
NOEC-based effect distribution.
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and baseline+50% the RQEC50 distributions were similar, with a

probability of being above 0.03 of about 12.5%. This was also the

case for some of the other pesticides (e.g. clopyralid or MCPA)

(see Supplementary Figure S2). Fluroxypyr-meptyl, on the other

hand, showed a change to higher RQEC50 intervals for the

baseline+50% application. For this herbicide the probability for

RQEC50 to be above 0.03 increased from 7.2% (for baseline) to

8.9% (for baseline+50%) and decreases to 6.4% (for baseline-50%).

4 Discussion

As monitoring of environmental pesticide concentration is

costly and time-consuming, future climate conditions need to be

incorporated for better risk assessment. The complexity of

processes in pesticide risk assessment can to some degree be

overcome by taking advantage of the BNs’ ability to use data from

various different sources, which is one of their benefits (Chen and

Pollino, 2012; Gibert et al., 2018; Mentzel et al., 2021; Troldborg

et al., 2021). Moreover, they can be constructed as causal models

that help comprehend hazard pathways and vulnerability

relations better and with that assist in risk prioritization

(Sperotto et al., 2017). For example, a BN developed for

predicting spatial distributions of pesticide exposure in a drinking

water catchment was informed by multiple information sources

including GIS as well as expert knowledge (Troldborg et al., 2021). A

study by Gaasland-Tatro (2016) showed how CC factors and other

stressors can be integrated in BNs by using a relative risk model that

evaluates ecological parameters over landscape scale regions. Along

these lines, Landis et al. (2013) pointed out that today’s

environmental risk assessment should also consider interactions

among contaminant and noncontaminant stressors, together with

new regimes of precipitation and temperature at specific

geographical sites (Landis et al., 2013).

The BN model presented here demonstrates how a

traditional risk characterization score such as the RQ can be

made more informative by being presented as a probability

distribution. While the traditional risk assessment has focused

on whether a single-value RQ score exceeds 1, the BN approach

allows for a systematic analysis also of lower risk situations, such

as the probability of RQ exceeding 0.3 or 0.1. This way, the model

can be used to explore plausible environmental scenarios and

FIGURE 6
Predicted risk quotient distribution for a selected herbicide and fungicide, for a time since application of 1 day, for the climate model C1 and for
EC50-based effects distribution. The scenarios 1,4,5,6 (Table 3) are displayed for the herbicide fluroxypyr-meptyl (A) and the fungicide
trifloxystrobin (B).
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identify early-warning trends in RQ towards levels of concern.

Moreover, in our approach, the precautionary factor is used in a

more transparent way and better separated from the pesticide

effect characterization than the corresponding assessment factor

is in traditional risk assessment (Mentzel et al., 2021). The

assignment of a precautionary or assessment factor involves a

subjective evaluation of data quality and other uncertainties by

the risk assessor and should therefore be better separated from

the calculation of chemical concentrations, in our opinion. The

traditional assessment factor is applied to calculate an assumed

safe concentration threshold (predicted no-effect concentration),

which is in turn used as the denominator in the calculation of the

traditional RQ. In our model, in contrast, the exposure/effect

ratio distribution is calculated and displayed before the

precautionary factor is included as a final step to obtain the

RQ distribution.

The BNmodel predicted a slight increase in the probability of RQ

exceeding 1 for future time periods, for most of the pesticides

investigated. In other words, the model predicts higher risk for

aquatic organisms under the A1B climate scenario for the

intermediate (2035–2065) and last time periods (2070–2100)

investigated. This is expected and consistent with previous

suggestions regarding pesticide fate and transport being influenced

by precipitation in northern Europe. In other words, increased

precipitation in future can imply increase risk of pesticides to

freshwater ecosystems in agricultural areas. We aim to investigate

the role of precipitation and other climate variables on predicted

pesticide exposure in theWISPE platformmore systematically in later

studies, to obtain functional relationships between climate variables

and pesticide exposure under different climate scenarios. A

quantification of such functional relationships will allow for more

efficient exploration of pesticide risk under different climate and

agricultural scenarios.

Considering the prediction for future periods, the climate

projection used in this study was obtained from an existing

project and based on a relatively old climate scenario (A1B).

Moreover, the climate models used in this study were not

properly bias-corrected for the study area. Thus, improved

precision and realism of the BN model predictions could be

achieved by using more updated climate projections from more

relevant climate scenarios (e.g. RCP4.5 and 8.5) and based on a

larger number of climate models. Further model development

with a newer and refined version of the WISPE, could reduce

some of the uncertainty related to predictions.

The applicability domain of the BN model presented here is

constrained by the current applications and calibration of the

WISPE model platform. Until now, the WISPE platform was

validated by Bolli et al. (2013) and offers the possibility to

predict environmental concentrations for specific and

representative study fields in Norway. The platform takes into

account chemical properties and environmental factors when

predicting the exposure of pesticides in the selected water body

(Bolli et al., 2013). A predicted exposure time series with multiple

peak concentrations could not easily have been incorporated in the

exposure module of the BN, which currently assumes a log-linear

decrease in pesticide concentration over time. Further development

of this module would be needed to account for a more complex

temporal exposure pattern.

In addition, extending the current BN with more developed

pesticide application, scenarios, including selected crop and

pesticide types, and the use of other representative study areas

would be beneficial for the integration of variability in model

predictions. This BN model could also be further developed to

predicting the cumulative risk of intentional pesticide mixtures.

Further research efforts could also explore more advanced

options for risk characterization as alternatives to the

currently used RQ approach, for example making better use

of causal dose-response relationships from mesocosm studies in

cases where such information can be obtained. Therefore, we are

considering an approach that incorporate not only an exposure

prediction model under alternative future conditions but also an

effect prediction model for selected groups of aquatic species.

The use of BN models in ecotoxicology is still rare compared

to other types of environmental assessment (Kaikkonen et al.,

2021) even though their use has increased in chemical risk

assessment in recent years (Moe et al., 2021a). One of the

inherent shortcomings of BNs is the loss of precision due to

discretization of continuous variables (Marcot, 2017; Nojavan

et al., 2017); this phenomenon was also observed in the predicted

exposure concentrations for some of the pesticides in this study,

e.g. MCPA. Although the instantaneous pesticide concentration

distribution differed between the baseline and baseline+50%

scenarios, these differences were not reflected in the exposure

concentration node, where the probability distribution appeared

very similar. This resulted in similar RQ distribution for the two

application scenarios, given the current discretization (Marcot,

2017; Nojavan et al., 2017). The number of node states is often

kept low in BNmodels, because a higher number of states implies

that more information is needed for parameterization of the

conditional probability tables. In our BN model, however, most

of the CPTs were derived from equations and can therefore easily

be adapted to a higher number of intervals. It is therefore

straight-forward to increase the resolution of this BN model.

More generally, this technical problem can potentially be

amended by through dynamic discretization which can enable

higher resolution and reduce the information loss of the BN

predictions (Carriger et al., 2016; Fenton and Neil, 2018).

5 Conclusion and future outlook

With this study, we have demonstrated how inputs and

outputs from a pesticide exposure prediction model can be

incorporated into a Bayesian network to deriving a risk

quotient distribution for various scenarios. The constructed

network integrates and propagates uncertainty of all
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components in a transparent way when performing the

probabilistic risk characterization. In general, compared to the

current period (2000–2030), the Bayesian network model

predicted a slight increase in the probability of risk quotient

exceeding 1 for the intermediate (2035–2065) and latest time

period (2070–2100) due to changes in future climate conditions,

for most of the pesticides investigated in this study.

For further development of this approach we aim to integrate

more updated and properly bias-corrected climate projections

from a larger ensemble of climate models in the BN, as well as

more realistic and better-informed pesticide application

scenarios. Nevertheless, the presented approach shows

promise in its ability to characterize the environmental risk of

pesticides under future scenarios by integrating different types of

information from agricultural practice, climate models, pesticide

exposure models and toxicity testing.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

Author contributions

Conceptualization, SM, SJM; Data curation—WISPE

platform, RH and SM; Data curation—BN model, SM; Formal

analysis, SM; Funding acquisition, SJM, MG, MS, and KET;

Investigation, SM, SJM, and RH; Methodology, SM and SJM;

Project administration, SJM; Software, SM; Visualization, SM;

Writing—original draft, SM; Writing—review and editing, SJM,

RH, MG, MS, KET, and SM.

Funding

This research was funded by ECORISK 2050, which has

received funding from European Unionâ’s Horizon

2020 research and innovation program under the grant

agreement No. 813124 (H2020-MSCA-ITN-2018). KE

Tollefsen was funded by NIVA’s Computational Toxicology

Program (www.niva.no/nctp). Roger Holten has received

funding from “Utredning om de norske

overflatevannscenariene” financed through the Norwegian

Action Plan for sustainable use of pesticides (2016–2020).

Acknowledgments

We thank Randi Bolli, (NIBIO), discussion and advice

on the pesticide exposure modelling, as well as Wayne

Landis (Western Washington University) and John

Carriger (USEPA) for advice on Bayesian network

modelling.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fenvs.2022.

957926/full#supplementary-material

References

Adriaanse, P. I., Van Leerdam, R. C., and Boesten, J. J. T. I. (2017). The effect of
the runoff size on the pesticide concentration in runoff water and in focus streams
simulated by przm and toxswa. Sci. Of Total Environ. 584-585, 268–281. doi:10.
1016/j.scitotenv.2016.12.001

Aguilera, P. A., Fernández, A., Fernández, R., Rumí, R., and Salmerón, A. (2011).
Bayesian networks in environmental modelling. Environ. Model. Softw. 26,
1376–1388. doi:10.1016/j.envsoft.2011.06.004

Artigas, J., Arts, G., Babut, M., Caracciolo, A. B., Charles, S., Chaumot, A., et al.
(2012). Towards A renewed research agenda in ecotoxicology. Environ. Pollut. 160,
201–206. doi:10.1016/j.envpol.2011.08.011

Belanger, S., Barron, M., Craig, P., Dyer, S., Galay-Burgos, M., Hamer, M., et al.
(2017). Future needs and recommendations in the development of species
sensitivity distributions: Estimating toxicity thresholds for aquatic ecological
communities and assessing impacts of chemical exposures. Integr. Environ.
Assess. Manag. 13, 664–674. doi:10.1002/ieam.1841

Belanger, S. E., and Carr, G. J. (2020). Quantifying the precision of ecological risk:
Misunderstandings and errors in the methods for assessment factors versus species
sensitivity distributions. Ecotoxicol. Environ. Saf. 198, 110684. doi:10.1016/j.ecoenv.
2020.110684

Benford, D., Halldorsson, T., Jeger, M. J., Knutsen, H. K., More, S., Naegeli, H.,
et al. (2018). Guidance on uncertainty analysis in scientific assessments. EFSA J. 16,
E05123. doi:10.2903/j.efsa.2018.5123

Bolli, R. I., Eklo, O. M., Holten, R., and Mulder, P. (2013). “Development of wispe
for surface- and groundwater modelling of pesticides in major crops,” in National
scenarios - Norway. Editor B. Report.

Bruijn, J. D., Hansen, B., Johansson, S., Luotamo, M., Munn, S., Musset, C., et al.
(2002). Document on risk assessment. Technical guidance document on risk
assessment, Part I and ii, 337.

Burns, L. (2004). Exposure analysis modeling system (exams): User manual and
system documentation. Athens, Ga: Ecologist, Ecosystems Research Division U.S.
Environmental Protection Agency. Version 2.98.04.06: Epa/600/R-00/081.

Campbell, K. R., Bartell, S. M., and Shaw, J. L. (2000). Characterizing aquatic
ecological risks from pesticides using a diquat dibromide case study. II. Approaches
using quotients and distributions. Environ. Toxicol. Chem. 19, 760–774. doi:10.
1002/etc.5620190331

Carriger, J. F., and Barron, M. G. (2020). A bayesian network approach to refining
ecological risk assessments: Mercury and the Florida panther (puma concolor
coryi). Ecol. Model. 418, 108911. doi:10.1016/j.ecolmodel.2019.108911

Frontiers in Environmental Science frontiersin.org15

Mentzel et al. 10.3389/fenvs.2022.957926

http://www.niva.no/nctp
https://www.frontiersin.org/articles/10.3389/fenvs.2022.957926/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2022.957926/full#supplementary-material
https://doi.org/10.1016/j.scitotenv.2016.12.001
https://doi.org/10.1016/j.scitotenv.2016.12.001
https://doi.org/10.1016/j.envsoft.2011.06.004
https://doi.org/10.1016/j.envpol.2011.08.011
https://doi.org/10.1002/ieam.1841
https://doi.org/10.1016/j.ecoenv.2020.110684
https://doi.org/10.1016/j.ecoenv.2020.110684
https://doi.org/10.2903/j.efsa.2018.5123
https://doi.org/10.1002/etc.5620190331
https://doi.org/10.1002/etc.5620190331
https://doi.org/10.1016/j.ecolmodel.2019.108911
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.957926


Carriger, J. F., Barron, M. G., and Newman, M. C. (2016). Bayesian networks
improve causal environmental assessments for evidence-based policy. Environ. Sci.
Technol. 50, 13195–13205. doi:10.1021/acs.est.6b03220

Carriger, J. F., and Newman, M. C. (2012). Influence diagrams as decision-making
tools for pesticide risk management. Integr. Environ. Assess. Manag. 8, 339–350.
doi:10.1002/ieam.268

Chen, S. H., and Pollino, C. (2012). Good practice in bayesian network modelling.
Environ. Model. Softw. 37, 134–145. doi:10.1016/j.envsoft.2012.03.012

Delcour, I., Spanoghe, P., and Uyttendaele, M. (2015). Literature review: Impact
of climate change on pesticide use. Food Res. Int. 68, 7–15. doi:10.1016/j.foodres.
2014.09.030

EC (2011). Commission regulation (Eu) No 546/2011 of 10 june
2011 implementing regulation (ec) No 1107/2009 of the European
parliament and of the council as regards uniform principles for evaluation
and authorisation of plant protection products text with eea relevance.
Brussels: Eu Commission.

EC (2009a). Directive 2009/128/ec of the European parliament and of the
council of 21 october 2009 establishing A framework for community action to
achieve the sustainable use of pesticides (text with eea relevance). Brussels: Eu
Commission.

EC (2009b). Regulation (ec) No 1107/2009 of the European parliament and
of the council of 21 october 2009 concerning the placing of plant protection
products on the market and repealing council directives 79/117/eec and 91/414.
Brussels: Eec. Eu Commission.

EC (2020). Report from the commission to the European parliament and the
council. Brussels: European Comission.

EFSA (2017). EFSA Guidance Document for predicting environmental
concentrations of active substances of plant protection products and
transformation products of these active substances in soil: This guidance
published on 19 October 2017 replaces the earlier version published on 28 April
2015. EFSA J. 15, E04982. doi:10.2903/j.efsa.2017.4982

EFSA BFR (2019). International conference on uncertainty in risk analysis. EFSA
Support. Publ. 16, 1689e. doi:10.2903/sp.efsa.2019.en-1689

Eufram (2006). Detailed reports on role, emthods, reporting & validation. York,
UkFood And Rural Affairs: Central Science Laboratory, Department For
Environment.Concerted action to develop A europea framework for
probabilistic risk assessment of the environmental impacts of pesticides

Fairbrother, A., Hartl, B., Hope, B. K., Jenkins, J. J., Li, Y.-W., and Moore, D. R. J.
(2015). Risk management decisions for pesticides and threatened and endangered
species: The role of uncertainty analysis. Hum. And Ecol. Risk Assess. An Int. J. 22,
502–518. doi:10.1080/10807039.2015.1089400

Fenton, N., and Neil, M. (2018). Risk assessment and decision analysis with
bayesian networks. Boca Raton: CRC Press.

FOCUS Generic guidance for focus surface water scenarios 2015.

FOCUS (2017). Landscape and mitigation factors in aquatic risk assessment.
Extended summary and recommendations. EUROPEAN: EUROPEAN SOIL DATA
CENTRE ESDAC.

Fuglestvedt, J. (2016). Utredning om landbrukets utfordringer I møte med
klimaendringene. Oslo: Cicero.

Gaasland-Tatro, L. (2016). A dynamic bayesian approach for integrating climate
change into A multi-stressor ecological risk assessment for the mercury contaminated
south river and upper shenandoah river. Masters thesis. Washington: Western
Washington University.

Gibert, K., Izquierdo, J., Sànchez-Marrè, M., Hamilton, S. H., Rodríguez-Roda, I.,
and Holmes, G. (2018). Which method to use? An assessment of data mining
methods in environmental data science. Environ. Model. Softw. 110, 3–27. doi:10.
1016/j.envsoft.2018.09.021

Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., et al.
(2000). The simulation of sst, sea ice extents and ocean heat transports in A version
of the Hadley centre coupled model without flux adjustments. Clim. Dyn. 16,
147–168. doi:10.1007/s003820050010

Hanssen-Bauer, I., Førland, E. J., Haddeland, I., Hisdal, H., Mayer, S., Nesje, A.,
et al. (2015). Nccs Report No 2/2015. Olso: Norsk Klimaservicesenter.Klima I norge
2100. Kunnskapsgrunnlag for klimatilpasning oppdatert 2015

Holten, R., Bøe, F. N., Almvik, M., Katuwal, S., Stenrød, M., Larsbo, M., et al.
(2018). The effect of freezing and thawing on water flow and mcpa leaching in
partially frozen soil. J. Of Contam. Hydrology 219, 72–85. doi:10.1016/j.jconhyd.
2018.11.003

IPCC (2000). Summary for policymakers - emission scenarios. Switzerland:
Intergovernmental Panel On Climate Change. Available at: https://www.ipcc.ch/
site/assets/uploads/2018/03/sres-en.pdf.

Jager, T., Vermeire, T. G., Rikken, M. G. J., and Van Der Poel, P. (2001).
Opportunities for A probabilistic risk assessment of chemicals in the European
union. Chemosphere 43, 257–264. doi:10.1016/s0045-6535(00)00087-4

Jones, C. G., Samuelsson, P., and Kjellström, E. (2011). Regional climate
modelling at the Rossby centre. Tellus A 63, 1–3. doi:10.3402/tellusa.v63i1.15774

Kaikkonen, L., Parviainen, T., Rahikainen, M., Uusitalo, L., and Lehikoinen, A.
(2021). Bayesian networks in environmental risk assessment: A review. Integr.
Environ. Assess. Manag. 17, 62–78. doi:10.1002/ieam.4332

Kanes, R., Ramirez Marengo, M. C., Abdel-Moati, H., Cranefield, J., and Véchot,
L. (2017). Developing A framework for dynamic risk assessment using bayesian
networks and reliability data. J. Of Loss Prev. Process Industries 50, 142–153. doi:10.
1016/j.jlp.2017.09.011

Kattwinkel, M., Kühne, J.-V., Foit, K., and Liess, M. (2011). Climate change,
agricultural insecticide exposure, and risk for freshwater communities. Ecol. Appl.
21, 2068–2081. doi:10.1890/10-1993.1

Kjærulff, U., andMadsen, A. (2013). Bayesian networks and influence diagrams. A
guide to construction and analysis. 2nd Ed.

Kjellstöm, E., Nikulin, G., Hansson, U., Strandberg, G., and Ullerstig, A. (2011).
21st century changes in the European climate: Uncertainties derived from an
ensemble of regional climate model simulations. Tellus A Dyn. Meteorology
Oceanogr. 63, 24–40. doi:10.1111/j.1600-0870.2010.00475.x

Landis,W. G., Durda, J. L., Brooks, M. L., Chapman, P. M., Menzie, C. A., Stahl, R.
G., Jr., et al. (2013). Ecological risk assessment in the context of global climate
change. Environ. Toxicol. And Chem. 32, 79–92. doi:10.1002/etc.2047

Maertens, A., Golden, E., Luechtefeld, T. H., Hoffmann, S., Tsaioun, K., and
Hartung, T. (2022). Probabilistic risk assessment – the keystone for the future of
Toxicology. Altex - Altern. Animal Exp. 39, 3–29. doi:10.14573/altex.2201081

Marcot, B. G. (2017). Common quandaries and their practical solutions in
bayesian network modeling. Ecol. Model. 358, 1–9. doi:10.1016/j.ecolmodel.2017.
05.011

Mentzel, S., Grung, M., Tollefsen, K. E., Stenrød, M., Petersen, K., and Moe, S. J.
(2021). Development of A bayesian network for probabilistic risk assessment of
pesticides. N/A: Integrated Environmental Assessment And Management.

Moe, S. J., Benestad, R. E., and Landis, W. G. (2022). Robust risk assessments
require probabilistic approaches. Integrated Environmental Assessment And
Management. [In Press].

Moe, S. J., Carriger, J. F., and Glendell, M. (2021a). Increased use of bayesian
network models has improved environmental risk assessments. Integr. Environ.
Assess. Manag. 17, 53–61. doi:10.1002/ieam.4369

Moe, S. J., Wolf, R., Xie, L., Landis, W. G., Kotamäki, N., and Tollefsen, K. E.
(2021b). Quantification of an adverse outcome pathway network by bayesian
regression and bayesian network modeling. Integr. Environ. Assess. Manag. 17,
147–164. doi:10.1002/ieam.4348

Mohaupt, V., Völker, J., Altenburger, R., Kirst, I., Kühnel, D., Küster, E.,
et al. (2020). Pesticides in European rivers, lakes and groundwaters - data
assessment. ETC/ICM Technical Report 1/2020, 86.

More, S. J., Bampidis, V., Benford, D., Bennekou, S. H., Bragard, C., Halldorsson,
T. I., et al. (2019). Guidance on harmonised methodologies for human health,
animal health and ecological risk assessment of combined exposure to multiple
chemicals. EFSA J. 17, E05634. doi:10.2903/j.efsa.2019.5634

Nojavan, A. F., Song, S. Q., and Craig, A. S. (2017). Comparative analysis of
discretization methods in bayesian networks. Environ. Model. Softw. 87, 64–71.
doi:10.1016/j.envsoft.2016.10.007

Olesen, J. E., and Bindi, M. (2002). Consequences of climate change for European
agricultural productivity, land use and policy. Eur. J. Of Agron. 16, 239–262. doi:10.
1016/s1161-0301(02)00004-7

Popp, J., Pető, K., and Nagy, J. (2013). Pesticide productivity and food security. A
review. Agron. Sustain. Dev. 33, 243–255. doi:10.1007/s13593-012-0105-x

Rai, S. N., Bartlett, S., Krewski, D., and Paterson, J. (2002). The use of probabilistic
risk assessment in establishing drinking water quality objectives. Hum. And Ecol.
Risk Assess. An Int. J. 8, 493–509. doi:10.1080/10807030290879790

Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., and Kornblueh,
L. (2004). The atmospheric general circulation model echam5 Part Ii: Sensitivity of
simulated climate to horizontal and vertical resolution. Max-Planck-Institut Für
Meteorologie.

Samuelsson, P., Jones, C. G., Willen, U., Ullerstig, A., Gollvik, S., Hansson, U.,
et al. (2011). The Rossby centre regional climate model Rca3: Model description and
performance. Tellus A 63, 4–23. doi:10.3402/tellusa.v63i1.15770

Scientific Advice On Environmental Quality Standards (2017). Technical
guidance for deriving environmental quality standards. Scientific Advice On
Environmental Quality Standards.

Frontiers in Environmental Science frontiersin.org16

Mentzel et al. 10.3389/fenvs.2022.957926

https://doi.org/10.1021/acs.est.6b03220
https://doi.org/10.1002/ieam.268
https://doi.org/10.1016/j.envsoft.2012.03.012
https://doi.org/10.1016/j.foodres.2014.09.030
https://doi.org/10.1016/j.foodres.2014.09.030
https://doi.org/10.2903/j.efsa.2017.4982
https://doi.org/10.2903/sp.efsa.2019.en-1689
https://doi.org/10.1080/10807039.2015.1089400
https://doi.org/10.1016/j.envsoft.2018.09.021
https://doi.org/10.1016/j.envsoft.2018.09.021
https://doi.org/10.1007/s003820050010
https://doi.org/10.1016/j.jconhyd.2018.11.003
https://doi.org/10.1016/j.jconhyd.2018.11.003
https://www.ipcc.ch/site/assets/uploads/2018/03/sres-en.pdf
https://www.ipcc.ch/site/assets/uploads/2018/03/sres-en.pdf
https://doi.org/10.1016/s0045-6535(00)00087-4
https://doi.org/10.3402/tellusa.v63i1.15774
https://doi.org/10.1002/ieam.4332
https://doi.org/10.1016/j.jlp.2017.09.011
https://doi.org/10.1016/j.jlp.2017.09.011
https://doi.org/10.1890/10-1993.1
https://doi.org/10.1111/j.1600-0870.2010.00475.x
https://doi.org/10.1002/etc.2047
https://doi.org/10.14573/altex.2201081
https://doi.org/10.1016/j.ecolmodel.2017.05.011
https://doi.org/10.1016/j.ecolmodel.2017.05.011
https://doi.org/10.1002/ieam.4369
https://doi.org/10.1002/ieam.4348
https://doi.org/10.2903/j.efsa.2019.5634
https://doi.org/10.1016/j.envsoft.2016.10.007
https://doi.org/10.1016/s1161-0301(02)00004-7
https://doi.org/10.1016/s1161-0301(02)00004-7
https://doi.org/10.1007/s13593-012-0105-x
https://doi.org/10.1080/10807030290879790
https://doi.org/10.3402/tellusa.v63i1.15770
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.957926


Solomon, K., Giesy, J., and Jones, P. (2000). Probabilistic risk assessment of
agrochemicals in the environment. Crop Prot. Guildf. Surrey) 19, 649–655. doi:10.
1016/s0261-2194(00)00086-7

Sperotto, A., Molina, J.-L., Torresan, S., Critto, A., and Marcomini, A. (2017).
Reviewing bayesian networks potentials for climate change impacts assessment and
management: A multi-risk perspective. J. Of Environ. Manag. 202, 320–331. doi:10.
1016/j.jenvman.2017.07.044

Spycher, S., Mangold, S., Doppler, T., Junghans, M., Wittmer, I., Stamm, C., et al.
(2018). Pesticide risks in small streams—how to get as close as possible to the stress
imposed on aquatic organisms. Environ. Sci. Technol. 52, 4526–4535. doi:10.1021/
acs.est.8b00077

Stenrød, M., Almvik, M., Eklo, O. M., Gimsing, A. L., Holten, R., Künnis-Beres,
K., et al. (2016). Pesticide regulatory risk assessment, monitoring, and fate studies in
the northern zone: Recommendations from A nordic-baltic workshop. Environ. Sci.
Pollut. Res. 23, 15779–15788. doi:10.1007/s11356-016-7087-1

Stenrød, M. (2015). Long-term trends of pesticides in Norwegian agricultural
streams and potential future challenges in northern climate. Acta Agric. Scand. Sect.
B —. Soil & Plant Sci. 65, 199–216. doi:10.1080/09064710.2014.977339

Stenrød, M., Perceval, J., Benoit, P., Almvik, M., Bolli, R. I., Eklo, O. M., et al.
(2008). Cold climatic conditions: Effects on bioavailability and leaching of the
mobile pesticide metribuzin in A silt loam soil in Norway. Cold Regions Sci. And
Technol. 53, 4–15. doi:10.1016/j.coldregions.2007.06.007

Sutherst, R. W., Constable, F., Finlay, K. J., Harrington, R., Luck, J., and Zalucki,
M. P. (2011). Adapting to crop pest and pathogen risks under A changing climate.
Wires Clim. Change 2, 220–237. doi:10.1002/wcc.102

R Core Team (2020). R: A language and environment for statistical computing. R
Foundation For Statistical Computing. Available at: https://www.r-project.org/.

Topping, C. J., Aldrich, A., and Berny, P. (2020). Overhaul environmental risk
assessment for pesticides. Science 367, 360–363. doi:10.1126/science.aay1144

Troldborg, M., Gagkas, Z., Vinten, A., Lilly, A., and Glendell, M. (2021).
Probabilistic modelling of inherent field-level pesticide pollution risk in A small
drinking water catchment using spatial bayesian belief networks.Hydrol. Earth Syst.
Sci. Discuss. 2021, 1–44.

Venables, W. N., and Ripley, B. D. (2002). Modern applied statistics with S. New
York: Springer.

Verdonck, F. A. M. (2003). Geo-referenced probabilistic ecological risk assessment.
PhD thesis. New York: Ghent University.

Wang, F., Shao, W., Yu, H., Kan, G., He, X., Zhang, D., et al. (2020). Re-evaluation
of the power of the mann-kendall test for detecting monotonic trends in
hydrometeorological time series. Front. Earth Sci. (Lausanne). 8, 1–12. doi:10.
3389/feart.2020.00014

Weisner, O., Frische, T., Liebmann, L., Reemtsma, T., Roß-Nickoll, M., Schäfer, R.
B., et al. (2021). Risk from pesticide mixtures – the gap between risk assessment and
reality. Sci. Of Total Environ. 796, 149017.

Wickham, H., Averick, M., Bryan, J., Chang, W., Mcgowan, L. D. A., François, R.,
et al. (2019). Welcome to the tidyverse. J. Open Source Softw. 4, 1686. doi:10.21105/
joss.01686

Williams, W. M. (2010). User’s manual and program documentation. Inc:
Waterborne Environmental. Version 1.12.Adam: Aquifer dilution/advection model

Wolf, R., and Tollefsen, K. E. (2021). A bayesian approach to incorporating
spatiotemporal variation and uncertainty limits into modeling of predicted
environmental concentrations from chemical monitoring campaigns.
Environ. Sci. Technol. 55, 1699–1709. doi:10.1021/acs.est.0c06268

Frontiers in Environmental Science frontiersin.org17

Mentzel et al. 10.3389/fenvs.2022.957926

https://doi.org/10.1016/s0261-2194(00)00086-7
https://doi.org/10.1016/s0261-2194(00)00086-7
https://doi.org/10.1016/j.jenvman.2017.07.044
https://doi.org/10.1016/j.jenvman.2017.07.044
https://doi.org/10.1021/acs.est.8b00077
https://doi.org/10.1021/acs.est.8b00077
https://doi.org/10.1007/s11356-016-7087-1
https://doi.org/10.1080/09064710.2014.977339
https://doi.org/10.1016/j.coldregions.2007.06.007
https://doi.org/10.1002/wcc.102
https://www.r-project.org/
https://doi.org/10.1126/science.aay1144
https://doi.org/10.3389/feart.2020.00014
https://doi.org/10.3389/feart.2020.00014
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
https://doi.org/10.1021/acs.est.0c06268
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.957926

	Probabilistic risk assessment of pesticides under future agricultural and climate scenarios using a bayesian network
	1 Introduction
	2 Materials and methods
	2.1 Approach
	2.1.1 Bayesian network model, structure and implementation
	2.1.2 Exposure sampling and modelling

	2.2 Bayesian network modules
	2.2.1 Future scenarios
	2.2.1.1 Climate scenarios
	2.2.1.2 Pesticide application scenarios
	2.2.2.1 WISPE platform settings
	2.2.2.2 Exposure prediction platform implementation
	2.2.3 Pesticide effects
	2.2.4 Risk characterization


	3 Results
	3.1 Predicted pesticide exposure
	3.2 Predicted risk quotient distribution for various scenarios
	3.2.1 Risk quotient distribution across the time since application
	3.2.2 Plausible scenarios: Combination of climate change and pesticide application


	4 Discussion
	5 Conclusion and future outlook
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Supplementary material
	References


