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Abstract 1 

The aim of this study was to analyze the accuracy of predictions of dominant height, mean 2 

height, basal area, and volume from the nationwide forest attribute map (SR16). The 3 

analysis took advantage of field observations from 33 different forest inventory projects 4 

across Norway used for validation. Forest attributes for more than 5000 plots were 5 

predicted using non-stratified and stratified models of SR16 and the predictions were 6 

compared against corresponding ground reference values. Finally, the effect of different 7 

factors that might have influenced the prediction errors were analyzed using partial least 8 

squared regression (PLSR) to determine under which conditions the SR16 is less apt. The 9 

overall results across all plots were adequate (RMSE of 10%, MD of 2% for dominant and 10 

mean height; RMSE of 28%, MD of 4% for basal area; RMSE of 31%, MD of 5% for volume). 11 

However, when the accuracy was assessed locally for each inventory project, large 12 

differences in accuracy were observed. The MD% values for some inventory projects 13 

were substantial (>30% for basal area and volume). The results showed that 14 

stratification did not necessarily improve the results and that factors related to the forest 15 

structure had the greatest impact on the PLSR analysis. 16 

Keywords: Forest resource map, Forestry, Lidar, NFI, remote sensing   17 
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1. Introduction 18 

Forest inventory information is collected at different geographical scales for different 19 

purposes. A broad range of applications such as international reporting, biodiversity and 20 

restoration programs, or disturbance assessments, require national and international 21 

statistics collected by national forest inventories (NFIs). Although there are differences, 22 

NFI sampling designs are often based on a network of permanent plots that are 23 

systematically distributed over the entire county and revisited periodically (Tomppo et 24 

al., 2010). The purpose of an NFI is to provide nationwide and regional statistics about 25 

forest resources, their changes, and monitoring of forest conditions (e.g., standing 26 

volume, increment, and carbon storage) (Tomppo et al., 2010, McRoberts et al., 2010).  27 

Forest management decisions related to harvesting or other silvicultural activities are 28 

often made at stand level. For this purpose, forest information is typically acquired by 29 

means of forest management inventories (FMIs). The methods used in FMIs have changed 30 

with time and technological development (Maltamo et al., 2021). Nowadays, in the Nordic 31 

countries, stand-wise forest management plans usually originate from area-based 32 

inventories employing wall-to-wall data from airborne laser scanning (ALS) and a sample 33 

of field reference plots (Nilsson et al., 2017, Waser et al., 2017). The ALS data acquired 34 

for the entire area of interest (AOI) are tessellated into grid cells that serve as the primary 35 

prediction units. The field reference plots are distributed over the AOI, in some countries 36 

typically according to a stratified sampling design (Næsset, 2014). The plots are 37 

georeferenced, field measurements of diameter at breast height and tree heights are 38 

carried out to enable calculations of forest attributes, and metrics representing the 39 

properties of the ALS point cloud are calculated for each plot. ALS metrics are also 40 

extracted for each grid cell whose size is equal to the sample plot size. Then, prediction 41 

models of the relationships between the ALS metrics and the forest attributes are 42 

constructed. Finally, the models are used to predict the forest attributes for every grid 43 

cell, and the individual cell predictions are aggregated to stand level estimates (Næsset, 44 

2002, White et al., 2013). 45 

NFIs and FMIs are carried out independently, following separate methodologies. While 46 

most NFIs are designed to produce estimates of forest attributes from field data only, a 47 

modern FMI project often covers the forest area in a municipality or a single or a few 48 

larger forest properties and requires wall-to-wall remotely sensed data. However, if NFI 49 
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plots are georeferenced, they can be an excellent source of reference data for model 50 

construction to create wall-to-wall predictions and produce the same type of stand-wise 51 

information as a traditional FMI (Chirici et al., 2020, Vega et al., 2021, Guerra-Hernández 52 

et al., 2022). Models could be constructed for an AOI using the local NFI plots as reference 53 

data. However, for smaller AOIs, the size of the NFI plot sample might in many cases be 54 

too small. Alternatively, now that nationwide ALS data have been collected for 55 

topographic mapping and other purposes in several countries, NFI field plots can be used 56 

as reference data to construct regional or nationwide models and produce forest 57 

resources maps (Nord-Larsen and Schumacher, 2012, Monnet et al., 2016, Nilsson et al., 58 

2017, Hauglin et al., 2021) 59 

Compared to traditional FMIs, the main advantage of an inventory system where NFI 60 

plots are used as field reference is that the costs of the NFI plots are already covered by 61 

other budgets. Additionally, NFI data are in many countries collected continuously 62 

(Gschwantner et al., 2022). For example, the Norwegian NFI has a five-year rotation 63 

period, so that one-fifth of the plots are measured every year, permitting annual updates 64 

of forest statistics for the entire country (Breidenbach et al., 2020).  While the intervals 65 

between FMIs have traditionally been 10-20 years, an advantage of using NFI data for 66 

model calibration is that wall-to-wall prediction maps of forest attributes can be updated 67 

as frequently as the appearance of new ALS data permit. However, local map predictions 68 

based on NFI plots as field reference data are often considered to be less accurate than 69 

those of a local FMI (Kangas et al., 2018). 70 

The use of NFI plots as calibration data for prediction and subsequent stand-level 71 

estimation has some challenges. The sampling intensity of an NFI is small, with the 72 

consequence that prediction models will have to be calibrated with field plots collected 73 

over a large spatial domain, typically tens of thousands of square kilometers 74 

(Gschwantner et al., 2022). The stand structure, for example, as expressed by the three-75 

dimensional distribution of biological material in the crowns and captured in the ALS 76 

data, varies relative to stem properties and thus attributes such as tree height, stem 77 

diameter, and volume, according to factors such as latitude, elevation, soil properties, and 78 

other factors with a distinct geographical pattern (Næsset, 2014). Therefore, the field 79 

reference plots from larger geographical regions will likely represent relationships 80 

between field reference data and the ALS metrics that are not necessarily representative 81 
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for smaller geographical domains (Nilsson et al., 2017). A model calibrated on data for a 82 

larger region (e.g. using NFI plots) may not be correctly specified for a small AOI with its 83 

peculiarities, potentially leading to systematic errors in the model predictions (Guerra-84 

Hernández et al., 2022). Also, the systematic sample typically acquired in NFIs is unlikely 85 

to capture the entire range of variability of the forests and "extreme" cases of particular 86 

AOIs (Kangas et al., 2018). Therefore, it is important to evaluate the predictions across 87 

different AOIs whose forest conditions and corresponding variability do not necessarily 88 

match those of the model construction region. 89 

Another challenge with model calibration and prediction based on NFI data is the 90 

temporal differences that might occur between different ALS acquisitions and between 91 

different parts of the NFI plot dataset within a region. For a larger region, field data will 92 

be acquired over many years, and they will have to be projected to a common date, which 93 

may introduce errors. A larger region will typically be covered by different 94 

non-overlapping ALS acquisitions from different points in time using different 95 

acquisitions parameters and instruments that may affect the point clouds and the derived 96 

metrics (Næsset, 2005, Goodwin et al., 2006, Næsset, 2009). As opposed to the field data, 97 

ALS data cannot be prorated or back-casted, so the field and ALS data will simply reflect 98 

different forest conditions, which will affect the models (Hill et al., 2018). Also, the 99 

temporal gap between ALS and field data acquisitions might not be constant but could be 100 

accounted for in the model along with e.g., sensor effects by using, for example, mixed-101 

effect models (Hauglin et al., 2021). 102 

Beyond temporal inconsistencies among data collected on field plots and among ALS 103 

acquisitions, there may also be temporal inconsistencies between field data and ALS data 104 

for the same geographical area, resulting in different states of the forest when the two 105 

types of data are collected. Causes of state differences could be tree growth, tree 106 

recruitment, harvests, and natural disturbances. For example, the ALS data might be 107 

collected over plots that have been thinned while the field data were collected before 108 

thinning, and vice versa. Failure to detect even a small number of plots with disturbances 109 

has the potential to dramatically inflate the model uncertainty (Massey and Mandallaz, 110 

2015). Thus, detection of, for example, disturbances using procedures based on e.g., 111 

satellite data (Huang et al., 2010, Verbesselt et al., 2012, Hansen et al., 2013, Jutras-112 

Perreault et al., 2021) might be necessary to discard such observations from the model 113 
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calibration data. However, plots subject to thinning operations are not easily recognized 114 

and may introduce errors in models and, therefore, also in the final predictions.  115 

Given the obvious potential for cost-savings but also the risk of less accurate predictions 116 

when adopting regional or nationwide prediction maps of forest attributes based on NFI 117 

data and large-area ALS campaigns, it remains an open question if such large-scale 118 

prediction maps can be useful for operational forest management planning, and thus 119 

substitute local FMIs. In Norway, such nationwide prediction maps were constructed and 120 

made publicly available some years ago, known as the Norwegian SR16 forest resource 121 

map. “16” refers to the size of the map pixels (16 m × 16 m) (Astrup et al., 2019).  Such 122 

map products have the potential to bridge the gap between NFI statistics and the need 123 

for local forest information (Astrup et al., 2019). However, more empirical research is 124 

needed to evaluate the prediction maps locally across a broad range of differences in local 125 

forest conditions. 126 

The main objective of the study was to calculate, identify and assess any potential 127 

systematic errors of the Norwegian SR16 forest resource map (Hauglin et al., 2021), 128 

which is available on the web (http://kilden.nibio.no, Skog, SR16). The analysis included 129 

calculations of the root mean squared error of the differences between SR16 predictions 130 

and ground reference plot values. The study was based on observations of more than 131 

5000 field plots distributed over 33 different local FMI projects across the country. This 132 

study addressed the four important attributes dominant height, mean height, basal area, 133 

and volume. A secondary objective was to identify forest properties that might influence 134 

the differences between the SR16 predictions, and the field reference values. Such insight 135 

could provide guidance on when SR16 can be expected to perform well and when the 136 

prediction maps are less apt to inform forest management decisions, as well as to improve 137 

the SR16 maps in the future. 138 

2. Materials and methods 139 

2.1. Study area 140 

The study region comprises most of southern Norway, for which the forest resource map 141 

SR16 was available (Figure 1). The area represents 2/3 of the productive forest area in 142 

Norway and covers different vegetation zones (nemoral, boreonemoral, and boreal) 143 

(Moen, 1999), for which forest and growing conditions vary considerably with latitude, 144 



 

6 
 

altitude, and climatic conditions. The dominant tree species in the study region are 145 

Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and deciduous 146 

species, mainly birch (Betula pubescens Ehrh.). 147 

 148 
Figure 1. Map of the study region showing the location of the FMI projects (circles) used for validation and SR16 149 
regions displayed in different colors, for which unique prediction models were constructed and applied. 150 

2.2. Field data. 151 

We used sample plot data from 33 FMI projects across Norway provided by four private 152 

forest inventory companies (Figure 1). Across all FMIs, 5167 sample plots were available 153 

for the current study. The field plot data were collected as parts of ALS-based FMIs during 154 

the years 2012 - 2019. For each FMI, forest stands were delineated based on age, site 155 

index, and development class obtained by photointerpretation. Development class was 156 

defined according to a national system of maturity classification described in Anon. 157 

(1987). Classes 1 to 5 represent development stages from clear-felled stands to mature 158 

stands ready for harvest. We excluded plots where dominant heights were <8 m, so only 159 

classes 3 to 5 were included in this study. These classes are potentially subject to 160 

treatments such as thinning and various forms of final felling and therefore require 161 

information on mean height, basal area, and volume.  162 
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The field measurement protocols were slightly different among the projects because of 163 

the different companies involved. Thus, there were some differences in plot sizes (232 164 

m2 or 250 m2 circular plots), sampling designs (systematic cluster sampling or stratified 165 

systematic sampling), and different lower caliper limits (4, 6, or 10 cm). Planimetric 166 

coordinates of plot centers were recorded using observations of global navigation 167 

satellite systems (GNSS) which were post-processed and corrected against observations 168 

from official base stations of the Norwegian Mapping Authority.  169 

On each plot, all trees above the lower caliper limit were registered; diameter at breast 170 

height (dbh) was measured, and tree species were recorded. The procedures for height 171 

measurements varied among the measurement protocols of the projects. While heights 172 

of all trees were measured for one of the projects, only heights of sample trees were 173 

measured for all the other projects. The sample trees were selected with a probability 174 

proportional to stem basal area using a relascope aiming for 10 sample trees per plot.  175 

Based on the field plot registrations, we calculated ground reference values for dominant 176 

height (Hd, m), mean height (Hm, m), basal area (G, m2 ha-1), and volume (V, m3 ha-1). To 177 

obtain data consistent with those of SR16, trees with dbh < 5 cm were discarded from the 178 

analysis. Since heights were only measured for sample trees, we applied the following 179 

procedure to obtain values for our selected forest attributes. First, single tree volumes (v̂) 180 

were obtained by calculating a reference-level volume (rlv) for all trees, multiplied with 181 

a correction factor (cf). 182 

v̂ = rlv × cf  (1) 

rlv was obtained by first applying the diameter-heigh model of (Fitje and Vestjordet, 183 

1977) to predict a reference-level height which was used as input to the national 184 

single-tree volume models (Braastad, 1966, Brantseg, 1967, Vestjordet, 1967) together 185 

with dbh. Plot-wise values of cf were obtained as the ratio between the volumes (v) 186 

obtained by using the measured height and dbh, and the corresponding values of rlv for 187 

the sample trees: 188 

cf =
∑ vi

st
i=1 × wi

∑ rlvi
st
i=1 × wi

   (2) 

where st is the number of sample trees on a given plot. A weight (w) was given to each 189 

tree to adjust for unequal inclusion probability of the sample trees. 190 
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 191 

Single-tree heights were then predicted by using v̂ and dbh as fixed values in the single-192 

tree volume model and solving the equation (model) for height. Hd was then calculated 193 

as the mean height of the two or three trees with the largest dbh for the 232 and 250 m2 194 

plots, respectively. Hm was computed as the mean height weighted by basal area. In this 195 

estimation, a model-assisted estimator was adopted by which the heights were adjusted 196 

for prediction bias observed on the height sample trees. G for each plot was calculated as 197 

the sum of individual tree basal areas and scaled to m2 per ha. Similarly, plot values of V 198 

were estimated as the sum of individual tree volumes and scaled to m3 per ha. The means 199 

and standard deviations of these plot-level attributes for all the FMIs are presented in 200 

Table 1. 201 

Table 1. Summary of the field plot attributes by forest management inventory project (FMI, official name of the 202 
municipality), corresponding field plot numbers (n), dominant height (Hd), mean height (Hm), basal area (G), 203 
and volume (V). Code is an abbreviation for each inventory project where the letters represent the SR16 regions 204 
shown in Figure 1 and the numbers are running numbers of FMIs within each SR16 region. 205 

    Hd (m) Hm (m) G (m2 ∙ ha-1) V (m3 ∙ ha-1) 

Code FMI year n mean sd mean sd mean sd mean sd 

A1 Leksvik 2016 152 16.86 4.75 14.01 4.39 22.76 12.18 159.31 128.82 

A2 Meldal 2018 127 18.85 4.11 15.62 3.55 30.43 13.71 242.55 147.33 

A3 Melhus 2013 85 17.17 3.85 14.86 3.40 25.29 10.15 188.11 99.97 

A4 Meråker 2019 95 17.05 3.14 13.17 3.05 27.45 10.31 182.87 95.80 

A5 Orkdal 2018 60 18.62 3.85 15.23 3.78 31.85 11.17 237.91 116.07 

A6 Overhalla 2019 79 18.72 5.10 15.24 4.65 29.10 13.78 234.02 157.73 

A7 Skaun 2015 107 18.27 4.08 14.83 3.85 34.52 14.57 250.74 146.89 

A8 Stjørdal 2019 296 19.37 4.43 15.70 3.92 33.56 17.65 271.73 189.83 

B1 Alvdal 2017 130 15.98 3.45 13.48 3.19 19.79 9.92 138.97 86.43 

B2 Aremark, Idd 2018 306 18.62 4.74 15.51 4.36 24.78 11.21 204.41 136.62 

B3 Dovre, Lesja, Vågå 2014 112 15.89 2.89 13.37 2.98 27.76 13.44 188.05 110.27 

B4 Eidskog 2018 240 20.61 4.27 17.18 4.34 23.59 9.47 210.44 117.08 

B5 Eidsvoll 2018 291 20.24 5.02 16.78 4.72 28.54 13.13 252.38 174.78 

B6 Grue 2016 129 19.26 3.95 15.57 3.70 26.13 10.96 211.36 121.24 

B7 Hadeland 2016 295 19.68 4.64 16.16 4.41 28.63 12.39 242.19 153.14 

B8 Hamar, Løten 2019 99 21.05 5.19 17.61 4.88 32.47 14.67 300.65 188.44 

B9 Hobøl 2019 88 20.19 4.58 16.63 4.15 27.59 11.55 241.01 156.17 

B10 Hole 2017 81 19.62 4.09 16.50 3.69 30.84 11.63 245.78 121.42 

B11 Krødsherad 2016 103 19.68 4.06 16.85 3.85 29.91 12.67 253.07 150.49 

B12 Lillehammer 2015 127 18.77 4.19 15.40 4.06 29.56 12.24 229.44 136.79 

B13 
Modum, Lier, 
Røyken, Hurum 

2019 174 20.86 4.29 18.04 3.92 29.48 11.24 260.09 144.43 

B14 Moss 2019 82 19.87 5.08 16.47 4.57 29.00 12.96 250.48 169.66 

B15 Nord-Odal 2016 143 20.46 4.44 16.98 4.09 26.33 10.82 228.91 126.55 

B16 Nordre Land 2017 169 20.62 4.27 17.55 3.91 28.81 12.25 253.57 144.79 

B17 Rendalen 2019 228 16.86 4.21 13.94 3.76 19.45 10.89 143.89 106.78 

B18 Sigdal, Flesberg 2019 275 20.00 4.06 17.39 3.52 24.90 11.56 216.91 131.47 

B19 Stor-Elvdal 2017 223 16.88 4.09 14.05 3.51 18.79 10.39 137.97 97.47 
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    Hd (m) Hm (m) G (m2 ∙ ha-1) V (m3 ∙ ha-1) 

Code FMI year n mean sd mean sd mean sd mean sd 

B20 Tyristrand 2017 103 19.54 3.29 17.56 2.91 24.03 9.36 203.92 96.43 

C1 Fusa 2012 113 18.14 5.12 15.21 4.42 30.49 16.10 246.10 181.20 

D1 Arendal 2018 141 19.29 4.40 16.37 4.07 32.68 11.87 264.30 144.86 

D2 Bamle 2017 122 19.41 4.24 16.36 3.61 32.92 12.83 266.89 155.42 

D3 
Bø, Nome, 
Sauherad 

2019 266 18.72 4.01 15.84 3.61 27.44 10.61 216.76 114.58 

D4 Kristiansand 2017 126 17.28 3.98 14.60 3.59 30.55 11.29 220.34 113.56 

 206 

2.3. Norwegian forest resource map SR16. 207 

The forest resource map SR16 provides raster-based predictions of the forest attributes 208 

in 16 m x 16 m resolution that can be directly used to estimate means and totals of forest 209 

attributes within a defined area of interest, for example, individual forest stands. Due to 210 

the substantial amounts of data involved, the production of SR16 was carried out within 211 

several individual regions which were processed separately. Four primary SR16 regions 212 

were used in the present study, hereafter referred to as A, B, C, and D (see Figure 1). 213 

In the SR16, non-stratified models for the different forest attributes were constructed 214 

using linear mixed-effect regression, accounting for data from multiple ALS acquisitions 215 

carried out between 2009 and 2020. The models were based on the field observations 216 

from the Norwegian NFI forecasted to a common reference date as field reference data, 217 

and metrics derived from the ALS data were adopted as explanatory variables. Then, the 218 

models were used to predict the forest attributes for 16 m x 16 m cells tessellating all 219 

areas where ALS data were available. More specific models and predictions were also 220 

available for specific forest types defined according to a stratification of the NFI plots. For 221 

a detailed description of the SR16 models and products, see Astrup et al. (2019) and 222 

Hauglin et al. (2021). In the current study, 12 stratified SR16 models based in different 223 

development classes, site indices, and dominant tree species were available for each 224 

forest attribute within each region. 225 

For the current study, we have used both non-stratified and stratified SR16 predictions 226 

that were available for two different reference years: 2019 in regions A, B, and C, and 227 

2020 for region D. The only changes taken into consideration between the ALS acquisition 228 

and the reference year were harvested areas detected by the global forest watch (Hansen 229 

et al., 2013). The forest attributes Hd, Hm, G, and V were provided by both the non-230 

stratified and stratified SR16 models, except for Hd in region D, for which the stratified 231 

SR16 predictions were not available when the analyses were carried out.  232 
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The accuracy of the SR16 predictions was evaluated using the ground reference values of 233 

the FMI sample plots. SR16 predictions of the forest attributes were extracted for each 234 

circular FMI plot by weighting the individual cell predictions for cells intersecting the plot 235 

by the individual cell’s area included within the plot. The basis for choosing a particular 236 

stratified model used for predictions for a certain FMI plot was the stratification following 237 

the delineated stands in the FMI. 238 

Since ground reference values and predictions were related to different points in time, 239 

the SR16 predictions were back-casted to the date of the FMI field plot acquisition using 240 

growth models for Hd (Sharma et al., 2011) and V (Delbeck, 1965, Blingsmo, 1988). HL 241 

was corrected by keeping the relative difference between Hd and Hm fixed. G was 242 

corrected by the mean ratio between the back-casted and the initial volume prediction.  243 

Since the FMI projects used as field reference were carried out in the period between 244 

2012 and 2019, the maximum time difference accounted for by the correction outlined 245 

above was seven years. The largest differences between the corrected and the initial SR16 246 

predictions were 5 m for Hd and Hm, 18 m2 ha-1 for G, and 196 m3 ha-1 for V. The mean 247 

values of the corrections were 0.4 m, 0.3 m, 2 m2 ha-1, and 13 m3 ha-1 for Hd, Hm, G, and 248 

V, respectively. 249 

2.4. Accuracy assessment 250 

To assess the systematic differences, SR16 predictions of the forest attributes of interest 251 

were compared against the field plot ground reference values at plot level by computing 252 

the difference between ground reference and the predicted value (Di), mean difference 253 

(MD%), and relative root mean squared error (RMSE%), calculated as: 254 

𝐷𝑖 = 𝑦𝑖 − 𝑦�̂� 
(3) 

𝑀𝐷 (%) =

1
𝑛

∑ (𝐷𝑖)𝑛
𝑖=1

�̅�
∙ 100 

(4) 

RMSE% =
√1

n
∑ (Di)

2n
i=1

y̅
 ∙ 100 

(5) 

where n is the number of plots, yi is the ground reference value for the forest attribute in 255 

plot i, ŷi is the corresponding predicted forest attribute from SR16, y̅ is the mean ground 256 

reference value for the forest attribute. 257 
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For some plots, the state at the time of ALS acquisition and the time of FMI field inventory 258 

could be different as a result of, for example, undetected disturbances in SR16 or 259 

incorrectly classified harvests in SR16 for which the FMI field inventory acquired field 260 

plot data representing full stocking. Such discrepancies would result in large outliers in 261 

the analysis. However, it was not feasible to check every individual among the more than 262 

5000 plots. Instead, we applied Rosner’s test (Rosner, 1983) to each FMI separately to 263 

automatically detect outliers that differed significantly from the rest of the observations 264 

(plots) after calculating the difference between ground reference and SR16 predictions. 265 

In the test, the number of observations that are considered outliers in a distribution was 266 

limited to 10. Plots considered as outliers for any forest attribute were removed. The non-267 

stratified and stratified SR16 predictions were analyzed separately, potentially resulting 268 

in the identification of different outliers for the same attribute. The accuracy and outlier 269 

detection were assessed separately for each FMI project, and paired t-tests were carried 270 

out to estimate the statistical significance of the differences. 271 

2.5. Other auxiliary plot data 272 

Additional local back-ground factors that may capture differences between local FMI plot 273 

data and SR16 predictions were extracted to analyze if the SR16 predictions were equally 274 

accurate over a greater range of conditions. The local factors were divided into four 275 

categories: climate, topography, forest conditions, and other factors (Table 2). 276 

Mean monthly precipitation and temperature predictions (Tveito et al., 2005) from the 277 

Norwegian Meteorological Institute for the period between 1989 and 2018 were used as 278 

proxies to describe climate at each plot. The predictions were processed and adjusted 279 

according to local elevation (Skaugen et al., 2003). Means for the summer (June, July, 280 

August) and winter (December, January, February) months were calculated for each plot. 281 

The topographic factors were elevation, slope, and topographic heterogeneity calculated 282 

as the standard deviation of the elevation and designed to represent the topographic 283 

variation inside the plot. All were derived from the national detailed elevation model 284 

(10 m resolution) created by the Norwegian Mapping Authority. The forest condition 285 

category included stand age, height-diameter ratio (HDR), development class, tree 286 

species composition, and site index. HDR represents the allometric relationship between 287 

height and diameter and was calculated as the mean height-diameter ratio of all trees in 288 

the plot. The standard deviation of the height-diameter ratio (HDR.sd) was calculated to 289 
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represent the variation in tree allometry inside the plot. Tree species compositions were 290 

represented as the proportions of deciduous, pine, and spruce species in each plot 291 

according to stem basal area. 292 

The category denoted as “other factors” included factors related to the study design that 293 

might have affected the results. These factors were: SR16 region, if there were differences 294 

in lower caliper limits between the SR16 and the ground reference plots, the number of 295 

years between SR16 predictions (i.e., 2019 or 2020) and ground references, and the 296 

number of years between SR16 predictions and the ALS acquisition. The latter is of 297 

particular interest since, as mentioned above, the only change on the ground accounted 298 

for between acquisitions were harvest. A summary of the factors’ mean values by FMI 299 

project is shown in appendix A. 300 

Table 2. Factors that represent the differences between forest inventory projects. Group numbers denote the 301 
main categories: 1) climate, 2) topography, 3) forest conditions, 4) other factors. 302 

Group Factor Description 

1 P.s Mean of the monthly mean precipitation in the summer months 
1 P.w Mean of the monthly mean precipitation in the winter months 
1 T.s Mean of the monthly mean temperature in the summer months 
1 T.w Mean of the monthly mean temperature in the winter months 
2 elev Elevation from the sea level 
2 slope Mean slope 
2 T.H Topographic heterogeneity 
3 Age Stand age 
3 HDR Mean height-diameter ratio 
3 HDR.sd Standard deviation of the height diameter ratio 
3 HKL Development class (classes 3 - 5) 
3 p.D Proportion of deciduous trees according to stem basal area 
3 p.P Proportion of pine trees according to stem basal area 
3 p.S Proportion of spruce trees according to stem basal area 
3 SI Site index 
4 Area SR16 region (classes A – D) 
4 c.d Difference between the lower caliper limit of SR16 and the FMI project (Yes - 

No) 
4 Year.d Number of years between SR16 predictions and ground reference 
4 ALS.d Number of years between SR16 predictions and ALS acquisition 

 303 

2.6. Variable importance analysis. 304 

To estimate and evaluate how strongly the factors detailed in Table 2 influenced the 305 

differences (eq. 1) between the SR16 predictions and the ground reference values, a 306 

partial least square (PLS) analysis was carried out. We performed a PLS regression 307 

(PLSR) with the Kernel algorithm (Dayal and MacGregor, 1997). 308 

PLSR is a multivariate linear regression method widely used in chemometrics to analyze 309 

data with numerous predictor variables that might be strongly collinear and noisy (Wold 310 
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et al., 2001). The method has also been adopted in studies related to use of ALS data in 311 

forestry (Næsset et al., 2005). It finds independent latent variables that explain as much 312 

of the covariance as possible between the predictors and the response variables. Prior to 313 

the analysis, we standardized the predictor variables and made the distributions 314 

symmetrical to avoid a possible bias towards numerically larger values caused by 315 

different units in the factors. PLSR was computed with the pls package in R, and the 316 

optimal number of components was selected automatically with the randomization 317 

strategy (van der Voet, 1994). 318 

To summarize the global contribution of each predictor variable (the factors in Table 2) 319 

to the complete PLSR model, we calculated the variable importance on projection (VIP). 320 

As a rule-of-thumb, predictors with VIP values larger than 1 are considered important 321 

and highly influential predictors of the model (Eriksson et al., 2013). This threshold 322 

comes from the fact that the average of the squared values of the VIPs is equal to 1.  323 

 324 

3. Results  325 

3.1. Overall accuracy of the SR16  326 

We compared both the non-stratified and the stratified SR16 predictions against the 327 

ground reference values. Figure 2 shows 2d-histograms of both the non-stratified and 328 

stratified SR16 predictions versus the ground reference values for the different forest 329 

attributes. Values of MD% and RMSE% for the respective SR16 predictions and forest 330 

attributes are displayed for each plot. The total numbers of plots used to evaluate the 331 

non-stratified and stratified SR16 predictions were different because different numbers 332 

of plots were removed in the automatic outlier detection (see details above). MD% values 333 

ranged from -0.9% to 4.5%, whereas RMSE% values were 10%, 10%, 28%, and 31% for 334 

Hd, Hm, G, and V, respectively, for both the non-stratified and stratified predictions. The 335 

comparison of results between the non-stratified and stratified predictions revealed only 336 

minor differences, where the largest difference was found for Hm (MD% difference of 337 

0.66 and RMSE% difference of 0.37). 338 
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  339 

 340 

 341 

Figure 2. Ground reference data versus SR16 predictions (non-stratified and stratified) for the forest attributes 342 
dominant height (Hd), mean height (Hm), basal area (G), and Volume (V). The 1:1 line is presented in grey. 343 

 344 

3.2. Local accuracy of the SR16 by FMI project 345 

The MD% results by FMI for both the non-stratified and stratified SR16 predictions are 346 

shown in Figure 3. The results showed systematic differences that were not evident when 347 

the overall accuracy was analyzed across all plots and FMI projects. Locally, MD% results 348 

showed a wide range of values from -7 to 6% for Hd, -10 to 3% for Hm, -17 to 41% for G, 349 

and from - 15 to 39% for V. Differences in MD% between non-stratified and stratified 350 

SR16 predictions were particularly evident in some of the FMI projects (e.g., A1 for Hd, 351 

B3 for Hm, A4 for G and V and C1 for V) but were mostly small. However, when differences 352 

in MD% between non-stratified and stratified predictions occurred, MD% was sometimes 353 

smallest for the non-stratified predictions (e.g., for A4) and sometimes smallest for the 354 

stratified predictions (e.g., for C1). The results showed that the MD% for regions C and D 355 

tended to be positive for all forest attributes, whereas in regions A and B the values were 356 

more evenly distributed, especially for the Hd and Hm predictions.  357 
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 358 

Figure 3. Relative mean differences (MD%) between non-stratified (left) and stratified (right) SR16 predictions 359 
and ground references by FMI project for the forest attributes dominant height (Hd), mean height (Hm), basal 360 
area (G), and Volume (V). The different colors represent the SR16 regions (A = purple, B = blue, C = orange, and 361 
D = green). * Represents the differences that are statistically significantly different from zero (p-value < 0.05). 362 

  363 

The non-stratified RMSE% results are shown in Figure 4. As with the MD%, Hd and Hm 364 

were the attributes with the smallest RMSE% values, ranging from 6 to 17%. The results 365 

for G ranged from 22 to 46%, and V was the forest attribute with the largest values, 366 

ranging from 24 to 51%. 367 
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 368 

Figure 4. Geographic distribution of the relative root mean squared error (RMSE%) for the non-stratified SR16 369 
predictions over the 33 FMI projects. The forest attributes are dominant height (Hd), mean height (Hm), basal 370 
area (G), and volume (V). The different colors represent the SR16 regions (A = purple, B = blue, C = orange, and 371 
D = green). 372 

3.3.  VIP analysis and factor importance  373 

The VIP results for the different forest attributes are shown in Figure 5. The result 374 

showed that there were only slight differences in the VIP scores of the factors that were 375 

tested for correlation to the prediction errors, depending on if non-stratified or stratified 376 

SR16 prediction models were used. For the two height attributes (Hd and Hm), the factors 377 

with the largest VIP scores were in the forest conditions category, specifically height-378 

diameter ratio (HDR), site index (SI), and the standard deviation of the HDR (HDR.sd). 379 

For HL, also the proportion of deciduous trees (p.D) was one of the most important 380 

factors.  381 

Among the most important factors explaining the prediction errors of G and V, p.D was 382 

the only one considered important for both forest attributes and for both sets of 383 

predictions (non-stratified and stratified). Other important factors in common for G and 384 

V were the years of difference between the SR16 predictions and field reference value 385 

(Yeard.d), and the mean monthly temperature of the summer months (T.s). 386 
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  387 

 388 
Figure 5. VIP values summarizing the global contribution for each factor to the PLS regression for the 389 
non-stratified (blue) and stratified (green) SR16 predictions. Vertical lines separate the different categories of 390 
factors analyzed in the PLS regression, see Table 2. The horizontal line indicates the threshold to consider a 391 
factor influential. 392 
 393 

4. Discussion  394 

This study assessed the accuracy at the level of prediction units (16 m × 16 m cells) of the 395 

SR16 forest resource map by comparison with ground reference values of more than 396 

5000 field plots from 33 FMI projects distributed across southern Norway. The results 397 

showed the importance of assessing the accuracy at FMI project level because for some 398 

FMI projects, the MD% values of the SR16 predictions were substantial (>30% for G and 399 

V), which was not evident when the values were calculated across all plots and FMIs in a 400 

single calculation. 401 

It was expected that the SR16 predictions were not equally accurate for all FMIs since 402 

they were distributed over a large spatial domain, and hence covering substantial ranges 403 

of the growth factors that determine stand structure. Regional models such as those used 404 

in SR16, calibrated on data from a larger region, will not be equally suitable for each 405 

individual and small AOI with its peculiarities, leading to the FMI-specific differences 406 

observed in the current study. In general, the challenge is that models developed from 407 

empirical data by means of regression, represent average forest conditions for the area 408 

from which the data are collected. Thus, a single FMI can comprise forest conditions that 409 

on average are different from the average conditions represented by the field plots used 410 

to calibrate the models, and systematic prediction errors might therefore occur locally 411 

for smaller spatial domains. On the level of a single forest property, this effect of 412 
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dissimilarity in forest conditions might be even more pronounced, although we did not 413 

have property-specific data at hand in this study to illustrate empirically the potential 414 

consequences for individual properties. It is also a challenge that the magnitude of the 415 

systematic errors is unknown when external models are being applied unless actual field 416 

observations from the AOI are available from which the average prediction error could 417 

be observed by subtracting the observed plot values from the corresponding predicted 418 

values. In cases where such an estimate of the average systematic error is known, local 419 

predictions may be corrected. To use such plot observations for calibration of local effects 420 

together with predictions from a regional model such as the SR16, may be a cost-effective 421 

way of supporting local forest management planning since the number of local field 422 

observations could be substantially smaller than what is common practice in operational 423 

FMIs.   424 

Among all factors studied in the PLSR analysis, the highest VIP scores were associated 425 

with p.D, HDR, HDR.sd, and SI from the category "forest condition”. p.D represents the 426 

proportion of deciduous trees in a plot, which has been well documented to affect the 427 

derived ALS metrics when keeping all other factors equal (Næsset, 2005, Liang et al., 428 

2007, Villikka et al., 2012). HDR represents tree allometry where low HDR indicates large 429 

diameter relative to height, and conversely, high HDR indicates slim trees, typically found 430 

in dense stands where the trees compete for light (Hess et al., 2021). The standard 431 

deviation of HDR (HDR.sd) represents plot homogeneity. Forest attributes for 432 

uneven-aged forests with complex structures and different allometries are challenging to 433 

model, and consequently predictions for such forest types also tend to be associated with 434 

greater uncertainty compared to those of homogenous forest. SI represents the forest 435 

productivity, which is associated to different shapes of crowns and stems. Normally, 436 

poorer sites have shorter trees with more rounded crowns and open forest structures 437 

with scattered trees. It is not surprising that all these factors related with tree crowns and 438 

the structure of the forest are important since they will determine the properties of a 439 

prediction model, and thus the appropriateness of the application of a model across study 440 

areas (Yates et al., 2018, Tompalski et al., 2019). 441 

Year.d from the category “other factors” was another factor with high VIP score, 442 

especially for G. The immediate interpretation is that our correction to adjust the SR16 443 

predictions to the date of the field acquisition was not optimal. We assumed that the 444 
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proportion of change for G was the same as for V, but a specific growth model for G could 445 

have been better because the tree’s lateral growth responsible for diameter and basal 446 

area increment is sensitive to changes in density. Therefore, the growth of G and V could 447 

be slightly different at different stand densities. Another possible reason is undetected 448 

thinnings in the period between the data acquisitions. Depending on the thinning strategy 449 

and intensity, the thinnings may not substantially influence the stand heights 450 

(Skovsgaard and Vanclay, 2008) but will reduce the basal area. Therefore, the fact that 451 

year.d was important in the VIP analysis, emphasizes the importance of using proper 452 

growth models and procedures to detect disturbances when acquisitions are from 453 

different points in time. 454 

From the VIP results, it is still challenging to provide general guidance on where SR16 455 

will perform well, especially because we don’t have access to the data used for modeling. 456 

However, we observed that the most important factors explaining the variability of the 457 

differences between predictions and ground reference values represented forest and 458 

canopy structure. This is illustrated by the prediction accuracies for the FMIs B1 and B19. 459 

Field data for both FMIs were acquired the same year, the FMIs were from the same 460 

region, and they had similar mean values of the forest attributes. The forest structures 461 

(represented by p.D, HDR, and SI) were nevertheless different (see Appendix A). 462 

Consequently, MD% values for Hd, Hm, G, and V differed substantially between the two 463 

FMIs (respectively -4%, -10%, 37%, and 34% for B1 and 0%, -3%, -2%, and 0% for B19). 464 

To the extent of our knowledge, just studies from other ecoregions have examined factors 465 

influencing the results of regional models constructed with NFI data (Guerra-Hernández 466 

et al., 2022). However, we can compare our result against other Nordic nationwide forest 467 

attribute maps constructed with ALS and NFI plots (Nilsson et al., 2017), and other 468 

studies using SR16 predictions (Hauglin et al., 2021, Rahlf et al., 2021). Our main objective 469 

focused on the systematic differences, but there are not that many studies with results 470 

for MD%, and therefore,  we will also discuss the RMSE, which is a commonly reported 471 

uncertainty statistic in forest inventory (Persson and Ståhl, 2020). 472 

Nilsson et al. (2017) report plot-level results for three independent areas in northern, 473 

mid, and southern Sweden using leave-one-out cross-validation. The absolute MD ranged 474 

from 8 to 9% for HL, 16 to 22% for G, and 15 to 20% for V, i.e., larger than in the current 475 

study. However, the RMSE values from the Swedish study were similar in magnitude to 476 
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ours, and even smaller for V, ranging from 10% to 11% for HL, 20% to 27% for G, and 477 

19% to 25% for V.  478 

Using non-stratified and species-specific SR16 models, Hauglin et al. (2021) reported 479 

overall plot level RMSE values ranging from 12 to 15% for HL,  31 to 33% for G, and 35 to 480 

42% for V,. They concluded that the use of separate models for each main tree species 481 

improved the prediction accuracy. In the present study, the overall plot level RMSE% 482 

values were for all forest attributes smaller than the ones reported by Hauglin et al. 483 

(2021), but the stratified models did not always improve the results. In fact, in the current 484 

study, more predictions were considered outliers after using the stratified SR16 models 485 

compared to those made by the non-stratified models, meaning that the stratified 486 

predictions were further away from the true value in those plots. However, it should be 487 

mentioned that the stratified SR16 models were different between the two studies. 488 

Hauglin et al. (2021) only used three models based on dominant tree species, instead of 489 

our 12. A more detailed stratification has the advantage that the models potentially could 490 

be more accurate and precise if the stratification criteria are relevant. However, the 491 

downsides of constructing more detailed models over more general ones are that each 492 

stratum-wise model would have fewer ground reference plots available for model 493 

construction and that there would be a greater risk of applying a stratified model to a 494 

different stratum due to errors in the forest classification. In the studies compared here, 495 

stratum information was obtained from different sources that might be associated with 496 

different levels of uncertainty. Hauglin predicted the dominant tree species using a model 497 

dependent on metrics derived from Sentinel-2 images (Breidenbach et al., 2021), while 498 

we based the stratification entirely on manual stand-wise photointerpretation. 499 

Rahlf et al. (2021) estimated the volume of mature spruce forest with the SR16 and an 500 

“adjusted” SR16 that added local sample plots in the modeling phase. The results for 501 

validation on independent FMI plots were ‑2% and 18% for MD and RMSE, respectively 502 

using the SR16, and ‑11% MD and 21% RMSE using the adjusted SR16, so no 503 

improvement was observed. The results from Rahlf et al. (2021) are within the ranges 504 

reported at the FMI project level in the present study. However, their validation data were 505 

limited to 60 plots distributed across six forest stands. The limited data material might 506 

have been a reason for the small effect of using local sample plot information. 507 
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Our results might also be compared (both RMSE and MD) to previous Nordic studies to 508 

show the differences between predictions made by regional (SR16) and local prediction 509 

models (traditional FMI) at the spatial level of an FMI. Næsset (2007) reviewed the 510 

results of accuracy assessments of several Nordic local FMIs. The studies were from 511 

various geographical regions, comprised different area sizes and used diverse numbers 512 

of training plots. Næsset (2007) reported MD values between -5 and 3%, and RMSE 513 

values between 3 and 6% for Hd and Hm, respectively. For G and V, the MD values ranged 514 

from -3.6 to 8.4%, and the RMSE from 10 to 21%. Using the study of Næsset to portrait 515 

what is reported in the literature for locally calibrated predictions, we concluded that 516 

local FMIs provide MD and RMSE values of greater quality than the SR16 predictions, so 517 

in terms of accuracy, local FMIs seems to be a better option. However, decisions 518 

concerning which data to use for a particular purpose should be based not only on desired 519 

levels of accuracy but also on the data acquisition costs relative to the benefit in terms of 520 

the suitability of the data for decision making (Kangas, 2010). Further studies should 521 

focus on this topic and analyze the benefits and costs of local FMIs versus a regional 522 

product such as SR16 using, for example, cost-plus-loss analysis as an analytical method. 523 

In cost-plus-loss analysis the economic losses caused by decisions based on inaccurate 524 

data are added to the forest inventory's total costs (Burkhart et al., 1978, Ruotsalainen et 525 

al., 2019). The method with the lowest total cost is considered the best alternative. 526 

5. Conclusion 527 

We examined the potential systematic prediction errors of the Norwegian SR16 forest 528 

resource map on data from 33 different local FMI projects across Norway, which 529 

represent a great diversity of forest conditions. The results show large MD% and RMSE% 530 

values for certain individual FMIs, which were not evident when all plots across all the 531 

FMIs were analyzed together. The use of stratification did not improve the predictions, 532 

and differences between FMIs were found to be caused by factors representing forest 533 

structure, such as the proportion of deciduous trees, the height-diameter ratio and site 534 

index. Thus, the use of SR16 for particular AOIs where the forest conditions deviate from 535 

the average forest conditions of the region for which the models were constructed, are 536 

prone to systematic prediction errors. To assess the magnitude of systematic prediction 537 

errors and as a means of correcting systematic prediction errors, a sample of local field 538 
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plots is expedient. Expected losses due to suboptimal decisions caused by inaccurate data 539 

need to be considered before nationwide forest maps are used for forest management.    540 
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Appendix A. 

Table A1. Summary of the factors that represent the differences between forest inventory projects (FMI). The 
factors are defined in Table 2. 

 P.s P.w T.s T.w elev slope T.H 

FMI mean sd mean sd mean sd mean sd mean sd mean sd mean sd 

A1 98.28 11.49 193.57 26.39 12.71 0.59 -2.29 0.92 250 84 16.60 8.83 1.55 1.25 

A2 93.85 4.03 110.48 14.15 12.33 0.67 -3.02 0.64 310 87 12.99 7.08 1.17 0.89 

A3 90.12 8.13 99.17 17.87 12.38 0.66 -3.19 0.69 314 91 14.21 7.58 1.24 1.02 

A4 100.67 7.78 106.56 8.22 11.88 0.68 -4.37 0.69 412 92 9.29 4.10 0.84 0.65 

A5 83.76 9.35 122.96 23.57 12.64 0.59 -2.44 0.76 241 83 15.60 7.81 1.57 1.00 

A6 98.01 3.97 168.62 12.41 13.03 0.53 -2.85 0.85 100 70 12.67 8.04 1.17 1.08 

A7 80.07 4.22 96.54 7.18 12.63 0.65 -2.65 0.78 260 100 14.90 7.39 1.38 1.03 

A8 105.03 12.94 111.97 13.56 13.05 0.67 -2.35 0.80 208 84 14.39 7.56 1.26 1.01 

B1 75.45 3.05 36.42 3.56 11.31 0.68 -7.90 0.31 634 101 10.13 6.47 0.95 0.83 

B2 87.99 1.60 89.08 8.54 15.17 0.35 -1.71 0.54 154 37 6.93 5.21 0.65 0.59 

B3 50.84 10.27 59.28 18.68 11.13 1.39 -6.18 1.03 667 158 15.83 7.51 1.45 1.04 

B4 88.05 3.38 68.17 2.80 14.49 0.44 -4.44 0.37 223 58 7.94 5.31 0.72 0.63 

B5 93.52 3.52 72.96 7.24 14.04 0.73 -4.88 0.48 346 101 10.58 6.81 0.96 0.89 

B6 85.58 3.89 60.60 4.57 14.08 0.49 -5.34 0.28 340 84 9.25 6.25 0.79 0.67 

B7 88.22 7.66 64.24 12.18 13.52 0.94 -5.02 0.62 427 123 10.50 7.01 0.94 0.87 

B8 83.31 5.63 50.79 7.24 13.99 0.82 -5.95 0.48 331 113 4.67 3.67 0.41 0.45 

B9 86.75 2.54 83.02 1.79 15.47 0.44 -2.35 0.41 120 50 6.57 4.63 0.62 0.54 

B10 93.43 5.15 59.99 5.33 13.45 0.55 -4.00 0.30 432 65 8.41 4.64 0.82 0.61 

B11 109.06 2.41 62.83 3.36 13.78 1.20 -5.08 0.61 356 132 13.27 7.46 1.18 1.02 

B12 104.57 9.87 71.08 7.58 12.29 1.11 -6.77 0.49 583 163 9.62 6.00 0.88 0.75 

B13 92.39 5.33 77.96 13.18 14.83 0.98 -3.21 0.75 230 123 11.48 7.56 1.13 1.02 

B14 82.43 1.69 81.96 1.03 15.93 0.20 -1.69 0.31 57 23 6.22 4.57 0.64 0.54 

B15 93.10 2.77 65.51 5.95 14.24 0.54 -5.00 0.32 311 80 9.01 5.48 0.82 0.64 

B16 106.70 5.60 62.83 7.58 12.68 1.25 -6.47 0.65 534 169 10.37 7.34 0.92 0.84 

B17 87.30 9.60 47.35 8.74 11.92 0.91 -8.01 0.38 567 142 9.99 6.50 0.93 0.86 

B18 103.63 5.86 66.46 8.44 13.61 1.11 -4.76 0.67 372 146 9.36 5.64 0.87 0.68 

B19 92.51 12.13 49.08 12.14 11.59 1.14 -7.74 0.35 637 167 11.19 6.16 1.01 0.81 

B20 84.48 3.20 45.66 7.18 14.60 0.71 -4.27 0.32 267 84 9.60 5.64 0.81 0.64 

C1 178.09 25.01 321.91 76.68 13.67 1.02 1.11 1.50 129 118 17.51 8.59 1.58 1.25 

D1 101.00 4.72 134.85 9.15 15.67 0.29 -0.54 0.53 100 45 9.76 5.81 0.90 0.67 

D2 95.27 2.49 107.62 5.69 15.68 0.28 -1.20 0.47 112 44 12.93 7.94 1.10 0.96 

D3 104.97 7.88 86.79 13.77 14.24 1.25 -3.29 1.07 293 150 12.21 7.21 1.09 0.90 

D4 113.56 9.05 175.97 21.66 15.20 0.39 0.15 0.64 119 61 12.38 6.40 1.13 0.81 
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 Age HDR HDR.sd p.D p.P p.S SI 

FMI mean sd mean sd mean sd mean sd mean sd mean sd mean sd 

A1 115 46 68.59 13.78 9.23 5.33 0.79 0.26 0.79 0.26 0.06 0.20 11.85 3.03 

A2 84 32 79.88 14.83 12.57 5.21 0.60 0.33 0.60 0.33 0.27 0.33 13.79 3.75 

A3 106 43 77.61 14.58 17.16 4.16 0.59 0.36 0.59 0.36 0.32 0.37 11.44 3.58 

A4 78 43 82.12 10.85 10.12 3.68 0.73 0.23 0.73 0.23 0.09 0.19 11.98 2.00 

A5 86 38 79.38 14.45 13.54 5.99 0.74 0.26 0.74 0.26 0.13 0.22 12.85 2.93 

A6 85 48 84.97 16.89 13.74 7.24 0.80 0.27 0.80 0.27 0.10 0.26 12.54 2.99 

A7 91 39 75.44 12.90 11.18 4.09 0.79 0.25 0.79 0.25 0.14 0.25 12.62 3.49 

A8 86 39 85.06 14.77 13.34 4.97 0.73 0.29 0.73 0.29 0.17 0.29 12.83 3.20 

B1 93 36 75.84 13.90 9.04 3.20 0.11 0.24 0.11 0.24 0.81 0.30 9.44 2.26 

B2 66 33 85.01 15.45 10.85 4.92 0.45 0.35 0.45 0.35 0.46 0.37 14.93 4.36 

B3 106 44 69.95 13.80 10.47 4.93 0.07 0.21 0.07 0.21 0.80 0.28 9.57 1.91 

B4 64 29 96.83 14.89 13.30 6.07 0.55 0.37 0.55 0.37 0.37 0.38 15.53 3.28 

B5 65 30 87.57 12.68 11.83 5.78 0.77 0.29 0.77 0.29 0.16 0.28 15.91 3.41 

B6 71 32 89.30 14.82 10.89 4.42 0.59 0.35 0.59 0.35 0.33 0.35 14.22 3.36 

B7 70 35 89.34 14.81 12.52 5.99 0.70 0.32 0.70 0.32 0.20 0.31 14.69 3.63 

B8 57 26 94.88 17.14 13.30 6.54 0.72 0.32 0.72 0.32 0.18 0.33 17.54 2.78 

B9 74 45 90.47 17.73 13.36 5.22 0.54 0.34 0.54 0.34 0.34 0.36 16.07 5.33 

B10 90 53 76.41 10.80 9.96 3.73 0.88 0.18 0.88 0.18 0.04 0.13 14.08 3.24 

B11 78 34 81.46 16.81 10.67 4.18 0.41 0.37 0.41 0.37 0.43 0.42 14.35 4.28 

B12 77 41 79.05 12.74 9.89 4.16 0.89 0.20 0.89 0.20 0.05 0.16 13.58 4.35 

B13 86 39 78.19 15.24 11.89 4.26 0.53 0.35 0.53 0.35 0.35 0.39 14.79 4.83 

B14 76 36 87.96 17.95 13.92 6.20 0.37 0.31 0.37 0.31 0.49 0.38 14.60 3.84 

B15 71 32 89.30 14.63 12.03 4.80 0.52 0.35 0.52 0.35 0.41 0.37 14.78 3.85 

B16 92 28 80.94 14.46 9.93 3.86 0.77 0.32 0.77 0.32 0.18 0.32 12.76 2.97 

B17 81 33 78.97 14.50 9.15 4.35 0.41 0.39 0.41 0.39 0.46 0.42 11.60 3.21 

B18 90 46 80.72 15.07 11.27 4.23 0.39 0.34 0.39 0.34 0.50 0.39 13.82 4.47 

B19 83 39 78.58 14.79 10.56 4.31 0.53 0.39 0.53 0.39 0.35 0.40 11.63 3.85 

B20 90 55 77.28 12.90 9.08 3.34 0.15 0.24 0.15 0.24 0.81 0.27 12.53 2.56 

C1 87 41 77.77 18.03 13.45 6.50 0.33 0.41 0.33 0.41 0.52 0.40 15.03 6.68 

D1 82 34 77.56 14.67 13.33 5.14 0.37 0.35 0.37 0.35 0.49 0.34 14.35 3.46 

D2 88 34 80.18 17.86 14.60 5.57 0.38 0.32 0.38 0.32 0.47 0.35 13.29 3.17 

D3 91 40 78.77 16.96 12.59 5.30 0.30 0.33 0.30 0.33 0.61 0.38 12.60 3.59 

D4 91 40 72.78 16.52 12.22 5.12 0.24 0.33 0.24 0.33 0.53 0.33 13.54 3.74 
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ALS.d Year.d c.d* HKl3* Hkl4* Hkl5* 

FMI mean sd mean     

A1 4 2 3 0 % 19 % 14 % 67 % 

A2 3 0 1 0 % 22 % 32 % 46 % 

A3 4 0 6 0 % 22 % 14 % 64 % 

A4 1 0 0 0 % 59 % 17 % 24 % 

A5 3 0 1 0 % 28 % 27 % 45 % 

A6 2 0 0 0 % 46 % 3 % 51 % 

A7 5 0 4 0 % 28 % 19 % 53 % 

A8 4 1 0 0 % 35 % 27 % 38 % 

B1 3 0 2 0 % 34 % 23 % 43 % 

B2 4 0 1 100 % 44 % 29 % 27 % 

B3 6 1 5 100 % 29 % 17 % 54 % 

B4 3 0 1 100 % 45 % 31 % 24 % 

B5 2 0 1 100 % 43 % 30 % 27 % 

B6 5 0 3 100 % 41 % 35 % 24 % 

B7 4 0 3 100 % 43 % 32 % 25 % 

B8 3 0 0 100 % 39 % 51 % 10 % 

B9 4 0 0 100 % 41 % 20 % 40 % 

B10 3 0 2 14 % 14 % 47 % 38 % 

B11 3 0 3 25 % 25 % 34 % 42 % 

B12 5 0 4 100 % 38 % 31 % 31 % 

B13 2 0 0 12 % 12 % 38 % 51 % 

B14 4 0 0 100 % 41 % 23 % 36 % 

B15 4 1 3 100 % 28 % 49 % 23 % 

B16 3 0 2 14 % 14 % 37 % 49 % 

B17 2 1 0 100 % 34 % 37 % 29 % 

B18 2 0 0 16 % 16 % 39 % 45 % 

B19 3 0 2 100 % 41 % 25 % 34 % 

B20 3 0 2 6 % 6 % 45 % 48 % 

C1 3 1 7 0 % 17 % 33 % 50 % 

D1 3 0 2 0 % 23 % 26 % 51 % 

D2 4 2 3 0 % 26 % 16 % 58 % 

D3 4 1 1 0 % 28 % 21 % 50 % 

D4 0 0 3 0 % 32 % 18 % 50 % 

* Percentage of plots in the FMI 


