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ABSTRACT

Methane emissions in ruminant livestock has become 
a hot topic, given the pressure to reduce greenhouse 
gas emissions drastically in the European Union over 
the next 10 to 30 yr. During the 2021 United Nations 
Climate Change conference, countries also made col-
lective commitments to curb methane emissions by 
2050. Genetic selection for low-methane-emitting ani-
mals, particularly dairy cows, is one possible strategy 
for mitigation. However, it is essential to understand 
how methane emissions in lactating animals vary along 
lactation and across lactations. This understanding is 
useful when making decisions for future phenotyping 
strategies, such as the frequency and duration of phe-
notyping within and across lactations. Therefore, the 
objectives of this study were to estimate (1) genetic 
parameters for 2 methane traits: methane concentra-
tion (MeC) and methane production (MeP) at 2 parity 
levels in Danish Holstein cows across the entire lacta-
tion using random regression models; (2) genetic cor-
relations within and between methane traits across the 
entire lactation; and (3) genetic correlations between 
the methane traits and economically important traits 
throughout first lactation. Methane concentration (n 
= 19,639) records of 575 Danish Holstein cows from a 
research farm measured between 2013 and 2020 were 
available. Subsequently, CH4 production in grams/day 
(MeP; n = 13,866) was calculated; MeP and MeC for 
first and second lactation (L1 and L2) were analyzed 
as separate traits: MeC_L1, MeP_L1, MeC_L2, and 
MeP_L2. Heritabilities, variance components, and 
genetic correlations within and between the 4 CH4 
traits were estimated using random regression models 
with Legendre polynomials. The additive genetic and 
permanent environmental effects were modeled using 
second-order Legendre polynomial for lactation weeks. 

Estimated heritabilities for MeP_L1 ranged between 
0.11 and 0.49, for MeC_L1 between 0.10 and 0.28, for 
MeP_L2 between 0.14 and 0.36, and for MeC_L2 be-
tween 0.13 and 0.29. In general, heritability estimates 
of MeC traits were lower and more stable throughout 
lactation and were similar between lactations compared 
with MeP. Genetic correlations (within trait) at differ-
ent lactation weeks were generally highly positive (0.7) 
for most of the first lactation, except for the correlation 
of early lactation (<10 wk) with late lactation (>40 
wk) where the correlation was the lowest (<0.5). Ge-
netic correlations between methane traits were moder-
ate to highly correlated during early and mid lactation. 
Finally, MeP_L1 has stronger genetic correlations with 
energy-corrected milk and dry matter intake compared 
with MeC_L1. In conclusion, both traits are different 
along (and across) lactation(s) and they correlated 
differently with production, maintenance, and intake 
traits, which is important to consider when including 
one of them in a future breeding objective.
Key words: methane production, methane 
concentration, efficiency, genetic correlation, random 
regression

INTRODUCTION

Enteric fermentation by ruminants contributes to 
44.3% of global livestock emissions (FAO, 2018). Meth-
ane gas has been classified as a short-lived air pollutant 
(Tong et al., 2015), making its reduction a possible 
solution for global warming in the short term. Reduc-
ing enteric methane (CH4) emissions in ruminants is 
imperative, given the commitment by the European 
Commission (2019) to reduce greenhouse gas emissions 
by 55% in 2030 and become neutral by 2050. During 
the last decade, several approaches have been proposed 
to reduce methane in livestock (Knapp et al., 2014), 
including nutritional approaches such as feed additives 
(Roque et al., 2019), manure management (Hristov 
et al., 2013), genetic selection (Hegarty et al., 2007; 
González-Recio et al., 2020), reductions in the num-
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ber of animals, and reductions in meat consumption 
(Stoll-Kleemann and Schmidt, 2017). Genetic selection 
for low-CH4-emitting cows can be an effective and sus-
tainable approach to reduce greenhouse gas production 
from dairy cattle (Lassen and Difford, 2020), given that 
genetic progress is cumulative over generations. Thus, 
selecting low-CH4-emitting animals could yield signifi-
cant reductions in emissions within a few generations. 
However, this methane reduction should be achieved 
without affecting the health status of the cow or its 
production. For that reason, it is important to under-
stand the genetic architecture behind methane traits 
and their relationship with other traits (i.e., health and 
production traits).

Despite the above-mentioned extensive research over 
the last decade, little is known about the variation of 
CH4 emissions during lactation and across lactations. 
This can be partly attributed to the difficulty in re-
cording CH4 emissions and to the fact that consider-
able time and resources are needed to longitudinally 
record CH4 emission over the typical 305-d lactation 
and over multiple lactations in cohorts of animals large 
enough to estimate genetic parameters. Thus, given the 
scarcity of longitudinal CH4 data in adequately large 
populations, studies that have explored genetic varia-
tion along lactation and across lactations are limited 
to predicted CH4 emissions from milk infrared spectra 
(Kandel et al., 2017) or short spot measurements of 
CH4 emissions in a few herds (Pszczola et al., 2017; 
Sypniewski et al., 2021). From these studies (Breider 
et al., 2019; Sypniewski et al., 2021), it is clear that 
additive genetic variation changes within and across 
lactations for CH4 production and CH4 breath concen-
tration in dairy cows.

The use of sniffers, which only measure the meth-
ane concentration in cow’s breath (Garnsworthy et al., 
2019), require more validation as a methane emission 
trait. This is a simpler alternative to calculation of pro-
duction of CH4 in grams per day, using the ratio CH4: 
CO2 of gas concentrations and ECM together with BW 
(Madsen et al., 2010). Evidence suggests that estima-
tion of CH4 production leads to an artificially induced 
covariance structure between CH4 with ECM and BW, 
with high genetic correlations (Manzanilla-Pech et al., 
2020, 2021). Previous studies have presented methane 
concentration as a trait that could be of use as proxy 
for methane emissions (Difford et al., 2020; González-
Recio et al., 2020; Manzanilla-Pech et al., 2021).

Knowledge about the genetic variation in measured 
CH4 emission traits during and across lactations from 
long-term experiments would be useful to better eluci-
date temporal genetic variation in CH4 emission and 
its possible interaction with other traits. Additionally, 
this knowledge would help to form the basis for design-

ing efficient testing and selection schemes. Currently, 
in this study, we have gathered the largest amount of 
longitudinal data for CH4 emission in Holstein cows, 
based on continuously recording over a period of 7 yr 
in a research farm with around 600 cows over first and 
second lactations.

Therefore, the objectives of this study were to es-
timate (1) genetic parameters for 2 methane traits 
(methane concentration, MeC; and methane produc-
tion, MeP) at 2 parity levels in Danish Holstein dairy 
cows across the entire lactation using random regression 
models; (2) genetic correlations within and between the 
methane traits across the entire lactation; and (3) ge-
netic correlations between the methane traits and other 
traits along first lactation.

MATERIALS AND METHODS

The phenotypic records in the present study were 
collected on Danish Holstein cows from the Danish 
Cattle Research Center (DCRC, Tjele, Denmark); 
DCRC has collected DMI, ECM, and BW data since 
its inception in 2001, and “sniffer” equipment was in-
stalled at DCRC in 2013 for the recording of MeC. The 
number of cows, phenotype recording, and data editing 
steps are described sequentially below for the methane 
database and for the intake and production database. 
Ethical approval was not needed for this study because 
no animal procedures were performed, as only existing 
data were used.

Methane Data Collection and Editing

Methane concentration records from 649 Holstein 
cows between 2013 and 2020 from DCRC were avail-
able. Data are described in part by Zetouni et al. (2018), 
Difford et al. (2020), and Manzanilla-Pech et al. (2020). 
Methane concentration was measured using a nondis-
persive infrared CH4 sensor (Guardian NG, Edinburgh 
Instruments Ltd.) and, in parallel, CO2 was measured 
using same technique (Gascard, Edinburgh Instruments 
Ltd.). More than 200,000 daily MeC records on 649 
cows were available; however, weekly (average) MeC 
records were calculated to match the weekly records 
of ECM and BW available, which were used to cal-
culate MeP (described below). Data included weekly 
averages in which up to 3 d of data were allowed to be 
missing within a week, and individual cows required a 
minimum of 3 weekly measurements to be retained for 
further analysis. After editing, only first and second 
lactations were used, resulting in 19,639 weekly MeC 
records from 575 Danish Holstein cows and 13,866 MeP 
records from 504 cows being analyzed. This reduction 
from MeC records to MeP records is due to the lack 
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of ECM or BW, traits that are needed in the calcula-
tion of MeP. Methane concentration distribution per 
lactation is shown in Table 1. Methane concentration 
(CH4 in parts per million, ppm; MeC) was transformed 
using natural logarithm (ln) to achieve normality and 
then multiplied by 100 to avoid problems with the scale 
of the other traits. Methane production (CH4 in g/d; 
MeP) was calculated as follows. First, CH4 in liters/
day was computed using the formula of Madsen et al. 
(2010) based on heat-producing units (HPU):

 CH4 (L/d) = (CH4/CO2) × 180 × 24 × HPU, [1]

where

 HPU = 5.6 metabolic BW + 22 ECM + 1.6   

 × 10−5 × (days carried calf)3. [2]

Second, CH4 in liters per day was converted to CH4 in 
grams per day using the formula

 MeP (CH4 g/d) = density × CH4 (L/d), [3]

where the density of CH4 at 20°C = 0.668 g/L.
Given that the traits would be analyzed by random 

regression, the analyses were performed per trait per 
lactation (L1 and L2), resulting in the following traits: 
MeC_L1, MeP_L1, MeC_L2, and MeP_L2.

Production, Maintenance, and Intake Data Collection 
and Editing

Records on ECM, BW, and DMI from 960 primipa-
rous cows belonging to the DCRC research farm (Table 
2) from 2003 to 2019 were available. Cows were fed with 
automated feeders (Insentec, RIC system). Cows were 
part of numerous nutritional experiments, and diets in-
cluded primarily rolled barley, corn silage, grass clover 
silage, rapeseed meal, and soybean meal. Body weight 
was measured automatically at each milking, and aver-
aged per week (Li et al., 2017). The barn was a loose 
housing system with access to automatic milking sta-
tions (DeLaval International AB). Each milking system 

was fitted with a weighing platform (Danvaegt) that 
recorded BW at each milking. Energy-corrected milk 
was calculated using the following formula (Sjaunja et 
al., 1991):

 ECM (kg) = 0.25 milk (kg) + 12.2 fat content (kg)   

 + 7.7 protein content (kg). [4]

Variance Components Estimation

Variance components for the 4 methane traits (MeC_
L1, MeC_L2, MeP_L1, MeP_L2) were estimated us-
ing a single-trait model with the average information 
(AI)-REML algorithm in DMU software (Version 6, 
Release 5.4; Madsen and Jensen, 2014) using a pedigree 
relationship matrix. A pedigree containing the identi-
fication of the cow, sire, and dam with 11,778 animals 
(after pruning) in the relationship matrix was used, 
with an average of 10 generations deep. The pedigree 
included 152 sires with an average of 4.3 daughters per 
sire. The relationship matrix for animals with methane 
phenotypes is shown in Supplemental Figure S1 (https: 
/ / dataverse .harvard .edu/ dataverse/ suplementals1; 
Manzanilla-Pech, 2022).

The model used to estimate the variance components 
was

 
y TYS ACC LACW a

pe e

ijklm j l t k

n
ik itk

k

n
ik itk ij

= + + +

+ +

=

=

=

=

∑
∑

0

2

0

2

Φ

Φ kklm ,
 [5]

where yijklm is the phenotype for MeC_L1, MeC_L2, 
MeP_L1, and MeP_L2; TYS is the fixed effect j for 
trial-year-season (98 classes); ACC is the l effect of age 
of cow at calving in months as a covariate (10 classes 
for L1 and 17 for L2); and LACW is the fixed effect of 
time t for lactation week (1 to 45 weeks). Random ef-
fects are as follows: aik is the kth regression coefficient 
of Legendre polynomial for the additive genetic effect of 
the ith cow, Φitk  is the term of the second-order Legen-
dre polynomial for cow i measured at LACW t, peik is 
the kth regression coefficient of Legendre polynomial 
for the permanent environmental effect of the ith cow, 
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Table 1. Descriptive statistics for methane concentration (MeC) and methane production (MeP) at first (MeC_L1, MeP_L1) and second 
lactation (MeC_L2, MeP_L2)

Trait  Unit No. of cows No. of records Mean SD Minimum Maximum CV (%)

MeC_L1  Log(ppm) × 100 489 11,243 575.7 53.9 414.2 731.5 9.4
MeC_L2  368 8,405 573.4 50.5 414.3 714.2 8.8
MeP_L1  g/d 425 8,065 306.6 77.6 77.3 588.0 25.3
MeP_L2  318 5,801 354.5 81.5 88.9 598.2 22.9

https://dataverse.harvard.edu/dataverse/suplementals1
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and e is the residual error of yijklm. Residual errors were 
assumed to have heterogeneous variances and were di-
vided into 11 classes according to lactation month (1 to 
11). Residual covariances within the same trait at dif-
ferent lactation month were assumed to be zero. Ge-
netic correlations were estimated through pairwise bi-
variate analyses between the traits without heteroge-
neous residual variances to avoid over-parametrization 
of the model. The (co)variance structure for a is Var(a) 
= A ⊗ G, where A = additive genetic relationship 
matrix, ⊗ = Kronecker product function, and G = 
additive genetic covariance matrix of the genetic ran-
dom regression coefficients. Similarly, Var(pe) = I ⊗ 
PE, where I = identity matrix and PE = permanent 
environmental covariance matrix of the random regres-
sion coefficients (description below) and describes the 
permanent environmental component of a lactation for 
a cow. The residual variance structure [Var(e)] was as-
sumed diagonal and constant over lactation month.

Estimated (co)variance components of the random 
regression were used together with Legendre polynomi-
al coefficients to calculate genetic and permanent envi-
ronmental variances and covariances for each lactation 
month using the methodology of Fischer et al. (2004):

 G = Φ K Φ′ and 

 PE = Φ KPE Φ′ [6]

where G is the genetic variance-covariance matrix 
within trait per lactation week (matrix n × n), Φ is 
a matrix of order t × n (t = 3 and n = 45), which 
contains 3 orthogonal polynomial coefficients for each 
of the traits through 45 lactation weeks; K is a matrix 
of order t × t, which contains the estimated covariance 
function describing the genetic variance components for 
the random regression coefficients. Likewise, PE is the 
permanent environmental variance-covariance matrix 
and KPE is a matrix of order t × t, which contains the 
covariance function for the permanent environmental 
variance components. For bivariate analyses, G and 
PE were across traits and lactation week, being of size 
2n (= 90), where K and KPE were size 2t (= 6).

Finally, to disentangle the relationship (genetic 
correlation) of both methane traits with production, 
maintenance, and intake traits, bivariate analyses were 
performed between MeC_L1 and MeP_L1 with ECM, 
DMI, and BW for first lactation. The model for ECM, 
DMI, and BW used in the bivariate analyses with 
methane traits was the same model as in Eq. [5]. Sec-
ond-lactation data were excluded from this analysis due 
to an insufficient number of cows and records available 
across these traits, particularly for methane production 
(MeP_L2). Heritabilities, permanent environmental 
ratio, repeatabilities, and genetic correlations between 
traits were calculated for each week of lactation. Stan-
dard errors (SE) were calculated per lactation week 
based on the methodology of Fischer et al. (2004) and 
reported by quartile (Q2, Q3), where Q2 is the median 
and Q3 (upper quartile) is the value under which 75% 
of data points are found when arranged in increasing 
order.

RESULTS AND DISCUSSION

Descriptive Statistics

Descriptive statistics of the 4 methane traits (MeP_
L1, MeP_L2, MeC_L1, MeC_L2) are shown in Table 
1. The average for MeP_L1 (first lactation) was 307 
g/d and for MeP_L2 (second lactation) was 355 g/d. 
Averages for MeP were lower than reported (396–503 
g/d) by Sypniewski et al. (2021) in multiparous Pol-
ish Holsteins (in 2 farms) and Richardson et al. (2021; 
469 g/d) in multiparous Australian Holsteins. However, 
our averages for MeP in both lactations were higher 
than those presented by López-Paredes et al. (2020; 183 
g/d) in Spanish Holstein cows. As expected, methane 
production showed a lower average for first-lactation 
cows than for second-lactation cows (307 g/d), as they 
are lighter animals with lower intake and production 
(Table 2). The average for MeC_L1 was 576 and that 
for MeP_L2 was 574, which were higher than reported 
(505–517) by Sypniewski et al. (2021). Descriptive sta-
tistics for ECM, BW, and DMI for first lactation are 
presented in Table 2. The average for ECM was 30.2 
kg/d, whereas that for BW was 617 kg, and for DMI 
was 19.4 kg/d. Averages for ECM, BW, and DMI were 
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Table 2. Descriptive statistics for ECM, BW, and DMI for first-lactation cows (ECM_L1, BW_L1, and 
DMI_L1)

Trait  Unit
No. of 
cows

No. of 
records Mean SD Minimum Maximum CV (%)

ECM_L1  kg/d 921 30,498 30.2 5.7 8.7 57.9 18.9
BW_L1  kg 963 32,038 617.0 66.5 421.7 893.0 10.7
DMI_L1  kg/d 958 32,275 19.4 2.9 9.8 33.0 14.9



Journal of Dairy Science Vol. 105 No. 12, 2022

9803

within the range of values previously reported for pri-
miparous Holstein cows (Manzanilla-Pech et al., 2014; 
Li et al., 2017; Difford et al., 2020).

Heritabilities, Permanent Environmental Ratio,  
and Repeatabilities Across Lactation(s)

Estimated heritabilities (h2) per lactation week for 
MeP_L1, MeP_L2, MeC_L1, and MeC_L2 are re-
ported in Figure 1. Heritabilities for MeP were higher 
than those for MeC for both lactations. Methane 
concentration (MeC_L1, and MeC_L2) heritabilities 
were more similar to each other along lactation com-
pared with MeP heritabilities, which showed a higher 
heritability for first lactation than for second lactation. 
Estimated heritabilities for MeC traits varied from 
0.10 to 0.20 at the beginning of the lactation, from 
0.25 to 0.53 in mid lactation, and from 0.11 to 0.24 
at the end of lactation (Q2–Q3 SE = 0.05–0.06); for 
MeP, estimated heritabilities varied from 0.14 to 0.25 
at the beginning of the lactation, from 0.28 to 0.47 
in mid lactation, and from 0.11 to 0.29 at the end of 
lactation (Q2–Q3 SE = 0.07–0.13). Sypniewski et al. 
(2021) reported a similar pattern of heritability along 
lactation and similar values (from 0.13 to 0.26) for 
MeP in Holstein cows, including different lactations. 
Breider et al. (2019) presented heritabilities ranging 
from 0.12 to 0.45 along the lactation (until wk 52) in 
multiparous Holstein cows; however, their heritability 
values showed a very different pattern across lactation, 
with the lowest point occurring at wk 20. Furthermore, 
Sypniewski et al. (2021) presented different patterns 
of heritability for MeC across lactation, with low 
heritabilities close to zero at the beginning of lacta-
tion and a constant increase toward end of the lacta-
tion (up to 0.14). Even though Breider et al. (2019) 
and Sypniewski et al. (2021) used the same method 
(sniffer) to measure methane, there are differences in 
their results compared with the current study. These 
differences could be due to the inclusion of several lac-
tations (4 and 8, respectively) in the analyses, whereas, 
in the current study, we analyzed traits separately per 
lactation and only for the first and second lactations. 
Furthermore, it is interesting to observe that the dis-
tribution of heritability estimates across lactation for 
MeP is similar to the ECM and DMI curves previously 
reported by Manzanilla-Pech et al. (2014) and Li et 
al. (2017) in primiparous Holstein cows. This further 
supports the notion that heritability estimates for MeP 
are influenced by the genetic architecture of ECM heri-
tabilities along lactation. This makes it complicated to 
disentangle which part of the genetic variation of MeP 

is due to MeC and which is due to addition of ECM 
in the calculation of MeP. To summarize, estimates 
of heritability for MeP vary along the lactation from 
low to moderate; however, there is no clear consensus 
on the shape of changes during lactation across the 
few studies that have reported heritabilities along the 
lactation.

Estimated permanent environmental ratio (pe2, 
Figure 1) per lactation week for MeP_L1, MeP_L2, 
MeC_L1, and MeC_L2 were lower for MeP than for 
MeC. Estimated pe2 for MeC traits varied from 0.49 
to 0.62 at the beginning of the lactation, from 0.50 
to 0.58 in mid lactation and from 0.45 to 0.63 at the 
end of lactation (Q2–Q3 SE = 0.02–0.05); for MeP, 
estimated pe2 varied from 0.26 to 0.44 at the beginning 
of the lactation, from 0.23 to 0.28 in mid lactation, and 
from 0.26 to 0.68 at the end of lactation (Q2–Q3 SE = 
0.11–0.18). Additionally, repeatability estimates (t) per 
lactation week for MeP_L1, MeP_L2, MeC_L1, and 
MeC_L2 are reported in Supplemental Figure S2 (https: 
/ / dataverse .harvard .edu/ dataverse/ suplementals1; 
Manzanilla-Pech, 2022). Estimated repeatabilities 
ranged from moderate to high for all traits: 0.63 to 0.86 
for MeC_L1, 0.64 to 0.79 for MeC_L1, 0.62 to 0.82 for 
MeC_L2, and 0.53 to 0.82 for MeC_L2, with Q2–Q3 
SE between 0.03 and 0.09.

Genetic Correlations Within Trait and Lactation

Estimated genetic correlations (rg) per lactation 
week for MeC_L1, MeC_L2, MeP_L1, and MeP_L2 
are shown in Figure 2. Genetic correlations within 
lactation were, as expected, highest between weeks 
close to each other in time and decreased as the time 
between measurements increased. First-lactation traits 
(MeC_L1 and MeP_L1) showed similar patterns of cor-
relations, with predominantly high correlations within 
trait and the weakest correlations between early and 
late lactation (as low as 0.4). However, MeP_L1 was 
marginally more strongly correlated between early and 
mid lactation. In contrast, the second-lactation traits 
(MeC_L2 and MeP_L2) showed differential correlation 
patterns along lactation weeks, with rg for MeC_L2 be-
ing mostly high and positive (>0.8) during the entire 
lactation, and MeP_L2 having lower rg between early 
and mid lactation for MeP_L2 (as low as 0.3). Similar 
genetic correlations at different lactation weeks have 
been reported by Manzanilla-Pech et al. (2014) and Li 
et al. (2018) for ECM, DMI, and BW in primiparous 
Holstein cows. For MeP_L2, it is not clear whether 
these lower correlations between mid and late lactation 
are related to the use of ECM in the calculation of MeP.
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Genetic Correlation Between Traits in the Same 
Lactation Week

Estimated rg at the same lactation week for the 4 
traits are shown in Figure 3. All 4 pairwise rg followed 
the same pattern, with moderate to high correlations 
(up to 0.9) during early and mid lactation, with a peak 
around wk 32, falling after this point until the end of 
the lactation (as low as 0.45). The highest rg was for the 
MeP_L1–MeP_L2, which was close to 0.8 during most 
of the lactation, followed closely by MeC_L1–MeP_L1 
and MeC_L2–MeP_L2, meaning that the highest rg 
was for the same trait (MeP) across lactations (L1–L2) 
followed by rg at the same lactation between traits. 
Finally, the lowest rg was for MeC_L1–MeC_L2, with 
rg from 0.45 at the beginning of lactation increasing 
steeply toward a peak at wk 32 and decreasing after 
this point. Standard errors (Q2–Q3) between traits at 
the same parity ranged between 0.11 and 0.15, whereas 
those for same trait at different parity were consid-
erably larger (Q2–Q3 = 0.20–0.30). Based on these 
results, MeC could be genetically more stable across 
lactations than MeP; however, due to the large SE, we 
cannot draw firm conclusions. Analysis including more 
data and (possibly) further lactations is recommended 

to verify the trends reported in this study. These re-
sults are important because it could be assumed that 
methane is the same trait across lactations; however, 
this might not be always the case, as genetic correla-
tion varies across lactations (as we can see in MeP and 
MeC, where the genetic correlation between lactations 
is not unity). It is important to mention that we did 
not find additional studies that analyze methane traits 
across and along lactation, given the global scarcity 
of recording schemes for CH4 emissions. This study is 
the first of its kind to estimate genetic correlations for 
methane traits across and between lactations. Another 
key finding of this study was the high genetic correla-
tions between MeC and MeP (>0.7 for most of the 
lactation), showing that MeC could be used as a proxy 
for methane production, especially when the measuring 
method is a sniffer, avoiding the need to calculate MeP 
using ECM.

Genetic Correlations Between Methane Traits  
and Production, Maintenance, and Intake Traits 
Along First Lactation

Estimated rg at the same lactation week between 
methane concentration and methane production during 

Manzanilla-Pech et al.: GENETIC CORRELATIONS OF METHANE EMISSIONS ACROSS LACTATIONS

Figure 1. Estimated heritabilities (h2) per lactation week (LACT_WEEK) for (a) methane concentration (MeC) for first lactation (MeC_L1; 
Q2–Q3 SE = 0.06) and MeC for second lactation (MeC_L2; Q2–Q3 SE = 0.05); (b) methane production (MeP) for first lactation (MeP_L1; 
Q2–Q3 SE = 0.11–0.13) and MeP for second lactation (MeP_L2; Q2–Q3 SE = 0.07–0.08); and permanent environmental ratio (pe2) per lactation 
week for (c) MeC_L1 (Q2–Q3 SE = 0.02) and MeC_L2 (Q2–Q3 SE = 0.05), and (d) MeP_L1 (Q2–Q3 SE = 0.11–0.13), and MeP_L2 (Q2–Q3 
SE = 0.17–0.18). Quartile (Q)2 is the median and Q3 (upper quartile) is the value under which 75% of data points are found when arranged 
in increasing order.
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first lactation (MeC_L1, MeP_L1) with ECM, BW, and 
DMI at first lactation (ECM_L1, BW_L1, DMI_L1) 
are presented in Figure 4. Due to the restrictive size of 
the databases, SE of the rg between MeC and MeP with 
ECM, BW, and DMI were large (Q2–Q3 = 0.30–0.42). 
Genetic correlations between MeC and ECM, BW, and 
DMI at first lactation were mostly positive during early 
and mid lactation and became negative for late lacta-
tion (after wk 30). All 3 genetic correlations following 
the same sigmoidal pattern throughout first lactation, 
with MeC_L1–DMI_L1 having the highest positive 
correlation (up to 0.55) and MeC_L1–BW_L1 having 

the highest negative correlation (as low as −0.4). The 
estimated genetic correlations between MeC_L1 and 
ECM_L1 ranged from low–moderate positive (up to 
0.44) during early and mid lactation to low–moderate 
negative in late lactation (as low as −0.25). Difford 
et al. (2020) reported moderate positive genetic cor-
relations between MeC and ECM (0.37) and between 
MeC and DMI (0.60) in Danish Holstein cows using 
a repeatability model. Genetic correlations between 
MeP_L1 and ECM_L1 and DMI_L1 were moderately 
positive (>0.5) for most of the lactation, whereas those 
between MeP_L1 and BW_L1 were close to zero for 

Manzanilla-Pech et al.: GENETIC CORRELATIONS OF METHANE EMISSIONS ACROSS LACTATIONS

Figure 2. Estimated genetic correlations (rg) per lactation week (LACT WEEK) for (a) methane concentration (MeC) for first lactation 
(MeC_L1), (b) methane production (MeP) for first lactation (MeP_L1), (c) MeC for second lactation (MeC_L2), and (d) MeP for second lacta-
tion (MeP_L2).
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most of the lactation, with a slight increase toward wk 
30 followed by a decrease, becoming negative at the 
end of the lactation. Only a single study has estimated 
genetic correlations between methane and production 
and maintenance traits in Holstein cows along lactation 
using random regression models (Breider et al., 2019). 
Breider et al. (2019) presented moderate (0.38–0.57) 
genetic correlations between MeP and milk yield during 
the entire lactation, with a maximum at mid lactation 
(20–30 wk) in multiparous UK Holstein cows. Likewise, 
they reported genetic correlations between MeP and 
BW close to zero along the lactation. As methane is de-
rived from fermentation of the feed, it is not surprising 
that the genetic correlations across lactation between 
MeP and DMI follow a similar pattern as the feed in-
take curve across lactation, with sharp increases from 
early to mid lactation and a steady decline toward the 
end of lactation (Harder et al., 2019).

Previous studies using single CH4 phenotypes per 
lactation in multiparous cows have reported (using lin-
ear animal models) a wide range of genetic correlations 
between MeP and ECM, ranging from −0.08 to 0.74 
(Breider et al., 2018; Richardson et al., 2021) in Hol-
stein cows from the UK and Australia. However, Rich-
ardson et al. (2021) used a different method to measure 
CH4, the SF6 tracer method previously described by 
Deighton et al. (2013), which could explain some of the 
differences in results. Furthermore, previous studies in 
Danish cows have reported genetic correlations between 
MeP and ECM from 0.45 to 0.6 (Lassen and Løvendahl, 
2016; Manzanilla-Pech et al., 2020) with a popula-

tion that includes part of the population used in this 
study. To summarize, MeP has shown higher genetic 
correlations with ECM and DMI compared with MeC. 
These analyses were performed in an attempt to better 
elucidate the similarities between the studied methane 
traits, genetic correlations between the methane traits 
and with production, maintenance, and intake traits 
in the first lactation. As we have explained before, we 
incorporate ECM and BW when we transform MeC 
into MeP, with the aim of accounting for the size and 
production of the animal. However, this incorporation 
could lead to induced higher correlations between MeP 
and ECM and BW. This is particularly true for the 
higher correlation between MeP and ECM compared 
with that between MeC and ECM. However, more im-
portant is the genetic correlation of MeC with ECM 
and DMI, as MeC is the raw unadulterated trait and 
that correlation is the true genetic correlation between 
methane and production and intake.

Implications

One of the methods used to measure methane, given 
its large scale and low cost, are the sniffers installed in 
automated milking systems (Garnsworthy et al., 2012; 
Pszczola et al., 2017; Lassen and Difford, 2020; López-
Paredes et al., 2020). However, the output of this meth-
od is methane concentration and, to calculate methane 
production (in g/d), the ratio of recorded CH4: CO2 
and ECM and BW are required (Madsen et al., 2010), 
which evidently cause high correlations with ECM and 

Manzanilla-Pech et al.: GENETIC CORRELATIONS OF METHANE EMISSIONS ACROSS LACTATIONS

Figure 3. Estimated genetic correlations (rg) at the same lactation week (LACT_WEEK) between methane concentration (MeC) at first 
lactation and MeC at second lactation (MeC_L1-MeC_L2, Q2–Q3 SE = 0.20–0.25), methane production (MeP) at first lactation and MeP at 
second lactation (MeP_L1-MeP_L2, Q2–Q3 SE = 0.24–0.30), MeC at first lactation and MeP at first lactation (MeC_L1-MeP_L1, Q2–Q3, SE 
= 0.10–0.11), and MeC at second lactation and MeP at second lactation (MeC_L2-MeP_L2, Q2–Q3 SE = 0.15). Quartile (Q)2 is the median 
and Q3 (upper quartile) is the value under which 75% of data points are found when arranged in increasing order.
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BW. For this reason, in the last couple of years, the use 
of methane concentration as a proxy trait for methane 
emissions has become more popular (Calderón-Chagoya 
et al., 2019; Difford et al., 2020; Manzanilla-Pech et al., 
2021; Sypniewski et al., 2021). The results of this study 
bring to light the genetic architecture behind methane 
production and methane concentration and their cor-
relations with production traits. This analysis shows 
the necessity of creating a phenotype independent of 
milk production to be able to select for methane with-
out compromising production. One of the suggested 
traits is residual methane production, which could be 
different for first-lactation and later-lactation cows, as 

it is for residual feed intake. However, given the small 
data sets currently available, the results are limited and 
should be extended for further lactations to validate 
this hypothesis.

CONCLUSIONS

Methane concentration traits had lower heritabilities 
that were more stable across lactation and between lac-
tations than MeP traits. However, the higher heritabili-
ties for MeP traits could be due to induced covariance 
from component traits such as ECM and BW, with 
well-documented higher heritabilities and more drastic 

Manzanilla-Pech et al.: GENETIC CORRELATIONS OF METHANE EMISSIONS ACROSS LACTATIONS

Figure 4. Estimated genetic correlations (rg) at the same lactation week (LACT_WEEK) between (a) methane concentration at first lacta-
tion (MeC_L1) and ECM at first lactation (ECM_L1) Q2–Q3 = 0.37–0.39, BW at first lactation (BW_L1) Q2–Q3 = 0.33–0.38, and DMI at first 
lactation (DMI_L1) Q2–Q3 = 0.39–0.42, and between (b) methane production at first lactation (MeP_L1) with ECM_L1 Q2–Q3 = 0.30–0.33, 
BW_L1 Q2–Q3 = 0.29–0.30, and DMI_L1 Q2–Q3 = 0.35–0.38. Quartile (Q)2 is the median and Q3 (upper quartile) is the value under which 
75% of data points are found when arranged in increasing order.
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changes within and across lactations. Estimated genetic 
correlations (within trait) at different lactation weeks 
were similar in MeC and MeP in first lactation but 
different in second lactation. Most of the genetic cor-
relations between traits (MeP and MeC) in the same 
lactation week were moderate to highly correlated 
during early and mid lactation, except between first 
and second parity for MeC, which were weaker than 
for MeP in early lactation. This suggests the possible 
use of MeC as a proxy for MeP without the use of 
ECM. Furthermore, compared with MeC, MeP (at first 
lactation) had stronger genetic correlations with ECM 
and DMI. In conclusion, both traits are different along 
lactation and correlate differently with production, 
maintenance, and intake traits, which is important to 
consider when including one of them in future breeding 
objectives. These results are useful for understanding 
the genetic relationship between MeC and MeP along 
and across lactation(s), as well as between methane 
traits with ECM, BW, and DMI in first lactation.
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