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Infrared spectroscopy delivers abundant information about the chemical composition, as well

as the structural and optical properties of intact samples in a non-destructive manner. We

present a deep convolutional neural network which exploits all of this information and solves

full-wave inverse scattering problems and thereby obtains the 3D optical, structural and

chemical properties from infrared spectroscopic measurements of intact micro-samples. The

proposed model encodes scatter-distorted infrared spectra and infers the distribution of the

complex refractive index function of concentrically spherical samples, such as many biolo-

gical cells. The approach delivers simultaneously the molecular absorption, sample mor-

phology and effective refractive index in both the cell wall and interior from a single measured

spectrum. The model is trained on simulated scatter-distorted spectra, where absorption in

the distinct layers is simulated and the scatter-distorted spectra are estimated by analytic

solutions of Maxwell’s equations for samples of different sizes. This allows for essentially

real-time deep learning-enabled infrared diffraction micro-tomography, for a large subset of

biological cells.
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Infrared (IR) micro-spectroscopy is a versatile and widely used
technique for studying the chemistry of biological cells and
tissues. The chemical composition is estimated by the amount

of attenuated radiation as light propagates through samples
mounted on a microscopic stage1,2.

Molecular bonds in the samples vibrate and absorb radiation in
quantities proportional to their concentration, attenuation coef-
ficient and optical path length, according to Beer–Lambert’s law.
IR spectra can thus provide a succinct fingerprint of the chemical
components in the samples.

It is however well known that measured spectra of intact
samples generally contain strong contributions from light scat-
tering, which severely distorts the idealized scenario where the
measured absorbance peaks are proportional to the concentration
of absorbing molecular bonds, described by Beer–Lambert’s law3.
The loss of radiation due to scattering is determined by the
sample’s complex refractive index function which depends on the
sample morphology, the distribution of the effective refractive
index and molecular absorption. Thus, light scattering generally
mixes the molecular and physical information in a very intricate
way, since the scattering itself depends also on molecular
absorption.

Gustav Mie solved Maxwell’s equations analytically and esti-
mated the light scattering on perfect spheres at the beginning of
the twentieth century. Analytical solutions for other ideal
morphologies, such as cylinders, slabs and concentric spheres
have been developed later4,5. Mie-type scattering is particularly
pronounced and highly non-linear when the radius of the sample
is on the same order of magnitude as the wavelength of the
radiation. Since both biological cells and the wavelength of IR
radiation are on a micrometer scale, non-linear Mie-scattering
effects such as wiggles and ripples are ubiquitous in biological
applications of IR micro-spectroscopy. Wiggles are broad oscil-
lations largely due to the interference of the undisturbed and
disturbed wave passing through the sample, and ripples are sharp
oscillations in the spectra arising from standing waves4–7.

Since IR spectroscopy generally is employed to study the
chemical information in measured spectra, it has been considered
imperative to correct the spectra by removing all non-chemical,
scattering contributions to the spectral signals. Several Extended
Multiplicative Signal Correction (EMSC) based approaches8–10

are widely applied to pre-process measured spectra and estimate
the pure molecular absorption spectra.

The state-of-the-art correction algorithm is the so-called Mie
Extinction EMSC11 which has been shown to efficiently remove
Mie-scattering from IR spectra. Deep learning models trained on
spectra corrected with EMSC are also being applied for Mie-
scattering correction in IR spectroscopy of biological samples and
have been shown to outperform EMSC both in terms of speed
and precision, in particular for imaging data12. Additionally, there
have been attempts to train models on data sets of purely
simulated scatter-distorted spectra for non-biological samples13.

Research and applications of IR spectroscopy have mainly
either considered it a label-free technique or focused on
extracting and interpreting the molecular absorption signals in
measured spectra. Although positions and shapes of ripples and
wiggles have been shown to be highly diagnostic for optical and
morphological properties of micro-samples7,14, exploitation of
the information inherent in the scattering signals for biological
samples is mostly uncharted territory. We hypothesize that
measured spectra of biological micro-samples contain sufficient
information, both chemical and physical, to infer the morphology
and the effective refractive index distribution of the samples as
well as the spatially resolved chemical composition, and we
suggest exploiting the information contained in the scattering
rather than correcting for it.

IR spectroscopic instruments can very quickly collect spectra
either in single-element mode (1D) or in imaging mode (2D)
using, e.g. a focal plane array (FPA) detector. Whereas the
acquisition of 1D and 2D spectral information is straightforward
in state-of-the-art IR microscopes, obtaining 3D spectral infor-
mation is experimentally challenging. IR spectro micro-
tomographic reconstruction has been experimentally realized in
ref. 15 where a computed tomography approach was applied to
obtain the 3D distribution of the chemical composition of an
intact sample. The approach requires rotating the sample and
acquiring several two-dimensional projection images using a
custom-made sample holder. In addition to being time-con-
suming, the method is fairly challenging to employ since the
sample must be very precisely rotated, and biological samples can
be difficult to keep in focus and stable throughout the rotation.
Furthermore, light scattering can influence the collected spectra
and generally has to be taken into account in the computed
micro-tomography. This will generally entail the necessity of
performing scatter-correction before the 3D rendering, which is
highly non-trivial for such tomographic sections.

In addition, the accuracy with which spatial distribution of the
molecular absorption can be resolved is limited by diffraction and
even further reduced for highly scattering samples, since for every
voxel light scatters into the detector from neighboring voxels.
Light scattering is also an issue with conventional 2D FPA ima-
ging. Since scattering is intimately linked to absorption, nearby
pixels in IR images are influencing the absorbance signal recorded
at them, and this is reducing the resolution with which one can
distinguish molecular information in different parts of the sample
drastically. In for example biological cells with fairly thin cell
walls, it can thus be hard to clearly distinguish the chemical
composition of the cell wall from that of the rest of the cell. This
is something which cannot be ameliorated by any known scatter-
correction method.

This beckons us to consider novel routes to obtaining mole-
cular and structural information in micro-samples and consider if
the resolution can be improved by explicitly exploiting the scat-
tering information in the measured spectra, thereby obtaining the
molecular absorption sharply distinguished in different regions of
the sample.

To this end, we consider a deep learning-based inverse scat-
tering solver for volumetric molecular absorption reconstruction,
where we reconstruct the 3D complex refractive index by making
use of the information-rich scattered field of micro-particles
probed by conventional IR microscopes. Deep convolutional
neural networks (DCNNs) have previously been shown to be able
to separate chemical and physical information in IR spectra12.
We, therefore, opt for performing 3D spectral reconstruction by
employing DCNNs. This approach would be significantly faster
than the computed tomography approach, as the collection of the
spectra is done in a matter of seconds and our DCNNs infer the
distribution of chemical components essentially in real-time.
Additionally, in our proposed approach the scattering does not
need to be corrected separately, since our approach is actively
taking advantage of the light scattering and thus making tedious
scatter-correction superfluous.

Inferring the 3D complex refractive index function from
measured IR spectroscopic data is an electromagnetic inverse
scattering problem (ISP). A plethora of methods for solving
inverse problems in electromagnetics exists16–18. However, most
methods are based on iterative algorithms that are computa-
tionally expensive or only good approximations for weakly scat-
tering samples and not applicable to IR spectroscopy. There have
been attempts at exploiting DCNNs for solving ISPs in the field of
photonics, where the DCNNs were used to predict parameters of
photonic systems such as the thickness of multilayered thin
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films19 and multilayer nano-particles20. However, such ISPs are
comparatively easy to solve since the solution space is fairly small
and consists of merely a few parameters describing the photonic
system. In refs. 21,22, a morphologically more complex photonic
system was considered, where they solved a full-wave ISP using
DCNNs. However, they only considered electromagnetic radia-
tion with frequencies significantly lower than that of IR radiation
and they also assumed non-absorbing samples. This approach
would therefore also not be directly applicable to solving ISPs
modeling IR spectroscopy.

For the case of IR spectroscopy of cells and tissues we have
scatters of arbitrary morphologies, and additionally, we are
obliged to consider the molecular absorption and the optical
properties of the instrument, which greatly increases the com-
plexity of the ISP. Generally, ISPs are ill-posed, meaning that the
complex refractive index function cannot be uniquely determined
by the scattered electromagnetic fields. However, in the case of IR
spectroscopy, molecular absorption spectra are highly collinear,
since most molecules consist of some of the same vibrating
chemical bonds. Thus, if we condition the ISP to only take
molecular absorption spectra as found in nature into account, we
can largely handle the ill-posedness.

In this work, we demonstrate that it is feasible to use a single IR
spectroscopic measurements to obtain the 3D optical and struc-
tural properties of biological samples, as well as find the mole-
cular absorption in spatially resolved regions of the sample. In
particular, we retrieve the molecular absorption of both the cell
wall and interior of intact biological cells from single IR spectra.
We show that we can obtain the entire 3D distribution of the
complex refractive index under some assumptions, and demon-
strate this for two-layered, concentrically spherical samples in
simulations and experiments. This approach is generally applic-
able for samples of arbitrary chemical composition, optical
properties and morphology, assuming one can simulate the
necessary training data. We demonstrate the approach for the
case of samples which can be well approximated by a model of
concentric spheres, which is the case for very many biological and
non-biologic samples, such as algae, bacteria, several animal and
plant cells, pollen and microplastics to mention some. By vali-
dating the results with experimental data, we show that our model
does indeed work well for biological cells with chemically and
optically distinct cell walls and interiors.

Results
Simulated spectral data. We train the model on simulated
scatter-distorted spectra of samples with radii in the range
a∈ [1.25 and 20 μm] and refractive indices n0∈ [1.3, 1.6]. The
outline of our model and the setup for training is seen in Fig. 1.
The molecular absorption was sampled from a continuous dis-
tribution of PCA decomposed measured scatter-free IR spectra,
where we used approximately 1900 spectra from 12 different data
sets of different sizes.

We see in Fig. 2, that the model is able to solve the ISP and
can predict the radius, cell wall thickness and refractive
indices with good accuracy, and simultaneously infer the
molecular absorption of both the cell interior and cell wall. We
quantify the performance of the molecular absorption
prediction by the Pearson correlation coefficient r ∈ [0, 1],
and optical and structural parameters by the coefficient of
determination R2 ∈ [−1, 1]. The presented metrics are
computed as an average of over 10,000 simulated scatter-
distorted spectra. We see from Fig. 2b that the radius of the
sample itself can be exceptionally accurately determined
with R2

acw ¼ 0:99 and also the radius of the cell interior is

fairly well estimated with R2
aint

¼ 0:92. The refractive indices

can also be determined reasonably accurately, but with
a slightly larger uncertainty with R2

n
0;int

¼ 0:78 and

R2
n0;cw ¼ 0:88, respectively.
We use the model’s predictions of the molecular absorption

spectra and morphological and optical parameters, and simulate
the scatter-distorted spectrum from the predicted absorption and
parameters, using the analytic solutions to Maxwell’s equations.
This should then be very similar to the scatter-distorted spectrum
which the network had as input, if the network’s predictions are
accurate. We see in Fig. 2e–f that this works fairly well.

Since the same analytical solutions are used for the simulated
training data and the test data, the result shows mainly the
uniqueness of the solution to the inverse problem. We can
conclude that we were able to achieve a high uniqueness of the
problem by conditioning the problem with respect to the
chemical variability employed and the layered analytical close-
form solutions used.

Fungal cells. We consider a data set containing FPA hyper-
spectral images of spherical cells of theMucor circinelloides fungal
strain. In order to have one spectrum per spherical fungal cell and
emulate a single-element setup, we use binning in the image over
the region covering the sample of interest. This is necessary for
the application of our model to FPA data.

Results of application to samples of fungal cells in Fig. 3a show
the predicted molecular absorption of the cell wall and the cell
interior, and we see in Fig. 3i that we can very well reconstruct the
measured spectra from the predicted molecular spectra and
optical parameters, which corroborates the model’s predictions.

We see clearly that the model predicts molecular absorption
indicative of lipids (triglycerides) for the cell interior with
pronounced peaks at 1160, 1465, 1745, and around 2900 cm−1. It
also predicts the cell wall to be rich in proteins and carbohydrates
as seen from the strong peaks around 1680− 1530 cm−1 and
1200− 1000 cm−1, respectively. This has been reported in the
literature and is in accordance with the expectation that the cell
wall consists largely of polysaccharides such as chitin and
chitosan, proteins and polyphosphates and that lipid bodies
accumulate and grow in the interior of the fungal cells, which
thus consists mainly of triglycerides23.

In Fig. 4b we compare the median predicted molecular
absorption in the cell wall with HTS-FTIR spectra of extracted
cell wall from Mucor circinelloides strains cultivated under
equivalent growth conditions as the samples used for inference
by the model. The cell wall was extracted by physical disruption
of the cells and then separating out the lipids by centrifugation.
The remaining biomass is then generally considered to be the cell
wall of such fungal cells. However, although this method removes
all of the lipids it is not the case that there can be no lipids in the
cell wall of the intact cell, and this could be the reason for the
model predicting absorption signals in the lipid regions of the cell
wall spectrum. Figure 4a shows that the model’s prediction of
molecular absorption is very similar to pure glycerol trioleate,
which is the triglyceride known to mainly be produced by Mucor
circinelloides24–26. Quantitatively, we find that the average
predicted cell interior spectrum has a Pearson correlation
coefficient with the glycerol trioleate of rint,GT= 0.97 and with
the HTS-FTIR spectrum of an extracted cell of rint,CW= 0.33, and
the predicted cell wall spectrum correlates with glycerol trioleate
with rcw,GT= 0.35 and the extracted cell wall with rcw,CW= 0.97.

Algal cells, pollen grains, and PMMA samples. Additionally, we
apply our approach to spectra of microalgae Vischeria Polyphem
and spectra of both juniper and oak pollen grains which have
both been desiccated, and the juniper pollen were subsequently
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re-hydrated to better retain their original spherical form. We see
that the model predicts larger absorption in the carbohydrate
region and less in the protein region in the cell wall. This is in
accordance with the belief that the cell walls of both pollen
grains and algae are rich in polysaccharides and consist mainly
of cellulose and pectin, and in the case of pollen also
sporopollenin27,28. Furthermore, the model predicts some
absorption in the lipid regions of the spectra for the cell wall.
This could be caused by a membrane of phospholipids outside
the cell interior which is known to occur in some cases for such
microalgae29,30. We see also in Fig. 3j, k that the scatter-
distorted spectra can be fairly well reconstructed from the pre-
dictions for both algae and pollen. However, the pollen grain
reconstruction is slightly less accurate than for the other samples

as we see in Fig. 3j presumably due to the fact that the pollen
grains may differ considerably in their shape from concentric
spheres, since they are often rather ellipsoidal and have a
spiky surface. Generally, we expect more accurate results when
the samples are well approximated as concentric spheres,
while stronger deviations can be expected for samples where this
is not the case.

We also apply our model to spectra of polymethyl methacrylate
(PMMA) spheres where we see the molecular absorption in
Fig. 3d and in Fig. 3l that also this measured spectrum can very
well be reconstructed from the predictions. We note that the
PMMA spheres are single-layered spheres, but our model which
has only been trained on two-layered spherical samples still
handles this quite well as it predicts the PMMA spheres to have a

Fig. 1 The approach for training the ISP-solver on simulated spectral data. Illustration of the proposed approach where we first solve the forward problem
by exact simulation and then train a DCCN to solve the inverse problem. We start by solving Maxwell’s equations for light propagating through the sample
and thereby simulating the spectroscopic measurement. We assume a two-layered concentrically spherical sample, with distinct molecular absorption and
effective refractive index in the cell wall and interior. Radiation which scatters into the numerical aperture, characterized by its angle θNA, is collected at the
detector and contributes to the measured spectrum. These simulated spectral data are then used as training data for our DCCN, which is trained to solve
the inverse scattering problem. The model is a DCNN consisting of a 1D attention-augmented CNN (InverseScatterEncoder) which decomposes the
measured spectra, two 1D attention-augmented CNN with unpooling layers which infer the molecular absorption spectra of the cell wall and cell interior
and a 3D transpose-CNN (ShapeNet) inferring the optical and morphological properties of the sample.

Fig. 2 The ISP-solver applied to simulated spectral data. a The performance metrics for the prediction of molecular absorption, given as the Pearson
correlation coefficient r. b The prediction of optical parameters quantified by the coefficient of determination R2. For both metrics the circle bar starts at 0
and a fully drawn circle implies the metric being 1. c, d The molecular absorption of the cell interior and the cell wall of the concentrically spherical sample.
The dashed lines represent the ground truth and the fully drawn model’s predictions. e, f The simulated scatter-distorted spectra and the reconstructed
spectra from the predicted complex refractive index functions. All metrics and spectra in a–f are coming from the continuous simulated data set which was
also used for training the model. The statistical measures in a, b are estimated on a population of n= 10,000 simulated samples.
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very thin membrane at about 0.4 μm. The predicted membrane
chemistry thus does not significantly influence the overall
absorbance.

We note that both the molecular composition and the
morphology of these samples are very diverse, since we have
several types of biological and non-biological samples and sample
sizes ranging from 2− 3 μm to 19− 20 μm, which demonstrates
the wide applicability of the model.

Morphological and optical predictions. As it is very difficult to
unequivocally validate the reconstruction of the morphology and
distribution of refractive index, we seek validation by looking at

the predicted radii and compare them to the radii which can be
fairly accurately measured from light microscopy images. Fig-
ure 5e shows that the predictions of samples’ sizes for fungi,
juniper pollen and PMMA are quite accurate with a coefficient of
determination at R2= 0.87. The physical parameters are given
directly by the model but could as well have been extracted from
the 3D voxel map. However, it turned out that it was in practice
more difficult to have a general rule for separating the layers in
the continuous voxel map compared to just using a separate
output for the physical parameters for the two layers. Further
examples of the reconstructed shapes of three fungal cells
alongside an FPA image of them for comparison can be found in
Supplementary Fig. 1.

Fig. 3 The ISP-solver was applied to measure the spectra of four different micro-samples. a–d Model predictions of the molecular absorption in the cell
wall and the cell interior in samples from fungal cell, oak pollen grain, algal cell, and PMMA sphere. e–h The model’s predictions of morphology and
distribution of effective refractive index in the samples. i–l Reconstructed spectrum made using the predicted molecular absorption as well as the predicted
morphology and refractive indices as input to analytic solutions of Maxwell’s equations describing the scattering on concentric spheres. If the predictions
are correct, the reconstruction should be very similar to the measured spectrum.

Fig. 4 Predictions of spatially resolved absorbance compared with pure spectra. a The model’s median prediction of molecular absorption in the interior
of the cell and HTS-FTIR measurement of the glyceryl trioleate which is known to be produced by Mucor circinelloides24. b Median prediction of cell wall
absorption and measured HTS-FTIR spectra of the cell wall of Mucor circinelloides fungal cells obtained from sonication and extraction to remove the fatty
acids from the total biomass. c The median prediction of the interior absorption of PMMA spheres and pure, scatter-free measured absorption spectrum of
a PMMA sample.
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For the fungal cells, the model predicts not only the correct
overall size, it also predicts the cell wall to be very thin, at around
1−2 μm, which is known to generally be the case23. Furthermore,
the model’s median prediction of the interior of the fungal cells is
n0= 1.45 which coincides very well with the known refractive
index for glycerol trioleates at n0GT ¼ 1:47.

We see from Fig. 5b that the predicted radii for the spectra of
different oak pollen species are all in the range between
11−20 μm and the cell wall is predicted to be relatively thin at
3−4 μm, which has been reported in the literature31,32. From
Fig. 5a we also see that the grains are predicted to have an
optically dense cell wall and a somewhat more translucent
interior which is believed to be the case for pollen grains which
generally have tough outer shells. The same holds true for the
juniper pollen grains as seen in Fig. 5d.

We note again that some of these pollen grains have a slightly
nonzero eccentricity and they have rough surfaces which means
that they are not always perfectly spherically symmetric samples.
We, therefore, see in Fig. 5e that for some of the pollen grains, the
predicted radius is slightly inaccurate, which is presumably due to
the fact that the shape of the samples in some cases differs
considerably from a concentric sphere. In general, we expect that
for samples which are not spherically symmetric, the model’s
prediction accuracy may decrease. None the less our model is
mostly able to make sensible inferences of the nearly spherically
symmetric morphology of the sample in a useful manner, which
gives testament to our model being able to find the closest
solution for a non-spherical sample in the space of concentrically
spherical samples.

Furthermore, the model predicts all of the PMMA samples to have
a radius of 2.4−2.9 μm which coincides very well with the radius of
2.75 μm reported by the manufacturer, and it also correctly predicts
that the interior’s and membrane’s refractive index of the PMMA
samples were approximately equal and both at approximately
n0= 1.39−1.48, in fairly good accordance with literature33.

This provides further evidence that the model can predict the
index of refraction for measured samples, which can be particularly
useful since the refractive index is often only known for the
nanometer wavelength range. With our approach, we could directly
get the refractive index in the micrometer region without having to
extrapolate from reference values in the nanometer region.

Diffraction micro-tomography. We have predictions of the 3D
distributions of the effective refractive index of both the pollen
grains and the algal and fungal cells, seen in Fig. 3k–n, where we
see that we can reconstruct the 3D distribution of optical prop-
erties and the sample morphology, from the measured spectra.
This shows that it is indeed possible to solve the ISP and perform
volumetric imaging based on the scattered fields collected at the
detector in an IR spectrometer. That is, we have essentially per-
formed diffraction micro-tomography for samples which are
approximately two-layered concentric spheres.

Discussion
We have demonstrated the feasibility of infrared diffraction
micro-tomography for approximately radially symmetric systems,
and that we, to a large degree of accuracy, can solve the full-wave
Inverse Scatter Problem for IR spectroscopic data. We showed
that we can obtain the molecular absorption of both the cell wall
and interior from a single measured scatter-distorted spectrum of
spherical PMMA samples and approximately concentrically
spherical fungal and algal cells and pollen grains from juniper and
oak, where we emphasize that the spectra were obtained at three
different instruments and at two different laboratories. Further-
more, we have shown that we can infer the morphology and
optical properties of a sample from the scattering signatures of
the measured IR spectrum. That is, we can predict the full
complex refractive index function from measured IR spectra,
which would allow for biochemical volumetric imaging of intact
cells with conventional IR spectroscopic instruments, thus we
have shown that we essentially perform deep learning-enabled
diffraction micro-tomography for a large subset of samples.

This allows studying the 3D distribution of chemical compo-
sition in simple intact biological samples, using only conven-
tional, fast and easily applicable IR spectrometers.
Simultaneously, we obtain the effective refractive index in the
different layers of the sample. This in itself can be very useful
since reference values for refractive indices in different materials
are usually not given in the IR region of the electromagnetic
spectrum. Our model infers the effective refractive index expli-
citly for IR radiation, assuming that it is constant in the wave-
length region we consider, which is generally believed to be the

Fig. 5 Predictions of morphology and effective refractive index. a Predicted refractive indices for 800 spectra of oak pollen grains. b The predicted sizes
of the oak pollen grains and their cell wall thicknesses. The sizes given in the literature are marked with a pink background in the histogram. c Predicted
refractive indices for 24 spectra of juniper pollen grains and in d their predicted sizes. e Comparison of the radii predicted from our model and those
measured from light microscopy images. We show data from three different sample types, namely juniper pollen grains, fungal cells, and PMMA spheres.
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case. Finally, this enables us to perform essentially real-time
sample sizing and inference of cell wall thickness. Thus our
approach is very valuable for biological and material science
research and for industrial applications.

We know that we can exactly simulate the scattering of light in
a single-element IR experiment to arbitrary accuracy. This is not
the case for an FPA measurement, where it is not possible to
estimate the scattered radiation collected at a given pixel within a
reasonable time. This means that there is an inherent inaccuracy
in conventional scatter-correction methods when applied to FPA
images, since we know that radiation scatters from nearby pixels
into the pixels which we wish to correct, and this cannot be
explicitly taken into account without knowing the scattered
radiation at single pixels. That is, traditional FPA scatter-
correction methods can thus only remove the scattering signals,
but not remove the contributions from the scattered absorption
signal from nearby pixels. This leads to a blurring of the mole-
cular absorption maps when you scatter-correct FPA images
pixelwise. We thus expect our model to yield better inference of
the absorption in the cell wall and interior than in the FPA image,
particularly for small samples.

We note, furthermore, that in theory there is conceptually
nothing stopping us from making volumetric chemical images
beyond the diffraction limit, since we only need to measure the
overall scattered radiation at the detector to reconstruct the
individual voxels of the sample. That is, we do not have the
problem of not being able to optically resolve two neighboring
pixels in the image, since our approach only needs to consider the
total lost radiation at the detector. The limiting factor is now the
uniqueness of the solutions to the electromagnetic inverse scat-
tering problem. This will be further addressed in future works.

In this study, we consider two-layered concentric spheres and
corroborate the model for samples which are known to have two
distinct layers. We note that modeling of two-layered spheres,
albeit a simplification, is applicable to a large array of biological
and non-biological samples, such as algae, bacteria, several animal
and plant cells, pollen, micro-plastic, etc. Although modeling of
two concentric layers, cannot always capture all the chemical
variance within the sample, it is in many cases a good approx-
imation, since the largest variability often exists between the cell
interior and the cell wall of the sample, where we have a che-
mically distinct membrane encapsulating a more or less chemi-
cally homogeneous core. Thus it is generally very useful to be able
to decouple the molecular and optical information in the cell wall
and interior of the cell. Even in thin sections through cells, where
the cell wall properties and cell interior properties could in
principle be studied separately, the diffraction limit may make it
difficult to achieve full decoupling. Therefore a more or less
complete separation of cell wall properties and properties of the
core of the cell as achieved by infrared diffraction micro-
tomography is a great step forward.

The proposed approach would also seamlessly be applicable for
cases where the radial symmetry is broken, if one can simulate
realistic spectral data for such samples. We plan to apply the
model in the near future to cylindrical samples, multilayer con-
centrically spherical samples and samples with off-center sphe-
rical inclusions. We could then capture the 3D distribution of the
complex refractive index in measured samples with even more
molecular fine structure and complex morphologies, and it would
be feasible to reconstruct e.g. the exact position of the nucleus
within a cell.

Methods
Electromagnetic scattering and absorption. The scattering of light impinging on
several morphologically distinct scatterers can be put in a closed form, by solving
Maxwell’s equations exactly4,5. The attenuation of radiation in an IR spectrometer

is probed in the far-field region, where ka≫ 1 and the scattered electric fields are
considered transverse. In the far-field, the scattering on a small sample is
unequivocally determined by the amplitude scattering matrix S, whose matrix
elements we denote Sj, where we have the transmitted field as a function of the
incident field as

Ek;s
E?;s

 !
¼ ieikða�zÞ

ka

S2 S4
S3 S1

� �
Ek;i
E?;i

 !
ð1Þ

where E∥/⊥,i,t are the parallel and perpendicular components of the incident and
transmitted field, k is the wavenumber and a the radial distance from the center of
the scatterer. For the special case of radially symmetric scatterers, S3= S4= 0, i.e., S
is diagonal.

All relevant measurable quantities can be extracted from the scattering
amplitudes S1(θ, ϕ) and S2(θ, ϕ), where the angle θ is between the forward direction
and the direction of scattered radiation and ϕ the azimuthal angle. Variables that
are often associated with measurable quantities are the scattering efficiency Qsca,
which is the radiation lost due to scattering, and extinction efficiency Qext, which is
the totally lost radiation4, which the optical theorem tells us is only dependant on
the scattering amplitudes in the forward direction, assuming we are in the far-field
region5,34.

Furthermore, assuming an optically lossless medium, we have the contribution
from chemistry to the loss of radiation as Qabs=Qext−Qsca, where the absorption
efficiency Qabs is the radiation lost by molecular absorption inside of the sample. In
an IR measurement, radiation is collected not only in the forward direction but
over a numerical aperture (NA), which compels us to consider not the total lost
radiation, but rather the radiation scattering out of the NA. So we account for this
by considering the radiation scattered such that it is not collected at the NA of the
detector as

QNA
sca ¼ 1

ð2π~νaÞ2
Z π

θNA

ðjS1j2 þ jS2j2Þ sinðθÞdθ ð2Þ

The size of the detector and the distance to the sample determines the numerical
aperture θNA. Simulating the collection over the NA is crucial for making the
simulations similar to measured IR spectra. We also considered accounting for the
focusing optics in our simulations as well, but found that this didn’t improve our
results significantly and since it makes the simulations slower we opted for not
including focusing optics in our simulations. We now have the total lost radiation
at the numerical aperture of the detector as QNA

ext ¼ CQabs þ QNA
sca, where the

parameter C determines the ratio of absorption to scattering in the measured

spectrum. This gives the absorbance as A ¼ � logð1� g
G Q

NA
ext Þ where g is the cross

section of the sample and G is the size of the detector. This is what the IR
spectrometer measures. Finally, we note that αð~νÞ is related to the absorbance A for
scatter-free spectra by the Beer–Lambert law which states that in that case, the
absorbance is linear to the molecular absorption, concentration of the absorbing
species and optical path length. We can then find the complex refractive index
from the molecular absorption αð~νÞ through Kramer’s–Kronig relation as

=fnð~νÞg ¼ lnð10Þ
4π~νd

αð~νÞ ð3Þ

<fnð~νÞg ¼ n0 þ
c
π
P
Z 1

0

αðΩÞ
Ω2 � ~ν2

dΩ ð4Þ

where P denotes the Cauchy principal value of the integral and c and d scaling
parameters, relating to the optical path length and n0 is the constant, real part of
the refractive index which we call the effective refractive index. Generally, n0 is a
function of wavelength, but in the infrared region, it is usually considered to be
constant.

Simulating IR spectral data. We implement a framework for simulating the
scattering on samples, as described above, where we calculate the scattering
amplitudes S1=2ðθ; ϕÞ and ultimately the loss of radiation measured at the detector
for different distributions of complex refractive index in the concentrically sphe-
rical samples.

There are numerically stable algorithms which can calculate the scattering
amplitude matrices on concentric spheres, and we implement the scheme as
described in ref. 35 and can thus seamlessly simulate the scattering on multilayer
concentric spheres. We let the chemical absorption of the different layers of the
sphere vary, that is we allow the shell and the center of the sphere to be chemically
distinct. To simulate the chemical absorption we decompose several sets of IR
scatter-free spectra by finding their principal component loadings, which we then
can use to sample from the latent spaces defined by the sets of spectra. We used
~1900 spectra from 12 different data sets, made different combinations of these
spectra and created about 180 different PCA latent spaces. The spectra were
interpolated to a common wavenumber range with 737 spectral channels between
3844 and 1006 cm−1.

These sets of spectra used in the different decompositions include absorption
spectra of several species of fungi, algae and pollen, lung biopsy spectra and spectra
of pure agar, amylose, several lipids, chitin, glucan, gluten, etc. These spectra are
decomposed in several different combinations, and we have a total of
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approximately 180 chemically different latent spaces to sample the molecular
absorption from.

We simulate scatter-distorted spectra for a large span of radii a∈ [1.25 and
20 μm] and effective refractive indices n0∈ [1.3, 1.6], and since simulated
molecular absorption spectra represent a very wide range of chemical signals this
ensures that the model will be applicable to a large amount of measured IR spectra.

We also augment our spectra with some other effects often found in measured
IR spectra to make the model generalize well to measured spectra, such as
atmospheric CO2-peaks in the inactive region where biological samples do not
absorb (~ν � 2200� 2500 cm�1), Gaussian noise, some baseline effects and some
small local perturbation of the radii for different wavenumbers and smoothing to
suppress ripples in the spectra, since ripples are rarely seen in measured spectra,
but are generally present in simulations of perfectly concentrically spherical
samples. We also use slightly varying numerical apertures in our simulations since
we wish our model to work for spectra from different spectrometers, and we also
add some small constant imaginary part to the refractive index representing diffuse
attenuation of light traveling through the sample. We can now realistically simulate
arbitrarily many measured absorbance spectra, which are used for training
the model.

Deep convolutional neural network. The idea underpinning our model and its
architecture is seen in Fig. 1. We employ a model consisting of three parts for 3D
IR volumetric imaging. Firstly, an Inverse Scatter Encoder, a 1D DCNN solves the
ISP and extracts the chemical information about absorption from molecular groups
as well as the physical properties of the system, i.e., the effective refractive index
and the morphology. This part of the model starts with several blocks of attention-
augmented convolutions (aCNN)36, batch-normalization (BN) and pooling layers,
and finally a fully-connected layer which decomposes the measured spectrum into
the latent space.

We used a convolutional network as such models have been shown to
successfully separate physical and chemical information in measured IR spectra
through the sequential application of local convolutions12,13. However, we also
include an attention mechanism37 to our CNN in order to explicitly include global
spectral information in our model, which we expect to be useful for extracting the
scattering features which are present over the whole spectral domain. We found
that when the attention mechanism is not included in the model architecture, its
performance significantly diminished.

Secondly, we employ a ShapeNet—a 3D DCNN which is trained to represent
the distribution of the effective refractive indices in 3D space—and two 1D DCNNs
which predict the molecular absorption of the two distinct regions in the sample.

The ShapeNet consists of several 3D transpose convolutional layers, which infer
the underlying morphology and the distribution of the effective refractive index,
whereas the two networks predicting molecular absorption consist of aCNN, BN
and unpooling layers which rebuild the molecular absorption spectra of the cell
interior and the cell wall.

The model is trained in two phases, firstly we train the Inverse Scatter Encoder
to be able to decompose measured spectra and to predict the radius, cell wall
thickness and the real, constant parts of the refractive index of the samples, as well
as the pure spectra. That is, we start with a simpler 1D CNN instead of the
ShapeNet, where we let the model infer the optical properties in their
parameterized form instead of the full 3D distribution, due to computational
efficiency.

Thereafter, we use the same model but swap the parameter prediction part of
the network with the ShapeNet which predicts the 3D distribution of optical
parameters. The ShapeNet has been pre-trained as a 3D convolutional
Autoencoder to encode 3D concentric spheres, where the decoder of the trained
Autoencoder is extracted as the ShapeNet, which significantly speeds up the
training of the ShapeNet. We represent the morphological and optical properties of
the samples as three-dimensional matrices, where each voxel’s value represents the
value of the refractive index at that point, where we set the refractive index around
the sample to be zero to clearly delineate the morphology of the sample from the
surroundings. The reason for using the full ShapeNet and not merely predicting the
simple parameters of the samples is that the former method generalizes easily to
samples which cannot be parameterized as easily. So, it is a proof-of-concept which
demonstrates that we can infer the three-dimensional distribution of the complex
refractive index.

As a cost function for the prediction of molecular absorption, we use a
combination of the mean squared error (MSE) and the Pearson correlation
coefficient. The MSE cost function forces the absolute error to be minimized, while
the Pearson coefficient minimizes the correlation between the two signals. As for
spectral IR microscopic absorbance data, the relative peak heights are the most
relevant type of information, the Pearson correlation coefficient is relevant since it
is invariant to changes in scale. In addition, we use the MSE cost function to be able
to compare the relative overall size of absorbance in the cell wall and cell interior.
Furthermore, we found that the MSE penalizes individual peak height anomalies
stronger than the Pearson correlation, while the Pearson correlation focus more on
the overall spectral shape. Therefore, we applied both of the two metrics as our cost
functions.

For the optical parameter prediction, we use MSE weighted to give equal
importance to the radii and the effective refractive indices. For the ShapeNet we use

the Hausdorff distance D(X, Y)38 as the cost function, where D(X, Y) is a metric
quantifying the distance between two subsets of a metric space. It can be defined
for two non-empty subsets X and Y of some metric space (M, d) as

DðX;YÞ ¼ max sup
x2X

inf
y2Y

dðx; yÞ; sup
y2Y

inf
x2X

dðx; yÞ
( )

ð5Þ

where the metric space in this case is the R3 and the Euclidean distance is the
metric d(x, y).

Spectral data for validation. Validation of the models is done on five different
data sets containing either FPA hyperspectral images or single-element spectra of
two types of pollen, fungal and algal cells, and PMMA samples.

Plant pollen samples included four oak (Quercus) species (Q. robur, Q. palustris,
Q. suber, and Q. rotundifolia), and one juniper (Juniperus) species (J. chinensis);
detailed information on sampling and chemistry of the samples was reported
previously39,40. Filamentous fungus Mucor circinelloides VI04473 was obtained
from the Veterinary Institute (Norwegian University of Life Sciences, Ås, Norway)
and grown in variable growth conditions, as reported previously41–43. Microalgae
Vischeria polyphem was obtained from the Culture Collection of Algae at Göttingen
University (SAG 38.84), and was cultivated in a flask at 20 ∘C, 150 rpm, under
fluorescent bulbs with light intensity 50μmol of photons m−2s−1 in BG-11
(PhytoTech USA) medium. Polymethyl methacrylate (PMMA) microspheres, with
a nominal radius of 2.75 μm, were purchased from Microspheres-Nanospheres
(Corpuscular Inc, NY), and used without further modifications.

Microscopic transmission measurements of pollen and algal samples were
performed by measuring the samples on 1 mm thick zinc selenide (ZnSe) windows,
by using a Vertex 70 FTIR spectrometer with a Hyperion 3000 IR microscope
(Bruker Optik, Ettlingen, Germany), equipped with a globar mid-IR source and
15× objective. The OPUS 8.2 software (Bruker Optik GmbH, Germany) was used
for data acquisition and instrument control, background (reference) spectra were
recorded immediately before starting each measurement using the sample-free
setup, and visible images of the measured samples were obtained by a charge-
coupled device (CCD) camera coupled to the microscope. Algal, fungal and juniper
pollen samples were measured with 128 × 128 mercury cadmium telluride (MCT)
focal plane array (FPA) liquid nitrogen-cooled detector using a fully open aperture,
and were recorded with a total of 128 or 256 scans in the 3850− 900 cm−1 spectral
range, with a spectral resolution of 8 cm−1, and digital spacing of 3.851 cm−1. Oak
pollen samples were measured with a single element MCT liquid nitrogen-cooled
detector using a square aperture of 30 × 30 μm2 size, and were recorded with a total
of 128 scans in the 7000− 600 cm−1 spectral range, with a spectral resolution of
2 cm−1, and digital spacing of 0.964 cm−1.

Microscopic transmission measurements of fungal samples were performed by
measuring the samples on 1 mm thick zinc sulfide (ZnS) windows, by using a Cary
670 FTIR spectrometer with a Cary 620 IR microscope (Agilent Technologies,
Santa Clara CA, USA), equipped with a globar mid-IR source and 2× objective. The
Resolutions Pro software (Agilent, Santa Clara CA, USA) was used for data
acquisition and instrument control, background (reference) spectra were recorded
immediately before starting each measurement using the sample-free setup, and
visible images of the measured samples were obtained by a CCD camera coupled to
the microscope. The samples were measured with 128 × 128 mercury cadmium
telluride (MCT) focal plane array (FPA) liquid nitrogen-cooled detector using a
fully open aperture, and were recorded with a total of 128 scans over the
3950− 850 cm−1 spectral range, with a spectral resolution of 4 cm−1, and digital
spacing of 1.928 cm−1.

The HTS-FTIR measurements of glyceryl trioleate and extracted cell wall from
Mucor circinelloides were performed using the high throughput screening extension
(HTS-XT) unit coupled to the Vertex 70 FTIR spectrometer (both Bruker Optik,
Ettlingen, Germany). The OPUS software (Bruker Optik GmbH, Ettlingen,
Germany) was used for data acquisition and instrument control, spectra were
recorded as the ratio of the sample spectrum to the spectrum of the empty IR
transparent microplate, and each sample was measured in triplicate. A total of
10 μL of glyceryl trioleate or homogenized fungal biomass was pipetted onto an IR
transparent 384-well silica microplate, and dried at room temperature for 2 h. The
HTS-FTIR spectra were recorded with an aperture of 5 mm, with a total of 64 scans
over the range of 4000− 400 cm−1, a spectral resolution of 6 cm−1, and digital
spacing of 1.928 cm−1.

Microscopic transmission measurements of PMMA sample were performed by
measuring the samples on 1-mm thick barium fluoride (BaF2) windows, by using
synchrotron radiation at the SOLEIL synchrotron facility coupled to a Nicolet 5700
FTIR spectrometer with a Nicolet Continuum XL IR microscope (Thermo
Scientific, CA, USA), equipped with a 32 × objective, single element MCT liquid
nitrogen-cooled detector using a square aperture of 10 × 10μm2 size, and were
recorded with a total of 128 scans in the 8000− 650 cm−1 spectral range, with a
spectral resolution of 4 cm−1, and digital spacing of 1.929 cm−1. The
measurements were conducted at the SMIS infrared beamline as described
previously44. The OMNIC 8.1 software (Thermo Scientific, CA, USA) was used for
data acquisition and instrument control, background (reference) spectra were
recorded immediately before starting each measurement using the sample-free
setup, and visible images of the measured samples were obtained by a charge-
coupled device (CCD) camera coupled to the microscope.
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We use binning to get one spectrum per sample for the samples which have
been measured with an FPA imaging system, that is we use the mean spectrum
over all the pixels covering our sample of interest in the image as seen in Fig. 6] for
the fungal samples. We assume that this is reasonably similar to a single-element
measurement, i.e., that not too much radiation is scattered from other samples on
the slide into the region of the objective beneath the sample of interest. We see
from Fig. 6 that this does indeed seem reasonable, since the average distance
between samples is much larger than the average size of the samples. Binning is
done such that we can get one spectrum per sample, which is possible to simulate
exactly, contrary to the situation with 2D imaging data.

Optimizing non-learned parameters. There are other unknown parameters for
measured spectra, which are not predicted by the model, most notably the scaling
parameter in the Kramers–Kronig relations, the ratio C between QNA

sca and Qabs and
baseline, linear, and quadratic effects. Therefore, we use the derivative-free opti-
mization scheme BOBYQA45 to determine these free parameters such that the
reconstructed spectra fit the measured spectra as well as possible. We note that
there is no possible set of free parameters which can, through optimization, yield
good reconstructed spectra for incorrectly predicted radii and refractive indices.
We verify this by setting the radii and refractive indices randomly and optimizing
for the free parameters and confirm that the reconstruction, in this case, does not
work very well. The Pearson correlation between measured and predicted para-
meters from reconstructed spectra were on average r= 0.97, and when we ran-
domly selected the parameters it dropped to r= 0.92. If we also randomly select the
molecular absorption spectra the Pearson correlation drops to about r= 0.88.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study could be made available upon reasonable
request to the corresponding author via e-mail. Some of the main data used has been
archived at https://doi.org/10.5281/zenodo.7386709.

Code availability
The code developed in this work is available upon request to the corresponding author
via e-mail. The main codebase used to develop and train the models can be found at
https://github.com/eirikama/sirisp.
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