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Hyperspectral imaging has recently gained increasing attention from academic and
industrial world due to its capability of providing both spatial and physico-chemical
information about the investigated objects. While this analytical approach is
experiencing a substantial success and diffusion in very disparate scenarios, far less
exploited is the possibility of collecting sequences of hyperspectral images over time for
monitoring dynamic scenes. This trend is mainly justified by the fact that these so-called
hyperspectral videos usually result in BIG DATA sets, requiring TBs of computer memory
to be both stored and processed. Clearly, standard chemometric techniques do need to
be somehow adapted or expanded to be capable of dealing with suchmassive amounts of
information. In addition, hyperspectral video data are often affected by many different
sources of variations in sample chemistry (for example, light absorption effects) and sample
physics (light scattering effects) as well as by systematic errors (associated, e.g., to
fluctuations in the behaviour of the light source and/or of the camera). Therefore,
identifying, disentangling and interpreting all these distinct sources of information
represents undoubtedly a challenging task. In view of all these aspects, the present
work describes a multivariate hybrid modelling framework for the analysis of hyperspectral
videos, which involves spatial, spectral and temporal parametrisations of both known and
unknown chemical and physical phenomena underlying complex real-world systems.
Such a framework encompasses three different computational steps: 1) motions ongoing
within the inspected scene are estimated by optical flow analysis and compensated
through IDLE modelling; 2) chemical variations are quantified and separated from physical
variations by means of Extended Multiplicative Signal Correction (EMSC); 3) the resulting
light scattering and light absorption data are subjected to the On-The-Fly Processing and
summarised spectrally, spatially and over time. The developed methodology was here
tested on a near-infrared hyperspectral video of a piece of wood undergoing drying. It led
to a significant reduction of the size of the original measurements recorded and, at the
same time, provided valuable information about systematic variations generated by the
phenomena behind the monitored process.
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1 INTRODUCTION

1.1 Hyperspectral Videos
In the last decade, hyperspectral imaging has experienced a
significant diffusion mainly because of its capability of
providing spatial and physico-chemical information about the
systems under study - Hugelier et al. (2020). By returning whole
spectra for all scanned pixels, in fact, a hyperspectral image
permits to map the distribution of the constituents of the
investigated samples all over the inspected field of view. For
this reason, the applications of this analytical approach have lately
dramatically increased in many domains of interest, like
medicine, forensics, geoscience, urban and environmental
surveillance and fire detection—Fischer and Kakoulli (2006);
Chuvieco and Kasischke (2007); Hay et al. (2011); Matikainen
and Karila (2011); Elmasry et al. (2012); Lu and Fei (2014); Silva
et al. (2017); Khan et al. (2018); Vitale et al. (2020a).

Nonetheless, although hyperspectral imaging devices have
become rather common tools in both academic and industrial
chemistry laboratories, they are rarely configured so as to collect
series of hyperspectral images over time for dynamic scene
monitoring. There are two reasons behind this tendency: first
of all, finding a reasonable compromise between spatial and
spectral resolution and recording rate is not an easy and
straightforward task; second, these so-called hyperspectral
videos often translate into BIG DATA sets that can hardly be
coped with by methodologies commonly resorted to for the
analysis of individual hyperspectral images—for instance,
Principal Component Analysis (PCA), Pearson (1901);
Hotelling (1933), Partial Least Squares regression (PLS), Wold
et al. (1983); Martens and Næs (1989), Multivariate Curve
Resolution-Alternating Least Squares (MCR-ALS), Tauler et al.
(1995), and Non-NegativeMatrix Factorisation (NNMF), Lawton
and Sylvestre (1971); Martens (1979). As an example, one can
consider that, when storing hundreds of hyperspectral data
arrays, the computer memory load is likely to increase up to
the order of magnitude of the TBs. Modern workstations cannot
readily handle such massive amounts of information and,
therefore, standard chemometric techniques do need to be
somehow adapted or extended to be possibly utilised in
similar scenarios. Furthermore, hyperspectral video data
typically account for various phenomena related to sample
physics (e.g., light scattering) and sample chemistry (light
absorbance) and can be significantly affected by many
different types of systematic errors (like those associated to
nuisance fluctuations of the light source and/or the camera).
Thus, identifying, disentangling, modelling and interpreting all
these distinct sources of variations remains undoubtedly a
challenging task.

1.2 Hyperspectral Video Analysis
Many known causal phenomena influence how light interacts
with matter. The most important ones—light absorbance and
light scattering—can even be approximated by relatively simple
models, e.g., the Beer-Lambert’s law or the Kubelka-Munck
theory—Bouguer, (1729); Lambert, (1760); Beer (1852);
Kubelka and Munk (1931). Yet, albeit some of the

aforementioned error factors affecting spectroscopic
measurements—like illumination changes—can also be easily
foreseen, a detailed mathematical characterisation of the
spectral effects they might generate would be prohibitive from
a computational point of view. For this reason, modelling and
analysing hyperspectral videos constitutes a problematic
challenge. Hyperspectral video data, in fact, yield information
about the four main ontological aspects of reality: space, time,
properties/attributes (for instance, a light intensity profile in the
near-infrared—NIR—spectral range) and their interactions.
Thus, a comprehensive description of a hyperspectral video
would require the identification and the quantification of
factors or components (both known and unknown) accounting
for spatial, temporal and spectral variation patterns in such data.
This would allow practitioners and users to gain new insights into
complex systems of high relevance and into the interplay between
the known and unknown phenomena driving their behaviour and
evolution. As an immediate example of such an interplay,
consider wood drying, a process exhibiting a deep economic
and technical impact—McMillen (1964): water absorption
properties allow, in principle, the moisture content of wood
samples to be accurately determined. However, these
properties may substantially change along with the
thermodynamic state of water molecules (i.e., free or bound)
and might even mimic spectral contributions from other wood
constituents, like cellulose, hemicellulose and lignin. In this as
well as in numerous other real-world scenarios, disentangling and
characterising the two aforementioned types of phenomena
becomes, therefore, crucial from the perspective of
understanding. In this article, a novel hybrid approach to
achieve this objective is presented. It combines three
multivariate approximation strategies for the compression and
rational handling of hyperspectral videos: IDLE
modelling—Westad and Martens (1999); Martens (2015) —
Extended Multiplicative Signal Correction (EMSC)—Martens
and Stark (1991); Martens et al. (2003)—and the On-The-Fly
Processing (OTFP)—Vitale et al. (2017b). If, on the one hand,
EMSC is a well-established tool in the chemometric community,
on the other hand IDLE modelling and the OTFP have only
recently been conceived, although they have already
demonstrated their potential for fast processing of BIG DATA
streams—Martens (2015); Vitale et al. (2017b); Stefansson et al.
(2020); Vitale et al. (2020b). For the joint analysis of spatial and
intensity changes in video recordings, IDLE splits the data
variation into two domains as expressed in the following
mathematical relation:

I � D L( ) + E (1)
by which a generic measured image (I) can be described as a
function of the displacement (D) of a local intensity image (L)
plus error (E). Imagine, for instance, that two different objects
(i.e., a black triangle and a black square—see Figure 1A) were
photographed on a white table. After 1 minute, someone moves
the first object along y, rotates it 90° and collects another picture
(see Figure 1B). After 2 minutes, a third picture is taken after the
square was painted grey (see Figure 1C). Assume now that D and
L explain simultaneously vertical displacements and clockwise
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rotations of the black triangle and variations in the black square
pixel intensities, respectively. In this simple illustration, D would
encode the triangle movement as an individual coefficient (say,
a), proportional to the dissimilarity from the object’s original
location and positioning and exhibiting a sign that depends on
the sense of its motion. Analogously, L would quantify the change
in the intensity of the pixels of the square as a positive parameter
(say, b), since the transition from black to light grey implies an
increase of the image lightness. Unexpected motions and colours
as well as the appearance of unexpected items, like the dark grey
spiral-like structure in Figure 1D, would be accounted for by the
residuals E.

Conversely, the OTFP gradually constructs reduced-rank bilinear
models that summarise virtually ever-lasting streams of multivariate
responses and capture the evolving covariation patterns among their
(spectral) variables in space and time. In other words, it represents an
extension of classical PCA designed for processing such multivariate
responses as soon as they are collected and, most importantly,
without requiring entire raw datasets to be kept in memory.
More specifically, the OTFP rests on a flexible bilinear subspace
model structure which is automatically expanded when a new
variation pattern is discovered—as for classical moving-window
PCA implementations, Makeig et al. (2000); Wang et al. (2005),
even if, here, relevance for old or past observations is never lost—or
refined when the same variation patterns are repeatedly observed,
while statistical redundancies are filtered out guaranteeing high rates
of information compression. In contrast to black-box deep learning
solutions, this PCA-like model-based approximation is graphically
interpretable in its compressed state and allows at any time the
original input to be reconstructed with a better signal-to-noise ratio
(as measurement noise is eliminated).

Here, the sequential utilisation of IDLE, EMSC and the OTFP for
the investigation of hyperspectral videos will be tested in a context
similar to that envisioned before: the monitoring of the drying
process of a wood specimen. The results of this study will highlight
how this combination can enable an accurate estimation of the
dynamic evolution of wood properties and how relatively simple
quantitative spatial and temporal information can be extracted from
a seemingly overwhelming stream of hyperspectral video data by
coupling different mathematical modelling techniques.

1.3 Hyperspectral Video Data Structure
Hyperspectral videos can be regarded as time series of three-
dimensional data arrays (hyperspectral frames or snapshots) with
dimensions Nx × Ny × J, where Nx and Ny denote the number of
pixels scanned along the horizontal and vertical direction,
respectively, and J the number of wavelength channels
sampled by the equipment employed. More broadly speaking,
they can be thought of as the product of the concatenation of
these arrays along a fourth time-related measurement mode. In
spite of their multidimensional structure, hyperspectral video
data are usually analysed in their unfolded form, i.e. as matrices of
size NxNyK × J with K representing the amount of time points at
which the aforementioned frames are collected. Each row of such
matrices carries a single spectral profile recorded for an individual
pixel at a given time point.

2 METHODS

In this article, EMSC and the OTFP are applied in a sequential
fashion to assess/discover and quantify known and unknown

FIGURE 1 | Schematic representation of the basic principles of IDLEmodelling. (A)Reference image, (B) Test image n.1, (C) Test image n.2 and (D) Test image n.3.
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sources of data variability in hyperspectral videos. This strategy
combines mechanistic and empirical multivariate modelling for
describing all physical, chemical and instrumental variation
patterns behind hyperspectral video recordings. In order to
account for and compensate possible motions and pixel
intensity changes which could originate complex non-
linearities distorting the measured spatiospectral response,
optical flow analysis—Horn and Schunck (1981, 1993)—and
IDLE are applied in a preliminary preprocessing step.

The next sections will describe in detail the basics of the three
different methodologies exploited here.

2.1 IDLE Modelling
Broadly speaking, the IDLE model is a mathematical description
of real-world objects or scenes (characterised by spatiotemporal
measurements like videos) in terms of their intensity and spatial
variations. Here, IDLE is utilised as an empirical compression
approach for sets of consecutive video frames, yielding high
compression rates and, at the same time, enabling qualitative
and quantitative data interpretation. IDLE is based on a three-
step methodological procedure:

1. first of all, it segments out each of the relevant, independent
objects (so-called holons) within a particular scene;

2. then, for each holon it estimates both D (accounting for
motions and shape changes) and L, relative to a fixed, user-
defined reference frame;

3. finally, it morphs back the holons in the investigated image to
their spatial shape and location in the reference image. This
facilitates a compact subspace modelling of both
displacements and intensity changes.

2.1.1 Motion Estimation and Motion Compensation
IDLE modelling concerns how to reduce the complexities that arise
when modelling objects that both move and change intensity (or
spectral profile) at the same time. Imagine, for instance, a video
composed of K grey-scale images (I1, I2, . . . , Ik, . . . , IK) of size Nx ×
Ny depicting certain objects whose shape and brightness varies over
time. Let Iref be one of these images, chosen to define a common
reference for all the other ones. Analogously, let O ref (Nx × Ny × 2)
define the horizontal and vertical pixel coordinates (or pixel
addresses) at which these objects are visible in Iref. The reference
intensity image at pixel adressesO ref is then Iref ,O ref

. At this point, the
objects in the scene setting captured by each video frame, Ik, can be
described with respect to how they look in Iref. Neglectingmotions, at
time k, the local intensity-corrected version of Iref ,O ref

can be
expressed as:

Lk,O ref
� Iref ,O ref

+ ΔIk,O ref
(2)

with ΔIk,O ref
(Nx × Ny) carrying the image intensity deviations

from Iref ,O ref
.

Likewise, the pixel adresses where the objects from Iref are
observable in Ik become:

O k � O ref + ΔO k (3)

where ΔO k (Nx × Ny × 2) contain the so-called horizontal and
vertical motion fields indicating how every pixel in Ik should be
displaced so that the objects in Ik mimic their shape and location
in Iref. Hence, merging Eqs (2), (3), the IDLE model for the kth
frame can be written compactly as a function of how its intensity
has changed (ΔIk,O ref

) and how it has moved (ΔO k) compared to
the reference one:

Ik,O k
� Ik,O ref+ΔO k

� Iref ,O ref
+ ΔIk,O ref

� Lk,O ref
(4)

According to this notation, the terms I, D and L in Eq. (1)
would correspond to Ik,O k

, ΔO k and Lk,O ref
, respectively.

From a practical perspective, ΔO k can be obtained by motion
estimation—Horn and Schunck (1981, 1993)—comparing Ik and
Iref. This allows one to morph the objects from where they were
located in Ik back to their pixel addresses in O ref and to their
intensity at time k relative to Iref (Lk,O ref

). The intensity changes,
ΔIk,O ref

, as well as the motion fields ΔO k are all given in the
coordinate system of Iref, i.e., O ref .

2.1.2 Dual-Domain Bilinear Modelling of a
Hyperspectral Video
Even when a hyperspectral video is handled, all the
wavelength channels must follow the same spatial
displacement at each time k. For this purpose, the unfolded
vertical and horizontal motion fields, ΔoTk (1 × 2NxNy), can be
estimated from an optimised combination of such channels,
gathered column-wise into the matrix ΔO (K × 2NxNy),
modelled bilinearly as

ΔO � TΔOP
T
ΔO + ET

ΔO (5)
and applied to each entire hyperspectral frame. Here, TΔO (K ×
AIDLE) contains the projection coordinates of ΔO on the
directions defined by the columns of PΔO (2NxNy × AIDLE)
and EΔO (K × 2NxNy) carries the corresponding residuals not
explained at the chosen rank, AIDLE < 2NxNy.

Compact, low-dimensional bilinear models often summarize
quite well the motions in ΔO when they are defined in the same
reference coordinate system. Also the unfolded intensity images
ΔiTk,O ref

(1 × NxNy) may be well approximated in a similar fashion
if expressed in a common coordinate system:

ΔIO ref
� TΔIO ref

PT
ΔIO ref

+ EΔIO ref
(6)

with ΔIO ref
(K × NxNy) being the 2D array resulting from the

column-wise concatenation of each ΔiTk,O ref
vector.

Rewriting Eq. (4) in vectorial form, the aforementioned
morphing operation can be therefore expressed for the kth
video frame as:

iTk,O k
� iTk,O ref+ΔO k

� iTk,oT
ref
+ΔoT

k
� iT

k,oT
ref
+ tT

k,ΔOP
T
ΔO+eTk,ΔO( )

� iTref ,O ref
+ tTk,ΔIO ref

PT
ΔIO ref

+ eTk,ΔIO ref
(7)

where tTk,ΔO, e
T
k,ΔO, t

T
k,ΔIO ref

and eTk,ΔIO ref
denote the kth row vectors

of TΔO, ET
ΔO, TΔIO ref

and EΔIO ref
, respectively. Refolding is finally

required for the sake of representation.
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2.2 Extended Multiplicative Signal
Correction
EMSC is a bilinear modelling approach that permits to separate,
quantify and correct for distinct types of known chemical and
physical data variation sources in the acquired signal profiles. As
applied in this article, EMSC assumes that a generic spectrum, x
(of dimensions J × 1) can be mathematically described as:

x � b r +∑
i

Δcisi⎛⎝ ⎞⎠ + a1 + df + gf2 + e (8)

where b is the effective relative pathlength; r (J × 1) is a
predetermined reference spectrum; Δci and si (J × 1) denote
the presumed concentration/abundance contribution and the
spectral fingerprint of the ith main constituent of the system
under study, respectively; 1 (J × 1) is a column vector of ones; f
(J × 1) contains values monotonically increasing from −1 to 1; a, d
and g constitute a set of coefficients; and e (J × 1) carries the
unmodelled residuals (i.e., unmodelled chemical and/or physical
variations as well as random measurement noise) resulting from
this approximation.

Altogether, 1, f and f2 connote polynomial model dimensions
accounting for smoothly wavelength-dependent phenomena
(baseline level, slope and curvature, respectively).

Given hi � bΔci(∀i), the unknowns in Eq. (8) can be retrieved
by Ordinary or Weighted Least Squares (OLS/WLS) as:

b h1 . . . hI a d g[ ] � xTWEMSCWEMSCM MTWEMSCWEMSCM( )−1
(9)

where M � [r s1 . . . sI 1 f f2] and WEMSC (J × J) is a diagonal
matrix of weights associated to the different sampled spectral
channels1.

Since the constituent profiles, si, are a required input for EMSC
processing, this methodology has been chosen for describing
expected variation patterns evolving all over the duration of a
hyperspectral video.

Once the EMSC coefficients have been calculated as in Eq. (9),
they can be exploited for pretreating the input spectrum, x, in
order to filter varying light scattering effects as:

xp � x − a1 − df − gf2( )
b

(10)

with p standing for preprocessed. In the present application of EMSC,
the estimated chemical variations will also be subtracted from x as:

xp � x − a1 − df − gf2 −∑ihisi( )
b

� x − a1 − df − gf2( )
b

−∑
i

Δcisi (11)

Finally, if EMSC residuals are deemed to be affected by the
effective optical pathlength of the sample, they can be
computed as:

e � x − br −∑
i

hisi − a1 − df − gf2

� x − b r −∑
i

Δcisi⎛⎝ ⎞⎠ − a1 − df − gf2 (12)

Pathlength-corrected residuals are subsequently
estimated as:

~e � b−1e (13)

2.3 The On-The-Fly Processing
After the IDLE-based motion estimation-compensation and
the quantification-correction of known physical and chemical
variations by EMSC preprocessing, the resulting unmodelled
residuals are analysed by the OTFP in the attempt of looking
for unknown, yet systematic variability patterns in data. The
OTFP relies on a self-learning adaptive modelling principle
which allows massive amounts of measurement recordings
collected over time to be compressed with a minimal loss of
meaningful information according to a PCA-like bilinear
decomposition. Its global computational procedure
encompasses five different steps:

1. the raw data stream, X (of dimensions, e.g., NxNyK × J),
divided into a sequence of blocks, say Xg (Ng × J, g = 1, 2,
. . . , G), is submitted to an optional lossless knowledge-based
preprocessing stage including a linearisation—which can be
conducted by means of approaches like Standard Normal
Variate (SNV), Barnes et al. (1989), Multiplicative Scatter
Correction (MSC), Martens et al. (1983), Fast Fourier
Transform (FFT), Cooley and Tukey (1965), and wavelet
decomposition, Walczak (2000)—and a signal-conditioning
step;

2. the preprocessed data are projected onto a bilinear
subspace already established at the previous point in
time as:

Xp
g � Tp

gP
T + Ep

g (14)

with Tp
g (Ng × AOTFP) defining the projection coordinates or

scores of all the Ng observations on the basis vectors or
components defined by the columns of P (J × AOTFP) and Ep

g
(Ng × J) carrying unmodelled residuals, i.e., the fraction of Xp

g
not explained by the model at the chosen rank, AOTFP < J;

3. the projection residuals are thereafter input to a second
bilinear modelling stage aimed at detecting new
components and isolating outliers. New components are
encoded as additional subspace dimensions, whose final
number is usually selected based on the total amount of the
original data variance that is to be explained, although
alternative criteria may also be exploited—Endrizzi et al.
(2014); Vitale et al. (2017a); Vitale and Saccenti (2018). In
other words, the OTFP algorithm learns to identify and
quantify all the systematic types of covariation in the data
as they stream, while filtering out random measurement1If diag(WEMSC) � 1, the parameter estimation is carried out by OLS.
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FIGURE 2 | (A) False Red Green Blue (RGB) representation of the first hyperspectral video frame. (B) False RGB representation of the last hyperspectral video
frame. (C)Raw frame-averaged intensity data. (D) Frame-averaged absorbance-transformed data. The colour gradient (from light to dark grey) follows the time evolution
of the hyperspectral video. Notice that the absorbance values measured at 980, 1,138 and 1,302 nm were used to generate (A) and (B).

FIGURE 3 | Schematic flowchart of the hyperspectral video processing and analysis framework proposed in this article.
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errors and irrelevant outliers (if they do not contribute to
the definition of a new pattern of variation);

4. at regular intervals, the OTFP model is refined and updated;

5. pretreatment as well as model parameters (i.e., OTFP scores
and loadings) are stored as output. At any time, they can be
either used to reconstruct the original data, e.g., for

FIGURE 4 | IDLE modelling: (A) displays the reference video frame; (B-F) contain (from left to right) the representation of five different snapshots collected over the
entire duration of the monitoring experiment (n. 2—sample weight: 6.10 g; n. 6—sample weight: 5.88 g; n. 21—sample weight: 5.06 g; n. 29—sample weight: 4.62 g; n.
40—sample weight: 4.01 g), of the motion fields yielded by their optical flow analysis highlighting how individual pixels shifted compared to the reference image, of the
motion-compensated frames morphed in order to mimic the target one and of the intensity deviations between the motion-compensated and the reference
snapshots. Notice that IDLE was applied to grey-scale images, obtained by averaging the preprocessed absorbance values (see Section 4.1) at 1,024, 1,195 and
1,309 nm, respectively.
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visualisation, or exploited in their compressed form for
efficient storage and transmission, human graphical
interpretation and quantification.

A survey of the operational principles of the OTFP is provided
in Vitale et al. (2017b).

3 DATASET

As model system, a piece of wood of the species Norway Spruce
(Pincea abies) was submerged in water and soaked for
approximately 24 h. Thereafter, it was placed on a digital
scale for tracking in real time the variation of its weight and
its drying process was monitored by means of a hyperspectral
line scan camera (Specim, Oulu, Finland) automatically
capturing reflectance images between 930 and 2,200 nm.
More specifically, the sample was scanned at regular time
intervals, i.e., each time a decrease of around 0.05 g was
observed (initial weight: 6.16 g—see Figure 2A; final weight:
3.90 g—see Figure 2B; total number of hyperspectral images:
42). The sample was illuminated by two halogen lamps
positioned on the two sides of the hyperspectral device and
never moved during the whole duration of the experiment. A
region of interest of 150 × 225 pixels was segmented within each
frame, which finally resulted in the generation of a four-
dimensional dataset of size 150 × 225 × 42 × 200 (see also
Section 1.3) and in a memory load of roughly 2.3 GB (double-
precision floating-point format).

Although these data were already investigated before—Vitale
et al. (2020b)—here, the key role of the linearisation of the
instrumental response across space provided by the IDLE
approach and its fundamental impact on the assessment and
interpretation of the temporal variations of the water signal
contributions will be explored.

4 RESULTS AND DISCUSSION

A flowchart schematising the general hyperspectral video analysis
framework proposed in this work is provided in Figure 3.

4.1 Spectral Response Linearisation and
Frame Greyscale Conversion
In order to compensate the wavelength-dependent variations
associated to the light source, the intensity values registered at
each jth wavelength and at each nx × ny-th pixel of the kth video
frame, Inx,ny,k,j, were first converted into reflectance units as in :

Rnx,ny,k,j �
Inx,ny,k,j − Inx,ny,j,d( )
Inx,ny,j,w − Inx,ny,j,d( ) (15)

with Inx,ny,j,d and Inx,ny,j,w the intensity recorded at the jth
wavelength and at nx × ny-th pixel for a dark reference and a
white reference (a Spectralon sample), respectively. Thereafter, theywere
transformed into apparent absorbance (that is to say, linearised with
respect to the chemical response) according to the following relation:

Anx,ny,k,j � log
1

Rnx,ny,k,j
( ) � xnx,ny,k,j (16)

An example of raw and absorbance-converted spectral
profiles is provided in Figure 2C,D, which highlight the
presence of strong baseline variations probably caused by
fluctuations in the illumination conditions or in the angular
distribution of the reflected light. In order to minimise the bias
that such fluctuations (unrelated to sample motions2) may induce in
the IDLE-based quantification and compensation, an additional

FIGURE 5 | First and second principal component scores and loadings resulting from a bilinear decomposition of the (A-C) horizontal and (D-F) vertical motions
quantified for the 42 hyperspectral video frames at hand. The black solid line follows the temporal evolution of the experiment. The reference snapshot (n. 42—the last
one of the sequence) is easily recognisable as it exhibits scores coordinates equal to [0, 0] (i.e., no motions were estimated for it). The black areas around the loadings
images contain pixels excluded from the computational procedure as they underwent an excessively large displacement with respect to frame n. 42. EV stands for
Explained Variance.

2For example, those due to water diffusion.
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two-step pretreatment procedure was executed prior to the
successive data processing stage:

1. the spectra associated to the pixels of each video frame were
pretreated according to an EMSC model similar to the one
in Eq. 8 and encompassing the profiles of two known
components: dry wood3 (reference) and pure water4.
WEMSC was set equal to the identity matrix. More
specifically, the correction performed for the nx × ny-th
pixel of the kth video frame can be expressed as:

xpnx,ny,k �
xnx,ny,k − ak1 − dkf − gkf

2( )
bk

− hk,waterswater (17)

with ak, dk, gk, bk and hk,water being estimated as in Eq. (9) from
the kth frame mean spectrum;

2. at each time point, a grey-scale image, Ik, was then obtained by
averaging, for every pixel, the resulting absorbance values at

1,024, 1,195 and 1,309 nm (at these wavelengths, the frame-
averaged spectra in Figure 2D exhibited the lowest standard
deviation). In order to compensate dissimilarities among the
intensity cumulative histograms of the various snapshots, these
final estimates were ultimately level- and range-adjusted as:

Ipk � Ik − ~Ik( )RMSref
RMSk

+ ~Iref (18)

where ~Ik and ~Iref are the median intensity values within the kth
and the reference frame (n. 42—sample weight: 3.90 g),
respectively, while RMSref and RMSk represent the root-
median-squared deviation of the pixel intensities in Iref and Ik
from their corresponding median values.

4.2 IDLE Modelling
The level- and range-corrected grey-scale images output by the
algorithmic procedure outlined in Section 4.1 were then
subjected to IDLE modelling. Figure 4 summarises the
outcomes of the motion estimation-compensation step:
Figure 4A displays the reference video frame, while, for the
sake of illustration, Figure 4B–F contain (from left to right) the
representation of five other snapshots collected over the entire
duration of the monitoring experiment, of the motion fields

FIGURE 6 | Schematic representation of the EMSC-OTFP analysis pipeline. (A) Example of hyperspectral video data structure. (B) EMSC modelling. (C) OTFP
modelling.

3Calculated as the average profile of the last video frame.
4Measured in reflectance mode by a Nicolet 6700 FT-NIR instrument (Thermo
Scientific Inc., Madison, WI, United States) at the same nominal resolution and
within the same spectral range as for the hyperspectral video data dealt with in this
study and, then, converted into absorbance units.
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FIGURE 7 | (A-E) Characteristic (absolute max-normalised) spectral profiles submitted to the EMSC computational procedure. The first three represent a typical
choice for EMSC modelling as they allow baseline offset, slope and quadratic curvature to be estimated for all the spectra or pixels of the hyperspectral video and
compensated before the subsequent On-The-Fly Processing. The last two correspond to the spectra of dry wood and pure water, the two main constituents underlying
the specific scene at hand. (F-J) Time evolution of the frame-averaged EMSC coefficients (rescaled to compensate the aforementioned absolute max-
normalisation) associated to the sources of variation explained by the spectral profiles in (A-E).
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yielded by their optical flow analysis highlighting how individual
pixels shifted compared to the reference image, of the motion-
compensated frames morphed in order to mimic the target one
and of the intensity deviations between the motion-compensated
and the reference snapshots. As one can clearly see, except for
minor edge artefacts, the aforementioned motion fields show how the
wood sample horizontally squeezed as it dried and how such
horizontal movements significantly decreased at the latest stage of
the video recording (i.e., when low amounts of water were present in
the pores between wood fibres and compression finally slowed down
or stopped). This is also corroborated by the gradual reduction of the
number of pixels whose motions could not be properly estimated by
IDLE (see the black areas surrounding the motion-compensated
frames) because of their relatively large displacement with respect
to snapshot n. 425. Notice that these pixels did not undergo EMSC-
OTFP processing. Moreover, minimal intensity-deviation-from-target
valueswere observed after image compensation, confirming thatwood
spatial variations were successfully corrected for.

In order to get additional insights into the nature of such
spatial variations along time, the quantified horizontal and
vertical motions—retrieved from all the calculated motion
fields and concatenated as detailed in Martens (2015)—were
analysed by PCA. The resulting temporal scores and spatial
loadings are graphed in Figure 5.

While vertical shifts appear to follow a random trend (see
Figure 5D) and might be looked at as mainly due to sideways
camera or measurement stage bumps (loadings values are also
more or less homogeneously distributed all over the inspected field
of view—see Figures 5A,E,F) a smoother and more structured
evolution was found for the horizontal ones, which further
substantiates what stated before about wood squeezing. Horizontal
motion scores (see Figure 5A) seem to point out the occurrence of a
two-phase process during which compression initially proceeds
faster and finally decelerates. Horizontal motion loadings along
the first principal component (see Figure 5B) emphasise the
differences between the movements of the pixels of the left and

the right side of the image, while those along the second
principal component (see Figure 5C) permit to distinguish
the distinct behaviour of lateral and central pixels.

4.3 EMSC Modelling
If on the one hand the IDLE approach is capable of quantifying and
compensating the movements of a sample observed throughout a
hyperspectral video (thus, enhancing the spatial linearity of the
instrumental response), on the other hand the combined use of
EMSC and the OTFP can enable the identification and retrieval of
the most meaningful sources of information from the time series of
resulting motion-free hyperspectral images.

The EMSC-OTFP analysis pipeline is schematically outlined
in Figure 6.

Both EMSC and the OTFP are bilinear modelling techniques that
can be utilised in an adaptive- or recursive-like way without requiring
entire raw datasets to be kept in memory. The main difference
between them regards their respective subspace definition. The
matrix M (see Eq. 9 and Figure 6B), in fact, is manually
constructed by the user based on a priori knowledge about the
system or the sample under study, which renders EMSC an ideal
methodology for extracting and describing expected variation patterns
evolving during the progression of a hyperspectral video. On the other
hand, P (see Eq. 14 and Figure 6C) is automatically learnt by the
OTFP algorithm which gradually discovers (in real time) all the
sources of systematic variation underlying the data at hand.
Consequently, applying sequentially 1) EMSC to the (unfolded)
motion-corrected data and 2) the OTFP to the resulting EMSC
residuals yields two additive models accounting for both known
and unknown phenomena driving the generation mechanism of
hyperspectral videos and providing a detailed global overview of
the captured dynamic scene.

Here, in a first step, the five profiles in Figure 7A–E were input to
the EMSC algorithmic procedure: as also briefly outlined before, the
first three constitute a standard choice for EMSC modelling as they
permit to estimate and compensate baseline offset, slope and quadratic
curvature for all the pixels of the hyperspectral video before the
subsequent application of the OTFP. The last two profiles, instead,
correspond to the spectra of dry wood (reference) and pure water, the
two major constituents of the specific scene at hand. Representing the

FIGURE 8 | (A) Frame-averaged EMSC-corrected absorbance data. (B) Frame-averaged EMSC residual profiles. The colour gradient (from light to dark grey)
follows the time evolution of the hyperspectral video.

5In fact, the higher the time difference between frames, the larger the distance that
the pixels at the borders of these frames covered due to wood squeezing.
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time trend of the coefficients yielded for each one of these expected
sources of data variability (averaged across all the pixels within every
original video frame after motions were compensated, see Figures
7F–J) is a simple and immediate way to visualise and assess the

information returned by EMSC and somehow characterise the
dynamic evolution of known variability patterns during wood
drying. From such graphs, one can easily observe that most of the
modelled wood features change quite rapidly within the first stage of

FIGURE 9 | (A-D) Pseudo-spectral (absolute max-normalised) loadings profiles retrieved by the OTFP computational procedure. (E-H) Time evolution of the frame-
averagedOTFP scores (rescaled to compensate the aforementioned absolutemax-normalisation) associated to the sources of variation explained by the loadings profiles in (A-D).
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the drying process. This may be due to the residual presence of a thin
liquidwater film on the surface of thewood sample at the beginning of
the hyperspectral monitoring, which could have cloaked its spectral
properties. Figure 7J also highlights that moisture loss was still
proceeding when the experiment was interrupted. Conversely,
regarding the wood contribution itself, an approximately constant
increasing trend over time was observed. This behaviour accurately
reflects the chemical nature of the sample drying which might have
been clearly unveiled here because its continuous physical contractions
were directly and explicitly accounted for, significantly reducing the
spatial complexity of the considered video data. It goes without saying,
then, that exploiting simultaneously both spectral and spatial
information encoded in hyperspectral videos can significantly
enhance the comprehension and understanding of the physico-
chemical phenomena behind complex real-world systems.

4.4 OTFP Modelling
After the EMSC compensation (see Figure 8A), the resulting
residual profiles (see Figure 8B) were submitted to the OTFP for
automatically retrieving all the systematic sources of variation left
unmodelled by the first data analysis steps6.

Even if the interpretation of the OTFP output may seem more
complicated due to the fact that the OTFP subspace features PCA-
like orthogonal bases, smooth and rather well-defined time trends
were found for the frame-averaged OTFP coefficients or scores (see
Figure 9E–H). Such time trends highlight the existence of at least
two structured phases in the process of wood drying. Consider, for
example, Figure 9F: an initial fast transition from negative to
positive scores values can be observed followed by a smoother
descendant evolution approximately plateauing at around 0. Given
also that most of the OTFP loadings profiles in Figure 9A–D show
large contributions associated to the main water absorption
regions, one can reasonably envision the occurrence of more
complex phenomena directly related to the thermodynamic
state of water itself (i.e., free or bound).

4.5 Data Reconstruction and
Postprocessing
For a tentative exploration of the thermodynamic phenomena
mentioned in Section 4.4, the pathlength-corrected absorbance
spectra, obtained by reconstructing and averaging the 42 motion-
compensated hyperspectral video frames after EMSC and OTFP
processing (see Figure 10A), were decomposed by standard PCA
and graphed in the scores plot in Figure 10B. This plot clearly
highlights the occurrence of a two-phase transition process

FIGURE 10 | (A) Representation of the frame-averaged motion-compensated data, frame-averaged data reconstructed after the IDLE, EMSC and OTFP analysis
and reconstruction residuals. (B) Two-dimensional scores plot resulting from a PCA decomposition of the (pathlength-corrected) frame-averaged reconstructed data.
Archetypal frames are highlighted in light grey and connected by a dashed-dotted grey line. The evolution of the scores from right to left follows the hyperspectral video
progression from its beginning to its end. (C) First and (D) second component loadings yielded by the aforementioned PCA decomposition. PC and EV stand for
Principal Component and Explained Variance, respectively.

64 OTFP components were required to explain around 80% of the EMSC residual
variance.
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during wood drying affecting mainly the water bands of such NIR
spectra (see the loadings in Figures 10C,D) and characterised by
10 archetypal time instants (see the grey dots in Figure 10B)—
Ruckebusch et al. (2020). Figures 11, 12 provide an illustration of
the distribution of the EMSC coefficients and the OTFP scores
over the surface of the wood sample at three of these time instants.
This representation allows assessing the aforementioned

transition process at a spatial level: overall, the coefficient
spatial distribution seems to get smoother as the experiment
evolves, which might be explained in the light of the continuous
migration/diffusion of water molecules through the pores of the
wood specimen (see, e.g., Figure 12D–F). However, all these
aspects will be investigated in future research also by means of
more rational subspace axis rotations—performed, for instance,

FIGURE 11 | Spatial representation of the EMSC coefficients related to the EMSC components n. 1—(A-C)—n. 2—(D-F)—n. 3—(G-I)—n. 4—(J-L)—and
n. 5—(M-O)—for three of the 10 archetypal frames highlighted in Figure 10B. The black areas around the loadings images contain pixels excluded from the
computational procedure.
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by varimax, Kaiser (1958), Independent Component Analysis
(ICA), Comon (1994); Hyvärinen et al. (2001), or MCR-
ALS—aimed at optimising the meaningfulness of the OTFP
factors from a physico-chemical perspective.

5 CONCLUSION

Hyperspectral videos generate a lot of informative data.
However, these data require efficient mathematical
modelling for being reliable, understandable and
quantitatively interpretable. Here, a general framework by
which hyperspectral videos can be analysed was proposed.
The three computational steps of this framework result in a
compact multi-domain hybrid subspace modelling approach,
involving spatial, spectral and temporal parametrisation of

both known and unknown chemical and physical phenomena
underlying the studied systems. IDLE permits to characterise
and compensate the complex motions that the investigated
objects may undergo over the measurement time. EMSC is
capable of providing a simple mathematical description of a
range of phenomena (and of their temporal evolution) that
operators expect or presume a priori to be occurring over the
duration of the hyperspectral video recording. Finally, the
OTFP compresses and summarises all the information related
to unknown or unexpected events which may happen during
the progression of the data collection. In other words, one can
look at the combination of these three different
methodologies as an algorithmic extension of how human
beings observe reality: the eyes capture spatial changes in the
external environment and submit particular signals to the
brain that afterwards processes them distinguishing between

FIGURE 12 | Spatial representation of the OTFP scores related to the OTFP factors n. 1—(A-C)—n. 2—(D-F)—n. 3—(G-I)—n. 4—(J-L)—for three of the 10
archetypal frames highlighted in Figure 10B. The black areas around the loadings images contain pixels excluded from the computational procedure.
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what was somehow forecastable in advance (based on past
experiences) and what is completely new and unforeseen. In
this regard, rather than the individual application of the
aforementioned techniques (some of which are already
well-established in the field of chemometrics), it is their
fusion into a comprehensive algorithmic architecture for
the global assessment and interpretation of time-series of
high-dimensional hyperspectral images to be innovative and
unprecedented.

The sequential IDLE-EMSC-OTFP hybrid framework
presented here rests on a combination of targeted and
non-targeted data modelling of both known and unknown
variation sources. In contrast to classical subspace
decomposition strategies (e.g., PCA, PLS, MCR-ALS,
NNMF and ICA), it enables the description not only of
additive spectral response variations, but also of
multiplicative ones (like physical structure effects on the
optical pathlength) and hard and soft shape changes (due,
for example, to sample repositioning and/or shrinkage).

Moreover, differently from machine learning methods based
on Artificial Neural Networks (ANN)—Gasteiger and Zupan
(1993)—and Convolutional Neural Networks (CNN)—Gu
et al. (2018)—the IDLE-EMSC-OTFP modelling approach
yields a strong dimensionality reduction of torrents of input
data and results graphically interpretable in their compressed
state, revealing how spectral properties, spatial patterns and
temporal dynamics are strictly intertwined into unified
variation components, whose assessment and interpretation
might provide fundamental insights into underlying chemical,
physical and instrumental causalities. In the future, relying on a
trilinear rather than bilinear OTFP model structure—exploiting,
for instance, the principles of Parallel Factor Analysis
(PARAFAC), Harshman (1970); Carroll and Chang (1970);
Bro (1997)—may enhance this process further.

These conclusions are substantiated and thoroughly
corroborated by the outcomes reported in this article. In fact:

1. motion estimation-compensation by spatiotemporal IDLE
modelling allowed shrinkage induced by wood drying to be
modelled and corrected for, reducing the spatial complexity of
the hyperspectral imaging data;

2. EMSC preprocessing permitted a simpler spectral modelling
by detecting and disentangling light absorption/light
scattering-related variation patterns and their respective
evolution over time;

3. the continuous data-driven bilinear subspace decomposition
returned by the OTFP enabled the study of the dynamics of the
various physical and chemical variations left unmodelled in
the stream of hyperspectral residuals after the previous
two steps.

In the light of all this and considering its computational
efficiency when massive (potentially ever-lasting) flows of
multi-channel measurements are handled, the developed
approach could have an enormous impact also within the
more general context of BIG DATA.
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