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of Basic Medical Sciences, University of Oslo, Oslo, Norway, 3 PDC Center for High-Performance

Computing, KTH Royal Institute of Technology, Stockholm, Sweden, 4 INT UMR 7289, Aix-Marseille

University, Marseille, France, 5 Institute of Zoology, University of Cologne, Cologne, Germany, 6 Chair of

Theory of Science and Technology, Human Technology Center, RWTH Aachen University, Aachen,

Germany, 7 Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH

Aachen University, Aachen, Germany, 8 Department of Physics, Faculty 1, RWTH Aachen University,

Aachen, Germany, 9 Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway

* j.senk@fz-juelich.de

Abstract

Sustainable research on computational models of neuronal networks requires published

models to be understandable, reproducible, and extendable. Missing details or ambiguities

about mathematical concepts and assumptions, algorithmic implementations, or parameter-

izations hinder progress. Such flaws are unfortunately frequent and one reason is a lack of

readily applicable standards and tools for model description. Our work aims to advance

complete and concise descriptions of network connectivity but also to guide the implementa-

tion of connection routines in simulation software and neuromorphic hardware systems. We

first review models made available by the computational neuroscience community in the

repositories ModelDB and Open Source Brain, and investigate the corresponding connectiv-

ity structures and their descriptions in both manuscript and code. The review comprises the

connectivity of networks with diverse levels of neuroanatomical detail and exposes how con-

nectivity is abstracted in existing description languages and simulator interfaces. We find

that a substantial proportion of the published descriptions of connectivity is ambiguous.

Based on this review, we derive a set of connectivity concepts for deterministically and prob-

abilistically connected networks and also address networks embedded in metric space.

Beside these mathematical and textual guidelines, we propose a unified graphical notation

for network diagrams to facilitate an intuitive understanding of network properties. Examples

of representative network models demonstrate the practical use of the ideas. We hope that

the proposed standardizations will contribute to unambiguous descriptions and reproducible

implementations of neuronal network connectivity in computational neuroscience.
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Author summary

Neuronal network models are simplified and abstract representations of biological brains

that allow researchers to study the influence of network connectivity on the dynamics in a

controlled environment. Which neurons in a network are connected is determined by

connectivity rules and even small differences between rules may lead to qualitatively dif-

ferent network dynamics. These rules either specify explicit pairs of source and target neu-

rons or describe the connectivity on a statistical level abstracted from neuroanatomical

data. We review articles describing models together with their implementations published

in community repositories and find that incomplete and imprecise descriptions of con-

nectivity are common. Our study proposes guidelines for the unambiguous description of

network connectivity by formalizing the connectivity concepts already in use in the

computational neuroscience community. Further we propose a graphical notation for net-

work diagrams unifying existing diagram styles. These guidelines serve as a reference for

future descriptions of connectivity and facilitate the reproduction of insights obtained

with a model as well as its further use.

Introduction

The connectivity structure of a neuronal network model is sometimes described with a state-

ment such as “Ns source neurons and Nt target neurons are connected randomly with connec-

tion probability p”. One interpretation of this statement is an algorithm that considers each

possible pair of source and target neurons exactly once and connects each such pair with prob-

ability p. Other interpretations of the same statement may allow multiple connections between

the same pair of neurons, apply the connection probability non-uniformly on different neuron

pairs, or include further assumptions on the distribution of in- and outgoing connections per

neuron. These choices do not just affect the network structure, but can have substantial conse-

quences for the network dynamics. To illustrate this point, we simulate two balanced recurrent

networks of randomly connected excitatory and inhibitory spiking neurons based on the

model of Brunel [1] (see Section “Materials and methods” for model details). Fig 1A shows the

dynamics of the original model described in [1], where the number of incoming connections

per neuron (in-degree) is fixed to Kin. In contrast, Fig 1B shows the dynamics of a network in

which the number of outgoing connections per neuron (out-degree) is fixed to Kout. The total

number of connections is the same in both networks and, by implication, an interpretation of

the network’s connection probability, too. The network-averaged spike rate has a similar pat-

tern across time in both instantiations. However, while the rates of individual neurons are

alike for the network with fixed in-degree, they are broadly distributed for the network with

fixed out-degree. These small and comparatively simple example network simulations already

demonstrate that ambiguities in network descriptions can result in networks with statistically

different activities.

For more complex networks with spatial embedding, hierarchical organization, or higher

specificity of connections, the task of fully specifying the connectivity becomes correspond-

ingly more daunting. As researchers are building more complete models of the brain, simulta-

neously explaining a larger set of its properties, the number of such complex models is steadily

increasing. This increase is accelerated by the rise of large-scale scientific projects which care-

fully assemble rich connectivity graphs. For example, the Allen Institute for Brain Science has

published a model of mouse primary visual cortex with a layered structure, multiple cell types,

and specific connectivity based on spatial distance and orientation preference [2]. The Blue
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Brain microcircuit reproduces a small patch of rat somatosensory cortex featuring cell-type-

specific connectivity based on paired recordings and morphological neuron reconstructions

[3, 4]. The multi-area spiking network model of macaque visual cortex by Schmidt et al. [5] is

a multi-scale network with specific connectivity between 32 cortical areas, each composed of

interconnected excitatory and inhibitory neurons in four cortical layers. The network structure

of these models is typically specified by a combination of explicit connectivity based on neuro-

anatomical data and connection patterns captured by probabilistic or deterministic rules.

Regardless of how connectivity is specified, reproducible research requires unambiguous net-

work descriptions and corresponding algorithmic implementations.

Mathematically defined models of neuronal networks are to be distinguished from their

concrete implementation and execution in the form of simulations. Any given model has

uniquely defined dynamics apart from potential stochasticity; model variants can obviously

exist, but each variant is a model in its own right. The dynamics of all but the simplest models

can only be fully explored using simulations, i.e., requiring the instantiation and execution of

the model in the form of a computer program. Any abstract model can be implemented in

multiple ways. A central challenge in computational neuroscience, as well as other fields rely-

ing on simulations, is to define abstract models so precisely that the researcher only needs to

decide how to implement the model, but not what to implement. Our focus in this work is on

facilitating such precise model descriptions, particularly with regard to network connectivity.

First, we review some terminology. Model neuronal networks generally consist of nodes,

which represent individual neurons or neural populations; the latter is common in models

describing activity in terms of average firing rates. In a concrete simulation code, network

nodes are typically first created with a dedicated command. Network nodes are connected by

edges. Connections are typically directed, i.e., signals flow from a source node to a target node.

When nodes represent individual neurons, edges represent one or a small number of individ-

ual synapses, and when nodes represent groups of neurons, edges represent an average over

many synapses. We use the term connection to mean a single, atomic edge between network

nodes. Neuronal network simulation software usually provides a command allowing one to

create such an edge between any two network nodes.

Fig 1. Spiking neuron network simulations of a balanced random network with (A) fixed in-degree and (B) fixed

out-degree. Top left: Raster plots show spike times of 50 out of 10, 000 excitatory (E) and 50 out of 2, 500 inhibitory (I)

neurons. Bottom left: Time-resolved spike rate from spike-count histogram across time with temporal bin width of 5

ms. Top right: Per-neuron spike rate from spike-count histogram for individual neurons. Bottom right: Normalized

distribution of per-neuron spike rates with bin width of 2/s. Model details are given in Section “Materials and

methods”.

https://doi.org/10.1371/journal.pcbi.1010086.g001

PLOS COMPUTATIONAL BIOLOGY Connectivity Concepts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010086 September 8, 2022 3 / 49

https://doi.org/10.1371/journal.pcbi.1010086.g001
https://doi.org/10.1371/journal.pcbi.1010086


In many models, nodes are grouped into populations of homologous neurons. Populations

can be nested hierarchically, e.g., one may consider an entire brain area as a population, the

neurons within a specific layer of that area, or all neurons of a given cell type within the layer.

Also edges in a network can be grouped, reflecting anatomical structure (nerve bundles), pur-

pose (inhibitory recurrent connections), or developmental processes. We call such groups of

edges projections. They play an important role in specifying and instantiating models: We can

specify network connectivity by providing, for each projection between any pair of popula-

tions, a connection rule which defines how to create atomic edges (connections) between indi-

vidual nodes. A projection is thus defined by a triplet of source population, target population

and connection rule and represents a collection of atomic connections.

Neuronal network simulation software commonly provides support for connecting popula-

tions based on connection rules, which may be deterministic or probabilistic. A key challenge

in the field of computational neuroscience, which we address here, is to precisely define con-

nections rules and their properties, so that model descriptions obtain a unique interpretation

and can be matched precisely to the implementations of these rules provided by simulation

software.

A command to instantiate a single model neuron of a given type and a command to create

an atomic edge between any pair of neurons is all that is required to construct a neuronal net-

work model of arbitrary complexity in a computer—the model implementer just has to

arrange for the right combination of calls through loops and other control structures. How-

ever, this approach has two significant shortcomings. First, most information about the struc-

ture of the network is lost. As the network is described on the lowest possible level, terms

describing higher-order organizational principles of brain structures such as cell populations,

layers, areas, and projections between them do not occur; they are implicitly contained in the

algorithms. This limits the readability of the model specification and thereby the ability to ver-

ify and reuse the code. It also precludes systematic visualization or exploration of the network

with computational tools. Second, a simulation engine reading the code will have little oppor-

tunity to parallelize network construction. Network specifications at higher conceptual levels,

on the other hand, leave a simulation engine the freedom to use efficient parallelization, for

example when connecting two populations of neurons in an all-to-all fashion. With the prog-

ress of neuroscience towards larger and more structured networks, the degree of parallelization

becomes relevant. In typical simulations, network creation can easily become the dominant

component of the total simulation time and may hinder a research project because of the for-

bidding compute resources it would require [6, 7]. High-level connectivity descriptions can

help by exposing organizational principles for the simulator to exploit and giving the neurosci-

entist access to the expert knowledge encoded in the simulator design and the reliability of

code used in many peer-reviewed studies. To be useful to computational neuroscientists, con-

nectivity concepts for neuronal network models should encompass connectivity patterns

occurring in real brains. On the one hand, small brains of simple organisms such as C. elegans
exhibit highly specific connection patterns [8], which tend to require explicit connectivity

matrices for their specification. The brains of more complex organisms such as mammals, on

the other hand, have a multi-scale organization that can be captured at different levels of

abstraction. Their brains are divided into multiple regions, each of which may contain differ-

ent neuron types forming populations with statistically similar connectivity patterns. Some

regions, such as the cerebellar cortex, have highly stereotyped, repetitive connectivity motifs

[9]. Elsewhere, for instance in the cerebral cortex, the neuron-level connectivity appears more

random [10, 11]. Nevertheless, the cerebral cortex exhibits a number of organizational princi-

ples, including a laminar and columnar architecture. On a larger spatial scale, the cortex is sub-

divided into different functional areas. Each of these areas is often in itself a complex,
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hierarchically structured network of substructures. These structural elements may be con-

nected to each other, resulting in connectivity across various spatial scales.

At a basic level of organization, pairs of neurons are connected with a probability that

depends on both the source and the target area and population. For instance, neurons within

the same cortical layer are generally more likely to be connected to each other than neurons

located in different layers [2, 12–14]. Neurons can synapse on themselves [15] and can estab-

lish more than one synapse on any given target neuron [16]. Connection probability decays

with distance both at the level of areas [17, 18] and at the level of individual neurons. Within

local cortical circuits, the length constant for this decay is on the order of 150–300 μm [19, 20].

Typical assumptions for the local connectivity are a Gaussian or exponential decay of the con-

nection probability between pairs of neurons with increasing distance between their cell bodies

[21, 22]. Both within and between cortical areas, excitatory neurons form so-called patchy con-

nections consisting of spatially clustered synapses [23–26]. Within areas, this patchiness

becomes apparent at the medium distance range of millimeters. Another important organizing

principle is that neurons exhibit like-to-like connectivity. For instance, neurons with more

similar receptive fields are more likely to be connected [27–30]. In addition, having common

neighbors increases the chance for a pair of neurons or areas to be connected, also known as

the homophily principle [31]. Such homophily results in the presence of connection motifs of

three or more neurons beyond what would be expected based on pairwise connection proba-

bilities alone [32]. At higher levels of organization, the cerebral cortex has a hierarchically

modular structure [33]. Sometimes cortex is also described as having small-world properties

[34, 35]. In our treatment of connectivity concepts, we focus on the most fundamental proper-

ties of network circuitry but also touch upon such more complex organizational aspects.

With on the order of 104 incoming connections to each of the 1010 neurons of human cor-

tex [36, 37], the estimated total number of connections in the full cortical network is 1014.

Only the study of natural-density, full-scale networks gives reliable information about features

such as the structure of pairwise correlations in the brain’s neuronal activity [38]. Downscaled

networks obtained by reducing neuron and synapse numbers may only preserve some charac-

teristics of the network dynamics, for example the firing rates, if parameters are adjusted for

compensation. In the present study, we describe connectivity concepts based on the principles

of neuroanatomical organization, abstracted in a way that allows for mathematical formaliza-

tion and algorithmic implementations in simulators. The concepts target both the connectivity

of small proof-of-concept network models with only hundreds or thousands of interconnected

neurons and large-scale networks approaching the full size and connection density of biologi-

cal brains. In this endeavor, we take into account the current practice in the field by consider-

ing published models and corresponding open-source code. These resources provide insight

into the connectivity types relevant to computational neuroscientists and the way in which

these are described and implemented. Our aim is to derive a unified vocabulary, along with

mathematical and graphical notations, for describing connectivity in a concise and non-

ambiguous way. Besides supporting the reproducibility, sharing, and reuse of neuronal net-

work models, this effort facilitates efficient implementations of high-level connectivity routines

in dedicated simulation software and hardware. Here, we use the term “high-level” to refer to

the abstraction of network connectivity patterns to mathematical functions of few parameters.

It is possible for a network model to be partly described by such high-level connectivity,

whereas other aspects of the connectivity are specified in detail. The combined connectivity of

such a model can then have many parameters. Abstractions of network organization encode

our understanding of the structure of the system, enable more systematic analyses, in some

cases direct comparisons with analytical theory, and greater comparability between models.
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The concepts we discuss specify the connectivity between network nodes that are most

often individual neurons but may equally well be neural populations or brain regions. While

the nodes can also be multi-compartment neurons, we are not concerned with detailed con-

nectivity below the neuronal level such as to specific dendritic compartments. In the case of

plastic networks, we only consider the initial state, and do not describe the evolution of the

connectivity.

We first review published models to identify which network structures are used by the com-

munity and how they are described. Next we turn to description languages and simulators to

review how connectivity is abstracted in simulation interfaces. Based on this dual review, the

following section proposes connectivity concepts for deterministic and probabilistic networks,

and also addresses networks embedded in metric space. In addition to these mathematical and

textual descriptions of the concepts, we propose a graphical notation for illustrating network

structures. Our results conclude with a few examples of how the connectivity of neuronal net-

work models is concisely and unambiguously described and displayed using our notation.

Finally we discuss our results in the context of the evolution of the field.

Preliminary work has been published in abstract form [39, 40].

Results

Networks used in the computational neuroscience community

We review network models for which both a manuscript and an implementation have been

published. Models in computational neuroscience are often made available via one of a few

common repositories. We select the most prominent repositories relevant to the present study,

and in the following characterize the models fitting our scope contained in them.

The models entering this study are in the online repositories ModelDB [41, 42] and Open

Source Brain (OSB) [43]. Both repositories have been maintained for years (or even decades in

the case of ModelDB) and they support the curation, further development, visualization, and

simulation of a large variety of models in different ways. ModelDB stores its models using the

infrastructure of SenseLab (http://senselab.med.yale.edu). Implementations on ModelDB gen-

erally aim to serve as static reference for a published article (although some entries link to ver-

sion-controlled repositories) and no restrictions on programming languages or simulators are

made. In contrast, all models indexed by OSB (https://www.opensourcebrain.org) are stored

in public version-controlled repositories such as GitHub (https://github.com) to foster ongo-

ing and collaborative model development. Models in OSB are standardized in the sense that

they are made available in the model description languages NeuroML [44, 45] or PyNN [46],

besides potentially further versions.

As this study focuses on network connectivity, we review network models of point neurons,

simple multicompartment neurons (without considering connectivity specific to compart-

ments), and neural mass models, but exclude neural field models as well as more detailed mod-

els. Therefore, we narrow the broad collection of models in ModelDB down to the

MicrocircuitDB section Connectionist Networks (https://senselab.med.yale.edu/

MicroCircuitDB/ModelList.cshtml?id=83551).

Spiking, binary, and rate neurons are all accepted as network nodes. Plastic networks in

which the connection strengths (e.g., spike-timing dependent plasticity [47]) or even the con-

nectivity itself (structural plasticity [48]) evolve over time are not a priori excluded. However,

for plastic networks we only consider structure independent of dynamics, i.e., only the result

of the initial network construction. If an article describes multiple different network models,

we concentrate on the one most relevant for this study. Only connections between neuronal

populations are taken into account; connections with external stimulating and recording
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devices are ignored. For some of the indexed publications, the full (network) model is not actu-

ally available in the repository, and we exclude such incomplete models from this study.

All selected network models are characterized based on five main and several sub-categories

and the results are summarized in Figs 2–6. For the main categories, we formulate the follow-

ing guiding questions:

Metadata (Fig 2) When, where, and by whom were article and code published?

Description (Fig 3) How does the article describe the connectivity and is the description

complete?

Implementation (Fig 4) How is the connectivity technically implemented?

Network (Fig 5) How are network nodes and edges characterized?

Concepts (Fig 6) Which connectivity concepts are realized?

Our model review comprises a total of 42 selected models with about 80% of the code

found in ModelDB and about 20% in OSB (Fig 2A). The corresponding articles are listed in

Section “Reviewed network models” in “Materials and methods”. They have appeared in a

number of peer-reviewed journals and were published between 1996 and 2020; approximately

70% of the models were published since 2013 (Fig 2B and 2C). Scientists increasingly appreci-

ate the value of reproducible research, which leads to more published code and in particular

Fig 2. Metadata: When, where, and by whom were article and code published? (A) Pie chart of repositories storing

model code. “ModelDB”: section Microcircuit DB Connectionist Networks of ModelDB. “OSB”: Open Source Brain.

(B) Abbreviated journal name in stacked, horizontal bar plot. (C) Year of publication in bar plot. (D) Location of all

authors’ labs based on affiliations as Venn diagram. Intersections indicate collaborations between labs situated on

different continents. Not included in the diagram are two publications of which all authors are affiliated with labs only

in Australia and South America, respectively.

https://doi.org/10.1371/journal.pcbi.1010086.g002
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Fig 3. Description: How does the article describe the connectivity and is the description complete? (A) Location of

connectivity description. “Main”: in main manuscript; “Reference”: reference to other publication; “Supplement”: in

separate file belonging to the same publication. (B) Means used to describe connectivity. Descriptions of the

parameterization of connections are only counted if they are crucial for understanding whether connections exist. (C)

Reference to model implementation in manuscript. “Software”: name of software given; “URL”: explicit hyperlink or

DOI referencing published code; “Version”: software version given; “None”: implementation not mentioned (number

of occurrences given in legend). Intersections in panels A–C mean that the connectivity is described in different

locations, a combination of different means is used, and different references to the model implementation are given,

respectively. (D) Whether connectivity is just specified as “random” or a connection probability is given without

defining the connection rule. (E) Whether description is insufficient or inconclusive for implementing the network

model.

https://doi.org/10.1371/journal.pcbi.1010086.g003

Fig 4. Implementation: How is the connectivity technically implemented? (A) Name of software framework

(dedicated simulator or general-purpose software). (B) Implementation of connections. “Custom”: hard-coded; “Built-

in”: routine from dedicated simulator. The intersection means that a part of the network connectivity is explicitly

coded in a general-purpose language and another part uses built-in simulator functionality.

https://doi.org/10.1371/journal.pcbi.1010086.g004

Fig 5. Network: How are network nodes and edges characterized? (A) Interpretation of network nodes. “Single

neuron”: connections exist between single neuronal units; “Population”: connections are established between nodes

that represent multiple neurons. (B) Dynamics of the nodes. “Rate”: continuous signal; “Spiking”: spiking mechanism;

“Binary”: on-off mechanism. (C) Plasticity. “Static”: identity of connections and weight values fixed; “Plastic”: potential

changes of connections and weights during simulation. The intersections in panels A and C refer to models which have

both properties in different parts of the networks.

https://doi.org/10.1371/journal.pcbi.1010086.g005
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more use of dedicated repositories [42, 43, 49–52]. Journal policies also play a role, as some

journals explicitly encourage or even enforce the publication of code. For instance, with seven

occurrences the Journal of Neuroscience (https://www.jneurosci.org) is overrepresented in

our list of journals (Fig 2B) and a possible explanation is that journal’s recommendation to

deposit code of new computational models in suitable repositories such as ModelDB. The anal-

ysis of the authors’ affiliations shows that the models under consideration were developed

mostly through collaborations spanning a small number of different labs, mainly from Europe

and North America (Fig 2D).

Each article studied describes the model connectivity to some degree (Fig 3A). But about a

quarter of the models are described partially outside the article proper, namely in referenced

publications or supplementary material. One reason for an incomplete description in the main

article might be space restrictions by the journal. Another reason is that some models build on

previously published ones and therefore the authors decide to state only the differences to the

original model. Without exception all articles use text to describe the connectivity; mostly the

text is combined with other means such as illustrations, equations, and tables (Fig 3B). These

other means may be only supportive, as is often the case with illustrations, or necessary to con-

vey the complete connectivity. Although not encountered in the studies considered here,

another means of description may be code or pseudo-code. The majority of articles contain

some information about the model implementation. By model implementation we mean the

executable model description defined either via an interface to a dedicated neuronal network

simulator or via a general-purpose programming language. More than a third of the

Fig 6. Concepts: Which connectivity concepts are realized? (A) Whether connections in the model are probabilistic

or deterministic. (B) Whether at least some part of the model contains distance-dependent connections. (C) Name of

deterministic connectivity rule specifying the connectivity in at least a part of the model network (compare Fig 7A and

7B). (D) Name of probabilistic connectivity rule specifying the connectivity in at least a part of the model network

(compare Fig 7C–7F). One network model can use multiple deterministic and probabilistic rules or may use none of

the given rules; therefore the numbers of models in panels C and D do not add up to the total number of studies. (E)

Whether self-connections are allowed (illustrated in Fig 7G). The intersections in panels A, B, and E refer to models

which have different properties in different parts of the networks. (F) Whether multiple connections from a source

node to a target node are allowed (illustrated in Fig 7H).

https://doi.org/10.1371/journal.pcbi.1010086.g006
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publications provide a direct link or other reference to the published code (Fig 3C). Since

usage and default values of a software may change in the course of development, giving the

software name but not the software version with which the model code needs to be run can be

insufficient. More than a quarter of the articles considered do not mention a model implemen-

tation at all. We find that one reason for this observation is that the authors published the code

after the article; another reason is that the published implementation occasionally does not

originate from the authors of the article.

Next, we ask whether randomness in the connectivity is underspecified, meaning that either

the word “random” is used without further specification, or a connection probability is given

without definition (Fig 3D). This underspecification is identified in almost 10% of the articles.

We find more than a third of the descriptions ambiguous (Fig 3E) due to missing details or

imprecise formulations. We consider a connectivity description to be unambiguous if 1) in the

case of deterministic connectivity, it enables reconstructing the identity of all connections in

the model; or 2) in the case of probabilistic connectivity, it enables determining either the con-

nectivity distribution, or the exact algorithm by which the connections were drawn. Here, we

focus on the identity of the connections, including their directionality, and not on their param-

eterization (e.g., weights and delays).

Turning from the connectivity description in articles to the model implementations, we

find that a wide variety of software is used for implementing the connectivity (Fig 4A). This

software is either a general-purpose programming language such as MATLAB, Python, or

C/C++, or a dedicated simulator for neuronal networks such as NEURON, NEST, or Brian.

The prevalence of code for the commercial closed-source interpreter MATLAB (more than a

third) may be explained by the fact that it is widely used in many research labs for analyzing

experimental data and therefore has a tradition in neuroscience. Almost 80% of the model

codes use custom, ad hoc implementations for defining the connectivity instead of, or in addi-

tion to, high-level functions provided by simulators (Fig 4B). Also precomputed or loaded

adjacency matrices fall into the category “custom”.

In the following, we characterize the model networks according to their node and edge

properties since these affect the interpretation of connectivity. If the connectivity is defined

between single neurons, a connection may represent a single synapse or several individual syn-

apses. However, if the connectivity is defined between nodes that represent populations of

neurons, a connection is rather understood as an average over multiple synapses, i.e., an effec-

tive connection. This type of connectivity exists in one third of the studied models (Fig 5A).

About half of the networks use as nodes rate neurons with continuous dynamics (Fig 5B); rate

dynamics often coincide with the interpretation of nodes as neural populations. The other half

use spiking neurons, i.e., neuron models which integrate their inputs and fire action potentials

if a threshold is crossed. We encounter only one study using binary neurons that switch

between On and Off states. About 40% of the models included have plastic connections at least

in some part of the network (Fig 5C). Since changes in the connection structure or the weights

occur during the course of the simulation, we only take the initial connectivity into account

when identifying connectivity concepts.

Fig 6 combines the connectivity description in the articles with the available model imple-

mentations to bring forward which connectivity concepts are actually realized in the studies.

Those properties which remain underspecified are marked with “Unclear”. The number of

occurrences of “Unclear” does not add up to the number of connectivity descriptions identi-

fied as ambiguous Fig 3E. Reasons are that 1) in some cases the ambiguity in the description

concerns an aspect not covered by the categories of Fig 6 (e.g., the number of connections is

fixed, but the number is not given), and 2) sometimes, ambiguity in the description is solved

by clear code. More than half of the models use only deterministic connection rules, and in the
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other half the connections are created using probabilistic rules (Fig 6A); one model combines

both deterministic and probabilistic rules. Fig 7 illustrates connectivity patterns reflecting the

most common rules: the deterministic rules “one-to-one” and “all-to-all”, and the probabilistic

rules “random, fixed in-degree”, “random, fixed total number”, and “pairwise Bernoulli”.

Among the deterministic rules, “all-to-all” dominates in the studies considered here (Fig 6C).

About a quarter of the networks included here use spatial connections in at least some part of

the model network, meaning that the nodes are embedded in a metric space and the connec-

tions depend on the relative positions of source and target neurons (Fig 6B). Connections that

could be described as “one-to-all” or “all-to-one” are here summarized in the more general

“all-to-all”. In particular the plastic network models included tend to use “all-to-all” connectiv-

ity for the initial network state and then let the weights evolve. In the networks with popula-

tion-model nodes, pairs of source and target nodes were connected one at a time. Looking at

this as a high-level connectivity can only be done by considering the network as a whole; it

then corresponds to the rule with an explicit adjacency list, and we thus classify these cases as

“explicit”. “Nearest-neighbor” connectivity could be seen as a special case of “one-to-one”, but

we mention it here explicitly. By far the most common probabilistic rule is “pairwise Ber-

noulli”: for each pair of nodes at most one connection is created with a given probability (Fig

6D). The second most common rule is “random, fixed in-degree”. Examples for most of the

remaining patterns depicted in Fig 7 are also observed, albeit in smaller numbers. Note that

matched forward and reverse connections between pairs of neurons occur with deterministic

rules such as “all-to-all” by construction but can also occur by chance with probabilistic rules.

In one case, we encounter gap junctions which are symmetric by definition of the synapse

model. Autapses or self-connections [53] are not allowed or do not occur by construction in

about half of the networks (Fig 6E).Multapses, which are multiple connections between the

same pair of nodes [54, 55], are allowed only in a single study (Fig 6F). We define a multapse

Fig 7. Connectivity patterns reflecting the most common rules. The ordered set of sources S is depicted by the green

squares on the left. They are connected to the ordered set of targets T , depicted by the orange squares on the right. The

respective in- and out-degrees are given next to the nodes. (A) One-to-one. (B) All-to-all. (C) Random, fixed in-degree

with Kin connections per target node. (D) Random, fixed out-degree with Kout connections per source node. (E)

Random, fixed total number of connections Nsyn. (F) Pairwise Bernoulli with connection probability p. (G) Autapse

(self-connection). (H) Multapse (multi-connection).

https://doi.org/10.1371/journal.pcbi.1010086.g007

PLOS COMPUTATIONAL BIOLOGY Connectivity Concepts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010086 September 8, 2022 11 / 49

https://doi.org/10.1371/journal.pcbi.1010086.g007
https://doi.org/10.1371/journal.pcbi.1010086


as a set of connections sharing the same source node and target node and therefore also the

directionality. The individual connections of a multapse can, however, use different parame-

ters such as weights and delays. In judging the presence of multapses, a few subtleties are

involved. First, cases where modelers capture the effects of multiple biological synapses using

single, strong model synapses are not identified. Second, even if multiple connections between

a given source and target node are explicitly generated, their effects may be lumped in the low-

level code of a simulator when the model dynamics is linear [56, Section 5.3]. Autapses and

multapses are rarely discussed explicitly, but their presence can be inferred from other specifi-

cations: The “pairwise Bernoulli” rule, for instance, considers each pair of nodes for connec-

tion only once; multapses are thus excluded.

Description languages and simulators

A neuronal network simulator typically provides an idiosyncratic model description lan-

guage or supports a pre-existing one, for example a cross-simulator description language like

PyNN [46], NeuroML [44], NineML [57], CSA [58], or SONATA [59]. A less common case is

where the simulator consists of a library with an API called by a general-purpose language

such as is the case for SPLIT [60] and, to some extent, GeNN [61]. We here consider model

description languages either tied to a particular simulator or supported by multiple

simulators.

The ways in which network connectivity is described in such languages broadly fall into

three main categories: procedural descriptions, declarative descriptions at a population-to-pop-

ulation level, and more general declarative descriptions using algebra. Some languages support

more than one of these paradigms.

Procedural descriptions. Most simulators provide a primitive for connecting a source

neuron to a target neuron:

Typically, source and target above refer to indices in some neuron enumeration

scheme. For example, both NEST [62–64], NEURON [65, 66] and Arbor [67, 68] have the con-

cept of a global identifier or GID which associates a unique integer with each neuron. Many

simulation environments offer a generic programming language where it is possible to write

algorithms based on Connect to describe network connectivity. For example, the all-to-all

connectivity pattern shown in Fig 7B, where each source neuron is connected to every target

neuron, could be achieved by the procedural description:

A common pattern in such algorithms is to loop over all possible connections, as above,

and call connect only if some condition is fulfilled.

If condition above is random() < p, where random() returns a uniformly

PLOS COMPUTATIONAL BIOLOGY Connectivity Concepts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010086 September 8, 2022 12 / 49

https://doi.org/10.1371/journal.pcbi.1010086


distributed random number r, 0� r< 1, we obtain the pairwise Bernoulli pattern with proba-

bility p as shown in Fig 7E.

Procedural descriptions are the most general form of network specification: Any kind of

connectivity pattern can be created by combining suitable Connect calls. Procedural descrip-

tions of connectivity at the neuron-to-neuron level are for instance supported by the simula-

tors NEST [62–64], NEURON [65, 66], Arbor [67, 68], Brian [69], Moose [70], and Nengo

[71], as well as the description language PyNN [46].

Our example for the procedural approach already exposes two shortcomings. First, the

explicit loop over all possible combinations is generic, but it is also costly if the condition is

only fulfilled in a small fraction of the cases. For particular distributions an expert of statistics

may know a more efficient method to create connections according to the desired distribution.

Taking the example of a Bernoulli trial for each source-target pair, this knowledge can be

encoded in a simulator function pairwise_bernoulli(). In this way also non-experts

can create Bernoulli networks efficiently. Second, the explicit loops describe a serial process

down to the primitive Connect() between two nodes. This gives simulators little chance to

efficiently parallelize network construction.

Declarative population-level descriptions. A declarative description of connectivity

describes the connectivity at a conceptual level: It focuses on the connectivity pattern we want

to obtain instead of the individual steps required to create it. Typically, the declarative descrip-

tion names a connectivity rule which is then used in setting up connectivity between two neu-

ronal populations or from a population to itself. A common example is:

Declarative descriptions operating on populations are expressive, since they specify connec-

tivity in terms of generic rules. Simulator software can be optimized for each rule, especially

through parallelization. Rule-based specification of connectivity helps the reader of the model

description to understand the structure of the network and also allows visualization and explo-

ration of network structure using suitable tools. Usually the user is limited to a set of pre-

defined rules, although some simulation software allows users to add new rules.

Declarative population-level descriptions are for instance supported by the simulators

NEST, Moose, and the description languages PyNN (connectors) and NineML. Commonly

provided connectivity rules are: one-to-one, all-to-all, and variants of probabilistic rules. The

“transforms” in Nengo can also be regarded as declarative descriptions of connectivity. Neu-

roML supports lists of individual connections. Its associated language NetworkML [44] pro-

vides declarative descriptions akin to those of PyNN and NineML, while its associated lower-

level declarative language LEMS [45] supports the definition of types of connectivity based on

partially procedural constructs (“structure element types”) such as ForEach and If, giving

greater flexibility but departing to some extent from the spirit of declarative description.

Algebraic descriptions. Using algebraic expressions to describe connectivity rivals proce-

dural descriptions in the sense that they are generic and expressive. Such descriptions are also

declarative, with the advantage of facilitating optimization and parallelization.

The Connection Set Algebra (CSA) [58] is an algebra over sets of connections. It provides a

number of elementary connection sets as well as operators on them. In CSA, connectivity can

be concisely described using expressions of set algebra. Implementations demonstrate that the
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corresponding network connectivity can be instantiated in an efficient and parallelizable man-

ner [72].

In CSA, a connection is represented by a pair of indices (i, j) which refer to the entities

being connected, usually neurons. A source population of neurons S can be enumerated by a

bijection to a set of indices selected among the non-negative integers

ES : S ! NS � N0; ð1Þ

and a target population T can be similarly enumerated. A connection pattern can then be

described as a set of pairs of indices. For example, if S ¼ fa; bg, T ¼ fc; dg and both sets of

neurons are enumerated from 0 to 1, a connection pattern consisting of a connection from a
to c and a connection from b to d would in CSA be represented by {(0, 0), (1, 1)}.

However, in CSA it turns out to be fruitful to work with infinite sets of indices. E.g., the ele-
mentary (predefined) connection set δ = {(0, 0), (1, 1), . . .} can be used to describe one-to-one

connectivity in general, regardless of source and target population size. We can work with

CSA operators on infinite connection sets and extract the actual, finite, connection pattern at

the end. Given the finite index sets above, NS ¼ NT ¼ f0; 1g, we can extract the finite one-to-

one connection pattern between S and T through the expression d \ ðNS � NTÞ where \ is

the set intersection operator and × is the Cartesian product.

Another example of an elementary connection set is the set of all connections

O ¼
[

i;j2N0

fði; jÞg ¼ fð0; 0Þ; ð0; 1Þ; . . . ; ð1; 0Þ; ð1; 1Þ; . . .g: ð2Þ

For the case of connections within a population (i.e., S ¼ T ) it is now possible to create the

set of all-to-all connectivity without self-connections:

O � d ð3Þ

where − is the set difference operator.

Random pairwise Bernoulli connectivity can be described by the elementary parameterized

connection set ρ(p), which contains each connection in O with probability p. The random
selection operator ρN(n) picks n connections without replacement from the set it operates on,

while the operators ρ0(k) and ρ1(k) randomly pick connections to fulfill a given out-degree or

in-degree k, respectively.

Multapses are treated by allowingmultisets, i.e., multiple instances of the same connection

are allowed in the set. The CSA expression for random connectivity with a total number of n
connections, without multapses, is:

rNðnÞðNS � NTÞ ð4Þ

where the Cartesian product of the source and target index sets, NS � NT , constitutes the possi-

ble neuron pairs to choose from.

By instead selecting from a multiset, we can allow up tommultapses:

rNðnÞ]
m

i¼1
ðNS � NTÞ ð5Þ

where] is the multiset union operator.

The operator

M ¼ ]
1

i¼1

ð6Þ
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replaces each connection in a set C with an infinity of the same connection such that, e.g.,

ρ0(k)MCmeans picking connections in C to fulfill fan-out k, but now effectively with replace-

ment. Without going into the details, multisets can also be employed to set limits on the num-

ber of multapses.

Population-level connectivity rules of languages and simulators. Most neural network

description languages and simulators provide several descriptors or routines that can be used

to specify standard connectivity patterns in a concise and reproducible manner. We here give

an overview over the corresponding connection rules offered by a number of prominent

model description languages and simulators. This brief review supplements the literature

review to identify a set of common rules to be more formally described in the next section.

We have studied connectivity rules of the following model specification languages and

simulators:

NEST is a simulator which provides a range of pre-defined connection rules supporting net-

work models with and without spatial structure. To create rule-based connections, the user

provides source and target population, and the connection rule with applicable parameters

and specifications of the synapses to be created, including rules for the parameterization of

synapses. The information here pertains to NEST version 3.0.

In addition to the built-in connectivity rules, NEST provides an interface to external librar-

ies, for example CSA, to specify connectivity.

PyNN is a simulator-independent language. It provides a class of high-level connectivity prim-

itives called Connector. The connector class represents the connectivity rule to use when

setting up a Projection between two populations. The information here pertains to

PyNN version 0.9.6.

NetPyNE is a Python package to facilitate the development, simulation, parallelization, analysis,

and optimization of biological neuronal networks using the NEURON simulator. It provides

connectivity rules for explicitly defined populations as well as subsets of neurons matching

certain criteria. A connectivity rule is specified using a connParams dictionary containing

both parameters defining the set of presynaptic and postsynaptic cells and parameters deter-

mining the connectivity pattern. The information here pertains to NetPyNE version 1.0.

NineML is an XML-based cross-simulator model specification language.

Brian is a simulator which has a unique way of setting up connectivity. Connections between a

source and target group of neurons are specified using an expression that combines proce-

dural and algebraic aspects, passed to the connect method of the synapse object S:

Here, EXPR is an integer-valued expression specifying the targets for a given neuron i. This
expression may contain the variable VAR which obtains values from RANGE. For example,
to specify connections to neighboring neurons, we can say

where skip_if_invalid tells Brian to ignore invalid values for j such as −1.
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The simulators NEURON and Arbor do not support high-level connectivity rules and are

therefore not included here.

The population-level connectivity rules shared—under different names—between two or

more of the above simulators are the following:

One-to-one connects each source to one corresponding target.

All-to-all connects each source to all targets.

Explicit connections establishes the connections given in an explicit list of source-target pairs.

Pairwise Bernoulli performs a Bernoulli trial for each possible source-target pair. With a cer-

tain probability p, the connection is included.

Random, fixed total number establishes exactly Nsyn connections between possible sources

and targets.

Random, fixed in-degree connects exactly Kin sources to each target (where the same source

may be counted more than once).

Random, fixed out-degree connects each source to exactly Kout targets (where the same target

may be counted more than once).

Languages and simulators vary with regard to whether autapses or multapses are created by

a connectivity rule and whether it is possible to choose if they are created or not. Table 1 details

the extent to which the rules above are implemented in the languages and simulators NEST,

PyNN, NETPyNE, and NineML. In addition, PyNN supports the following rules:

• Pairwise Bernoulli with probability given as a function of either source-target distance, vec-

tor, or indices.

• Small-world connectivity of the Watts-Strogatz type, with and without autapses; out-degree

can be specified.

• Connectivity specified by a CSA connection set provided by a CSA library.

• Explicit Boolean connection matrix.

• Connect cells with the same connectivity as the given PyNN projection.

Table 1. Connectivity rules present in a selection of languages and simulators. X: The rule is supported, A: The rule

is supported and it is possible to specify whether autapses are created or not, M: Ditto for multapses.

NEST PyNN NetPyNN NineML

One-to-one A A X

All-to-all A A X1 X

Explicit connections X3 X X X

Pairwise Bernoulli A A X1 X

Random, fixed total number AM AM

Random, fixed in-degree AM AM X2 X

Random, fixed out-degree AM AM X2 X

1. Autapses unconditionally included.
2. Neither autapses nor multapses are included.
3. Supported by passing lists to Connect and choosing the one_to_one rule.

https://doi.org/10.1371/journal.pcbi.1010086.t001
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The pairwise Bernoulli and random, fixed in- and out-degree rules in NEST support con-

nectivity creation based on the relative position of source and target neurons.

Connectivity concepts

We here provide formal definitions of connectivity concepts for neuronal network models.

These concepts encompass the basic connectivity rules illustrated in Fig 7 which are already

commonly used by the computational neuroscience community (see Fig 6). Beyond that, we

discuss concepts to reflect some of the richness of anatomical brain connectivity and comple-

ment in particular non-spatial connectivity rules with rules for spatially organized

connectivity.

For each high-level connectivity rule, we give both an algorithmic construction rule and the

resulting connectivity distribution. Modelers can use these definitions to succinctly specify

connection rules in their studies. However, if details differ from our standard definitions, these

details should still be specified. Furthermore, we suggest symbols that can be used to indicate

the corresponding connectivity types in network diagrams and add the corresponding CSA

expressions from [58].

In the specification of connectivity concepts we use the following notations and definitions.

Let S ¼ fs1; . . . ; sNsg be the ordered set of sources of cardinality Ns and T ¼ ft1; . . . ; tNtg the

set of targets of cardinality Nt. Then the set of all possible directed edges between members of

S and T is given by the Cartesian product EST ¼ S � T of cardinality Ns � Nt.
If the source and target populations are identical (S ¼ T ) a source can be its own target.

We call such a self-connection an autapse (cf. Fig 7). If autapses are not allowed, the target set

for any node i 2 S is T ¼ S n i, with cardinality Nt = Ns − 1. If there is more than one edge

between a source and target (or from a node to itself), we call this amultapse.
The degree distribution P(k) is the distribution across nodes of the number of edges per

node. In a directed network, the distribution of the number of edges going out of (into) a node

is called the out-degree (in-degree) distribution. The distributions given below describe the

effect of applying a connection rule once to a given S � T pair.

Deterministic connectivity rules. Deterministic connectivity rules establish precisely

defined sets of connections without any variability across network realizations.

One-to-one
Symbol: δ
CSA: δ
Definition: Each node in S is uniquely connected to one node in T .

S and T must have identical cardinality Ns = Nt, see Fig 7A. Both sources and targets can be

permuted independently even if S ¼ T . The in- and out-degree distributions are given by

P(K) = δK,1, with Kronecker delta δi,j = 1 if i = j, and zero otherwise.

All-to-all
Symbol: O

CSA: O

Definition: Each node in S is connected to all nodes in T .

The resulting edge set is the full edge set EST . The in- and out-degree distributions are

PinðKÞ ¼ dK;Ns for T , and PoutðKÞ ¼ dK;Nt for S, respectively. An example is shown in Fig 7B.

Explicit connections
Symbol: X
CSA: Not applicable
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Definition: Connections are established according to an explicit list of source-target pairs.

Connectivity is defined by an explicit list of sources and targets, also known as adjacency
list, as for instance derived from anatomical measurements. It is, hence, not the result of

any specific algorithm. An alternative way of representing a fixed connectivity is by means

of the adjacency matrix A, such that Aij = 1 if j is connected to i, and zero otherwise. We

here adopt the common computational neuroscience practice to have the first index i
denote the target and the second index j denote the source node.

Probabilistic connectivity rules. Probabilistic connectivity rules establish edges accord-

ing to a probabilistic rule. Consequently, the exact connectivity varies with realizations. Still,

such connectivity leads to specific expectation values of network characteristics, such as degree

distributions or correlation structure.

Pairwise Bernoulli
Symbol: p
CSA: ρ(p)

Definition: Each pair of nodes, with source in S and target in T , is connected with proba-

bility p.

In its standard form this rule cannot produce multapses since each possible edge is visited

only once. If S ¼ T , this concept is similar to Erdős-Rényi-graphs of the constant probabil-
ity p-ensemble G(N, p)—also called binomial ensemble [73]; the only difference being that

we here consider directed graphs, whereas the Erdős-Rényi model is undirected. The distri-

bution of both in- and out-degrees is binomial,

PðKin ¼ KÞ ¼ BðKjNs; pÞ≔
Ns
K

� �

pKð1 � pÞNs � K ð7Þ

and

PðKout ¼ KÞ ¼ BðKjNt; pÞ ; ð8Þ

respectively. The expected total number of edges equals E[Nsyn] = pNtNs.

Random, fixed total number without multapses
Symbol: Nsyn;M=

CSA: rN Nsyn

� �
NS � NTð Þ

Definition: Nsyn 2 {0, . . ., Ns Nt} edges are randomly drawn from the edge set EST without

replacement. For S ¼ T this is a directed graph generalization of Erdős-Rényi graphs of

the constant number of edges Nsyn-ensemble G(N, Nsyn) [74]. There are
NsNt
Nsyn

 !

possible

networks for any given number Nsyn� NsNt, which all have the same probability. The

resulting in- and out-degree distributions are multivariate hypergeometric distributions.

PðKin;1 ¼ K1; . . . ;Kin;Nt
¼ KNtÞ

¼

QNt
j¼1

Ns
Kj

 !� NsNt

Nsyn

 !

if
PNt

j¼1
Kj ¼ Nsyn

0 otherwise

8
>>><

>>>:

;
ð9Þ
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and analogously PðKout;1 ¼ K1; . . . ;Kout;Ns
¼ KNsÞ with Kout instead of Kin and source and

target indices switched.

The marginal distributions, i.e., the probability distribution for any specific node j to have

in-degree Kj, are hypergeometric distributions

PðKin;j ¼ KjÞ ¼
Ns
Kj

 !
NsNt � 1

Nsyn � Kj

 !� NsNt
Nsyn

 !

; ð10Þ

with sources and targets switched for P(Kout,j = Kj).

Random, fixed total number with multapses
Symbol: Nsyn,M

CSA: rN Nsyn

� �
M NS � NTð Þ

Definition: Nsyn 2 {0, . . ., NsNt} edges are randomly drawn from the edge set EST with

replacement.

If multapses are allowed, there are
NsNt þ Nsyn � 1

Nsyn

 !

possible networks for any given

number Nsyn� NsNt. Because exactly Nsyn connections are distributed across Nt targets

with replacement, the joint in-degree distribution is multinomial,

PðKin;1 ¼ K1; . . . ;Kin;Nt
¼ KNtÞ

¼

Nsyn!

K1! . . .KNt !
pNsyn if

PNt
j¼1
Kj ¼ Nsyn

0 otherwise

8
>><

>>:

ð11Þ

with p = 1/Nt.
The out-degrees have an analogous multinomial distribution

PðKout;1 ¼ K1; . . . ;Kout;Ns
¼ KNsÞ, with p = 1/Ns and sources and targets switched. The mar-

ginal distributions are binomial distributions PðKin;j ¼ KÞ ¼ BðKjNsyn; 1=NtÞ and

PðKout;j ¼ KÞ ¼ BðKjNsyn; 1=NsÞ, respectively.

The M-operator of CSA should not be confused with the “M” indicating that multapses are

allowed in our symbolic notation.

Random, fixed in-degree without multapses
Symbol: Kin;M=
CSA: r1ðKÞðNS � NTÞ

Definition: Each target node in T is connected to Kin nodes in S randomly chosen without

replacement.

The in-degree distribution is by definition PðKÞ ¼ dK;Kin . To obtain the out-degree distribu-

tion, observe that after one target node has drawn its Kout sources the joint probability

PLOS COMPUTATIONAL BIOLOGY Connectivity Concepts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010086 September 8, 2022 19 / 49

https://doi.org/10.1371/journal.pcbi.1010086


distribution of out-degrees Kout,j is multivariate-hypergeometric such that

PðKout;1 ¼ K1; . . . ;Kout;Ns
¼ KNsÞ

¼

QNs
j¼1

1

Kj

 !�
Ns

Kin

� �

if
PNs

j¼1
Kj ¼ Kin

0 otherwise

8
>>><

>>>:

;
ð12Þ

where 8j Kj 2 {0, 1}. The marginal distributions are hypergeometric distributions

PðKout;j ¼ KÞ ¼
1

K

� �
Ns � 1

Kin � K

� ��
Ns
Kin

� �

¼ BerðKin=NsÞ ; ð13Þ

with Ber(p) denoting the Bernoulli distribution with parameter p, because K 2 {0, 1}. The

full joint distribution is the sum of Nt independent instances of Eq 12.

Random, fixed out-degree without multapses
Symbol: Kout;M=
CSA: r0 Kð Þ NS � NTð Þ

Definition: Each source node in S is connected to Kout nodes in T randomly chosen with-

out replacement.

The out-degree distribution is by definition PðKÞ ¼ dK;Kout , while the in-degree distribution

is obtained by switching source and target indices, and replacing Kout with Kin in Eq 12.

Random, fixed in-degree with multapses
Symbol: Kin,M
CSA: r1 Kð ÞM NS � NTð Þ

Definition: Each target node in T is connected to Kin nodes in S randomly chosen with

replacement.

Ns is the number of source nodes from which exactly Kin connections are drawn with equal

probability p = 1/Ns for each of the Nt target nodes ti 2 T . The in-degree distribution is by

definition PðKÞ ¼ dK;Kin . To obtain the out-degree distribution, we observe that because

multapses are allowed, drawing Nt times Kin,i = Kin from S is equivalent to drawing NtKin

times with replacement from S. This procedure yields a multinomial distribution of the

out-degrees Kout,j of source nodes sj 2 S [75], i.e.,

PðKout;1 ¼ K1; . . . ;Kout;Ns
¼ KNsÞ

¼

ðNtKinÞ!

K1! . . .KNs !
pNtKin if

PNs
j¼1
Kj ¼ NtKin

0 otherwise

8
>><

>>:

ð14Þ

The marginal distributions are binomial distributions

PðKout;j ¼ KÞ ¼ BðKjNtKin; 1=NsÞ : ð15Þ

Random, fixed out-degree with multapses
Symbol: Kout,M
CSA: r0 Kð ÞM NS � NTð Þ
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Definition: Each source node in S is connected to Kout nodes in T randomly chosen with

replacement.

By definition, the out-degree distribution is a PðKÞ ¼ dK;Kout . The respective in-degree dis-

tribution and marginal distributions are obtained by switching source and target indices,

and replacing Kout with Kin in Eqs 14 and 15 [75].

Networks embedded in metric spaces. The previous sections analyze the connectivity

between sets of nodes without any notion of space. However, real-world networks are often

specified with respect to notions of proximity according to some metric. Prominent examples

are spatial distance and path length in terms of number of intermediate nodes. The exact

embedding into the metric space, such as the distribution of nodes in space rð~xÞ or the bound-

ary conditions, can have a strong impact on the resulting network structure. ρ here denotes the

density, not to be confused with the CSA operator.

Given a distance-dependent connectivity, degree distributions result from this distance

dependence combined with the distribution of distances between pairs of nodes [76]. If nodes

are placed on a grid or uniformly at random in space, different asymptotic approximations to

the degree distributions can be made [77–79]. If the node distribution rð~xÞ is (statistically)

homogeneous, and the connection probability pð~xÞ is isotropic, the average in- or out-degree

for connections to or from any node i at a given distance r ¼ jj~xi � ~xjj from the node follows

hK(r)i* ρ(r)p(r), which is usually easier to derive than the full joint degree distribution, and

can be used to statistically test whether network realizations are correctly generated [75, 80].

Here we specify the properties of spatial networks, which are also relevant for networks

with feature-specific connectivity (e.g., based on sensory response tuning). In order to fully

specify networks embedded in a metric space and with distance-dependent connectivity, the

following quantities need to be listed:

Dimension: Most often the space is one-dimensional (e.g., ring networks), two-dimensional

(e.g., a layer of neurons), or three-dimensional (i.e., a volume of neurons).

Layout: The layout rð~xÞ specifies how nodes are arranged, for instance on a regular grid (e.g.,

orthogonal, isometric, or hexagonal) or uniformly at random.

Metric: The metric specifies the concept of distance. On an orthogonal grid the max-norm

metric (ℓ1) on the grid index can be the metric of choice, while for a uniformly random

distribution of nodes the Euclidean metric (ℓ2) is typically chosen.

Boundary conditions: If nodes are embedded into a space with boundaries, there tend to be

inhomogeneities in the connectivity close to these boundaries. To avoid such potential

inconsistencies, boundary conditions are often assumed to be periodic, i.e., opposite bor-

derlines are folded back onto each other (e.g., a line into a ring, a layer into a torus, etc.).

Distance dependence of the connectivity profile: The connectivity profile f ð~xi;~xjÞ, some-

times called spatial footprint, specifies which nodes j are connected to a node i as a function

of their distance rij ¼ jj~xi � ~xjjj. Profiles can be deterministic (e.g., a node connects to all

other nodes within a certain distance rmax, specified via a boxcar profile f(r)*Θ[rmax − r])
or probabilistic (a node connects to another node at a certain distance r with probability p
(r) 2 [0, 1], e.g., boxcar: p(r)*cΘ [rmax − r], linear: p(r)*max(c1 − c2 r, 0), sigmoidal:

pðrÞ � 1=ð1þ eðr� c1Þ=c2Þ, exponential: pðrÞ � c1 e� r=c2 , Gaussian: pðrÞ � c e� r2=2s2

, or more

complex, e.g., non-centered multivariate Gaussian with covariance matrix S:

pð~rijÞ � c e
� ð~r ij � ~mÞ

TS� 1ð~r ij � ~mÞ=2,~rij ¼~xi � ~xj, etc.). These distance-dependent connectivity
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profiles may be combined with rules for the establishment of multapses and higher-order

moments. In the case of feature-specific connectivity as well as other generalized spaces and

cases where a metric is difficult to define, it can be useful to generalize f to be a direct func-

tion of the sets of sources and targets, like a CSA mask: f = f(i, j) where i 2 S; j 2 T . The dis-

tance could be treated similarly: rij = r(i, j) corresponding to a CSA value function.

Larger-scale and multiscale networks can have more complicated, heterogeneous struc-

tures, such as layers, columns, areas, or hierarchically organized modules. Distance dependen-

cies may then have to be specified with respect to the different levels of organization, for

example specific to their horizontal (laminar) and vertical (e.g., columnar) dimension (cf.

“Introduction”). One example is networks modeling axonal patches, i.e., neurons that have

axonal arborization in a certain local range, as well as further axonal sprouting in several dis-

tinct long-range patches [24, 27, 81–83].

We discuss an explicit example of how to describe such connectivity rules in Section

“Examples”.

Proposal for a graphical notation for network models

Network illustrations are a direct expression of how researchers think about a model and they

are therefore a common means of network description (Fig 3B). They convey an intuitive

understanding of network structures, relationships, and other properties central to the dynam-

ics [84], and may also reflect how a model is implemented. If similar diagram styles are used,

diagrams facilitate the reading of an article and allow for comparability of models across publi-

cations. However, computational neuroscience publications exhibit a wide variety of network

diagram styles. While individual research groups and some sub-communities use similar sym-

bols across publications, a common standard for the whole field has not been established yet.

In contrast, the related field of systems biology has developed the broadly accepted Systems

Biology Graphical Notation (SBGN, [85]; see also [86]) over more than two decades. SBGN

has an online portal (https://sbgn.github.io), an exchange and data format (SBGN-ML), a soft-

ware library, and various further tools and databases.

Building on current practice in the computational neuroscience community, we propose a

graphical notation framework for network models in computational neuroscience by defining

which network elements to encode and how. We restrict ourselves to the simplest, most com-

monly used elements and provide a path to flexibly extend and customize the diagrams

depending on the model specifics to expose. The notation uses simple standardized graphical

components and therefore does not depend on a specific tool.

In the notation, a network is depicted as a graph composed of nodes and edges and

enhanced with annotations. The nodes correspond to neuronal units or devices, the edges to

connections, and the annotations specify the connections in terms of connection rules, possi-

ble constraints, and parameterization. The term “devices” refers to instances which are consid-

ered external to the main neuronal network but interact with it: either providing a stimulus or

recording neuronal activity. Note that the nodes and edges of the graphical notation can com-

bine multiple nodes and edges of the neuronal network; for instance, a population of network

nodes can be indicated with one graphical node. A projection, referring to the set of connec-

tions resulting from one connectivity rule applied to a given source and target population, can

be indicated with a single edge in the graphical notation.

Here we define diagram nodes and edges as well as annotations for the most common net-

work types and propose a set of graphical elements to use. Thus, in the following, “node” and

“edge” refer to the graphical components. A summarizing overview is given in Fig 8 for
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Fig 8. Quick reference for the proposed graphical notation for network models in computational neuroscience.

https://doi.org/10.1371/journal.pcbi.1010086.g008
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reference. The section concludes with a discussion on further techniques for creating appeal-

ing network diagrams.

Network node. A network node in the graphical notation represents one or

multiple units. These units are either neuron or neural population models, or devices pro-

viding input or output. Network connectivity is defined between these graphically

represented nodes. Nodes are drawn as basic shapes. A textual label can be placed inside

the node for identification. Nodes are differentiated according to a node class and a node

type.

Node class. The node class determines if a node represents an individual unit or a popula-

tion of units by different frames of the shapes depicting the nodes. The distinction is a recom-

mendation for diagrams that contain both kinds of nodes.

Individual unit

A node representing an individual unit may be depicted as a shape with a thin, single

frame. Note that such an individual unit may be a population (e.g., neural mass) model.

Population

A node representing a population of units may be depicted as a shape with either a thick

frame or a double frame. It is in principle possible to represent a group of population mod-

els this way.

Node type. The node type refers to a defining property of a node and is expressed by a

unique shape.

Generic node

A generic node, represented by a square, is used if the specific node types do not apply or

are not intended to be emphasized.

Excitatory neural node

An excitatory neural node, depicted by a triangle, is used if the units represent neurons, and

their effect on targets is excitatory.

Inhibitory neural node

An inhibitory neural node, depicted by a circle, is used if the units represent neurons and

their effect on targets is inhibitory.
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Stimulating device node

A stimulating device node, depicted by a hexagon, provides external input to other network

nodes. Stimulating devices can be abstract units which for instance supply stochastic input

spikes. Nodes with more refined neuron properties can also be considered as stimulating

devices if they are external to the main network studied.

Recording device node

A recording device node, depicted by a parallelogram, contains non-neural units that

record activity data from other network nodes.

Network edge. A network edge represents a connection or projection between two nodes.

Edges are depicted as arrows. Both straight and curved lines are possible. Edges are differenti-

ated according to the categories determinism, edge type, and directionality.

Determinism. The notation distinguishes between deterministic and probabilistic connec-

tions via the line style of network edges. Edges between two nodes representing individual

units are usually deterministic.

Deterministic

Deterministic connections, depicted by a solid line edge, define exactly which units belong-

ing to connected nodes are themselves connected.

Probabilistic

Probabilistic connections, depicted by a dashed-line edge, are constructed by connecting

individual neurons from source and target populations according to probabilistic rules.

Edge type. Analogously to the node type, the edge type emphasizes a defining property of

the connection by specific choices of arrowheads. The edge types given here can be used for

connections between all node types.

Generic edge

A generic edge, represented by a classical (or straight barb) arrowhead, is used if the specific

edge types do not apply or the corresponding properties are not intended to be emphasized.

Excitatory edge

An excitatory edge, depicted by a triangle arrowhead, is used if the effect on targets is

excitatory.
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Inhibitory edge

An inhibitory edge, depicted by a filled circle tip, is used if the effect on targets is inhibitory.

Directionality. The directionality indicates the direction of signal flow by the location of

one or two arrowheads on the edge.

Unidirectional

Unidirectional connections are depicted with a tip at the target node’s end of the edge.

Bidirectional

Bidirectional connections are symmetric in terms of the existence of connections and their

parameterization. Such connections are depicted with edges having tips on both ends. If the

same units are connected but parameters for forward and backward connections are not

identical, two separate unidirectional edges should be used instead.

Annotation. Network edges can be annotated with information about the connection or

projection they represent. Details on the rule specifying the existence of connections and their

parameterization may be put along the arrow.

Connectivity concept. The properties in this category further specify the presence or

absence of connections between units within the connected nodes.

Concept
The definitions and symbols given in Section “Connectivity concepts” are the basis for this

property.

Constraint
Specific constraint or exception to the connectivity concept.

Autapses allowed
Autapses are self-connections. The letter A indicates if they are allowed.

Multapses allowed
Multapses are multiple connections between the same pair of units and in the same direc-

tion. The letterM indicates if they are allowed.

Prohibited
The symbol of a constraint struck out reverses allowed to prohibited. E.g., autapses and

multapses are prohibited: A=;M= .

Parameterization. Properties of the parameterization of connections, e.g., of weights w
and delays d, can be expressed with mathematical notation.
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Constant parameter
A parameter, e.g., a weight, which takes on the same value for all individual connections is

indicated by an overline: w.

Distributed parameter
A tilde between a parameter (e.g., the weight) and a distribution indicates that individual

parameter values are sampled from the distribution: w � D. This example uses D for a

generic distribution, but specific distributions, such as a normal distribution denoted by N ,

are also possible.

Further specification. Annotations for both the connectivity concept and the parameteri-

zation of connections can be specified further.

Functional dependence
Functional dependence on a parameter is expressed with parentheses, here indicated with a

generic function f(�). Common use cases are the dependence on the inter-unit distance r or

on time t. Connections drawn with a distance-dependent profile can be indicated with f(r).
The exact function f used should be defined close to the diagram; already defined concepts

such as a spatially modulated pairwise Bernoulli connection probability can also be used: p
(r). Another example for a distance-dependent parameter could be a delay d(r). Plastic net-

works, in which the weights change with time, can be indicated with w(t).

Customization and extension. The definitions given above are intended as a reference

for illustrating network types that are in the scope of this study. Further graphical techniques

may be used that go beyond these fundamental definitions, such as adding meaning to the size

of network nodes (e.g., making the area proportional to the population size) or using colors

(e.g., to highlight network nodes or edges sharing certain specifics). In the community, two

ways of distinguishing excitatory and inhibitory neurons tend to be used: the “water tap” nota-

tion in which the excitatory neurons are shown in red and the inhibitory neurons in blue (e.g.,

[87]), and notations in which the inhibitory neurons are shown in red and the excitatory neu-

rons in either blue or black, which may be thought of as “bank account” notation (blue: [5],

black: [14]).

Fig 7 uses the proposed symbols for generic node and edge types to demonstrate basic con-

nectivity patterns; in addition, we employ colors to differentiate source and target nodes and

their connections. In Fig 1 we distinguish with blue and red between excitatory and inhibitory

neurons, respectively, to give an example for the bank account notation.

Encoding the same feature in multiple ways is also encouraged if it supports intuition; in

the proposed graphical notation, we use double encoding for node shapes and arrowheads.

For complex or hierarchical networks, multiple diagrams may be created: for instance, one

that provides an overview and others that bring out specific details.

The modular structure of our graphical notation framework allows for extension to features

that are not yet covered. Symbols for additional network elements may be defined for example

in the figure legend and applied as the researcher sees fit. The common classification of neural

nodes into excitatory and inhibitory types used in the notation is one such example. On the

one hand, a model-specific definition of these types can be formulated. On the other hand, fur-

ther classification detail can be added to the graph (e.g., in the form of annotations) or addi-

tional node types can be introduced if necessary to represent nodes with further biophysical

properties which are not covered by the above simple classification.
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In the same way as our propositions for node types can be customized, adjustment of the

other graphical elements is also encouraged. For example, having so far considered only net-

works coupled via chemical synapses, another possible extension is to define gap junctions as a

novel edge type. One possibility here is to use the common symbol for electrical resistance:

Gap junctions

Electrical coupling via gap junctions is represented by a zig-zag line connecting the nodes.

Examples

To illustrate the symbolic and graphical notation proposed, we apply it in the following to

three concrete example networks.

Two-population balanced random network. The first example is the random, fixed in-

degree variant of the balanced random network model also shown in Fig 1A (for details see

Figs 12–15). Fig 9 shows different means for describing the connectivity of the model; the

same options are covered in the model review in Fig 3B. The illustration (Fig 9A) uses the ele-

ments for nodes, edges, and annotations introduced in Section “Proposal for a graphical nota-

tion for network models” to depict the network composed of an excitatory (E, triangle) and an

inhibitory (I, circle) neuron population, and a population of external stimulating devices (Eext,

hexagon). Recurrent connections between the neurons in the excitatory and inhibitory popula-

tions are probabilistic (dashed edges) and follow the “random, fixed in-degree” rule (Kin) with

the further constraints that autapses are prohibited (=A) and multapses are allowed (M).

Connections between different, non-intersecting populations by definition cannot have

autapses and therefore it is not required to specify this along the corresponding edges. Neither

does the absence of multapses between Eext and the neuronal populations need to be specified

as we here assume a one-to-one connectivity (δ). This network diagram not only indicates if

connections exist but also shows that their parameters, weights (w), and delays (d) are the

same for each connection. However, the diagram does not express the parameter values, just as

the numbers of incoming connections are left to be defined elsewhere. In contrast, the textual

description (Fig 9B) adds subscripts to the connectivity concept to indicate that the excitatory

and inhibitory in-degrees may be different: Kin;T E and Kin;T I, respectively. The table (Fig 9C)

follows the guidelines by Nordlie et al. [84] and structures each connection in terms of a name,

the source and target populations, and the connectivity rule. The set of equations (Fig 9D) for-

mulates the connectivity by means of the Connection Set Algebra (CSA) [58]. While panels A–

D of Fig 9 are primarily concerned with the conceptual description of connectivity, Fig 9E

gives an implementation example using the PyNEST [63] interface of the simulator NEST

[62]. The excitatory (E) and inhibitory (I) population are here represented by NodeCollec-
tions, storing the IDs of each neuron. By default, autapses and multapses are allowed; here

we set both values explicitly for clarity. EExt in the code stands for a poisson_generator,

a stimulating device node in NEST which generates independent sequences of input spikes

sampled from the same Poisson process for each of its target neurons. In other words, EExt

refers to just one NEST node which acts like the population of external stimulating devices

indicated with EExt in Fig 9A–9D. Due to this specific implementation of the poisson_gen-
erator, the default connection rule all_to_all as a generalization of one-to-all connec-

tivity is here applied instead of one_to_one.

Previous studies preferentially combine different ways of describing connectivity (Fig 3B)

and also the example in Fig 9 highlights that one means alone may not be sufficient to
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Fig 9. Different means to describe connectivity of a balanced random network. Example descriptions for the model used in Fig 1A with description means similar to

Fig 3B. (A) Network diagram according to the graphical notation introduced in Section “Proposal for a graphical notation for network models”. Symbols in annotations

refer to the concepts and not the explicit parameters. (B) Textual description of the model layout. Subscript “T E” labels connections from source population E to target

population T 2 E; Igf ; the same applies to “T I” with source population I. Kin;T E and Kin;T I represent the explicit values used for the in-degrees. (C) Table according to

the guidelines by Nordlie et al. [84]. (D) Equations according to the Connection Set Algebra (CSA) [58] using the index sets E and I. (E) PyNEST source code [63]

specifying connections from source (pre) to target (post) populations with a connection dictionary (conn_spec). The use of all-to-all instead of one-to-one

connectivity here is due to the specific implementation of the external drive in NEST.

https://doi.org/10.1371/journal.pcbi.1010086.g009
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exhaustively cover all aspects of the connectivity. For a comprehensive description, we recom-

mend using at least one network diagram and a textual description for rapidly conveying the

network structure, and a table for providing details. In addition, default assumptions, e.g., the

presence or absence of multapses, should be made explicit; this can be done in the text.

Cortical microcircuit with distinct interneuron types. The second example, shown in

Fig 10, is a cortical microcircuit model [88] adapted from Potjans and Diesmann [89]. Extend-

ing the two-population network in Fig 9, this model comprises four cortical layers (L2/3, L4,

L5, and L6). With its cell-type and layer-specific connectivity, the Potjans-Diesmann model

represents the structure and dynamics of local cortical circuitry which is similar across differ-

ent areas and species. The model has been used in a number of recent validation and bench-

marking studies, and implementations for different simulators exist, including NEST [90],

SpiNNaker [90, 91], Brian [92], GeNN and PyGeNN [93, 94], NeuronGPU [95], NetPyNE

[96], and PyNN (available as a PyNN example and via Open Source Brain, https://www.

Fig 10. Multi-layer microcircuit model with three inhibitory neuron types. (A) Schematic overview of all neuronal populations, external inputs, and main

connections. Inhibitory populations are grouped by boxes. In panels A and B, for probabilistic connections, only those with a probability of at least 4% are shown (thin

lines: 4 to 8%, thick lines:�8%). (B) Detailed L2/3 connectivity between excitatory population and all three inhibitory populations; in panel A these connections are

combined in two arrows (from and to the box). (C) Excitatory-inhibitory subnetwork with external inputs depicted with annotations according to the graphical

notation in Fig 8. The connectivity is described with the rules “one-to-one” (δ) and “pairwise Bernoulli” (p), and the constraints autapses allowed (A) and multapses

prohibited (=M). The synaptic weights (w) and delays (d) are specified as either constant (i.e., w) or sampled from lognormal distributions (i.e., w � LN ). Interneuron

types: somatostatin expressing (SOM), vasoactive intestinal peptide expressing (VIP), parvalbumin expressing (PV).

https://doi.org/10.1371/journal.pcbi.1010086.g010
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opensourcebrain.org/projects/potjansdiesmann2014). While the original model by Potjans

and Diesmann has only one excitatory (E) and one inhibitory (I) neuron population per layer,

the model considered here distinguishes between three different inhibitory neuron types

(SOM, VIP, and PV). All neuron populations receive external Poisson input Eext as in Fig 9

and additional input from an external thalamic population Eth. The thalamic targeting of all

layers is in contrast to the Potjans-Diesmann model where only L4 and L6 receive thalamic

input. Fig 10 shows three different diagrams to emphasize different aspects of the model. Here,

the first two panels are used to give an intuitive overview of the network, while the third panel

adheres to the proposed graphical notation to unequivocally represent the connectivity rules.

Fig 10A uses a colored illustration to convey the overall components without specifying the

connection rules. For the general model overview, cortical layers and subnetworks of inhibi-

tory populations are framed by boxes. To avoid clutter, not all connections are shown and the

distinction between probabilistic and deterministic connections via dashed and solid lines, as

suggested in Fig 8, is not applied. Instead, only connections above a threshold connection

probability are shown with solid lines, and two levels of line thickness help to distinguish

between low- and high-probability connections. By taking this freedom we illustrate that cus-

tomizations remain possible for overview figures, as long as the network is unequivocally

described in the remainder. Arrows to or from a box represent the average connection proba-

bilities to or from the network nodes contained in the box. The average connection probability

equals the expected total number of connections divided by the maximum number of possible

connections while considering all involved pairs of populations. For example, the average con-

nection probability from an excitatory population E to the inhibitory populations I ¼
PV; SOM; VIPgf is given by:

pIE ¼

X

I2I

NENIpIE
X

I2I

NENI
: ð16Þ

Fig 10B zooms into layer L2/3 to highlight the connectivity between the excitatory popula-

tion and the three inhibitory populations in this single layer, resolving the arrows in and out of

the box. In panel A there is only one outgoing arrow from the inhibitory neuron box in L2/3

connecting to the excitatory population, but in panel B it becomes clear that the inhibitory sub-

populations SOM and PV both have strong connections to E while VIP does not.

Fig 10C follows the proposed notations, as in Fig 9A, to illustrate the general components

and connection rules that apply to the whole network regardless of layer and inhibitory cell

type. While the original model by Potjans and Diesmann uses connectivity of the type “Ran-

dom, fixed total number with multapses”, this model uses “pairwise Bernoulli” connectivity as

indicated by the symbol p.

Combining these illustrations helps to understand the structure and characteristics of this

model more intuitively. However, we do encourage deviations from and extensions to the pro-

posed notation if it helps to improve the clarity of the diagrams, but these changes should be

explained with care.

Spatial network with horizontally inhomogeneous structure. The third example is a

network embedded into two-dimensional space introduced in a paper by Voges & Perrinet

[97] to model the dynamics of neocortical networks with realistic horizontal connectivity. The

“PB model”, as it is called by the authors, incorporates both local and non-local connections

between cells as observed for instance in the laminar structure of the visual cortex of cats [97,

98]. Local connectivity (footprint ≲ 150–300 μm) is observed to be approximately isotropic,
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with nearby cells being more likely to be connected than cells farther apart. On longer scales

(≳ 1mm) so-called patches can be observed where the axons sprout and form several connec-

tions in a confined area (see Introduction).

As mentioned in Section “Connectivity concepts”, in order to define spatially embedded

networks, the dimensions of the space, layout of neurons, metric of distances, boundary con-

ditions, and, for distance-dependent connectivity, the form of this distance dependence

need to be specified (Fig 11A). Here, NE excitatory and NI = N − NE inhibitory neurons are

embedded into a two-dimensional Euclidean space of size [0, L) × [0, L) with periodic

boundary conditions (Fig 11A). Excitatory neurons are placed randomly according to a uni-

form distribution, while inhibitory neurons are distributed on jittered grid positions with

Fig 11. Two-dimensional spatial network with patchy long-range connections. (A) Spatial networks need to be defined in terms of dimension, layout, metric,

boundary conditions, and the spatial or distance dependence of the connectivity, where applicable. In this example, neurons have both local and structured long-range

connections [97]. Θ(x) = 0 if x< 0, 1 otherwise. (B) Sketch of patchy connectivity and parameters needed to define ppatch. (C) Graphical notation of network

connectivity corresponding to Fig 8.

https://doi.org/10.1371/journal.pcbi.1010086.g011
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grid constant D ¼ L=
ffiffiffiffiffi
NI
p

and jitter d~x � U½½0; J� � ½0; J�� with maximal jitter J where U
denotes the uniform distribution. Both populations have local and non-local, patchy con-

nections [97] with different parameterizations for excitatory and inhibitory neurons (Fig

11A), based on [23].

The global connection density (number of realized connections over number of possible

connections) ctotal splits up into respective local and non-local parts motivated by anatomy

[26, 97] (cf. Introduction), such that each neuron i in a given subpopulation has local and

non-local connection densities cloc(i) and cnonlocðiÞ ¼
PNpn

k¼1
cp;kðiÞ, where Npn is the number

of patches per neuron (see Fig 11A). These underlying biologically motivated numbers

then serve as constraints for the choices of the parameters needed in the following defini-

tions [26, 97].

Local connections: In order to satisfy constraints with respect to both the fraction of con-

nections assigned as local and the local spatial footprint, the out-degrees K loc
out are in a first

step drawn from a binomial distribution with a mean that produces the right connectivity

fraction cloc. In a second step, random elements (i, j) of the set of potential synapses are

drawn, and a connection is established with probability plocðjj~xj � ~xijj
�
�K loc

out;iÞ, until the

required number K loc
out;i is achieved. Multapses and autapses are excluded. The local connectiv-

ity of each neuron i at~xi follows a Gaussian connectivity profile plocðjj~x � ~xijjÞ with center~xi,
maximal connection probability p0 and space constant or footprint σ, indicated by colored

circles in Fig 11B.

Non-local, patchy connections: Non-local connection patterns in Fig 11B are deter-

mined for groups of neighboring neurons, such that all neurons located within a certain

region (squares) project to a fixed subset of spatially distributed patches (light gray disks)

allowed for this region. Again, first an out-degree Kpatch
out is determined, and then the

required number of synapses is established probabilistically according to Bernoulli trials,

where the connection probability ppatchðjj~xi � ~xp;kjj
�
�Kpatch

out ) from a neuron at~xi to each cell

within one of its target patches centered at~xp;k is constant within a certain radius. Multapses

are excluded.

The basic parameters to characterize patchy projections are then:

Np: the number of patches per group of neurons,

Npn: the number of patches per single neuron (Npn�Np),

rp: the radius of a patch,

dp: the distance between the center of a group~xg , and patch center~xp;k,

ϕ: the angle which characterizes a patch position~xp;k relative to~xg , see Fig 11A and 11B.

In particular, here the respective Np’s are drawn from uniform distributions with distinct

minimum Npmin and maximum Npmax values for each population (E, I) while the Npn’s

(Npn�Np) are drawn from binomial distributions BðNpnjnNpn; pNpnÞ with specified means

Npn ¼ nNpnpNpn and the corresponding cutoff values. The distances dp come from normal dis-

tributions, while the angles ϕ are sampled uniformly from the interval [0, 2π) (Fig 11A and

11B, [97]). The Npn patches to which a given neuron projects are chosen uniformly at random

from the Np patches for the group.

The remaining connectivity specifications are shown in the graphic in Fig 11C. Each popu-

lation receives an external drive modeled as Poisson-process spike input. Moreover, delays are

distance-dependent [97]. The exact connectivity parameters for each population, as well as
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weights and delays would need to be specified for instance in a table, which is beyond the

scope of this example.

Discussion

With the aim of supporting reproducibility in neuronal network modeling, we consider high-

level connectivity in such models: connectivity that is described by rules applied to populations

of nodes. As our main result, we propose a standardized nomenclature for often-used connec-

tivity concepts and a graphical and symbolic notation for network diagrams.

Our proposal is informed by a review of model studies published in two well-known reposi-

tories (Open Source Brain and ModelDB), as representative of the wider body of neuronal net-

work models. The network models reviewed are diverse in terms of when, where, and by

whom they were published, their level of biological detail, and how their connectivity is

defined and implemented (Figs 2–6). We find that the description of the connectivity in pub-

lished articles is often insufficient for reproducing the connectivity rules, distributions, or con-

crete patterns used in the accompanying implementations. This is the case even though a large

part of the identified connectivity concepts corresponds to rather basic rules. The devil is in

the detail: deviations from standard rules, further constraints, or just the lack of rigorous defi-

nitions lead to ambiguities. Details sometimes omitted include whether self-connections

(autapses) or multiple connections from a given source to a given target (multapses) are

allowed.

In our review we further survey the use of high-level connection concepts in model descrip-

tions and implementations and observe that they provide multiple advantages. High-level con-

cepts allow for more concise and informative network specifications than explicit specification

of atomic connectivity, in the form of either tables (databases) or algorithms expressed in ele-

mentary operations. Furthermore, for most high-level concepts presently used by modelers,

simulation software provides dedicated code to efficiently instantiate connections in parallel

or generate informative visualizations [54]. A significant obstacle to the systematic use of high-

level concepts at present is the lack of a standardized terminology in the field: The same term

may describe slightly different connectivity concepts with different authors or simulation

codes, especially with respect to underlying assumptions about constraints, such as the pres-

ence of autapses.

In contrast to other approaches, we do not propose a new formal language (e.g., NeuroML,

NineML) or a software implementation (e.g., PyNN). Instead, we gather terminology already

in use in the community, expose interrelationships, and provide precise definitions. The result

is a recipe helping neuroscientists to present their modeling work such that it has a higher

chance of being reproducible. Furthermore, the user-level documentation of simulation

engines can make reference to the presented definitions of connectivity concepts and point

out any differences compared to the implementation at hand. A continuing debate and refac-

toring of individual codes may ultimately lead to a maturation of the field and the convergence

of simulation engines.

Historical context

For more than a decade, computational neuroscientists have been aware of the need to gather

the notions used to describe the structure of network models and to establish common prac-

tices for network definitions [86]. Ideas on systematizing connectivity concepts were discussed

at the “NEST Topology Library & LFP Modeling Workshop” in 2008 at the Norwegian Uni-

versity of Life Sciences (NMBU). This resulted in two publications on tabular [84] and
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graphical [54] network representations. The workshop “Creating, Documenting and Sharing

Network Models” held at the University of Edinburgh in 2011 reviewed the situation at the

time and resulted in a joint article by the participants [55] which set out the research program

for the present work.

Other efforts in the community have focused on implementations in specific tools or sets of

tools. Examples include the simulation package NetPyNE [99], the model description lan-

guages NeuroML [44] and NineML [57], the SONATA data format for describing large-scale

network models [59], and the Open Source Brain repository for network models also used

here [43]. To foster the adoption, interoperability, and standardization of description lan-

guages and pertaining tools, the INCFWorking Group on Standardized Representations of Net-
work Structures (https://www.incf.org/sig/incf-working-group-standardized-representations-

network-structures) was established in 2018.

While earlier work focused on the formal description of single neurons, network struc-

ture gained increasing importance. This was partly driven by the increasing complexity of

network models but also by the need to reproduce network models of others. The latter is

highlighted by the research on neuromorphic computing systems. Verification of these sys-

tems requires that the same network model can be instantiated on a conventional computer

and on the new system under investigation. Groundbreaking work was carried out by the

European FACETS project (2005–2010) in conceiving the meta-simulator language PyNN

as a common front end for software and hardware simulation engines [46]. In this way,

once a network has been formulated in PyNN, it can be instantiated in a software simula-

tion engine such as NEST or a neuromorphic hardware system such as SpiNNaker [100].

The availability of high-level connectivity concepts such as “all-to-all” in PyNN must guar-

antee that all back-end engines interpret this in the same way. Expanding the connectivity

concept into elementary pairwise connect requests already on the level of the PyNN inter-

preter is not an option as this would deprive a simulation engine of any chance of efficient

parallelization. Another framework independent of a particular simulation engine is the

Connection Set Algebra (CSA), described in Section “Description languages and simula-

tors” [58].

Although fairly complete simulation codes for biological neuronal networks predate these

decisive years by at least another decade [101–103], a framework for expressing connectivity

that is consistent across simulators and description languages has not been developed to the

present day. The primary reason is not that fundamental concepts such as cortical layers, ran-

dom networks, and spatially organized networks only emerged over time. All these have been

well known already for many decades and have been used in network models. In 2008, Erik De

Schutter [86] analyzed the situation by comparing the fields of computational neuroscience

and systems biology. He placed the emergence of computational neuroscience as a field in the

‘second half of the eighties’ and the emergence of systems biology in the ‘late nineties’ of the

last century. Within a few years systems biology came up with a first version of the community

standard SBML [104] for model description while computational neuroscience, although ten

years older, was still struggling to find a common ground at the time of De Schutter’s review.

He explains the observation by a difference in scientific culture. Systems biology started on the

background of large international collaborations for jointly uncovering the genome like the

Human Genome Project (1990–2003). Thus researchers were already aware of the needs for

standards and the methods to achieve them. Computational neuroscience only began to gain

experience in large-scale collaborations with initiatives like the foundation of the Allen Insti-

tute for Brain Science in the US in 2003 and the European FACETS project in 2005, the latter

eventually leading into the European Human Brain Project. Therefore, when the need for stan-

dardized model descriptions became apparent around 2010, the community was still learning
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how to do big science. This may explain why it has taken so long to explore and discuss stan-

dardized model descriptions.

In addition, De Schutter points out, for the young discipline of systems biology modern

software development tools and the idea of open source were part of the culture from the

beginning. Therefore the competence in research software engineering and the acceptance of

software development as an integral part of scientific methodology may have been more wide-

spread at this time. There is a long-standing awareness that software development in science,

including computational neuroscience [105, 106], is subject to special conditions: most scien-

tists are not trained programmers [107], and it is often difficult to receive proper credit for the

time invested in developing software [108]. As a result such tasks regularly are assigned low

priority and progress is slow. It is the responsibility of senior scientists and science politics to

adapt performance indicators to modern science and improve the conditions for sustainable

research software engineering.

Although the present work restricts itself to a compilation of the concepts for describing

network structure, we have learned from the history of SBML [104] and related efforts in

computational neuroscience such as NeuroML [44] that it is important to integrate the differ-

ent views of the community in a series of workshops. Chances for acceptance are higher if a

proposed framework results from bottom-up experience and a community approach. Thus

our results can only constitute a first draft which now needs to be discussed, elaborated, and

maintained.

In systems biology it was customary to illustrate biochemical interactions by graphs as a

third pillar of communication next to plain English and systems of equations in order to sup-

port the explanation of complex networks. Only a few years after the initial definition of SBML

the idea emerged to also standardize the components of such illustrations as SBGN, a Systems

Biology Graphical Notation [85]. Also in computational neuroscience researchers regularly

communicate the structure of a model by illustrations of different styles and level of detail.

While in systems biology the graphical notation expresses functional relations and temporal

sequences depending on the diagram type of the standard, in computational neuroscience at

present the primary use is the abstract representation of the anatomical connections of the

neuronal network. In designing our draft graphical notation for computational neuroscience

we tried to respect the lessons learned while developing SBGN as reported in [85]. In particular

neither position nor color carry inherent meaning and we started from notations already used

in the literature. Le Novère et al. point at the relevance of software tools using the graphical

notation for dissemination. In this spirit, the recent release of NEST Desktop [109] already

adheres to our proposed graphical notation.

Limitations

The actual richness of models goes beyond the scope of this work and is still growing as the

recent progress in experimental neuroscience makes more comprehensive anatomical and

physiological data available to modelers. This data availability fuels the research field of con-

nectomics and leads to an advent of large models with detailed data-driven connectivity [2, 3].

These models may have specific information not only on which neurons are connected but

also on the location and other properties of the individual synapses. The models typically com-

bine a bottom-up approach with conceptual assumptions. Abstractions are crucial for generali-

zation and for testing hypotheses on the specifics of the connectivity. While the complexity of

such models cannot be fully reduced, they may still benefit from guidelines for concise and

reproducible descriptions of their connectivity.
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Apart from complex, data-driven models, various high-level connectivity patterns exist

which we have not discussed here. The connectivity rules used by modelers so far and consid-

ered here mostly yield regular and random graphs. In regular graphs, every node is linked to a

fixed number of other nodes according to a standard pattern. In contrast, in random graphs all

connections are established probabilistically. We have thereby neglected more complex topol-

ogies such as small-world networks, which are in between regular and random and are charac-

terized by small short path lengths and a large clustering coefficient [110, 111]. Another

example is scale-free networks, which are characterized by their power-law degree distribu-

tion. A small number of nodes (so-called “hubs”) have a very high degree while most of the

remaining ones have only few connections [73, 112]. Just as for data-driven models, future

work may consider standards for consistently describing such networks.

Furthermore, the brains of many species, including mammals, follow a hierarchical organi-

zation, having different properties at different spatial scales. For instance, cerebral cortical

areas are composed of layers, which contain populations of excitatory and inhibitory neurons,

which may in turn be divided into subpopulations (cf. Fig 10). Many brain networks also have

a clustered or modular structure, for example cortical networks consisting of macro- and mini-

columns [113, 114]. This hierarchically modular organization suggests a multi-level descrip-

tion, where on the higher level not all details of the lower level are expressed for clarity. Our

graphical notation already allows for nested populations, but the consistent description of hier-

archical and modular networks requires further work.

Another aspect of biological neural networks we have neglected in this study is their adapta-

tion over time via developmental processes and plasticity. Such plastic networks can for

instance enable modeling inter-individual differences, potentially adding a layer of stochasti-

city beyond that of the initial structure. While the resulting networks are generally not easily

captured in simple rules, compact accounts may be achieved by describing the initial state

along with the growth or plasticity rules.

Neuronal network simulators should provide efficient high-level connectivity routines rele-

vant for computational neuroscience. Which routines are available may, however, not solely

depend on the need of the neuroscientist for a specific connection rule but also on the algorith-

mic efficiency. The rule “random, fixed total number”, for instance, is non-trivial to parallelize

[93]. Vice versa, which rules are already implemented in simulators may influence which ones

neuroscientists eventually use. This relates to the general question how instruments shape the

development of scientific theories [115–117]. Our literature review on published models

shows that explicitly coded connectivity in general-purpose languages instead of using simula-

tors with high-level commands is still quite common (Fig 4). A possible reason for this obser-

vation is that the effort to learn a simulator language outweighs a custom implementation as

long as networks are small and the connectivity simple. The models in our review predomi-

nantly do not require a significant amount of computational resources and the chosen connec-

tivity rules are not complicated to implement from scratch. We predict that the use of generic

simulation codes will increase as models become more complex and the requirements for

reproducible science and the publication of code become more strict. In turn this hopefully

triggers an expansion of the simulators’ repertoire of well-described and efficiently imple-

mented connection routines. A challenge in this context is posed by the increasing use of high-

performance computing facilities and specialized neuromorphic hardware [118, 119]. On

future exascale supercomputers, highly efficient solutions for the parallel implementation of

connectivity will be particularly important. Neuromorphic hardware is often constrained with

regard to the neural network connectivity it supports, and the identification of relevant con-

nectivity concepts can help decide which types of connectivity to enable. The concepts already
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in use form a starting point for thinking about which high-level connectivity patterns future

versions of simulation engines should provide.

Perspectives

This work constitutes rather a starting point than an end point. Just as most existing network

models, the concepts we describe are still limited with regard to connectivity structures observed

in neuroanatomy. As models advance in capturing the complex multi-scale organization of the

brain, this needs to be reflected in concepts and graphical notation such that researchers can

always communicate on the appropriate level of resolution while having access to all details if

needed. It is our hope that the methods laid down here help to structure the debate.

Materials and methods

Reviewed network models

Table 2 lists all articles included in the literature review in Section “Networks used in the

computational neuroscience community”.

Balanced random network

The balanced random network model used in Figs 1 and 9 is based on the model introduced

by Brunel [1]. Our implementation extends the script brunel_delta_nest.py which is

part of the NEST source code (https://github.com/nest/nest-simulator) by the option to switch

between a “fixed in-degree” and a “fixed out-degree” version. Details about the model descrip-

tion are summarized in Figs 12–14 and the parameters are given in Fig 15.

Table 2. Alphabetical list of articles describing the reviewed network models.

Bartos et al. (2002) [120] Naze et al. (2015) [121]

Brunel (2000) [1] Nicola and Clopath (2017) [122]

Chauhan et al. (2018) [123] Pilly and Grossberg (2013) [124]

Cohen (2014) [125] Potjans and Diesmann (2014) [89]

Cutsuridis (2007) [126] Ramirez-Mahaluf et al. (2017) [127]

del Molino et al. (2017) [128] Raudies et al. (2014) [129]

Destexhe (2009) [130] Rennó-Costa and Tort (2017) [131]

Gunn et al. (2017) [132] Sadeh et al. (2017) [133]

Hu and Niebur (2017) [134] Stevens et al. (2013) [135]

Huang et al. (2009) [136] Stroud et al. (2018) [137]

Humphries and Gurney (2002) [138] Strüber et al. (2017) [139]

Kazanovich and Borisyuk (2006) [140] Tikidji-Hamburyan and Canavier (2020) [141]

Kuchibhotla et al. (2016) [142] Topalidou and Rougier (2015) [143]

Kulvicius et al. (2008) [144] Ursino and Baston (2018) [145]

Leblois (2006) [146] Vertechi et al. (2014) [147]

Lian et al. (2019) [148] Vogels et al. (2011) [149]

Machens et al. (2005) [150] Wang and Buzsáki (1996) [151]

Masquelier and Kheradpisheh (2018) [152] Weber et al. (2006) [153]

Masse et al. (2018) [154] Wystrach et al. (2016) [155]

Mejias et al. (2016) [156] Yamazaki et al. (2015) [157]

Morén et al. (2013) [158] Yang et al. (2016) [159]

https://doi.org/10.1371/journal.pcbi.1010086.t002
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Fig 13. Continuation of Fig 12.

https://doi.org/10.1371/journal.pcbi.1010086.g013

Fig 12. Description of balanced random network models following the guidelines of Nordlie et al. [84]. Distinction

between “fixed in-degree” and “fixed out-degree” versions.

https://doi.org/10.1371/journal.pcbi.1010086.g012
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Fig 14. Continuation of Fig 13.

https://doi.org/10.1371/journal.pcbi.1010086.g014

Fig 15. Simulation and network parameters.

https://doi.org/10.1371/journal.pcbi.1010086.g015
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Han-Jia Jiang, Lisa Schüttler, Gabriele Gramelsberger, Markus Diesmann, Hans E. Plesser,

Sacha J. van Albada.

PLOS COMPUTATIONAL BIOLOGY Connectivity Concepts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010086 September 8, 2022 41 / 49

https://doi.org/10.1371/journal.pcbi.1010086


References
1. Brunel N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Jour-

nal of Computational Neuroscience. 2000; 8(3): 183–208. https://doi.org/10.1023/A:1008925309027

PMID: 10809012

2. Billeh YN, Cai B, Gratiy SL, Dai K, Iyer R, Gouwens NW, et al. Systematic Integration of Structural and

Functional Data into Multi-scale Models of Mouse Primary Visual Cortex. Neuron. 2020; 106(3): 388–

403.e18. https://doi.org/10.1016/j.neuron.2020.01.040 PMID: 32142648

3. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, et al. Reconstruction

and simulation of neocortical microcircuitry. Cell. 2015; 163(2): 456–492. https://doi.org/10.1016/j.

cell.2015.09.029 PMID: 26451489

4. Reimann MW, King JG, Muller EB, Ramaswamy S, Markram H. An algorithm to predict the connec-

tome of neural microcircuits. Frontiers in Computational Neuroscience. 2015; 9. https://doi.org/10.

3389/fncom.2015.00120 PMID: 26500529

5. Schmidt M, Bakker R, Shen K, Bezgin G, Diesmann M, van Albada SJ. A multi-scale layer-resolved

spiking network model of resting-state dynamics in macaque visual cortical areas. PLOS Computa-

tional Biology. 2018; 14(10): e1006359. https://doi.org/10.1371/journal.pcbi.1006359 PMID:

30335761

6. Ippen T, Eppler JM, Plesser HE, Diesmann M. Constructing Neuronal Network Models in Massively

Parallel Environments. Frontiers in Neuroinformatics. 2017; 11. https://doi.org/10.3389/fninf.2017.

00030 PMID: 28559808

7. van Albada SJ, Morales-Gregorio A, Dickscheid T, Goulas A, Bakker R, Bludau S, et al. Bringing Ana-

tomical Information into Neuronal Network Models. arXiv preprint. 2020;.

8. Cook SJ, Jarrell TA, Brittin CA, Wang Y, Bloniarz AE, Yakovlev MA, et al. Whole-animal connectomes

of both Caenorhabditis elegans sexes. Nature. 2019; 571(7763): 63–71. https://doi.org/10.1038/

s41586-019-1352-7 PMID: 31270481

9. Roostaei T, Nazeri A, Sahraian MA, Minagar A. The human cerebellum: a review of physiologic neuro-

anatomy. Neurologic Clinics. 2014; 32(4): 859–869. https://doi.org/10.1016/j.ncl.2014.07.013 PMID:

25439284
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2015.

116. Fischer P, Gramelsberger G, Hoffmann C, Hofmann H, Rickli H, Rheinberger HJ, editors. Natures of

Data. A Discussion between Biology, History and Philosophy of Science and Art. diaphanes/The Uni-

versity of Chicago Press, Zürich/Berlin; 2020.
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