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Smart Knife: Integrated Intelligence for
Robotic Meat Cutting

A. Mason, D. Romanov, L. E. Cordova-Lopez ,
and O. Korostynska

Abstract—Automation is a key technology for a sustain-
able and secure meat sector in the future, both in terms of
productivity and work environment. New robotic technolo-
gies, such as the so-called “meat factory cell,” (MFC) aim
to contribute to this goal, but they require new “smart”
tools that provide sensor feedback, which enable robots
to perform complex tasks. This article presents one such
tool: the smart knife, which gives real-time feedback on
its contact status with meat, as well as cutting depth. The
tool and the system are described, and its operation evi-
denced via electromagnetic (EM) simulation using the Ansys
High-Frequency Structure Simulator. Furthermore, the per-
formance of the knife is validated using pork loin meat:
in the worst case, knife is shown to have an error of
1.78% for contact detection, and a mean error of 7.66 mm
(±1.45 mm) for depth detection. This article also presents
brief discussion regarding eventual use of the knife as part
of the MFC control system, in addition to future work to be
performed.

Index Terms— Microwave sensors, robot sensing systems, sensor systems and applications, smart knife.

I. INTRODUCTION

W IDESPREAD availability of automation in the meat
industry is a desirable goal for several reasons.

Increased adoption of machines and robots is necessary
to improve the sector’s sustainability credentials, through
increased production yield and efficiency. Furthermore, grow-
ing global demand for meat has increased pressure on the
sector to raise production volumes. While automation has been
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available to the sector, its use is often limited for economic
reasons: simply put, today’s equipment is too expensive for
the majority of small- and medium-scale processers and lacks
reasonable financial (and technical) scalability. With increased
customization for both hardware and software, robots can offer
a flexible, scalable, compact, and cost-effective production line
alternative to older machinery that require large floor space,
are difficult to adapt, and include higher maintenance costs [1].

The sector is also often criticized due to the working condi-
tions. That is, workers are typically performing repetitive tasks,
often with a requirement for lifting heavy loads. Furthermore,
those activities necessitate the use of dangerous equipment
(e.g., knives and saws) and are often in environments suited
to preserving product shelf life rather than human comfort.
As a result, the sector suffers from high levels of absenteeism,
injury, and early retirement [2], [3], [4]. During the Covid-19
pandemic, closure of meat processing facilities was common-
place, resulting in temporary reduction of productivity [5].
Largely, this can be attributed to high reliance on manual labor,
in addition to tight working conditions. High dependency on
humans, high demand for meat products, and high risks of
injures on the factory floor—all these put the industry in a
difficult position when it comes to recruitment. Experienced
butchers often use, as they call it, the “just follow the knife”
technique, that helps them to avoid muscle stress and further
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Fig. 1. MFC developed to provide access to automation particularly for
small- and medium-scale meat processors.

development of related musculoskeletal disorders [6], but it
takes time to gain this skill.

Automation is purported to benefit meat processing, both
in relation to productivity and the working environment. This
would alleviate supply-chain pressures during future pandemia
and generally help processors maintain growth.

Alvseike et al. [7], along with key collaborators across
Europe, have driven the development of a novel approach
to meat processing in abattoirs, which is generally referred
to the meat factory cell (MFC) [8]. This cell (see Fig. 1)
implements an advanced robotic system to perform all the
tasks of a traditional processing line, but within the confines of
a robotic cell. These cells can be replicated, thus providing the
economic and technical scalability that the sector misses today.
Advanced robotic systems require harmonious co-operation
between several subsystems, including robots (lifting and
manipulation), artificial intelligence (scene recognition and
path planning), tools (grasping and cutting), and sensors (real-
time feedback and error detection). Meat processing tasks are
challenging to automate, however, due to inherent variability;
the MFC must adapt to process animals of different lengths,
shapes, and weights, as well the heterogeneity of the raw
material structure. It is, therefore, essential to have sensors and
tools, which provide control feedback. Cutting is an important
operation, as it directly affects yield and hygiene. The latter
is particularly relevant, as the MFC uses an unconventional
cutting regime [9], where the animal is dissected from the
outside.

It is the importance of cutting within the MFC, or sim-
ilar scenarios, that has been the motivation for this work.
Smart cutting tools required, with the smart knife being
able to analyze and predict the meat it cuts. Technologies
with a potential of being used in a smart knife with pos-
sibilities of their integration into automatic meat processing
were comprehensively reviewed in [10]. Optical methods,
near infrared spectroscopy, electrical impedance spectroscopy,
force sensing, and electromagnetic (EM) wave-based sensing
approached were assessed against the set criteria. Optical
methods are well established for meat quality and composition
characterization [11], but lack speed and robustness for real-
time use as part of a cutting tool. Methods, such as electrical
impedance measurements [12] and rapid evaporative ionization
mass spectrometry [13], are invasive and not suitable in meat
processing, since they damage the meat. In meat industry,
the application of the force sensing principle is based on

the assumption that fat, meat, and cartilage will all require
different forces to cut through, and measuring this force will,
in turn, inform on the type of the tissue in contact with the
knife, as was originally considered for surgical tasks [14].
However, slow response time and high cost of the built-in
force sensors make it prohibitive option for automated meat
cutting application. One attractive option is using athermal EM
waves, as further explained in Section II-A.

The development of a smart knife capable of providing
real-time feedback during robotic cutting in meat processing
is reported. This article focuses particularly on the tool’s
capability to sense contact (i.e., with raw material) and depth.
The smart knife was briefly reported earlier [15]; however, this
article provides greater detail regarding the device design, its
function, as well as deriving performance from a much larger
validation dataset. Specifically, the sensing principle behind
the smart knife, as well as detailed construction and design
considerations are presented (see Section II-B), with physical,
CAD, and high-frequency simulation software (HFSS) models
shown. These are then compared with the results of the real
manufactured prototype testing on up to 852 for each cutting
depth, in steps of 5 mm in the 0–25-mm range.

II. SMART KNIFE

A. EM Sensing
The smart knife uses EM waves in the radio- and microwave

range. The method detects changes in the EM field generated
along a custom knife blade, which are caused by contact
with materials. In this work, the main target material is pork
meat. As the blade contacts and penetrates meat tissue, the
permittivity to which the blade is exposed varies. The deeper
the penetration, generally, the greater the average permittivity
of the material immediately surrounding the blade. Those
changes, through measurement of reflected S-parameter (S11),
are translated into information regarding the cutting status
of the knife during robotic cutting. Specifically, information
regarding contact (true of false) and cutting depth (in mm)
is provided as the real-time feedback. These parameters are
useful to determine correct operation, and further discussion
on use of the smart knife is provided in Section IV-C.

The rational for incorporating sensing into a knife blade has
been derived from experience. The MFC uses depth cameras
to predict cutting actions; the existing depth cameras have
an inherent error in depth estimation, which increases as a
function of camera distance from a work object. Furthermore,
at ≈400 mm, or less, from the work object, the camera cannot
provide depth information at all. Added to this the risk of
camera occlusion or contamination at close range to a work
object, there is a clear need for on-tool intelligence.

Other methods for providing online feedback from a knife
have been considered. Optical methods are well established
for meat quality and composition characterization, but lack
speed and robustness for real-time use as part of a cutting
tool. Methods, such as electrical impedance measurements and
rapid evaporative ionization mass spectrometry, are invasive
and not suitable in meat processing, as they damage the meat.
Based on a comprehensive review of methods for development
of a smart knife [10], the use of a radio- and microwave-
based smart knife is a novel approach. Nevertheless, the use
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Fig. 2. CAD model of the knife showing the main external features.

of this technology has been slowly growing in the food sector,
for example, in areas related to drip loss [16], freeze-thawing
performance [17], and water activity [18], [19] measurement.

B. Construction and Design Considerations
The smart knife device (see Fig. 2) consists of three plates

(Vanadis 4 Xtra steel, Uddeholm AB) separated by the poly-
ether ether ketone (PEEK) dielectric material. The plates
and the PEEK separators form the sensitive element of the
smart knife. The two outer plates are electrically connected
to the outer conductor of a coaxial cable (LMR240, Times
Microwave Systems), while the central plate is connected
to the core. Connection between the coaxial cable and the
plates is enabled via a printed matching circuit in a coplanar
configuration. The coaxial cable is directly soldered to the
circuit board, while the plates have a mechanical fixing. The
coaxial cable is terminated with a bulkhead SMA (female)
connector, which is connected to a suitable measurement
device [e.g., vector network analyzer (VNA)].

The body, or handle, of the smart knife is machined from
PEEK. It houses the matching circuit as well as supporting
the blade structure. The blades are secured in place by three
stainless steel bolts per blade. Those bolts are isolated from the
blades using dielectric spacers to minimize unwanted coupling
or interference. The body also includes four mounting holes
designed for adaptation of the smart knife to a robotic arm.
The overall ideal length of the knife is ≈250 mm, while the
blade is ≈125 mm (body to tip). The body is 45-mm wide.
Those dimensions are correct according to the CAD model of
the knife; the physical knife blade is a little shorter (≈122 mm)
due excessive material removal during sharpening.

During the design of the knife, several factors have been
considered, which are briefly described as follows.

1) Materials: The tool is constructed using of the
Vanadis 4 Xtra steel, PEEK, and stainless steel. Vanadis 4 Xtra
was chosen in consultation with an industrial steel sup-
plier (Uddeholm AB, Sweden). This type of material is
corrosion-resistant and tough. Stainless steel is commonplace
in the food industry due to its corrosion resistance and
robustness—the bolts, fixings, and exterior coaxial connector
are all stainless steel. PEEK is less commonly used in the
meat industry, however, and is considered food safe. It is a
very durable material, having a high strength-to-weight ratio.
In this application, it also an effective low-loss dielectric
material [20], which is desirable for the proper operation of
the sensing function.

2) Hygiene: The tool tolerates the use of hot water and
alcohol-based agents used for disinfection. The isolators in the
blade have a tight fit to the Vanadis plates, with 1-mm overlap
to prevent fluids or biomaterial becoming trapped between the
blades.

Fig. 3. Sharpening of the smart knife using (a) grinding wheel
(T-8, Tormek, Sweden) and (b) straightening tool (ERGO steel III, Bokken
AS, Norway).

Fig. 4. HFSS model for simulation of the smart knife. The knife body has
a high level of transparency to enable a view of the internal components.

3) Sharpening: The blade is sharpened by hand after assem-
bly [see Fig. 3(a)] using a grinding wheel. It can be straight-
ened more regularly between cuts using a device like that
commonplace on today’s meat processing lines [see Fig. 3(b)].

4) Robot Adaption: The double-edged blade reduces the
need for 180◦ reorientation of the tool for multiple cuts along
back-and-forth paths where only the height of cutting is varied.

5) Blade Length: Several iterations of blade length have
been tested (physically). Shorter blades tend to make path
execution and reorientation of the robot easier, whereas longer
blades offer greater cutting depth per pass; 125 mm was a
reasonable compromise between these competing factors.

C. Simulation
Simulation of the tool, both prior to construction, and for

the purpose of refinement, has been useful to better understand
its behavior. An assembly of the knife has been constructed
in Solidworks (see Fig. 2) and can be imported into suitable
software to allow full-wave EM field simulation. In this work,
Ansys Electronics Desktop (2022) is used, namely, the HFSS
module. An overview of the model is shown in Fig. 4.

The knife assembly, for simulation purposes, includes a
coaxial connection, which extends from the internal circuit
board to the rear outer boundary of the knife handle. In HFSS,
the knife is surrounded by an air-box of 372.2 × 165 × 140
(x × y × z, in mm). The air-box boundary is configured to
be radiant to model the knife in an open space, rather than
a closed box. To prevent overlap of the air-box with the rear
of the knife handle, a 1-mm extension of the coaxial cable is
added in HFSS. A circular wave port excitation is added to
the model, where the coaxial extension overlaps with the air-
box boundary. The model is configured to have a solution
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Fig. 5. Simulation of the EM field between the three plates comprising
the blade. Several components of the model are set as fully or partially
transparent to better illustrate the EM field.

Fig. 6. Comparison of the simulated versus actual spectra in the
2–4-GHz region for the smart knife.

frequency of 4.5 GHz, with interpolating sweep between
2 and 4.5 GHz (4001 points). The conditions for convergence
of the solution are as follows: 1) maximum passes (20);
2) minimum passes (6); and 3) minimum converged passes (3).
All interpolating sweeps converged within 500 passes.

Simulation of the smart knife allows visualization of the EM
field and its distribution along the plates comprising the blade,
as shown in Fig. 5. The EM field travels between the plates
toward the tip, and it is observed that the field also concentrates
at the tip. This indicates that the knife will be most sensitive
to interaction at or near the tip.

Simulation also gives an indication of resonant frequen-
cies in the 2–4.5-GHz range. Accuracy of the simulation,
compared with real-world performance, depends on several
factors, including correctness (and availability) of material
characteristics and production tolerances. In this case, most
materials are available via the HFSS materials library, with
the exception of the Vanadis 4 Xtra steel. In the absence of
electrical characteristics from the manufacturer, it was replaced
by a model for stainless steel. Furthermore, during production
of a prototype, it was earlier noted that the physical length of
the blade (from body to tip) is ≈122 mm, compared with the
ideal length of 125 mm. Nevertheless, there is good agreement
between the simulated and actual spectra for the knife, as illus-
trated in Fig. 6. Agreement between the simulated and actual
performance provides a basis for demonstrating the expected
response when the smart knife encounters raw material. From
experience, the spectral regions around 2.5 and 3.65 GHz yield
the most relevant information representing contact and depth
sensing. Those are referred to as SR1 and SR2, respectively.

Fig. 7. Configuration of the HFSS model to include a water block,
simulating the knife penetrating muscle tissue. Varying depths were
simulated by varying the x-dimension of the block, between 0 and 60 mm,
in 10-mm increments.

Fig. 8. Variation in resonant frequency for SR1 and SR2. Dotted lines
show linear best fit for the respective region.

EM modeling of biological material directly is not trivial.
Some proprietary human-body EM models exist, but their cost
has been prohibitive for this work. A simpler approach has
been applied in this work, using a water model to represent
muscle tissue. This can be justified based on the relatively
high-water content of fresh muscle tissue (≈75% [21]), which
the smart knife would encounter in the MFC. A block of water
was, therefore, added to the HFSS model, surrounding the
blade (see Fig. 7). The block of water had the dimensions
of 65 and 40 mm in y and z, and a variable length in x .
An optometric analysis was performed, varying x between
0 and 60 mm, with 10-mm increments. At 0 mm, the extreme
tip of the blade is not intersecting the water block—there is a
small (<0.1-mm gap). Further iterations were not performed
mainly due to the lengthy simulation time (approximately five
days per iteration using a computer with 32-core processor
and 96-GB memory).

Results comparing the shift in resonance are given in Fig. 8.
The results track the frequency at which spectral minima
occur in the 2.5- and 3.65-GHz regions. Correlation between
frequency shift and depth can be described linearly for the
two regions, where adjusted R2 equals 0.972 and 0.986,
respectively.

D. System Integration
The smart knife, as a system, consists of four main phys-

ical components (see Fig. 9). Those are briefly described as
follows.
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Fig. 9. Main components of the smart knife system. (a) Knife, VNA, and
micro-PC and (b) Node-RED web interface running on the MCC, showing
real-time contact and depth information. (c) Knife being used for trials in
the MFC environment.

1) Knife: This interacts physically with the work object (e.g.,
meat and a carcass), enabling cutting as well as sensing of
contact and depth.

2) VNA: A nanoVNA [22] device is used, with custom
firmware (and IP65 housing) configured to disable unnecessary
features and to optimize performance. The VNA connects to
the knife via a coaxial cable.

3) Micro-PC: A 2.4-in device based on the Intel J4125 plat-
form is used, running the Windows 10 Pro operating system.
This runs custom software to control the data acquisition
process from the VNA, to execute prediction models based
on that data, via MATLAB, and to provide information of the
knife status. The micro-PC also acts as a bridge between the
VNA and the robot control, with possibilities for both wired
and wireless Ethernet connection. The micro-PC is connected
to the VNA via USB connection.

4) Main Control Computer: The MCC is the main control
computer for the MFC and is common to all automation
equipment within the cell environment. It implements generic
control of the cell via workflows in Node-RED [23]. The MCC
contains a specific node for the smart knife, which receives
information from the micro-PC, exposing it to the workflow
for corrective action and/or display for the user via a web
user interface. The MCC receives data from the micro-PC via
wired Ethernet connection.

III. METHODOLOGY

A. Equipment
The smart knife was fit to a UR10 (Universal Robots,

Denmark), as illustrated in Fig. 10. The knife was also

Fig. 10. Setup of knife and robot during meat cutting. The image is from
an archive of each measurement point during validation and includes
overlaid information regarding the cut at a specific point.

connected to a VNA, and that, in turn, to a micro-PC,
as described in Section II-D. The MCC in the case of this work
was a laptop computer, facilitating the collection of a data
set for neural network model training, and knife performance
validation.

The knife was connected to port 1 of the VNA using a
2-m LMR240 coaxial cable with SMA-type terminations. The
VNA was configured to sweep between 2.38 and 4 GHz, with
a step size of 19.95 MHz (82 points). The nanoVNA can
provide up to 201 points per spectra, but the elimination of
redundant points provided some opportunity for optimization
since previously reported work [8]. As the VNA has a sweep
time of 2 ms per data point, the sampling rate of the smart
knife was increased more than twofold. An open, short, and
load calibration (ZV-135, Rohde & Schwarz, Germany) was
performed on the coaxial cable, prior to attaching the knife.
The calibration data are stored and loaded by the bespoke
control software. Port 2 of the VNA was terminated with a
50-� load.

During validation, cuts of meat were placed on specially
prepared nylon board with stainless steel spikes, which hold
the meat in place. They are arranged in equally spaced tracks,
with each having a 6-mm groove to allow the knife to
completely cut through a sample without having to touch the
board. The knife was configured to maintain an angle of 32.5◦
with the board, which had been established through trials and
consultation with experienced butchers. The robot used a fixed
movement speed of 50 mm/s, pausing for 1–2 s during data
capture. A camera was positioned near to the cutting board,
so that an image could be captured (see Fig. 10) along with
every smart knife measurement. The image was overlaid with
information, including a time stamp, tool position, and the
outputs of various prediction models (see Section II-C). This
was used for visual verification of the tool position during
analysis.

The robot was controlled by a custom Python script running
within the RoboDK simulation and programming environ-
ment. This also enabled capture of data from the smart
knife, synchronized with image capture from the camera.
A csv-format file provided output related to the position of the
smart knife during each measurement and the outputs from
various trained models (described in Section III-C). It also
included the filename of the image associated with each
measurement point.
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B. Training Data Acquisition
Acquiring reliable training data in a controlled real-world

setting is challenging for several reasons: variability in consti-
tution, density, size, and shape, in addition to time-dependent
factors, such as water loss. Fresh meat has a significant water
content, however, to which the sensor technique applied here
is highly sensitive. Therefore, a simpler, and more easily
controlled, method for training the smart knife was devised,
using only water. That procedure is as follows.

1) Fill a 30-L plastic container with ≈20 L of water.
2) Allow time for the water temperature to equalize with

the surrounding environment (20 ◦C in this work).
3) Attach the knife to the UR10 robot and configure it, such

that its center line (from the SMA bulkhead connector
to blade tip) is oriented at 32.5◦ to the water surface.

4) With the knife positioned above the water, move it
downward to the point where the knife is just touching
the water surface. This is the zero point.

5) Move the knife to 100 mm directly above the zero point.
6) Initiate measurements, from +80 to −80 mm in 2-mm

steps, where a negative value indicates the knife being
in the water. Store data at each point for model training.

7) Repeat steps 4)–6), with the knife oriented at −32.5◦.
8) Repeat steps 4)–6), with the knife oriented at 90◦. In this

case, the measurements in step 6) may be adjusted to be
from +100 to −100 mm.

9) Repeat steps 4)–8) three times. It was found that this
is not strictly necessary, as the correlation between the
spectra was found to be high in this work (R > 0.999).
However, in the case of some error occurrence during
data capture, the added redundancy could assist in
identifying data that should be discarded from training.

C. Model Generation
The data generated during the training data acquisition

(described in Section II-B) was preprocessed into a unified
csv-format file, where each spectra captured represented a sin-
gle row in that file. The total number of spectra captured was
789, of which 390 represented no contact and 399 represented
contact, with a depth of 0–100 mm. Two training sets were
generated, one for contact, and one for depth.

Determining contact of the knife with the material is con-
sidered a binary problem: contact (1) and no contact (0).
Therefore, data describing situations when the knife is either
touching or below the water surface were defined as contact,
and all other data described as no contact. For depth, the
information required is a value representing the current cutting
depth of the knife, in mm. The depth of the knife when
it is not in contact with the meat was considered, at this
stage, unimportant. The depth value was, therefore, classified
as varying between 0 and −100 mm, with negative values
indicating penetration. All data collected representing positive
depth values (i.e., no contact) are classified as 0 mm.

Tools in MATLAB were used to produce prediction models
for contact and depth. The specific tools used were contained
within the MATLAB Deep Learning Toolbox: neural network
pattern recognition tool (nprtool) for contact prediction and
neural network fitting tool (nftool) for depth prediction.

TABLE I
CONFIGURATION PARAMETERS AND PERFORMANCE INDICATORS FOR

MODELS GENERATED USING NPRTOOL AND NFTOOL

A single model was generated for contact prediction using
nftool, as the indicated error was found to be low, without the
need for adjustment of default training parameters. However,
depth prediction, with nprtool, proved a little more chal-
lenging. In total, seven models were produced for validation
with meat, using several configurations, based on small pilot
tests and subsequent iteration. Those configurations, and the
resultant error or fitting indicators, are detailed in Table I. It is
noted that the models Depth_1 and Depth_2 were generated
using the same parameters; the difference in performance is
indicative of the variable nature of such models.

The generated models were exported from MATLAB and
bundled together into a standalone executable, which could
receive input spectra and output prediction values for all
models. This executable was incorporated into the custom
software controlling the smart knife operation, so that the
output values could be used for validation purposes when
cutting meat.

D. Validation With Meat Samples
Pork loins (n = 4) with ≈2–4-mm surface fat, in addition to

marbling within the muscle tissue, were used for the validation
of the smart knife sensing capabilities. These were chosen
to be broadly representative of the cutting anticipated to take
place in the MFC. The meat was acquired fresh from slaughter
and chilled for several days prior to the work taking place.
The samples were allowed to equilibrate to room temperature
before cutting, mainly since the overall of objective of the
MFC is to work with hot (not chilled) carcasses.

Two cutting schemes were employed, one that performed
a single cut of a specified depth per track, and the other
that cut multiple times, with progressive depth, within each
track. Those cutting schemes are referred to as single-depth
and multidepth, respectively. The purpose of this was to
consider how the knife performed in both situations, to aid
with improving robustness for real-world implementation.

To configure each cutting scheme, the robot was first
programed to follow a five-point path above the surface of the
meat, representing the case of contact, but with a negligible
cutting depth. The purpose of this procedure was to calibrate
the height of the meat (i.e., to define a zero position at each
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Fig. 11. Cutting path of the robot during the experimental work. Each
pass of the robot consisted of ten points (P1–P10). The depth of cut,
and if cutting was incremental, depended on the cutting scheme applied
(i.e., single-depth or multidepth).

TABLE II
OVERVIEW OF DATA COLLECTED USING THE SINGLE-DEPTH

AND MULTIDEPTH CUTTING SCHEMES

of the five points), so that adjustments could be made to the
assumed knife depth during subsequent cutting.

The robot would then perform a cut including the afore-
mentioned five-point path, where the position of each point
was calculated programmatically using the zero position, plus
a height offset. In addition, five further points were included
in the path to make a cyclic motion for cutting, or a complete
pass (see Fig. 11). Data were also collected at those points,
which can be considered as no contact and zero cutting depth.
Typically, each set of ten points included five contact and five
no contact cases, with a deviation of ±1 contact point, caused
by some irregularity in the shape, size, and surface of the
loins. In total, 101 and 450 data points were collected for
the single-depth and multidepth cutting schemes, respectively
(see Table II for further details).

For the single-depth cutting scheme, offsets of 5, 10, 15, 20,
and 25 mm were used. For each depth, measurements with a
zero offset were also recorded. Each offset was applied once
and required two loins. For the multidepth scheme, offsets
in the range 0–40 mm were applied, in 5-mm steps. Four
complete multidepth cuts were made, requiring a further two
loins.

IV. RESULTS AND DISCUSSION

A. Contact Detection
Contact detection was determined using a single model,

as noted in Table I. The model is a binary classifier, therefore
outputting a value between 0 (no contact) and 1 (contact).
In most cases, the output value is close to those extremities, but

TABLE III
STATISTICAL INFORMATION DERIVED FROM SINGLE-DEPTH AND

MULTIDEPTH CUTTING SCHEMES IN RESPECT OF DEPTH SENSING:
MEAN ERROR (IN mm), AND 95 CONFIDENCE

INTERVAL (95% CONF., IN mm)

some exceptions were noted during initial testing. A threshold
was, therefore, applied, where the values ≥ 0.3 imply contact.

With the single-depth cutting scheme, 55 of 101 data points
had a verified contact condition; this was observed by the knife
with zero error. For the multidepth cutting scheme, 254 of
450 data points had a verified contact condition. In this case,
eight data points (1.78%) exhibited an error. The cause of
the error has been unclear, but in at least half of the cases,
a software error is suspected; either failed synchronization
between the robot and the smart knife, or failure of the VNA
software. However, at least one error was observed due to a
large piece of muscle or fatty tissue clinging to the knife blade
after completing a pass. The error cleared on the next pass due
to contact with the loin, which removed the contaminant.

It was also observed with the multidepth case that there
is a cumulative drift of the model output. As the number of
cutting actions increases, the model output increases from 0,
but never exceeded the threshold value during testing. Based
on the inspection of the image data captured, it is suspected
that this is caused by buildup of a film along the knife surface
over time. Model output values greater than 0 started to be
observed after ten passes of the knife and could indicate when
cleaning is required. The knife, in this work, was cleaned only
between tracks with an alcohol wipe; no specific method for
cleaning has yet been established.

B. Depth Detection
Results for all models are presented in Table III. From the

seven models presented in Table I, it was Depth_2, which
provided the best outcome in both the single-depth and multi-
depth cutting schemes. An error of 4.98 mm (±1.99 mm) was
observed for the former scheme and 7.66 mm (±1.45 mm)
in the latter. It is noted that Depth_6 also yields comparable
results, with a smaller confidence interval (±1.45 mm) in the
later scheme but larger mean error (7.91 mm).

With both Depth_2 and Depth_6 models, it is obvious that
error increased in the multidepth versus single-depth case.
It is possible that this is due to the larger dataset from which
statistical information is drawn. However, it could also be due
to some uncertainty related to accumulated error in the actual
robot position during this trial. The robot used has a reported
position repeatability of ±0.1 mm, but when used for tasks,
such as cutting, which require the robot to exert force on the
work object, the authors have observed the robot tool center
point to be some distance from its expected position, with
respect to the board. For a single pass, the deviation observed
in the offset height from the top of the loin was typically in the
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range of 0.5–0.9 mm, but for several passes (as in the case for
the multidepth cutting scheme), it could accumulate to several
mm. For example, when the target depth was 40 mm, the robot
reported an actual height offset between 40.7 and 46.9 mm.

C. Using the Smart Knife
The results presented confirm that the smart knife can

determine contact and depth with a reasonably small error.
As noted in Section I, the purpose of this knife is to provide
a greater level of intelligence to the robotic cutting process
within the MFC. It also helps to overcome some limitations
observed when using depth cameras for predicting robot paths.
It is necessary, however, to consider ways to incorporate the
knife not only as a sensor (providing feedback), but also as a
source of control within the robotic cutting process (enabling
intervention or adaptation). This, of course, assumes that the
knife can provide regular feedback regarding contact and depth
status. Such consideration is an on-going process, but there
are several scenarios under consideration. They include the
following.

1) Verification of “Ready to Start Cutting” State: When a
cutting operation is requested, the robot responsible must
move to a starting position. Contact status from the knife
(i.e., positive contact is detected when moving to a start
position) will provide certainty of a valid starting position
being attained, enabling cutting to commence, or giving the
opportunity to adjust the starting position until contact is
detected.

2) Verification of “Cutting Completed” State: It is difficult for
a vision system to maintain a good view of a work object
throughout a cutting process. This is due to the risk of con-
taminating the camera lens, as well as there being numerous
ways that the view can be obscured (other equipment, the work
object, and so on). Therefore, when there is a change from a
positive to negative contact state during cutting, a means to
terminate the cutting process is provided.

3) In-Process Path Adjustment: Cutting paths executed by a
robot in the MFC are determined in advance of a cut taking
place using a 3-D vision system. However, during processing,
the biological material can and will change shape or otherwise
deform. This can lead to variation in cutting depth along
preplanned paths; the smart knife gives scope to adjust and
maintain a consistent cutting depth.

4) Identification of an Error State During Cutting: There are
several possibilities for error during a cut, including early
completion (i.e., no contact but predicted cutting movement
remains in-progress) and incomplete cutting (i.e., path com-
plete, but knife still detecting tissue contact). Earlier than
expected contact during cut startup or completion could also
indicate unintended collision of the knife with some part of
the work object. Furthermore, for certain cuts, the knife being
too deep could also generate an error state. For example, in the
MFC, there are cutting tasks around the rear limbs of a pig
carcass close to the rectum and abdominal wall; cutting too
deep in those areas could present a hygiene risk.

V. CONCLUSION AND FUTURE WORK

Meat processing is an industry that requires novel auto-
mated solutions to remain sustainable and to mitigate harsh

working conditions, shortage of skilled labor and not least,
minimize impact of recent pandemic, which caused closure
of many meat factories for hygiene and infection prevention
reasons. Automation of all or many processes is seen as a
way forward, but cutting meat requires novel smart tools.
This article presents a novel smart knife tool, which uses an
EM wave sensing technique to determine the status of the
knife, namely, whether it is in contact with a work object,
and its cutting depth. Simulation shows the basic principle of
operation, such that the resonant frequency of the device shifts,
as the surrounding permittivity changes; this makes it ideal
for work with fresh meat where there is a high concentration
of water. Experimental work to validate the performance of
the device has been presented, where the device has been
used to cut several loins using two different cutting schemes.
In the worst case, the device was able to determine con-
tact with an error of 1.78% and depth with a mean error
of 7.66 mm (±1.45 mm). It is noted that further work
with the device software may improve the reported contact
error.

The work to date presents the first working prototype
of the smart knife tool, which is the subject of a patent
application [24]. There are, however, several areas where
work continues to improve the tool to ensure its applicability
to be used in robotic cutting. These include the following:
1) implementation of methods for rapid and frequent clean-
ing of the knife blade; 2) higher accuracy training models;
3) hygienic design considerations; 4) adjustments in the
design to ease assembly; and 5) broadening of the sensor
capability. Regarding the last point, of particular interest
are establishing a means to verify if it is possible for the
knife to sense proximity (rather than only physical contact),
as well as to distinguish variation in material properties.
These properties will enrich the feedback possibilities, allow-
ing the robotic system to respond to events prior to cut-
ting, as well as adjusting paths to avoid materials, such as
bone.
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