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Abstract

Spatial capture–recapture (SCR) is now routinely used for estimating abundance

and density of wildlife populations. A standard SCR model includes sub-models

for the distribution of individual activity centers (ACs) and for individual

detections conditional on the locations of these ACs. Both sub-models can be

expressed as point processes taking place in continuous space, but there is a lack

of accessible and efficient tools to fit such models in a Bayesian paradigm. Here,

we describe a set of custom functions and distributions to achieve this. Our work

allows for more efficient model fitting with spatial covariates on population

density, offers the option to fit SCR models using the semi-complete data

likelihood (SCDL) approach instead of data augmentation, and better reflects

the spatially continuous detection process in SCR studies that use area searches.

In addition, the SCDL approach is more efficient than data augmentation for

simple SCR models while losing its advantages for more complicated models

that account for spatial variation in either population density or detection. We

present the model formulation, test it with simulations, quantify computational

efficiency gains, and conclude with a real-life example using non-invasive

genetic sampling data for an elusive large carnivore, the wolverine (Gulo gulo)

in Norway.
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INTRODUCTION

Spatial capture–recapture (SCR) has found widespread
application to the estimation of density and other
sought-after wildlife population parameters. SCR models
(see Borchers & Fewster, 2016, for a review) extend

traditional capture–recapture models by incorporating
individual activity centers (ACs) into the modeling
framework as latent variables. SCR models can, there-
fore, estimate spatially-explicit abundance of a popula-
tion. SCR models, like other hierarchical models in
ecology, are increasingly implemented in a Bayesian
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framework due to the flexibility it affords, facilitated by
accessible programming languages (de Valpine et al.,
2017; Plummer, 2003). However, despite the growing
sophistication and popularity of SCR, Bayesian practi-
tioners are still faced with substantial computational
challenges and a lack of effective tools to exploit existing
features and new development, especially when dealing
with large-scale SCR problems.

Standard SCR models are composed of two hierar-
chical levels: one for modeling the number and distribu-
tion of ACs, and the other for modeling the number and
distribution of detections of each individual conditional
on the location of its AC and the location of detectors
(e.g., traps or observers). Both the distribution of ACs
and that of the detections can be modeled as spatial
point processes (Efford, 2011). A spatial point process
describes the distribution of points in space, with both
the number and locations of points being random (Illian
et al., 2008). Such models have been widely used for
analyzing spatial data in diverse fields such as histology,
epidemiology, and seismology among many others
(Baddeley et al., 2006).

The distribution of ACs is already routinely modeled
as a spatial point process since Efford (2004) described
the first SCR model. A goal of many SCR models is to
estimate and account for environmental factors that
explain spatial variation in density, which can be
achieved by fitting an inhomogenous point process. In
Bayesian SCR, this is typically accomplished through the
use of computationally inefficient categorical distribu-
tions and spatial density covariates, associated with a dis-
crete habitat raster (Woodruff et al., 2021). Proffitt et al.
(2015) described custom Markov chain Monte Carlo
(MCMC) samplers for such models. The lack of tools for
more efficient model fitting with inhomogeneous point
processes in a Bayesian framework poses a computational
bottleneck that can make large-scale SCR analyses pro-
hibitive (Milleret, Dupont, Brøseth, et al., 2018; Turek
et al., 2021).

Furthermore, Bayesian SCR typically involves data
augmentation (Royle et al., 2007), where completely
unobserved individuals, their ACs, and their state (pres-
ence in the population) are imputed as part of the
MCMC posterior sampling. This can be computationally
costly, especially when detection rates are low and
hence there may be many unobserved individuals. An
alternative is to construct a semi-complete data likeli-
hood (SCDL), which does not require data augmenta-
tion (King et al., 2016). Although described and tested
for simple SCR models by King et al. (2016), there are
currently no tools readily available for implementing
the SCDL approach in Bayesian SCR. Furthermore, it is
yet unknown whether and to what extent the SCDL

approach improves the computational efficiency of more
complicated Bayesian SCR models. We address these
issues in this paper.

The detection model in SCR depends on the type of
detectors used for data collection. Most detection
models to date were developed for sampling situations
in which the set of possible detection locations is fixed
(e.g., capture devices or camera traps); less common are
detection models for area and transect searches (Royle,
Kéry, & Guélat, 2011; Royle & Young, 2008). Although
diverse, existing detector-based and search-encounter
models do not adequately cover all common SCR sam-
pling processes. For example, non-invasive genetic sam-
pling (NGS) data now commonly form the bases for
SCR analyses (Bischof et al., 2020; L�opez-Bao et al.,
2018). When NGS is implemented by searching a given
area or along transects, paths taken by searchers can be
recorded and used as a direct measure of effort in space
and time. But due to technical and logistic limitations,
or when samples are collected by the public, it is not
always possible to know the spatial configuration of
search effort. Detections are thus theoretically possible
at any location within the general area that humans
could visit. An analytical approach that uses actual
detection locations would be preferable to the typical
approach of projecting detections to an artificial detec-
tion grid (L�opez-Bao et al., 2018; Russell et al., 2012) as
the latter: (1) means a potentially coarse approximation
of detection locations, (2) involves aggregation of detec-
tion information, and (3) forces investigators to trade
off precision for computational efficiency (Milleret,
Dupont, Brøseth, et al., 2018).

Relying upon existing developments in SCR
(e.g., Bischof et al., 2021; Efford, 2011; King et al., 2016),
here we describe a hierarchical SCR model with point
processes for both the ecological (AC distribution) and
observational (detections) components. Specifically, we
describe and provide tools for:

1. Efficient modeling of population density as an inhomo-
geneous point process. The model for AC distribution
essentially represents second order habitat selection
(placement of home ranges; Johnson (1980)) and can,
in combination with other approaches for limiting
computational burden, be applied to large-scale SCR
problems. We use simulations to evaluate the model’s
ability to reliably estimate density and coefficients asso-
ciated with spatial covariates of density.

2. Modeling of detections in continuous space as an
inhomogeneous point process. By eliminating the
need for projecting detections to an artificial grid
of detectors, this model represents more closely
the spatially-continuous data collection process.
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All spatial information in the data can be used with-
out additional post-collection approximation error.
We use simulations to evaluate the model’s ability to
reliably estimate parameters, including coefficients
associated with spatial covariates on detection
probability. We also discuss the generality of the two
approaches, in terms of ease of implementation and
customization.

3. Performing SCR analysis without the need of data
augmentation. We implement the SCDL approach for
modeling density and expand upon the work in King
et al. (2016) by evaluating it in the context of spatially
varying density and detections across continuous
space. We use simulations to test the ability of the
model to produce reliable estimates of density. In
addition, we compare the SCDL and data augmenta-
tion approaches for our point process SCR model in
terms of computational efficiency.

Custom distributions and functions for implementing the
aforementioned functionality are provided as part of a
recently developed R package, nimbleSCR (Bischof
et al., 2021). Aside from simulations to assess model per-
formance, we demonstrate a real-life application by
fitting the model to NGS data of wolverines (Gulo gulo)
and estimating density of this elusive large carnivore in a
region of Norway.

METHODS

Population density as a point process

In SCR modeling, population density describes the num-
ber and spatial configuration of individual ACs. Spatial
point processes have been widely used to model popula-
tion density in SCR (Efford, 2004), with Poisson point
processes being a common option (Borchers &
Efford, 2008). In this case, population density is defined
as the intensity function eλ sjβð Þ of the point process for
the location s of ACs (indexed i below) with parameters
β. Following Illian et al. (2008, p. 121), the log-probability
density of there being N ACs, s1,…, sN , over the entire
region eo of interest is

logP s1,…, sN jβð Þ/�eΛ eojβð Þþ
XN
i¼1

logeλ sijβð Þ, ð1Þ

where eΛ eojβð Þ¼ Ð
~o
eλ sjβð Þds is the expected number of ACs

over eo.
A homogeneous Poisson point process can be

used, whose intensity function is constant across eo.

However, density of wildlife populations often varies in
space as a result of various processes, including
second-order habitat selection, that is, home range place-
ment (Johnson, 1980). With an inhomogeneous Poisson
process, it is possible to model a spatially varying inten-
sity surface and thus population density as a function of
spatial covariates. To achieve this, eo is divided into a set
of H non-overlapping windows ew1,…, ewHf g, within each
of which the value of a covariate is constant. Covariates
are then related to the intensity value of each window
through some link function. In principal, any
non-negative function is valid for this purpose. Here, we
consider the log-linear model to define eλh, the intensity
value of window ewh, h¼ 1,…,H: logðeλhÞ¼ β0þ

P
iβiξih

where ξih is the value of the i-th covariate in window ewh.
The spatial resolution and extent of the windows can be
easily chosen to match the scale at which habitat selec-
tion occurs, and allow the fitting of any additive or inter-
active effects between spatial covariates.

A known result of the Poisson point process is that
conditioning on the total number of points in a given
region yields a binomial point process (p. 69, Illian
et al., 2008), a point process with a fixed number of
points. For a binomial point process, the probability
density of one point’s location is the intensity of the
corresponding Poisson process evaluated at that point
divided by the integral of the intensity function
over the entire region. It follows that, given individual
i exists in the population, the probability density that it
has AC si is the probability density of a binomial
point process with a single point, i.e., a Bernoulli point
process:

P sijβð Þ¼
eλ sijβð ÞeΛ eojβð Þ : ð2Þ

Thus, the log-probability density for the AC si of detected
individual i is

logP sijβð Þ¼� log eΛ eojβð Þþ logeλ sijβð Þ: ð3Þ

Using Equation (3) to model the location of individual
ACs offers an alternative to the computationally
inefficient categorical distribution typically used in
Bayesian SCR models with inhomogeneous density. In
that approach, each si is placed in a grid cell and
then either a uniform distribution is used for the exact
location within the grid cell or the centroid of the cell
is assigned as an approximate location. The latter is
more efficient for model fitting and is often adopted
when there are a relatively large number of grid cells
so that the approximation works well. In either of the
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two schemes, using the categorical distribution results
in inefficient MCMC steps, especially when the num-
ber of cells is large. This is because the categorical
MCMC sampler implemented in commonly used soft-
ware packages (e.g., nimble and JAGS) iterates over
each of the grid cells when sampling the cell index for
each individual in each MCMC iteration. However,
when the Bernoulli point process is used for AC distri-
bution, calculations of intensity values for all cells need
to be done only once in each MCMC iteration. In nim-
ble sampling the AC location of each individual uses a
block random walk sampler, that is, an adaptive
Metropolis-Hastings algorithm with a multivariate nor-
mal proposal distribution. Our approach does not
require any approximation in the process of model
fitting. In addition, our approach eliminates the need
of the so-called ones or zeros trick that is typically used
when modeling density across an irregular (i.e.,
non-rectangular or non-contiguous) habitat in
Bayesian SCR models.

Detection as a point process

When SCR data are collected by searching over a region
o, the location of each detection can be any point y in o.
Similar to population density, the distribution of these
detection locations can be described as a point process
with intensity λ yjs, θ, σð Þ, which can be split into two
parts: λ yjs, θ, σð Þ¼ b yjθð Þ τ yjs, σð Þ, where τ yjs, σð Þ is a
kernel with parameters σ, describing the distance decay
relationship of the detection intensity from the AC s, and
b yjθð Þ denotes the baseline detection intensity with
parameters θ, which may or may not vary across the
detection region o. The kernel τ yjs, σð Þ can be considered
as a functional description of the home range of the indi-
vidual with AC s. Heterogeneity in detection probability
might result from differences in: (1) landscape
characteristics affecting detectability, (2) sampling effort,
and (3) detector efficiency (Efford et al., 2013). Similar to
the point process for density, it is possible to model this
spatially varying intensity of the detection point
process by using spatial covariates. We can divide the
detection region o into a set of L non-overlapping
detection windows w1,…,wL, within each of which
the value of each covariate is constant. Again, we
consider the log-linear model and define bl to be the
baseline detection intensity of window wl, l¼ 1,…,L:
log blð Þ¼ θ0þ

P
iθiζil, where ζil is the value of the i-th

detection covariate within window wl.
Following Equation (1), the log-probability density

for the Mi detection locations, yi,1…yi,Mi
, of individual i

with AC si is:

logP yi,1,…, yi,Mi
jsi, θ, σ

� �¼�Λ ojsi, θ, σð Þ

þ
XMi

j¼1

logλ yi,jjsi, θ, σ
� �

, ð4Þ

where Λ ojsi, θ, σð Þ¼ Ð
oλ yjsi, θ, σð Þdy is the expected

number of detections of individual i over the entire detec-
tion region o. Assuming o is composed of a single poly-
gon, our sampling situation is identical to that described
in Efford (2011). However, modeling detections explicitly
as a spatial point process integrates detection and density
sub-models of SCR into a unified framework, similar to
Yuan et al. (2017) where an integrated approach used
point process models for distance sampling data.

Under the detection point process presented above,
we provide several options to accommodate different
SCR sampling scenarios in practice. The first option is
using Equation (4) to fit data that typically arise from
area searches for DNA samples of animals, where any
individual can be detected more than once within the
detection region. The second option is modeling the case
where only a single detection per individual is possible
within o (e.g., dead recoveries, Dupont et al., 2021):
logP yijsi, θ, σð Þ¼� logΛ ojsi, θ, σð Þþ logλ yijsi, θ, σð Þ: If
this kind of sampling is repeated over a number of occa-
sions, individual detection locations can be modeled
using a binomial point process.

SCDL approach

It is popular to fit Bayesian SCR models via data augmen-
tation to estimate the abundance and population density
including never-observed individuals (Royle et al., 2007).
An alternative is to use the SCDL approach of King et al.
(2016), where AC locations of undetected individuals are
integrated out from the complete data likelihood
(Little & Rubin, 1983) so that there is no need to use data
augmentation to fit the model. Using this approach, King
et al. (2016) investigated a set of capture–recapture
models with individual heterogeneity, including a simple
SCR model. Here, we expand the approach to more com-
plicated cases and provide functionalities to fit Bayesian
SCR models without data augmentation.

Key to the SCDL approach is to calculate the marginal
void probability p� that individual i is never detected. This
calculation requires the probability density function
P sijβð Þ of the individual’s AC si given in Equation (2) and
the probability P Di,o ¼ 0jsi, θ, σð Þ that the individual is
never detected conditional on its AC, where Di,o denotes
the number of detections of individual i over the region o.
Note that P Di,o ¼ 0jsi, θ, σð Þ¼ exp �Λ ojsi, θ, σð Þf g can be
obtained by setting Mi to be 0 in Equation (4) and

4 of 10 ZHANG ET AL.



back-transforming the equation. Then it follows that p�

can be expressed as

p� ¼P Di,o ¼ 0jθ, σ, βð Þ ¼
ð
~o
P sijβð ÞP Di,o ¼ 0jsi, θ, σð Þdsi

¼ 1eΛ eojβð Þ

ð
~o

eλ sijβð Þexp �Λ ojsi, θ, σð Þf gdsi:

ð5Þ

Since individual heterogeneity is not considered here,
p� is the same for all individuals in the population; other-
wise p� needs to be calculated for each individual in each
MCMC iteration.

Calculating p� seems complicated and involves calcu-
lations of three definite integrals; however, it can often
be simplified in practice. In Appendix S1: Section S1, we
describe how the intensity of the Poisson process for AC
distribution can be written as a piece-wise constant func-
tion. We then introduce in Appendix S1: Section S2 the
commonly used Gaussian kernel function for the detec-
tion process and describe how the baseline detection
intensity can be written as a piece-wise constant function.
It follows that p� in Equation (5) is simplified and only
involves calculating one definite integral, which is
obtained numerically using the midpoint rule; see
Appendix S1: Section S3 for more details. Nevertheless,
the computational cost of the p� makes it unclear
whether the SCDL approach will be more efficient than
data augmentation in all cases.

Software implementation

We provide R functions for the aforementioned models
in package nimbleSCR (Bischof et al., 2021; Turek
et al., 2021). These functions allow one to flexibly formu-
late Bayesian hierarchical point process SCR models
tailored to their situation. In addition, to fit the model
one can choose between the SCDL approach and data
augmentation.

Assembled models can be fitted to data using Bayesian
MCMC in R package nimble (de Valpine et al., 2017). nim-
ble supports nearly the same modeling language as JAGS
and WinBUGS but allows extensions with new functions
and distributions. We used these capabilities to write both
Poisson and binomial point process distributions and also
marginal void probability calculations in nimble, allowing
them to be efficiently and automatically incorporated into
MCMC sampling. Where feasible, nimble functions pro-
vided here already include features that have proven to
substantially boost computational efficiency of Bayesian
SCR models (Milleret, Dupont, Bonenfant, et al., 2018;
Turek et al., 2021), allowing fitting of complex models and

application to large-scale estimation problems (Bischof
et al., 2020).

RESULTS

Model validation

We first conducted a simulation study to investigate the
relative bias and frequentist coverage of credible intervals
for calibrated Bayes interpretation (Little, 2006) under a
range of covariate effects. We set the habitat region eo to
be a 10� 10 km square, which included a buffer of
0.6 km around the 8.8� 8.8 km square detection region o.
We divided eo into 100 equally-sized windows and o into
25 equally-sized windows. We considered two spatial
covariates, one for modeling the intensity for population
density and the other for the baseline detection intensity.
Values of both covariates were sampled from a uniform
distribution: Uniform �1, 1ð Þ. The intercept parameters
β0 and θ0 were set to be 1 and 2, respectively. The values
of the slope parameters β1 and θ1 were chosen from set
�1, 0, 1f g so that there were nine scenarios defined by
the different combinations of the two parameters. An iso-
tropic multivariate Gaussian function with σ¼ 0:2 was
used as the detection kernel. For each scenario, we simu-
lated 100 datasets under the hierarchical point process
model. The model was then fit to the data using Bayesian
MCMC in nimble. MCMC sampling was run for 110,000
iterations with the first 10,000 discarded as burn-in. The
population size estimator was unbiased with roughly
nominal values for the credible interval coverage in all
scenarios; see Figure S1 in Appendix S3. Similar conclu-
sions can be drawn from the estimation results of other
parameters. We, therefore, conclude that the proposed
model works well for parameter estimation.

Benefits of modeling population density
as point process

We performed another simulation study to compare the
efficiency of the point process model for population den-
sity and the categorical distribution typically used in
Bayesian SCR models. We assumed the population size to
be N ¼ 100 in the simulation. The habitat region eo was a
12� 12 km square, including a buffer of 2 km around the
8� 8 km detection region o divided in 64 equally sized
detection windows. The habitat region eo was divided into
144, 36, 9, and 4 equally-sized windows in four simula-
tion scenarios. One spatial covariate was used to model
the intensity of population density. ACs were simulated
using the Bernoulli point process. We used the Poisson
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point process model to generate detection data. Data aug-
mentation was used for model fitting, and thus we did
not estimate parameter β0. The slope parameter β1 was
set to 2. We set slope parameter θ1, and the intercept
parameter θ0 to be �1. An isotropic multivariate
Gaussian function with σ¼ 1 was used as the detection
kernel.

The simulation results are summarized in Figure 1.
We measured the efficiency of MCMC via the effective
sample size per second. We found that increasing the
habitat resolution (more windows) drastically decreased
the efficiency of MCMC and exponentially increased the
runtime of the model using the categorical distribution,
while runtime remained comparatively low regardless of
the number of habitat windows when using the point
process model for density.

SCDL versus data augmentation

We performed a third simulation study to compare the
efficiency of the SCDL approach and the more common
data augmentation (DA) approach for the hierarchical
point process SCR model. We set the habitat region eo to
be a 12� 12 km square, including a buffer of 2 km
around a 8� 8 km square detection region o. As we
expected the computation time of p�, and thus the

efficiency of the SCDL approach, to be strongly affected
by the number of both habitat and detection windows,
we considered different resolutions for eo (1, 2, 4, and
6 km) and o (1 and 4 km), leading to scenarios with
144, 36, 9, or 4 habitat windows, and 64 or 4 detection
windows. The intensities for population density and the
detection process were modeled as functions of spatial
covariates. Covariate values for each of the habitat and
detection windows were sampled from a uniform distri-
bution: Uniform �1, 1ð Þ. The intercept parameters β0 and
θ0 were set to be 1 and �1, respectively. The slope param-
eters β1 and θ1 were set to �1 and 2, respectively. An iso-
tropic multivariate Gaussian function with σ¼ 1 was
used as the detection kernel.

For each of the eight scenarios, we simulated 100 indi-
vidual ACs using the Bernoulli point process in
Equation (3). Detections were simulated using the detec-
tion point process in Equation (4). For the SCDL approach,
we varied the number of nodes used in the calculation of
p� (4, 25, and 100; see Appendix S1: Section S3) to investi-
gate the effect of the numerical integration on overall
efficiency. For the DA approach, we varied the augmen-
tation factor (2, 3, and 5). MCMC sampling was run for
6000 iterations with the first 1000 discarded as burn-in.

We found that SCDL is more efficient than DA when
the habitat and detection regions consist of a small num-
ber of windows (≤ 36 in our setup); see Figure 2. As the

4 9 36 144

No. habitat windows

Ite
ra

tio
ns

/m
in

ut
e

0
50

0
10

00
15

00
20

00
25

00

Bernoulli point process Categorical distribution

0
1

2
3

4
5

No. habitat windows/parameters

E
S

S
/s

ec
on

d

4

N σ θ0 θ1 β1

Bernoulli point process Categorical distribution

9 36 14
4 4 9 36 14
4 4 9 36 14
4 4 9 36 14
4 4 9 36 14
4

F I GURE 1 Results from simulations comparing the Bernoulli point process model and the categorical distribution used for activity

center (AC) distribution in Bayesian spatial capture–recapture (SCR) models. Two models are compared in terms of the number of MCMC

iterations per minute (left panel) and effective sample size per second for each model parameter (right panel).

6 of 10 ZHANG ET AL.



number of windows increases, DA becomes more effi-
cient than SCDL. In addition, the number of nodes used
to calculate p� via numerical integration has a strong
negative impact on the efficiency of the SCDL approach.
This is problematic as a greater number of nodes used in
numerical integration means a more accurate approxima-
tion of p�. By contrast, the efficiency of DA appears to be
less sensitive to the augmentation factor. We conclude
that SCDL can be a powerful approach to fit simple SCR
models, where dividing either the habitat or detection
region is not necessary (i.e., absence of spatial variation
in either density or detectability). However, SCDL seems
to lose its advantages when the model becomes compli-
cated and spatial variation exists in the process of either
population density or detection.

Wolverine NGS data analysis

Finally, to demonstrate the application of the proposed
model to real data problems, we applied it to part of the
wolverine data available in the Scandinavian large
carnivore database, Rovbase 3.0 (http://rovbase.se/ or
http://rovbase.no/). This database is jointly used by
Norway and Sweden to record NGS data, dead recoveries,
GPS search tracks, and observations of wolverines and
other large carnivores. We analyzed a subset of the

Rovbase dataset composed of female wolverines detected
from December 2018 to June 2019 in Norwegian counties
of Hedmark, Oppland, and parts of Sør-Trøndelag. The
dataset is composed of 228 scat- and hair-based DNA
samples from 72 female wolverines.

The detection region o was divided into L¼ 195 win-
dows each of size 20� 20 km and the habitat region eo
was divided into H¼ 40 windows each of size 60� 60 km.
The region eo covers the entire region o and a surround-
ing buffer, allowing the ACs of individuals to be located
outside the searched area. The number of known
wolverine dens was used as a covariate for modeling
population density (Bischof et al., 2020). Four covariates
were used for modeling baseline detection: the detection
location, the recorded length of GPS tracks logged
by searchers, the average percentage of snow cover
(MODIS at 0.1 degrees resolution, www.neo.sci.gsfc.nasa.
gov, accessed 10 November 2019), and the average
distance to the nearest primary and secondary roads.

To investigate how the point process method
presented in this paper compares with commonly used
methods, we analyzed the data in four different ways as
shown in Table 1. For population density, we considered
either the Bernoulli point process or the categorical dis-
tribution where the center of each habitat grid cell is
regarded as the approximate AC location when an indi-
vidual is located in that cell. For detection, we considered
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either the Poisson process or the commonly used discrete
detector approach where each detection grid cell is
regarded as a “detector” (Milleret, Dupont, Brøseth,
et al., 2018). For model fitting, we considered either the
SCDL approach or the DA approach. In each of the four
scenarios in Table 1, we ran four MCMC chains for
11,000 iterations and removed the first 1000 iterations as
burn-in. MCMC convergence was checked and confirmed
using R-hat values and visual inspections of trace plots.

In Table 1, we present the estimation results of two
key parameters of interest, abundance N and the detec-
tion kernel parameter σ regulating home range size. Both
methods using the unified point process framework pro-
duced similar results for both parameters. However, the
point-process DA approach cost 1.2 h, in contrast to 6.8 h
required by the point-process SCDL approach. We
assessed the efficiency of the two fitting approaches via
the effective sample size per second (ESS/s) for the two
parameters. The DA approach (ESS/s 0.51 and 0.37 for N
and σ) is more efficient than the SCDL approach (ESS/s
0.23 and 0.07 for N and σ), which is consistent with what
was observed in the simulation studies. Comparing the
third and fourth methods in the table, we can see that
the Bernoulli point process makes model fitting more
efficient than the categorical distribution. This is also
consistent with our observation in the simulation studies.
Compared to the unified point process methods, the
other two methods yielded higher estimated values of σ
and lower values of N . This is not surprising, given that
AC locations are approximated by grid cell centers when
the categorical distribution is used for AC distributions
and the continuous detection process is approximated
using the discrete detector approach (Milleret, Dupont,
Brøseth, et al., 2018). Using the two approximations
together (the second method) yielded the best computa-
tional efficiency; however, this was achieved at the cost
of losing accuracy for parameter estimation. The estima-
tion results could be closer to those obtained by the uni-
fied point process methods if the resolutions of the
habitat and detection grids are set higher. However, this
means a larger number of grid cells and lower

computational efficiency. Estimation results of other
model parameters can be found in Appendix S2.

DISCUSSION

Point processes are useful representations of the main
processes from which SCR data arise (Efford, 2004, 2011).
The custom distributions and functions described here
have been added to R package nimbleSCR (Bischof
et al., 2021; Turek et al., 2021), allowing practitioners to
easily build and fit point process SCR models in nimble
(de Valpine et al., 2017). Furthermore, spatial covariates
can be readily incorporated to model the intensity func-
tions of the inhomogeneous point processes for both pop-
ulation density and detection. Aside from making these
modeling tools accessible for a wider range of applica-
tions, the implementation in nimble also offers function-
ality for improved computational efficiency (Milleret,
Dupont, Bonenfant, et al., 2018), one of the main obsta-
cles to the analysis of large-scale monitoring data with
SCR (Bischof et al., 2020). Practitioners can assemble
SCR models using all or a subset of the distributions and
functions we described in this paper.

We found that the Bernoulli point process for AC distri-
bution outperforms the conventionally used categorical dis-
tribution in Bayesian SCR models, especially with a larger
number of habitat windows. This was one of the factors
that enabled us to fit SCR models to data from the entire
Scandinavian range of three large carnivore species
(Bischof et al., 2020). The Poisson point process for detec-
tion is a suitable choice when detections, at least in theory,
are possible anywhere within a defined region (such as
opportunistic NGS). Even in cases where the detection pro-
cess itself is better modeled using discrete detectors or a
search-encounter model (Royle, Magoun, et al., 2011), the
flexibility of the point process framework facilitates the
expansion of closed-population SCR to open-population
SCR (OPSCR) models. Incorporating AC movement
between occasions and dead recovery data into OPSCR
analysis can be easily achieved using the Bernoulli point

TAB L E 1 Four different ways to analyze the wolverine data and their estimation results (posterior means and 95% credible intervals) of

key parameters N and σ.

Method AC distribution Detection Fitting N ESSN/s σ ESSσ/s

1 Bernoulli Poisson process SCDL 137 (115,163) 0.23 5.22 (4.81, 5.66) 0.07

2 Categorical Discrete detector DA 109 (94,127) 0.98 20.73 (19.14, 22.52) 0.48

3 Bernoulli Poisson process DA 139 (116,166) 0.51 5.23 (4.81, 5.69) 0.37

4 Categorical Poisson process DA 98 (86,113) 0.27 19.77 (18.35, 21.36) 0.15

Note: ESS/s denotes effective sample size per second.
Abbreviations: AC, activity center; DA, data augmentation; ESS, effective sample size; SCDL, semi-complete data likelihood.
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process. We have added functions for this into the
nimbleSCR package.

The SCDL approach allows one to fit Bayesian SCR
models without the need for data augmentation.
However, computational inefficiency, arising from the
numerical integration needed for computing the void
probability, makes this approach impractical for applica-
tions that include a moderate number of detection win-
dows. Furthermore, in its current form, SCDL is not
suitable for OPSCR models, whereas data augmentation
is readily incorporated.
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