

Master’s Thesis 2022 30 ECTS
Faculty of Science and Technology
Professor Hans Ekkehard Plesser

Performance Analysis of Neuronal
Network Connectivity Creation from
Complex Rules

AbdulHakeem Ayodele Adamu
MSc. Data Science

Acknowledgments

The writing of this thesis would not have been possible without some amazing
people who contributed immensely in ways that I would never be able to put
to words.

Firstly, I would like to thank my supervisor Prof. Hans Ekehard Plesser
for guiding me every step of the way and patiently listening to all the many
issues I faced during the past months writing this thesis. His vast wealth of
knowledge and wisdom is the foundation of my work. I am eternally grateful.

I would also like thank Susanne Kunkel, Jochen Martin Eppler, Håkon
Mørk, Johanna Senk and Stine Brekke Vennemo for taking time out of their
busy schedules to help me out in running my simulations. I extend my grati-
tude to my colleagues Nida Grønbekk and Sanjayan Rengarajan, whom I could
turn to in times of need. A big thank you to the NEST developers and the
entire team at JSC.

I acknowledge the use of Fenix Infrastructure resources, which are partially
funded from the European Union’s Horizon 2020 research and innovation pro-
gramme through the ICEI project under the grant agreement No. 800858.

Lastly, I would like to thank my parents and siblings, my dear Tensaye,
Cyril, and all my other friends. Without you all I would never have done any
of this.

AbdulHakeem Ayodele Adamu
Ås, October 2022

Abstract

This thesis investigates the performance of neuronal network connectivity in-
stantiation during neuronal simulation. It is important to try and get the
simulation times of neuronal networks closer to the actual biological time as
this will significantly increase the use cases of computational neural network
simulations. Since network connectivity creation phase makes up a large frac-
tion of the total time take during network simulation, it is important to try and
reduce it (Morrison et al. 2005; Ippen et al. 2017). In this thesis, we perform
an investigative analysis of the utilization of compute resources of different neu-
ronal networks during parallel simulations on a supercomputer. This is done in
order to identify how key properties of neuronal networks formed from differ-
ent connection rules contribute to compute-time consumption during network
connectivity creation. Due to the connectivity rules, neuronal network models
incorporating combinations of different network properties were formed. How
these properties affect the consumption of hardware resources is investigated
here. We approach this investigation by performing weak and strong scaling
experiments involving the simulation of different neuronal networks. These
neuronal networks are constructed using NEST, and are performed on a su-
percomputer using beNNch as a benchmarking tool. The plots gotten from
this experimentation are discussed extensively in this paper.

Contents

Acknowledgments iii

Abstract v

List of Figures ix

List of Tables xi

1 Introduction 1

2 Materials and Methods 7
2.1 Theory and concepts . 7

2.1.1 Scalability . 7
2.1.2 Neuronal Network Model 9

2.2 NEST, The Neural Simulation Tool 12
2.3 Benchmark Scenario . 14

2.3.1 JUSUF Supercomputer 14
2.3.2 beNNch . 15
2.3.3 Analysis and visualization software 16

2.4 Balanced random networks . 16
2.5 Benchmark Protocol . 21

3 Results 29
3.1 Cross-version verification . 29
3.2 Weak scaling performance for non-spatial networks 30
3.3 Weak scaling performance for spatial networks 32

3.3.1 Spatial Gaussian network model analysis 35
3.4 Strong scaling performance overview 36

4 Discussion 39

References 45

List of Figures

1.1 Parallel compute system . 4

2.1 Amdahl’s law . 8
2.2 Gustafson’s law . 9
2.3 Free layer . 11
2.4 Common connectivity rules . 13
2.5 Network types . 19
2.6 Spatial mask . 20

3.1 Comparison between NEST v3.1 and NEST v3.3 30
3.2 Comparison between Nonspatial networks 31
3.3 Indegree Nonspatial network . 32
3.4 Spatial Circular network . 33
3.5 Comparison between Gaussian and Circular network models . . 34
3.6 Comparison between all Gaussian network models 35
3.7 Strong scaling analysis . 37
3.8 Strong scaling vs. weak scaling 38

4.1 Network ranking . 41
4.2 Network ranking . 42
4.3 Virtual processes . 43

List of Tables

2.1 JUSUF Configuration . 15
2.2 Ratio of number of connections 24
2.3 Balanced random network models 25
2.4 Balanced random network models (contd.) 26
2.5 Balanced random network models (contd.) 27

Chapter 1

Introduction

The nervous system is considered the most important biological system as it
facilitates the survival of organisms by allowing them adapt to changes in their
environments (Society for Neuroscience 2018). Translating light waves, sound
waves, vibrations, and food molecules into electrical signals, the nervous system
helps organisms perceive the world around them. In mammals, this system is
made up of the spinal cord, a network of nerves, and the brain at the heart of
it all. The human brain is made up of networks of complex circuits of about
86 billion microscopical cells called neurons (Society for Neuroscience 2018;
National Research Council 1989; Smith 1952).

The importance of fully understanding the mechanism of the nervous sys-
tem cannot be overstated. An estimated one in four people worldwide face a
neurological or psychiatric disease yearly (United Nations 2001). Studies and
investments have gone into trying to understand the workings of the brain
and mental or psychiatric illnesses — whose cost is about 10% of the world’s
yearly GDP (Markram 2013). Returns from these investments in terms of new
treatments and drugs have been slow and seem to be decreasing (Gustavsson
et al. 2011; Markram 2013). Furthermore, new qualitative insights building
upon invaluable pioneering work from the 1950s into how networks of neurons
give rise to observed neural representations have been lacking (Einevoll et al.
2019).

Today, a fairly strong understanding of how individual neurons operate and
process information has been established. Neurons interact primarily through
action potentials or spikes. These spikes are stereotyped point events generated
during inter-neuronal communication. They occur after a neuron receives an
accumulation of ten to a hundred action potentials within a few milliseconds1.

1The workings of action potentials depend on the type of neurotransmitters produced
by the neurons. Statistically, there is a ratio of about 80% to 20% excitatory to inhibitory
neuronal population in the human brain. The action potentials of excitatory neurons pushes
connecting neurons toward generating spikes, while those of inhibitory neurons suppress
connecting neurons from generating spikes. (Sterratt et al. 2011)

2 Introduction

The inflow of action potentials eventually causes the electric potential differ-
ence between the inside and outside of the neuron to cross the cell-membrane’s
threshold voltage, thus, releasing an action potential to the next neuron. Ac-
tion potentials are transmitted repeatedly - several billion times a second across
the brain at separation points between neurons called the synapses (Sterratt
et al. 2011; Society for Neuroscience 2018).

Following work by Hodgkin and Huxley (1952) in understanding of the
propagation of action potentials across neurons, biophysics-based modeling of
neurons has been established. This provides an important platform which
most studies are based upon (Einevoll et al. 2019). These studies have been
used in deriving descriptive mathematical models which account for different
individual neuronal properties. Due to the multitude and diversity of neurons
however, it has been very difficult to effectively theorize how networks of mil-
lions or billions of heterogeneous neurons work together at a systemic level
to provide brain functions (Einevoll et al. 2019). Nonetheless, mathemati-
cal equations based on specific biological details of some areas of the brain,
and the types of neurons and synaptic connections present there have brought
about the development of several network models which provide insights into
various network dynamics (Potjans and Diesmann 2014; Thomson et al. 2002;
Binzegger et al. 2004).

Over the years, comprehensive neuronal networks modeling specific parts
of the brain have been developed. Small homogeneous neuronal populations
with statistically identical connection properties have been modeled as in stud-
ies by McCormick and Huguenard (1992, Halnes et al. (2011). Studies using
substantially reduced neuronal population sizes of the brain have been con-
ducted as well (Migliore et al. 1995; Brunel 2000). In the widely cited model
by Brunel (2000), the brain was simplified into a network of sparsely (ran-
domly) connected neurons with similar statistical properties. They used an
80% to 20% ratio of excitatory and inhibitory neuronal representation. Spa-
tial positioning was disregarded in this model (Brunel 2000). The neuronal
modelling approach taken here is useful in understanding basic properties of
large networks of neurons (Sterratt et al. 2011).

Although larger networks which consider the heterogeneous nature of neu-
ral populations in the brain and their more structured inter-neuronal connec-
tions are being modeled; large comprehensive mechanistic network modeling
is still in its infancy however (Einevoll et al. 2019). This can be attributed
to the sheer size and complexity of mammalian brains. They contain multi-
compartmentalized neurons arranged spatially. For even the smallest of mam-
mals, a cubic millimeter of the cortex of their brains contain close to 100,000
neurons. Each of these neurons receive an average of around 10,000 local in-
puts and another 10,000 inputs from more distant locations (Ippen et al. 2017).
Therefore, simulating any spatially-dependent comprehensive network model
becomes extremely computationally intensive. Nevertheless, with increasing

3

computational power, and the advent of modern supercomputers, simulations
of large comprehensive networks with billions of neurons are becoming expe-
dient.

Our understanding of the mechanism of the brain and its functions have
been limited partly due to the sheer amount of cells involved and the intricately
detailed connections formed between these cells. Mathematical modeling has
been adopted to aid with the qualitative analysis of brain functions. Today,
for many cognitive functions, including the most advanced ones, mathematical
models have been developed. The challenge lies in scaling up from knowledge of
individual mathematical models to gaining a systemic level of understanding.
Although, there is still some way to go in gaining qualitative insights about
cognitive functions from network models, it remains promising as there have
been successful applications of this type of high level scaling in other sciences
such as the case of the highly multivariate numerical weather prediction. The
accuracy of weather forecasts has increased yearly, and is today, very precise
(Bauer et al. 2015).

Computational simulation, an essential component of scientific methods, is
used in representing the evolution of a model over time. In neuroscience, it
is used to study the relationship between anatomical and physiological data
(Einevoll et al. 2019). Neuronal simulation has proven very important in
gaining insights from models, and also for testing out different hypotheses.
It is required for the complete exploration of the dynamics of almost all the
neuronal network models used today (Senk et al. 2021). One of the earliest
usage of neuronal simulation was in the pioneering experiment by Hodgkin and
Huxley (1952) over 70 years ago, where they propagated an action potential
along an axon. Today, with the progress in computer hardware technology,
simulations can be used for networks of up to a billion neurons and their
corresponding synapses (Kunkel et al. 2014; Jordan et al. 2018).

Due to the large amount of computational resources required by large
scale simulations, they are typically run on modern high performance clus-
ters (HPCs) and supercomputers. These computers typically have multiple
compute nodes connected by fast interconnects such as infinibands. Each of
the compute nodes also contain several multi-core CPUs 1.1. Although these
high performance computers have many nodes, poorly written software pro-
grams may under utilize the compute resources. Therefore, harnessing the
power of modern computational advancement lies in writing optimal simula-
tion code (Abi Akar et al. 2019; Kumbhar et al. 2019). Optimal simulation
code should communicate efficiently across all compute nodes so the network
model can run in parallel adeptly. In addition, memory also has to be dis-
tributed efficiently across all the compute nodes. Every core in a CPU share
the same instance of the operating system. This makes parallel simulations
within a single compute node possible using threads. For parallelization across
multiple compute nodes, communication over a physical network is required.

4 Introduction

Figure 1.1: Illustration of a typical multiprocessing compute system with MPI interface.

Aims, scope, and organization

As highlighted in Morrison et al. (2005) and Ippen et al. (2017), the frac-
tion of the total time taken during the network connectivity creation phase in
large scale simulations is significantly large. Thus, it is important to try and
reduce it. The aim of this thesis will therefore be to perform an investigative
analysis of the utilization of compute resources of different neuronal networks
during parallel simulations on a supercomputer. This is done in order to iden-
tify how key properties of neuronal networks formed from different connection
rules contribute to compute-time consumption during network connectivity
creation. Due to the connectivity rules, neuronal network models incorporat-
ing combinations of different network properties were formed. The different
network properties include: The architecture based on spatial dependence.
Here, metrics determining the proximity between neurons could be introduced
or not, making it spatial or non-spatial networks respectively; The determin-
ism rule with which connections are either formed or not based on probability
functions or explicit rules. How these properties affect the consumption of
hardware resources is investigated here.

For the analysis, we perform both weak and strong scaling experiments
of the different networks formed from the combination of these connectivity
rules. These experiments are done based on the current version of the NEST
simulator, v3.3 (Spreizer et al. 2022). We get the performance indication from
the scalable parallelism. This indicator is gotten from a weak scale experiment
done by simulating the neuronal networks on a supercomputer and measuring
the time taken to connect the neurons as more resources are added while also
simultaneously increasing the network size to scale with the increased allocated

5

MPI processes.
Section 2.1 introduces the theories and concepts used in this thesis, as well

as the key metrics used for computing the performance of our benchmarks in
this thesis. The underlying principles network models have, and the different
forms of connections the networks may form are also described here. In Chap-
ter 2, we also introduce the simulation software and the various software used
in computing the different benchmarks. The specification of the hardware used
is also discussed here. Afterwards, the network models we used in our simula-
tion and how we developed them are described. Section 2 closes off with the
key steps undertaken in performing the weak scale benchmarking experiments
used in this thesis.

Afterwards, we compare the results obtained from our experiments in Chap-
ter 3. These results are the performance indicators from the weak and strong
scaling of the simulation of our different neuronal network models. We present
these results with the aid of several plots. These results are described objec-
tively here. We finalize this thesis with a discussion of our observations in
Chapter 4. Here, we highlight some of our findings and give explanations as
to why some of these results were achieved.

Chapter 2

Materials and Methods

2.1 Theory and concepts

2.1.1 Scalability

A large fraction of the total simulation time of a neuronal network model
goes into constructing the neuronal network, therefore, all the compute power
available should be used (Ippen et al. 2017). Scalability or scaling, is a good
indicator of optimal parallelization. It is the attribute of a compute system to
handle an increasing amount of work by utilizing additional compute resources
to the system. To ensure maximal usage of compute power, it is of great im-
portance to measure the parallel scaling of your code (Li 2018). For simulation
code to scale properly (i.e., use up the available resources efficiently), the ex-
perimental (actual) speedup has to be close to the ideal speedup for a certain
amount of compute resources. Speedup is the unit for measurement in parallel
computing.

speedup =
t1
tN

. (2.1)

Here t1 is the computational time for running the code on one processor, and
tN is the computational time for running the same code on all processors. The
ideal speedup is achieved when every part of a program is parallelizable and is
run on multiple processors. This is a challenging goal for most brain simulators
(Li 2018). Efficient parallelization is therefore fundamental for maintaining
performance for a given span of biological time (Ippen et al. 2017).

There are two main types of scaling: Strong scaling and weak scaling. In
neuronal network simulations, measuring weak and strong scaling provides a
good indication of how to share resources amongst different parts of the simu-
lation software. It also provides information about the usage of computational
processes (i.e. threads and MPI processes) available in a supercomputer for a
large network model.

8 Materials and Methods

Figure 2.1: Illustration of Amdahl’s law. The different lines show the results when you
have different fractions of non parallelizable parts of the system.

Strong scaling

Strong scaling is governed by Amdahl’s law. This law states that "the overall
performance improvement gained by optimizing a single part of a system is
limited by the fraction of time that the improved part is actually used" (Am-
dahl 1967). This implies that for strong scaling, speedup is limited by the
fraction of the code which is not affected by the parallelization;

speedup =
1

(s+ p
N
)
. (2.2)

Here s is the fraction of the serial (non-parallelizable) part, p is the execution
time of the parallelized part, and N is the number of processors. Consider a
program which takes 20 hours to run using a single thread. If one part of the
program, which takes one hour to run cannot be parallelized (s = 1/20), while
the rest of the code can (p = 19/20), then regardless how many threads are
allocated to the program, the minimum execution time cannot be less than one
hour. Therefore, in strong scaling, the efficiency of parallelization decreases
as the amount of resources increases; making parallel computing with many
processors useful for only high parallelized software (Li 2018). Strong scaling
is measured by testing how the overall computational time of a job scales with
the the number of threads and MPI processes. In our case, this is done by
taking the (wall) time in seconds it takes to construct a neuronal network per
amount of MPI processes allocated. Figure 1.1 shows the speedup against an
increasing number of processors.

2.1 Theory and concepts 9

Figure 2.2: Illustration of Gustafson’s law. The different lines show the results when you
have different fractions of non parallelizable parts of the system.

Weak scaling

Weak scaling on the other hand was defined by Gustafson (1988). This came
about as a revision of Amdahl’s law which is most well suited to fixed size
problems. Weak scaling does not assume that the execution workload does
not change with respect to increasing resources. In practice, the problem size
scales with the amount of available resources (Li 2018). Gustafson’s law states
that the parallel part of a program scales linearly while the serial part does
not increase. In the study, it was stated that increasing the size of problems
will allow for the complete exploitation of the computing power brought about
by more resources.

scaledspeedup = s+ p×N . (2.3)

Where s, p,N are defined as in strong scaling above. Weak scaling is measured
by testing how the overall computational time of a job scales when the size of
the job is increased along with the number of threads and MPI processes. In
our weak scaling experiments, we increase the network size by multiplying the
number of neurons in the network with the number of compute nodes. Thus,
affecting the overall number of inter neuronal connections. Figure 2.2 shows
the scaled speedup against an increasing number of processors.

2.1.2 Neuronal Network Model

Presently, there is no generally acceptable network model which describes the
functioning of the nervous system despite years of studies (Einevoll et al. 2019).
It is therefore important to select the network model which satisfies the purpose
of the simulation. A neuronal network model can be defined as "an explicit and

10 Materials and Methods

specific hypothesis about the structure and microscopic dynamics of (a part of)
the nervous system" (Nordlie et al. 2009). The complexity of the underlying
neuron models - the building blocks of these networks vary different depending
on the purpose of the networks.

Neuronal connectivity concepts

Unlike in many other sciences, there is no generally adopted formalism and
standardization for representing connectivity in neuronal modeling. There
has been some push by the wider neuroscience community to formalize the
notations used for describing neuronal connectivity. In this thesis, we shall
adopt some of the formalisms proposed by work by Nordlie et al. (2009,
Djurfeldt (2012, Senk et al. (2021). In the simulator, a network model is
typically modeled as a directed graph. The neurons are represented as nodes
while the synapses are represented as directed edges. A population of neurons
(multiple nodes) form a structure, and multiple synapses form a projection.
The network is connected such that a projection is made between source and
target populations using a number of connection rules.

There are typically two types of connection rules1. They are deterministic
connection rules, and probabilistic connection rules. In deterministic con-
nectivity, connection rules are always precisely defined. Some ways in which
connections may be created deterministically include: One-to-one, where each
source node is connected to exactly one target node; all-to-all, where each
source node is connected to every target node; and explicit, where connections
are made based off an explicitly defined map of connections. In probabilistic
connectivity, connection rules are defined based on some form of probability
function. It may also be precisely defined is in the case of zero probabilistic
functions. Some common examples of probabilistic connections are pairwise
Bernoulli, where connections are made between neurons based on a Bernoulli
trial; fixed total number, where a fixed number of source-target pairs are chosen
at random; fixed in-degree, where a fixed number of source nodes are connected
to each target node; and fixed out-degree, where each source node is connected
exactly to a fixed number of randomly chosen target nodes (Senk et al. 2021).

When spatial dependence is included during connectivity, connectivity gets
more complex. This complexity arises due to a number of factors which lie
in the architectural differences. Non-spatial networks typically have small
numbers of neuronal populations with similar neuronal properties connected
randomly. They require less memory size than their spatial counterpart and
connection creations are less computationally intensive. Spatial networks on
the other hand, typically require more compute resources. They represent con-
nections across several areas of the brain and can accommodate topographic

1The connection rules may have a number of types based on some properties, in this case
however, we separate based on determinism.

2.1 Theory and concepts 11

Figure 2.3: A free layer with 50 elements uniformly distributed.

connections (Sterratt et al. 2011). They are more closely analogous to the
biological brain than non-spatial networks. Spatial distribution could be con-
structed in two ways: Grid-based layers and free layers. In grid-based layers,
each node is placed at a location in a regular grid with a pre determined dis-
tance between them. For free layers, they are placed arbitrarily in the plane.
In this project, we used the free layers with random positions in a uniform
distribution. The edge wrap is set to true so that the nodes at opposite ends
of the plane wrap to form connections between them as if they were laying
side by side. This gives a periodic boundary condition. Figure 2.3 shows an
illustration of how a free layer with 50 nodes uniformly distributed looks.

In spatial networks, some metric for measuring proximity between nodes
is introduced. One very common metric is the radial distance between neu-
rons. This metric determines the layout of the nodes which are included during
connection. Spatial dependent connectivity is different from non-spatial con-

12 Materials and Methods

nectivity chiefly because of the distinct separation of source and target neural
populations during connection2. When creating connections an explicit dictio-
nary of connections may also be given so that the connections formed between
nodes are predetermined.

With spatial probabilistic connectivity, the calculation of the probability of
forming a connection between source and target is the most complex amongst
all the connectivity rules discussed before. A statistical distribution is calcu-
lated with the positional distance and the boundary condition as parts of the
parameters. The probability of forming a connection then reduces the farther
away the target neuron is depending on the details of the rule. In our case,
we set up this distance metric. Some form of determinism may be mixed in
the statistics so that different compartments have different probability values
as in the case of (Potjans and Diesmann 2014). A fixed probability may be
given for the entire source population so that they do not need to include any
distant metric.

Some connectivity constraints may be applied to the different connections
or prohibited. Two of the more common constraints are autapses and mul-
tapses. An autapse is when a node can make a connection with itself. A
multapse is the situation when a source node A can form a connection to an-
other node B which has connections already to A as the source. Figure 2.4
shows an overview of some of these connectivity concepts discussed. In this
thesis we allowed autapses for all of the networks.

2.2 NEST, The Neural Simulation Tool

NEST (Gewaltig and Diesmann 2007; Spreizer et al. 2022) is a neuronal net-
work simulation software used in optimally simulating large networks of spik-
ing model neurons with relatively simple internal dynamics. There are a large
range of different neuronal models and synapses provided by NEST. It also
provides different high level interfaces which researchers may use to create dif-
ferent neural networks. These interfaces include NEST’s own built-in interpreter
(SLI), a Python interface (Eppler et al. 2009; Zaytsev and Morrison 2014),
and the simulator-independent PyNN interface (Davison et al. 2008). NEST
also allows users to specify connectivity algebraically using the Connection Set
Algebra (CSA) (Djurfeldt 2012). In NEST, neuronal networks are represented
as directed graphs; neurons and recording devices are represented as nodes;
while synapses are represented as edges.

Internally the data structure of the neurons, synapses and networks are
implemented in C++. The simulation kernel is also implemented in C++.
Both the nodes (neurons) and edges (synapses) are instances of their model

2This property was noted in a handful of simulators used during the extensive studies
conducted in (Senk et al. 2021)

2.2 NEST, The Neural Simulation Tool 13

Figure 2.4: Overview of common connectivity rules. From (Senk et al. 2021) with permis-
sion. The green nodes, si represent the source nodes while the orange nodes, ti represent
the target nodes. The numbers on the left show the outdegree while the numbers on the
tight show the indegree.

classes. The graph (network) is implemented with a strong emphasis on effi-
cient connectivity lookup and memory utilization. This optimal implementa-
tion is partly due to the distribution of connectivity storage across multiple
compute nodes. A hybrid parallelization scheme (Plesser et al. 2007; Ippen
et al. 2017) combines Message Passing Interface (MPI) (Message Passing In-
terface Forum 2021) for parallelization across multiple compute nodes with
Open MP (OpenMP Architecture Review Board 2008) for thread based paral-
lelization. This parallelization scheme is implemented in such a way that it is
abstracted away from the researcher. It uses the concept of virtual processes,
that is,

NV P = M × T . (2.4)

Where NV P is the number of virtual process the simulation code is to be
distributed over, M is the number of MPI processes, and T is the number of
OpenMP threads per MPI processes.

The network nodes are linearly enumerated and distributed amongst the
virtual processes using NEST’s Global Identifier (GID) in a round-robin fashion.
The representation of nodes on virtual processes are compact, with a distinct
separation in representation of local-nodes from non-local nodes (check (Mor-
rison et al. 2005; Kunkel et al. 2012)). Edges are also represented compactly
on the virtual processes using a specialized adaptive data structure minimizing
memory overhead (Morrison et al. 2005; Kunkel et al. 2014). Connections are
stored on the virtual processes based on the localization of the target nodes,
i.e. only target nodes which are local to that virtual process is stored in the

14 Materials and Methods

virtual process, and so on. Connections are stored using a hierarchical data
structure, with source neurons mapped to connections. C++ STL vectors and
C-style arrays are used in storing connections.

A new connection is registered by checking the sparse table of the VP
for the presence of a connector. If the table does not contain a connector,
a connection is created and stored, (check Ippen et al. (2017) and Jordan
et al. (2018) for a more detailed description of connection creation/deletion
and memory allocations/deallocations). After all the connections have been
created on the virtual processes, a new neuronal network is built. NEST uses
malloc() to request for memory, and free() to return allocated memory.
It implements this using jemalloc3. It has an efficient scheme for handling
concurrent requests for memory by different threads by limiting access to the
allocator to one thread at a time (Ippen et al. 2017).

The benchmark data used in this thesis are created using revision ed45e47 of
NEST, version 3.3, available publicly on GitHub (https://github.com/nest/nest-
simulator/tree/v3.3), except for benchmark on the tabulated Gaussian connec-
tion scheme (Listing 2, Section 2.4) first implemented in pre-release version,
revision 7788eee (https://github.com/slimkeem/nest-simulator/tree/v3.3.1).

2.3 Benchmark Scenario

2.3.1 JUSUF Supercomputer

JUSUF (Vieth 2021) is a petaflop supercomputer operated by Jülich Super-
computing Centre (JSC) at Forschungs-zentrum Jülich. The JUSUF system
provides HPC system resources as a service demand. It has 205 compute nodes
(144 CPU-only nodes and 61 GPU nodes), based on Atos Bull X400 servers.
The compute nodes have two AMD EPYC ROME 7742 64-Core processors,
256GB main memory and an 800GB NVMe. The 144 CPU-only nodes have Se-
quana X440A Double Twin servers while the GPU nodes have Sequana X430A
servers equipped with Nvidia Volta V100 GPU per processor. The nodes com-
municate using dual-port HDR100 Nvidia Mellanox Connect-X6 HCAs In-
finiBands. For cloud communication with the storage system (JUSTCOM),
Connect-X6 port with 40 Gigabit Ethernet is used (Vieth 2021). More details
about the system are provided in Table 2.1.

JUSUF operates on open-source software run on CentOS 7 Linux oper-
ating system. The software stack is based on RedHat OpenStack Platform
(RedHat OpenStack Platform 2021)). It provides support for ParaStation
MPI and OpenMPI. For job management, JUSUF uses the open-source Slurm
workload manager (LLC. 2019) in combination with the ParaStation resource
management. This offers scalability, reliability and performance for all jobs.

3Check (Ippen et al. 2017) to see a comparison of different alternative memory allocators

2.3 Benchmark Scenario 15

Table 2.1: JUSUF Configuration

Processor Two 64-Core AMD EPYC ROME 7742
CPU 256 (16 x 16) GB DDR4, 3200MHz
Node communication Dual-port HDR100 Nvidia Mellanox (Connect

X6) InfiniBand
Main Memory 256GB SSD

We utilize the performance and reliability of the HPC services of JUSUF as
the computing hardware for running the neuronal network simulations used in
this thesis.

2.3.2 beNNch

For large scale neuronal network simulations, benchmarking is typically carried
out by assessing the scaling performance of the simulation architecture by
increasing the amount of hardware resources while either increasing the size of
the network simultaneously as in weak scaling or keeping it fixed as in strong
scaling. Some of the dynamics such as the correlation of neuronal networks may
change during these scaling experiments (Van Albada et al. 2015). In order
to have meaningful benchmarks, it is important that they are comparable at
different stages of the simulation. This comparability has proven difficult due
to the nature of neuronal network simulations and the difficulty in reproducing
the same simulations on other platforms (Senk et al. 2021; Albers et al. 2021).

beNNch - a benchmarking framework for neuronal network simulations
(Computational and Systems Neuroscience & Theoretical Neuroscience 2021a)
is a simulator tool used by neuroscientists for performance benchmarking of
neuronal simulations. It works based on a modular workflow consisting of four
sequential segments. The first segment is the configuration and preparation
segment where all necessary prerequisites are prepared. Here, the configura-
tions such as the amount of compute nodes or number of threads are setup.
The second stage is the benchmarking stage where the actual benchmarking
occurs. Here, compute intensive calculations are submitted as jobs via scripts
holding simulation information. It should be noted that the focus of this
benchmarking is the performance result not explicitly the simulation output.
In the third and final segments, data is gathered, verified and presented in an
intuitive way (Albers et al. 2021). In this thesis, we use beNNch to run our
neuronal simulations and generate benchmark output.

beNNch is installed using Builder (Computational and Systems Neuro-
science & Theoretical Neuroscience 2021b). Builder ensures machine specific
MPI implementations as well as other libraries are provided during installa-
tion. beNNch employs the xml-based JUBE Benchmarking Environment (Centre

16 Materials and Methods

2021) using its yaml interface. JUBE creates (SLURM) job scripts, submits them,
and gathers and unifies the raw data output. The yaml interface provides a
user-friendly configuration script where users can specify amongst others, the
network being simulated, scaling type, number of nodes, number of threads,
and simulator type and version. The variables which appear on the bench-
mark output may also be configured to include only results the researcher
is interested in. The timing information contained in the output can either
come from the built-in NEST’s C++ level timer, or from PyNEST’s Python level
timer. The Python timer called wall_time is realized through an explicit call
to time.time(). It represents the actual time that phase of simulation takes.
NEST’s built-in timer called py_time, on the other hand, provides a detailed
look into the contribution of all four phases of state propagation4. We choose
the wall_time for our experiments as we want the actual time of simulation.

2.3.3 Analysis and visualization software

Intel VTune Profiler5 is a parallel performance analyzer tool which is used in
low-level performance analysis to study the behavior of multithreaded software.
It determines the functions and areas where the most time is taken; sections of
the code that do not utilize resources; as well as thread activities and hardware-
related issues. It is used in this thesis to analyze the performance of some of the
networks using different numbers of MPI processes and threads configuration
combinations. For visualization and generation of the plots and some of the
tables in this thesis, the following software tools are used: Pandas6 for data
analysis and managing the data in a structured way; Seaborn7; and Matplotlib8

for plotting graphs.

2.4 Balanced random networks

All the benchmarks performed in this thesis are performed by constructing
and simulating variants of the widely-used balanced random network model,
(inspired by the Brunel model (Brunel 2000)). The base network consists of
65,000 nE (excitatory neurons) and 65000/4 = 16250 nI (inhibitory neurons).
Making a total of 81250 neurons at the start, i.e. nSCALING = 1.0. During
simulation the total number of neurons (N) is scaled to adjust network size
during weak scaling. All the connections exhibit no plasticity (i.e. static
synapses). The network dynamic is relatively simple mainly because the focus

4The four stages of propagation are delivery, communication, collocation and update.
5https://www.intel.com/content/www/us/en/develop/documentation.html
6https://pandas.pydata.org/
7https://seaborn.pydata.org/
8https://matplotlib.org/

https://www.intel.com/content/www/us/en/develop/documentation.html
https://pandas.pydata.org/
https://seaborn.pydata.org/
https://matplotlib.org/

2.4 Balanced random networks 17

of this thesis is at the network construction phase. We use the spiking data as
a check for correctness.

The neuronal parameters as well as network parameters are summarized in
Table 2.5. The potential difference is set at 0.0mV due to the ease with which
it will bring to calculate with 0 as the reference point. All neurons receive
stationary external input in the form of Poisson spike trains with fixed rate
parameters. The number of excitatory synapses per neuron (cE) increases up
until a cap at 6500 and 1500 for the number of inhibitory synapses per neuron
(cI) no matter how large the network gets. This ensures the total number of
connections created does not grow too rapidly.

Networks with two types of architectures based on their spatial dependence
were created for this thesis, They are: Spatially distributed networks and
non-spatially distributed networks. All the spatial networks are setup using
pairwise Bernoulli connection rules. They all have circular masks with a radius
of 0.5 from which the source neurons are selected. Autapses are permitted here.
The spatial networks differ in the type of probability function passed in the
Connect() command. In this thesis, four different probability types are used
namely:

• Gaussian,

• Gaussian_tab,

• Gaussian_Ex,

• Circular.

The spatial networks are hence named after these probability functions and
shall be called as so henceforth. All except Circular are Gaussian shaped
functions implemented in different ways. The Gaussian function can be seen
in Table 2.4. The Gaussian network’s probability is implemented using the
NEST builtin function for spatial distributions. A standard deviation of 0.14 is
passed in together with the distance between the source and target neurons.
The Gaussian_tab network is a network with a Gaussian function which is
calculated by picking up the exponentials from a pre-filled exponential table
and then estimating the closest exponential based on this value. This exponen-
tial is then used in computing the Gaussian value. The Gaussian_Ex network
has its probability function calculated explicitly at the interpreter level. The
Circular network has a fixed probability value of 0.15655 for every connection.
As a precautionary step, the reference network model, the Gaussian network
is also created on another version of NEST, the older NEST v3.1 (Deepu et al.
2021).

Some of the connection rules are shown in Listing 1. The spatially dis-
tributed network had nodes arranged into layers which are NodeCollections
with spatial metadata. The nodes are placed freely in space (i.e., arbitrarily in

18 Materials and Methods

1 # GAUSSIAN
2 probability = nest.spatial_distributions.gaussian(nest.spatial.distance,
3 std=0.14)
4 # GAUSSIAN EXPLICIT
5 probability = nest.math.exp(-0.5 * (nest.spatial.distance/0.14)**2)
6 # CIRCULAR
7 probability = 0.15655
8 conn_rule = {
9 'rule': 'pairwise_bernoulli',

10 'p': probability,
11 'mask': {'circular': {'radius': 0.5}},
12 'allow_autapses': True
13 }

Listing 1: Spatial network connection . Snippet of code used to form connection
rules in the spatial networks.

the plane) randomly within the extent. Our spatial networks span a square of
[−0.5, 0.5] ∗ [−0.5, 0.5]. The extent is set as 1 ∗ 1, meaning it spans the entire
square. During weak scaling, the square size increases by a multiple of the
square root of the Nscaling. A periodic boundary condition is set in order to
reduce the effect of boundaries on simulations so that the nodes at opposite
edges are considered as nearest neighbors (torus connectivity).

A mask is specified to map out the potential sources. The mask size has
to be smaller than the layer size. A circular mask with a radius of 0.5 is
specified as the mask. The spatial metric used during connection is the distance
between the source and target nodes. For calculating the random distribution
based on the position of the nodes, the following functions are used: Gaussian
distribution,

p(x) = e−
(x−mean)2

2std2 . (2.5)

Where p(x) is the probability function, std is the corresponding standard de-
viation defining the spatial width of the profile, and x is the population. The
Gaussian distribution is used as the reference network when comparing the
total number of connections formed. The Gaussian-Explicit distribution is the
explicit calculation of the Gaussian function from the Python (interpreter)
level. The exponential is calculated using nest.math.exp. For the circular
distribution, a constant probability is used in making all connections. The
Gaussian-Tabulated function is calculated using a lookup table. This lookup
table function was implemented during this thesis in order to reduce the total
amount of exponential calls made. Listing 2 shows how the exponentials are
calculated and added to the exponential table. Listing 3 shows the lookup

2.4 Balanced random networks 19

Non-spatial Spatial

Fixed IndegreePairwise Bernoulli Pairwise Bernoulli

Fixed Gaussian Gaussian Explicit Gaussian Tabulated Circular

Spatial
Dependence

Connection
Rule

Probability
Function

Figure 2.5: Overview of the network types. The networks are divided by their spatial
dependence, then the connection rules which they have, and finally the probability function
(except for fixed indegree which has no probability function).

process using linear interpolation. Figure 2.6 show the masks for fixed and
Gaussian probabilities.

For the non-spatial networks, two types of connection rules are used to make
the connections depending on the type of network. They are fixed indegree and
pair wise Bernoulli. These are setup in the rule parameter using the entries:

• fixed_indegree,

• pairwise_bernoulli.

The "fixed indegree" network, named after its connection rule; and the
"nonspatial fixed" network, named such because it has a pairwise Bernoulli
connection with a fixed probability value of 0.11511. In fixed indegree, the
source nodes are randomly connected with the target nodes such that each of
the target node has a connection to a fixed number of source nodes. The fixed
indegree network has an indegree value of 9990. The values of their proba-
bilities (and indegree) were gotten after comparing the number of connections
generated by each network to that of the Gaussian network — which is our
reference network. Table 2.2 shows the ratio of the number of connections
formed by every network compared to that formed by the Gaussian network.
After the simulator receives these commands it iterates over source and target
neurons, creates pairs based on the probability value (or indegree) and con-
nects the pairs. Figure 2.5 give an overview of connectivity and probability
functions of the networks.

20 Materials and Methods

Figure 2.6: Illustration of circular and Gaussian connection probabilities (source: NEST
documentation). Top left has constant probability of 0.5. Top right: Distance dependent
Gaussian probability, green distribution show variance.

In pairwise Bernoulli, a connection is made between every possible pair of
source and target nodes with a user defined probability value, p. For connec-
tions in the pairwise Bernoulli, we limit the source nodes to a fraction of the
total nodes by an area with a radius of 0.5. That is,

nsource = npopulation × π × r2 . (2.6)

Here nsource is the number of neurons which will be selected as the source
neurons, npopulation is the population whose nodes are being selected. This is
either a population of excitatory or inhibitory nodes, and r is the radius of the
source layer/mask. This is important because in weak scaling the population is
multiplied by the number of nodes in order to increase the size of the problem as
the number of compute nodes increase. This means the number of connections
formed will also grow very rapidly. Thus, during weak scaling the growth of
the number of connections is curbed. Connections are made with a Connect()
call. Listing Every network is comparable as the number of connections as
a ratio to the reference network, the spatial Gaussian network, has a value
of approximately 1.0 to the nearest 4 decimal places. Figure 2.5 shows an
overview of all the networks used in the thesis by the spatial dependence and
connection rules/probability distribution.

Afterwards, Prepare() is called to calibrate nest before calling the function
which simulates the network for t milliseconds, Run(). The simulation time
is set to t = 100.0ms. Finally Cleanup() is called to close files and cleanup
handles. The memory and time taken during the initialization stage, network
creation stage, connection stage and simulation stage are recorded and written
to a file. The initialization stage is the stage where the kernel is reset and

2.5 Benchmark Protocol 21

1 for (size_t i = 0; i < size_t(std::ceil(table_max_/table_step_ + 0.5));
2 i++){
3 const auto dx_table = table_step_ * i;
4 table_values_.push_back(std::exp(
5 -dx_table * dx_table * inv_two_std2_));
6 }

Listing 2: Exponential calculation . The function loops through for
table_max/table_step times and inserts the exponentials. The table_max and
table_step are provided by the user during the network connection creation phase.

initialized with some simulation parameters. The creation stage is where the
nodes (neurons and Poisson generators) are created. The connection stage
begins with creation of edges (synapses) between neurons and stops after the
Prepare() command which is called when the Poisson generators and neurons
have been connected. The simulation stage is where the call to Run() and
Cleanup() occurs. Tables 2.3, 2.4 and 2.5 provide an overview of the balanced
random network used in this thesis.

2.5 Benchmark Protocol

In this section we discuss how the benchmarks are obtained. Thus far in this
chapter, we have presented the different materials used in this thesis. At a
high level, we obtain the quantitative results obtained here by constructing
and simulating the various network models (Section 2.4) with specifications in
Tables 2.3, 2.4 and 2.5 on a supercomputer with specifications in Table 2.1. To
attain this, we create a variant of the balanced random network (Brunel 2000)
in NEST (Spreizer et al. 2022). The network is created at the Interpreter level
with a leaky integrate-and-fire (LIF) neuron model (Lapique 1907) as the base
neuron model, and a non-plastic synapse model as the base synapse model.
The neuronal parameters are set as defined in Table 2.5.

NEST’s kernel is reset and set up with some simulation parameters before
creating the network. These parameters are the local number of threads per
MPI process, resolution of the simulation, and the seeds to use for reproducibil-
ity. We use two seeds in this thesis. One seed is used for running simulations
multiple times, and the other seed is used for verification should we get any
non-conforming results (i.e., results which do not conform to scalability theo-
ries or other relevant theories). The network is afterwards initialized by creat-
ing the excitatory and inhibitory populations using one Create() command for
each population. The neuronal parameters are passed into this command also.
A position parameter is also passed for the spatial networks. This position

22 Materials and Methods

1 const auto dx = p_->value(rng, source_pos,
2 target_pos, layer, node) - mean_;
3 size_t left = std::floor(dx / table_step_);
4 size_t right = std::ceil(dx / table_step_);
5

6 double relative_position_in_interval = (
7 dx - left * table_step_) / table_step_;
8 double interpolated_value = table_values_.at(left) + (
9 table_values_.at(right)-table_values_.at(left)) *

10 relative_position_in_interval;
11

12 return interpolated_value;

Listing 3: Lookup function . The function performs a linear interpolation and
estimates the nearest exponential.

parameter has a free layer so the nodes’ positions are not restricted to a grid.
It is also set up with a periodic boundary condition giving it a torus shape
such that rightmost and topmost elements have the leftmost and bottommost
elements respectively as their nearest neighbors, effectively reducing the effect
of boundaries on simulations. This is specified using the entry edge_wrap.

External input from a Poisson generator is also created with a rate

rate =
1000.0× eta× Vth × Cm

Jex × C2
E × exp 1× τm × τsyn

. (2.7)

Where rate is the mean firing rate, eta is the external rate relative to thresh-
old rate, Vth is the threshold potential of the neuron, Cm is the membrane
capacitance, Jex is the amplitude, calculated by J

Junit
. J is the post synaptic

amplitude, Junit is the normalized postsynaptic current calculated for one unit
of amplitude. CE is the max indegree of the excitatory nodes, the rest of the
parameters are as specified in Table 2.5. Afterwards, recurrent connections
among the neurons are established. The excitatory and inhibitory synapses
are setup as static synapse models with fixed weights Jex and Jin = −g ∗ Jex
(g is the ratio of inhibitory to excitatory weights) for excitatory and inhibitory
synapses respectively, and a delay of 1.5. After setting up the synapses, the
Poisson generators are connected to the populations. The final phase is the
creation of connections between the neurons using the synapses.

All of the aforementioned steps are collectively part of the benchmarking
work done in this thesis. Collation of all the performance data is also done
afterwards; these two processes constituting the benchmarking done in this
thesis. beNNch is used to run the benchmarks using a number of YAML scripts
to pass the simulation of the network into the JUSUF supercomputer. The

2.5 Benchmark Protocol 23

1 p_fixed = 0.11511
2 indeg = 9990
3 excit_ratio = 0.8 # 0.8 for excitatory, 0.2 for inhibitory
4 # INDEGREE
5 conn_rule = {'rule': 'fixed_indegree',
6 'indegree': int(excit_ratio * indeg),
7 'allow_autapses': True
8 }
9 # FIXED PROBABILITY

10 conn_rule = {'rule': 'pairwise_bernoulli',
11 'p': probability,
12 'allow_autapses': True
13 }

Listing 4: Non-spatial network connection . Snippet of code used to make connec-
tion rules in the non-spatial networks.

simulations are run 5 times with the same seed to check the variability of the
data. A number of different hardware configurations and the networks are pro-
vided to beNNch in one of the scripts. beNNch uses JUBE for job management.
Our output is converted to a number of comma separated value (CSV) files for
analysis. From the analysis, a number of plots were generated to provide visual
aid. The reference model is also run on Vtune to get performance information.
The analysis of the benchmarks are discussed in detail in Chapter 3.

24 Materials and Methods

N
um

be
r

of
M

P
I

P
ro

ce
ss

es

G
au

ss
ia

n
vs

G
au

ss
ia

n

G
au

ss
ia

n
vs

G
au

ss
ia

n
E

xp
lic

it

G
au

ss
ia

n
vs

C
ir

cu
la

r

G
au

ss
ia

n
vs

G
au

ss
ia

n
Ta

bu
la

te
d

G
au

ss
ia

n
vs

F
ix

ed
In

de
gr

ee
G

au
ss

ia
n

vs
F
ix

ed
B

er
no

ul
li

G
au

ss
ia

n
vs

G
au

ss
ia

n
N

E
ST

3.
1

1
1.

0
1.

0
0.

99
99

69
1.

00
04

16
1.

00
00

21
0.

99
99

58
0.

99
99

82
2

1.
0

1.
0

1.
00

00
06

1.
00

04
16

1.
00

00
39

0.
99

99
96

1.
00

00
43

4
1.

0
1.

0
0.

99
99

85
1.

00
04

16
1.

00
00

13
0.

99
99

78
0.

99
99

99
8

1.
0

1.
0

1.
00

00
01

1.
00

04
16

1.
00

00
06

0.
99

99
74

0.
99

99
86

16
1.

0
1.

0
1.

00
00

05
1.

00
04

16
1.

00
00

02
0.

99
99

74
0.

99
99

80
32

1.
0

1.
0

1.
00

00
09

1.
00

04
16

0.
99

99
98

0.
99

99
73

0.
99

99
94

64
1.

0
1.

0
1.

00
00

16
1.

00
04

16
1.

00
00

06
0.

99
99

82
1.

00
00

12

Table 2.2: Ratio of number of connections formed for all networks to Gaussian network

2.5 Benchmark Protocol 25

A Model Summary
Populations Three: excitatory, inhibitory, external input

Topology Spatial (periodic boundary condition);
Non-spatial

Connectivity Pairwise Bernoulli;
Fixed Indegree

Neuron model Leaky integrate-and-fire, fixed voltage threshold, fixed ab-
solute refractory time (voltage clamp)

Synapse model Static synapse

B Populations
Name Elements Size
E Iaf neuron NE = 4NI

I Iaf neuron NI

Eext Poisson generator CE(NE +NI)

C1 Connectivity - Fixed Indegree
Indegree (non-spatial) = 9990
Name Source Target Pattern
EE E E random independent connections, fixed indegree

CE, weight Jex, uniformly distributed delay values
IE E I random independent connections, fixed indegree

CE, weight Jex, uniformly distributed delay values
EI I E random independent connections, fixed indegree

rule, weight Jin, uniformly distributed delay values
II I I random independent connections, fixed indegree

rule, weight Jin, uniformly distributed delay values
Ext Eext E ∪ I Non-overlapping CE → 1, weight Jex, delay D

Table 2.3: Description of balanced random network model following the guidelines of
(Nordlie et al. 2009). Distinction between spatial and non-spatial networks. A gives the
entire summary of the model, here, the two types of topologies are shown as well as the
two types of connectivities. B gives a summary of the populations of nodes. C1 gives the
connectivity patterns for the non spatial fixed indegree connections.

26 Materials and Methods

C2 Connectivity - Pairwise Bernoulli
Gaussian-shaped Fixed

p(x) = e−
(x−mean)2

2std2
Circular mask (spatial), p(x) = 0.15655

Fixed (non-spatial), p(x) = 0.11511

Name Source Target Pattern
EE E E random independent connections,

pairwise bernoulli rule, weight
Jex, uniformly distributed delay
values

IE E I random independent connections,
pairwise bernoulli rule, weight
Jex, uniformly distributed delay
values

EI I E random independent connections,
pairwise bernoulli rule, weight
Jin, uniformly distributed delay
values

II I I random independent connections,
pairwise bernoulli rule, weight
Jin, uniformly distributed delay
values

Ext Eext E ∪ I Non-overlapping CE → 1, weight
Jex, delay D

D Neuron and Synapse Model
Name Iaf neuron
Type Leaky integrate-and-fire, δ-current input

Sub-
threshold
dynamics

τ V̇ (t) = −V (t) +RI(t) if t > t∗ + τrp

V (t) = Vr else

I(t) = τ
R

∑
t̃wδ(t− (t̃+∆))

Spiking
If V (t−) < θ ∧ V (t+) ≥ θ

• emit spike

Table 2.4: Continuation of Table 2.3. C2 gives the connectivity patterns for networks
based on Pairwise Bernoulli connections. Both spatial dependent and non-spatial dependent
networks connect this way. For the Gaussian shaped distributions, only the spatial networks
are implemented with that shape. The probability function is given. For fixed on the other
hand, there is one spatial network which has a fixed probability with a circular mask. The
non spatial one is also given. D summarizes the neuron and synapse model.

2.5 Benchmark Protocol 27

E Input
Type Description
Poisson generators Fixed rate νext, CE generators per neuron, each generator

projects to one neuron

F Parameters
Name Value Description
NE 65000 Number of excitatory neurons
NI 16250 Number of inhibitory neurons
CE(max) 6500 Max number of incoming excitatory neurons
CI(max) 1500 Max number of incoming inhibitory neurons
Vm 0.0mV Membrane potential average
EL 0.0mV Reset membrane potential of the neurons
Vth 20.0mV Threshold potential of the neurons
Vreset 0.0mV Membrane potential after a spike
Cm 250.0pF Membrane capacitance
τm 20.0ms Membrane time constant
τsyn 0.5ms Time constant of postsynaptic currents
τref 2.0ms Refractory period of the neurons after a spike

Table 2.5: Continuation of Table 2.4. E Shows the input from the Poisson generators. F
Gives some of the important neuronal parameters used in the networks.

Chapter 3

Results

In this chapter, we present the results of our simulation experiments, as well
as the findings from the analysis of the scaling performance of the different
neuronal networks used. For this study, we use the Circular network model
implemented in the newest version of NEST, version 3.3 (as at the time of
writing this thesis), as the reference model for the spatial networks. We use
the Connecting time in seconds as the metric for measuring the performance
of the model. The connecting time is the wall time of a given simulation.
The number of MPI processes is the compute resource used in the scaling
experiments. Each of the different simulations have been run on different
thread combinations.

3.1 Cross-version verification

In order to verify our results are consistent across other stable NEST versions
and have similar behavior for the same network of similar connection sizes,
we compare the simulation of one network in 2 different NEST versions. We
chose to compare the weak-scaling experiments of the Gaussian model imple-
mented in the latest NEST version 3.3 with the simulation of the same model
implemented in NEST version 3.1. As NEST 3.3 has the some backward com-
patibility, it was just a few changes that were needed to be made to make the
same networks simulate on both versions of NEST. Since we use the beNNch
framework for benchmarking, the simulation results format should not be very
different.

The result of the comparison is shown in Figure 3.1. We observe that
both networks have very similar wall times in this experiment. There is an
obvious improvement in performance in NEST 3.3 most probably owing to the
improvements in parallel network construction time if large numbers of devices
are present due to accelerated node lookups1 which has been shown to reduce

1https://github.com/nest/nest-simulator/pull/2290

https://github.com/nest/nest-simulator/pull/2290

30 Results

1 2 4 8 16 32 64
Number of MPI Processes

20

40

60

80

100

120

140

160

C
on

ne
ct

in
g

tim
e

[s
]

Threads per Task

8

32

128

Version

version 3.3

version 3.1

Figure 3.1: Weak scaling of the Gaussian networks for NEST versions 3.3 and 3.1. The
wall time taken to construct connection between the neurons on different combinations of
compute nodes (MPI processes) for different number of threads used per task is shown in
the figure. The wall time for connection in seconds is shown on the vertical y axis while
the number of compute nodes used per experiment is shown on the horizontal axis. In the
plots, the different lines are the results for running the simulation on different compute nodes
using different threads per task. The colors and solidness of the lines shown in the legend
correspond to the threads per task. The dashed lines show the weak scaling of the simulation
of the Gaussian network on NESTv3.1, while the solid lines show the weak scaling of the
simulation of the Gaussian network on NESTv3.3.

network construction time by a factor up to 20 in some specific models (Spreizer
et al. 2022). It can be seen that for smaller threads per tasks, the weak scaling
performance is relatively close to the ideal performance. From larger threads
the performance starts to deviate away from the ideal performance. Up to
16 MPI processes, the two benchmarks can be said to exhibit similar scaled
speedup. This result suggests that the simulation of our reference network on
NEST is veracious.

3.2 Weak scaling performance for non-spatial net-
works

In this section we assess the weak-scaling performance of the non-spatial net-
works simulated on NEST v3.3. The minimum connection time for connec-

3.2 Weak scaling performance for non-spatial networks 31

1 2 4 8 16 32 64
Number of MPI Processes

20

30

40

50

C
on

ne
ct

in
g

tim
e

[s
]

Threads per Task

8

32

128

Connection Rule

'Pairwise'

'Indegree'

Figure 3.2: Weak scaling of the Non spatial networks for Indegree and Bernoulli pairwise
connection rules. The solid lines indicate the performance of the Pairwise nonspatial net-
work, while the dashed line represents that of the Indegree. The various numbers of threads
used are represented by the colors in the legend.

tion construction of the scaled various networks after five runs is studied. The
networks are scaled by the MPI process as described in the Methods. In Fig-
ure 3.2, we can see the performance of the non-spatial network with indegree
connection rules against that of the pairwise-Bernoulli rule. The plot shows
that the scaling experiments have a more constant time. The constant time
implies that the weak scaling of an experiment is close to ideal. In the case
of the indegree network, it performs better than the pairwise network for the
same number of threads. Since the number of connections formed has been
verified; this implies that the time it takes the NEST simulator to create a con-
nection with a pairwise Bernoulli rule is significantly greater than one where
the number of incoming connections per target neuron is already set. This
performance difference is expected as in the Pairwise Bernoulli networks, an
iteration across all the nodes is required before forming connections since it
is not known beforehand how many connections will be made, and whether
connections will be made. As it is a fixed probability, the obvious reason for
the difference in the performance across both networks will be the iteration.

In the Bernoulli pairwise network, the lower the number of threads, the
more time it takes. Meanwhile, for the indegree case, the lower the number of
threads, it is not clear. As can be seen, the case of the 128 threads take more

32 Results

1 2 4 8 16 32 64
Number of MPI Processes

12

14

16

18

20

22

24

26

28

C
on

ne
ct

in
g

tim
e

[s
]

Threads per Task

8

16

32

64

128

Figure 3.3: Weak scaling of the Indegree network. The various numbers of threads used
are represented by the colors in the legend.

time than that of the 32 threads. To properly verify this, we check Figure
3.3. Here, you can see that from 8 threads up to 32 threads, the time reduces
significantly as is to be expected. From 64 and including 128 however, the time
climbs back up, performing worse than the 32 threads per task. This suggests
that around 32 threads is the optimal number of threads for connecting with
indegree connection rules. It is interesting that the wall time difference between
64 and 128 threads is almost indistinguishable. This will most likely signify
that with additional threads above 32, the performance reduces and adding
even more threads will not cause any significant change in the performance.
From 32 MPI processes to 64 MPI processes, a slight deviation from the ideal
scaled speedup begins to happen, and is expected to continue for larger MPI
processes beyond 64 MPI processes. This would mean that increasing MPI
processes beyond 64 nodes would not offer the same ideal parallelism as with
smaller MPI processes.

3.3 Weak scaling performance for spatial net-
works

In this section, we discuss the performance of the spatial networks used in this
paper. We start by examining our reference model, the Circular model, and

3.3 Weak scaling performance for spatial networks 33

1 2 4 8 16 32 64
Number of MPI Processes

20

30

40

50

60

70

C
on

ne
ct

in
g

tim
e

[s
]

Threads per Task

8

16

32

64

128

Figure 3.4: Weak scaling of the Circular network. The various numbers of threads used are
represented by the colors in the legend. The blue arrows represent the standard deviation
across various runs.

then compare this model to a Gaussian model. Like the nonspatial case, the
models discussed here are simulated on NEST v3.3. The minimum connection
time for connection construction of the scaled various networks after five runs
is studied. The Gaussian network model, as indicated in Chapter 2, is our
reference network model. Figure 3.4 shows that performance of this network
is not as good as the Indegree network, both in connecting time and in weak
scaling speedup. Here, you can see that there is a huge performance increase
for 2 MPI processes from 8 threads to 32 threads. The reason for this perfor-
mance increase is unknown. We verified if this was the case using 3 different
seeds but got the same performance increase at the same points. This strange
performance was investigated further by checking the hardware setup at that
point, and the simulation metadata. Nothing signified any anomalies in the
hardware system. The same pattern is noted across all spatial networks used
in this paper. The deviations represented by the blue arrows show that the 5
runs are similar in their connecting times.

Comparing the Circular network to the simplest Gaussian network as can
be seen in Figure 3.5, the Circular network has significantly lower connection
creation times than the Gaussian network model. For the 8 threads down
to the 128 threads, there is a significant reduction in the difference in their
connecting times. For 128 threads, they are both around 20 seconds. Aside

34 Results

1 2 4 8 16 32 64
Number of MPI Processes

20

40

60

80

100

120

C
on

ne
ct

in
g

tim
e

[s
]

Threads per Task

8

32

128

Connection Type

'Circular'

'Gaussian'

Figure 3.5: Weak scaling of the spatial networks for Gaussian and Circular network models.
The solid lines indicate the performance of the Circular network, while the dashed line
represents for that of the Gaussian. The various numbers of threads used are represented
by the colors in the legend.

from the connecting time changes around where it is 2 MPI processes, the
increase in number of MPI processes is roughly constant. With larger threads,
it is less constant, and starts to rise slightly. This shows that the performance
increase with respect to weak scaling by increasing the number of threads gets
lower and lower, signifying that the network is not utilizing the threads as
efficiently as with less.

The reason as to why the non-spatial Bernoulli network has a significantly
better connecting time than the circular network despite them both having
fixed probabilities and having the same pairwise Bernoulli rule points to the
complexity of spatial versus non-spatial connection creation. For the Circular
network, connections are made depending on the relative positions of source
and target neurons with a fixed probability using a circular mask. For the
difference in connecting time between the Circular network and the Gaus-
sian network, it points to the implementation of the more complex Gaussian

equation, p(x) = e−
(x−mean)2

2std2 , in the simulator. In the Gaussian not all nodes
are connected, typically, a reduced chance of connection the farther away the
node is. The computation of the exponential is usually very expensive when
performed several thousand times.

3.3 Weak scaling performance for spatial networks 35

1 2 4 8 16 32 64
Number of MPI Processes

20

40

60

80

100

120

140

160

C
on

ne
ct

in
g

tim
e

[s
]

Threads per Task

8

32

128

Connection Type

'Gaussian'

'Gaussian_Tab'

'Gaussian_Ex'

Figure 3.6: Weak scaling of the spatial networks for Gaussian, Gaussian Explicit, and
Gaussian Tabulated network models. The solid lines indicate the performance of the Gaus-
sian network, the dotted lines represent the Gaussian Explicit network, while the dashed
line represents for that of the Gaussian Tabulated. The various numbers of threads used are
represented by the colors in the legend.

3.3.1 Spatial Gaussian network model analysis

To verify the performance of NEST in computing the Gaussian exponential
function, we compare three different Gaussian based networks:

• A Gaussian network with a probability distribution provided by:
- nest.spatial_distribution.gaussian();

• a Gaussian Explicit network with its probability distribution explicitly
defined by:
- nest.math.exp(-0.5 * (nest.spatial.distance/std)**2).
nest.math.exp is how you explicitly call NEST’s exponential formula.
The rest of the code is as in the Gaussian equation;

• a Gaussian Tabulated network with the call:
- nest.spatial_distribution.gaussian_tab();

The Gaussian Tabulated network probability function was added during
the course of writing this thesis. The steps taken and code listings are de-
scribed in Chapter 2 in Listing 3. This function was implemented in NEST

36 Results

v3.3 revision 7788ee. Figure 3.6 show the comparison of the performance of
these networks in the weak scaling experiment. The Gaussian Explicit network
consumed the most time in connecting. The Gaussian and Gaussian Tabulated
networks consume roughly similar connecting time with the Gaussian Tabu-
lated network edging the Gaussian network by a few seconds as can be seen
in the figure. With increased numbers of threads, this difference becomes less
prominent until they almost even out at 128 threads per task. The scaling
patterns across all Gaussian networks are largely similar. The reason why the
Gaussian explicit takes significantly more time to create connections is largely
because the explicit function is done at the Python level as opposed to the
other networks where their explicit functions are done at NEST’s C++ kernel
level.

3.4 Strong scaling performance overview

This section describes the result of the strong scaling experiment of some of
the networks. In here, the metric used to measure performance is the scaled
connecting time. This was gotten by multiplying the final result of the con-
necting time after simulation by the number of MPI processes. This way, the
scaled connecting time would be expected to have constant time during scaling
across MPI processes. The result will also be comparable with the weak scaling
result. Figure 3.7 show the illustration of the comparisons between the strong
scaling of the Gaussian, Circular and Indegree networks. The Indegree network
exhibits very close to constant time strong scaling, meaning it follows the ideal
pattern for good strong scaling. The circular network on the other hand isn’t
a very straight line. For 2 MPI processes, there is the same sudden reduction
of connecting time as seen in its weak scaling for 8 and 32 threads. For 4
MPI processes, like in weak scaling, there is also a sharp increase in (scaled)
connecting time from around 60 seconds to around 85 seconds in the case of
8 threads. This same pattern is also seen for 32 threads. With 8 threads,
scaling from 1 MPI process to 64 processes, there is a gradual reduction in
scaled connection time. For 32 and 128 threads per tasks, going from 1 MPI
process to 64 MPI process, there is a gradual increase from around 19 and 30
seconds to about 80 and 50 seconds respectively. This same pattern noticed
in the Circular occurs in the Gaussian network as well.

The poor strong scaling in the spatial networks across the bigger number
of threads show that for a fixed sized spatial networking, adding resources in
terms of threads and MPI processes does not improve the scalability, rather,
it causes more overhead to the system. In terms of scaled connecting times
along the number of threads. The scaled connecting time of the Gaussian
and Circular is just as it was in ranking as with that of the weak scaling
results. The indegree network, as in weak scaling, performed in the shortest

3.4 Strong scaling performance overview 37

1 2 4 8 16 32 64
Number of MPI Processes

20

40

60

80

100

120

Sc
al

ed
 C

on
ne

ct
in

g
Ti

m
e

[s
]

Threads per Task

8

32

128

Connection Type

Gaussian

Circular

Indegree

Figure 3.7: Strong scaling of Gaussian, Circular, and Indegree network models. The
solid lines indicate the performance of the Gaussian network, the dotted lines represent the
Indegree network, while the dashed line represents for that of the Circular network. The
various numbers of threads used are represented by the colors in the legend.

connection times across all networks. Figure 3.8 shows that although the
connection times for every thread per task is roughly similar, the weak scaling
experiment performs better. The same pattern with an increase in connection
time with any increase from 32 threads, repeat here.

38 Results

1 2 4 8 16 32 64
Number of MPI Processes

12

14

16

18

20

22

24

26

28

(s
ca

le
d)

 C
on

ne
ct

in
g

Ti
m

e
[s

]

Threads per Task

8

16

32

64

128

Connection Type

Strong Indegree

Weak Indegree

Figure 3.8: Strong and weak scaling of the Indegree network model. The solid lines indicate
the strong scaling performance of the non-spatial Indegree network while the dashed lines
represent that of the weak scaling. The various numbers of threads used are represented by
the colors in the legend.

Chapter 4

Discussion

We have presented our findings from the weak and strong scale experiments
of different networks. In this chapter, we provide reasons as to why some of
the results presented in Chapter 3 are the way they are. Some more plots
providing further insights into the performance of some of these networks are
provided. We also discuss our findings from the VTune profiling performed.
We focused on connection creation phase in this paper, therefore, we tried to
keep all of the network dynamics as simple as possible while also capturing
the following properties: the spatial dependence and the probability function.
These different properties hugely alter the connection rules in networks. For
spatial dependence, it brings a new dimension of distance to the source node
(depending on connection rule), as well as the representation in the simulation.
In the probability function, it affects how much time the simulator takes when
making connections.

In the Indegree connection as seen in the results presented in the previous
chapter, due to the fact that the number of connections each source neuron will
form with the target neurons is already known, the simulator does not have
to go through every possible target neuron. Since NEST provides a shuffled
index of all the neurons, it simply selects to the amount of connections it is
supposed to make and then the next source neuron does the same till every
connection is made. In the case of the pairwise Bernoulli non spatial network,
it can be seen that the connection time is higher than the fixed indegree (shown
in Figure 4.1). This ranking is based on the fastest to the slowest networks to
connect. This is owing to the fact that it has to check every node along the
target population before making connections with a fixed probability.

For the spatial networks, they all take more to create connections than
the non spatial networks. An inspection using Intel VTune Profiler suggested
that a huge chunk of time taken for the connection construction occurs dur-
ing searching/ sorting. One possible way to improve on this will be finding a
different representation of the source and target population in the simulator.
This difference is to be expected however. One point of interest we noticed

40 Discussion

during this project was that in the connection times for 2 MPI processes, there
was a sudden dip across most of the threads per task. The reason behind this
phenomenon was not obtained despite using different seeds and inspecting the
hardware configuration and metadata during the simulations. The subtrac-
tions between closely ranked networks suggest that as we go towards using
more threads, the performance loss between the different closely ranking net-
works move towards zero. This can be seen in Figure 4.2.

The Gaussian Tabulated network which was implemented in this paper
shows that there is a slight improvement when using a table of values to in-
terpolate the exponential values. The difference in performance is still some
ways away from the circular network. This can be improved however, working
on different step values to find if it is worth including into a stable NEST ver-
sion in the future. In Figure 4.3, we make a plot of virtual processes against
connection time. The virtual processes is gotten from multiplying the MPI
processes with the number of threads. This provides a good overview of the
speed up achieved with different MPI processes. We can clearly see that the
speed up shows that for the non-spatial, there is very little overhead with re-
spect to resources as against the spatial one which has somewhat higher over
head both for number of MPI processes and number of threads. It must be
noted this overhead increases when the virtual processes increase. There is
therefore good gain in speed up, but adding more resources past around 250
virtual processes will not improve the speedup, but will eventually cause a
reduction in the performance.

41

2040608010
0

12
0

14
0

16
0

wall_time_connect_min

1
2

4
8

16
32

64
nu

m
_n

od
es

1
2

4
8

16
32

64
nu

m
_n

od
es

2040608010
0

12
0

14
0

16
0

wall_time_connect_min

1
2

4
8

16
32

64
nu

m
_n

od
es

na
m

e
Sp

at
ia

l_
G

au
ss

ia
n

Sp
at

ia
l_

G
au

ss
ia

n_
Ex

pl
ic

it
Sp

at
ia

l_
C

irc
ul

ar
Sp

at
ia

l_
G

au
ss

ia
n_

Ta
bu

la
te

d
N

on
sp

at
ia

l_
In

de
gr

ee
N

on
sp

at
ia

l_
Pa

irw
is

e_
Be

rn
ou

lli

Figure 4.1: Ranking of all network models by the connection time. Starting from top left
to bottom right, we have results for 8, 16, 32, 64 and 128 threads per task.

42 Discussion

0102030405060 wall_time_connect_min_diff

1
2

4
8

16
32

64
nu

m
_n

od
es

1
2

4
8

16
32

64
nu

m
_n

od
es

0102030405060 wall_time_connect_min_diff

1
2

4
8

16
32

64
nu

m
_n

od
es

na
m

e
N

on
sp

at
ia

l_
Pa

irw
is

e_
Be

rn
ou

lli
- N

on
sp

at
ia

l_
In

de
gr

ee
Sp

at
ia

l_
C

irc
ul

ar
 -

N
on

sp
at

ia
l_

Pa
irw

is
e_

Be
rn

ou
lli

Sp
at

ia
l_

G
au

ss
ia

n_
Ta

bu
la

te
d

- S
pa

tia
l_

C
irc

ul
ar

Sp
at

ia
l_

G
au

ss
ia

n
- S

pa
tia

l_
G

au
ss

ia
n_

Ta
bu

la
te

d
Sp

at
ia

l_
G

au
ss

ia
n_

Ex
pl

ic
it

- S
pa

tia
l_

G
au

ss
ia

n

Figure 4.2: Differences in the ranking of all network models. Starting from top left to
bottom right, we have results for 8, 16, 32, 64 and 128 threads per task.

43

8
16

32
64

12
8

25
6

51
2

10
24

20
48

40
96

81
92

vi
rtu

al
_p

ro
ce

ss
es

1012141721253036445363769211
1

13
3

16
0

wall_time_connect_min

Sp
at

ia
l_

G
au

ss
ia

n

nu
m

_n
od

es
8 16 32 64 12

8
1 2 4 8 16 32 64

8
16

32
64

12
8

25
6

51
2

10
24

20
48

40
96

81
92

vi
rtu

al
_p

ro
ce

ss
es

1012141721253036445363769211
1

13
3

16
0

wall_time_connect_min

Sp
at

ia
l_

G
au

ss
ia

n_
Ex

pl
ic

it

nu
m

_n
od

es
8 16 32 64 12

8
1 2 4 8 16 32 64

8
16

32
64

12
8

25
6

51
2

10
24

20
48

40
96

81
92

vi
rtu

al
_p

ro
ce

ss
es

1012141721253036445363769211
1

13
3

16
0

wall_time_connect_min

Sp
at

ia
l_

C
irc

ul
ar

nu
m

_n
od

es
8 16 32 64 12

8
1 2 4 8 16 32 64

8
16

32
64

12
8

25
6

51
2

10
24

20
48

40
96

81
92

vi
rtu

al
_p

ro
ce

ss
es

1012141721253036445363769211
1

13
3

16
0

wall_time_connect_min

Sp
at

ia
l_

G
au

ss
ia

n_
Ta

bu
la

te
d

nu
m

_n
od

es
8 16 32 64 12

8
1 2 4 8 16 32 64

8
16

32
64

12
8

25
6

51
2

10
24

20
48

40
96

81
92

vi
rtu

al
_p

ro
ce

ss
es

1012141721253036445363769211
1

13
3

16
0

wall_time_connect_min

N
on

sp
at

ia
l_

In
de

gr
ee

nu
m

_n
od

es
8 16 32 64 12

8
1 2 4 8 16 32 64

8
16

32
64

12
8

25
6

51
2

10
24

20
48

40
96

81
92

vi
rtu

al
_p

ro
ce

ss
es

1012141721253036445363769211
1

13
3

16
0

wall_time_connect_min

N
on

sp
at

ia
l_

Pa
irw

is
e_

Be
rn

ou
lli

nu
m

_n
od

es
8 16 32 64 12

8
1 2 4 8 16 32 64

Figure 4.3: Virtual processes.

44 Discussion

References

Abi Akar, N., B. Cumming, V. Karakasis, A. Küsters, W. Klijn, A. Peyser,
and S. Yates (2019). Arbor—a morphologically-detailed neural network
simulation library for contemporary high-performance computing archi-
tectures. In 2019 27th Euromicro International Conference on Parallel,
Distributed and Network-based Processing (PDP), pp. 274–282. IEEE.

Albers, J., J. Pronold, A. C. Kurth, S. B. Vennemo, K. H. Mood, A. Patro-
nis, D. Terhorst, J. Jordan, S. Kunkel, T. Tetzlaff, M. Diesmann, and
J. Senk (2021). A modular workflow for performance benchmarking of
neuronal network simulations https://arxiv.org/abs/2112.09018.

Amdahl, G. M. (1967). Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, pp. 483–485.

Bauer, P., A. Thorpe, and G. Brunet (2015). The quiet revolution of nu-
merical weather prediction. Nature 525 (7567), 47–55.

Binzegger, T., R. J. Douglas, and K. A. Martin (2004). A quantitative map of
the circuit of cat primary visual cortex. Journal of Neuroscience 24 (39),
8441–8453.

Brunel, N. (2000). Dynamics of sparsely connected networks of excita-
tory and inhibitory spiking neurons. Journal of Computational Neuro-
science 8 (3), 183–208.

Centre, J. S. (2021). JUBE. https://www.fz-juelich.de/ias/jsc/EN/Expertise/
Support/Software/JUBE/_node.html. [Online; accessed 1-January-2021].

Computational and Systems Neuroscience & Theoretical Neuroscience
(2021a). beNNch. https://github.com/INM-6/beNNch https://arxiv.org/
abs/2112.09018.

Computational and Systems Neuroscience & Theoretical Neuroscience
(2021b). Builder. https://github.com/INM-6/Builder https://arxiv.org/
abs/2112.09018.

Davison, A., D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski,
L. Perrinet, and P. Yger (2008). Pynn: a common interface for neuronal
network simulators. Frontiers in Neuroinformatics 2, 11.

https://arxiv.org/abs/2112.09018
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html
https://github.com/INM-6/beNNch
https://arxiv.org/abs/2112.09018
https://arxiv.org/abs/2112.09018
https://github.com/INM-6/Builder
https://arxiv.org/abs/2112.09018
https://arxiv.org/abs/2112.09018

46 REFERENCES

Deepu, R., S. Spreizer, G. Trensch, D. Terhorst, S. B. Vennemo, J. Mitchell,
C. Linssen, H. Mørk, A. Morrison, J. M. Eppler, N. L. Kamiji,
R. de Schepper, I. Kitayama, A. Kurth, A. Morales-Gregorio, P. Na-
gendra Babu, and H. E. Plesser (2021, September). NEST 3.1 https:
//doi.org/10.5281/zenodo.5508805.

Djurfeldt, M. (2012). The connection-set algebra—a novel formalism for
the representation of connectivity structure in neuronal network models.
Neuroinformatics 10 (3), 287–304.

Einevoll, G. T., A. Destexhe, M. Diesmann, S. Grün, V. Jirsa, M. de Kamps,
M. Migliore, T. V. Ness, H. E. Plesser, and F. Schürmann (2019). The
scientific case for brain simulations. Neuron 102 (4), 735–744.

Eppler, J., M. Helias, E. Muller, M. Diesmann, and M.-O. Gewaltig (2009).
PyNEST: a convenient interface to the NEST simulator. Frontiers in
Neuroinformatics 2, 12, https://doi.org/10.3389/neuro.11.012.2008 https:
//www.frontiersin.org/article/10.3389/neuro.11.012.2008.

Gewaltig, M.-O. and M. Diesmann (2007). NEST (neural simulation tool).
Scholarpedia 2 (4), 1430.

Gustafson, J. L. (1988). Reevaluating Amdahl’s law. Communications of the
ACM 31 (5), 532–533.

Gustavsson, A., M. Svensson, F. Jacobi, C. Allgulander, J. Alonso, E. Beghi,
R. Dodel, M. Ekman, C. Faravelli, L. Fratiglioni, et al. (2011). Cost of
disorders of the brain in Europe 2010. European Neuropsychopharmacol-
ogy 21 (10), 718–779.

Halnes, G., S. Augustinaite, P. Heggelund, G. T. Einevoll, and M. Migliore
(2011). A multi-compartment model for interneurons in the dorsal lateral
geniculate nucleus. PLoS Computational Biology 7 (9), e1002160.

Hodgkin, A. L. and A. F. Huxley (1952). A quantitative description of mem-
brane current and its application to conduction and excitation in nerve.
The Journal of Physiology 117 (4), 500–544.

Ippen, T., J. M. Eppler, H. E. Plesser, and M. Diesmann (2017). Con-
structing neuronal network models in massively parallel environments.
Frontiers in Neuroinformatics 11, 30, https://doi.org/10.3389/fninf.2017.
00030.

Jordan, J., T. Ippen, M. Helias, I. Kitayama, M. Sato, J. Igarashi, M. Dies-
mann, and S. Kunkel (2018, feb). Extremely scalable spiking neuronal
network simulation code: From laptops to exascale computers. Frontiers
in Neuroinformatics 12, 2, https://doi.org/10.3389/fninf.2018.00002.

Kumbhar, P., M. Hines, J. Fouriaux, A. Ovcharenko, J. King, F. Delalondre,
and F. Schürmann (2019). CoreNEURON: an optimized compute engine
for the NEURON simulator.

https://doi.org/10.5281/zenodo.5508805
https://doi.org/10.5281/zenodo.5508805
https://doi.org/10.3389/neuro.11.012.2008
https://www.frontiersin.org/article/10.3389/neuro.11.012.2008
https://www.frontiersin.org/article/10.3389/neuro.11.012.2008
https://doi.org/10.3389/fninf.2017.00030
https://doi.org/10.3389/fninf.2017.00030
https://doi.org/10.3389/fninf.2018.00002

REFERENCES 47

Kunkel, S., T. C. Potjans, J. M. Eppler, H. E. E. Plesser, A. Morrison,
and M. Diesmann (2012). Meeting the memory challenges of brain-scale
network simulation. Frontiers in Neuroinformatics 5, 35.

Kunkel, S., M. Schmidt, J. M. Eppler, H. E. Plesser, G. Masumoto,
J. Igarashi, S. Ishii, T. Fukai, A. Morrison, M. Diesmann, et al. (2014).
Spiking network simulation code for petascale computers. Frontiers in
Neuroinformatics 8, 78.

Lapique, L. (1907). Recherches quantitatives sur l’excitation electrique
des nerfs traitee comme une polarization. Journal of Physiology and
Pathololgy 9, 620–635.

Li, X. (2018). Scalability: strong and weak scaling. https://www.kth.
se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/. [Online; ac-
cessed 2-June-2022].

LLC., S. (2019). Slurm Workload Manager . https://slurm.schedmd.com/.
[Online; accessed 2-June-2022].

Markram, H. (2013). Seven challenges for neuroscience. Functional Neurol-
ogy 28, 145–151.

McCormick, D. A. and J. R. Huguenard (1992). A model of the electrophys-
iological properties of thalamocortical relay neurons. Journal of Neuro-
physiology 68 (4), 1384–1400.

Message Passing Interface Forum (2021). MPI: A Message-Passing Interface
Standard. https://www.mpi-forum.org/docs/. [Online; accessed 2-June-
2022].

Migliore, M., E. Cook, D. Jaffe, D. Turner, and D. Johnston (1995). Com-
puter simulations of morphologically reconstructed ca3 hippocampal
neurons. Journal of Neurophysiology 73 (3), 1157–1168.

Morrison, A., C. Mehring, T. Geisel, A. Aertsen, and M. Diesmann (2005).
Advancing the boundaries of high-connectivity network simulation with
distributed computing. Neural Computation 17 (8), 1776–1801.

National Research Council (1989). Opportunities in Biology. Washington,
DC: The National Academies Press https://nap.nationalacademies.org/
catalog/742/opportunities-in-biology.

Nordlie, E., M.-O. Gewaltig, and H. E. Plesser (2009). Towards repro-
ducible descriptions of neuronal network models. PLoS Computational
biology 5 (8), e1000456.

OpenMP Architecture Review Board (2008). OpenMP Application Pro-
gram Interface. http://www.openmp.org/mp-documents/spec30.pdf. [On-
line; accessed 2-June-2022].

https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/
https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/
https://slurm.schedmd.com/
https://www.mpi-forum.org/docs/
https://nap.nationalacademies.org/catalog/742/opportunities-in-biology
https://nap.nationalacademies.org/catalog/742/opportunities-in-biology
http://www.openmp.org/mp-documents/spec30.pdf

48 REFERENCES

Plesser, H. E., J. M. Eppler, A. Morrison, M. Diesmann, and M.-O.
Gewaltig (2007). Efficient parallel simulation of large-scale neuronal net-
works on clusters of multiprocessor computers. In A.-M. Kermarrec,
L. Bougé, and T. Priol (Eds.), European conference on parallel process-
ing, Berlin, Heidelberg, pp. 672–681. Springer https://doi.org/10.1007/
978-3-540-74466-5_71.

Potjans, T. C. and M. Diesmann (2014). The cell-type specific cortical mi-
crocircuit: relating structure and activity in a full-scale spiking network
model. Cerebral Cortex 24 (3), 785–806.

RedHat OpenStack Platform (2021). RedHat OpenStack Platform. https:
//www.redhat.com/de/technologies/linux-platforms/openstack-platform.
[Online; accessed 2-June-2022].

Senk, J., B. Kriener, M. Djurfeldt, N. Voges, H.-J. Jiang, L. Schüt-
tler, G. Gramelsberger, M. Diesmann, H. E. Plesser, and S. J. van
Albada (2021). Connectivity concepts in neuronal network modeling
https://arxiv.org/abs/2110.02883.

Smith, J. M. (1952). The importance of the nervous system in the evolution
of animal flight. Evolution 6 (1), 127–129.

Society for Neuroscience (2018). Brain facts: A primer on the brain and
nervous system https://www.brainfacts.org/.

Spreizer, S., J. Mitchell, J. Jordan, W. Wybo, A. Kurth, S. B. Vennemo,
J. Pronold, G. Trensch, M. A. Benelhedi, D. Terhorst, J. M. Eppler,
H. Mørk, C. Linssen, J. Senk, M. Lober, A. Morrison, S. Graber,
S. Kunkel, R. Gutzen, and H. E. Plesser (2022, March). NEST 3.3
https://doi.org/10.5281/zenodo.6368024.

Sterratt, D., B. Graham, A. Gillies, and D. Willshaw (2011). Principles of
computational Modelling in Neuroscience. Cambridge University Press.

Thomson, A. M., D. C. West, Y. Wang, and A. P. Bannister (2002). Synap-
tic connections and small circuits involving excitatory and inhibitory
neurons in layers 2–5 of adult rat and cat neocortex: triple intracel-
lular recordings and biocytin labelling in vitro. Cerebral Cortex 12 (9),
936–953.

United Nations (2001). Mental Health and Development. https://www.un.
org/development/desa/disabilities/issues/mental-health-and-development.
html. [Online; accessed 11-October-2021].

Van Albada, S. J., M. Helias, and M. Diesmann (2015). Scalability of
asynchronous networks is limited by one-to-one mapping between effec-
tive connectivity and correlations. PLoS Computational biology 11 (9),
e1004490.

https://doi.org/10.1007/978-3-540-74466-5_71
https://doi.org/10.1007/978-3-540-74466-5_71
https://www.redhat.com/de/technologies/linux-platforms/openstack-platform
https://www.redhat.com/de/technologies/linux-platforms/openstack-platform
https://arxiv.org/abs/2110.02883
https://www.brainfacts.org/
https://doi.org/10.5281/zenodo.6368024
https://www.un.org/development/desa/disabilities/issues/mental-health-and-development.html
https://www.un.org/development/desa/disabilities/issues/mental-health-and-development.html
https://www.un.org/development/desa/disabilities/issues/mental-health-and-development.html

REFERENCES 49

Vieth, B. v. S. (2021). Jusuf: Modular tier-2 supercomputing and cloud
infrastructure at jülich supercomputing centre. Journal of large-scale re-
search facilities JLSRF 7, 179.

Zaytsev, Y. and A. Morrison (2014). CyNEST: a maintainable Cython-
based interface for the NEST simulator. Frontiers in Neuroinformatics 8,
23, https://doi.org/10.3389/fninf.2014.00023 https://www.frontiersin.org/
article/10.3389/fninf.2014.00023.

https://doi.org/10.3389/fninf.2014.00023
https://www.frontiersin.org/article/10.3389/fninf.2014.00023
https://www.frontiersin.org/article/10.3389/fninf.2014.00023

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Materials and Methods
	Theory and concepts
	Scalability
	Neuronal Network Model

	NEST, The Neural Simulation Tool
	Benchmark Scenario
	JUSUF Supercomputer
	beNNch
	Analysis and visualization software

	Balanced random networks
	Benchmark Protocol

	Results
	Cross-version verification
	Weak scaling performance for non-spatial networks
	Weak scaling performance for spatial networks
	Spatial Gaussian network model analysis

	Strong scaling performance overview

	Discussion
	References

