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Abbreviations and Definitions 

LAD Liquid Array Diagnostics, a qPCR-compatible method designed to detect 

multiple gene variants in a single-tube reaction 

qPCR Quantitative Polymerase Chain Reaction  

NTC No Template Control 

LP Labelling probe, an oligonucleotide complementary [only] to a specific target 

gene, capable of becoming extended with a quencher-labelled ddNTP 

RP Reporter probe, an oligonucleotide complementary to a specific LP, labelled 

with a fluorophore molecule on the 5’-end.  

Quencher A substance that absorbs the emitted light from a nearby fluorophore  

ddNTP Dideoxynucleoside triphosphate, a synthetic triphosphate nucleoside lacking 

a 3’-OH. 

ddCTP-Q Quencher-labelled ddCTP 

P:B Propionate-to-butyrate molar ratio 

SCFA Short-Chain Fatty Acid, bacterial fermentation end-product 

GC Gas Chromatography, a method used for separating and analyzing the 

chemical compounds of a mixture  

OTU Operational Taxonomic Unit. Closely related microorganisms sharing high 

nucleotide identity (usually 97.5% for 16S rRNA gene sequences) 

PLS Partial Least Squares analysis, a statistical method that reduces the 

dimensions of multicollinear predictors 

LDA Linear Discriminant Analysis, a classification approach based on features that 

best separate two or more classes 

ANI Average Nucleotide Identity 

HumGut A comprehensive collection of dereplicated human gut prokaryotic genomes 

HumGut_975 The original HumGut collection consisting of >30,000 genome cluster 

representatives dereplicated at ≥ 97.5% ANI 

HumGut_95 A coarser HumGut collection made of  >5,000 genomes dereplicated at 95% 

ANI 

MAG Metagenome-Assembled Genome, a bioinformatically, reference-free, de-

novo assembled genome 

RefSeq A Reference database of curated, non-redundant sequences, built by the 

National Center for Bioinformatic Information (NCBI) 
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Abstract 

The microbial species residing in the human gut exercise vital functions for the host. They 

produce different metabolites that are crucial for human wellbeing. A variety of such molecules 

mediate signalling along the gut-brain axis, regulate host gene expression, develop and maintain 

intestinal and blood-brain barriers, are involved in lipogenesis and gluconeogenesis, in addition 

to taking part in a wide range of other functions.  

A deviation in the intestinal flora composition is mechanistically linked to various health 

disorders, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), type 2 

diabetes, Parkinson’s and Alzheimer’s disease. Such a deviation, known as dysbiosis, represents 

an unbalanced composition where certain microbial groups are promoted in the expense of 

others. These species are considered as promising biomarkers, valuable for disease diagnosis, 

monitoring and treatment. Of particular interest are those markers that can additionally unveil 

phenotypical characteristics, such as the overall level of short-chain fatty acids (SCFA) in human 

gut samples. The prospect of discovering additional markers is high, considering that the 

content of healthy human guts worldwide is not fully characterized.  

The field of gut microbiota is at a stage of switching focus to clinically relevant species, 

particularly to their rapid detection, as a means of offering simple diagnostic solutions with 

increased availability and accessibility. This affords putting biological findings to practical 

clinical use, which is often not feasible with current species identification platforms. 

With the intention of filling this need, the main aim of this thesis was to develop a targeted 

approach for rapid gut microbiota testing based on the novel Liquid Array Diagnostics (LAD) 

technology. LAD is adopted to target 16S rRNA gene sites unique for specific microbial groups. 

Requiring only commonplace qPCR instrumentation, it can detect up to 30 distinct microbial 

markers in a single-tube multiplex reaction within a working day. LAD’s utility in microbiome 

studies was validated by testing the prevalence and abundance of 15 microbial markers in 541 

samples collected from mothers and their children, as reported in Paper I.  

Paper II, on the other hand, describes a comprehensive human gut prokaryotic genome 

collection, HumGut. It was built after screening thousands of human gut metagenome samples, 

collected from healthy people worldwide, for the presence of any high quality publicly available 

prokaryote genome. The main rationale for creating it was to enable functional studies through 

LAD-based 16S targeting.  

It was demonstrated that HumGut, as a reference database, aids whole genome sequencing 

studies by significantly increasing the number of mapped sequencing reads, thus elevating the 
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potential for an improved taxonomic classification. However, as it is, HumGut exhibits limited 

practical use for 16S rRNA gene targeted approaches like LAD. This because most of the 

representative genomes either lack this gene, or the quality of 16S sequences is compromised 

(addressed in Paper III).   

Nonetheless, LAD was exploited to infer a segment of human gut microbiota functionality by 

targeting the 16S rRNA gene. This was performed based on data retrieved from 16S rDNA 

sequencing and short-chain fatty acid (SCFA) measurements. LAD’s value in classifying samples 

with disturbed SCFA ratios (namely high propionate-to-butyrate ratio) - an indication of 

functional dysbiosis - is presented in Paper IV. 

Taken together, this thesis introduces two tools, LAD and HumGut, both pointing at the direction 

of simplified human gut functional analysis via gut microbial composition detection.
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Sammendrag 

De mikrobielle artene som bor i menneskets tarm utøver vitale funksjoner for verten. De 

produserer forskjellige metabolitter avgjørende for menneskers helse. En rekke av disse 

molekylene deltar i prosesser som signaltransduksjon langs tarm-hjerne-aksen, regulering av 

genekspresjon, utvikling og vedlikehold av tarm- og blod-hjerne-barrieren, lipogenese og 

glukoneogenese, samt en rekke andre funksjoner.  

Avvik i tarmflorasammensetningen kan knyttes til mange ulike sykdommer og lidelser, 

inkludert irritabel tarm (IBS), innflammatorisk tarmsykdom (IBD), type -2 diabetes, Parkinsons 

og Alzheimers sykdom. Slike avvik, kjent som dysbiose, kjennetegnes av at visse mikrobielle 

grupper fremmes på bekostning av andre. 

Disse artene har potensiale som biomarkører, og kan slik være verdifulle for sykdomsdiagnose 

og behandling. Spesielt lovende er biomarkører i tarm som kan knyttes opp mot phenotypiske 

trekk, slik som kortkjedede fettsyrer (SCFA). Det antas at enda flere slike arter vil identifiseres i 

fremtiden, da mikrobiota-komposisjonen i sunne tarmer ikke er fullt karakterisert globalt. 

Mikrobiota-feltet er nå på et stadium hvor fokuset endres fra eksplorative studier til 

identifisering av klinisk relevante arter. Det vil da bli spesielt viktig med metoder som muliggjør 

rask deteksjon, da dette vil innebære enkle diagnostiske løsninger tilgjengelig for praktisk 

klinisk bruk, noe som ofte ikke er gjennomførbart med dagens artsidentifikasjonsplattformer. 

Hovedmålet med denne oppgaven var å utvikle en målrettet tilnærming for rask 

tarmmikrobiotatesting basert på det nye Liquid Array Diagnostics (LAD)-prinsippet. LAD er 

utviklet for å identifisere sekvenser i 16S rRNA-genet som er unike for spesifikke mikrobielle 

markører. Metoden krever kun et vanlig qPCR-instrument og kan oppdage inntil 30 forskjellige 

mikrobielle markører i étt enkelt test-rør i løpet av en arbeidsdag. LADs nytteverdi i 

mikrobiomstudier ble validert ved å teste forekomsten av 15 mikrobielle markører i 541 prøver 

samlet fra mødre og deres barn, som rapportert i Artikel I. 

Artikel II beskriver genereringen av en omfattende prokaryot genomsamling av menneskets 

tarm. Den ble bygget ved å screene tusenvis av metagenom fra tarmprøver samlet inn fra friske 

mennesker over hele verden. Metagenomene ble screenet for tilstedeværelse av alle offentlig 

tilgjengelige prokaryote genom. Sekvenser av dårlig kvalitet ble fjernet mens alle andre 

sekvenser ble samlet i én stor referansedatabase, HumGut. Hovedmålet med å lage denne 

referansedatabasen var å muliggjøre LAD-baserte funksjonelle studier. 

Det ble vist at HumGut fungerer som et nyttig verktøy for full-genoms sekvenseringsstudier ved 

å øke antallet kartlagte sekvenseringsavlesninger betydelig, da dette gir forbedret taksonomisk 
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klassifisering. HumGut har imidlertid begrenset nytteverdi for 16S rRNA-baserte metoder som 

LAD. Dette fordi de fleste genom i samlingen enten mangler dette genet fullstendig, eller har for 

dårlig kvalitet på 16S-sekvensene (behandlet i Artikel III). 

Til tross for begrensningene knyttet til 16S rRNA-genet i HumGut, ble LAD benyttet til å utvikle 

en 16S rDNA-basert test for måling av menneskelig tarmmikrobiotafunksjonalitet. Dette ble 

utført basert på data hentet fra 16S-sekvensering og målinger av kortkjedede fettsyrer (SCFA). 

LADs evne til å klassifisere prøver med forstyrret SCFA-forhold (nemlig høyt propionat-til-

butyrat-forhold) - en indikasjon på funksjonell dysbiose - er presentert i Artikel IV. 

Til sammen presenterer denne oppgaven to verktøy, LAD og HumGut, som begge peker i retning 

av forenklet funksjonell analyse av menneskelig tarm via deteksjon av mikrobiell 

sammensetning i tarmen. 
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Introduction 

Human bodies are a natural habitat to various microbial species, the majority of which reside in 

the colon1. The composition of gut microbes is highly dynamic throughout different stages of 

life2, 3, and distinct among different individuals4. Their assemblage supports the physiological 

needs of the host while being shaped by host genetics5, 6, delivery mode7, 8, breastfeeding9, 10, 

antibiotic usage11, 12, diet13, 14 and lifestyle15, 16. Humans and gut microorganisms (gut 

microbiota) coexist in a tight and lifelong symbiotic relationship, the downfall of which is 

thought to manifest itself through different health disorders. Such a downfall, termed dysbiosis, 

represents a disbalanced microbial composition mainly associated with diversity loss, 

overgrowth of pathogenic strains and/or depletion of health-promoting microbes17.  

The connection between health disorders and the gut was postulated by Hippocrates in ancient 

Greece, more than two millennia ago (‘All disease begins in the gut’)18. Yet not much light was 

thrown onto this field for many centuries to come. The presence of microorganisms 

(‘animalcules’) in stool samples was reported by Antonie van Leeuwenhoek back in the 17th 

century19. But it was not before the significant findings of Louis Pasteur20 and Robert Koch21 in 

the late 1800’s, establishing a causative link between bacteria and infectious diseases, that the 

field of microbiology would gain momentum. The gut microbiota studies boost we witness today 

can certainly be attributed to further crucial discoveries made in the mid-20th century.  

A successful protocol for culturing anaerobic prokaryotes, brought by Hungate in 195022, laid 

the groundwork for a suitable investigation of obligate anaerobes residing in the gut. This 

created the possibility of culturing previously uncharacterized intestinal microorganisms, 

increasing the scientific awareness about their overall richness.  

Mid-20th century was also a time when James Reyniers established routines on rearing germ-

free rats for successive generations23, facilitating extensive experimental research in the field. 

Ever since, studies performed on microbiologically sterile animals or gnotobiotic ones (i.e. 

animals with fully identified microbial composition), have proven the impact of microbes on 

host gut morphology24, vitamin production and deficiency25, 26, bilirubin degradation27, drug 

metabolism28, brain development29, complex microbial species interaction30, etc.  

In addition, fecal microbiota transplants from humans to different animal models have 

demonstrated undisputable links between microbial composition and the onset of various 

inflammatory systemic diseases. Mice transplanted with feces from individuals suffering from 

autism spectrum disorder (ASD)31, multiple sclerosis31, Parkinson’s disease32, or obesity33, were 
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shown to exhibit clinical signs concordant with those observed in diseased humans, opening a 

whole new chapter of modern medicine. 

Dysbiosis as an indicator of disease 

Accumulating evidence show a profound association between dysbiosis and a wide range of 

health disorders, including irritable bowel syndrome (IBS)34, 35, inflammatory bowel disease 

(IBD)36, 37, colon cancer38, 39, non-alcoholic fatty liver disease (NAFLD)40, 41, major depression 

disorder42, 43, ASD44-46, Parkinson’s disease47, 48, obesity49-51, etc.  

The state of dysbiosis, characterized by a disbalanced composition of microbial communities, 

signifies a modified gut architecture mechanistically linked to disease generation and 

progression52. Although a clear definition of a ‘balanced microbial community’ is challenging to 

be composed, accrued data in the field have revealed some important bacterial species thought 

to act as gatekeepers of human wellbeing, in addition to identifying some key microbes involved 

in disease pathogenesis. It is, however, important to keep the emphasis on the balance as a 

holistic concept, given that increased levels of beneficial bacteria may also constitute dysbiosis.  

For instance, the richness of two of the most abundant and well-studied human gut colonizers, 

Akkermansia muciniphila and Faecalibacterium prausnitzii, is commonly linked to a good health 

status53-55. The former is a typical mucin-degrading species56, while the latter an essential 

producer of the beneficial butyrate57. Many studies have shown that a decrease in either of them 

is associated with a compromised gut barrier integrity and elevated proinflammatory response, 

observed in a wide range of systemic diseases54, 58, 59. It has been demonstrated that 

supplementation with A. muciniphila helps obese people lose weight, improves their insulin 

sensitivity and reduces their cholesterol levels60, pinpointing the involvement of this species in 

metabolic disease progression and prevention.  

Nevertheless, significantly elevated levels of these microorganisms should be viewed with 

caution. An Akkermansia muciniphila-rich dysbiosis has been observed in patients with type 2 

diabetes61, possibly confounded by the usage of metformin drug which was shown to promote 

this species overgrowth62. In addition, increased levels of F. prausnitzii were reported in a cohort 

of obese children63, proving that the association of these bacteria to a good health status is 

context-dependent.  

A wide range of butyrate-producers like Blautia faecis, Roseburia hominis, Roseburia 

inulinivorans, and Ruminococcus torques are regarded as important bioindicators as well64-66.  

Butyrate as a fermentation end-product, is the main energy source for gut epithelial cells and a 

potent epigenetic regulator67, hence the link between the collective reduction of these species 
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and IBD and colorectal cancer64-66. However, Ruminococcus torques has been observed to be 

enriched in a variety of unrelated cohorts, including autistic children suffering functional 

gastrointestinal diseases68 and patients affected from age-related macular degeneration69, yet 

again demonstrating the difficulty of characterizing dysbiosis by taking a limited number of 

markers into account.  

Another important group of bacteria strongly involved in maintaining human health is 

represented by various Bifidobacteria and Lactobacillus species. Among other functions, they 

are known to mediate the gut-brain axis through the production of the inhibitory 

neurotransmitter gamma aminobutyric acid70. Their depletion is reported in individuals 

suffering from depression71, while concurringly, volunteers supplemented with B. longum and 

L. helveticus strains were shown to experience beneficial psychological effects72. 

On the other hand, the abundance of many other bacterial species is known to generally exhibit 

adverse effects on human health. Such is the case for Fusobacterium nucleatum, described for its 

ability to increase proliferation of colorectal cancer cells, acting as a potential sole marker for 

disease diagnosis73, 74. Similarly, a well-documented indicator of poor health is Proteobacteria 

overgrowth. This phylum represents a group of facultative anaerobes, prevailing in conditions 

of gut epithelial oxygenation that is otherwise detrimental to most commensal 

microorganisms75. Their elevated quantities signify a gut barrier dysfunction linked to a high 

inflammation rate observed in a wide range of disorders76.  

Taken together, these findings show the immense medical value of the gut microbiota 

composition as a whole in understanding, diagnosing, treating, and preventing a broad list of 

human illnesses. 

Microbial metabolites and human health 

As microorganisms break down food particles and other substrates, they produce a complex 

web of metabolites that either act locally in the gut environment, or reach other body organs 

through systemic circulation, exercising a direct impact on host physiological reactions77. 

Because of this, exploring the direct relationship between gut microbial metabolites and human 

health is increasingly gaining attention78-80. A deviation of metabolite flow gives biological 

meaning to dysbiosis as it provides a clear mechanism for the miscommunication between 

intestinal flora and the host. It also raises the prospect of designing drugs aimed to help 

compensate for the lack of beneficial molecules or counteract the harmful ones81-83.  

One of the best studied group of metabolites are short-chain fatty acids (SCFAs). These represent 

bacterial fermentation end-products, known to mediate the gut-brain axis communication84, 
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regulate the satiety levels85, serve as main energy source for colonocytes86, influence the blood-

brain barrier formation29, act as crucial molecules in lipid metabolism87, and regulate 

gluconeogenesis88, among other functions. In fecal samples collected from healthy subjects, 

three main SCFAs, acetate, propionate, and butyrate, have a 3:1:1 molar ratio, respectively89. 

However, in samples collected from ill people, the proportions are often deviated, possibly 

reflecting an overgrowth or depletion of certain functional bacteria groups. Decreased levels of 

butyrate and/or increased levels of propionate are of special interest. They are steadily being 

linked to a wide range of diseases, including IBS90, 91,  Alzheimer’s disease92 and high risk of 

stroke93.  

Other important metabolites produced by gut microbiota include vitamins of groups B and K, 

substantially contributing to the required vitamin levels for regular cellular functions94, 95. The 

list of metabolites also includes methylamines, products of L-carnitine and choline degradation, 

known for their association with metabolic and cardiovascular diseases96, 97. Specific members 

of intestinal flora are a great source of essential branched-chain amino acids (leucine, isoleucine, 

and valine), the increased circulation levels of which have been linked to insulin resistance98. 

Other microorganisms regulate tryptophan metabolism leading to the production of serotonin, 

an essential neurotransmitter involved in various bodily functions99. Gut microbiota is also 

involved in the production of secondary bile acids, indole, and polyphenol derivatives, each 

implicated in a variety of human physiological systems77, 100.   

The gut metabolome (i.e. all small molecules produced in the gut) is vastly rich and highly 

diverse101, far exceeding the list of metabolites exemplified here. The intricate interactions 

between gut flora metabolites, other microorganisms in the gut and human body itself are an 

active subject of modern research, showing signs of promising potential for future 

pharmacological solutions81-83.   

Techniques for human gut microbiota detection 

There exist numerous tools specialized for microbial identification. Besides culturing, 

traditional techniques employ microscopy, serology and/or biochemical tests, which are aimed 

at exploring phenotypical traits of the isolated microbes in addition to establishing causality of 

disease102. In contrast to traditional methods, modern techniques are mostly invested in 

genotyping, especially after recognizing that a large number of microorganisms are challenging 

- perhaps even impossible to culture103.  

Indeed, the accelerated speed of discovery in microbiota studies came after the elucidation of 

DNA structure in 1953 by Watson and Crick104, one of the most important achievements of 

modern science. The unravelling of genetic code allowed for the development of various 
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techniques, such as DNA sequencing and Polymerase Chain Reaction (PCR)105, extensively used 

in contemporary laboratories for microbial species characterization and detection.  

Continuous advancement of Next Generation Sequencing (NGS) techniques in the past 20 years, 

paired with uninterrupted development and refinement of bioinformatic tools, has made it 

possible to explore gut microbiomes at a rate never observed before. In line with this, a 

correspondingly remarkable increase in the annual publication rate of gut 

microbiota/microbiome/bacteria research is observed in the MEDLINE database accessed 

through PubMed (Figure 1). A similar increase of scientific interest is also observed in research 

projects related to skin106, oral107 and vaginal108 flora.  

 

Figure 1. PubMed publication timeline. Years are presented along the x-axis; the y-axis shows the fraction of 

total publications per category. Black dots (connected with a black line) depict the fraction of publications 

related to microorganisms and gut; the purple ones show the fraction of publications about gut alone. The 

former was searched using the following query: (gut microbiome) OR (gut microbiota) OR (intestinal 

microbiota) OR (intestinal microbiome) OR (gut bacteria) OR (intestinal bacteria), and the latter with 

(gut OR intestine) NOT (microbiota) NOT (microbiome) NOT (bacteria). The timeline includes and ends 

with publications from 2020. Key points in time, driving the acceleration of gut microbiome studies, are 

highlighted (1950: successful cultivation of anaerobic bacteria, 1953: elucidation of DNA structure, 1983: 

invention of Polymerase Chain Reaction (PCR), 1990: Sanger sequencing, and 2005: Next Generation 

Sequencing (NGS)). 

In an era of increasingly large amounts of sequencing data, the field is well-equipped to switch 

to utilizing targeted approaches, shifting the focus to detecting microbial markers of clinical 

interest only. This serves to reduce expenses, the workload, and the amount of unnecessary and 

noisy data produced after each diagnostic test, while at the same time elevating the 

standardization potential by simplifying interpretation of results.  
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Targeted approaches make use of the existing knowledge about the genetic content of a 

microorganism of interest. They target DNA sites unique for certain species to infer their 

presence in a sample. In conventional microbiota studies, the gene encoding 16S rRNA 

represents the most often targeted segment. This gene is omnipresent and highly conserved 

among prokaryotes, yet contains signature variations for particular taxa109, rendering it an ideal 

candidate for targeted methods. 

Targeting is typically performed by employing short oligonucleotides (probes), complementary 

to signature DNA sequences, who generate a type of detectable signal in the presence of their 

template110-113.  

A wide range of methods, commonly used in contemporary laboratories, are based on signal 

detection through a qPCR machine110-113. Similarly, these methods can be adapted to detection 

through a more recently developed instrumentation, digital droplet PCR (ddPCR)114. They 

represent excellent tools, capable of detecting and quantifying the amount of target DNA in any 

environmental sample. However, their multiplexity level is limited mostly to the number of 

detection channels possessed by the instrumentation, meaning that currently, a typical reaction 

cannot detect more than a maximum of six target species or groups in a tube (Table 1). This 

presents a severe limitation in a field rich of interacting microorganisms.  

Table 1. Characteristics of some of the most commonly used targeted approaches 

Method Required 

instrumentation 

Reporting Multiplexity 

level* 

Washing step 

required  

Molecular 
Beacons®110 
 

qPCR 
 

Release of fluorophores from 
quenching  
 

6 
 

No 
 

KASP111 
 

qPCR 
 

Release of fluorophores from 
quenching 
 

6 
 

No 
 

Taqman®112 
 

qPCR 
 

Release of fluorophores from 
quenching 
 

6 
 

No 
 

EvaGreen®113 

 

qPCR 

 

Intercalating dye fluorescing 

 

1 

 

No 

 

SNPlex115 
 

Capillary 
electrophoresis 
 

In-capillary size-dependent 
fluorescing 
 

96 
 

Yes 
 

GA-map®34 Flow cytometer  Fluorescing of bead-coupled probes 100 Yes 

     

To date, the only validated platform for multiplexed microbiota targeted detection is GA-

map®34. It has a capacity of detecting up to 100 markers in a single tube using a flow cytometer 

 
 Assuming six detection channels for methods requiring a qPCR instrumentation 
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for detection. However, similar to other methods that allow the detection of multiple targets in 

a sample, it requires dedicated instrumentation and fragile sample processing34, 115, rendering 

routine tests and experiments expensive.  

Persisting challenges in the field 

Producing worldwide medical solutions presents a major challenge, regardless of rapid 

developments. That is because there is a huge variability of microbial composition among 

healthy people to start with116. In addition, reconciling disparate conclusions drawn by different 

studies is often not feasible. Most research groups use their own set of local control samples 

(against which to compare the species levels), follow a different sample-handling protocol117, 

and utilize different bioinformatic tools and reference databases to interpret results118. The 

latter deserves special attention as it poses a unique obstacle. No publicly available database in 

use was ever thorough enough to be widely accepted as a standard reference genome collection.  

Culturing techniques appear to have failed to reveal the full microbial diversity, as indicated by 

the inexplicably rich data retrieved through shotgun DNA sequencing (metagenomics)119. On the 

other hand, such richness is considered difficult to interpret, as a huge proportion of sequencing 

reads from the majority of studies typically never map to any members in databases of reference 

genomes120 (Figure 2).  

 

Figure 2. A simple depiction of the taxonomic profiling based on shotgun sequencing. The arrow links the 

gastrointestinal sample with the results: a list of taxonomically classified strains found in it. For classification 

to occur, the sequencing reads (the arrow tiles) must query a reference database in search for (a) perfect 

match(es). The tiles decomposed from the arrow represent reads failing to match a genome in the database, 

hence becoming discarded from the results for interpretation.  
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A focused definition of prokaryotes residing in the gut of healthy humans is a fundamental need. 

Besides merely quelling the curiosity as to what species reside in the intestines of healthy 

populations, a comprehensive collection of human gut prokaryotic genomes ought to streamline 

functional studies conducted worldwide, in addition to significantly improving low taxonomic 

rank classification of sequencing reads120. 

Major advancements in the field of bioinformatics have allowed the reconstruction of reference-

free, de-novo assembled genomes: metagenome-assembled genomes (MAGs). This fairly new 

inventive approach, proposed in 2015 by Hugerth et al., has brought an alternative solution to a 

wide range of environmental studies, circumventing the need for relying on frequently 

incomplete reference databases122.  

In recent years, MAGs have also thrown light onto a broad range of hitherto undiscovered 

human gut microbiota members120, 123, 124. Their discovery has enriched the pool of genomes 

encountered in human intestines worldwide, increasing the prospect of discovering novel 

biomarkers among them. This has also increased the potential for building a comprehensive 

collection of human gut prokaryote genomes to be used as a reference database for upcoming 

studies. However, no efforts have been made towards understanding the prevalence of MAGs in 

healthy human guts around the world. In addition, their utility is not fully validated. MAGs 

frequently lack 16S rRNA gene contigs due to difficulties related to their assembly125, presenting 

a severe shortcoming in a field where this gene holds the main focus. 

Another major challenge in the field is the lack of simple tools for rapid screening of medium-

size targets, hindering the translation of biological findings to a clinical setting. We are at a time 

when simple, robust, and inexpensive tools capable of detecting multiple targets in a single tube 

are in high demand. An emerging qPCR-compatible method, Liquid Array Diagnostics (LAD), 

capable of detecting up to 30 targets in a sample, promises an alternative solution in this regard.  
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Liquid Array Diagnostics principle 

Liquid Array Diagnostics (LAD), is a novel, simple genotyping method, based on the single-

nucleotide primer extension principle126. It can detect multiple microbial targets in a single tube 

within a working day, while only requiring commonplace instrumentation, namely a qPCR 

machine (see a general outline of qPCR instrumentation in Figure 3).  

 

Figure 3. The basics of qPCR instrumentation. A plate holding separate reactions in each well is placed on a 

thermal block, with the purpose of controlling the temperature of reactions. A filtered source of light passes 

through each well prior to being captured by its respective optical detection channel. Detection channels 

register the fluorescence units after each incremental temperature change. Different instruments may 

contain a different number of detection channels. Usually, the number is between four (CFX Opus 384, Bio-

Rad Laboratories, Inc) and six (Rotor Gene Q, Qiagen). 

As the name suggests, LAD is performed in a liquid solution. Compared to many existing 

multiplexed targeted approaches, it does not require separation of probes via the use of a solid 

phase prior to signal detection, rendering the method uniquely simple.  

The technology exploits temperature-dependent fluorescence quenching (the decrease of 

fluorescence intensity) to detect target probe labelling. A set of oligonucleotides (probes), 

complementary to signature target sequences, is designed to become labelled with a quencher 

molecule in the event of hybridization with template DNA. Subsequently, a second set of probes, 

complementary to the first, are added. These are designed to carry a fluorophore. In the event 

of target probe labelling, the quencher and the fluorescing moieties come into proximity upon 
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duplex formation. This allows quenching to occur, reporting thus the presence of designated 

target(s) (Figure 4).  

 

Figure 4. A basic overview of LAD. The top panel depicts probe labelling in the presence of target bacteria 

sequences. Labelling probes are complementary to target sequences, which serve as a template for single 

(quencher-labelled) nucleotide extension. In another step, the quencher-labelled probe forms a duplex with 

a complementary fluorophore-conjugated probe. Due to a proximity between the quencher and the 

fluorophore, the latter ceases emitting light into the surrounding environment at a temperature dictated by 

the duplex length, thus reporting the presence of the target. The bottom panel shows a scenario where target 

bacteria sequences are absent from the reaction. In that case, due to a lack of template, the target probe does 

not become labelled with a quencher. This, in turn, allows the fluorophore positioned on the complementary 

probe to continue fluorescing. 

Quenching is designed to manifest at specific temperatures, directed by the length and sequence 

composition of the probe duplexes. Presently, up to five resolvable quenching events can be 

registered within a single qPCR detection channel. This, combined with six distinct detection 

channels common to qPCR instrumentation, facilitates detection of up to 30 targets in a single-

tube reaction.  

Detailed description of the steps related to LAD reactions are presented in the supplementary 

material. 
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Aim of the thesis 

Immense amounts of sequencing data have revealed important gut microbes associated to 

human wellbeing, rendering them valuable biomarkers. The field is now prepared to switch the 

focus to detecting only them, with the intention of reducing the running costs and hands-on time 

by simplifying lab routines. In addition, detecting an exclusive panel of microbes of high clinical 

interest reduces the noise (i.e., no data about random microbes with no reported association to 

human health is generated), streamlining results interpretation. There indeed exist a wide range 

of targeted methods capable of detecting pre-determined microbial groups. However, they 

either lack the multiplex capability or they require fragile sample processing in addition to 

dedicated instrumentation, limiting their utility to specialized labs only.   

Considering the demand for easily accessible tools specialized on rapid human gut microbiota 

diagnostics, the main aim of this thesis was to develop and evaluate LAD, the principles of which 

make it a promising candidate tool.  

The subgoals of the thesis were as follows: 

• Build a robust and accurate LAD test for testing human infant gut microbiota. 

• Construct a healthy human gut microbial genomes collection for targeted human gut 

microbiota diagnostics. 

• Evaluate the quality of 16S rRNA gene sequence in MAGs. 

• Build a LAD assay capable of detecting functional dysbiosis associated to disrupted SCFA 

levels in fecal samples. 
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Results and Discussion 

This thesis is composed of four distinct sub-studies. Two of them relate to a novel genotyping 

method, Liquid Array Diagnostics - LAD (Paper I and Paper IV), and the remaining two to a 

publicly available collection of human gut prokaryotic genomes, HumGut (Paper II and Paper 

III). The four subchapters as listed here correspond to papers constituting the thesis. The first 

subchapter is extended to include some general information applicable to all LAD-based tests. 

It also reveals additional unpublished results supporting the utility of LAD for dysbiosis testing. 

The published Paper III indeed represents a short opinion piece where we swiftly communicate 

some important findings related to the quality of MAGs. More detailed information is provided 

in the third subchapter of this section.  

I. LAD-based microbiota assays 

All LAD-based tests performed during the course of this project used GA-map® CoverAll 

primers to amplify the 16S rRNA gene. These primers are designed to anneal to conserved 

primer binding sites, amplifying seven regions (V3 - V9), and yielding amplicons of ca. 1,000-

1,200 bp length34. A bioinformatic check revealed that they perfectly match >99% of 16S rRNA 

gene sequences extracted from >6,600 complete RefSeq genomes used to build HumGut (paper 

II). This finding was supported by results generated from wet laboratory work. From 488 

genomic DNA (gDNA) templates extracted from different bacteria isolates belonging to different 

phyla, only 9 failed to yield PCR products (Lactococcus lactis subsp. lactis, Mycobacterium avium 

subsp. paratuberculosis, Mycobacterium avium subsp. avium, Bacteroides sp., Corynebacterium 

jeikeium (13012010), Slackia piriformis, Mycobacterium terrae, Proteus mirabilis and 

Streptomyces lanatus). 

Covering most of the microbial diversity and nucleotide variation, these amplicons served as 

templates for labelling LAD probes in subsequent steps.  

It was proven that the level/degree of probe labelling with a quencher depends on the 

abundance of complementary target sequences, as presented in the supplementary material, 

Figure S6. However, the potential of utilizing LAD for quantifying targets needs to be 

investigated and developed further. 

Use of LAD for infant gut microbiota composition testing 

The utility of LAD in gut microbiome studies was validated by testing 541 mother and infant 

samples for 15 distinct bacterial markers, as described in Paper I. The rationale for validating 

LAD performance on infant samples was based on the premise that they are well described in 

the literature132-135. 
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The labelling probes were adopted from an already validated GA-map® assay135, a solid-phase 

hybridization method based on single nucleotide primer extension. The goal was to reproduce 

the results retrieved with GA-map® through LAD, by testing samples from the same PACT 

sample pool (Prevention of Allergy Among Children in Trondheim). Indeed, through two 

platforms, a decrease of Staphylococci from 10-days to 4-month-old infants, and a peak of 

Bifidobacteria at 4-month-old children was observed. Furthermore, LAD signals for a subset of 

samples (n = 87), corresponded well to 16S rRNA gene Illumina sequencing results. 

LAD probe signal measurements showed a distinct, more stable pattern for samples collected 

from mothers (during their pregnancy) compared to infants and children up to 2 years old 

(Figure 5). This is in accordance with the well-established fact that infant gut microbiota is 

compositionally different from that of an adult population, in addition to exhibiting a larger 

interindividual variation136, 137.  

 

 

Figure 5. A Linear Discriminant Analysis plot using LAD results for 541 samples as an input. Samples collected 

from mothers (110 in total) are colored in red, 122 samples collected from infants (2-days to 4-months old) are 

presented in black, while 309 samples collected from children (1 to 2-years old) are depicted in grey. Samples 

collected from mothers cluster tighter compared to children and infant samples, which are more spread across 

the LD1. Probes with the greatest effect on children and infant samples are 6_2_2 and 2_4_1, designed to 

detect Bifidobacterium breve and a Gamma-proteobacteria subgroup, respectively.   

Use of LAD for testing dysbiosis in adults 

A LAD-based assay, mimicking the current CE-marked GA-map® Dysbiosis Test34 was used to 

test 80 samples biobanked at Genetic Analysis AS (Oslo, Norway, research biobank no. 4071). 



Results and Discussion: Liquid Array Diagnostics 

   20 
 

Samples were collected from healthy adults (n = 17), Clostridium difficile-infected (CDI, n = 15), 

irritable bowel syndrome (IBS, n = 16), inflammatory bowel disease (IBD, n=17), and diabetes 

patients (n = 15).  

The GA-map® Dysbiosis Test utilizes >48 probes for microbial target detection. As a result, it 

reports a Dysbiosis Index (DI) score for each sample. The scores are in a scale from 1 to 5, 

indicating the degree of dysbiosis (DI 1 = normal (normobiosis); DI 5 = a high degree of 

dysbiosis). 

The single-tube LAD assay was built utilizing twenty sequences from the GA-map® probe set 

with the highest impact on the DI score. This probe subset was designed to detect taxa of various 

ranks, targeting Ruminococcus albus and R. bromii, Faecalibacterium prausnitzii, Bacteroides 

fragilis, Ruminococcus gnavus, Streptococcus salivarius ssp. thermophilus, S. sanguinis, 

Akkermansia muciniphila, Dialister invisus and Megasphaera micronuciformis, Veilonella spp., 

Bacteroides spp. and Prevotella spp., Bifidobacterium spp., Shigella spp. and  Escherichia spp.,  

Parabacteroides spp., Alistipes spp., Lachnospiraceae, Clostridia, Bacilli, Firmicutes, 

Actinobacteria, and Proteobacteria. Due to confidentiality concerns, probe sequences are not 

revealed here.  

The results, depicted in the form of Linear Discriminant Analysis plots (Figure 6), showed that 

this small subset of probes utilized in the LAD platform, effectively served to separate healthy 

samples from the rest of the cohorts, highlighting the potential of LAD for routine gut microbiota 

diagnostics.  



Results and Discussion: Liquid Array Diagnostics 

   21 
 

 

Figure 6. Linear Discriminant Analysis plots based on 20 LAD probe signals for 80 samples: 15 collected from 

Clostridium difficile infected patients (CDI), 15 from diabetes patients, 17 from healthy adults, 17 from 

inflammatory bowel disease (IBD), and 16 from irritable bowel syndrome (IBS) patients. Healthy and CDI 

samples separate with 100% classification accuracy. Same is the case between healthy and IBD. Healthy and 

IBS samples separate with 93% classification accuracy, i.e., one IBS sample misclassified as healthy and vice-

versa. Healthy samples separate from diabetes with 80% accuracy (two diabetes samples classified as healthy, 

three healthy samples as diabetes). The overall classification accuracy, taking into account the separation 

between all cohorts, is  84% (13 out of 80 samples misclassified).
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II. A comprehensive collection of human gut prokaryote genomes - 

HumGut 

An integral goal of this thesis was building a global comprehensive reference genomes 

collection, HumGut.  

As described in detail in Paper II, HumGut was built by screening thousands of human gut 

metagenomic samples collected from healthy people worldwide. These publicly available 

samples were screened for the presence of any of the MAGs and human gut isolate genomes 

stemming from the Unified Human Gastrointestinal Genome (UHGG) collection138 in addition to 

any RefSeq prokaryotic genomes. The latter represent non-redundant, curated and annotated 

genomes by National Center for Biotechnology Information (NCBI)139.  

Only genomes considered to have been found in at least one metagenome were kept in the 

collection. These were then dereplicated at a 97.5% average nucleotide identity (ANI), keeping 

the most prevalent genome as a cluster representative. Such a collection (‘HumGut_975’) 

consists of >30,000 representative genomes. On another level, HumGut_975 representatives 

were clustered at a 95% ANI (‘HumGut_95’), marking the prokaryotic species-level threshold140. 

This resulted in >5,100 representatives, indicating the presence of at least this many species in 

healthy human guts worldwide (Figure 7).  

The approach towards building HumGut is a novel one. It is free from geographical constraints 

as it considers the gut content of healthy people from various countries around the world. In 

addition, it keeps as cluster representatives the most prevalent and thereby relevant genomes.  

The naming of cluster representative genomes includes a numerical postscript, which indicates 

their prevalence among the screened metagenomes. For example, HumGut_1, otherwise 

taxonomically classified as Bacteroides vulgatus, represents the most prevalent genome, 

followed by HumGut_2 (classified as B. vulgatus, as well) found as the second most prevalent, 

and so on. The website hosting HumGut provides a table listing all representative genomes and 

their occurrence among the 3,545 screened metagenomes. This adds value to HumGut 

collection, as it aids its users by bringing a wider context to their results. 

Besides the proven drastic improvements in classification of shotgun metagenomic reads, 

identifying and listing human gastrointestinal prokaryote species found in healthy people 

attains a major milestone for targeted approaches like LAD. It defines the pool of target/non-

target sequences which in turn facilitates a streamlined probe design.  
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Figure 7. A brief outline of the HumGut building process. Thousands of metagenomic samples collected from 

healthy people worldwide were screened for the presence of any MAG (black dots) or RefSeq prokaryotic 

genome (grey dots). Qualified genomes shared ≥ 95% average nucleotide identity (ANI) with at least one 

metagenome. They were further dereplicated, first at ≥ 97.5% ANI, then at ≥ 95% ANI, generating thus two 

HumGut collections of various granularities (HumGut_975 and HumGut_95, respectively).  
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III. HumGut: gaps, limitations, and perspectives 

During the course of this thesis, two seemingly unrelated activities were pursued: developing 

LAD and building HumGut. They are intimately interconnected though, as a comprehensive 

repository like HumGut aids techniques like LAD by providing the necessary target DNA 

sequences. However, at this stage, the ultimate connection between the two was impossible to 

make because an important link was found missing: the 16S rRNA gene.  

The vast majority of HumGut_975 (91%) consists of MAGs, which, given the persisting 

limitations on current technologies, are often not fully completed125.  

The severity of this problem was reflected in our searches for 16S using barrnap 

(https://github.com/tseemann/barrnap). The 16S rRNA sequences were extracted from 7% of 

MAGs only, while they were extracted from >93% of other RefSeq genome types (Figure 8). 

From 30,691 HumGut_975 genomes in total, only 4,560 yielded 16S rRNA gene sequences, 

highlighting the challenge of building a corresponding 16S-HumGut collection.  

 

Figure 8. Bar chart depicting the volume of MAGs (left) or other genome types (right: complete RefSeq 

genomes, chromosomes, contigs, scaffolds, isolates) that yielded 16S rRNA gene sequences using barrnap tool 

(sections colored in black). 

Not all HumGut clusters have similar 16S rRNA gene sequences 

As mentioned, HumGut_975 is built of genome cluster representatives. The members of these 

clusters share at least 97.5% genome-wide average nucleotide identity (ANI), exceeding the 

species-delineation threshold of 95%140. Given the conserved nature of 16S, its identity is 

expected to be even higher among the same cluster genomes140-143. By proxy, 16S sequences 

extracted from the available HumGut genomes should be nearly identical with those extracted 

from other genomes belonging in the same cluster (~119,000 genomes from >381,000 used to 

build HumGut harbored at least one copy of this gene).  

However, this was not observed in clusters consisting solely of MAGs (281 clusters in total). A 

MUSCLE multiple sequence alignment of 16S sequences from the same cluster, followed by a 

https://github.com/tseemann/barrnap
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computation of their pairwise distances using a model of DNA evolution (ape package in 

RStudio144), showed that the average distance of all MAGs measurements was 0.074 (SD = 

0.095), translated to an average identity of 93% (1 - 0.074 = 0.926). By contrast, an average 

identity of 99.85% (distance 0.0015, SD = 0.003) was observed in 95 clusters comprised 

exclusively of complete RefSeq genomes. Only clusters with >5 genomes, each containing at least 

one 16S copy, were considered for this analysis (Figure 9). 

 

 

Figure 9. The distance between 16S rRNA gene sequences within HumGut_975 clusters comprised of purely 

complete RefSeq genomes (95 clusters, top panel) or MAGs (281 clusters below). Each cluster contains more 

than 5 genomes with at least one 16S sequence. The average distance of all complete RefSeq genome 

measurements was 0.0015 (SD = 0.003), while for MAGs, the average was 0.074 (SD = 0.095). 

The severity of intragenomic 16S heterogeneity is linked to genome type 

The variation of copy numbers among different taxa, and the challenges in obtaining the correct 

copy number from incomplete genomes is well described in the literature145, 146. Accordingly, 

complete RefSeq genomes exhibited the highest average 16S rRNA gene copy number (6.2 

copies), while MAGs had 1.1 copies on average (Figure 10).  
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Figure 10. Boxplots showing the distribution of 16S rRNA gene copy numbers (Y-axis) among 6,648 complete 

RefSeq genomes (left) and 18,709 MAGs (right).  

Interestingly, MAGs showed a significantly high intragenomic 16S heterogeneity (Figure 11). 

More than 10% of all MAGs with multiple 16S copies showed a variation in every single position 

of their sequences, with about 50% of genomes containing copies with a variation (base 

substitution, insertion, deletion) near position 500. Such a high intragenomic variance degree 

obscures the true representative sequences and raises doubts about the quality of MAG-

extracted 16S rDNA sequences. 

 

Figure 11. Intragenomic 16S rRNA gene variation in different genome types shown on different panels. The 

X-axis depicts the 16S gene position. The Y-axis shows the percentage of genomes having some intragenomic 

variation in the respective position. The percentages were computed considering only genomes with more 

than one 16S copy (4,984 complete RefSeq genomes and 1,285 MAGs). 

Intragenomic variations were also observed in complete RefSeq genomes, considered as the 

golden standard in terms of their quality. However, most of the variations seem to be linked to 

specific positions within the gene (positions 75-90, 250-270, 450-470, 1,000-1,030, and 1,130). 

In line with these findings, similar heterogeneity patterns were also reported by Johnson et al. 

(2019) in a study of 381 different isolates147. 

An excerpt of the abovementioned gaps is presented in Paper III. 
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RefSeq intragenomic 16S variation is mostly observed in Proteobacteria  

About 24% of complete RefSeq genomes harboring multiple 16S copies showed no intragenomic 

variation of this gene. The remaining showed various degrees of heterogeneity.  

The highest diversity was observed in a single 97.5% ANI cluster represented by Shigella 

flexneri. Of all genomes showing variation, >30% belonged to this group (Figure 12). More than 

70% of all heterogenous genomes for 16S rRNA gene belonged to Proteobacteria phylum, where 

Shigella belongs. 

 

Figure 12. HumGut_975 clusters with most 16S intragenomic heterogeneity. The fraction considers all 

genomes showing some degree of variation. Most of the variation (>50%) was observed in only 5 different 

clusters, all belonging to Proteobacterium phylum. 

Assuming the observed variations do not reflect sequencing or assembling errors, they all 

deserve specific attention, especially knowing that many of these genomes resulted highly 

prevalent among healthy human guts (>80%).  

They should be considered when 16S sequencing reads are grouped into operational taxonomic 

units (OTUs). Using a conventional threshold of 97% identity148, single genome copies could 

diverge into more than one OTU, falsely increasing the diversity index of the sample149. Similar 

false results would be produced by reporting amplicon sequence variants (ASVs) instead.  

Obtaining this level of information heightens the prospect of building 16S-targetted assays 

capable of distinguishing Escherichia coli and certain Shigella species, for example, which has 

otherwise been considered impossible with current 16S-based molecular diagnostic tools150. 

HumGut clusters could be a resource of species 16S representative sequences 

In addition to clustering at 97.5% identity, the genomes used to build HumGut were dereplicated 

at a species-level threshold (95% ANI)140, resulting in > 5,100 representatives in total 

(HumGut_95). The main rationale for performing this was to offer a simpler solution to HumGut 
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users. Being smaller in size (15.9 GB vs 24.9 GB for HumGut_975), HumGut_95 may be more 

convenient for metagenome studies where high taxonomic resolution is not essential. 

Additionally, clustering at 95% ANI was a sensible method of inferring the total number of 

microbial species in the gut oh healthy humans worldwide. 

A further drastic reduction in database size would be possible if only 16S rRNA gene sequences 

from each genome were included. This would be an ideal solution for 16S amplicon analysis. As 

already demonstrated, this unfortunately is not possible with the current HumGut versions. 

However, it is worth considering strategies for the upcoming versions. 

As shown, cluster members, and occasionally genomes themselves, contain substantial 

variations in their 16S copies. This indicates that building a highly sought species-level-16S-

HumGut collection is not as straight-forward as extracting copies of this gene from cluster 

representatives. Instead, one reasonable strategy would be finding the most prevalent 

sequences within the cluster, as exemplified in Figure 13.  

 

Figure 13. A network of 87 complete RefSeq genomes belonging to a single HumGut_95 cluster (upper points) 

and their unique 16S rRNA gene sequences (lower points). The connecting lines are colored based on 97.5% 

nucleotide identity clusters. The arrows emphasize three of the 16S sequences encountered in most of the 

genomes, which may act as cluster representatives.  

Building a collection of such granularity would enhance the specificity of probe design 

substantially, lifting the performance of targeted approaches like LAD. However, as implied 

earlier in this chapter, this level of work can only be achieved after technological challenges 

related to 16S-assembly are overcome.  
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IV. Linking functions with 16S rRNA gene 

The ultimate goal of this thesis was to develop a simple detection method, LAD, for predicting 

gut microbiota functionality. The focus was directed towards SCFA production. That because 

human gut bacteria largely affect and maintain the health of the host through these end-

products151, while routines for measuring them are frequently challenging152, 153.  

SCFAs are highly volatile acids, therefore sample processing represents a major bottleneck, 

prohibiting high-throughput research and clinical utility152, 153. On the other hand, inferring 

SCFA levels based on direct measurements of specialized producers is not viable, given that the 

short-chain fatty acid production is dependent on complex environmental factors, such as the 

abundance of cross-feeders. A typical example is that of butyrate-production by F. prausnitzii, 

which is enhanced by interaction with Bifidobacterium adolescentis, a species that does not 

produce this acid154.  

As described in detail in Paper IV, we aimed at circumventing the need for a direct measurement 

of SCFAs, by establishing a LAD test that directly targets the 16S rRNA gene of key bacterial 

indicator groups. Given the importance of beneficial butyrate, we aimed at predicting samples 

with abnormally increased P:B with the intention of providing a tool for fast, robust and accurate 

detection, to be used for high-throughput studies where an increased P:B is expected to act as 

disease indicator (Parkinson’s disease155, Autism Spectrum Disorder156, Type 2 Diabetes157, etc.).  

Propionate and butyrate represent fermentation end-products of well separated bacterial 

groups158. Propionate is mainly produced by Bacteroidetes and Negativicutes, while butyrate by 

Lachnospiraceae and Ruminococcaceae159. There are only two known species that, depending 

on the substrate, can produce both (Coprococcus catus and Roseburia inulinovorans158). On the 

other hand, both these bacterial groups can additionally produce acetate. Hence, a disruption of 

propionate-to-butyrate ratios is of special interest, possibly reflecting an unhealthy disbalance 

between the two major member groups of normal gut flora (and/or their corresponding cross-

feeders).  

By targeting a limited number of bacteria, not exclusively known to produce butyrate or 

propionate, LAD was successful at predicting high P:B samples with high accuracy. 

Here, a PLS + LDA (Partial Least Squares – Linear Discriminant Analysis) model was employed, 

for both finding the markers (step I) and predicting the ratio based on LAD results (step II).  

In step I, the indicator bacteria were found using the 16S rRNA gene sequencing results as 

predictors of the P:B (calculated after Gas Chromatography measurements). An eliminator 

function, reducing the number of selected variables (OTUs), at the expense of a marginal model 
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performance decrease, was used161 with the intention of targeting the lowest number of 

operational taxonomic units (OTUs) while keeping a high prediction accuracy. The design of the 

probes targeting the intended OTUs, as mentioned in paper IV, was performed utilizing the 

TNTProbe Tool160, a bioinformatics software developed in house at Genetic Analysis AS.  

In step II, LAD probe signals, reporting the abundance of target OTUs, were used as P:B 

predictors.  

A successful 16S rDNA-based assay predicting such a functional outcome marks an important 

leap towards exploiting the 16S rRNA gene beyond its mere value for taxonomical classification.  

Indeed, many tools exist, like PICRUSt162 or Tax4Fun163, deemed as highly accurate at predicting 

functions based on 16S rDNA sequences. However, these tools require reference genomes to 

which the sequences of this gene are mapped, in order to assess their whole marker gene 

repertoire. The challenges with obtaining comprehensive reference databases were explained 

at great lengths in the previous sections of this thesis. In addition, we have shown that butyrate 

and propionate levels did not correlate well with the abundance of genomes harboring genes 

responsible of producing such acids. This indicates that no conclusions about the exercised 

functions (i.e., butyrate and propionate levels) based solely on the presence of these genes can 

be drawn.  
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Conclusion and Future Perspectives 

The number of gut microbiota-based studies has increased exponentially in recent years. 

Correspondingly, various tools aimed at aiding the detection of microbial species have been 

developed. The use of Next Generation Sequencing (NGS) techniques continuously equips 

researchers with unprecedented amounts of data for each DNA sequencing run. By now, we have 

collected tremendous amount of information about the presence and abundance of different 

microbes in various cohorts, revealing a relationship between human wellbeing and a 

harmonious microbial composition34-51. This, in turn, has opened the possibility of utilizing gut 

microbiota composition as a disease indicator in routine clinical tests, but also as a target for 

disease treatment and prevention.  

Although NGS techniques are excellent tools for gut microbial marker exploration, their 

sustainability for routine monitoring of microbial composition in a clinical setting is often 

vulnerable. Besides the running costs and dedicated instrumentation, DNA sequencing methods 

require multiple dry- and wet lab steps, each introducing a bias in the system117, 118, resulting in 

outcomes not straightforwardly commensurable. Furthermore, different methods are prone to 

a wide range of sequencing errors, producing artifacts that may obscure true sequences and 

often overestimate their diversity164, 165. 

Routine clinical monitoring of gut biomarkers would make a better use of methods specialized 

on detecting microbial groups of interest only, bypassing the production of unnecessary data 

with the aim of increasing the stability of the system by further simplifying it. The aim of this 

thesis was to develop such a method, Liquid Array Diagnostics (LAD). 

Compared to other commonly used qPCR-based detection methods, LAD is characterized by an 

increased multiplexity level. LAD overcomes the limitation of reporting a single signal within a 

channel by exploiting a second dimension within the system, the temperature. This is otherwise 

unachievable using other contemporary methods, such as those based on Molecular 

Beacons®110, KASP111 or Taqman®112 probes. Additionally, LAD utilizes multiple detection 

channels simultaneously, otherwise impossible by techniques relying on intercalating dyes, e.g. 

EvaGreen®113.  

There exist other detection systems allowing a higher multiplexity level than LAD. These 

methods are mostly based on solid-phase hybridization34, 166. However, in contrast to them, LAD 

does not require a washing step, avoiding a major procedural bottleneck. In addition, bead 

detection methods require dedicated and expensive instrumentation, like flow cytometers, 

restricting their utility to specialized laboratories only.   
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A robust LAD test is characterized by short hands-on time, inexpensive reagents and instrument 

needed. Requiring only qPCR instrumentation, it is suitable for use in most labs. It can detect up 

to 30 markers in a single tube, outperforming other contemporary qPCR-instrumentation-based 

methods. In addition, it has the potential of providing quantitative information, yielding 

stronger signals for more abundant targets.  

Understandably, it can only be utilized for detecting pre-determined targets, not for de-novo 

biomarker discovery, as probes are designed to anneal to well-described DNA sequences unique 

to relevant bacteria groups.  

The unique trait of targeted approaches like LAD, is their independence from third-party results 

(for example a reference database) for interpretation. The understanding of what a probe 

targets may change over time (with the increase of publicly available DNA sequences); however, 

its signal remains stable for same-type samples, assuming target sequences do not undergo 

mutation.  

In relation to reference databases, this thesis provides one –HumGut, representing the most 

comprehensive collection of human gut prokaryote genomes to date. Making a full circle back to 

explorative sequencing, HumGut is expected to aid metagenomic studies around the world, 

streamlining biomarker discovery, while LAD is expected to make use of the accumulated 

knowledge, breaking the circle when acting independently in a clinical setting.  

The only other publicly available database of human gut prokaryotic genomes to date is the 

Unified Human Gastrointestinal Genomes (UHGG) collection138. UHGG represents a collection of 

all genomes (mostly MAGs) derived from sampling human guts. In comparison to HumGut, it 

contains approximately 500 fewer species-level genomes, reflecting the inclusiveness of our 

approach.  

A specific LAD assay aimed at detecting functional dysbiosis related to an increased fecal 

propionate-to-butyrate ratio (P:B) is presented here. The current P:B prediction LAD test 

represents a proof of concept with a great clinical utility potential. Similar tests, focusing on 

other SCFA levels by targeting other microbial markers can be designed. In addition, a possible 

HumGut 2.0 collection, comprised of genomes harboring 16S rRNA gene sequences, will elevate 

our comprehension level regarding the community of gut microbial markers.  

A triad between LAD, upcoming HumGut versions, and ever improving bioinformatic tools, 

presents a great possibility for smart solutions and a greater understanding of human gut 

microbes.  
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During this thesis work, the focus was exclusively put on human gut bacteria and short-chain 

fatty acids. Although bacteria are the most abundant microorganisms residing in the gut, fungi, 

archaea and viruses deserve similar attention as they are described to equally contribute to 

human health167, 168. As such, a human gut reference genomes collection is not complete without 

their inclusion. As a future work, HumGut (currently harboring only bacteria and archaea 

genomes) must consist of genomes belonging to all domains of life. In addition, the same 

approach to building HumGut may be employed to building collections of genomes from other 

body sites (HumOral, HumSkin, HumVaginal, conceivably).  

The list of functional microbial traits goes well beyond short-chain fatty acid production 

explored in this thesis. A panel of LAD assays dedicated to different functional disruptions 

should be feasible to create. Also, designing a LAD test detecting marker species from different 

life domains must be considered.  

Another aspect worth of exploring is a LAD-based oral flora biomarker detection. Studies have 

shown that there is an association between gut and oral microbiota169. Oral dysbiosis is 

reportedly associated with the same range of diseases typically associated with gut dysbiosis, 

such as colorectal cancer170, Alzheimer’s disease171, type 2 diabetes172, etc., evoking the 

possibility of targeting saliva microorganisms as a proxy for gut dysbiosis detection. This would 

allow for easier sampling, further simplifying the method and increasing its availability.  

Acknowledging the profound relationship between human health and symbiotic microbial 

communities, modern medicine is expected to benefit significantly from routine monitoring of 

their composition - this as a more holistic approach to identifying and treating different systemic 

diseases.   
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ABSTRACT
We present a novel liquid array diagnostics 
(LAD) method, which enables rapid and 
inexpensive detection of microbial markers 
in a single-tube multiplex reaction. We 
evaluated LAD both on pure cultures, 
and on infant gut microbiota for a 15-plex 
reaction. LAD showed more than 80% 
accuracy of classification and a detection 
limit lower than 2% of the Illumina reads per 
sample. The results on the clinical dataset 
showed that there was a rapid decrease of 
staphylococci from 10-day- to 4-month-old 
children, a peak of bifidobacteria at 
4 months, and a peak of Bacteroides in 
2-year-old children, which is in accordance 
with findings described in the literature. 
Being able to detect up to 50 biomarkers, 
LAD is a suitable method for assays where 
high throughput is essential.

METHOD SUMMARY
Liquid array diagnostics use short DNA 
duplexes, where one of the oligonucle-
otides is labeled with a fluorophore and 
the other, upon the presence of target 
DNA, becomes labeled with a quencher 
molecule. The novelty of this method lies 
in the combination of many duplex melting 
profiles and several channels of detection 
on a qPCR instrument, to detect multiple 
events of fluorescence quenching in a 
single-tube multiplex reaction.

The field of gut microbiota analysis has, 
until now, been dominated by relatively 
small-scale explorative studies, with 
several contradicting f indings 
obscuring the truth in literature [1,2]. 
We are therefore at a stage where high-
throughput, low- cost , targeted 
approaches are needed in order to 
generalize knowledge, and to evaluate 
previous findings. Presently, the 
GA-map® platform (Genetic Analysis 
AS) is the only clinically validated tool 
designated for gut microbiota 
diagnostics. The GA-map method 
allows for the faster assessment of the 
abundance of microbial markers in a 
sample ,  compared with NGS 
techniques [1]. However, it is based on 
solid-phase hybridization, which 
creates a bottleneck in sample 
processing and renders the test 
relatively expensive.

In this article, we present liquid array 
diagnostics (LAD), a novel approach 
for detecting bacterial communities 
using real-time PCR instrumentation. 
LAD combines single nucleotide primer 
extension with high-resolution melting 
(HRM) in the concept of a liquid array. It 
does not require physical separation of the 
probes prior to detection, thus avoiding 
a bottleneck in sample processing and 
ensuring rapid results at very low running 
costs. Requiring only a qPCR instrument, 
it has great potential for use as a routine 
tool for diagnostics by reporting multiple 
gut microbial markers in a single-tube 
multiplex reaction within a working day. 
A schematic outline of LAD is provided 
in Figure 1. 

We evaluated LAD both on pure 
cultures, and on infant gut microbiota. 
The rationale for investigating the infant 
gut microbiota is that their composition 
and development are well described by 
many studies [2–4], and that we can 

utilize an already designed and validated 
GA-map probe set [5]. Furthermore, the 
development of the gut microbiota 
during infancy is crucial for health later 
in life. However, large-scale validation 
studies are required before knowledge 
about the gut microbiota can be utilized 
in clinical practice.

We present results demonstrating 
the sensitivity and specificity of LAD, in 
addition to exemplifying its utility on a 
medium-scale clinical cohort.

Taken together, LAD is a promising 
method, filling the need for large-scale 
gut microbiota validation tools.

MATERIALS & METHODS
Template generation for labeling 
probes labeling
We used genomic DNA extracted from 18 
different bacterial isolates for PCR ampli-
fication. These strains represented 
targets for one or more labeling probes 
(LP), thus the purpose was to use them 
for validation of specificity and reproduc-
ibility of our assay. The chosen bacteria 
were: Gemella sanguinis, Escherichia coli, 
Salmonella bongori, Salmonella enterica, 
Salmonella typhimurium, Klebsiella 
pneumoniae subsp. Pneumonae, Strepto-
coccus pyogenes, Streptococcus 
pneumoniae, Salmonella enterica subsp. 
Enterica, Bacteroides vulgatus, Bacteroides 
fragilis, Bacteroides dorei, Staphylococcus 
aureus subsp. Aureus, Staphylococcus 
aureus, Bifidobacterium breve, Bifidobac-
terium longum, Enterococcus faecalis and 
Streptococcus sanguinis.

In addition, DNA extracted from 
541 PACT (Prevention of Allergy 
Among Children in Trondheim) study 
stool samples was utilized in PCRs to 
generate the templates for LP labeling. 
These samples were collected from 
pregnant mothers and their children at 
up to several post-birth ages. Their 
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distribution was as following: 110 were 
collected from pregnant mothers, 122 from 
children up to 10 days old, 126 samples 
from 4-month-old children, 89 samples 
from 1-year-old children, and 94 from 
2-year-old children. We used gDNA that 
was already extracted. The extraction 
protocol can be found in the Materials and 
Methods section of Vebø et al. (2011) [5].

A total reaction volume of 25 μl 
comprising 1 μl bacterial lysate as a 
source of DNA template, 0.05 U HOT 
FIREPol® DNA Polymerase, 1X B1 buffer, 
2.5 mM MgCl2 (all from Solis Biodyne, 
Estonia), 0.2 mM dNTPs (Thermo Fisher 
Scientific, MA, USA), 0.2 μM sense 
primer (Mangala F-1, 5’-TCCTACGGGAG-
GCAGCAG-3’), and 0.2 μM antisense primer 
(16SUR, 5’-3’ CGGTTACCTTGTTACGACTT) 
was designed to amplify a segment of 
16S rRNA gene. PCR amplification was 
initiated with a period of 15 min at 95°C to 
activate the DNA polymerase, followed by 
30 cycles, each consisting of 30 s denatur-
ation at 95°C, 30 s annealing at 55°C and an 
80 s elongation at 72°C performed using 
an Applied Biosystems Veriti™ Thermal 
Cycler (Life Technologies, CA, USA). A 
final elongation step of 7 min at 72°C was 
also included. The amplified products were 

treated with 2.4 U of Exonuclease I (ExoI, 
Biolabs Inc., MA, USA) and 6.4 U of shrimp 
alkaline phosphatase (USB Corporation, 
OH, USA) prior to incubation at 37°C for 
120 min, and at 80°C for 15 min.

Single nucleotide extension of the LPs
A total reaction volume of 15 μl comprising 
5 μl Exo-SAP-treated template (or water as 
‘no template’ control), LPs at a final concen-
tration of 0.1 μM, 0.8 μM ddCTP-ATTO612Q 
(Jena Biosciences, Germany), 20 μM ddTTP, 
1 mM MgCl2, 1XC buffer and 0.25 U HOT 
TERMIPOL® DNA Polymerase (all from Solis 
Biodyne, Estonia) was prepared. Labeling 
reactions were performed using an Applied 
Biosystems Veriti™ Thermal Cycler, 
employing an activation step at 95°C for 
12 min, followed by 40 cycles, each 
consisting of 96°C denaturation for 20 s and 
60°C annealing/elongation for 40 s.

Melting curve analysis
5’ fluorescently labeled reporter probe(s) 
(RP) were added to the LP labeling reactions 
at a final concentration of 0.005 μM each, 
with the exception of RPs 1_1 RP ROX, 
1_2_2 RP ROX, 6_2_2 RP HEX, 6_1_4 RP 
HEX and 2_4_1 RP FAM, which had a final 
c oncentration of 0.02 μM each; reagent S, 

available from INN (Inland Norway 
University of Applied Sciences, Norway), 
was also added to a final concentration of 
0.1%. The melting curve analysis was 
performed using a 7500 Fast qPCR 
instrument (Applied Biosystems, USA) with 
the following dissociation steps: 95°C for 
15 s, 30°C for 1 min, 95°C for 15 s and 60°C 
for 15 s. Fluorescence was detected and 
expressed in dissociation curves as the 
derivative of the fluorescence versus 
temperature measurements (dF/dT) versus 
temperature (Temp.). Positive signals were 
observed as negative peaks, representing 
the abrupt, temperature-dependent drop of 
fluorescence.

Extraction of peaks & determination of 
positive signals for clinical samples
For the sake of simplicity, all data were multi-
plied by −1 since originally, positive LAD 
signals have negative values.

Fluorescence values were extracted 
from temperature measurements where 
quenching signals were expected (e.g., the 
fluorescence value at 67.7°C on HEX 
channel, where UNI probe was designed 
to quench). In addition, such values were 
extracted from 5 no template controls (NTC), 
with the aim of determining the borderline 

Reports

Figure 1.  An overview of liquid array diagnostics (LAD) method. The initial step includes PCR amplification of 16S rRNA gene, where each LP is targeted. 
If the target DNA is present, LPs become labeled with a ddCTP conjugated with a quencher molecule. Subsequently, fluorophore-labeled RPs comple-
mentary to LPs are added into the solution mix. Upon duplex formation, at a specific melting temperature, the fluorescence of the reporter decreases 
abruptly. Multiple targets can be detected in a single-tube reaction by combining different duplex melting temperatures and fluorophore colors. In the 
last step, the derivative fluorescence units (FU) are extracted from each temperature where signals are expected for further data processing. 
LP: Labeling probe; RP: Reporter probe.
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separating positive signals from background 
f luorescence. First, we calculated the 
distance of the observed positive signals 
from the mean background fluorescence 
using a standard Z-score. Following that, 
the margin separating the signals from the 
background was assigned to be the mean 
value of NTC plus two-times its standard 
deviation (μ+2Σ).

However, a different approach was used 
to assign positive signals for 5_1_2. Consid-
ering that there is a tight melting temper-
ature (Tm) range separating 5_1 from 
5_1_2 signals, using the above-mentioned 
formula would report false-positive signals 
for Staphylococcus (5_1_2 probe) since the 
fluorescence measurements at 55.8°C, 
where 5_1_2 is designed to quench, are 
interferingly high for each sample where 5_1 
is truly quenched (50.8°C). Thus, fluores-
cence values at 55.8°C were extracted from 
eight random samples where only 5_1 was 
observed to give signal. The mean value 
of these samples was added with three 
standard deviations (μ+3Σ), which was 
used as a margin to separate the bona fide 
Staphylococcus signals. All data values 
higher than the margins were accepted as 
positives.

Probe design
The probes, designed by Genetic Analysis 
AS [5], were used as LPs (Table 1), whereas 
the RPs were designed to be comple-
mentary to the LPs, so that they create 
duplexes that dissociate at a chosen 
temperature. Each probe has a code 
identifier (for example 1_1 for Bacteroides), 
originally used in Vebø et al. (2011) [5]. The 
Tm of the probes was calculated by the 
Oligoanalyzer 3.1 web-based bioinfor-
matics tool (Integrated DNA Technologies) 
and target Tms were achieved by varying 
the length of the RPs.

The reporter probes were designed to 
anneal to the 3’-end of each respective 
labeling probe, thus placing the fluoro-
phore, coupled to the terminal 5’nucleotide 
of the RP, in close physical proximity to the 
quencher molecule located at the 3’ end 
of the labeled LP. The list of the reporter 
probes is presented in Table 2.

Comparison of LAD-based results with 
Illumina sequencing data
87 random PACT samples (34 samples of 
children up to 10-days old, 15 of 4-month-
olds, 15 of 1-year-olds, 12 of 2-year-olds and 
11 of pregnant women) were picked to be 

sequenced with an Illumina MiSeq System 
(Illumina, CA, USA). The purpose of this step 
was to confirm the identities of samples and 
compare them with the results obtained with 
the LAD assay, by performing in silico 
labeling of the reads. In silico labeling was 
performed by textual mapping of the ‘labeled’ 
LPs to the operational taxonomic unit (OTU)
DNA sequences retrieved by Illumina, using 
the Sequence Manipulation Suite: Primer 
Map tool [6]. All OTUs that were detected by 
the same probe were grouped together and 
their number of reads was summed up for 
each sample. The total number of such reads 
was then compared with the LAD signal 
intensity for the said probe. Prior to doing 
so, LAD data were normalized so that any 
number below the cut-off value would be 
equal to zero.

To calculate the specificity and sensi-
tivity, we performed a receiver operator 
characteristic (ROC) curve analysis (MedCalc 
Software, Ostend, Belgium), which plots the 
true positive signals (as determined with 
LAD) against the false positives for different 
cut-off points (the number of Illumina reads). 
This helped find the optimum copy number 
of target sequences that can be detected 
using our method.

Table 1. Probes designed by Genetic Analysis AS for GA-map® array, used as labeling probes by liquid array 
diagnostics.

Probe identifier Taxonomic group(s) detected Probe sequence (5’–3’)
1_1 Bacteroides TTGCGGCTCAACCGTAAAATTG

1_2_2 Bacteroides (dorei, fragilis, thetaiotaomicron, vulgatus) GCACTCAAGACATCCAGTATCAACTG

2_1_min1b Gamma-proteobacteria CAGGTGTAGCGGTGAAATGCGTAGAGAT

2_3_2 Gamma-proteobacteria subgroup CGGGGATTTCACATCTGA

2_4_1 Gamma-proteobacteria subgroup TGCCAGTTTCGAATGCAGTT

4_1 Firmicutes (Lactabacillales, Clostridium perfringens, Staphylococcus) CGATCCGAAAACCTTCTTCACT

4_4_2 Enterococcus, Listeria TCCAATGACCCTCCC

4_5_2 Streptococcus pyogenes GATTTTCCACTCCCACCAT

4_6_1 Streptococcus sanguinis CACTCTCACACCCGTT

4_8_1 Streptococcus pneumoniae, Entrococcus CGCGGCGTTGCTCGGTCAGACTT

5_1 Firmucutes (Clostridia, Bacillales, Enterococcus, Lactobacillus) GGACAACGCTTGCCAC

5_1_2 Staphylococcus CGTGGCTTTCTGATTAGGTA

6_1_4 Bifidobacterium longum TGCTTATTCAACGGGTAAACT

6_2 Actinobacteria CGTAGGCGGTTCGTCGCGT

6_2_2 Bifidobacterium breve CGGTGCTTATTCGAAAGGTACACT

UNI01 16S Universal CGTATTACCGCGGCTGCTGGCA
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Subsequently, for each probe, the 
numbers of the Illumina reads lower than 
LAD detection limit were equated to zero, 
to test the correlation of the positive signals 
using Spearman’s Rho test.

Statistical analysis
Minitab Release 15.1.1.0 (Minitab Inc. 2007) 
was used to perform Student’s t-test to 
compare the differences on quenching 
strength (fluorescence mean value) between 
cohorts. For the sake of illustration, the data 
were normalized so that the cut-off value 
equals zero. In addition, the differences 
regarding the prevalence of positive signals 
were analyzed by using Pearson’s 
chi-squared test.

RESULTS & DISCUSSION
Optimization of the LAD-based  
microbiota detection assay
Based on pure cultures, we first adjusted the 
level of probes present in the reaction in 
order to achieve high signal-to-noise ratios. 
A detailed description of the experimental 
setup used in the evaluation is provided in 
Supplementary  Figures S1, S2 and S3. This 
process was performed empirically (see 
supplement for details), resulting in an assay 
that was capable of reporting 15 distin-

guishable signals in a one-tube multiplex 
reaction, consisting of probes reported in 
Table 1. The signals for each of our probes, 
besides 6_2 duplex, were at least two 
standard deviations above the average value 
of no target reactions, which represented 
the background noise (Z>2), with a 
p-value < 0.02 (Table 3).

The initial evaluation of the assay perfor-
mance was based on comparisons between 
experimental and theoretical signals, derived 
from Vebø et al. (2011) [5]. This analysis 
showed that the accuracy and specificity 
of probes was very high, reporting only the 
target strains in reactions holding individual 
bacteria or defined bacteria mixtures (Figure 
2).

Comparison of LAD-based microbiota 
assay with Illumina sequencing
To compare LAD with the output of Illumina 
sequencing, we sequenced 87 clinical 
samples, then performed in silico labeling of 
the retrieved sequences for the nine probes 
covered by the sequencing amplicon. Subse-
quently, for each probe we compared LAD 
signals with the number of sequence copies 
that acted as a template during  in silico 
labeling. Specifically, we performed ROC 
curve analysis for each probe to determine 

accuracy of classification, and to determine 
limit of detection for the LAD assay. For most 
of the probes the accuracy of detection, 
i.e. the number of correct predictions, was 
high (>80%). The detection limit for the 
probes was between 0.2 and 2%, as deter-
mined by the percentage of Illumina 
sequencing reads detected. Furthermore, 
there was a significant quantitative corre-
lation between Illumina read counts and LAD 
signals (p < 0.05), with Spearman’s rho 
ranging between 0.45 and 0.86 for all the 
probes (Table 4).

Use of LAD to genotype clinical samples
The verified assay was used to probe the 
microbiota composition from 541 PACT 
study fecal samples from infants and their 
mothers.

The highest number of positive signals 
was reported for 5_1 and 6_2_2 probe 
duplexes, designed to detect Firmicutes 
and Bifidobacterium breve, respectively. 
Overall, the results showed that in terms 
of prevalence, there is overrepresen-
tation of gammaproteobacteria and 
Enterococcus/Listeria in 4-month-old 
children, Bacteroides at 2-years old, Bifido-
bacterium at 4 months and Staphylococcus 
in 10-day-old children (Figure 3). 

Table 2. Reporter probe sequences.

Reporter probe 5’–3’ sequence
1_1 RP ROX /56-ROXN/TTTCAATTTTACGG

1_2_2 RP ROX /56-ROXN/TTTCAGTTGATACTGG

2_1_min1b RP ROX /56-ROXN/TATCTCTACGCATTTCACCGCTACA

2_3_2 RP ROX /56-ROXN/TTTCAGATGTGAAATCCC

4_1 RP CY5 /5CY5/TTTAGTGAAGAAG

4_5_2 RP CY5 /5CY5/TATGGTGGGAGT

4_8_1_RP2_CY5 /5CY5/TAAGTCTGACCGAGCAACGCCGC

4_6_1 RP CY5 /5CY5/TTAACGGGTGTGAGAGTG

2_4_1 RP FAM /56-FAM/TAACTGCATTC

4_4_2 RP FAM /56-FAM/TTTGGGAGGGTCAT

5_1 RP FAM /56-FAM/TTTGTGGCAAGCGTTG

5_1_2 RP FAM /56-FAM/TTACCTAATCAGAAAGCCACG

6_2 RP HEX /5HEX/TTTTACGCGACG

6_2_2 RP HEX /5HEX/TTAGTGTACCTTTCG

6_1_4 RP HEX /5HEX/TTAGTTTACCCGTTGAAT

UNI01 RP HEX /5HEX/TTGCCAGCAGCCGCGGTAATACG



 No. 03 | Vol. 66 | © 2019 Pranvera Hiseni 147

The signal strength for S. pyogenes and 
S. sanguinis had a peak in 1-year-old children, 
while the strongest signals for S. pneumoniae 
were in 10-day-old children.

There was no significant change in 
prevalence for the probe detecting a group 
of species within Firmicutes (5_1 probe, 
detecting for Clostridia, Bacillales, Entero-
coccus and Lactobacillus); however, the 
signal strength showed an increase parallel 
with age. The opposite was observed for 
the other Firmicutes probe, 4_1 (detecting 
for Lactobacillus, C. perfringens and Staph-
ylococcus), which had a decrease both on 
prevalence and signal strength in older 
children.

Use of LAD for rapid detection of 
microbial communities
Here we present LAD, a novel technique that 
combines single-nucleotide-extension of the 
probes with HRM analysis. Compared with 
existing tools for microbiome testing, 
LAD-based tests are simpler to perform, are 
cheaper as they do not require expensive 
instrumentation and reagents, and yield 
results faster, within a working day.

Our method does not require a dedicated 
instrument that would solely be used for 
LAD-based tests. It requires real-time 
PCR instrumentation, which is widely and 
commonly used in most laboratories. In 
comparison with other real-time PCR-based 
approaches, it offers a higher level of 
m ultiplexity per well, few reagents and 
short hands-on time, satisfying the actual 
need of detecting a relatively low number 

of markers (<50) in a very large number of 
samples.

LAD represents a highly reproducible 
method. Initially, the designed probes 
undergo a process of validation for their 
specificity, which ensures that all probes 
become labeled only when their target 
is present in the reaction. Further on, 
each labeled probe is tested to ensure it 
hybridizes only with its corresponding 

Table 3. Probe signal-to-noise ratios.

Probe Average of positive 
signals (μ1)

Average of NT  
signals (μ2)

NT standard  
deviation (Σ) Z-score((μ1 - μ2)/ Σ) p-value

6_2 −287.5 70.4 87.9 −4.1 >0.99

UNI01 1704.1 −331.1 58.2 34.9 <0.0002

6_2_2 723.8 −91.2 121.8 6.7 <0.0002

6_1_4 2022.9 −7.2 95.9 21.2 <0.0002

4_1 −537.4 −2599.6 896.6 2.3 0.01

4_5_2 −446.3 −2398.5 826.1 2.3 0.01

4_6_1 −364.9 −2013.9 816.4 2.0 0.02

4_8_1† N/D   N/D N/D

1_1 2062.9 −569.1 421.3 6.2 <0.0002

1_2_2 2010.5 −336.4 106.5 22.0 <0.0002

2_3_2 2230.5 −326.5 234.0 10.9 <0.0002

2_1_min1b 1865.0 −473.9 83.4 28.0 <0.0002

2_4_1 117.9 −836.5 365.8 2.6 0.0047

4_4_2 1251.5 −801.7 198.5 10.3 <0.0002

5_1 1355.9 −1021.1 109.9 21.6 <0.0002

5_1_2 2286.7 −515.5 520.8 5.4 <0.0002

†The fluorescence values for 4_8_1 probe duplex were not determinedbecause we lacked the DNA template.
N/D: No data; NT: No template.

 

Figure 2.  Evaluation of LAD probe accuracy and sensitivity. All signals that were at least two 
standard deviations away from the background fluorescence were accepted as positives. Tests on 
individual bacterial strains or defined mixtures of bacteria showed identical results for the correct 
targets on both platforms, GA-map® (left) and LAD (right). No false-positive signals, reporting 
nontargets, were registered with LAD.
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reporter probe, thus avoiding false-
positive signals being generated in the 
presence of a nontarget probe.

The addition of a synthetic quencher-
and-fluorophore-labeled duplex (designated 
Tm and detection channel) into the master 
mix will provide the basis for a well-to-well 
data normalization, ensuring reproducibility.

For this study, we chose to adopt probes 
designed by Genetic Analysis AS [5], consid-
ering that their platform, GA-map, is an 
already validated method based on single 
nucleotide extension. Results obtained with 
GA-map served as a reference and allowed 
us to evaluate the overall performance of 
LAD. We found highly comparable probe 
specificities using the two technologies, 
suggesting the transferability of GA-map 
probes to LAD detection.

Our results on the clinical dataset show 
that there is a rapid decrease of staphy-
lococci from 10-day- to 4-month-old 
children, and a peak of bifidobacteria at 
the age of 4 months, which is in full accor-
dance with the previous findings made 
with GA-map [5]. However, we identified 
a peak of Bacteroides in 2-year-old 
children, whereas Vebø et al. (2011) [5] 
found that Bacteroides were overrepre-
sented in 4-month-old children. This may 
be explained by the fact that we did not 
test an identical set of samples, since an 
increase of Bacteroides in older children 
has already been described from many 
other papers in the literature [7,8].

In addition, we compared our assay with 
the outcome of Illumina MiSeq sequencing, 
which demonstrated a high classification 

accuracy and low detection limit for 
LAD, providing evidence of its sensitivity. 
The quantitative comparisons, however, 
showed some more deviations between 
the two platforms. Unfortunately, we could 
not Illumina-sequence the ∼1200 bp PCR 
fragment analyzed with LAD due to the 
300-bp limitation in Illumina read-length 
chemistry, which could potentially explain 
the differences between the two sets of 
results.

Numerous gut microbial markers that 
are linked with many disorders such as 
obesity [9–11], diabetes [11–13], multiple 
sclerosis [14,15] or irritable bowel syndrome 
[1,16] have already been described, but 
these have not yet been clinically validated 
in large-scale multicenter studies. With its 
main advantage of being very cheap, rapid 

Table 4. Evaluation of the diagnostic ability of liquid array diagnostics-based tests.

Probe 2_4_1 5_1 5_1_2 1_1 1_1_2 2_3_2 2_1_min1b 4_1 4_8_1
Detection limit (%) 0.8 0.4 1.2 2.4 0.1 1.1 0.4 0.022 0.002

Sensitivity (%) 90 91.9 93.3 84.8 82 85 65.5 62.7 69.2

Specificity (%) 92.1 76.9 95.8 91.7 65.5 83 86.2 85.7 68.9

Spearman’s Rho 0.74 0.82 0.86 0.81 0.57 0.72 0.66 0.65 0.45

Figure 3. Signal strength and prevalence of positive signals. Significant differences, that here are depicted with *, were observed between groups for 
most of the probes.
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and simple, in addition to being an accurate 
method, LAD will offer this possibility.

We acknowledge the limitations of 
our method regarding systems where the 
microbiome composition is complex, unpre-
dictable and constantly shifting. Building 
a LAD assay de novo is best conducted in 
systems with relatively low complexity, 
where the knowledge regarding the micro-
biome composition is already described, 
such as is the case with gut microbiota. A 
well-defined composition is a prerequisite 
towards designing targeting probes.

Here, we used 15 different probe 
duplexes, which were designed to utilize four 
channels of detection and at least three Tms 
per channel. By using a qPCR machine with 
six channels of detection and exploiting at 
least six resolvable Tms per channel, the 
multiplex level can be elevated to at least a 
36-plex. Thus, the possibility of multiplexing 
is limited by the instrument, and not by LAD 
technology in itself.

In conclusion, we believe LAD will fulfill 
the need for assays able to detect up to 
50 biomarkers, where high throughput is 
essential. This will particularly relate to 
human gut microbiota markers related to 
health and disease.
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Abstract

Background: A major bottleneck in the use of metagenome sequencing for human gut microbiome studies has
been the lack of a comprehensive genome collection to be used as a reference database. Several recent efforts
have been made to re-construct genomes from human gut metagenome data, resulting in a huge increase in the
number of relevant genomes. In this work, we aimed to create a collection of the most prevalent healthy human
gut prokaryotic genomes, to be used as a reference database, including both MAGs from the human gut and
ordinary RefSeq genomes.

Results: We screened > 5,700 healthy human gut metagenomes for the containment of > 490,000 publicly
available prokaryotic genomes sourced from RefSeq and the recently announced UHGG collection. This resulted in
a pool of > 381,000 genomes that were subsequently scored and ranked based on their prevalence in the healthy
human metagenomes. The genomes were then clustered at a 97.5% sequence identity resolution, and cluster
representatives (30,691 in total) were retained to comprise the HumGut collection. Using the Kraken2 software for
classification, we find superior performance in the assignment of metagenomic reads, classifying on average 94.5%
of the reads in a metagenome, as opposed to 86% with UHGG and 44% when using standard Kraken2 database. A
coarser HumGut collection, consisting of genomes dereplicated at 95% sequence identity—similar to UHGG,
classified 88.25% of the reads. HumGut, half the size of standard Kraken2 database and directly comparable to the
UHGG size, outperforms them both.

Conclusions: The HumGut collection contains > 30,000 genomes clustered at a 97.5% sequence identity resolution
and ranked by human gut prevalence. We demonstrate how metagenomes from IBD-patients map equally well to
this collection, indicating this reference is relevant also for studies well outside the metagenome reference set used
to obtain HumGut. All data and metadata, as well as helpful code, are available at http://arken.nmbu.no/~larssn/humgut/.
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Introduction
Significant efforts have been undertaken to characterize
the human gut microbiome, both by microbe isolation
and DNA sequencing [1]. A major contribution has also
been made by de novo-assembled genomes (Metagen-
ome-Assembled Genomes—MAGs), facilitated by the
latest advances in bioinformatics tools [2–6]. As a wrap,
a Unified Human Gastrointestinal Genome (UHGG) col-
lection comprised of > 200,000 non-redundant reference
genomes was recently announced [7], marking a major
milestone in this field.
These studies have laid a solid foundation, identifying

a vast variety of genomes encountered in human guts.
However, none of them addresses the global prevalence
of genomes within healthy people, i.e., providing infor-
mation about their frequency of occurrence. This know-
ledge is essential for setting up a collection of human
gut-associated prokaryotic genomes that reflects the
worldwide healthy human gut microbiome. It is espe-
cially important for building custom databases intended
to be used for comparative studies in human gastrointes-
tinal microbiome research.
Regionally, studies have shown that the intestinal flora

is greatly shaped by the environment [8] and that its
composition can be linked to a range of diseases and dis-
orders [9–12]; thus, we are now at a stage where gut
microbiota therapeutic interventions are being intro-
duced [13, 14]. However, the lack of a global reference
for the intestinal flora in healthy humans represents a
bottleneck [15]. This impedes both the understanding of
gut microbiota on a worldwide scale and the introduc-
tion of large-scale intervention strategies.
The aim of this work was to create a single, compre-

hensive genome collection of gut microbes associated
with healthy humans, called HumGut, as a universal ref-
erence for all human gut microbiota studies. We utilized
the UHGG collection, mentioned above, along with the
NCBI RefSeq genomes. The strategy of building Hum-
Gut is outlined in Fig. 1.
HumGut genomes are ranked by their containment in

healthy human gut metagenomes collected worldwide. The
most commonly encountered genomes (i.e., top-ranked on
the list) were selected as taxa representatives during derepli-
cation, securing thus a list of those most relevant.
While it may seem like a relatively simple concept, this

work has only become possible with the recent development
of bioinformatics tools that allow the swift screening of pub-
licly available human gut metagenomes for the containment
of the ever-growing pool of prokaryotic genomes.

Results
Reference metagenomes
More than 5,700 gut metagenome samples collected
from healthy people of various ages worldwide were

downloaded. These belonged to 72 different BioProjects.
To avoid the bias of containing groups of highly similar
samples, we computed the MASH distance between meta-
genomes within each BioProject, then clustered samples
with ≥ 95% sequence identity. From each cluster, we only
kept the medoid sample, resulting thus in a collection of
3,534 healthy human gut metagenomes (Fig. 2a).
On average, samples within each project shared a 90%

sequence identity (D = 0.1), indicating a relatively high
degree of similarity between one another. There were
some outliers, however. Some infant samples (10 belong-
ing to PRJNA473126 project and 1 to PRJEB6456), 10
samples from a project studying the human gut micro-
biome of vegetarians, vegans, and omnivores
(PRJNA421881), and a sample from a study focusing on
microbiome diversity among Cheyenne and Arapaho of
Oklahoma (PRJNA299502), showed the highest dissimi-
larity with at least one other sample from the same pro-
ject (D = 1) (Fig. 2b).
We wanted to see if samples clustered based on their

continent of origin (Fig. 2c). To do so, we computed the
average linkage hierarchical clustering of BioProjects.
The distance between two BioProjects is the mean pair-
wise distance between all their samples. Here, we also
included a BioProject containing primate gut metagen-
ome samples (n = 95) as an outgroup against which all
human BioProjects were compared. The lowest and
highest observed average MASH distances (D = 0.05,
and D = 0.14, respectively) were between two sets of
projects stemming from separate continents each, one
from Europe and the other from North America. These
observations, together with the mixed distribution of
BioProjects in the cluster dendrogram, suggested that
the clustering of samples did not heavily depend on
continent-of-origin. The primate samples were markedly
separated from the rest of the tree, showing an average
distance of 0.22 from all other BioProjects.

From genomes to HumGut collection
The majority of genomes stemming from the UHGG
collection (99%) and 48% of RefSeq genomes qualified
for inclusion in HumGut, resulting thus in a total collec-
tion of 381,779 genomes (Fig. 3a). The qualified ge-
nomes were contained within at least one reference
metagenome. We inferred the containment by comput-
ing sequence identity between genomes and metagen-
omes using MASH screen, and considered a genome as
contained when identity was ≥ 0.95.
By applying a rarefaction, we found that the number

of new genomes saturated after screening for ca. 1,000
metagenomes, indicating that with > 3,500 metagenomes
very few new genomes will be added if screening even
more metagenomes from the same population (supple-
mentary material, Figure S1).
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The most prevalent genomes, i.e., the genomes con-
tained in most metagenomes, belonged to the genus
Bacteroides, led by B. vulgatus (also known as Phocaei-
cola vulgatus), found in more than 70% of samples. It is

worth noting that the UHGG collection contained no
genome with this species name. The genomes are named
as Bacteroides dorei instead. We presume that is related
to an earlier GTDB database release used for genome

Fig. 1 HumGut overview. HumGut represents a collection of genomes and MAGs contained in 3,534 healthy human gut metagenomes. To be
considered as contained, a genome shared at least 0.95 sequence identity with at least one of the metagenomes (inferred by the number of
shared hashes). The qualified genomes were scored based on the average sequence identity across all the metagenomes. Next, they were ranked
based on their scores: the higher the score, the higher the position on the list. Subsequently, the genomes were clustered based on MASH and
fastANI distance (D). The top-ranked genome formed a cluster centroid. Around 30,600 clusters were formed applying a D = 0.025-threshold. The
use of HumGut as a reference set helps the process of taxonomic assignments by drastically reducing the number of unclassified human gut
metagenomic reads
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taxonomic classifications by Almeida et al. (GTDB-Tk
v0.3.1; database release 04-RS89) [7]. In the current ver-
sion of GTDB, the species Phocaeicola vulgatus is listed.
We performed clustering of genomes based on se-

quence similarity using the top-ranked genome as a
cluster centroid for each iteration. We initially applied
an ANI threshold of 97.5% to compile a HumGut collec-
tion of highest resolution (HumGut_97.5). This collec-
tion resulted in 30,691 genomes with ≥ 50% genome
completeness and ≤ 5% contamination. They were all

given a GTDB-Tk taxonomic annotation [16] as well as
an NCBI taxonomy assignment.
These genomes were subsequently clustered further to

form a coarser collection at 95% identity, the HumGut_
95 with 5,170 genomes. This corresponds roughly to
species resolution [17].
Looking into genome sources, we found that 9% of

HumGut_95 clusters were RefSeq-only genomes (Fig.
3c). These genomes, 756 in total, clustered into 460
HumGut_95 clusters, belonged to 125 different genera.

(See figure on previous page.)
Fig. 2 An outline of the metagenomes used in this study. a The geographical, age, and gender distribution of 3,534 metagenomes collected
from healthy people. b Boxplots illustrating the distribution of MASH distances between samples within each BioProject. The BioProject accession
is used as a label, and the color gradient indicates the size, i.e., the number of samples in each. c Average linkage hierarchical clustering of 72
BioProjects containing healthy samples. BioProjects containing samples from different continents are presented separately. Labels indicate the
continent of origin: EU—Europe, AS—Asia, NA—North America, AS—Australia, AF—Africa, SA—South America, and P stands for Primates. Except
for the single primate BioProject (BioSample), each BioProject is listed in colored font according to the continent from which it originates. No
severe clustering of samples based on origin is detected

Fig. 3 An overview of the genomes used to build HumGut. a The pie charts show the proportion of genomes from each collection (UHGG
above, RefSeq below) included in HumGut. To qualify for HumGut inclusion, genomes had to have at least 0.95 MASH screen identity with at
least one healthy metagenome, as did most of the UHGG and half of the RefSeq genomes. Histograms show the distribution of the mean
identity shared between the qualified genomes and healthy metagenomes. A high average identity means that the qualified genome has been
found contained in most of the screened samples. b The genome sources for HumGut clusters. The upper pie chart shows data for 30,691
clusters belonging to HumGut_97.5 (genomes grouped based on 97.5% genome sequence identity); the bottom one presents data for 5,170
HumGut_95 clusters (95% sequence identity—species level threshold). The majority of clusters in both HumGut collections are comprised of only
UHGG genomes, while 6% and 9% of the clusters consist of only RefSeq genomes (HumGut_97.5 and HumGut_95, respectively)
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Most of the genomes (299 in total) belonged to various
Streptococcus species.

HumGut genome clusters
Not all species-level clusters were equally diverse, that is,
not all of them encompassed a similar number of Hum-
Gut_97.5 clusters. The majority of HumGut_95 clusters
(3,009 out of 5,100) consisted of a single HumGut_97.5
cluster. On the other hand, the most diverse HumGut_
95 cluster was one built of 533 different HumGut_97.5
clusters, all named as Agathobacter rectalis with GTDB
taxonomy ([Eubacterium] rectale ATCC 33656 with
NCBI). It was followed by a group of 495 clusters of
97.5% sequence identity, consisting of various Collin-
sella-related species names, and a HumGut_95 cluster
comprised of 400 different HumGut_97.5 clusters, all
GTDB-named as UBA11524 sp000437595, and NCBI-
named as Faecalibacterium sp. CAG:74.
Regarding taxonomy, many genomes were not given

species names by GTDB, rather they were named after
the genus, family, order, or class they belong to. Simi-
larly, the NCBI taxonomic annotations for many ge-
nomes resulted in ambiguous names not specific to
species, such as for example uncultured bacterium or
Firmicutes bacterium. This contributed greatly in a dis-
crepancy between the total number of species-level clus-
ters (5,170 clusters in HumGut_95) and the total
number of distinct cluster names (3,310 GTDB names,
1,716 NCBI names).
There were also many species-level clusters that

shared the same species name. This was especially the
case with various Collinsella clusters, where 81 different
GTDB Collinsella species gave name to 7 different clus-
ters each, on average. Comparably, 19 NCBI Collinsella
species were seen in 44 different clusters on average.

Classifying the metagenome reads
We used the HumGut collection at both resolutions, in
addition to the UHGG (species-level collection, contain-
ing 4,644 genomes) and the standard Kraken2 database,
to classify the metagenomic reads from the 3,534 down-
loaded samples. On average, there were 56% unclassified
reads when using the standard Kraken2 database, while
the average dropped substantially when any one of the
HumGut or the UHGG collection was utilized (UHGG
= 14.1%, Humgut_95 = 11.7%, and HumGut_97.5 =
5.4%, Fig. 4a).
In comparison to the UHGG, both HumGut collec-

tions performed better. HumGut_95, a collection of
species-level representatives—much like the UHGG col-
lection—classified on average 2.3% more reads than the
latter. With HumGut_97.5 as a custom database, this in-
creased by 8.7%, marking a significant increase in

recognized reads, with an obvious potential for improved
classification accuracy.
Both HumGut k-mer databases were smaller than the

standard Kraken2 database of k-mers, necessitating re-
duced computer memory to perform the analyses. The
lowest memory was required by the HumGut_95 data-
base (Standard = 42.1 GB, UHGG = 20.9, HumGut_95 =
15.9 GB, HumGut_97.5 = 24.9).
Analysis of an additional 963 gut metagenome samples

(collected from people suffering from IBD), not part of

Fig. 4 The performance of HumGut versions in comparison to the
standard Kraken2 database and UHGG collection. a. The boxplot
shows the distribution of unclassified reads for the 3,534 analyzed
healthy reference metagenome samples. The dashed line represents
the k-mer database sizes (right y-axis). Every database version
includes standard human genome sequences, in addition to
database-specific (sub)sets of bacteria and archaea, and the
difference in size is only due to differences in the latter. b The
classification of an additional 963 human gut metagenomes, not
part of the reference set
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the reference set, showed similar results regarding the
number of classified reads: 42.3% unclassified reads on
average when the Standard database was used, dropping
to 12.5%—UHGG, 11.8%—HumGut_95, and 6.2% with
HumGut_97.5 usage (Fig. 4b).
In comparison to UHGG, > 92% of samples from both

datasets individually (healthy and IBD), had a higher
number of classified reads with HumGut_95.
In addition to classification with Kraken2, we mapped

the reads of 72 random healthy samples (one sample
from each BioProject) using Bowtie2. We wanted to
have an approximation of how well the results from a
full-length-alignment approach corresponded to those of
a k-mer-based algorithm. For this example, we only built
UHGG and HumGut_95 indexes. On average, 20.5% of
the reads were left unmapped with UHGG, and 17.1%
with HumGut_95 (Supplementary material, Figure S2).
That is an increase of 8.3% and 7.5% for UHGG and
HumGut_95 correspondingly, compared to the results
retrieved with Kraken2 for the same samples.

Taxa abundances
We used the KrakenUniq as a means of identifying false
positive classifications, and removing them from the
Kraken2 reports. We then used the Bracken software on
the modified Kraken2 results, to re-estimate species
abundance in the classified human gut metagenomes.
These tasks were performed using HumGut_97.5 and
GTDB taxonomy.
The results showed that, on average, healthy adults

contained 202 species, people diagnosed with IBD, 145,
and infants, 79 species. The overall species number dis-
tribution is presented in Fig. 5a.
In total, 52 species were found present in > 70% of

healthy adult samples, led by Agathobacter rectalis,
Blautia_A sp900066165, Bacteroides uniformis, KLE1615
sp900066985, Agathobaculum butyriciproducens, and
Fusicatenibacter saccharivorans, discovered in > 90% of
healthy adult samples, representing a core community of
healthy adult human gut microbiota (Fig. 5b). A
complete hierarchical linkage of samples, computed
based on the abundance of these top 52 prevalent spe-
cies, showed that African and South American (coming
exclusively from Peru) metagenomes were more distant
from the rest, while two species were not encountered at
all in South American samples (Alistipes onderdonkii
and Lawsonibacter assacharolyticus). In addition, these
samples clustered more distantly from the others on a
PCA plot (built based on the readcounts from all spe-
cies), as depicted on Fig. 5c. The PCA loadings show
that Prevotella species were more abundant in South
American and African samples. In contrast, the Alistipes
and Bacteroides species and lay on the opposite side of
the plot, indicating a negative correlation to the former.

Infant samples separated from the adult samples as
well. They are represented with crosses instead of dots
on the PCA ordination plot, positioned on the leftmost
part of the graph along PC1 axis. The loading plot shows
that Escherichia coli species exercise the largest effect on
samples positioned there. The most prevalent bacterium
in infants was Bifidobacterium longum (68%), followed
by E. coli (64%).
Bacteroides vulgatus, which, after screening the meta-

genomes using the MASH screen software, was the spe-
cies of the top scoring genome, was no longer the most
prevalent species among healthy human guts when clas-
sifying with all HumGut genomes. This was due to a
lower diversity among B. vulgatus genomes, compared
to Agathobacter rectalis. The genomes belonging to the
former grouped into 2 species-level clusters (D = 0.05),
while the latter resulted in 16 such groups. It is worth
noting that we found the top B. vulgatus genome
present in 2,536 healthy samples using MASH screen,
and we found this species present in 2,537 healthy sam-
ples using Kraken2-KrakenUniq-Bracken classification
tools. These almost identical results, obtained by two
different sets of tools, increase confidence in the trust-
worthiness of these findings.
We also investigated the prevalence of species that

only had RefSeq as a genome source in our collection.
Streptococcus sanguinis was found present in 73% of all
samples (healthy infants and adults, and IBD), followed
by Flavonifractor sp002161085, Escherichia
sp005843885, Streptococcus sp001587175, Pauljensenia
sp000466265, Flavonifractor sp002161215, Actinomyces
naeslundii, Raoultella terrigena, and Mediterraneibacter
sp900120155 (found in 10-36% of samples).

Discussion
The HumGut collection contains 30,691 genomes
(HumGut_97.5), with a subset of 5,170 genomes clus-
tered at 95% sequence identity (HumGut_95). The cri-
terion for including a genome in HumGut was its
prevalence in healthy human gut metagenomes.
Both HumGut versions showed superior performance

in terms of assigned reads compared to the standard
Kraken2 database, while demanding far less computa-
tional resources, as presented in Fig. 4. In addition, the
species-level HumGut mapped more reads than UHGG
when Bowtie2 was tested in a small subset of healthy
samples. We consider this to be a strong argument in
favor of HumGut’s comprehensiveness and utility. Clas-
sifying a record-high proportion of classified reads per
sample, HumGut aids the accuracy of taxonomic classifi-
cation, which in turn facilitates a next-generation explor-
ation of the human gut microbiome.
The vast majority of UHGG genomes qualified for in-

clusion in HumGut, as shown in Fig. 3a. However, in
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comparison to the UHGG collection, HumGut holds the
advantage of containing more relevant human gut pro-
karyotic genomes in its pool, reflected by the additional
RefSeq genomes that showed no sequence similarity
with the qualified UHGG genomes, forming separate
clusters of 95% sequence identity (Fig. 3b). An example
of its utility is the discovery of Streptococcus sanguinis in

> 70% of all metagenome samples, which would otherwise
be impossible using the UHGG collection as a custom
Kraken2 database. Also, the identification of one of the
most prevalent species in human guts, Bacteroides vulga-
tus, would have been mistaken for Bacteroides dorei.
HumGut sets were built after ranking the genomes

based on their prevalence among metagenomes and
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using the top-ranked ones as cluster representatives.
This has ensured that the collections only contain ge-
nomes highly relevant to healthy human guts worldwide.
Comparing the HumGut_95 collection to the UHGG
collection (same resolution) shows that more metage-
nomic reads are classified for the former. Additionally,
its set of unique k-mers is 24% smaller in size than the
UHGG. This indicates the UHGG contains a higher gen-
omic diversity, requiring memory which is not really
needed for successful read classification. These are rare
genomes found in the occasional human gut metagen-
ome, but with low prevalence.
HumGut can serve as a global reference for bacteria

inhabiting the gut of healthy humans, highlighting its
importance for future gut microbiome studies and is
available for download (http://arken.nmbu.no/~larssn/
humgut/).
Our analysis showed that the diversity of gut samples

across the world is not profoundly affected by geography
(Fig. 2); therefore, having a global genome collection like
HumGut is reasonable.
However, we acknowledge that such a finding may be

confounded by the shared similarity of lifestyle choices
across people whose metagenomes were analyzed here.
We found 50 bacterial species present in more than

70% of the samples, regardless of the country of origin.
This group of species, led by Agathobacter rectalis, rep-
resents what we think is the core human gut bacterial
community (Fig. 5b). We must, however, cautiously refer
to A. rectalis as the most prevalent/abundant species
found in human gut samples. That because we found
this species to be highly diverse in sequence identity. In
our collection, we have 16 different species-level clusters,
and more than 530 clusters of 97.5% sequence identity
with this name.
We discovered that, on average, healthy adults contain

around 60 bacterial species more than IBD subjects, and
around 120 species more than healthy infants (Fig. 5a).
A low microbiome complexity among the latter two
groups is well documented in literature [18–22].
Although we found a great homogeneity of top preva-

lent species among healthy adults, our analysis showed
that samples originating from Africa and South America
were rich in Prevotella and poor in Bacteroides, which
made them cluster in our principal component analysis,
as depicted in Fig. 5c. A Prevotella-Bacteroides antagon-
ism and their correlation to lifestyle and diet have long
been described in literature [23, 24]. Our results are,
therefore, consistent with these findings.
We have demonstrated that HumGut is useful in

research that goes beyond studying healthy sub-
jects, exemplified by the equally high number of
classified metagenomic reads collected from IBD
subjects.

A challenge that remains is the nomenclature of spe-
cies in our genome collection. There is a profound in-
consistency between the total number of species-level
clusters and the total number of names annotating them
(a ratio of 1.5:1 with GDTB-based annotation, and 3:1
with NCBI names). We believe that as long as not all
names reflect species individuality, it will be difficult to
truly explore the composition differences between vari-
ous cohorts, in addition to posing a challenge in studies
linking functions to species. On our website, we have
prepared files for building a custom Kraken2 database
where all HumGut clusters also have been given artificial
“taxonomy IDs,” making it possible to classify to clusters
instead of taxa. We note that the decision regarding
which version the HumGut collection to employ de-
pends on users’ computational resources as well as the
level of taxonomic resolution required.
On another note, it is important to emphasize that the

microbiome composition results presented here are all
based on k-mer-based methods. It remains to be seen
how well these results compare to those from whole-
read-based alignment methods.
As future work, we will also extend our approach to

more disease-associated genomes and metagenomes, in
addition to screening for gut genomes that will expect-
edly be published in the future.

Conclusion
We believe that by using HumGut as a reference, the
scientific community will be one step closer to method
standardization sorely needed in the field of human gut
microbiome analysis, and that the discovery of potential
microbiome markers will be facilitated with higher
certainty in less time and computational resources.

Methods
Human gut reference metagenomes
A set of publicly available human gut metagenome sam-
ples was collected and used for ranking all genomes in
the search for human gut relevant ones. A text search
for all human gut microbiome samples at the Sequence
Read Archive (NCBI/SRA, https://www.ncbi.nlm.nih.
gov/sra) was performed. The list of hits was manually
curated, keeping only samples with > 1,000,000 reads
and annotated as healthy individuals. NCBI/BioProject
accessions of these projects were used to locate the same
data in the European Nucleotide Archive (EMBL-EBI/
ENA, https://www.ebi.ac.uk/ena), from which all samples
were downloaded as compressed fastq-files, using the
Aspera download system (https://www.ibm.com/
products/aspera). This resulted in 5,737 healthy meta-
genomes (samples) covering 74 BioProjects. For many
BioProjects, some samples tended to be very similar to
each other, presumably due to samples collected from
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individuals sharing the same lifestyle, geographical sub-
population, genetics, or other factors that may affect the
human gut microbiome. To avoid too much bias in the
direction of such heavily sampled sub-populations, sam-
ples from the same BioProject were clustered. From each
metagenome sample, a MinHash sketch of 10,000 k-
mers was computed using the MASH software [25], dis-
carding singleton k-mers (21-mers). Based on these
sketches the MASH distances between all pairs of sam-
ples were calculated. A MASH distance close to zero
means two samples are very similar, sharing most of
their k-mers. Next, hierarchical clustering with complete
linkage was computed, and samples were partitioned at
a 0.05 distance threshold, resulting in clusters with “di-
ameters” no larger than this chosen threshold. The
medoid sample from each cluster, i.e., the one with the
minimum sum of distances to all members of the clus-
ter, was retained as the reference sample representing its
cluster. This resulted in the set of 3,534 healthy meta-
genome samples. Below, we refer to this collection as
MetHealthy.
The same procedure was utilized to collect another set

of metagenomes from patients diagnosed with Inflam-
matory Bowel Disease (ulcerative colitis, or Crohn’s dis-
ease). From initially 2,064 metagenomes, the clustering
resulted in a collection of 963 metagenomes covering 14
BioProjects. This is the MetIBD collection. Finally, a set
of 95 samples containing gut metagenome data from pri-
mates was collected and used as an outgroup in a com-
parison of the human gut metagenomes. The
metagenomes’ metadata is included in the Supplemen-
tary Table 1.

Genome collections
The main source was the recently published Unified Hu-
man Gut Genomes (UHGG) collection, containing
286,997 genomes exclusively related to human guts:
http://ftp.ebi.ac.uk/pub/databases/metagenomics/
mgnify_genomes/human-gut/v1.0/all_genomes/. The
other source was NCBI/Genome, the RefSeq repository
at ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/
and ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/archaea/.
At the time of writing, ~204,000 genomes were down-
loaded from this site.
Metadata about the genomes considered and qualified

for HumGut are presented in Supplementary Table 2.

Genome ranking
Only metagenomes collected from healthy individuals,
MetHealthy, were used in this step. For all genomes, the
MASH software was again used to compute sketches of
1,000 k-mers, including singletons [26]. The MASH
screen compares the sketched genome hashes to all
hashes of a metagenome, and, based on the shared

number of them, estimates the genome sequence iden-
tity I to the metagenome. Given that I = 0.95 (95% iden-
tity) is regarded as a species delineation for whole-
genome comparisons [17], it was used as a soft threshold
to determine if a genome was contained in a metagen-
ome. Genomes meeting this threshold for at least one of
the MetHealthy metagenomes were qualified for further
processing. Then the average I value across all
MetHealthy metagenomes was computed for each gen-
ome, and this prevalence-score was used to rank them.
The genome with the highest prevalence-score was con-
sidered the most prevalent among the MetHealthy sam-
ples, and thereby the best candidate to be found in any
healthy human gut. This resulted in a list of genomes
ranked by their prevalence in healthy human guts.

Genome clustering
Many ranked genomes were very similar, some even
identical. Due to errors introduced in sequencing and
genome assembly, it made sense to group genomes and
use one member from each group as a representative
genome. Even without any technical errors, a lower
meaningful resolution in terms of whole genome differ-
ences was expected, i.e., genomes differing in only a
small fraction of their bases should be considered
identical.
The clustering of the genomes was performed in two

steps, like the procedure used in the dRep software [27],
but in a greedy way based on the ranking of the ge-
nomes. The huge number of genomes (hundreds of
thousands) made it extremely computationally expensive
to compute all-versus-all distances. The greedy algo-
rithm starts by using the top ranked genome as a cluster
centroid, and then assigns all other genomes to the same
cluster if they are within a chosen distance D from this
centroid. Next, these clustered genomes are removed
from the list, and the procedure is repeated, always using
the top ranked genome as centroid.
The whole-genome distance between the centroid and

all other genomes was computed by the fastANI soft-
ware [17]. However, despite its name, these computa-
tions are slow in comparison to the ones obtained by the
MASH software. The latter is, however, less accurate, es-
pecially for fragmented genomes. Thus, we used MASH-
distances to make a first filtering of genomes for each
centroid, only computing fastANI distances for those
who were close enough to have a reasonable chance of
belonging to the same cluster. For a given fastANI dis-
tance threshold D, we first used a MASH distance
threshold Dmash >> D to reduce the search space. In
supplementary material, Figure S3, we show some results
guiding the choice of Dmash for a given D.
A distance threshold of D = 0.05 is regarded as a

rough estimate of a species, i.e., all genomes within a

Hiseni et al. Microbiome           (2021) 9:165 Page 10 of 12

http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/v1.0/all_genomes/
http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/v1.0/all_genomes/
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/archaea/


species are within this fastANI distance from each other
[16, 17]. This threshold was also used to arrive at the
4,644 genomes extracted from the UHGG collection and
presented at the MGnify website. However, given shot-
gun data, a larger resolution should be possible, at least
for some taxa. For this reason, we started out with a
threshold D = 0.025, i.e., half the “species radius.” An
even higher resolution was tested (D = 0.01), but the
computational burden increases vastly as we approach
100% identity between genomes. It is also our experience
that genomes more than ~98% identical are very difficult
to separate, given today’s sequencing technologies [28].
However, the genomes found at D = 0.025 (HumGut_
97.5) were also again clustered at D = 0.05 (HumGut_
95) giving two resolutions of the genome collection.
The taxonomic annotation of the genomes was per-

formed with GTDB toolkit (GTDB-Tk, release 05-RS95,
https://github.com/Ecogenomics/GTDBTk) [16], and in
the genome metadata tables we provide on our website,
we made efforts to also list the corresponding NCBI
Taxonomy names and ID’s for all genomes.
All UHGG genomes were already checked for com-

pleteness and contamination [7]. The completeness and
contamination of RefSeq genomes was performed using
CheckM (https://ecogenomics.github.io/CheckM/) [29].
The handful genomes not having > 50% completeness
and < 5% contamination were discarded. All qualified
genomes had a genome quality score ≥ 50 (completeness
– 5×contamination).

Metagenome classifications
The Kraken2 software was used for classifying reads
from the metagenome samples [30]. To see the effects of
using a different database, the standard Kraken2-
database was compared by custom databases built from
the 4,644 UHGG genomes at the MGnify website as well
as our HumGut collections. In all custom databases, the
standard Kraken2 library for the human genome was
also included, since host contamination is quite normal
in metagenome data. All classifications were performed
using default settings in Kraken2.
Since Kraken2, like most other software for taxonomic

classification, uses the Lowest Common Ancestor (LCA)
approach, many reads are assigned to ranks high up in
the taxonomy. The Bracken software [31] has been de-
signed to re-estimate the abundances at some fixed rank,
by distributing reads from higher ranks into the lower
rank, based on conditional probabilities estimated from
the database content. A Bracken database (100-mers)
was created for HumGut_97.5 database and used to re-
estimate all abundances at the species rank.
If counting all listed taxa, regardless of low readcounts,

the Kraken2 is known to produce many false positives
[32], i.e., list taxa as present when they are in fact not.

The KrakenUniq software has been developed to handle
this problem [32]. We ran it to classify the metagenome
reads for both healthy and IBD metagenomes. The over-
all results from both Kraken2 and KrakenUniq tools
were similar, but KrakenUniq also reports the number
of unique k-mers in each genome covered by the reads.
On the other hand, only Kraken2 reports are compatible
for running the Bracken software. Since we were inter-
ested in both—that is finding the true positive identifica-
tions, and their estimated abundances—we combined
the two approaches. For each sample, we found from the
KrakenUniq report a k-mer count threshold, following
the authors recommendations (2,000 unique k-mers per
1,000,000 sequencing reads depth) [32]. Taxa falling
below this threshold were given zero read counts in the
corresponding modified Kraken2 reports. We then ran
Bracken on these modified Kraken2 reports.
Additionally, we tested 72 random healthy samples,

each belonging to a distinct BioProject, using Bowtie2—
a full-length sequence aligner (HumGut_95 and UHGG
reference databases only) [33].
A principal component analysis was conducted on the

matrix of species readcounts for all metagenome sam-
ples, after the following transformation: a pseudo-count
of 10 was added to all species before using Aitchison’s
centered log-ratio transform [34, 35] to remove the unit-
sum constraint otherwise affecting a PCA of such data.
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Additional file 1. Figure S1. Rarefaction curves for healthy (left panel)
and IBD metagenomes (right panel), showing that the number of new
expected genomes flattens after screening ca. 1,000 metagenomes.

Additional file 2. Figure S2. Mapping of 72 samples using Bowtie2. Y-
axis shows the percentage of unmapped reads when any of the two ref-
erence index databases was used (UHGG, or HumGut_95).

Additional file 3 Figure S3. MASH and fastANI distances. a. A plot of ca.
20,000 genome distances computed with both fastANI (x-axis) and MASH
(y-axis). fastANI distances tend to be a little smaller than MASH distances,
they however have a substantial variance. b. The rationale behind using
0.08, and 0.1 MASH distance thresholds (vertical dashed lines) for
HumGut clustering algorithm. The vast majority of fastANI distances <
0.025 have a MASH distance < 0.08 and genomes with fastANI < 0.05
have a MASH distance < 0.1. When clustering, the distance between all
genomes was first computed using MASH, then only genomes with
distances below the abovementioned thresholds were included to speed
up fastANI computations.

Additional file 4. Table S1. Metagenenomes metadata. Table S2.
Genomes metadata.
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The recent introduction of metagenome-assembled genomes (MAGs) has marked a major
milestone in the human gut microbiome field (Almeida et al., 2019; Nayfach et al., 2019; Pasolli
et al., 2019). Such reference-free, de novo-assembled genomes (Hugerth et al., 2015) have revealed
a wide range of hitherto uncultured microbial species in human gut samples.

The significance of MAGs in unraveling human gut microbial diversity was supported by their
overwhelming representation in a comprehensive human gut prokaryotic collection filtered by
metagenome data dereplicated at 97.5% average nucleotide identity (ANI) (Hiseni et al., 2021).
More than 90% of the collection consists of MAGs, while the rest of the collection mainly comprises
RefSeq genomes (Figure 1A).

A great challenge related to MAGs is their lack of 16S rRNA sequences. Skewed species
abundance, high 16S sequence similarity, and high volumes of short-reads data cause major
difficulties for assembling the sequences of this gene (Yuan et al., 2015), frequently rendering these
genomes incomplete.

A barrnap search (https://github.com/tseemann/barrnap) revealed that from >270,000 qualified
MAGs, only 7% yielded 16S sequences, while this gene was found in 93% of >106,000 other genome
types. MAGs positive for 16S had a significantly lower copy number compared to complete RefSeq
genomes (Figure 1B; top panel) and substantially higher intragenomic variance (Figure 1B; bottom
panel). Challenges in obtaining multiple 16S copies from incomplete genomes are well-described
in the literature (Perisin et al., 2016; Louca et al., 2018); however, to exacerbate the problem, their
enormous intragenomic heterogeneity renders their overall quality questionable.

A multiple sequence alignment of 16S rDNA sequences extracted from members of identical
97.5% ANI clusters, followed by the computation of their distance [ape package in RStudio (Paradis
and Schliep, 2018)], has revealed that clusters consisting purely of MAGs share on average 93%
identity, as contrasted by 99.8% average 16S sequence identity in clusters made of pure, complete
RefSeq genomes (Figure 1C).

Considering that 16S is a highly conserved gene, its identity among same-cluster genomes was
expected to be higher than the threshold used for dereplicating them (>97.5%; Kim et al., 2014; Jain
et al., 2018). The excessive 16S divergence among MAG-only clusters raises red flags, potentially
reflecting issues related to their assembly, as previously reported (Nelson et al., 2020; Meziti et al.,
2021).
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FIGURE 1 | (A) The process of filtering human gut-derived MAGs and RefSeq prokaryotic genomes against a pool of >3,500 non-redundant healthy human gut

metagenomes. Only genomes sharing ≥95% average nucleotide identity (ANI)—a conventional threshold marking species delineation (Jain et al., 2018)—were kept

for further processing. The qualified genomes dereplicated at 97.5% ANI were mostly represented by MAGs (>90%). Only 7% of MAGs harbored detectable 16S

rRNA gene sequences, while the opposite was observed in RefSeq genomes (7% lacked detectable 16S). (B) The distribution of 16S copy numbers on complete

RefSeq genomes vs. MAGs (upper panel); the intragenomic 16S rRNA gene heterogeneity on genomes with multiple 16S copies for the same groups (bottom panel).

MAGs are associated with increased intragenomic variability across all positions compared to RefSeq genomes. (C) The average nucleotide identity of 16S sequences

belonging to the same 97.5% ANI cluster. Each boxplot refers to one cluster. The upper panel depicts clusters made of pure complete RefSeq genomes, while the

bottom panel shows the distribution of shared identities on clusters entirely comprising MAGs. RefSeq-derived 16S sequences within same clusters show high identity

(average of 99.8%); MAG clusters contain highly variable 16S sequences, with an average identity of 93%.

All MAGs studied here were >95% complete with
<5% contamination, a conventional criterion marking
their high quality. Given the extreme importance of the
16S gene in microbial taxonomy and ecology, it seems
unacceptable that MAGs can be labeled as such and at
the same time contain low-quality information about this
single most important gene that links the re-constructed
genomes to the huge body of 16S-based microbiota studies
conducted worldwide.

Furthermore, the acceptance of poor 16S rDNA quality in
MAGs currently excludes a majority in the microbial research
community that does not have the economic or computational
resources to perform large-scale shotgun sequencing.
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Abstract 40 

Short-chain fatty acids (SCFAs) represent the main fermentation end-products of intestinal 41 

microbiome. They exercise various functions, affecting and maintaining the overall health 42 

status of humans. The ratio between butyrate and propionate (P:B), is particularly 43 

important. However, it remains a challenge to adopt SCFA detection techniques in clinical 44 

settings, due to the volatile nature of these acids. 45 

Here, we aimed to estimate SCFA information indirectly, through a novel, simple qPCR-46 

compatible assay (Liquid Array Diagnostics - LAD), targeting a limited number of microbiome 47 

markers.  48 

Utilizing 15 LAD probes to target microbiome markers selected by a PLS + LDA model, the 49 

classes (normal vs. high P:B) were best separated at a threshold of 2.6, yielding a prediction 50 

accuracy of 96%. 51 

Keywords: Propionate, butyrate, SCFA, gut microbiome, qPCR, LAD 52 

 53 

 54 
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Introduction 55 

The human gut microbiome maintains the health of the host through the fermentation of 56 

non-digestible carbohydrates that escape small intestinal digestion and absorption[1]. The 57 

end-products of this fermentation - short-chain fatty acids (SCFAs) - serve as the main 58 

energy source for colonocytes[2], enhance the intestinal epithelial barrier[3], regulate 59 

mucus production[4], modulate inflammatory responses[5], induce apoptosis in colon 60 

cancer cells[6], regulate blood pressure[7], mediate gut-brain cross-talk[8], play a crucial 61 

regulatory role in glucose homeostasis[9], regulate lipid metabolism and adjusts satiety 62 

levels[10], among other effects.  63 

It is estimated that, in healthy adult populations, the three major SCFAs, acetic-, 64 

propionic-, and butyric acid, accumulate in a 3:1:1 molar ratio[11-13]. Deviation of such 65 

proportions, with a significant decrease of butyrate levels, has been observed in people 66 

consuming a diet high in protein and low in carbohydrates[14]. Butyrate production is solely 67 

dependent on the intake of non-digestible fiber, while the major propionate-producers, like 68 

Bacteroidetes, metabolize peptides as well, thus rendering propionate levels unaltered[15]. 69 

Lower butyrate levels have also been linked to a slower fecal transition time and both are 70 

associated with a higher colonic pH, which, in turn, promotes the production of 71 

propionate[16]. A low-pH environment protects against the overgrowth of pathogens[17], 72 

thus, in this context, an increase of the propionate-to-butyrate ratio may indicate a 73 

vulnerable gastrointestinal state.  74 

A deviant ratio in favor of propionate was proposed to act as a diagnostic marker for 75 

Irritable Bowel Syndrome (IBS)[18]. Increased levels of this acid (but not butyrate) were also 76 

reported in overweight and obese people[11], individuals with an increased risk for type 2 77 

diabetes (T2D)[19], patients with Alzheimer’s Disease (AD)[20] and those with Non-Alcoholic 78 



Manuscript under review in BioTechniques 

 

   

 

Fatty Liver Disease (NAFLD)[21]. Additionally, a reduced butyrate concentration (but not 79 

propionate) was observed in people with a high risk of stroke[22].  80 

While the evidence linking disproportionally low levels of butyrate and/or high levels 81 

of propionate with various diseases is expanding, routine diagnostic measurement for SCFA 82 

content remains challenging, mainly due to their high volatility and a complex sample clean-83 

up procedure[23, 24].  84 

Here, we aimed to infer SCFA levels by targeting a limited number of key bacteria 85 

using a novel qPCR-instrumentation-compatible method, Liquid Array Diagnostics (LAD)[25], 86 

circumventing the need to utilize Gas Chromatography-based methods. A LAD test targets 87 

variable regions within the 16S rRNA gene and allows the detection of up to 25 bacterial 88 

markers in a single-tube.  89 

We focused on the propionate-to-butyrate ratio (P:B), a single variable with the 90 

potential of providing an indication of functional dysbiosis in clinical samples. The analytical 91 

strategy followed in this work is outlined in Figure 1. 92 

 93 

 94 

 95 

 96 

 97 

 98 

 99 

 100 
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Results and discussion 101 

Identification of taxonomic biomarkers for propionate-to-butyrate ratio 102 

We examined the microbiome composition (PacBio sequencing of the 16S rRNA gene) and 103 

the SCFA content of 93 adult fecal samples. We were interested in finding potential 104 

associations between different members of the microbiome and levels of propionate and 105 

butyrate, so that we could build a simple, predictive LAD test.  106 

We computed the correlation between the CLR-transformed OTU readcounts and 107 

propionate and butyrate relative abundances. Only OTUs with > 0.2 or < -0.2 correlation (p < 108 

0.05) were considered for further analysis. In total, 65 OTUs correlated to propionate levels 109 

(39 positively, 26 negatively correlated), and 62 correlated to butyrate (28 had a positive 110 

correlation, 34 a negative one). Out of these, 11 correlated to both butyrate and 111 

propionate, albeit in opposite directions.  112 

A simplified network of SCFA/OTU relationships is presented in Figure 2.  113 

A BLAST search was performed using OTU sequences as queries. Among the OTUs 114 

positively correlated to butyrate, we found some that shared high sequence identity with 115 

typical butyrate-producers, like Fecalibacterium prausnitzii[26, 27] (cor = 0.21, p < 0.05), 116 

Agathobaculum butyriciproducens[28] (cor = 0.23, p < 0.05), and Coprococcus catus[29] (cor 117 

= 0.21, p < 0.05). However, we also found a positive relationship between butyrate and the 118 

readcount of sequences sharing high identity with Lactobacillus acidophilus (cor = 0.22, p < 119 

0.05), Fusicatenibacter saccharivorans (cor = 0.33, p < 0.005) and Blautia wexlerae (cor = 120 

0.26, p < 0.05) - species not known to produce this acid[30-32]. Furthermore, 121 

Dysosmobacter welbionis (cor = -0.25, p < 0.05) and Flavonifractor plautii (cor = -0.3, p < 122 

0.005), both butyrate-producers[33, 34], exhibited a negative correlation with the relative 123 
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abundance of butyrate. Similarly, propionate levels did not exclusively correlate to well-124 

described propionate-producers.  125 

Aware of this complex outcome, we decided to build a model based on a binary 126 

classification system, i.e., classifying samples as having a high or normal acid level. Aiming 127 

for a simple method, we chose to detect and classify samples based on a single variable that 128 

infers information about both acid concentrations, the propionate-to-butyrate ratio (P:B). 129 

Seeking to classify samples based on this ratio makes sense biologically, given that, in 130 

healthy adults, the molar ratio between propionate and butyrate is nearly 1.0[11-13]. 131 

Understanding the role of butyrate in maintaining human health[2, 6, 35-37], our goal was 132 

to detect samples where their levels are depleted – inferred by a deviant ratio in favor of 133 

propionate (i.e., P:B ratio >> 1.0).  134 

We computed P:B from GC data for all samples. We then built a PLS + LDA model 135 

using OTU readcounts as predictors and aimed to find the ratio that best separated the two 136 

groups (normal vs. high ratio), while selecting a reasonably small number of OTUs to act as 137 

markers. We found the best separation to be at a ratio of 2.5 using only 37 OTUs as targets. 138 

These OTUs did not exclusively represent propionate- and butyrate-producers. The leave-139 

one-out cross-validated model showed 90% sensitivity and a specificity of 98%.  140 

(A table with GC measurements for each sample is presented in supplementary material, 141 

Table S1, while a list of all OTUs correlated with propionate and/or butyrate is presented in 142 

Table S2).  143 

Validation of the prediction model using a LAD-based test 144 

We designed 21 LAD probes to cover all 37 OTUs selected by the PLS + LDA model, with the 145 

intention of converting the dry-lab results into a routine molecular diagnostic tool for 146 
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classification. Six of the probes failed to produce signal, so they were removed from the 147 

assay. The remaining LAD probes were used to analyze 71 random samples in total, 9 of 148 

which were not PacBio-sequenced. The performance of LAD probes is presented in 149 

supplementary material, Figure S1. 150 

Our primary model, which we used to select the OTU targets from PacBio sequencing 151 

results, had generated the best P:B threshold at 2.5. When 15 LAD probe signals were used 152 

as an input, the best separation - yielding the highest model prediction accuracy (leave-one-153 

out cross-validated), was observed at 2.6 (Figure 3a).  154 

To assure that a high P:B (≥ 2.6) implied increased levels of propionate at the 155 

expense of butyrate (not acetate), we computed the average levels of these acids within the 156 

different groups. The average butyrate concentration for the normal-ratio group was 20%, 157 

while the same for the high-ratio group was 7.2%. Samples with a normal P:B had on 158 

average a propionate level of 16.6%, whereas samples high in such a ratio had a level of 159 

29.8% (boxplots in Figure 3c).  160 

The average sample P:B was 1.29 (median 0.92, minimum value 0.24 and maximum 161 

9.4; the distribution is presented in Figure 3b). The median absolute deviation (MAD) was 162 

0.54. A stringent way of finding outliers in positively skewed data is adding 3×MAD to the 163 

median value[38]. Applying this formula, all samples with a P:B > 2.54 represented outliers 164 

(0.92 + 3×0.54), which corresponded well with the threshold to which our model was 165 

sensitive.  166 

From 9 samples with a ratio ≥ 2.6, the algorithm correctly classified 7, and missed 2, 167 

while from 62 samples with a ratio < 2.6, 61 were classified as such (Figure 4). The positive 168 

predictive value showed that for any sample classified as having a “high ratio,” the chances 169 
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for that sample indeed having a ratio > 2.6 was 87.5%. The negative predictive value was 170 

97%.  171 

All 9 samples which were not PacBio-sequenced, and therefore not included in the 172 

initial model of selecting OTU markers, were correctly classified (all normal ratio).   173 

Converted to a butyrate:propionate ratio, the border was at a range of 0.34 – 0.38. 174 

The model performed identically, correctly classifying 7 out of 9 samples with B:P ratio < 175 

0.35, and 61 out of 62 as ‘high’ on the basis of a greater ratio.  176 

We do not possess clinical details about the individuals whose samples we tested, 177 

and that may present a limitation for this study. It would be of particular interest to learn if 178 

these people suffer from health conditions for which high propionate and/or low butyrate 179 

has been reported. Nevertheless, we screened the metadata of 130 samples used by Zeng et 180 

al. (2019)[22], where significantly increased propionate levels were reportedly associated 181 

with a high risk of stroke. We found that on average, people with a low risk of stroke had a 182 

P:B < 2.6, while significantly higher P:B ratios were observed in people with medium and 183 

high risk of stroke (average P:B of 2.04, 3.22 and 2.84, for low, medium and high risk, 184 

respectively; p < 0.05).  185 

A P:B border of ~2.6 was revealed to us using two different approaches. It represents 186 

a boundary separating normal samples from biological outliers in terms of both SCFA and 187 

microbiome composition. It could very well reflect an important biological threshold with a 188 

direct implication on the etiology of complex diseases. 189 

Functional and strain resolution associations with the propionate-to-butyrate ratio 190 

We chose to further analyze 23 randomly chosen samples of various P:Bs (17 normal, 6 high) 191 

by performing whole-genome shotgun sequencing, in an attempt to further explore the 192 
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biological differences between the two classes. On average, samples with a normal P:B 193 

displayed 205 species, while samples with a high ratio harbored 10 fewer species, 194 

suggesting a lower diversity in the latter. However, this difference did not exhibit an 195 

acceptable significance level (p > 0.1).  196 

Looking deeper into the composition, we found that high-ratio samples were 197 

significantly richer in Escherichia coli, Phocaeicola dorei (a known propionate-producer, 198 

formerly named as Bacteroides dorei[39]), Enterocloster sp001517625 (named as 199 

Clostridium bouchedurhonense at NCBI), Blautia_A sp900066165, and Anaerotruncus 200 

colihominis (butyrate-producer[40]). There was also a tendency for lower Fecalibacterium 201 

praustnizii_C (butyrate-producer[26, 27]) and Eisenbergiella sp900066775, and higher 202 

Akkermansia muciniphila (propionate-producer[41]) (p < 0.1) (Figure 5).  203 

Our test is designed to detect both E. coli and F. prausnitzii, who have commonly 204 

been found to act as markers in a wide range of diseases[42-44].  205 

Next, we used the sequencing reads to search for genes related to propionate and 206 

butyrate production using Diamond software[45]. No linear relationship was found between 207 

them, as presented in Figure 6.  208 

This finding complemented well the ones retrieved with PacBio sequencing, where 209 

the majority of OTUs correlated to either propionate or butyrate were not known to be 210 

producers of such acids. Furthermore, possessing the ability to produce an acid did not 211 

necessarily translate into a positive relationship with the product itself, as was the case with 212 

Dysosmobacter welbionis and Flavonifractor plautii – both butyrate-producers, with a 213 

relative abundance found in negative correlation with butyrate levels. (The latter was found 214 

in positive correlation with propionate and is a target of our assay.) 215 
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Yet again, these results suggested that the levels of SCFA in fecal samples cannot be 216 

inferred by quantifying known acid-producers alone, presumably due to complex cross-217 

feeding mechanisms involved[46]. For example, we believe that the inclusion of 218 

Bifidobacterium adolescentis (lactate- and acetate-producer) as a target of our test is tightly 219 

related to cross-feeding between this bacterium and well-described butyrate-producers[47, 220 

48].  221 

Clinical relevance  222 

Currently, it seems like the most relevant clinical application of the P:B would be related to 223 

neurogenerative diseases, such as Alzheimer’s[20] and Parkinson’s disease[49]. A 224 

contributing cause for neurodegenerative diseases in the elderly is their reduced ability to 225 

metabolize propionate through decreased Methylmalonyl-CoA mutase activity[50]. This 226 

leads to the potential accumulation of toxic methylmalonic acid, which has been associated 227 

with decreased cognitive function in old people[51]. On the other hand, it has been shown 228 

that butyrate, a histone deacetylase inhibitor, can act as a therapeutic agent by reducing 229 

levels of abnormally deposited brain amyloid-β[52, 53]. Therefore, a potential clinical utility 230 

of the P:B measurement could be related to dietary advice in elderly in order to minimize 231 

potential harmful effects of propionate by increasing the beneficial butyrate. 232 

There are also other diseases and disorders that can potentially be linked to a high 233 

P:B. Association with a significant propionate increase or butyrate decrease has been 234 

reported for these ailments, listed in Table 2. The most pronounced association related to 235 

P:B for these studies, is an increase in the propionate-to-butyrate ratio for IBS patients[18]. 236 

In addition to being a biomarker, there could also be a causality between the P:B and IBS 237 
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severity. Thus, this ratio could also potentially have a utility in treatment of these patients 238 

through e.g. dietary advice. 239 

Given the complex sample clean-up and preparation procedure, combined with a 240 

high evaporation nature of acids, the SCFA measurement using today’s technology remains 241 

a challenging task[23, 24, 54]. That is why the accumulated knowledge in the field continues 242 

to be derived from fragmented, small-scale studies, hardly standardized across laboratories. 243 

The lack of robust methods for use in clinical settings creates a gap between state-244 

of-the-art knowledge in the field and its practical utility and application. A simple molecular 245 

diagnostics method, like the LAD test presented here, allows inexpensive, high-throughput 246 

screening of fecal samples, bridging this gap. The major benefits of LAD in a clinical setting 247 

are related to simplicity and cost, in addition to detecting the microorganisms underlying 248 

the P:B, which in turn can be used in therapeutics. 249 

Our approach offers a solution for at least two problems. First, it focuses on the ratio 250 

between propionate and butyrate, ignoring their absolute values which are known to 251 

fluctuate based on the time of day of sample collection and processing[55]. Second, it 252 

circumvents the need to measure SCFA levels – it utilizes a robust molecular diagnostic 253 

system instead.  254 

We offer an indirect way of detecting both propionate and butyrate levels, 255 

identifying biological outliers - samples with highest propionate and/or lowest butyrate 256 

proportions.  257 

Conclusion  258 

Here, we present a novel qPCR-instrumentation-compatible, single-tube multiplex test that 259 

predicts samples with increased proportions of propionate in the expense of butyrate. 260 
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Circumventing the need to directly measure the SCFA content in fecal samples, a robust and 261 

simple test like this will enable high-throughput analysis and regular monitoring of 262 

functional dysbiosis in the gut.  263 
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Materials and Methods 264 

Fecal samples and gDNA extraction 265 

In total, 115 anonymized adult fecal samples, biobanked at Genetic Analysis AS (Oslo, 266 

Norway, research biobank no. 4071), were used for this study. Samples were collected and 267 

anonymized in accordance with the Norwegian Regional Committee for Medical and Health 268 

Research Ethics ruling (reference no. 2010/3209).  269 

All fecal samples were stored at -40 °C prior to gDNA extraction or Gas Chromatography 270 

sample prep. The gDNA of all fecal samples was extracted using a MagMidi LGC kit (LGC 271 

Biosearch™ Technologies), following the steps suggested by the manufacturer. Genomic 272 

DNA extracts were further analyzed with LAD, PacBio SMRT[56], or Whole Genome Shotgun 273 

sequenced (Illumina). 274 

Measurement of SCFA content with Gas Chromatography (GC) 275 

The SCFA content of 115 fecal samples was measured with GC (Trace™ 1310 with 276 

autosampler, ThermoFisher Scientific™). Fecal samples were diluted in water (1:10) in a 277 

total volume of 1,500 µl, then homogenized for 2 X 40 seconds at 1,800 rpm using a 278 

Fastprep®-96 (MP Biomedicals). After a gentle spin, 300 µl of supernatant were transferred 279 

to a new tube, where 300 µl of internal standard was added. The internal standard 280 

consisted of 0.4% formic acid and 2 mM 2-methylvaleric acid. The samples were centrifuged 281 

at 13,000 rpm for 10 minutes. Subsequently, 300 µl of supernatant were transferred to spin 282 

columns (0.2 µm filters) and centrifuged at 10,000 rpm for 5 minutes. The solution that 283 

passed the membrane was transferred to GC vials for SCFA measurement. An internal 284 

standard (1 mM 2-methylvaleric acid), was used as a reference for sample-to-sample 285 

normalization of results. In total, 9 samples did not pass quality control by failing to produce 286 
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a measurement on acetic acid. Given that this acid is the most volatile one, its depletion was 287 

taken as an indication that the samples were compromised, therefore they were discarded 288 

from further processing. In addition, a sample erroneously handled during laboratory work 289 

was removed. The P:B of 105 remaining samples was computed and used for further data 290 

analyses.  291 

PacBio Sequencing of 16S rRNA gene 292 

Ninety-five samples randomly selected from 115 with SCFA contents determined by GC, 293 

were sent for PacBio Sequencing (Full-Length 16S Amplification SMRTbell® Library 294 

Preparation and Sequencing) at Norwegian Sequencing Centre 295 

(http://www.sequencing.uio.no). The first round of amplification was performed using our 296 

in-house 16S primers (GA-map® Forward primer 5’-TCCTACGGGAGGCAGCAG-3’, GA-map® 297 

Reverse primer 5’-CGGTTACCTTGTTACGACTT-3’, both protected by the US20110104692 A1 298 

patent) tailed with universal sequences, as recommended in the PacBio protocol. The reads 299 

sharing at least 0.97 sequence identity were clustered into OTUs using the open source 300 

metagenomics tool VSEARCH[57]. The OTU readcounts were Center Log-Ratio (CLR) 301 

transformed[58] (after the addition of one pseudo-readcount) prior to further processing.  302 

Two of the 95 samples sent for sequencing did not pass the GC criteria (no measured 303 

acetate), hence were discarded from the downstream analysis. 304 

Identification of bacterial targets through PLS + LDA modelling  305 

CLR-transformed OTU readcounts from 93 samples were used as input for a PLS + LDA 306 

algorithm, with the aim of selecting variables (OTUs) to act as markers for classifying normal 307 

vs. high P:B samples [59]. Our aim was to correctly identify and classify the samples with the 308 

highest ratios, as they represent the deviation from the norm. We allowed the border 309 

http://www.sequencing.uio.no/
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between the two types of samples (normal vs. high ratio) to go as low as possible without 310 

losing model prediction accuracy. The highest accuracy was reached at a P:B border of 2.5, 311 

with 37 OTUs acting as predictors, spanning 15 dimensions (leave-one-out cross-validated: 312 

sensitivity = 90%, specificity = 99%, positive prediction rate = 90%, negative prediction rate = 313 

99%). These OTUs were subsequently considered as targets for LAD assay development. 314 

Probe design for Liquid Array Diagnosis (LAD) 315 

Eight-mer sequences containing a C at their 3’ ends, shared only between 16S in-silico 316 

amplicons of target organisms, were computed using the in-house TNTProbeTool[60]. These 317 

sequences were considered as the 3’ end segments of potential LAD labelling probes (LP). 318 

Probes had to have a minimum melting temperature (Tm) of 70 °C (computed by the 319 

nearest-neighbor method) hybridizing to the target group, and a maximum Tm of 30 °C 320 

hybridizing to a non-target group.  321 

The final LP sequences did not contain the 3’ end Cs. In this way, the presence of the 322 

corresponding bacterial target would ensure they become extended with a quencher-323 

labelled ddCTP. 324 

A reverse-complementary reporter probe (RP) was designed for each of the labelling 325 

probes. The RPs were designed with a fluorophore tag on their 5’ ends, ensuring proximity 326 

to the quencher in duplexes harboring a 3´-labelled, RP-complementary LP. Duplexes 327 

containing the same fluorophore were designed with varying lengths to produce distinct 328 

temperature-dependent signals on the same qPCR channel of detection. The quenching 329 

effect of a longer duplex is observed as a dissociation curve with a higher Tm. The DNA 330 

duplex Tms were calculated using the web-based OligoAnalyzer tool ToolTM 3.1, also based 331 

on the nearest-neighbor method (Integrated DNA Technologies).  332 
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BLAST searches with each OTU sequence as query were performed to infer their 333 

taxonomy (blastn, nucleotide collection nt database). 334 

Initially, 21 probes were designed, covering all 37 OTUs. However, six of the probes, 335 

targeting 11 OTUs (Coprococcus eutactus, Alistipes indistinctus, Bacteroides eggerthii, 336 

[Clostridium] spiroforme, Ruthenibacterium lactatiformans, [Clostridium] 337 

glycyrrhizinilyticum), failed to produce a signal, therefore they were excluded from the 338 

assay.  339 

Due to sequence similarity between F_3_1 and R_12_1 LPs, designed to detect 340 

Dorea longicatena, and Fusicatenibacter saccharivorans, respectively, it was impossible to 341 

keep them in a single test tube, otherwise we would risk producing double signals when 342 

only one target was present. We therefore split the test into two tubes and divided the 343 

number of probes between them proportionally (8 probes in group 1, 7 probes in group 2). 344 

We used ROX_12_1 RP as a reporter probe for both LPs. 345 

A list of final probes, their Tms, and their target species, respectively, are presented in Table 346 

1.   347 

Generation of templates for LAD labeling reaction 348 

Genomic DNA from 71 available samples was PCR amplified. The SCFA content of all those 349 

samples had been measured, however 9 of them were not additionally PacBio sequenced. 350 

Each PCR reaction, with a total volume of 25 µl consisted of 5 µl bacterial lysate, 3.75 U of 351 

HOT FIREPOL® DNA Polymerase, 1 X B1 buffer, 2.5 mM MgCl2 (all from Solis Biodyne, cat. no. 352 

01-02-00500), 0.2 mM dNTPs (Thermo Fisher Scientific, cat. no. 18427088), 0.2 µM in-house 353 

primers (GA-map® Forward primer 5’-TCCTACGGGAGGCAGCAG-3’, GA-map® Reverse primer 354 

5’-CGGTTACCTTGTTACGACTT-3’, both protected by the US20110104692 A1 patent). The 355 
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amplification was carried out using an Applied Biosystems Veriti ™ Thermal Cycler (Life 356 

Technologies), with an initiation period of 15 min at 95 °C, followed by 30 cycles of 30 s 357 

denaturation at 95 °C, 30 s annealing at 55 °C and 80 s of elongation at 72 °C, ending with a 358 

final step of elongation at 72 °C for 7 min. The PCR products were then treated with 2.7 U of 359 

Exonuclease I (ExoI, New England Biolabs Inc., cat. no. M0293L) and 7.36 U of Shrimp 360 

Alkaline Phosphatase (rSAP, New England BioLabs Inc., cat. no. M0371L) and set for 361 

incubation at 37 °C for 10 min, followed by 15 min at 80 °C to inactivate the enzymes.  362 

Single nucleotide extension of LPs and melting curve analysis - LAD 363 

Ten ml of ExoI-SAP treated PCR products (14.5-25.6 ng/µl) were used as templates for LP 364 

labelling. The labelling reaction was also comprised of LPs in 0.1 µM final concentration 365 

(biomers.net), 1 X Buffer C, 1 mM final concentration MgCl2, 7.5 U Hot TERMIpol® DNA 366 

polymerase (all from Solis Biodyne, cat. no. 01-06-00500), and 0.96 µM ddCTP-DYQ660 367 

(Jena Bioscience, cat. no. NU-850-660Q). The reaction was performed in a PCR instrument, 368 

with an initiation step at 95 °C for 12 minutes, followed by 40 cycles of denaturing (96 °C for 369 

20 seconds) and annealing/elongation (68 °C for 40 seconds).  370 

Following labelling, a mixture of RPs in a 0.01 µM final concentration for each RP and 5 mM 371 

MgCl2 were added to the reactions. Reagent S, available from INN (Inland Norway University 372 

of Applied Sciences, Norway), was also added to a final concentration of 1 %. The melting 373 

curve analysis (31 °C to 85 °C) was performed using a CFX96 qPCR instrument (Bio-Rad 374 

Laboratories). 375 

The extraction of peaks and the determination of positive signals was performed similarly as 376 

described in the material and methods section of Hiseni et al. (2019)[25], with a slight 377 

modification. Prior to extracting the signals, the fluorescence measurements within each 378 
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channel were centered with the purpose of minimizing the range of measurements across 379 

wells at any given temperature. Then the baseline within each channel was corrected 380 

(flattened) by subtracting the centered values of each sample with the average “No 381 

template control” - centered values. As an ultimate step, for group 1 samples only, a further 382 

correction of FAM and CY5 baselines was performed by subtracting the values of each other 383 

(FAM = FAM-CY5 and CY5 = CY5-FAM). 384 

Bioinformatic evaluation of probe specificity 385 

OTU sequences (PacBio) were used as subjects to check for sequences complementary to 3’ 386 

C-labelled probes. A search for the occurrence of probes, allowing one mismatch anywhere 387 

along the sequence (excluding the probe 3’-C) was performed. The intention of this step was 388 

to prove that probes precisely targeted the intended bacteria. Sequences resulting positive 389 

in the containment of probes were considered as “labelling templates”. The readcounts of 390 

all such sequences were considered as in-silico signals, which were then used to compute 391 

the correlation with real LAD signals.  392 

Whole Genome Shotgun (WGS) Sequencing  393 

In total, 24 samples were sent for WGS sequencing at Norwegian Sequencing Center. One of 394 

the samples failed the GC quality check (no measured acetate), hence was removed from 395 

further analysis.  396 

The libraries for the remaining 23 samples were prepared using a Nextera™ DNA Flex Library 397 

Preparation kit (Illumina), following its manufacturer-recommended protocol. Samples had 398 

different SCFA levels, spanning well across the P:B values.  399 
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Processing of WGS Sequencing results  400 

Diamond software[45] was used to search for genes related to propionate and butyrate into 401 

raw WGS sequencing reads. For propionate, we searched for the genes Methylmalonyl-CoA 402 

decarboxylase, alpha-subunit (mmdA), Lactoyl-CoA dehydratase subunit alpha (lcdA), and 403 

CoA-dependent propionaldehyde dehydrogenase (pduP) (markers for succinate, acrylate 404 

and propanediol pathways, respectively [61]). For butyrate, the process involved searching 405 

for butyryl-CoA:acetate CoA transferase and butyrate kinase. For each read, only the hit 406 

with the highest bit score per pathway was kept (e-value <= 1e-05). Next, for each sample 407 

the number of reads that got a hit with one of the genes was counted, then grouped and 408 

summed according to the SCFAs to which they were related. After normalizing for the query 409 

sequence size and sequencing depth, the total number of hits related to propionate and 410 

butyrate was compared to the relative abundance of these acids. 411 

 412 

The taxonomic assignment of the sequencing reads was performed using a 413 

combination of Kraken2[62], KrakenUniq[63] and Bracken[64], as described in Hiseni et al. 414 

(2021)[65], using HumGut_975[65] as a custom database.  415 
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Future Perspective 416 

Assays targeting 16S rRNA gene will become widely used for microbial functional analysis.  417 

Executive summary 418 

• Healthy adult fecal propionate and butyrate levels are expected to be equimolar. 419 

• An increased propionate-to-butyrate ratio (P:B) has been linked to several health 420 

disorders. 421 

• Measurement of SCFA levels is challenging due to their highly volatile nature, 422 

presenting a major bottleneck for high-throughput studies. 423 

• The challenges related to SCFA measurements create a gap between the acquired 424 

knowledge in the field and its clinical utility.  425 

• This article presents a method for predicting and classifying samples with 426 

significantly elevated P:B by directly targeting predictor bacteria, circumventing thus 427 

the need to measure SCFA levels. 428 

• The method is based on a Liquid Array Diagnostics (LAD) assay, a qPCR-compatible 429 

test capable of detecting multiple targets in a single-tube multiplex reaction. 430 

• The test predicting high P:B samples showed 78% sensitivity and 98% specificity 431 

(leave-one-out cross-validated) 432 

• The assay presented here has the potential to be utilized in high-throughput studies, 433 

validating the reported findings in the literature, in addition to serving as a robust 434 

screening tool for routine diagnostics.  435 
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Figures 436 

  437 

Figure 1. Building and validation of a propionate:butyrate ratio (P:B) prediction model. a. 438 

Identification of taxonomic biomarkers for P:B In this step, 93 fecal samples were analyzed 439 

for both their taxonomic composition (16S rRNA gene sequencing with PacBio SMRT 440 

technology) and SCFA content (Gas Chromatography). A PLS + LDA model was built, 441 

selecting a limited number of OTUs to act as predictors of normal vs. high P:B b. Validation 442 

of the prediction model using a LAD-based test. In total, 71 fecal samples, 9 of which were 443 

not PacBio sequenced, were tested with a set of LAD probes, designed to target OTUs 444 

selected by the PLS + LDA model in the previous step. c. Functional and strain resolution 445 

associations with P:B.  446 
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 447 

Figure 2. A network graph depicting the relationship between propionate and butyrate with 448 

significantly correlated OTUs. Similar OTUs were grouped together after checking for their 449 

taxonomy with BLAST. The blue nodes represent species that are known as propionate-450 

producers, while the purple ones represent well-described butyrate-producers. Positive 451 

correlations between the SCFA and OTUs are presented with black edges (lines), while the 452 

negative ones are depicted in yellow dashed lines.  453 
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Figure 3. a. Diagnostic testing accuracy of various P:B thresholds using LAD signals as 455 

predictors. Different thresholds were tested to determine the border between high and 456 

normal ratio samples for further PLS + LDA classification. The dashed vertical line depicts the 457 

2.6 ratio, the lowest ratio to yield the highest sensitivity, specificity, negative predictive 458 

value (NPV) and positive predictive value (PPV). b. Ratio density among 71 tested samples. 459 

Most of samples (three quartiles) had a ratio < 1.5 while the median ratio was 0.9. The 460 

dashed vertical line at 2.54 separates the outliers from the data (Median + 3 × Median 461 

Absolute Deviation). Dots along the X-axis show measured ratios for each sample, colored 462 

based on classes they belong to according to the PLS + LDA model: black = normal P:B, red = 463 

high P:B. c. Boxplots showing the difference in distribution of butyrate (upper panel) and 464 

propionate (lower panel) levels across two different groups of samples (normal ratio = P:B < 465 

2.6, high ratio  = P:B > 2.6).  466 
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 467 

Figure 4. The PLS + LDA model prediction accuracy with LAD probe signals used as an input. 468 

The vertical line placed at 2.6 marks the borderline between normal and high P:B. The 469 

positioning of each dot shows the real sample ratio (x-axis), while the dot color indicates the 470 

classification by the model: grey = normal, red = high. Most (7 out of 9) samples were 471 

correctly classified as having a high ratio (red dots on the right side of the 2.6 border). Only 472 

one normal-ratio sample was miss-classified as a high-ratio one (the red dot on the left). 473 
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 474 

Figure 5. Top 50 species with the greatest differences in on-average-abundance between 475 

groups (normal vs. high P:B samples). Grey circles indicate the average abundance on the 476 

normal-ratio samples, burgundy represents the abundance of samples with a high-ratio. The 477 

circle size shows the percentage of samples within the group where the bacteria was found 478 

present. The arrows point towards samples with a high ratio, marking the tendency of 479 

increased (facing right) or decreased (facing left) species abundance in them. The dot and 480 
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star symbols indicate the significant differences (Wilcoxon p-value: *** = p < 0.005, * = p < 481 

0.05, • = p < 0.1).  482 

 483 

Figure 6. The relationship between the propionate and butyrate relative abundances with 484 

the corresponding number of reads that got a hit (highest bit score, e-value <= 1e-05) with 485 

respective marker genes. The number of hits was normalized after considering the sequence 486 

length of queries and sequencing depth.   487 
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Figure S1. LAD signals (x-axis) plotted against PacBio readcounts (y-axis) for in-silico targets. 489 

The results for the 62 sequenced samples were used to perform in-silico labelling of the 490 

probes, to confirm their specificity. Single mismatches were allowed. All OTUs sequences 491 

that matched with probe sequences were considered as potential templates for bona-fide 492 

labelling. 493 
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Tables 494 

Table 1. The Liquid Array Diagnostics test probe list1 495 

LP name LP sequence (5’-3’) RP name RP sequence (5’-3’) Tm (°C) Target species Group 

F_2_8 GCTACACACGTGCTACAATGGCGCATA FAM_2_8 tTATGCGCCATTG  43.7 Escherichia coli 1 

F_3_1 CGGGACTGCATTTGGAACTGCTGAG ROX_12_1 
tAGCCAGACAGTTTCCA
ATGCAGTCCCA 52.9 

Dorea longicatena 1 

H_6_13 GGTGGATGCTGGATGTGGGGAC HEX_6_13 ttGTCCCCACATCC  45.5 Bifidobacterium adolescentis 2 

R_9_2 CCGGGACTGCTTTGGAAACTATGCAG ROX_9_2 
ttCTGCATACTTTCCAAA
GC 43 

Coprococcus comes 2 

R_10_3 GGAGCGTAGAAGGCATTGCAAGC ROX_10_3 ttGCTTGCAATGCCTTC  52.8 Blautia sp. Marseille-P3313 2 

R_12_1 TGGGACTGCATTGGAAACTGTCTGGCT ROX_12_1 
tAGCCAGACAGTTTCCA
ATGCAGTCCCA 69.3 

Fusicatenibacter saccharivorans 2 

C_14_5  CCCGTCACTCCATGAGAGTTGGAGATAC CY5_14_5  ttGTATCTCCAACTCTC  45.5 Uncultured bacterium clone AP07S.190 1 

C_15_4 CCGTACTGGCTCTGGAAACTGTTCAG CY5_15_4 
ttCTGAACAGTTTCCAGA
GC  55.4 

Holdemanella biformis 1 

C_17_1 
GGCCACACACGTACTACAATGGTGGTT
AA CY5_17_1 

tTTAACCACCATTGTAGT
ACGTGTGTGG  64.6 

Flavonifractor plautii, Flintibacter sp. 
KGMB00164 

1 

C.5_18_8 TGGAAGCCGGGAGTACCTGAAG CY5.5_18_8 ttCTTCAGGTACcCCC 35.9 
Barnesiella sp. strain mt172, Barnesiella 
sp. strain mt155 

1 

C.5_19_2 CGCGAGGGGGAGCAAAACTGGAAAA CY5.5_19_2 tTTTTCCAGTTTTGC 44.8 
Uncultured bacterium isolate DGGE gel 
band RB1-25 

1 

C.5_20_2 GCGGACTACTGGGCACCAA CY5.5_20_2 tTTGGTGCCCAGTAGTC 55.2 

Fecalibacterium prausnitzii, Uncultured 
bacteria clones: 2-002-f10,  A3-213, and 
TS3_a01c08 

2 

C.5_21_1 GGAAGCGACTGGGCAACCAGAAG CY5.5_21_1 
ttCTTCTGGTTGCCCAGT
CGCTTC 64.9 

Uncultured organism clone ELU0116-T290-
S-NI_000152,  

1 

Fecali291 

TTGCTCCACCTCGCGGTCTTGCTTCTCTT
TGTTTAA  

Fecali291 
CY5 

TTAAACAAAGAGAAGCA
AGACCGCGAGGTGGAG
CAA  72.2 ºC 

Fecalibacterium prausnitzii, [Eubacterium] 
siraeum V10Sc8a, Ruminococcaceae 
bacterium strain MT139, Uncultured 
bacteria clones: PB1_aai26e05, C3-2 16S, 
A3-213, TS3_a01c08, SJTU_A2_03_71, and 
A5_016  

2 

Rum1167 CACTCTAGCCTGACAGTT 
Rum1167 
CY5 AACTGTCAGGCTAG 47.1 ºC 

[Ruminococcus] gnavus, Uncultured 
bacteria clones: SJTU_G_10_25, 
Cadhufec15ml, and CFT114H1 

2 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 
1 The lower-case t nucleotides in RP sequences represent the 5’-end T-tails. These were introduced with the purpose of securing physical 

distance between the fluorophore and Gs (either within the RP sequence itself, or the Gs in the 3’ end of the complementary LP 

sequence). Gs are known to have an intrinsic quenching property.    
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Table 2. Studies associating diseases with an increase/decrease of SCFA fecal levels (high 503 

P:B) 504 

Reference Health disorder  Individuals tested Significant change 
compared to controls 

Schwiertz et al. 
(2010)[11] 

Obesity 30 lean 
35 overweight 
33 obese 
 

↑Total SCFA 
↑Propionate  

Sanna et al. (2019)[19] Type 2 diabetes 952 participants from 
LifeLines Deep cohort 
 

↑Propionate  

Rau et al. (2018)[21] Nonalcoholic fatty 
liver disease (NAFLD) 

27 healthy 
32 NAFLD 
 

↑Acetate 
↑Propionate 

Farup et al. (2016)[18] Irritable bowel 
Syndrome (IBS) 

25 healthy 
25 IBS 
 

↓Butyrate 

Zeng et al. (2019)[22] Stroke 51 low risk of stroke 
54 medium risk 
36 high risk 
 

↓Butyrate 

Liu et al. (2019)[66] Autism spectrum 
disorder (ASD) 

20 healthy 
30 ASD 
 

↓Acetate 
↓Butyrate 
↑Valerate 
 

Wang et al. (2019)[67] Chronic kidney 
disease (CKD) 
 

61 healthy 
128 CKD 

↓Butyrate 

Strati et al. (2016)[68] Rett syndrome 29 healthy 
50 RTT 
 

↑Total SCFA 
↑Propionate 
↑Isovalerate 
↑Isobutyrate 
 

Tana et al. (2010)[69] IBS 26 healthy 
26 IBS 

↑Total SCFA 
↑Acetate 
↑Propionate 
 

Unger et al. (2016)[49] Parkinson’s disease 
(PD) 

34 healthy 
34 PD 

↓Total SCFA 
↓Butyrate 

 505 
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Supplement 

The four sections presented below contain detailed information about the four major steps 

performed during a LAD-based test. 

i.Polymerase Chain Reaction, primer and dNTP degradation  

The initial step, not exclusively related to LAD, ensures amplification of a relevant target genetic 

sequence, conventionally 16S rDNA. Most of the sequence variations discriminating closely-

related species are located in at least one of the nine hypervariable regions of this gene (V1–

V9)127, 128. These are bordered and interrupted by phylogenetically conserved sequences, typically 

serving as templates for universal PCR primers (Figure S1).  

 

Figure S1. A simplified outline of 16S rRNA gene amplification. With the intention of amplifying this gene from 

as many different bacteria, the primers are designed to anneal to conserved regions, flanking the variable 

ones. Depending on the variable regions of interest, primers can be designed to target different flanking 

conserved regions. 

LAD reactions require PCR products free of extendable primers and stable dNTPs. For this reason, 

after PCR, reactions are treated with a single stranded DNA exonuclease (Exo I) and a 

thermolabile phosphatase, e.g., shrimp alkaline phosphatase (SAP). The former degrades the 

remaining PCR primers129, the latter removes the phosphate groups from dNTPs130. 

ii.Labelling  

This marks the initiation of LAD-specific steps of the protocol. Here, following heat-inactivation 

of the exonuclease and phosphatase enzymes, the ExoSAP-treated PCR products are used as 

templates for single-nucleotide extension of labelling probes (LPs). LPs are short oligonucleotides 

(usually 15-30 nucleotides) complementary to signature variable regions. The complementarity 

ensures specific binding of LPs solely to target bacterial sequences, conditioning their extension 

(labelling) with a single, quencher-coupled ddNTP. The absence of specific targets precludes 

extension of corresponding, complementary LPs, due to their poor binding to other 16S rRNA 



variant sequences (Figure S2). Multiple LPs, targeting multiple bacteria groups, can become 

labelled simultaneously in a single-tube multiplex reaction. 

The specificity of labelling is also ensured by providing the reaction with a single nucleotide type 

(for example ddCTP). This nucleotide must be complementary to the base opposite and adjacent 

to the labelling probe 3’-end. This single DNA template position acts as the ultimate marker based 

on which the probe succeeds or fails at becoming extended; a G-nucleotide at this position on the 

template ensures extension of the LP with the labelling nucleotide ddCTP.  

Dideoxyucleotides (ddNTPs) are employed for labelling since they lack the 3’-OH group on the 

deoxyribose, preventing further extension once they are incorporated into the probe. In addition, 

they must carry a dark quencher label. Quenchers are molecules that absorb the emitted light 

from nearby fluorophores. In summary, the selective labelling of probes with a quencher is the 

essence of the LAD method.  

 

Figure S2. A representation of a LAD labelling reaction. A set of labelling probes (LPs) are added to the ExoSAP-

treated PCR product. LPs are designed to be complementary to unique sites within the target bacteria 16S 

rRNA gene. Only in the presence of targets serving as stable labelling templates can these LPs extend (top 

example). The extension is designed to occur with a single nucleotide, a quencher-labelled dideoxynucleoside 

triphosphate (ddNTP). Quencher molecules (presented with a black mark) absorb light from nearby 

fluorophores, a feature exploited in subsequent steps. For a successful labelling, the type of quencher-labelled 

ddNTP present in the reaction must be complementary to the base right opposite and downstream the 3’-end 

of the LP (depicted in red along the template sequence).  

Overcoming DNA polymerase infidelity  

It was mentioned that ensuring a proper template-directed probe labelling requires that the 

reaction contains a ddNTP complementary to the base immediately downstream of the LP 3’-end 

on the complementary strand. This way, even if the probe were to conveniently anneal to a non-



target gene variant, the lack of the complementary template nucleotide would assure that the 

probe remained unlabeled.  

However, the fidelity of modified DNA polymerases used for labelling is often compromised. For 

example, Hot TERMIpol® DNA Polymerase (Solis Biodyne, Estonia), allows the incorporation of 

ddGTP opposite a T, and vice-versa, when the complementary ddNTP is absent from the 

reaction131. This issue can be resolved by adding three types of unlabeled ddNTPs (for example 

ddUTP, ddCTP, ddATP) in addition to the quencher-labelled ddNTP (Q-ddGTP).  

iii.Reporting 

Labelling the probes with a quencher only gains meaning when complementary fluorophore-

coupled probes are added to the reaction. After the completion of the labelling cycles, a separate 

set of probes, complementary to LPs, carrying a fluorescing molecule on their 5’-ends, are added. 

The DNA complementarity facilitates juxtaposition of the quencher molecule (3’-end of the 

labelled LP) with the fluorophore (5’-end of the RP). A graphic depiction of this step is presented 

in Figure S3.  

An active DNA polymerase (used for the preceding labelling reaction) frequently acts as a 

sequence-specific quencher131. For this reason, a polymerase-denaturing agent such as sodium 

dodecyl sulphate (SDS), sarkosyl or heparin are added into the RP mix. This ensures the integrity 

of the test, eliminating any possible quenching caused from polymerase-related effects. 

Apart from their sequences, the difference between various RPs reporting different targets 

depends on their lengths and the fluorophores they carry. The length usually determines the 

melting temperature (Tm) of the RP-LP duplex, while the fluorophore defines the channel of 

detection in a qPCR machine. Registering as many as five quenching events per channel (from 

30°C to 70°C, a resolvable signal at 10°C increments) while employing six detection channels 

renders it possible to report up to 30 targets simultaneously. Up until now, LAD has been proven 

to generate 20 distinguishable signals utilizing four detection channels (unpublished data). 

After the addition of RPs, the reaction is subjected to a melting curve analysis in a qPCR machine. 

The machine captures the fluorescence values for each channel separately while steadily 

increasing the temperature of the reaction (usually a 0.5°C increase after each pause of 5 

seconds).  

All duplexes are expected to have formed and remain stable at room temperature. As the 

temperature increases, the shorter duplexes dissociate first, while longer, more stable duplexes, 

dissociate at higher temperatures. RPs in a quencher-labelled duplex start fluorescing after RP-

LP duplex separation. In a raw measurements graph, this is viewed as an increase in fluorescence 



with an increase in temperature, with distinct duplex Tms marking significant rises in 

fluorescence. In a graph presenting the negative value of the change in fluorescence per 

temperature (-dF/dT), this gets translated into distinct declines of fluorescence with negative 

‘peaks’ at certain Tms. The latter graphs intuitively present quenching as a maximum loss of 

registered fluorescence at a given temperature. 

 

Figure S3. A set of reporter probes (RPs), complementary to LPs is added into the reaction. RPs are coupled to 

a fluorophore on their 5’-ends, assuring a close physical proximity with the quencher molecule upon LP-RP 

duplex formation. Quenching of fluorophores can only occur if the complementary LPs have been labelled in 

the preceding step (labelling probes 1, 3 and 5). RPs differ in length, producing duplexes of diverse sizes for 

each target. Duplexes of different lengths typically exhibit different melting temperatures (Tm), i.e., shorter 

duplexes dissociate with lower Tms; higher Tms are required to dissociate long and stable duplexes. Quenching 

events are displayed as an abrupt increase of fluorescence in raw measurements (top graphs), but as negative 

peaks in graphs built of negative values of change in fluorescence per temperature (-dF/dT, bottom graphs). 

The presence of each target produces such a derivative decline at a characteristic Tm in a designated detection 

channel (for example Escherichia coli – 37 °C in orange channel). 

A simplified flow linking the presence/absence of target bacteria with the reporting (or not) of a 

signal can be viewed as following:   

Target bacteria present → Labelled LP → Quenched RP → Temperature-dependent 

Quenching response (signal) 

Target bacteria absent → Unlabeled LP → Fluorescing RP → No Quenching response  

(no signal) 



For calibration and signal extraction purposes, each test requires a set of no template controls 

(NTC, ≥3 wells), where water instead of gDNA is added into the PCR reaction. 

iv.Processing 

The processing of signals starts with the collection of -dF/dT measurements for all channels from 

the qPCR instrument. Because of the high noise-to-signal ratio, processing is fundamental. 

Extracting signals from unprocessed -dF/dT curves may often lead to false positives/negatives, 

mainly because there is a major fluctuation of fluorescence values between wells. 

There are two important steps to be performed prior to signal extraction: 

• Centering the fluorescence measurements of all wells (samples) within a channel. This 

with the purpose of minimizing the range of measurements across wells at any given 

temperature. This step is performed by subtracting the sample mean from each 

measurement, separately for each well (exemplified in Table S1). 

Table S1. An example of centering the derivative data 

Temp. Sample 1 Sample 2 NTC 1 

Centered sample 1 

(Sample 1 – Mean) 

Centered 

sample 2 

Centered 

NTC 1 

30°C 20 60 10 20 - 12.5 = 7.5 60 - 52.5 = 7.5 10 – 2.5 = 7.5 

35°C 15 55 4.5 15 - 12.5 = 2.5 55 - 52.5 = 2.5 4.5 – 2.5 = 2 

40°C 10 50 0.5 10 - 12.5 = -2.5 50 - 52.5 = -2.5 0.5 – 2.5 = -2 

… … ….  … … … 

80°C 5 45 -5 5 - 12.5 = -7.5 45 - 52.5 = -7.5 -5 – 2.5 = -7.5 

Mean 12.5 52.5 2.5    

 

• Correcting/flattening the baseline within each channel by subtracting the centered values 

of each sample with the average NTC centered values (Table S2). 

Table S2. Flattening the baseline following the example presented on Table 1 

Temperature Centered 

NTC 1 

Centered 

NTC 2 

Centered 

NTC 3 

Centered  

NTC mean 

Centered 

sample 1 

Corrected sample 1 

(Cent. sample 1 – Cent. 

NTC mean) 

30°C 7.5 7 8 7.5 7.5 0 

35°C 2 3 2.5 2.5 2.5 0 

40°C -2 -2.5 -3 -2.5 -2.5 0 

…       

80°C -7.5 -7.5 -7.5 -7.5 -7.5 0 

 

The effects of processing the data using a real example can be viewed in Figure S4.  



 

Figure S4. Processing of derivative results. The top left chart depicts a real example of unprocessed derivative 

curves observed in three no template controls (NTCs) and six samples. After centering the samples, the chart 

slightly changes form, containing less noise (right panel). The bottom graph shows the results of baseline 

correction. Here the baseline is flattened, allowing for a better qualitative assessment of the three quenching 

events (49°C, 58°C and 66°C).  

The table harboring processed values is used further for the extraction of the signals. Data at Tms 

where a quenching event is expected to occur are used for further processing (for example 

measurements at 37°C on orange channel, designated to report the presence of E. coli). Average 

processed NTC values are used to construct a border between noise and signal, using the standard 

deviation. The threshold is marked at 3 × standard deviations below the mean. Any measurement 

beyond his threshold is considered to report the presence of the target bacteria (Figure S5).  



 

Figure S5. A visual representation of signal extraction. The boxes mark the range of NTC measurements in the 

Tm where quenching events are expected to occur. The inverted T symbol depicts the threshold below which 

all measurements are accepted as signals (curves meeting the dashed vertical lines). The threshold is found by 

subtracting 3 standard deviations from the mean of NTC measurements. 

The stronger the quenching, the more negative the derivative fluorescence values are. It may be 

considered as more intuitive to invert the values by multiplying them with -1. This way, the 

stronger the signals the higher their value.  

 



Quantitative LAD 

 

Figure S6. Unprocessed melting curves for four different types of triplicate reactions (1:1 PCR products, 1:2 

diluted PCR products, 1:4 diluted PCR products and No Template Control (NTC) reaction). With a decrease of 

PCR product concentration (lower template abundance) the signal strength becomes weaker for three of the 

probes presented here (Eub501, Shi682 and Pro1356). No signal is observed in NTC reactions. 
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