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Abstract

Multiway datasets arise in various situations, typically from specialised

measurement technologies, as a result of measuring data over varying con-

ditions in multiple dimensions or simply as sets of possibly multichannel

images. When such measurements are intended for predicting some exter-

nal properties, the amount of methods available is limited. The multilinear

partial least squares (PLS) is among the few available options. In the pre-

sent work, we generalise the canonical partial least squares framework to

handle multiway data. We demonstrate the resulting multiway data analy-

sis method to be capable of building parsimonious models, encompassing

continuous and categorical responses—both single and multiple—in a uni-

fying framework. This also enables inclusion of additional responses/

information that can contribute to more parsimonious models. Finally, we

achieve a considerable advantage in computational speed without

sacrificing numerical precision by deflating the responses and

orthogonalising scores rather than the more costly deflations of the

predictor data.
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1 | INTRODUCTION

In scientific research applications, data may be generated in different forms such as univariate and multivariate signals,
images and higher-order tensors. A wide range of statistical and machine learning methods are available, and the
choice of approach and method depends on the need for model interpretation or the goal of achieving good predictions
without requiring particular interpretations and insights into the underlying process. The two most widely used
approaches for such tasks in chemometrics are principal component analysis (PCA)1 and partial least squares (PLS)
analysis.2

For regression and classification modelling purposes within the domain of chemometrics, several efforts have been
made for improving on the traditional PLS modelling approach (e.g. earlier studies3–5), but most of the efforts were con-
centrated on two-way data and bilinear modelling.

Received: 12 April 2022 Revised: 17 June 2022 Accepted: 24 June 2022

DOI: 10.1002/cem.3432

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2022 The Authors. Journal of Chemometrics published by John Wiley & Sons Ltd.

Journal of Chemometrics. 2022;36:e3432. wileyonlinelibrary.com/journal/cem 1 of 14

https://doi.org/10.1002/cem.3432

https://orcid.org/0000-0001-6468-9423
https://orcid.org/0000-0002-3236-463X
https://orcid.org/0000-0001-8511-993X
https://orcid.org/0000-0001-8895-798X
mailto:kristian.liland@nmbu.no
https://doi.org/10.1002/cem.3432
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/cem
https://doi.org/10.1002/cem.3432
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcem.3432&domain=pdf&date_stamp=2022-07-02


A multiway extension of the PLS method,6,7 known as the multilinear PLS8 often referred to as the N-PLS,
was published more than 25 years ago. N-PLS enables predictive subspace analysis for data with three or more
modes, that is, data where the typical samples � variables matrix is extended to a samples � variables1 � variables2 �
..:� variablesd array. Some typical applications include data where the samples are obtained as fluorescence
measurements with excitation–emission spectra,9,10 chromatography with mass spectrometry11 or any type of
measurements combining two or more variable sets. Although available in some software toolboxes,12 the
fundamental ideas of the N-PLS have not caused a similar focus on methodological development as for traditional PLS
modelling.

The purpose of the present paper is to demonstrate an extension of the PLS “toolbox” for multiway data analy-
sis by using the ideas of the canonical partial least squares (CPLS)13 in combination with the more recent compu-
tational improvements where predictor matrix deflations are replaced by score vector orthogonalisations. For
several practical cases, we demonstrate that by including these ingredients in a multiway data analysis analysis
approach, more parsimonious models (fewer components needed) can be obtained at considerably lower computa-
tional costs. In Section 2, we briefly review a special case of the tensor dot product and transposition rules, and
in Section 3 we present an extension of the (two-way) CPLS into a multiway analogue of the N-PLS called N-
CPLS. We briefly discuss its implications for multiway modelling and how it affects predictions and the structure
in the resulting loading weights. For three real data sets, we demonstrate the building of parsimonious N-CPLS
models and compare them with corresponding models obtained by the N-PLS method available in N-way
toolbox.12

2 | TENSOR OPERATOR DEFINITIONS AND NOTATION

2.1 | The tensor dot product

The general definition of the tensor dot product is given in Arfken and Weber,14 and we consider here only the special
case needed for the N-CPLS algorithm. Let A and B be two tensors of dimensions ða1�…an� i1�…� ikÞ and
ði1�…� ik�b1�…�bmÞ, respectively. When forming the tensor dot product between A and B, we consider the last k
dimensions of A and the first k dimensions of B to be the inner dimensions of the two tensors, while the remaining
dimensions are considered outer dimensions. Next, we unfold A into a ða1 �… �anÞ�ði1 �… � ikÞ matrix, and we unfold B
into a ði1 �… � ikÞ�ðb1 �… �bmÞ matrix. The tensor dot product of A with B with k inner dimensions, denoted AⓚB, is
defined as the matrix product of the two unfolded matrices refolded back to a tensor of dimension
a1�…�an�b1�…�bm.

Note that we above require each inner dimension of A to be equal to each corresponding inner dimension of
B, and in this case, it can be shown that the tensor dot product does not depend on the ordering of
the dimensions that are collapsed in the product (as long as the matricization of A and B is done in a consistent
manner).

To illustrate the concept, suppose we have a tensor A of dimension ð3�2�5�4�6Þ and a tensor B of dimension
ð5�4�6�7Þ. Then the tensor dot product A➂B is well-defined, and the resulting tensor is of dimension ð3�2�7Þ. An
illustration of the calculation of a tensor dot product is shown in Figure 1.

2.2 | Tensor transpose

The tensor transpose is defined as the interchangement of the specified inner and outer tensor dimensions. For a tensor
B of dimension (2�4�3�5�6) with the k¼ 2 right facing dimensions being considered as the inner dimensions, the
resulting transpose Btk has dimensions (5�6�2�4�3). Considering only the last dimension as inner, the tensor
transpose would be Bt1 with dimensions (6�2�4�3�5). To assure notational consistency for the tensor transposi-
tion, the inner part of the tensor is given by the k right-hand side dimensions as for the first tensor (from the left) in the
tensor product above.
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The general tensor dot products and tensor transpose collapse to ordinary matrix product and matrix transpose in
the special cases where the tensors are just matrices or vectors.

3 | METHOD

The algorithm suggested in the present work builds on the NIPALS PLS algorithm as well as the idea of utilising canon-
ical correlation analysis (CCA) as outlined in Indahl et al.13

3.1 | The canonical PLS (CPLS)

In the CPLS method, a set of loading weights is calculated according to the computational elements described
below, where Y is a matrix of 1 or more columns representing reference measurements of each sample, and the matrix
Yadditional represents one or more additional variable(s) containing sample-related information or measurements that
may be available for the original measurements but may not be available for future measurements. (The inclusion of
additional information can improve the model if it includes additional structure in the data that is not available in other
responses.) The vector c represents the dominant vector of left canonical weights resulting from the indicated CCA.

FIGURE 1 An illustration of the tensor dot product A➁B, where A is of dimension 2�2�3 and B is of dimension 2�3�3. To calculate

the tensor dot product with two inner dimensions, A is unfolded to a 2�6 matrix and B to a 6�3 matrix and the matrices are subsequently

multiplied. For this particular tensor dot product, the result is a 2�3 matrix, but if the result was a higher-order tensor, the resulting matrix

should be refolded back into a tensor of appropriate dimension. In the illustration, the unfolded matrices are filled out along the first inner

dimension and then the second, but the result would be the same if the unfolded matrix had first been filled out along the second inner

dimension and then the first as long as the same filling is used for both matrices
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When the matrix Yadditional is available, it will contribute to a larger space for the calculation of loading
weights based on information that is possibly only available for training samples (not used in prediction),
while the canonical correlation tunes the prediction towards Y (single or multiple responses). In the case
of only one column in Y and no available matrix Yadditional, the CPLS reduces to the ordinary single response PLS
(PLS1).

W0 ¼Xt½YYadditional� - candidate loading weights
Z0 ¼XW0 - candidate scores
c ( canoncorrðZ0,YÞ - canonical correlation analysis ðthe vector of dominant left canonical weightsÞ
w ¼W0c - transform c byW0 to obtain the loading weights w
w ¼w=kwk - normalise w

The CPLS differs from the multiresponse PLS (PLS2) in that (i) the covariance maximisation criterion is replaced
by a correlation maximisation criterion, and (ii) in the calculation of the loading weights, the X matrix is replaced
by a candidate score matrix calculated from X and the candidate weights. The candidate scores will typically have much
fewer columns than X, and as the efficiency of the calculation of the CCA depends on the number of columns in the
two matrices, this will contribute to the computational efficiency of the algorithm. As the responses are used both in
the calculation of the candidate weights and in the subsequent canonical correlation problems, CPLS is more focused
on contributing to predicting Y from X for each component when compared to PLS2.13 Further, the use of canonical
correlation, in addition to maximising correlation for continuous responses, also maximises the Rayleigh quotient asso-
ciated with Fisher's canonical discriminant analysis (FCDA) for dummy-coded discrete responses. This means that the
component extraction, when compared with PLS2, is more focused on approximating the directions in Y for
both regression and classification problems. We will call the method N-CPLS in all cases throughout
the work, though it covers both the regression situation (as N-CPLSR) and the discriminant analysis situations (as N-
CPLS-DA).

3.2 | The N-CPLS algorithm

Based on the computational elements of the CPLS, we introduce the multiway N-CPLS algorithm. In the follow-
ing, we will take as a general assumption that the tensor X has dþ1 dimensions, that is, one sample dimension
of length N and d variable dimensions and that we have a response matrix Y consistent with the sample
dimension and having M columns. We assume both X and Y to be centred along the sample dimension. In
the algorithmic description of N-CPLS, tensor notation is used wherever the highest possible dimension would be
a tensor, but our formulations works for two-, three-, and multi-dimensional inputs, single and multiple
continuous and categorical responses, as well as with or without additional sample information.
Correspondingly, we use the general tensor dot product and tensor transpose notation wherever a tensor may be
involved.

The N-CPLS algorithm resembles the CPLS algorithm, and the main difference is that some matrix/vector products
are replaced with tensor dot products, and the N-CPLS algorithm is modified to include an optional multilinearity step.
Like the CPLS, the weights are obtained by solving a canonical correlation problem involving matrices. The dimensions
of the matrices used in the canonical correlation problem in N-CPLS are the same as for CPLS, improving the computa-
tional efficiency of the algorithm compared to using X.

In the description of N-CPLS algorithm below, we loop over components 1,…,a,…,A but avoid using indices a for
simplicity and compactness. We use j for the variable dimensions, for example, the loading weight vector for a given
component along dimension j becomes w½j�.
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† Orthogonalisation of Z0 on previous scores is only needed when Yadditional is used and can otherwise be skipped.
Δ Orthogonalisation of wj on previous loading weights is optional and useful for scatter plot interpretations, but it also

represents a restriction in the extraction of components. See Unfolded analysis below.
∗ The regression coefficients are formed by using element-wise multiplication along the component direction of the

tensor and matrix involved, denoted
J

1 and cumulative sum over the same dimension. This way, multiplying the
centred input data with the regression coefficients (and adding the mean response values) will result in predictions
for all components and all responses. In other words Ŷ¼XⓓBþ1N�A

J
0Y has dimensions (samples (N) � compo-

nents (A) � responses (M)).

4 | DIMENSION-WISE LOADING WEIGHT CALCULATIONS

Due to the CPLS approach, the dimension corresponding to the number of response(s) in Y is collapsed by the canoni-
cal weights c. The resulting W (vector/matrix/tensor) is the only part where our algorithm requires different handling
depending on dimensionality. Similar to N-PLS, for component number a, if the d-dimensional W is

• a vector (W¼w): normalise it,
• a matrix (W¼W): take the first left- and right singular vectors of W as the required loading weights pair, w½1�

a ,w½2�
a ,
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• a tensor of three or more dimensions (W¼W): compute a PARAFAC15 model with one component and take the
resulting loadings as the required loading weights tuple, w½1�

a ,…,w½d�
a .

In the algorithm, the choice based on dimensions, d, is referred to as an optional multilinearity switch. In the matrix
and tensor cases, after possible orhtogonalisation on previous components and renormalisation, the tensor outer prod-
uct of w½1�

a ,…,w½d�
a is used when producing score vectors.

4.1 | Analysis with unfolded feature dimensions

For input data of three or more dimensions, the N-CPLS algorithm above is multilinear in the sense that the loading
weight tensor WO is composed by an outer product of loading weight vectors for each variable dimension, that is, a set
of w½j�. This enables subsequent plotting of the loading weights for each of the variable dimension, but it also represents
a restriction on the amount of component variation that can be captured, due to WO having fewer estimable weights
than W. Defining Nj as the number of variables in dimension j, the number of weights are

Xd

j¼1
Nj versus

Qd
j¼1Nj,

respectively.
An alternative is to bypass the entire switching part of the algorithm and rather consider WO ¼W. This is equiva-

lent to first unfolding the multiway measurements of each sample in X and using CPLS directly, that is, stopping after
step (C) in Figure 2 and sacrificing the set of w½j� 's otherwise available for plotting. This type of approach provides a less
restricted solution as the loading weights now become linear combinations of all combinations of variables along the
different dimensions, rather than being restricted to just one variable dimension at a time. Alternatively, one might con-
sider postprocessing of the component-wise loading weight tensors, W, to obtain pseudo w½j�'s. However, this will not
yield an exact representation of the component and seems less valuable for interpretations.

4.2 | N-PLS

The original N-PLS and its main implementation differ from N-CPLS in some key areas. Four of these choices have a
direct impact on the modelling done in this work. (1): N-PLS uses an iterative procedure for component estimation,

FIGURE 2 Illustration of calculation of loading weights. Using multiway input data (A) in unfolded format B, unfolded loading weights

are produced with canonical partial least squares (CPLS). To perform multilinear analysis, the loading weights are folded to the shape of the

variable dimensions (C) and multilinear loading weights are estimated (D) corresponding to the dimensions of the original data (E). Scores

are computed by multiplying together data and loading weights in (B) or (E)
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repeatedly going back and forth between loading weights, scores, Y-loadings, and Y-scores until convergence, where N-
CPLS extracts each component in a faster, CCA-based calculation. For single response modelling without use of addi-
tional sample information through Yadditional or explicit loading weight orthogonalisation, these approaches are equiva-
lent, while all other cases lead to differing maximisation criteria. (2): In N-PLS, data are not automatically centred,
while centring is done by default in N-CPLS. For predictive modelling, it is usually most efficient to centre the data,
while for multilinear models like PARAFAC it is more important to enable recovery of true chemical components from
raw data. For N-PLS, the choice has been made to follow the PARAFAC tradition, while our experience is that lack of
centring can be at the expense of explained response variance. Thus, we have centred all data used with N-PLS in this
work. (3): In N-PLS, the deflation of X is based on loading weights, that is, TGWOt where G is a Tucker3 core array
(see Smilde et al.16), whereas in N-CPLS the deflation follows the more common loadings-based deflation scheme,
equivalent to using TPt . As a consequence, N-PLS essentially deflates in the row-/sample direction of the data, while N-
CPLS essentially deflates the column-/variable direction. (4): N-PLS imposes no orthogonality on scores or loading
weights, while N-CPLS components are orthogonal for scores and loading weight tensors. This, however, does not affect
predictions, unless also the dimension-wise loading weights are orthogonalised.

N-PLS has two additional properties that have not been included in the N-CPLS: (i) the possibility of having
multiway responses and (ii) a strategy for handling of missing data, both in X and Y. Allowing for multiway Y in N-
CPLS would require a less obvious approach to the canonical correlation step, while the handling of missing data
requires a compensation/bookkeeping strategy in the tensor dot product computations. Extensions to cope with such
data is feasible also for the N-CPLS approach but have not been prioritised for this work mainly addressing applications
with complete spectral and imaging data.

In the below examples, we have used the implementation of N-PLS from the N-way MATLAB toolbox.12

5 | DATA SETS

Descriptions of the data sets considered are specified below. For each data set, every second sample, counting from the
first, was used for training and the remainder for testing. Different data splits were also tested, for example, in a ratio of
2:1 for training and testing, respectively. Due to some heterogeneity in the samples, variations in the resulting plots
were observed, but the main patterns and order of methods with regard to performance were retained for the various
splits considered.

5.1 | Sugar, fluorescence

The sugar data17 are an example of data typically modelled by multilinear methods because of its trilinear structure.
Fluorescence has been measured on 268 samples as excitation-emission spectra with seven excitation wavelengths from
230 to 340 nm and 571 emission wavelengths from 275 to 560 nm. Two quality parameters: colour (derived from absor-
bance and used as an indicator for miscolouring of the sugar) and ash content (determined by conductivity and is used
as an indicator of inorganic impurities) were measured. In addition, the time of measurements is included in three
forms: year, month and time of day (morning, afternoon, night). See the data set webpage (http://www.models.life.ku.
dk/Sugar_Process) for more details. This dataset is included as an example where multilinear modelling makes particu-
lar sense. It is also rich in responses, enabling modelling alternatives with both multiple primary responses and with
utilisation of additional responses.

5.2 | Milk, NIR

The milk data are an example of one-dimensional spectra acquired for each of 296 samples in two different spectral
modes. The wavelength range 1550 to 1950 nm was used with for both the transmission and reflection mode, and the
resulting matrices have size 201 � 2. Reference measurements were acquired for fat and protein content as a percentage
of the sample weight for each sample. See the original publication18 for details. This dataset is included as an example
where orthogonalisation of loading weights and use of additional responses in modelling has a profound effect on
model parsimony (the number of required extracted components).
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5.3 | ORL faces, images

The ORL faces data set (which originated from a database formerly known as ‘The ORL Database of Faces’; see https://
cam-orl.co.uk/facedatabase.html) is chosen as a demonstration of data that are multiway in dimensionality but do not
have a multilinear structure. It also demonstrates the use of N-CPLS for classification. The data set consists of 400 grey
scale images of size 92 � 112 pixels acquired from 40 subjects represented by 10 frontal face photographs each under
varying lighting conditions and time points with different facial expressions and accessories (glasses, facial hair, etc.).
See also Liland and Indahl19 for an unfolded analysis using power partial least squares discriminant analysis. All classes
were represented with the same frequency in both the training and test set. The task is to identify the subjects of the
unseen (new) images from a classification model obtained by dummy regression with one-hot encoded responses and
class assignments chosen according to the index of the largest among the predicted responses.

6 | RESULTS

6.1 | Unfolded versus multilinear modelling —Sugar data

We first demonstrate how alternative restrictions in the N-CPLS affect modelling with the sugar data. In the analyses,
every second sample (2, 4, …, 268) is used as test samples, and curves of R2 show test set performance. Figures 3 and 4

FIGURE 4 Patterns of variations in WtW for multiway canonical partial least squares (CPLS) with unfolded analysis and in w½1�tw½1�

for trilinear analysis without and with w½j� orthogonalisation on previous components (sugar data). Dark colour (blue) indicates zero, while

light colour (yellow) indicates one as inner product

FIGURE 3 Explained variance of test set predictions for N-CPLS on sugar data with unfolded analysis (solid line) and trilinear analysis

without (dashed line) and with (dotted line) w½j� orthogonalisation on previous components. Two responses, colour (blue) and ash (red), are

modelled simultaneously
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show the prediction results for the unfolded analysis (least restricted), the (tri-/) multilinear analysis (more restricted),
and the multilinear analysis with orthogonalisation of w½j� on previous components (most restricted). The models pre-
dict colour and ash. For the sugar data, it is evident that the orthogonalisation on previous components is the most
severe modelling restriction as the explained variance on the test set never reaches the same level as the other models.
Between the unfolded and nonorthogonalised multilinear analysis there is considerably less difference, each explaining
one of the responses best by a small margin.

Inspection of inner products is associated with WtW from the unfolded modelling and w½1�tw½1� from the multi-
linear modelling. We note that the least restricted and the most restricted models both result in orthogonal loading
weights but obviously not for the medium restriction (multilinear without orthogonality). Regarding the modelling with
respect to the unfolded data, it should be noted that orthogonality is obtained in the unfolded, combined variable space
(and not for each dimension/mode). The explicitly orthogonalised loading weights for the most restrictive model is of
course orthogonal both in the separate modes and in the unfolded space since outer products of orthonormal vectors
are themselves orthonormal.

Figure 5 shows the loading weights corresponding to the first two components for the multilinear/trilinear model
with loading weight orthogonalisation based on the sugar data. On the left-hand side are dimension-wise loading
weights, and on the right-hand side are their outer product for the first two components (sign flipped to match raw
spectra) often called excitation-emission landscapes. As mentioned above, the one-to-one correspondence between
dimension-wise loading weights and the loading weights used for further computation of score vectors is only available
for the multilinear approach, and the orthogonalisation makes components less ambiguous with respect to interpreta-
tions. If variable/wavelength contributions along each dimension/mode is a concern, modelling based on unfolded data
should be avoided.

6.2 | N-PLS versus N-CPLS model building —Sugar and milk data

Here, we focus on modelling of a single response and concentrate on prediction of the chemical property ash as our pri-
mary response Y. In addition we use two nonchemical easily available properties as additional responses (Yadditional):
colour (numeric) and year of measurements (dummy-coded by one-hot encoding). The year variable is included as it
may correlate with other variables that can affect the measurements, such as change in equipment, raw materials, etc.

FIGURE 5 Loading weights for sugar data using trilinear N-CPLS with orthogonal dimension-wise loading weights, w½1� and w½2� (left),
and their outer products, WO, for the first two components (right)
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Figure 6 shows the explained variance of the test set for the N-PLS,8 the multilinear N-CPLS (equal to N-PLS in the sin-
gle response case), the multilinear N-PLS with dimension-wise loading weight orthogonalisation and the unfolded N-
CPLS with and without use of the additional response information. With regard to the maximum predictive perfor-
mances, the four models are not very different, though the multilinear approach with orthogonalisation achieves the
largest overall explained variance. However, the explained response variances for the parsimonious model alternatives
are very different: The single component models range from explaining 48.0% (unfolded N-CPLS) via 62.3% (N-PLS and
multilinear N-CPLS) to 79.1% of the variance in the primary response (obtained by N-CPLS with additional response
information). Due to extra loading weight orthogonalisation, N-PLS and multilinear N-CPLS with orthogonalisation
diverge slightly from the second component and more from the fourth component, where the orthogonalised version of
multilinear N-CPLS is clearly dominant until 16 components are included. However, from a parsimony perspective, the
first few components are usually most relevant. It must be assumed that colour and the year of measurements has a pro-
found effect on the samples or instrument, since the N-CPLS model based on utilising the additional response informa-
tion from colour and year is capable of accounting for much more ash information in a single component. In the
comparisons we have omitted multilinear N-CPLS with additional response information as the combination of the two
strategies does not seem to work well for the datasets we have investigated.

FIGURE 6 Explained variance of test set predictions of ash in sugar for N-PLS, multilinear N-PLS (identical to N-PLS), multilinear N-

PLS with orthogonalisation of w½j�, unfolded N-CPLS and unfolded N-CPLS with additional responses colour and year (dummy-coded)

FIGURE 7 Explained variance of test set predictions of fats in milk for N-PLS, multilinear N-CPLS (identical to N-PLS), multilinear N-

PLS with orthogonalisation of w½j�, unfolded N-CPLS and unfolded N-CPLS with additional responses protein and total solids
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Predictive analyses with the milk data also show considerable differences in the first few components of the N-CPLS
models compared with the N-PLS model. Here we used fats as the response (Y) and protein and total solids as additional
response information (Yadditional) for the N-CPLS. The maximum explained variances were reached after 5, 6, 7, 9, and
9 components, for the modelling alternatives displayed in Figure 7. It should be noted that the best two-component
model alternatives of multilinear N-CPLS with orthogonalisation and the N-CPLS using additional response informa-
tion are quite close to each model's maximum while the same is true for the four component models of N-PLS, multi-
linear N-CPLS, and unfolded N-CPLS.

6.3 | Classification—ORL faces

The third example illustrates both the possibility of using the N-CPLS for classification and a situation where requiring
multilinear components makes little sense. We dummy-code the subjects of the ORL face database and use this as a
response matrix (Y) of size ð400�40Þ. As mentioned in Section 3, the canonical correlation employed in the N-CPLS
modelling enables discriminant analysis with a more aggressive criterion than what is used in the N-PLS modelling.
However, the practical effect of this maximisation depends on the application. Here, we do not have any readily avail-
able additional responses at hand, but there are several candidates that easily can be designed (such as coding for the
presence of glasses, moustaches, etc.). For simplicity, we have chosen to use the first 10 left singular vectors of the
unfolded, centred training data, that is, principal components, as additional responses (Yadditional).

Figure 8 shows that the differences between the unfolded N-CPLS versions and N-PLS are not very large, while the
multilinear N-CPLS is not able to achieve the same maximum accuracy in classification. The orthogonalised version
ends up at a maximum accuracy of around 58% (not visible in the plot), almost 35% lower than the unfolded versions.
In the figure, the simplest models achieving accuracies ≥ 80% and ≥ 90% are highlighted. We observe that the simplest
models with accuracy ≥ 90% has 17 (N-CPLS with Yadditional), 21 (N-PLS), 22 (unfolded N-CPLS) and 33 (multilinear
N-CPLS) components. For this dataset, it is evident that forcing multilinearity for N-CPLS has an adverse effect on
accuracy, while N-PLS, with its less aggressive maximisation criterion, fares surprisingly well. One might claim that the
inclusion of additional sample information leads to the most parsimonious models here, but the margins are too small
to conclude that the differences are significant. The most significant benefit from using N-CPLS here is the reduction in
computational time spent in the model building (see the subsequent section).

The upper parts of Figure 9 shows two faces of different subjects, facial expressions and accessories. The lower parts
shows the effect of restricting components to be multilinear (restricting the loading weights of the first component to be

FIGURE 8 Percentage correctly classified test set faces for N-PLS, multilinear N-CPLS, multilinear N-PLS with orthogonalisation of w½j�

(continues between 45% and 58% behind sub-figure), unfolded N-CPLS and unfolded N-CPLS with additional artificially created sample

information. Minimal models that achieve ≥ 80% and ≥ 90% correctly classified faces are marked with circles/crosses. The smaller subfigure

is a magnified view of the top-left part of the larger subfigure
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an outer product of per-dimension loading weights, w½j�) compared with just unfolding. The former does not contribute
to an efficient solution, since the stack of images does not have any obvious underlying trilinear form.

6.4 | Computational efficiency

Table 1 reports the computational times used for building the various models considered above. The reported times are
median times from repeated modelling, prediction and calculations of explained variances or classification accuracy for

FIGURE 9 Two example photos from the ORL faces (top). Loading weights from an unfolded N-CPLS analysis and a multilinear N-

CPLS analysis (bottom)

TABLE 1 Time used for fitting models, predicting new samples and summarising as explained variance or accuracy

Dataset Samples Features Responses Additional Components Method Time (s)

Sugar 134�2 571� 7 1 2 20 N-PLS 4.34

N-CPLS mul.lin. 0.04

N-CPLS mul.lin.+orth. 0.10

N-CPLS unfolded 0.05

N-CPLS (Yadd:) 0.05

Milk 148�2 201� 2 1 2 10 N-PLS 0.20

N-CPLS mul.lin. 0.01

N-CPLS mul.lin.+orth. 0.01

N-CPLS unfolded 0.01

N-CPLS (Yadd:) 0.01

ORL 200�2 92� 112 40 10 50 N-PLS 241.85

N-CPLS mul.lin. 0.71

N-CPLS mul.lin.+orth. 0.92

N-CPLS unfolded 0.84

N-CPLS (Yadd:) 0.86

Note: Reported times are medians of 100, 100 and 10 repetitions, respectively, for the three datasets. Above, “mul.lin.” is short for multilinear and Yadd: is short
for Yadditional. All datasets were split in two for training and testing, that is, “Samples” refer to number of samples in each of the sets.
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each method within each dataset. We note that time is only of practical concern for larger datasets, especially in the
presence of many response variables. For one-time modelling, time is not a deal-breaker for any of the combinations of
dataset and method. However, >4 min waiting for a single run of N-PLS for the ORL data will quickly become a nui-
sance if 10-fold cross-validation is used, increasing computation time to around 40 min. It should be noted that none of
the tested datasets are especially large, meaning that one can assume much longer computation times for high resolu-
tion data with many samples and responses when applying N-PLS, while N-CPLS apparently scales very well within
the observed cases.

The main theoretical reasons for the speed gains in the case of N-CPLS are due to the absence of a predictor matrix
deflation step which is required for the N-PLS method and the absence of iterative component estimation. However, in
practice, there is also a substantial overhead in poorly designed code. For the ORL problem around 43% of the model-
ling time is due to use of the pseudo inverse and 42% is due to custom made matrix multiplication code, both of which
are included to compensate for missing data, even in the absence of any missing numbers. However, even compensat-
ing for these weaknesses in the code, the speed-up by using the N-CPLS instead of N-PLS is around 50-fold for the ORL
problem.

7 | DISCUSSION AND CONCLUSIONS

Based on the definitions of tensor dot product and tensor transpose from Section 2, we have shown how to describe pre-
dictive multiway modelling in a compact and transparent manner. Likewise, the corresponding software implementa-
tion is just slightly longer than a matrix based implementation.

By extending the ideas of multiway PLS modelling with the ideas of the CPLS, the resulting N-CPLS method is dem-
onstrated to yield more parsimonious models, in particular, due to the possibility of including additional responses in
the model building process. This also ensures efficient handling of both continuous and categorical responses. The
switching option in the N-CPLS algorithm due to the dimensionality (number of dimensions/modes) in the input data
leads to an efficient handling of input data represented as vectors, matrices, threeway- or multiway tensors.

We have further shown how a multilinear decomposition can be acquired and how this restricts the search space of
the multiway modelling. The choice between multilinear or unfolded model building process is mostly depending on
the type of data being analysed, but it is also a matter of choice by the user with regard to possible benefits of inspecting
dimension-wise loading weights. The included examples show that the predictive accuracy and parsimony of models
when choosing between multilinear and unfolded analysis is highly data dependent and even dependent on which
responses are used for the same predictors.

A further restriction can be added in the form of requiring orthogonalisation of the extracted dimension-wise load-
ing weights. One can argue for this requirement in terms of more interpretable loading weight plots. On the other hand,
one can argue against it due to the effects this may have on the loading weight outer product tensor and the reduced fit,
as demonstrated in our first example. For some applications, it might seem evident which model variation to use, based
on known properties of the data. However, as the included examples show, until one has applied and properly validated
the methods, it is difficult to predict which version will give the most precise prediction.

The summary of computation times shown in Table 1 leaves no doubt that the proposed N-CPLS is orders of magni-
tude faster than the N-PLS implementation from Andersson et al.12 This is both due to the non-iterative canonical cor-
relation approach to loading weight computations and the avoided deflation of the predictors, in addition to some less
efficient choices for the coding in the N-PLS implementation. The N-CPLS also has regression coefficients and projec-
tion matrices for producing scores as two of its outputs, meaning that predictions for new data can be done through a
single tensor dot product and intercept compensation.

As with any multivariate modelling method, there are user choices involved and hyperparameters to tune. The N-
CPLS opens up the space of possibilities with regard to model restrictiveness and possible additional sample informa-
tion to include in the modelling of multiway data. As such, the N-CPLS can be used as a flexible stand-alone tool or be
further integrated into multiblock frameworks such as Sequential and Orthogonalised N-PLS20 and the Swiss Knife
PLS5 where even more possibilities arise.
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