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Abstract

We study a pursuit-evasion diffusive predator-prey model which combines prey-taxis in predators with 
evasive defense strategy of prey being capable to move in the opposite direction to the gradient of a chem-
ical signal secreted by the predators (indirect predator taxis). The kinetic part of the model extends the 
Rosenzweig MacArthur predator-prey model by assuming an intraspecific competition among predators, as 
in the classical Bazykin model. The prey-taxis takes into account density-dependent velocity suppression of 
predators while chasing the prey. The assumptions enable us to prove the existence of global-in-time clas-
sical solutions for space dimension n ≤ 3 which are not expected to exist for the Rosenzweig MacArthur 
model according to numerical simulations which depict a finite time blow-up of solutions for n = 2.
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
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1. Introduction

We consider a diffusive predator-prey model formulated in (1.3) which accounts for two taxis 
mechanisms. One of them is the prey taxis ([20,22]) which concerns a directional movement of 
predators towards the gradient of prey density (pursuit). Such a strategy is typical for visually 
foraging predators. The second one is the repulsive chemotaxis as the evasive anti-predator strat-
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egy of prey being the reaction to a chemical signal (odor of predator) secreted by predator. It 
manifests as moving in the opposite direction with respect to the gradient of the chemical. The 
latter is referred to as the indirect taxis (see e.g. [40] and [2]) in contrast to direct one imple-
mented by predators considered in the model. Many chemicals (e.g. pheromones, kairomones) 
released by animals are used as means of inter and intraspecific communication and olfaction 
is a primary means by which prey animals detect predators [28] and trigger anti-predator re-
sponses. Many types of anti-predator responses to chemical cues are described in the literature 
[6,14,15,31,13,18,21,46], among which in our model evasion (escape) is considered.

From the mathematical viewpoint the structure of the model investigated in the present paper 
is in a sense intermediate between the full cross-diffusion pursuit-evasion model with direct taxis 
in prey and predators [36] and the corresponding model with indirect taxis in both predator and 
prey which has been recently studied in [45]. The pursuit-evasion model (with direct taxis) reads

{
Pt = dP �P − ξ∇ · P ∇N + f (P,N) ,

Nt = dN�N + χ∇ · N ∇P + g(P,N) ,
(1.1)

where P and N denote predator and prey densities, the functions f and g describe local predator-
prey interactions, dP , dN > 0 are diffusion constants, ξ , η > 0 are taxis sensitivity parameters. 
The model appeared for the first time in [38] and [39] where the formal analysis of soliton 
solutions and stability analysis of the constant steady state where carried out.

For comparison let us consider the following model in which the direct repulsive predator-
taxis is replaced by indirect repulsive predator-taxis which amounts to assume that the prey 
senses not the presence of predator itself but rather its odor, a diffusive chemical with density 
W , and use evasive strategy moving in the opposite direction with respect to the gradient of W . 
Similarly, the movement of predators is oriented towards the gradient of chemical with density 
U secreted by prey and not the prey itself;⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pt = dP �P − ξ∇ · P ∇U + f (P,N) ,

Nt = dN�N + χ∇ · N ∇W + g(N,P ) ,

τWt = dW�W + γP − μW ,

τUt = dU�U + αN − βU

(1.2)

where γ , α > 0 and μ , β > 0 are rate coefficients related to the production and degradation of the 
chemicals secreted by predator and prey respectively. Systems (1.1) and (1.2) are supplemented 
by initial conditions and no-flux boundary conditions describing the lack of migration through 
the boundary of a region where the species under consideration are distributed.

In [41] only local in time existence of solutions to (1.1) was proved, so far, provided some 
smallness condition on the taxis coefficients holds. The recent papers [35,36] show how difficult 
is the problem of global existence of solutions to (1.1) even in the case of one space dimension 
if there are no restrictions made on the size of the chemotaxis sensitivity coefficients and initial 
data.

The existence of global weak solutions to (1.2) was shown in [3] for space dimension n ≤ 2 in 
a parabolic-elliptic case when the distribution of chemicals is governed by the system of elliptic 
equations (τ = 0 in (1.2) which amounts to assume that the diffusion of the chemical happens in a 
much faster time scale than the movement of individuals). This result was improved in [23] where 
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the existence of classical solutions and its long time behavior were proved for n ≤ 3. Recently 
it was proved in [45] that global classical solutions to (1.2) (with τ = 1) exist under additional 
assumption on the chemotactic sensitivity coefficients and kinetic coefficients responsible for the 
dissipativity of the system which appear in the functions f and g.

On the other hand it was recently proved in [37] that global boundedness of solutions also 
holds for the predator-prey system with pursuit-evasion and chemical signaling under additional 
assumptions on highly nonlinear diffusion of species which turns out to preclude blow-up for-
mation in a finite time.

Notice that contrary to system (1.1) the main elliptic part of the system (1.2) (with τ = 1) is 
triangular which has crucial consequence on the prolongation of local solutions as in the case of 
reaction diffusion systems with a triangular elliptic part an a priori bound in the space L∞(
) is 
sufficient to prolong a local solution with initial data in the Sobolev space W 1,r(
) with r > n

where n is the space dimension (see [4] for details).
In the following model investigated in this paper the direct repulsive predator taxis is re-

placed by the indirect predator-taxis while foraging strategy of predator is based on direct taxis. 
More precisely, denoting the densities of the predator, prey and the chemical by P, N, W :

 × (0 , ∞) �→ IR, respectively, the model reads

⎧⎪⎪⎨
⎪⎪⎩

Pt = dP �P − ξ∇ · P�(P ) ∇N + bF(N,P )P − δP − δ1P
2 ,

Nt = dN�N + χ∇ · N ∇W − F(N,P )P + rN − r1N
2 ,

Wt = dW�W + γP − μW ,

(1.3)

defined in a bounded domain 
 ⊂ IRn with smooth boundary and outer normal ν, supplemented 
with initial conditions

N(·,0) = N0, P (·,0) = P0,W(·,0) = W0 (1.4)

and homogeneous Neumann boundary conditions

〈∇N ,ν〉 = 〈∇P ,ν〉 = 〈∇W ,ν〉 = 0, on ∂
, t > 0 . (1.5)

The chemotaxis term in the P-equation contains density dependent predator velocity V =
�(P )∇N with �(P ) assumed to be a decreasing function accounting for the mutual interference 
among predators chasing the prey. Such a modification was earlier proposed in the literature in 
different contexts, namely in modeling the transport of macrophages in the early stages of multi-
ple sclerosis where

�(P ) = (1 + σP )−1 for σ ≥ 0 (1.6)

(see [24]) or in the modeling of feather morphogenesis with �(P ) = exp{−P } (see [30]). It is 
convenient to rewrite the chemotaxis term in the following way

PV = P�(P )∇N := G(P )∇N . (1.7)
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The function F in ecology is referred to as functional response which describes the consumption 
rate per predator. Typical examples of functional responses are covered by Holling type functions 
[16]:

F = FH (N) = aNd

1 + βNd
a ,β > 0 , d = 1 (Holling type II) or d = 2 (Holling type III) ,

(1.8)
as well as Beddington-DeAngelis functional response (cf. [11])

F = FH (N) = aN

1 + βN + cP
, a ,β , c > 0 , (1.9)

or that of Crowley–Martin (cf. [12])

F(N,P ) = aN

1 + βN + cP + dNP
, a ,β , c , d > 0 . (1.10)

The last two functions incorporate mutual interference of predators while consuming the prey 
(see e.g. [33] for a survey and comparison with experimental data). The boundedness of F is 
a consequence of its interpretation as the consumption rate which meets obvious physiological 
limitation. The coefficient b in the P-equation corresponds to the efficiency of conversion of food 
into offspring. The interpretation of remaining coefficients is following; the coefficients r and r1
correspond to the birth rate and intraspecific competition in prey, respectively, while δ and δ1
are the death rate and intra-specific competition in predator. We refer the reader to most recent 
survey papers which contain mathematical methods and modeling perspectives for chemotaxis 
systems [8,9,29] as well as to the introduction in [36] which contains an extensive overview of 
cross-diffusion systems in science with updated references to the literature.

It is worth underlining that the predator-prey model with bounded functional response and in-
traspecific competition in prey (r1 > 0) and in predator (δ1 > 0) is known in the literature as the 
Bazykin model [7] which turns out to have much more complex dynamics than the Rosenzweig-
MacArthur model [32] of prey-predator interactions in which δ1 = 0 and only r1 > 0. In partic-
ular in the case of reaction-diffusion system with Bazykin kinetic part not only Hopf bifurcation 
is possible for the coexistence constant steady state but also Turing bifurcation as reported in the 
recent paper [25].

The model (1.3) extends model A from [26] where the intraspecific competition was not taken 
into account (i.e. δ1 = 0) and there was no additional suppression of predator velocity assumed 
i.e. � ≡ 1 or σ = 0 in (1.6). For the aforementioned model A the existence of solutions was 
proved only for space dimension n = 1 and numerical simulation indicated that the solution 
may blow-up in finite time for n = 2. The main goal of the present paper is to find a possibly 
minimal modification of model A from [26] which warrants prevention of blow-up formation 
in finite time. Indeed it turns out that under the assumption of sufficiently strong intra-specific 
competition in predators and prey (δ1 and r1 big enough) in conjunction with density-dependent 
predator velocity suppression the effect of rapid sharp aggregation of predators is precluded and 
in consequence there is a global classical solution to model (1.3) shown in Theorem 2.1 whose 
proof is inspired by the article [45].

It is worth highlighting that for the space dimension n = 2 the formation of blowing-up so-
lutions is precluded for both the predator-prey model with prey taxis (χ = 0 and ξ > 0) with 
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� ≡ 1 as proved in [19] and for predator prey model without prey taxis term (ξ = 0, χ > 0) and 
δ1 = 0 proved in [26], so neither of taxis mechanisms alone can lead to the blow-up of solution 
and it is expected to happen only when there is a cumulative effect of both taxis mechanisms in 
conjunction with the lack of suppressive terms i.e. δ1 = 0, � ≡ 1 and suitable choice of the initial 
densities.
We assume the following hypotheses:

(H0) The function � in (1.7) satisfies

� ∈ C2(IR+) and G(r) = r�(r) ≤ Ḡ for r ≥ 0 (1.11)

for some Ḡ > 0. Notice that for the case of (1.6) we have Ḡ := σ−1.
(H1) The parameters dP , dN , dW , ξ , χ, δ , δ1 , r , r1 , b , γ , μ in (1.3) are positive,
(H2) The function F : IR+ �→ IR+ is a C2-function such that for some constants F̄ > 0,

F(N) ≤ F̄ for any N ≥ 0 .

(H3) The parameters r1 and δ1 satisfy the following restrictions

δ1 ≥
(

γ 2(16 + n)

dW

+ dW

)
, (1.12)

r1 ≥
(

χ2AN

(dN)2 + 2χ2

dW

+ dW

)
, (1.13)

where

AN = 2
(
(dN)2 + (dW )2 + ξ2Ḡ2

)
dW

+ 1 . (1.14)

It is worth noticing that conditions (1.12)-(1.14) contain only explicit model parameters and are 
independent of constants used in the proof of Theorem 2.1.

As has been mentioned before, only a cumulative effect of both taxis mechanisms may lead 
to the formation of blow-up solutions in finite time provided the conditions (1.12)-(1.14) are not 
fulfilled. If (1.6) is used to define G(P ) = P�(P ) then for P > 0, G(P ) = P(1 + σP )−1 → P

with σ → 0 and system (1.3) may be viewed formally as a regularization of the one with σ = 0. 
Therefore in Section 3 the impact of the parameter σ on the formation of blow-up solutions is 
illustrated by means of numerical simulations (notice that then Ḡ = σ−1). Our hypothesis that 
the product ξḠ rather and not only sole Ḡ plays a crucial role in blow-up formation, provided 
χ > 0, is confirmed by the results of numerical simulations which are not included to the paper. 
They confirmed that for the occurrence of blow-up matters whether the value of ξσ−1 is super-
critical. For suitably chosen initial data with very high density concentration and selected values 
of model parameters such that conditions (1.12)-(1.14) are not satisfied we observe numerical so-
lutions showing a rapid blow-up formation for the range σ ∈ [0, σc) where σc is a critical value 
depending on the remaining parameters. For σ > σc and other values of parameters kept as be-
fore, so that the conditions (1.12)-(1.14) are satisfied the stabilizing role of parameter σ reveals 
and the blowing-up solutions do not occur.
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2. Existence of global-in-time solutions

Let us consider the following auxiliary initial boundary value problem

ut + Au + ηu = ∇ · Q + ϕ , u(0) = u0 ∈ W 1,r (
) , r > n (2.15)

where η > 0, 
 is a regular domain with smooth boundary, Wk,r(
) , k ∈ {0, 1, 2}, r ≥ 1, is 
the Sobolev space with the norm denoted by ‖ · ‖k,r . For short the norm in the space Lq(
), 

 ⊂ IRn, will be denoted by ‖ · ‖q . Let us recall also the Sobolev embedding theorem

W 1,r (
) ⊂ L∞(
) for r > n . (2.16)

For D > 0 the operator

Au = −D�u for u ∈ D(A) = {v ∈ W 2,q(
) : ∂v

∂ν
= 0 on ∂
}

is a Lq(
)-realization, q ∈ (1 , ∞), of the Laplace operator with homogeneous Neumann bound-
ary condition and

Q ∈ Xq := C([0 , T ) : (W 1,q (
))n) ∩ C([0 , T ) : C(
̄))n , (2.17)

ϕ ∈ C([0 , T ) : Lq0(
)) ∩ C([0 , T ) : C(
̄)) . (2.18)

In the notation we will sometimes drop the arguments of time and space-dependent functions 
writing P(·, t) or P(t) or just P instead of P(x, t) etc. depending on the length of formulae in 
which they appear.

For the convenience of the reader we have compiled below some results from the literature 
which will be used later on:

(R0) Suppose that in (2.15) for some ϕ̄ ≥ 0 there holds ϕ(t, ·) ≤ ϕ̄ for (x, t) ∈ 
 × [0, T ) and 
q > n. Then there exists a constant C̃ such that

‖u(·, t)‖∞ ≤ ‖u0(·)‖∞ + C̃ sup
s∈[0,t)

‖Q(·, s)‖(Lq(
))n + ϕ̄η−1 for t ∈ [0, T ) . (2.19)

(R1) Bochner’s type inequality (see e.g. [44]): For v ∈ C2(
̄) there holds

2∇v∇�v = �|∇v|2 − 2|D2v|2 . (2.20)

(R2) Let u ∈ C2(
̄) satisfy ∂u
∂ν

= 0 on ∂
 and 
 is a bounded domain with regular boundary. 
Then there holds the following pointwise inequality [27, Lemma 4.2]

∂|∇u|2
∂ν

≤ K|∇u|2 on ∂
 (2.21)

where K = K(
) > 0 is un upper bound on the curvature of ∂
.
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(R3) The following inequality is a well known consequence of the Gagliardo-Nirenberg inequal-
ity: for u ∈ W 1,2(
) and any η > 0 there holds

∫
∂


u2dS ≤ η

∫



|∇u|2dx + CG(η)

⎛
⎝∫




udx

⎞
⎠2

. (2.22)

(R4) Let T > 0 and τ ∈ (0 , T ) and y : [0 , T ) → IR+ satisfies

dy

dt
+ Ay(t) ≤ B(t) for a.e. t ∈ (0 , T ) (2.23)

where A > 0 and B ∈ L1
loc([0 , T ) is a non-negative function satisfying

t+τ0∫
t

B(s)ds ≤ B1 for all t ∈ [0 , T − τ0) ,

with B1 > 0 [34, Lemma 3.4]. Then

y(t) ≤ max

{
y(0) + B1 ,

B1

Aτ0
+ 2B1

}
for t ∈ (0, T ) . (2.24)

(R5) The following result may be found in [45, Lemma 3.6]. Assume in (2.15) that for some 
η1 , η2 > 0,

ϕ(u) ≤ η1u − η2u
2

and Q = uV and

V ∈ C([0 , T ) : (W 1,�(
))n) ,

with � = 4 and n ≤ 3. Then for any k > 1 there exists a constant Ck > 0 independent of T
such that

sup
t∈[0 ,T )

‖u(·, t)‖k ≤ Ck .

The result (R0) is an adjustment of the well known result from [43] and its extension from [10]. 
Indeed, by the maximum principle the heat-Neumann semigroup e(D�−ηI)t corresponding to the 
linear problem

ut − D�u + ηu = 0 u(·,0) = u0(·)

with homogeneous Neumann boundary condition, is order preserving (with the natural order in 
the space C(
)) and
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‖e(D�−η)tw‖∞ ≤ e−ηt‖w‖∞ for w ∈ C(
̄)

Using the above properties in the variation of constant formula

u(·, t) = e(D�−η)tu0 +
t∫

0

e(D�−η)(t−s)∇ · Q(·, s)ds +
t∫

0

e(D�−η)(t−s)ϕ(·, s)ds

for (2.15) we obtain, using [10, Lemma 2.1 (iv)] in the term with the divergence operator,

‖u(·, t)‖∞ ≤ ‖u0‖∞ +
t∫

0

‖e(D�−η)(t−s)∇ · Q(·, s)‖∞ds +
t∫

0

‖e(D�−η)(t−s)ϕ(·, s)‖∞ds

≤ ‖u0‖∞ + C

t∫
0

e−η(t−s)

(
1 + (t − s)

− 1
2

(
1+ n

q

))
‖Q(·, s)‖qds

+
t∫

0

e−η(t−s)ϕ̄ds , t ∈ [0 , T ) . (2.25)

where C is a positive constant. Next, to obtain (2.19) we assume q > n, then let t → ∞ in the 
last two integrals. Finally we find the value of C̃ in (2.19)

C̃ = C

(
η−1 +

(
η

1
2

(
n
q
−1

))
�

(
1

2

(
1 − n

q

)))

where �(·) is Euler’s gamma function.

Lemma 2.1.

(i) Suppose that hypotheses (H1)-(H3) are satisfied and P0 , N0 , W0 ∈ W 1,r (
), r > n are non-
negative functions. Then there exists a unique non-negative maximal solution to system (1.3)
satisfying initial and boundary conditions (1.4)-(1.5) such that

(P,N,W) ∈ (C([0 , Tmax) : W 1,r (
)) ∩ C2,1(
̄ × (0 , Tmax)))
3 .

Moreover, if Tmax < ∞ then

lim
t→Tmax

(‖P(·, t)‖∞ + ‖N(·, t)‖∞ + ‖W(·, t)‖∞) = ∞ . (2.26)

(ii) There exist positive constant C1 , C2 , C3 such that

sup ‖P(·, t)‖1 ≤ C1 , sup ‖N(·, t)‖1 ≤ C2 , sup ‖W(·, t)‖1) ≤ C3 . (2.27)

t∈[0 ,Tmax) t∈[0 ,Tmax) t∈[0 ,Tmax)
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Proof of Lemma 2.1. The local in-time existence of solutions for similar quasilinear parabolic 
systems have been considered in many papers therefore we present it in an abbreviated form. We 
first notice that the main part of the quasilinear parabolic system is a normally elliptic operator 
with upper-triangular structure and the existence and uniqueness of maximal classical solution

(N,P,W) ∈ (C([0 , Tmax) : W 1,r (
)) ∩ C2,1(
̄ × (0 , Tmax)))
3

satisfying boundary and initial conditions (1.5)-(1.4) follows from Amann’s theory [4, Theo-
rems 14.4 & 14.6] (see e.g. [1,19,42] for details). The non-negativity of solutions easily follows 
from the maximum principle. Moreover in this case it is known that a uniform in time L∞-bound 
for the solution is sufficient to warrant that in fact Tmax = +∞. Next we proceed to item (i). We 
shall use several times the following inequality which is a consequence of the Hölder inequality

∫



v2(x)dx ≥ 1

|
|

⎛
⎝∫




v(x)dx

⎞
⎠2

for v ∈ L2(
) .

Then integrating separately each of the equations in (1.3) we get

d

dt

∫



P ≤ −δ

∫



P + F̄

∫



P − δ1

∫



P 2 (2.28)

≤ −δ

∫



P + F̄

∫



P − δ1

|
|

⎛
⎝∫




P

⎞
⎠2

≤ −δ

∫



P + F̄ 2

4δ1
|
|

and solving the resulting differential inequality we obtain

∫



P (·, t) ≤ max

⎧⎨
⎩

∫



P0 ,
F̄ 2

4δδ1
|
|

⎫⎬
⎭ := C1 for t ∈ [0 , Tmax) . (2.29)

Next we have

d

dt

∫



N ≤ r

∫



N − r1

∫



N2 (2.30)

≤ −r

∫



N + 2r

∫



N − r1

|
|

⎛
⎝∫




N

⎞
⎠2

≤ −r

∫



N + r2

r1
|
| ,
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hence,

∫



N(·, t) ≤ max

⎧⎨
⎩

∫



N0 ,
r

r1
|
|

⎫⎬
⎭ := C2 for t ∈ [0 , Tmax) (2.31)

and finally

d

dt

∫



W ≤ −μ

∫



W + γ

∫



P ≤ −μ

∫



W + γC1 .

Hence,

∫



W(·, t) ≤ max

⎧⎨
⎩

∫



W0 ,
γC1

μ

⎫⎬
⎭ := C3 for t ∈ [0 , Tmax) . � (2.32)

Lemma 2.2. Let (P , N , W) be a solution to (1.3), Tmax < ∞, and τ0 = min{1 , Tmax

2 }. Then for 
t ∈ (0, Tmax − τ0) there exist constants C4 . . .C7 such that

t+τ0∫
t

∫



P 2(x, s)dsdx ≤ C4 ,

t+τ0∫
t

∫



N2(x, s)dsdx ≤ C5 , (2.33)

sup
t∈[0 ,Tmax)

∫



|∇W(x, t)|2dx ≤ C6 . (2.34)

Proof of Lemma 2.2. On integrating (2.28) and (2.30) with respect to time from t to t + τ0 we 
easily find that

t+τ0∫
t

∫



P 2dsdx ≤ C1

δ1
(τ0F̄ + 1) = C1

δ1
(F̄ + 1) := C4 ,

t+τ0∫
t

∫



N2dsdx ≤ C1

r1
(r + 1) := C5.

(2.35)
Next by multiplying the W-equation by −�W we use the Young inequality to obtain

d

dt

∫



|∇W |2 + 2μ

∫



|∇W |2 + dW

∫



|�W |2 ≤ γ 2
∫



P 2 .

It leads to the differential inequality of form (2.23) with y(t) = ∫



|∇W(·, t)|2 and owing to 
(2.35) we make use of the result (R4) to deduce (2.34). �
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Lemma 2.3. Let (P , N , W) be a solution to (1.3). Then for t ∈ (0, Tmax)

d

dt

∫



P 2 + dP

∫



|∇P |2 +
∫



P 2

≤ ξ2Ḡ2

dP

∫



|∇N |2 + 2
∫



(bF̄P 2 − δ1P
3) +

∫



P 2 (2.36)

d

dt

∫



N2 + dN

∫



|∇N |2 +
∫



N2

≤ χ2

dN

∫



N2|∇W |2 + 2
∫



(rN2 − r1N
3) +

∫



N2 . (2.37)

Proof of Lemma 2.3. The inequalities are typical energy estimates which come from multiply-
ing the P-equation by P and the N-equation by N . Next the Young inequality was applied and 
the terms 

∫



P 2 and 
∫



N2 were added to both sides of inequalities for the P-equation and N 
equation respectively. �

The following Lemma is one of crucial counterparts of the existence proof providing an esti-
mate on 

∫



|∇W(x, t)|4dx for t ∈ (0 , Tmax).

Lemma 2.4. Let (P , N , W) be a solution to (1.3) and Tmax < ∞. Then there exists a constant 
C7 > 0 such that for t ∈ (0, Tmax).

d

dt

∫



|∇W |4 + dW

∫



∣∣∣∇(|∇W |2)
∣∣∣2 + 4μ

∫



|∇W |4

≤ γ 2
(

16 + n

dW

)∫



|∇W |2P 2 + C7 . (2.38)

Proof of Lemma 2.4. Using (2.20) we obtain

(|∇W |2)t = dW�|∇W |2 − 2dW |D2W |2 + 2∇W · ∇(γ P − μW) (2.39)

and then this formula along with integration by parts is used to compute

1

2

d

dt

∫



|∇W |4 =
∫



|∇W |2(|∇W |2)t = dW

∫



|∇W |2�|∇W |2

− 2dW

∫



|∇W |2|D2W |2 + 2
∫



|∇W |2∇W · ∇(γ P − μW) (2.40)

= −dW

∫ ∣∣∣∇(|∇W |2)
∣∣∣2 + dW

∫
|∇W |2 ∂|∇W |2

∂ν
− 2dW

∫
|∇W |2|D2W |2

 ∂
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− 2μ

∫



|∇W |4 − 2γ

∫



(∇(|∇W |2) · ∇W)P − 2γ

∫



(|∇W |2�W)P . (2.41)

To estimate the last two terms we use the pointwise inequality (see e.g. [44])

|�W |2 ≤ n|D2W |2

and the Young inequality which yield

2γ

∫



(∇(|∇W |2) · ∇W)P + 2γ

∫



(|∇W |2�W)P

≤ ε0

∫



∣∣∣∇(|∇w|2)
∣∣∣2 + γ 2

ε0

∫



|∇W |2P 2 + 2γ
√

n

∫



|∇W |2|D2W |P

≤ ε0

∫



∣∣∣∇(|∇W |2)
∣∣∣2 + γ 2

(
1

ε0
+ n

2dW

)∫



|∇W |2P 2 + 2dW

∫



|∇W |2|D2W |2 .

Notice that the last term cancels out with the first term in (2.40) and next we use the results (R2) 
and (R3) to estimate in (2.41) the term

dW

∫
∂


|∇W |2 ∂|∇W |2
∂ν

≤ dWK

∫
∂


(
|∇W |2

)2

≤ dWKη

∫



∣∣∣∇(|∇W |2)
∣∣∣2 + CG(η)dWK

⎛
⎝∫




|∇W |2
⎞
⎠2

where η > 0. Coming back to (2.41) we get

d

dt

∫



|∇W |4 + 2dW

∫



∣∣∣∇(|∇w|2)
∣∣∣2 + 4μ

∫



|∇W |4

≤ 2(ε0 + ηdWK)

∫



∣∣∣∇(|∇w|2)
∣∣∣2 + 2γ 2

(
2

ε0
+ n

2dW

)∫



|∇W |2P 2 + 2dWKCG(η)(C6)
2 .

and setting ε0 = dW

4 and η = 1
4K

we obtain (2.38) with C7 = 2dWKCG( 1
4K

)(C6)
2 where (2.34)

has been used. �
The main step in the proof of global-in-time existence of solutions is to find a differential 

inequality which enables to find a bound on

y(t) =
∫

|∇W |4 +
∫

P |∇W |2 +
∫

N |∇W |2 + A1

∫
N2 + A2

∫
P 2 .
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for suitably chosen A1 and A2. We are now in the position to formulate our main theorem.

Theorem 2.1. Suppose that hypotheses (H1) -(H3) are satisfied and P0 , N0 , W0 ∈ W 1,r (
), 
r > n are non-negative functions. If n ≤ 3 there exists the unique global and uniformly bounded 
classical solution (N, P, W) to (1.3) satisfying boundary and initial conditions (1.5)-(1.4) de-
fined on 
̄ × [0 , ∞) such that

(P,N,W) ∈ (C([0 , T ) : W 1,r (
)) ∩ C2,1(
̄ × (0 , T )))3 for any T > 0 .

Proof. We begin with finding differential inequalities which contain 
∫



P |∇W |2 and separately ∫



N |∇W |2. To this end we use (2.39) and integration by parts

d

dt

∫



P |∇W |2 +
∫



P |∇W |2 =
∫



Pt |∇W |2 +
∫



P
(
|∇W |2

)
t
+

∫



P |∇W |2 (2.42)

=

I1︷ ︸︸ ︷⎧⎨
⎩dP

∫



�P |∇W |2 − ξ

∫



|∇W |2∇ · G(P )∇N +
∫



|∇W |2
(
bF(N)P − δP − δ1P

2
)⎫⎬
⎭

+

I2︷ ︸︸ ︷⎧⎨
⎩dW

∫



P�(|∇W |2) − 2dW

∫



P |D2W |2 + 2
∫



P∇W · ∇ (γ P − μW)

⎫⎬
⎭+

∫



P |∇W |2

Using the Young inequality and differentiation by parts we obtain

I1 +
∫



P |∇W |2 ≤ dP

∫



|∇P |
∣∣∣∇(|∇W |2)

∣∣∣ + ξḠ

∫



|∇(|∇W |2)|∇N |

+ bF̄

∫
P |∇W |2 + (1 − δ)

∫



P |∇W |2 − δ1

∫



P 2|∇W |2

≤ ε1

∫



∣∣∣∇(|∇W |2)
∣∣∣2 + (dP )2

4ε1

∫



|∇P |2 + ε2

∫



∣∣∣∇(|∇W |2)
∣∣∣2

+ ξ2Ḡ2

4ε2

∫



|∇N |2 + (bF̄ − δ + 1)

∫



P |∇W |2 − δ1

∫



P 2|∇W |2

and

I2 ≤dW

∫
∇P · ∇(|∇W |2) + dW

∫
P

∂|∇W |2
∂ν

+ 2γ

∫
P∇W · ∇P − 2μ

∫
P |∇W |2

 ∂
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≤ε3

∫



∣∣∣∇|∇W |2
∣∣∣2 + (dW )2

4ε3

∫



|∇P |2 +
∫
∂


P
∂|∇W |2

∂ν

+ε4

∫



P 2|∇W |2 + γ 2

ε4

∫



|∇P |2 − 2μ

∫



P |∇W |2 .

Finally, we get in (2.42)

d

dt

∫



P |∇W |2 +
∫



P |∇W |2 ≤ (ε1 + ε2 + ε3)

∫



∣∣∣∇(|∇W |2)
∣∣∣2

+
(

(dP )2

4ε1
+ (dW )2

4ε3
+ γ 2

ε4

)∫



|∇P |2 + ξ2Ḡ2

4ε2

∫



|∇N |2

+ (ε4 − δ1)

∫



P 2|∇W |2 + (bF̄ − 2μ − δ + 1)

∫



P |∇W |2

+ dW

∫
∂


P
∂|∇W |2

∂ν
. (2.43)

Similarly, for the term 
∫



N |∇W |2 we obtain

d

dt

∫



N |∇W |2 +
∫



N |∇W |2 =
∫



Nt |∇W |2 +
∫



N
(
|∇W |2

)
t
+

∫



N |∇W |2

= dN

∫



�N |∇W |2 + χ

∫



|∇W |2∇ · N∇W +
∫



|∇W |2(−F(N)P + rN − r1N
2)

+dW

∫



N�(|∇W |2) − 2dW

∫



N |D2W |2 + 2
∫



N∇W · ∇(γ P − μW) + (1 + r)

∫



N |∇W |2

≤ε5

∫



∣∣∣∇(|∇W |2)
∣∣∣2 + d2

N

4ε5

∫



|∇N |2 + ε6

∫



∣∣∣∇(|∇W |2)
∣∣∣2 +

(
χ2

4ε6
− r1

)∫



N2|∇W |2

+ ε7

∫



|∇|∇W |2|2 + (dW )2

4ε7

∫



|∇N |2 + (r + 1 − 2μ)

∫
N |∇W |2

+ dW

∫
∂


N
∂|∇W |2

∂ν
+ ε8

∫



N2|∇W |2 + γ 2

ε8

∫



|∇P |2.

After the rearrangement of the terms above we have

d

dt

∫
N |∇W |2 +

∫
N |∇W |2 ≤ (ε5 + ε6 + ε7)

∫ ∣∣∣∇(|∇W |2)
∣∣∣2 +

(
(dN)2

4ε5
+ (dW )2

4ε7

)∫
|∇N |2
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+ (r + 1 − 2μ)

∫



N |∇W |2 +
(

χ2

4ε6
− r1 + ε8

)∫



N2|∇W |2

+ γ 2

ε8

∫



|∇P |2 + dW

∫
∂


N
∂|∇W |2

∂ν
. (2.44)

To estimate the last terms in (2.43) and (2.44) we use the Young inequality then (R2) and next 
(R3). Then we have the following

dW

∫
∂


P
∂|∇W |2

∂ν
≤ dWK

∫
∂


P |∇W |2 ≤
∫
∂


∣∣∣|∇W |2
∣∣∣2 + (dW )2K2

4

∫
∂


P 2

≤ η1

∫



∣∣∣∇(|∇W |2)
∣∣∣2 +

∫



|∇P |2 + CG(η1)

⎛
⎝∫




|∇W |2
⎞
⎠2

+ (dW )2K2

4
CG

(
4

(dW )2K2

)⎛
⎝∫




P

⎞
⎠2

. (2.45)

Similarly, we proceed for the case of (2.44) and finally we obtain that for some η2 > 0

dW

∫
∂


P
∂|∇W |2

∂ν
+ dW

∫
∂


N
∂|∇W |2

∂ν

≤ η2

∫



∣∣∣∇(|∇W |2)
∣∣∣2 +

∫



|∇P |2 +
∫



|∇N |2 + C10 (2.46)

where C10 is a constant depending on K and constants C1 , C2 and C6 from (2.27) and (2.34). 
Next we add (2.38), (2.43) and (2.44) making use of (2.46)

d

dt

⎛
⎝∫




|∇W |4 +
∫



P |∇W |2 +
∫



N |∇W |2
⎞
⎠ + 4μ

∫



|∇W |4 +
∫



P |∇W |2

+
∫



N |∇W |2 + dW

∫



∣∣∣∇(|∇w|2)
∣∣∣2 ≤

⎛
⎝ i=7∑

i=1,i �=4

εi + η2

⎞
⎠∫




∣∣∣∇(|∇W |2)
∣∣∣2

+
(

γ 2
(

16 + n

dW

)
+ ε4 − δ1

)∫



P 2|∇W |2 +
(

χ2

4ε6
+ ε8 − r1

)∫



N2|∇W |2

+ (bF̄ − 2μ − δ + 1)

∫
P |∇W |2 + (r + 1 − 2μ)

∫
N |∇W |2
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+ AP

∫



|∇P |2 + AN

∫



|∇N |2 + C10 (2.47)

where

AP =
(

(dP )2

4ε1
+ dW )2

4ε3
+ γ 2

ε4
+ γ 2

ε8

)
+ 1 , (2.48)

AN =
(

(dN)2

4ε5
+ dW )2

4ε7
+ ξ2Ḡ2

4ε2

)
+ 1 . (2.49)

Setting εi = η2 = dW

8 for i = 1, . . . , 7, i �= 4 and ε4 = ε8 = dW we obtain

⎛
⎝ i=7∑

i=1,i �=4

εi + η2

⎞
⎠ = 7

8
dW

and

AP = 2
(
(dP )2 + (dW )2 + γ 2

)
dW

+ 1 , (2.50)

AN = 2
(
(dN)2 + (dW )2 + ξ2Ḡ2

)
dW

+ 1 . (2.51)

In order to cancel out the last two integrals in (2.47) we add to (2.47) side by side (2.36) multi-
plied by AP

dP
and then (2.37) multiplied by AN

dN
to get

d

dt

⎧⎨
⎩

∫



|∇W |4 +
∫



P |∇W |2 +
∫



N |∇W |2 + AP

dP

∫



P 2 + AN

dN

∫



N2

⎫⎬
⎭

+
⎧⎨
⎩4μ

∫



|∇W |4 +
∫



P |∇W |2 +
∫



N |∇W |2 + AP

dP

∫



P 2 + AN

dN

∫



N2

⎫⎬
⎭

+ AP

∫



|∇P |2 + AN

∫



|∇N |2

≤
(

γ 2
(

16 + n

dW

)
+ dW − δ1

)∫



P 2|∇W |2 +
(

χ2AN

(dN)2 + 2χ2

dW

+ dW − r1

)∫



N2|∇W |2

+ (bF̄ − 2μ − δ + 1)

∫



P |∇W |2 + (r + 1 − 2μ)

∫



N |∇W |2

+ AP

∫
|∇P |2 + AN

∫
|∇N |2 + AP

dP

(2bF̄ + 1)

∫
P 2 − 2AP

dP

δ1

∫
P 3
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+ AN

dN

(2r + 1)

∫



N2 − 2AN

dN

r1

∫



N3 + C10 . (2.52)

Next we use the Young inequality to estimate

(bF̄ − 2μ − δ + 1)

∫



P |∇W |2 ≤ 3

2
μ

∫



|∇W |4 + 1

6μ
(bF̄ − 2μ − δ + 1)2

∫



P 2

(r + 1 − 2μ)

∫



N |∇W |2 ≤ 3

2
μ

∫



|∇W |4 + 1

6μ
(r + 1 − 2μ)2

∫



N2

and then denoting

α1 := AP

dP

(2bF̄ + 1) + 1

6μ
(bF̄ − 2μ − δ + 1)2 , α2 := 2AP

dP

δ1

σ1 := AN

dN

(2r + 1) + 1

6μ
(r − 2μ + 1)2 , σ2 := 2AN

dN

r1

we find estimates for the polinomial terms

α1

∫



P 2 − α2

∫



P 3 + σ1

∫



N2 − σ2

∫



P 3 ≤ 4

27

(
α3

1

α2
2

+ σ 3
1

σ 2
2

)
|
| := C11 . (2.53)

Denoting

y(t) =
⎧⎨
⎩

∫



|∇W |4 +
∫



P |∇W |2 +
∫



N |∇W |2 + AP

dP

∫



P 2 + AN

dN

∫



N2

⎫⎬
⎭

and using the assumption (H3):

(
γ 2

(
16 + n

dW

)
+ dW − δ1

)
≤ 0 ,

(
χ2AN

(dN)2 + 2χ2

dW

+ dW − r1

)
≤ 0 ,

we are in the position to rewrite (2.52) in the form of the following differential inequality

d

dt
y(t) + y(t) ≤ C10 + C11 for t ∈ [τ , Tmax)

for some τ ∈ (0 , Tmax). Notice that we have assumed that W0 ∈ W 1,r (
) for r > n, thus, for n =
3 there could be that r ∈ (3, 4). Whence it follows that y is a bounded function for t ∈ [τ , Tmax)

and in particular
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sup
s∈[τ ,Tmax)

∫



|∇W(x, s)|4dx < C̃W (2.54)

with C̃W independent on time. Next, using the result (R5) to the N-equation with � = 4 we 
deduce that there is a time-independent constant Ck

sup
t∈[0 ,Tmax)

‖N‖k < Ck for any k ≥ 1 . (2.55)

By the Hölder inequality it follows that for some ε ∈ (0 , 12 )

sup
s∈[τ,Tmax)

‖N(·, s)∇W(·, s)‖4−ε < CNW

with a constant CNW independent of time. Hence, in view of (R0) setting η = 1 and

Q = N∇W ,

ϕ = (r + 1)N − r1N
2 − F(N)P .

we find that ϕ ≤ ϕ̄ = (r+1)2

4r1
and we infer that for n ≤ 3 < 4 − ε there is a constant CN indepen-

dent on time such that

‖N(· , t)‖∞ ≤ CN for t ∈ [0 , Tmax) . (2.56)

Owing this we proceed to find an estimate for ∇N . To this end we look at the N-equation as at 
the parabolic equation of form (2.15) with η = 1 and in view of (2.54), (2.56) and boundedness 
of 

∫



P 2(·, t) being the component of y(t) we obtain may set q = 4 , q0 = 2 in (2.17)-(2.18). The 
variation of constant formula for (2.15) reads

u(t) = e−(A+I )(t−τ)u(τ ) +
t∫

τ

e−(t−s)(A+I )∇ · Q(s)ds +
t∫

τ

e−(t−s)(A+I )ϕ(s)ds (2.57)

for t ∈ (τ , Tmax). Notice that for u ∈ D(A + I )θ , θ ∈ (0, 1), and m ∈ {0 , 1} there exists C̃1

‖u‖m,p ≤ C̃1‖(A + I )θu‖q (2.58)

where p ∈ [1, ∞] and

m

2
− n

2p
< θ − n

2q
. (2.59)

On the other hand using properties of analytic semigroup we get (see e.g. [17] or [42]) for ϕ ∈
Lq0(
), q ≥ q0, there exist C̃2 > 0 and μ0 such that

‖(A + I )θ e−t (A+I )ϕ‖q ≤ C̃2t
−θ− n

2 (1/q0−1/q)e−μ0t‖ϕ‖q . (2.60)
0
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Moreover, using [42, Lemma 2.3] for the taxis term we have that for some C̃3 > 0 and ε ∈ (0, 12 )

‖(A + I )θ e−t (A+I )∇ · Q‖q ≤ C3t
−θ− 1

2 −εe−μ0t‖Q‖q . (2.61)

Thus, making use of (2.57), (2.58), (2.60) and (2.61) we obtain for t > τ and C̃0 = max{C̃1C̃2 ,

C̃1C̃3}

‖u(t)‖m,p ≤ C̃1‖(A + I )u(t)‖q ≤ C̃1(‖(A + I )θ e−(t−τ)(A+I )u(τ )‖q

+ C̃2

t∫
τ

(t − s)−αe−μ0(t−s)‖Q(s)‖Xq ds + C̃3

t∫
τ

(t − s)−βe−μ0(t−s)‖ϕ(s)‖qds

≤ C̃0{(t − τ)−θ‖u0‖q +
∞∫

0

σ−αe−μ0σ dσ ( sup
t∈[τ ,Tmax)

‖Q(t)‖Xq )

+
∞∫

0

σ−βe−μ0σ dσ ( sup
t∈[τ ,Tmax)

‖ϕ(t)‖q0)}

≤ C̃0{(t − τ)−θ‖u(τ)‖q + �(1 − α)μ1−α
0 sup

τ∈[0 ,T )

‖Q(t)‖Xq + �(1 − β)μ
1−β
0 sup

t∈[τ ,T )

‖ϕ(t)‖q0}

where �(·) is Euler’s gamma function

�(a) = 1

x−a

∞∫
0

σa−1e−xσ dσ for a > 0, x > 0

and α and β satisfy

α = 1

2
+ θ + ε < 1 , β = θ + n

2

(
1

q0
− 1

q

)
< 1 (2.62)

(see e.g. [17]). Next, setting in (2.59) q = 4 , q0 = 2 and m = 1 we get

1

2
− n

2p
+ n

8
< θ . (2.63)

On the other hand the condition β < 1 implies

θ < 1 − n

8

and for n ≤ 3 there is such a θ which satisfies condition θ < 1
2 < 1 − 3

8 and combining it with 
(2.63) we get p < 4. Thus, applying it to the N-equation we infer that there exists a constant C̃N

‖∇N(· , t)‖p ≤ C̃N for t ∈ [τ1 , Tmax) for p < 4 .
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where τ1 ∈ (τ, Tmax). It follows from (H0) that ‖G(P )∇N‖q is bounded if we take for instance 
q = 3.5. Then of course q > n = 3 and applying the result (R0) to the P-equation we infer that 
there is a constant CP such that

‖P(· , t)‖∞ ≤ CP for t ∈ [0 , Tmax) .

Finally, from the W- equation and parabolic regularity we immediately obtain that

‖W(· , t)‖∞ ≤ CW for t ∈ [0 , Tmax)

where CW is a positive constant and we conclude that Tmax = ∞, which completes the proof. �
3. Numerical results

This section is devoted to the numerical illustration of theoretical results discussed in the 
previous section. Our main goal is to show how the parameter σ prevents blow-up of solutions 
to model (1.3) with (1.6). To this end, we use open source FreeFem++ software to run numerical 
simulations in 2D for the model

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pt = dP �P − ξ∇ · P

1 + σP
∇N + abNP

1 + βN
− δP − δ1P

2 ,

Nt = dN�N + χ∇ · N ∇W − aNP

1 + βN
+ rN − r1N

2 ,

Wt = dW�W + γP − μW ,

(3.64)

which has the kinetic part as in the Bazykin model [7] with Holling type II functional response 
(1.8). A discretization of the problem is based on the finite element discretization scheme with 
�x = �y = 0.125 and time step �t = 0.001. We applied fractional step method and used semi-
implicit scheme for the weak formulation of the system. A fractional step method allows users 
to successively deal with each term of the PDE system.

It can be checked numerically that model (3.64) posses a constant steady state solution E� =
(P �, N�, W�) = (0.741, 1.016, 0.74) for the following set of parameter values:

r = 2, r1 = 1.8, a = 0.7, b = 0.9, β = 2, μ = 0.01, δ = 0.1, δ1 = 0.15,

γ = 0.015, dn = 1, dp = 0.1, dw = 0.05.
(3.65)

It turns out that for the parameter values (3.65) along with ξ = 30 and χ = 0.1. the conditions 
(1.12)-(1.14) hold if and only if σ > σc := 19.7. Therefore in the forthcoming simulations, we 
intend to show that for σ < σc, predator-prey model (3.64) exhibits finite-time blow-up of solu-
tion and that assuming σ > σc prevents blow-up formation. In order to investigate impact of σ
on the solutions, we run simulations subject to suitably chosen initial functions with bell-shaped 
graphs, each resembling a spike with a smooth peak
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Fig. 1. (a) Approximated blowup solution at time t = 1.5 × 10−4 for σ = 0.0. (b) Approximated blowup solution at time 
t = 2.3 ×10−4 for σ = 5.0 subject to initial condition (3.66). The parameter values are as in (3.65) with χ = 0.1, ξ = 30.

P(x, y,0) = P � + 500e−100((x−2.5)2+(y−2.5)2),

N(x, y,0) = N� + 800e−100((x−2.5)2+(y−2.5)2),

W(x, y,0) = W� + 100e−100((x−2.5)2+(y−2.5)2)

(3.66)

where (x, y) ∈ 
 = (0 , 5) × (0 , 5). It is worth pointing out that the solution starting from an ini-
tial data of similar shape but less concentrated and smaller in L∞-norm stabilizes after some time 
and in this case there is no blow-up formation. We assume that the numerical solution evaluated 
at some time moment t is an approximation of the blow-up solution if the numerical solver stops 
at time t + �t , because the solution’s gradient exceeds some suitably chosen high threshold. For 
given values of parameters the blow-up time was confirmed by the mesh refinement while the 
position in space of the singular solution is forced by the choice of the initial functions.

The Fig. 1a depicts results of simulations for the initial data (3.66) at the time moment pre-
ceding the stop of the numerical solver. The left column in figures shows spatial distribution of 
predator, the right one that of the chemical and in the middle the prey distribution is represented. 
During numerical simulations, it has been observed that predator population increases over time 
very rapidly and blow-up occurs within first 15 time steps (see Fig. 1a). A similar rapid increase 
has been also observed in the chemical concentration while the spike in prey density is also 
formed in the center of the domain that is close in height to the initial data. Here the prey appears 
to be passive and the indirect predator taxis does not help the prey to move out of the chemical 
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dominant zone. Similarly, in Fig. 1b, we observe that a relatively small σ = 5 does not have a 
significant impact on the solutions behavior and blow up occurs at time about t = 2.3 × 10−4. 
Further numerical simulations suggest that the blow-up time increases along with the increase of 
the parameter σ . It is worth noticing that the coefficient of direct prey taxis ξ is multiple times 
higher than predator taxis coefficient χ . This indicates that the predator avoidance by prey is very 
weak while the predator velocity is relatively high which helps the predators to reach the prey 
very quickly. Here the initial prey population is dominant in the center and before the prey leaves 
the center predator moves faster and becomes more packed, causing the explosion of predator 
density in the very center of the domain. As it was mentioned in the Introduction the occurrence 
of blow-up is a cumulative effect of both taxis mechanisms as in the cases of models with χ = 0
and ξ > 0 or χ > 0 and ξ = 0 it does not appear. Noticing that for this particular initial data 
the gradient of the chemical is directed toward the center of the domain we infer that even with 
small predator taxis coefficient χ they prey moves outward in such a way that the norm of the 
prey density gradient, oriented toward the center, increases significantly. This in turn amplifies 
the strength of prey taxis being oriented toward the center leading in consequence to the blow-up 
of predator density.

The Fig. 2 illustrates the situation when the control parameter σ is greater than the threshold 
σc. Keeping all other parameters and initial data the same as before and running simulations we 
observe that indeed selecting σ > σc prevents the blowup formation and the numerical solutions 
starting from the bell shaped initial data rapidly converges to the steady state solution. In order 
to make clear the impact of σ on the solution development in time we chose σ = 25 and capture 
snapshots of numerical solutions at different time steps. In Fig. 2a, we observe that prey are 
quickly able to leave the center and form four small aggregations which manifest as density 
spikes at time step t = 13, however predator and chemical still remain dominant in the center 
(see Fig. 2b). In this figure, the predators seem to be passive and cannot effectively “chase” the 
prey. Snapshots captured at time step t = 50 suggest that prey leaves the center and begins to 
form a depletion region in the middle so that the graph of prey-density forms a volcano-like 
structure. Though the average density of prey and predator decreases gradually a weak predator 
avoidance can be noticed here so that during farther solution development the prey become spread 
around the central spot occupied by the predator as depicted in Figs. 2c–2d. We observe that prey 
density first drops significantly (N ∈ (0.0365, 0.03675)) at time t = 100 and in the long run at 
t = 500 it is restored such that N ∈ (1.0095, 1.0105) which is very close to the prey component 
of the steady state solution. Similarly, the predator density also approaches its steady state value, 
and only the chemical density attains relatively high values W ∈ (6.9, 7.5) at time moment t =
500 being stabilized only after a longer time which is not represented in the selected figures. 
This suggests that the steady state E� to the model becomes locally stable and no singularity 
formation takes place in the long run. This observation suggests that the conditions (1.12)-(1.14)
not only prevent blowup, but also promote the stabilization at the space-homogeneous steady 
state. Finally, we may conclude that along with the increase of σ the role of prey taxis is waning 
and solutions are expected to share some properties of predator prey model with indirect predator 
taxis studied in [26, Model B].

4. Final remarks and open questions

This paper contributes to the classical problem in the theory of reaction diffusion systems 
which amounts to finding a relation between the main diffusive part of the system and the reaction 
part such that solutions to the system are global-in-time. The main part of the system contains 
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Fig. 2. Snapshots for σ = 25 at different time steps. (a) t = 13, (b) t = 50, (c) t = 100, (d) t = 500. All other parameter 
values and initial condition is same as in figure (1).
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two taxis terms and the analysis of the problem led to introducing a kind of regularization in one 
of them which along with quadratic terms in the reaction part enable to find conditions precluding 
the blow-up of solutions. The regularization has clear interpretation in the context of the model 
being a density dependent suppression of the predators velocity.

The numerical simulations provide strong evidence that in 2D case the two taxis mechanisms 
jointly, without the aforementioned regularization, for some range of model parameters have sig-
nificant impact on the finite time blow-up of solutions. Moreover, numerical experiments suggest 
that formation of singularity in finite time depends also on the size of the initial data and simi-
larly to the Keller-Segel model of chemotaxis some initial density threshold is expected to exist 
below which there is no blow-up formation. The study of radial solutions may bring some insight 
into how the two taxis forces together induce the blow-up though none of them can do it alone. 
From the mathematical viewpoint it would be interesting also to study the existence of weak 
solutions being “weak enough” to grasp the singularities. To this and some estimates based on 
an entropy-like function are needed, so far unknown.

A finite-time blow-up in a population model suggests on one hand the appearance of processes 
leading to the formation of aggregations and on the other it indicates model limitations. There-
fore finding realistic modifications of such a model which ensure prevention of overcrowding is 
important from the modeling viewpoint. There are many ways to attain it, one of them is to build 
in the model a density threshold that was already studied in the context of predator-prey model 
in [5]. Another way is to consider nonlinear diffusion operators as in [37]. In this article, we 
propose yet another approach that takes into account intraspecies competition in both predators 
and prey, as well as density-dependent velocity suppression in predators. This leads to finding 
a range of parameters such that the global solutions of the model exist without any restrictions 
on the “size” of the initial data. On the other hand, the range of parameters limits the strength of 
both taxis mechanisms. Thanks to the numerical simulations, we also noticed that the high value 
of the parameter σ related to the damping of the density-dependent velocity not only prevents 
the formation of blow-up, but also forces the stability of a constant steady state.

Similarly to the case when δ1 = 0, studied in our earlier paper [26, Model A], for model 
(1.3) studied in this paper periodic patterns in space and time (or quasi-periodic), triggered by 
the Hopf bifurcation, are expected to appear for some range of parameters. The quasi-periodic 
patterns essentially correspond to predators’ pursuit of prey and their evasion from predators 
in space which manifests itself by occurrence of aggregations and low-density spots varying in 
time and space. However, when δ1 > 0 also Turing stationary patterns are expected similarly to 
the case of reaction -diffusion system with Bazykin’s kinetic part without taxis [25]. The linear 
stability analysis of constant steady states, bifurcation analysis as well as numerical study of 
pattern formation for system (1.3) deserve a separate paper.
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