

Master’s Thesis 2022 30 ECTS

Faculty of Science and Technology

Extending the functionality of the

power law-based STDP synaptic

model by implementing the support

for delay value dominated by axonal

propagation

Sanjayan Rengarajan

Master of Science in Data Science

Acknowledgements

I express my profound gratitude to my Supervisor, Susanne Kunkel, for her time
and efforts that made this work possible. She has been responsible for conceptual-
izing this idea, regularly checking upon the work required for its development, till
proper completion. I am glad that in spite of her busy schedule, she was always
able to find the required time to mentor me. I also acknowledge the use of her
drawings in this thesis, which are used with her permission. I am also grateful
for her help in reviewing and revising the content of this thesis. I enjoyed all the
meetings, discussions, and directions that she has provided throughout the course
of this thesis. All the credit for the positive impact this work would entail belongs
to her. And if there are any shortcomings, the responsibilities are solely mine.

I would also like to thank my other Supervisor, Prof. Hans Ekkehard Plesser for
the valuable insights and suggestions he has provided for this scientific work. His
numerous years of experience working in this domain and his sharp observational
skills were crucial for the proper completion of this work. I am also grateful to
him, for encouraging and providing support for the usage of his LATEX template,
making this writing work easier and well organized.

I extend my gratitude to Jochen Martin Eppler, H̊akon Mørk and Stine Brekke
Vennemo for their generous help in programming and explaining the procedures
involved in software development with NEST Simulator. They were so patient
and kind in answering my queries, for which I am truly grateful. Jochen Martin
Eppler has various times directly helped in making this project a success, his long
years of experience with NEST development were clearly visible with how quickly
he could spot and fix the bugs.

I acknowledge the use of Fenix Infrastructure resources, which are partially fun-
ded from the European Union’s Horizon 2020 research and innovation programme
through the ICEI project under the grant agreement No. 800858. I also ac-
knowledge the use of Orion Compute Cluster provided and managed by the IT

i

ii

department of NMBU. Both these hardware resources have been super helpful in
reducing the time taken to develop this project.

I thank my girlfriend, Wietske Stel, who has provided me constant motivation and
gave her generous support throughout this arduous journey.

Finally, I thank my close friends and family for supporting me throughout the
various maneuvers in my life. They are responsible for me to make it this far. I
owe all the success in my life forever to them.

Sanjayan Rengarajan

Ås, December 2022

Abstract

Learning is conceptualized to be possible due to the reconfiguration of neural
networks in the brain. This ability is referred to as neuroplasticity. One of the
ways by which plasticity is observed can be explained by plasticity exhibited by
the synaptic connections between two neurons. Spike-timing-dependent plasticity
(STDP) is a biological process, which has been experimentally observed to produce
the effect of synaptic plasticity. The STDP process is based on the precise arrival
times of presynaptic and postsynaptic spikes at the synapse. This arrival time
can be calculated using the timing of the spike offset by propagation delay to the
synapse from the neuron. The STDP process is known to affect the connection
strength between the neurons, affecting the amplitude of the spike generated in
the postsynaptic neuron.

In this thesis, we worked on the simulation model of synapses exhibiting STDP
properties. We used the NEST simulator framework for the implementation. The
current state-of-the-art model of the STDP synapse supports only delay values as
purely dendritic. We implemented support for axonal propagation delay in the
synaptic model, along with support for axonal delay value greater than dendritic
delay. We verified the implementation with an independent program for testing.
The implementation was then analyzed for its impact in a network with different
values for the axonal delay. This was done by taking the histogram of the weights
of the STDP synapse model in a many-to-one network configuration which was
simulated for hundred biological seconds. The results of the analysis matched
theoretical predictions with the weights shifting to a higher value as the axonal
delay value was increased. The analysis was also computed after optimizing the
alpha parameter of the model, to make sure the network average firing rate is at a
biologically comparable level at 10 spikes/s or below. In this result, we can not see
any significant shifts in weight as predicted by theory. We also benchmarked the
newer algorithm to check if it has any additional computation cost, which showed
our implementation did not affect the performance.

iii

Contents

1 Introduction 1

2 Theoretical Background 4

2.1 A brief explanation of biological signal transmission 4

2.2 Modelling of neuronal signals . 6

2.3 Modelling the synaptic connections 7

2.3.1 Spike-Time Dependant Plastic Synapse 8

2.3.2 An overview of NEST-Simulator 9

2.4 State-of-the-Art synaptic model . 10

2.5 Motivation for including propagation delays in STDP model 16

2.5.1 Effect of propagation delays in a network model 16

3 Methodology 19

3.1 Proposed algorithm . 19

3.2 Testing the new model . 23

3.3 Analysis of weight distribution . 24

3.4 Optimizing the α parameter . 26

iv

CONTENTS v

3.5 Benchmark Performance . 26

4 Results 27

5 Discussion 32

Bibliography 35

Appendices

A Detailed overview of NEST objects 38

B Network Parameters for testing 41

C Parameters for analysis of weight distribution 44

List of Figures

2.1 Illustration of a neuron. 5

2.2 Illustration of the propagation delays 11

2.3 Power law weight change plot . 12

2.4 Illustration of communication of spikes in NEST 15

3.1 Flowchart of our algorithm . 22

3.2 Many to one neural network architecture 25

4.1 Histogram of synaptic weights in the many-to-one network 28

4.2 Histogram of synaptic weights after parameter optimization 29

4.3 Benchmark performance plot 1ms 30

4.4 Benchmark performance plot 10ms 31

vi

List of Tables

3.1 Details of adjustentry data structure 21

A.1 Connection Rules available in NEST 39

B.1 Parameters of the Poisson spike generator for testing 41

B.2 Parameters of the neuron models for testing 42

B.3 Parameters of the synaptic models for testing 43

C.1 Parameters of the Poisson spike generator for analysis 44

C.2 Parameters of the neuron models for analysis 45

C.3 Parameters of the synaptic models for analysis 46

vii

List of Algorithms

2.1 Synaptic weight update . 11
2.2 Spike history retrieval . 13
2.3 Calculation of K− value for depression 13
2.4 Updation of the spike register . 14
3.1 Implementation of axonal delay . 21

viii

Abbreviations

Abbreviation Expansion

AI Artificial Intelligence

GUI Graphical User Interface

LIF Leaky Integrate-and-Fire

ms milliseconds

mV milliVolts

MPI Message Passing Interface

pA picoAmpere

SLI Simulation Language Interpreter

STDP Spike-Timing-Dependent Plasticity

VM Virtual Machine

WSL Windows Subsystem for Linux

ix

Chapter 1

Introduction

All the achievements that distinguish the human species from the rest of at
least over 5.3 million species (Costello et al. 2013), can be attributed to the single
most complex organ in the body, which is the human brain (Freeland 2014). The
human brain is not just responsible for our intelligence, but as the saying goes with
great power, the brain also has great responsibility and control of our voluntary
and involuntary actions (Garrett and Hough 2017). Its powers are so omnipresent
and ubiquitous, that the very moment you are reading this, assuming you are not
a sentient AI, your vision, muscular movement, the voice in the head doing the
reading, breathing, balance, posture, heart rate, and much more are administered
by physical and biological processes taking place in different parts of your brain
(Arslan et al. 2018). This unique specialty of the organ has piqued a great interest
among researchers who study its functionalities among a wide range of organisms.

Philosophically, it is an age-old unanswered question that enquires if the brain is
the organ responsible for all intelligence, then is it possible for it to completely
understand itself? There are also other neurophilosophical questions on how much
understanding we need to reach to attain the state of ”complete understanding”
(Craver 2007). But this and many other deeply thought-provoking philosophical
questions have not deterred neuroscientists from steadily uncovering bit by bit
more about the working of the brain (Gross 2012; Jerison 2012).

Owing to the complexity of this domain, the research required specialized focus
with collaboration among multidisciplinary researchers. In 2013, European Union,
initiated its flagship research project, the Human Brain Project (Markram
2012), with the main goal to gain far extensive knowledge about the brain and
the domains surrounding it. This scientific work comes under the purview of the

1

2

Human Brain Project.

The brain is not only fascinating for the scientists trying to uncover its working
logic, but also for the engineers and scientists from other fields who can learn by
getting inspired by its working process. This has been now most sought out in
the field of Artificial Intelligence (AI) where brain-inspired technologies are used
directly to make computers perform tasks that were traditionally thought that only
a human could do it satisfactorily (Y. Zhang et al. 2020). Recent trends due to an
increase in computational power have increased the potential of AI dramatically.

For many brain-inspired technologies, the ability of the brain to learn and adapt
to new information is the most important property. There are many different
ways the brain achieves learning, but the one we sought here is its neuroplas-
ticity. Neuroplasticity refers to the ability of neural connections present in the
brain to grow and restructure their connections patterns based on new informa-
tion presented to them in the form of electrical signals. For the brain to exhibit
neuroplasticity, there exists some process in the brain which can modify their be-
havior based on different external conditions 1. One such phenomenon that has
been experimentally verified is spike-timing-dependent plasticity or STDP, which
as the name suggests imparts plasticity in the system depending on the timing of
the spikes. A neuronal spike is an electrical signal produced by a neuron when
going through a complex chemical process, as the membrane voltage of the neuron
changes with respect to time. The STDP phenomenon explains the change in the
strength of the connection between two neurons connected through the synapse.
A synapse is a specialized anatomical structure present between two neurons that
facilitates the transmission of the electrical signal from one neuron to the other.

The weight or strength of the synapse refers to how strongly the signals are trans-
mitted across the synapse. A positive weight indicates a stronger connection, a
negative weight indicates the synapse acts as more inhibitory making the postsyn-
aptic neuron less likely to produce a spike when the presynaptic neuron produces
a spike. Since the weight of the synapse is sensitive to when the synapse receives
the signal from both the neurons connected to it, a delay in either direction of
the signal reaching the synapse can significantly change the weight of the synapse
(Markram et al. 1997).

The current model of STDP synapse based on power law, available in the NEST
Simulator lacks a functional property of supporting axonal propagation delay

1External here refers to the external to the structure, but not external to the organism itself.
Although those conditions can be greatly affected due to changes in outside conditions perceived
by the sensory systems of the organism.

3

greater than dendritic propagation delay. Axonal delay is a property defined by
the delay in propagation of a spike from the presynaptic neuron to that of the
synapse. This property of axonal delay makes the model biologically relevant in
cases where different types of neurons are connected with each other. This type
can be observed in the human brain (Madadi Asl et al. 2017). So, the goal of this
thesis is to implement the support for axonal propagation delay higher than the
dendritic propagation delay for the STDP-based synapse model. Along with the
implementation, the model is also tested, and analyzed for its effect on a network
and benchmarked for its performance

Following this section, an overview of the biological signal transmission process and
the details of modeling neurons and synapses can be found in the next chapter.
Along with this, the current state-of-the-art synaptic model’s algorithm and the
theoretical effects of longer axonal delay in a network model are provided in the
theory section. The methodology that we proposed and implemented in this thesis,
and the details of the testing and benchmarking of the implementation are provided
in the methodology chapter. The results of the analysis and the benchmarks of
the implementation can be found in the results chapter. Finally, the limitations of
our and possible future enhancements are discussed in the discussion session along
with the conclusion. The appendix contains supplementary material for the thesis
covering details of the NEST-Simulator and the parameters used in this thesis,
along with some code snippets.

Chapter 2

Theoretical Background

2.1 A brief explanation of biological signal trans-

mission

The neuron is responsible for carrying information from different parts of the or-
ganism. This information carried by neurons is done in the form of electrochemical
signals. Neurons can be in broader terms classified into three types based on the
function they perform. Sensory Neurons are neurons that are responsible for car-
rying the information from sensory inputs of the body. The neurons which carry
tactile senses present in the skin; audio signals from the hair cells present inside
the ear; optical signals from the retina in the eye and olfactory sensors carrying
signals about the smell from the nose; are some such examples belonging to this
category. Motor Neurons are the neurons responsible for the motor action of the
body. That is these neurons carry information to the skeletomuscular system and
mostly act on muscles to aid in the movement and/or locomotion of the organ-
ism. Interneurons are neurons that are present in the Central Nervous System.
Interneurons are mostly inhibitory in nature and function as a connection between
sensory and motor neurons (Purves et al. 2008).

There are three major parts of a neuron as depicted in Figure 2.1. These are the cell
body where the cell organelles of the neuron are present. The axon through which
the signal transmission takes place to the consecutive neuronal cells and finally the
dendrites which receive the signal from the previous neuron through a specialized
gap called the synapse. The mechanism by which the electrical signal is generated
is in the form of complex electrochemical action. Typically a neuron is present in

4

2.1. A BRIEF EXPLANATION OF BIOLOGICAL SIGNAL TRANSMISSION5

Figure 2.1: An illustration depicting the anatomical structure of the neuron. The
electric signals travel from the tip of the dendrite of the left neuron to the terminal buds
through the cell body and axon. Here a myelinated sheath is covering the axons, myelin
is a protein which makes electrical signals travelling through the axon faster. Adapted
from ”Diagram of basic neuron and components”, by Jennifer Walinga, Oct 2014. CCA
4.0

the polarized state with a voltage of -70 mV. This potential is referred to as the
resting membrane potential of the neuron. This is maintained by actively pumping
ions across the membrane of the neuron through voltage-regulated channels present
in the membrane. These are commonly referred to as voltage-gated ionic channels
since they regulate the pumping of ions in and out of the cell via voltage. When a
neuron is sufficiently electrically stimulated, it undergoes a rapid transition and it
gets depolarized to have a voltage of +40 mV. This change in polarization travels
as an electrical signal throughout the length of the axon and is transmitted to the
next cell. The way the neuron gets stimulated is referred to as the all-or-none
principle (Lucas 1909) in neurophysiology which means that the neuron either
gets polarized to the same level when excited or does not get polarized at all. The
intensity of polarization is not related to the strength of excitatory signals nor its
time period (Purves et al. 2008).

Typically the threshold voltage at which the neuron gets excited is around -55
mV. Once the neuron is depolarized to the peak of +40 mV it immediately goes
back to maintain its polarized equilibrium state. The peak at which the neuron
gets depolarized is called the action potential. When a neuron’s action potential

https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/3.0/deed.en

2.2. MODELLING OF NEURONAL SIGNALS 6

is generated, it is known by other names such as a spike is generated or the neuron
is said to have fired. The generation of spikes at proper time intervals is the key
factor in the transmission of information by neurons.

The transmission of signals doesn’t completely end with the neuron alone. Once
the action potential reaches the terminal buds of the axon, specialized chemicals
called neurotransmitters get released from the tip of the neuron. These chemic-
als act as biological transducers by carrying the information represented in the
electrical signals in a chemical form. This all happens in a specialized structure
called the synapse, which in simple words is a chemical-based1 connection present
between the neurons. The chemicals then diffuse across the synaptic cleft to bind
to the neurotransmitter receptors present in the dendrite of the neuron present
after the synapse (post-synaptic neuron). The binding of the neurotransmitter to
the postsynaptic neuron opens up various ion channels present in the membrane
of the postsynaptic neuron. As more ions enter the cell, the membrane potential
changes to produce a spike in the postsynaptic neuron. This is the mechanism
through which the spikes are transmitted.

2.2 Modelling of neuronal signals

To further analyze, understand, and even predict the function of a physical system,
creating a mathematical model of the system is required. This mathematical
model is backed by experimental research and is fitted to the data gathered from
experiments to check its validity. Neurons and their signal transmission process
are also similarly modeled in many different ways. Some of the models focus on the
intricate details of the neuron, while others focus on the overall response properties,
providing a higher level of abstraction. Since in this work, our major focus is on
the synapse we chose a neuron model with a higher level of abstraction. The
leaky integrate-and-fire model is one such model with linear differential equations
making them easier to be solved in linear time. The equation describing the model
is as given in Equation (2.1) and ??.

Cm
dVm(t)

dt
= I(t)− Vm(t)− El

Rm

(2.1)

where,

1There are also electrical-based synapses, but they are not within the scope of this study

2.3. MODELLING THE SYNAPTIC CONNECTIONS 7

Rm = Membrane resistance

El = Threshold Potential

Cm = Membrane Capacitance

Vm = Membrane Potrential

In this thesis, we use a specifically modified version of the LIF model. The used
model has an alpha-function-shaped synaptic current. The synaptic current as the
name suggests refers to the current passing in synapse after the generation of a
spike in the presynaptic neuron. This model was chosen because of its simplicity
to be solved computationally and exhibits complex signal properties (Rotter and
Diesmann 1999; Diesmann et al. 2001). Since we only use the neuron as a post-
synaptic neuron in this thesis, the postsynaptic current form is of little relevance
here.

2.3 Modelling the synaptic connections

Synapse by itself doesn’t generate any form of spike. Modeling of the synapse is
often dependent on the model of the neuron the synapse gets connected to. The
simplest form of modeling a synapse is to have a static synapse. A static synapse
doesn’t exhibit any type of plasticity. The simplest parameter a static synapse
can have is weight. The synaptic weight in a static synapse as the name suggest
stays static throughout the simulation. So, the static synaptic models will simply
transmit the signal from a presynaptic neuron to the post-synaptic neuron with
the only modification being the change in amplitude of the signal based on the
weight of the synapse.

There are other types of synaptic models which does not exhibit plasticity but
are a bit more complex than a regular static synaptic model. One such example
is a stochastic synapse based on Bernoulli distribution. Synaptic models of such
kind have a probabilistic transmission factor. The probability of transmission of
the signal is determined by the Bernoulli statistic. This kind of signal although
a bit more dynamic than the simplest models, they are quite easy to model with
the only factor involving the calculation of the probability distribution (Teramae
et al. 2012).

For the network of neurons to properly adapt and learn new things, there needs
to be some kind of adaptation in the system that makes it robust for learning. So,
synaptic models which impart plasticity to the system are of great interest. The

2.3. MODELLING THE SYNAPTIC CONNECTIONS 8

plasticity changes the strength of individual connections, which accumulated in a
large network of neurons, enabling the network to strengthen or weaken branches of
the connection. Since plasticity is observed experimentally in nature, incorporating
the phenomenon into the model follows logically. Our understanding of plasticity
is hugely based on the early neuroscientific theory called the Hebbian theory. The
simplified version of Hebbian theory can be summarized as “Neurons that fire
together, wire together” (Hebb 1949).

2.3.1 Spike-Time Dependant Plastic Synapse

A STDP synapse adjusts the relative strength of the connection between two
neurons depending on the spike timings. The increase in connection strength
in a STDP synapse only occurs when the spike timing of a presynaptic neuron
occurs slightly before the spike timing of the postsynaptic neuron. Otherwise, the
presynaptic neuron could not have caused the spike in the postsynaptic neuron as
the law of causality would be violated. The time window in which this happens
phenomenon holds validity is experimentally found to be in the order of a few
milliseconds (Bi and Poo 1998).

STDP synapses have two ways in which the synaptic weights are adjusted. Fa-
cilitation is the process in which the synaptic weight or the relative connection
strength between the neurons is increased. Depression is the phenomenon when
there is a decrease in relative connection strength between the connected neurons.
Facilitation and depression are a form of short-term plasticity, and all implement-
ations of STDP synapse undergoes both processes. This interaction between both
processes is called the dual-process theory of plasticity. Long-term potentiation
(LTP) is an observed process in which the increases in synaptic strength stay per-
sistently long after the cause of increment. Whereas, long-term depression (LTD)
is an observed process in which the synaptic strength is persistently low. Together
the activity of LTP and LTD are correlated with the learning process. (Sterratt
et al. 2011)

The various implementations of STDP often vary in their usage of different math-
ematical functions used for facilitation and depression.

2.3. MODELLING THE SYNAPTIC CONNECTIONS 9

2.3.2 An overview of NEST-Simulator

The main work of this thesis is done within the NEST-Simulator framework. A
simulator framework makes it easier for computational neuroscientists to just work
on the modeling or simulation part alone instead of building all the necessary
functionalities and optimizations around it. This is achieved by having a higher
level abstraction or automatic code generation based on the model description in
higher level languages (Blundell et al. 2018).

NEST Simulator is a neural simulation tool capable of phenomenological mod-
eling of neural signals. Phenomenological modeling is a modeling paradigm in
which the underlying phenomenon behind the scientific process alone is mathem-
atically modeled. Therefore NEST, at least in its current form, ignores the spatial
characteristics of the neuron and only models the phenomenon of activation po-
tential and its propagation. Although, NEST supports the modeling of the spatial
arrangement of synapses in a network of neurons.

NEST can be run on a single thread on a single node to massively parallelized
supercomputers. NEST framework uses Message Parsing Interface (MPI) and
openMP to support its concurrent execution. NEST interface is programmed in
C++, with the additional interface accessible through Python, via PyNEST im-
plementation which now comes bundled with the NEST installation. The Python
and C++ communication is handled through Cython. NEST works on time-based
simulation processing. This means all the simulation in NEST takes place in spe-
cified time steps and the communication, transmission, and reception of spikes
in NEST are forced to occur in that time step. This process is contrasting with
event-driven simulation technology where the process of communication happens
when a specific event 2 occurs in the simulation. The advantage of time driven
simulator is it forces all the neural nodes in the system to be easily monitored
coherently when utilizing parallel computation (Spreizer et al. 2022). Although
NEST also offers precise spike timing neural models, currently it doesn’t support
synaptic plasticity for such models. For a bit more depth detailed discussion about
NEST-Simulator functionalities refer to Appendix A: Detailed overview of NEST
objects or its official documentation site 3

2For example, creation of action potential
3https://nest-simulator.readthedocs.io/en/v3.3/

https://nest-simulator.readthedocs.io/en/v3.3/

2.4. STATE-OF-THE-ART SYNAPTIC MODEL 10

2.4 State-of-the-Art synaptic model

The current State-of-the-Art model of the STDP synapse is based on work done by
Morrison et al. 2007. The model was developed based on experimental evidence
and is designed to work best with the balanced random network. A Balanced
random network is a type of neural network is a network of neurons in which
the total excitatory and inhibitory signals in the network are balanced with each
other. And the connection of neurons with each other is set up in a random order
without any preconceived shape for the connection. A balanced random network
is considered for the network model, as it closely resembles the network activity
dynamics present in the cortical region of the brain (Brunel and Hakim 1999;
Brunel and X.-J. Wang 2003).

The working of algorithm is split into four different functions and are as given
below (2.1 - 2.4), along with their explanations. The algorithms are taken from
the appendix section of (Morrison et al. 2007). There are certain assumptions
made by the model, for the algorithm to properly work. They are:

• The list of all neurons is available to access from the memory

• The list of spike events is recorded and also available to be accessed from the
memory

• The neuron j is the postsynaptic neuron connected by the synapse to neuron
i which is the presynaptic neuron as shown in Figure 2.2

• The weight of the synapse wji connecting the neurons, is stored in the post-
synaptic neuron j

• The delays dAx
j representing axonal propagation delay and dDnd

j representing
dendritic propagation delay are stored in the neuron j, refer Figure 2.2

• The sum of delay values is the total synaptic delay (dj = dAx
j + dDnd

j) and
satisfies the condition that the dendritic propagation delay is always greater
or equal to the axonal propagation delay dDnd

j ≥ dAx
j

• The target neurons hold the details of the timestamp of the last presynaptic
spike timeold and the K+ value which controls the facilitation calculation for
weight update

• Each Synapse has a value τ , which represents the cut-off time difference. If
the spike times between two neurons, adjusted for the delay are higher than

2.4. STATE-OF-THE-ART SYNAPTIC MODEL 11

the difference then weight gets depressed, otherwise, the synaptic weight gets
facilitated.

i j

dnd

Synapse

Figure 2.2: The illustration de-
picts the connection of presynaptic
neuron i to that of postsynaptic
neuron j, through a synapse in
between them, dax and ddnd repres-
ents the propagation delay. Note.
Modified from the original illustra-
tion provided by Susanne Kunkel,
using with permission.

In Algorithm 2.1, the function update weight is
invoked whenever a new spike is created in the
presynaptic neuron i along with its timestamp.
The function gets the history of time stamps as
defined by Algorithm 2.2 within the time period
of the previous pre-synaptic spike received by
the neuron to the new presynaptic neuron shif-
ted by the delay values. The shifting of delay
values is done by adding dAx

j −dDnd
j as an offset.

This is done to compensate for the spike reach-
ing the synapse from the presynaptic neuron.
Then for each spike in the history that was re-
corded after the previous spike at timeold adjus-
ted for delays, the facilitation process occurs.
The function calculation for facilitation func-
tion F+(), is given in Equation (2.2). Finally,
after doing this for every spike in the history,
the depression process occurs after getting the relevant k− value from Algorithm 2.3
and with the depression function F+() as given in Equation (2.3). Then the values
of K+ and the old timestamp timeold are updated.

Algorithm 2.1 Synaptic weight update

1: procedure update weight(time)
2: for each post-synaptic neuron j do
3: history ← j.get history(timeold + dAx

j − dDnd
j , time+ dAx

j − dDnd
j)

4: for each spike timej in history do
5: dt← (timej + dDnd

j)− (timeold + dAx
j)

6: if dt ̸= 0 then
7: wj ← wj + F+(wj) ·K+ · e

−dt
τ

8: K− ← j.get K value(time+ dAx
i − dDnd

i)
9: wj ← wj − F(wj) ·K−

10: transmit spike (wj, dj) to neuron j

11: K+ ← K+ · exponential(− time−timeold
τ

) + 1
12: timeold ← time

F+(w) = λ× wµ (2.2)

2.4. STATE-OF-THE-ART SYNAPTIC MODEL 12

F−(w) = λ× α× w (2.3)

where,

λ = The learning rate of the neuron

α = The asymmetric parameter, representing the depression ratio

µ = The exponentiation parameter for facilitation

F+ = Weight Update for facilitation

F− = Weight update for depression

w = Synaptic weight

The values for the parameters were found by matching with the experimental data.
The algorithm gets its power law name from the fact that in Equation (2.2) the
synaptic weight is raised to the power of the parameter µ. This calculation made
the model approximately coincide with the experimental data obtained from Bi and
Poo 1998. The change in weights using these functions, with respect to the ∆t is
plotted in Figure 2.3. The explained algorithm is robust in that the parameterized
equations alone simply can be modified for obtaining newer models.

facilitation

depression

Figure 2.3: The plot depicts the change in
weight with respect to the difference of spike
timing in power law-based synaptic model.
When ∆t is 0, there is no change in weight.
Note. Modified from the original illustra-
tion provided by Susanne Kunkel, using with
permission.

To retrieve the history of spikes, the
function defined in Algorithm 2.2 is
used. The function is dependent on the
maintenance of a special data structure
called the spike register. This spike re-
gister is a dynamic data structure con-
taining the values of spike time tsp of
the postsynaptic neuron j. This func-
tion retrieves the spike between the
time period [t1, t2] with the inclusion
of both extreme times. This function
also increases the variable (countersp)
which denotes the access counter for
the spikes. The returned value of the
function is a list of spikes within the
parameterized time period.

TheK− value used for depression is cal-
culated by using the previously stored ksp value in the spike register data structure.

2.4. STATE-OF-THE-ART SYNAPTIC MODEL 13

Algorithm 2.2 spike history retrieval

1: procedure get history(t1, t2)
2: iteration from beginning of spike register
3: while tsp ≤ t1 do
4: move iterator to next element
5: Continue
6: history ← tsp
7: countersp ← countersp + 1
8: while tsp ≤ t2 do
9: push tsp to history

10: countersp ← countersp + 1
11: move iterator to next element

12: return history

Since the K− is used for depression of the weights, in Algorithm 2.3 the condition
that the spike generated by postsynaptic neuron j at time tsp should be greater
than the current spike obtained from the presynaptic neuron at time t.

Algorithm 2.3 Calculation of K− value calculation for depression

1: procedure get K value(t)
2: reverse iteration from end of spike register
3: while tsp ≥ t do
4: move iterator to previous element
5: Continue

6: return Ksp · exponential(− t−tsp
tau

)

In Algorithm 2.4, the spike register data structure is updated with the current
spike time tsp, ksp and countersp. The data structure is also maintained to have a
separate variable, Nsyn which holds the value of number of incoming STDP synapse
to the neuron. The function is called whenever a spike occurs in the postsynaptic
neuron.

The algorithm emphasizes the strict condition of dendritic delay greater than ax-
onal delay. Otherwise, when the get history function is invoked in 2.1 the law of
causality can become violated. This is because the two parameters it is invoked
with are timeold + dAx

j − dDnd
j , time+ dAx

j − dDnd
j . As dAx

j > dDnd
j the whole delay

term becomes positive. this results in the parameters being timeold+∆, time+∆
where ∆ is a positive value denoting the difference between delays. As the upper
limit of the function reaches beyond the current time, it requires the postsynaptic

2.4. STATE-OF-THE-ART SYNAPTIC MODEL 14

Algorithm 2.4 Updation of the spike register

1: procedure update register(t)
2: K ← K · exponential(− t−told

tau
) + 1

3: while length of spike register ≥ 1 do
4: if countersp ≥ Nsyn then
5: dequeue first element of spike register

6: push (t, k , 0) as last element of spike register
7: told ← t

neuron to have knowledge of the spike from the future. As this would violate the
law of casualty, it should be made sure that the dendritic delay in this algorithm
should always be kept below axonal delay.

The algorithm is implemented in the NEST Simulator4 5, with some modifications.
In the NEST simulator, the current implementation ignores the axonal delay part
and considers the delay to be purely dendritic. This makes the only parameter that
can be modified in the model the dendritic delay. The algorithm is the same as
above by simply removing the dendritic part or equating the axonal delay to zero.
Even if the algorithm is modified to accept the axonal delay, simply plugging the
value would make the model in the NEST simulator miss a spike in its calculation.
The explanation for this is given in the Figure 2.4.

4Documentation: https://nest-simulator.readthedocs.io/en/v3.3/models/
stdp pl synapse hom.html

5Source Code: https://github.com/nest/nest-simulator/blob/master/models/stdp pl
synapse hom.h

https://nest-simulator.readthedocs.io/en/v3.3/models/stdp_pl_synapse_hom.html
https://nest-simulator.readthedocs.io/en/v3.3/models/stdp_pl_synapse_hom.html
https://github.com/nest/nest-simulator/blob/master/models/stdp_pl_synapse_hom.h
https://github.com/nest/nest-simulator/blob/master/models/stdp_pl_synapse_hom.h

2.4. STATE-OF-THE-ART SYNAPTIC MODEL 15

pre-synaptic

post-synaptic

pre-synaptic

post-synaptic

Figure 2.4: The illustration has two parts, the top part of the illustration is when the
axonal delay is equal to dendritic delay, dax = ddnd. The bottom part represents the
scenario when the axonal delay is greater, dax > ddnd. The tcomm bar represents the time
at which NEST communicates events and the smaller gray bar represents the simulation
resolution. The purple-shaded region in the postsynaptic neuron time grid represents
the time window over which the get history function looks for spikes. The dotted arrows
represent the propagation delay of the spikes, and the dashed bar represents the arrival
time of spikes at the synapse. The purple bar at the bottom-most part in the third time
interval denotes the missed spike. Now, consider the first purple spike event in the post-
synaptic neuron. When the spike occurs in the case with equal delays, the get history
function has a clear window, with which it is able to locate the previous spike as the
function only gets called when the presynaptic neuron fires. In the axonal predominant
delay case, when the same occurs, you can see that the function’s window exceeds the
current time, and thereby requires information from the future to perform the current
change. And if the future spike is not available as should be the case, then it is not
revisited to update the weight but rather this whole calculation would be ignored. Note.
Original illustration by Susanne Kunkel, using with permission.

2.5. MOTIVATION FOR INCLUDING PROPAGATION DELAYS IN STDPMODEL16

2.5 Motivation for including propagation delays

in STDP model

The motivation for implementing axonal propagation delay as a parameter to
the model comes from the support of its reference in the early experiments related
to STDP (Bi and Poo 1998; Markram et al. 1997). The use of propagation delays
in calculations is also logically coherent with reality. The explanation for the same
is, as a spike is generated at the soma of the presynaptic neuron, it has to travel
down along the length of the axon to reach the synapse. Similarly, any spike
generated in the soma of the postsynaptic neuron has to propagate through the
dendrite of the same neuron back to the synapse. As adaptations made in the
synapse are dependent on the spike times, the synapse itself can only know about
the spikes after it has arrived at its location. Since to our knowledge, the spike
itself does not encode any information about its generation time, the synapse can
be affected only by the arrival of the spikes. This propagation delay is a non-zero
value in reality. The axons of different neurons vary in their structure and physical
properties, some of the variations such as myelination or gigantism increase the
speed of spike transmission across this axon (Hartline and Colman 2007). In the
cortical regions of the brain, where different types of neurons are connected with
each other (Somogyi and Klausberger 2005), then the models based on this network
(Potjans and Diesmann 2014; Brunel 2000) will benefit with the support of having
propagation delays in STDP calculations.

2.5.1 Effect of propagation delays in a network model

Since the network model, we are choosing for this work is the balanced random net-
work. We look into how the effect of delay value dominated by axonal propagation
affects the network dynamics. There are certainly different aspects in measuring
this, in this work, we focus on how the weights of synapses particularly get affected
over longer axonal delays. In the course of the simulation, the average value of
the synaptic weight would tend to slightly shift to one way or the other. This
shift in the mean of the weights is given the term drift of the mean. This drift is
mathematically analogous to the drift of a random walker. The drift of synaptic
weights is represented by ẇ

The calculation of the drift is done by using Fokker-Planck equation(Fokker 1914;
Planck 1917). The solution for the drift of synaptic weight is given by Equa-
tion (2.4) (Morrison et al. 2008).

2.5. MOTIVATION FOR INCLUDING PROPAGATION DELAYS IN STDPMODEL17

ẇdrift = −F−(w)

∫ 0

−∞
d∆ts k−(∆ts) Γij(∆ts + (dAx − ddnd))

+ F+(w)

∫ ∞

0

d∆ts k+(∆ts) Γij(∆ts + (dax − ddnd)) (2.4)

where,

F−(w) = Depression function for updating synaptic weight

F+(w) = Facilitation function for updating synaptic weight

∆ts = The time difference between the pre and postsynaptic spike

K− = The k-value for depression

K+ = The k-value for facilitation

dAx = Axonal propagational delay

ddnd = Dendritic propagational delay

Γij = Cross-correlation function between presynaptic spike over postsynaptic spike

The cross-correlation function defined in the equation, drafts a correlation between
the two spike trains produced in the neurons. The result of a cross-correlation
function gives a rough idea of how the shape of two functions are correlated. As our
assumption for the synaptic plasticity is that the spike from the presynaptic neuron
should be responsible for the spike in the postsynaptic neuron, the cross-correlation
function, adjusted for the propagation time, can give a factor of correlation between
the spikes produced from two neurons.

The equation 2.4 has two parts, with the top part promoting negative drift and
the bottom part being responsible for positive drift. In an ideal case, the drift is
closer to zero. This could happen in the case when the condition, axonal delay,
and dendritic delay match i.e., dAx = ddnd = d, is satisfied. This is because in that
specific scenario both the parts of the equation 2.4 will be closer to each other and
the cross-correlation function will become:

Γij(∆ts + (dAx − ddnd)) =⇒ Γij(∆ts + (d− d)) =⇒ Γij(∆ts) (2.5)

This condition of equal delay, gives us a certain frame of reference, for comparison
with the other cases. Also, a note to consider is that this only works for the
case where the spike train produced in the neurons is not produced by a random

2.5. MOTIVATION FOR INCLUDING PROPAGATION DELAYS IN STDPMODEL18

process. Fortunately, the neuron exhibit some type of oscillations larger than the
synaptic delay, which have been independently verified both in the experiment
and simulated models (Kriener et al. 2008). Taking the case of equal propagation
delays as a model, we can explore the cases where the delays are unequal.

If the axonal delay is larger than the dendritic delay i.e., dAx − ddnd > 0, then
the cross-correlation function has a slightly higher parameter. This in turn shifts
the value of the correlation function more to the left-hand side. Since the top
integral has limits ranging from −∞ to zero, the top integral’s value is increased
and the bottom integral value is conversely decreased. This results in the overall
drift moving towards the left side i.e., ẇdrift < 0, thus making the synaptic weights
on average lower.

If in the case of dendritic delay being larger than the axonal delay, then since
dAx − ddnd < 0 the result of cross-correlation is right shifted. So, the first integral
decreases, and the second integral increases, following the same logic described
before. This makes the whole synaptic weight drift towards the positive side
ẇdrift > 0 (Tchumatchenko et al. 2011).

Chapter 3

Methodology

The existing implementation of the algorithm lacks the support for having
axonal propagation delays as a parameter included in its computation. So, we
modified the algorithm to make the model have axonal delay as a parameter in
its calculations. The addition of axonal delay as a parameter to the model is
quite trivial, as just adding the parameter in locations where there was already
dendritic delay, will be sufficient. The problem arises to support calculations when
the axonal delay is greater than the dendritic delay. As this would result in the
model missing a postsynaptic spike for its weight calculations (refer Section 2.4).

3.1 Proposed algorithm

To implement the modified algorithm, a new function is added to the existing
algorithm. This new function called adjust weight (Algorithm 3.1) is responsible
for carefully recognizing the spikes, which would not have been considered in the
older algorithm. The added function performs the required calculations again in
the communication time of the NEST simulator, after the firing of the postsynaptic
neuron. The calculation of the synaptic weight is then updated using the missed
spike. This makes sure that the correct value of synaptic weight is maintained in
any case.

The algorithm is best explained as a flow of the process. The flowchart for the new
algorithm is given in Figure 3.1. The process starts when a presynaptic neuron
generates a spike, the spike is stored as a SpikeEvent data structure in NEST,

19

3.1. PROPOSED ALGORITHM 20

which is communicated to all the subsequent targets of the neuron. In our case,
the target is the postsynaptic neuron, but for it to reach that target the data
gets to the STDP model connected between them. This is done by event-handling
functions defined in the NEST kernel.

When the SpikeEvent is received by the synapse, the update weight procedure
described in Algorithm 2.1 is invoked1. But before the last depression step, if the
axonal delay is greater than the dendritic delay, the weight before the depression
step is performed, along with the previous presynaptic spike time and the current
presynaptic spike time is packed into a data structure of adjustentry2 type (refer
Table 3.1 for detailed description) and stored in a queue. Then the process contin-
ues with performing the depression step and subsequently sending the SpikeEvent
to the postsynaptic neuron.

Now, when the postsynaptic neuron fires, at NEST communication time, the spike
time is pushed to the history of spikes, which itself is implemented as a stack-
based data structure3. After this process, the queue storing adjustentry data is
iterated over to find the postsynaptic spike which satisfies the condition of being
generated after the latest presynaptic spike whose time is offset by the addition
of axonal delay and subtraction of dendritic delay. This offset is done because we
need to find the spike which comes to the synapse after the presynaptic spike4.
Since the postsynaptic spike also takes over the dendritic delay to arrive at the
synapse, we look for a spike that has been generated in the postsynaptic neuron at
a time advanced by the value of the dendritic delay. Once the condition is satisfied,
then the adjust weight procedure is invoked with the current postsynaptic spike
as the missed spike parameter along with the adjustentry data that satisfied the
condition.

The adjust weight procedure5 (Algorithm 3.1) takes the weight before the last
depression step and also computes the actual spike time of the last presynaptic
spike. Then the access counter value of the synapse is increased by one. This
counter variable is used to clean off spikes from history, by removing spikes with
access counter greater than the outgoing targets from the synapse. Here, the
facilitation step is actually different from the existing method, the K+ value is
actually returned to the previous value (value before the depression step) by taking

1In NEST Simulator it is named as the send function, Source Code line 251 - 318
2Adjust Entry: Source Code
3ArchivingNode is a class used in NEST inherited by the neuron model, the set spiketime

function which is a member of this class achieves this functionality: Source Code, line 191 -230
4the adjust weights function in Archiving Node, not to be confused with the one in the model

source code achieves this functionality: Source Code, line 284 -295
5adjust weight function: Source Code, line 354 - 413

https://github.com/sanjay270597/nest-simulator/blob/stdp_axonal_delay/models/stdp_pl_synapse_hom_ax_delay.h##L251
https://github.com/sanjay270597/nest-simulator/blob/stdp_axonal_delay/nestkernel/adjustentry.cpp
https://github.com/sanjay270597/nest-simulator/blob/stdp_axonal_delay/nestkernel/archiving_node.cpp##L191
https://github.com/sanjay270597/nest-simulator/blob/stdp_axonal_delay/nestkernel/archiving_node.cpp##L284
https://github.com/sanjay270597/nest-simulator/blob/stdp_axonal_delay/models/stdp_pl_synapse_hom_ax_delay.h##354

3.1. PROPOSED ALGORITHM 21

Table 3.1: Details of adjustentry data structure

Member variable Description

tlastspike Spike time of one spike before the latest spike generated by the
presynaptic neuron

weight The synaptic weight before the last depression step is performed

treceived Spike time of the latest spike generated by the presynaptic
neuron, offset by the difference between axonal delay and dend-
ritic delay

identifier data An identifier data to identify the synapse, and the neurons
connected to it, useful for NEST Kernel to know which synapse
to perform the operations on

the mathematical inverse of the step previous k+ update (Line 11 of Algorithm 2.1).
Then the facilitation step is again performed with this new value. Since the value
of dt is negative, the facilitation step results in a very small increase in weight.

Before the depression step is done, the weights are updated in the adjustentry data
structure, so as to have the correct data if there are any subsequent postsynaptic
spikes. Finally, the k− value is computed based on the recent data and then the
depression step is performed. In the NEST simulator, there is one more practical
step in which the synapse’s weight is updated by calling its setter function.

Algorithm 3.1 Adjustment of the synaptic weight based on missed spike

1: procedure adjust weight(adjustentry, missed spike)
2: original weight← current weight
3: current weight← adjustentry.weight
4: tspike = adjustentry.treceived − dAx + dDnd

5: Increase the synapse access counter, countersp
6: dt← missed spike+ ddnd − (adjustentry.tlastspike + dax)
7: assert dt > 0
8: kinv

+ ← (k+ − 1) · (exp adjustentry.timelastspike−tspike
τ

)−1

9: current weight← current weight+ F+(current weight) ·Kinv
+ · e−dt

τ

10: adjustentry.weight← current weight
11: K− ← target neuron.get K value(tspike + dAx − dDnd)
12: current weight← current weight− F−(current weight) ·K−

3.1. PROPOSED ALGORITHM 22

Figure 3.1: The flowchart depicts the process through which the proposed algorithm
works. The yellow blocks are the initiating/terminating event blocks and the green boxes
are processes that can be traced to specific procedures in the NEST Simulator source
code. The Orange boxes represent branching conditions

3.2. TESTING THE NEW MODEL 23

3.2 Testing the new model

To test the model, the NEST native language SLI script was used. The script
was made to run simulations for 100 biological seconds. The script used a simple
network model of one presynaptic neuron connected to a postsynaptic neuron
through the new STDP model. Additionally, the postsynaptic neuron has connec-
tions representing the population of inhibitory neurons and the external neuron
population. This is done to maintain the same condition as a balanced random
network exhibiting asynchronous irregular regime (Brunel 2000) as that was the
target network model for this synaptic model (Morrison et al. 2007). The model is
similar to the Figure 3.2, but here we only use one presynaptic neuron. The para-
meters chosen for the script were taken from the (Morrison et al. 2007) and the
particular values were chosen to maintain the network exhibiting the said regime.
The values are given in Appendix B along with their description. The (Brunel
2000) network has an excitatory population four times in size as the inhibitory
population, the balanced state is achieved by having a greater firing rate for the
inhibitory population than the excitatory population. In testing the models are
replaced by a single neuron having its firing rate equal to that of population size
times the firing rate for the population. The spikes are generated by a Poisson
generator connected to the neurons. We use a Leaky Integrate-and-Fire neuron
model for the postsynaptic neuron, and the rest of the neurons representing the
population are Poisson generators connected to the postsynaptic neuron through
a parrot neuron.

The test script6 contains two parts. In the first part, the script runs the simulation
using our model implemented in the NEST simulator along with all the other
models from the NEST. The spikes generated by both the presynaptic neuron and
the postsynaptic neuron are collected and stored. These spikes are later then used
in the second part of the test script. The second part of the test script takes
the spikes alone and independently calculates the weight of the synapse with each
consecutive presynaptic and postsynaptic spike pair. Finally, after calculations,
the final weight of the synapse obtained from the first part is compared with the
final weight obtained by independent calculation in the second part. If the weight
matches then the test has passed otherwise the test has failed, implying there is
an error at least in one of the parts of the script.

This testing was looped for different values of axonal delays. The test was first
performed for ten axonal delay values, ranging from zero to one second, for every

6The SLI script used for testing: Source Code

https://github.com/sanjay270597/master_thesis/blob/main/test_stdp_pl_synapse_working.sli

3.3. ANALYSIS OF WEIGHT DISTRIBUTION 24

one-tenth of a second, while keeping the total propagational delay as one second.
Then the test was modified to verify for every one-tenth axonal delay over the
range of zero to ten seconds, with the total propagation delay set as ten seconds.
The test passed in all the cases. A wide variety of axonal delays were needed to
make sure that the test passes on all the border cases.

3.3 Analysis of weight distribution

To perform the analysis of weights we constructed a network model, which is very
similar to the model used for testing. The chosen architecture is called the many-
to-one architecture and its overview is given by Figure 3.2. Since we only want
to observe the effects of the implementation only in balanced random networks in
the asynchronous irregular regimen, we use the same model. The only difference
being there are many presynaptic neurons and synapses connected to a single
postsynaptic neuron.

After building the network, the model was simulated for 100.0 seconds in biological
time7. The parameters used for this network model can be found in Appendix C.

7The python code used for analysis: Source Code

https://github.com/sanjay270597/master_thesis/blob/main/many_to_one.py

3.3. ANALYSIS OF WEIGHT DISTRIBUTION 25

Figure 3.2: An architecture diagram for many to one neural network. The filled circles
represent neuron models, blue represents the parrot neurons and purple represents the
Leaky integrate-and-fire neuron. The Cexc, Cinh, and Cext represent connections from the
excitatory, inhibitory, and external populations of neurons. The parameter w represents
the synaptic weight of the respective connections. The parameter v represents the firing
rate of the particular neuron population. Note. Original drawing provided by Susanne
Kunkel, using with permission

3.4. OPTIMIZING THE α PARAMETER 26

3.4 Optimizing the α parameter

The firing rate which we got in the model was above 100 spikes/s. The state-of-the-
art algorithm was only tested in a network model with a firing rate of 10 spikes/s or
lower(Morrison et al. 2007). This is because this is the more biologically plausible
firing in the cortical regions, on which the network model is based on (Brunel 2000).
For this, we chose to adjust the α parameter8 as that is the parameter responsible
for tuning the depression step. If higher depression occurs by the synapse, then
the postsynaptic neuron would be less likely to fire. We increased the alpha value
until the exit spike rate is lower than 10 spikes/s, this was done for each case of
axonal delay separately.

3.5 Benchmark Performance

To test if our implementation comes with any significant computational cost,
our implementation was benchmarked against the current model. Since the cur-
rent model in NEST Simulator doesn’t support the inclusion of axonal delay as
a parameter, we modified the model to just accept the parameter9. This makes
it work well when the axonal delay is lower than the dendritic delay. But, this
modified model doesn’t properly compute the synaptic weights when the axonal
delay is dominating the propagation delay. Also, since it would not be meaningful
to compare the performance of networks with different dynamics, we changed our
implementation in such a way that the function after performing all the calcula-
tions, makes sure that it does not change the original weight. This was done by
removing the last part of the adjust weight function in the model file, where in the
weight obtained after the calculation is set to the synapse as its current weight.

The benchmark was done with the same parameters as the analysis of weights
without the optimized alpha value. 10 different runs were made for each case to
minimize any artifacts. The benchmark was performed on a computer with an i7-
9750H CPU, 2.60GHz as its processor, having 8 GB of RAM and 1 TB Solid State
Drive for storage. It has 6 cores and all the cores were utilized for benchmarking.10.

8The python code used for parameter optimization: Source Code
9Modified version: Source Code, original version: Source Code

10The python code used for benchmarking: Source Code

https://github.com/sanjay270597/master_thesis/blob/main/alpha_opt.py
https://github.com/sanjay270597/nest-simulator/blob/stdp_axonal_delay/models/stdp_pl_synapse_hom.h##L246
https://github.com/nest/nest-simulator/blob/master/models/stdp_pl_synapse_hom.h##L244
https://github.com/sanjay270597/master_thesis/blob/main/benchmarks.py

Chapter 4

Results

The first result was to test if the model was working as it was intended to.
So, testing and verifying that all the test cases pass without any errors was the
first step. Once it was verified the model passed testing, analysis of synaptic
weight distribution in the simulated network and benchmarking of the model were
performed.

Distribution of Synaptic Weights

The results of the analysis of weight distribution in a many-to-one network model
are as shown in Figure 4.1 and ??. The trend can be clearly seen as predicted
in theory that the graphs gradually shift towards the right as the delay value is
increased. A more profound effect is seen when the delay value is fully dominated
by axonal delay, and the total propagational delay value is also larger (10.0 ms).
In this case, the weights apart from shifting to a higher value, the weights separate
more between our implementation and the existing implementation. in the case
with equal propagation delays, there seems to be only one graph, this is because the
graphs are overlapping having the same value. This is the reason why only cases
of axonal delay being greater than or equal to dendritic delay are shown, otherwise
there will be more overlapping graphs. This agrees with what was predicted by the
theory. The obtained weights for both implementations (for every delay case) were
statistically significant from each other except for the case of equal propagational
delay. We performed Kolmogorov–Smirnov test(Smirnov 1948) for the statistical
testing.

27

28

60 80 100 120 140 1600.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

To
ta

l D
el

ay
: 1

.0
m

illi
se

co
nd

s

60 80 100 120 140 1600.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

60 80 100 120 140 1600.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Without
Implementation
With
Implementation

60 80 100 120 140 160
Axonal Delay: 50.0%

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

To
ta

l D
el

ay
: 1

0.
0m

illi
se

co
nd

s

60 80 100 120 140 160
Axonal Delay: 75.0%

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

60 80 100 120 140 160
Axonal Delay: 100.0%

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Synaptic Weights in pA

No
rm

al
ize

d
co

un
t o

f s
yn

ap
se

Figure 4.1: The plots show the histogram of weight distribution after the simulation of
the many-to-one network model. With implementation here implies our implementation
of the model and without involves the usage of the modified current model. The weights
shift more to right and from each other as both the axonal and total propagation delay
increase.

29

0 5 10 15 20 25 30 350.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

To
ta

l D
el

ay
: 1

.0
m

illi
se

co
nd

s

0 5 10 15 20 25 30 350.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Without
Implementation
With
Implementation

0 5 10 15 20 25 30 35
Axonal Delay: 75.0%

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

To
ta

l D
el

ay
: 1

0.
0m

illi
se

co
nd

s

0 5 10 15 20 25 30 35
Axonal Delay: 100.0%

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Synaptic Weights in pA

No
rm

al
ize

d
co

un
t o

f s
yn

ap
se

Figure 4.2: The plots show the histogram of weight distribution after the simulation
of the many-to-one network model with optimized α parameter. Only cases for domin-
ating axonal delay are shown here, as seen previously lower axonal delay does not have
any difference. The variation of weight for different cases seems ever so slight that no
noticeable trend can be observed

Distribution of weights after optimization

After finding the α value for which the postsynaptic neuron had a low spiking rate.
We used this parameter and again ran the simulations to analyze the effect on the
weights. The results for the parameter-optimized model are shown in Figure 4.2.
There doesn’t seem to be any significant trend in the weights, even for longer cases.
There was no statistically significant difference between the weights obtained from
the current model and our implementations. This could be explained because the
firing rate was lowered by an order of magnitude, and the amount of weight update
calculations done by the synapse would also be lowered, this means we should have
increased the total simulation time to compensate. As we did not do that here, it
could be the reason we don’t see any trend.

30

0% 16.7% 33.3% 50% 66.7% 83.3% 100%
Axonal Delay as percentage of total propgation delay

0

5

10

15

20

25

30

35

Ti
m

e
ta

ke
n

fo
r s

im
ul

at
io

n
in

 se
co

nd
s

Our Implementation
Current algorithm

Figure 4.3: The plots depict the mean performance of various models of STDP synapse.
It has the models with our new algorithm and previously used algorithm, for total delays
of 1.0 ms. The x-axis represents the percentage of axonal delay w.r.t. total delay. The
y-axis is in seconds, representing the average time taken for the simulation. The black
lines represent the errorbar for each ben

Benchmark perfomrance

The average time taken for each scenario is plotted and shown in the Figure 4.3
and Figure 4.4. The benchmark results show that the time taken for the algorithm
almost remains the same with no significant trend. You can see that the average
time for every case falls within the error region of the others. This is the case
for both 1 ms and 10 ms propagational delays. From this, we can infer that our
algorithm does not bring any extra overhead to the model.

31

0% 16.7% 33.3% 50% 66.7% 83.3% 100%
Axonal Delay as percentage of total propgation delay

0

5

10

15

20

25

30

35

Ti
m

e
ta

ke
n

fo
r s

im
ul

at
io

n
in

 se
co

nd
s

Our Implementation
Current algorithm

Figure 4.4: The plots depict the mean performance of various models of STDP synapse.
It has the models with our new algorithm and previously used algorithm, for total delays
of 10.0 ms. The x-axis represents the percentage of axonal delay w.r.t. total delay. The
y-axis is in seconds, representing the average time taken for the simulation.

Chapter 5

Discussion

The results gathered from analyzing the synaptic weights are as expected. The
weights are shifted towards the left when the axonal delay is increased compared
to that of older implementation. We also see the weights have shifted right when
the total delay value is increased, this is in line with our theoretical prediction.
The results of the benchmark indicate that our model does not have any additional
computational costs and runs reliably fast in simulations.

Future enhancements and limitations

Although we have performed the analysis of weights, we have not performed the
analysis of weights in a full-scale balanced random network. We only localized
to one neuron and simulated the effect. Further analysis of weights in a fully
configured balanced random network (Brunel 2000). The bench-marking was not
done within a dedicated framework such as the beNNch framework (Albers et
al. 2021). A specialized framework for benchmarking ensures that there are no
artifacts while performing benchmarks. Since the process of benchmarking involves
the calculation of the time taken for a particular task to be completed by the
computer. It is sensitive if the computer is occupied by another task which would
thereby slow down the calculations performed by the task. When performing in
a framework though, it takes care of this issue by creating a virtual shell around
the task and running the task without being affected by other computer activities.
This is also greatly enhanced if performed on a dedicated computer instead of a
general-purpose computer. We also did not see the expected result with a relevant
firing rate, the network model can be analyzed with our synaptic model which is

32

33

simulated for a longer period of time to see the effect.

The model in its current form only works for one type of neuron model available
in the NEST simulator extending the support to more models extends its reach
and usability. Our implementation only considers the spike time which is forced to
be constrained to that of simulation resolution in NEST. Although NEST stores
the precise spike time, which is a spike time in float value is not a multiple of
simulation resolution. Future enhancements can be done to implement a precise
spike time version of the same. Although precise spike time calculation can have
its constraints (Banerjee et al. 2008), they tend to be quite useful for modeling
the neurons in visual cortex, which have shown to have high temporal sensitivity
(Tiesinga et al. 2008).

Conclusion

To summarize, the STDP synaptic model explains the functional plasticity ex-
perienced in the synapse present in the brain. This plasticity is responsible for
the abilities of learning and adaptation exhibited by the brain. We chose an im-
plementation a specific implementation of this model based on power law, to be
adapted to include a new feature. This feature is the inclusion of axonal propaga-
tional delay of the spike signal from a postsynaptic neuron to the synapse in the
model. We were motivated to perform the implementation based on mathematical
evidence showing a shift in synaptic weights, which was shown by Morrison et al.
2008.

We performed this implementation in NEST simulator as it already contains the
implementation of STDP model based on power law, along with numerous other
features and reasons. After implementation, we tested the model under many
scenarios to see if it performs as intended. After the model passed all testing, we
created a network model, with a many-to-one architecture. We analyzed the effects
of our implementation on this network, by comparing the synaptic weights before
and after implementation. The results of the analysis matched with theoretical
predictions. Then we performed benchmarks to see the performance difference
between the models with and without the implementation of our algorithm. We
did not observe any significant difference in the benchmark. Thereby it can be
implied that our model runs properly without any significant computational cost.

34

All the programming code behind this scientific work can be found here 1, 2. With
that we hope the outcome of this scientific work, finds its usefulness among other
researchers working in the same domain.

1For NEST related code: https://github.com/sanjay270597/nest-simulator/tree/stdp
axonal delay

2For other code used in this project: https://github.com/sanjay270597

https://github.com/sanjay270597/nest-simulator/tree/stdp_axonal_delay
https://github.com/sanjay270597/nest-simulator/tree/stdp_axonal_delay
https://github.com/sanjay270597

Bibliography

Albers, Jasper et al. (2021). A Modular Workflow for Performance Benchmarking
of Neuronal Network Simulations. doi: 10.48550/ARXIV.2112.09018. url:
https://arxiv.org/abs/2112.09018.

Arslan, Salim et al. (2018). ‘Human brain mapping: A systematic comparison
of parcellation methods for the human cerebral cortex’. In: Neuroimage 170,
pp. 5–30.

Banerjee, Arunava, Peggy Seriès and Alexandre Pouget (2008). ‘Dynamical con-
straints on using precise spike timing to compute in recurrent cortical networks’.
In: Neural Computation 20.4, pp. 974–993.

Bi, Guo-qiang and Mu-ming Poo (1998). ‘Synaptic modifications in cultured hip-
pocampal neurons: dependence on spike timing, synaptic strength, and post-
synaptic cell type’. In: Journal of neuroscience 18.24, pp. 10464–10472.

Blundell, Inga et al. (2018). ‘Code generation in computational neuroscience: a
review of tools and techniques’. In: Frontiers in neuroinformatics 12, p. 68.

Brunel, Nicolas (2000). ‘Dynamics of sparsely connected networks of excitatory
and inhibitory spiking neurons’. In: Journal of computational neuroscience 8.3,
pp. 183–208.

Brunel, Nicolas and Vincent Hakim (1999). ‘Fast global oscillations in networks of
integrate-and-fire neurons with low firing rates’. In: Neural computation 11.7,
pp. 1621–1671.

Brunel, Nicolas and Xiao-Jing Wang (2003). ‘What determines the frequency of
fast network oscillations with irregular neural discharges? I. Synaptic dynamics
and excitation-inhibition balance’. In: Journal of neurophysiology 90.1, pp. 415–
430.

Costello, Mark J, Robert M May and Nigel E Stork (2013). ‘Can we name Earth’s
species before they go extinct?’ In: science 339.6118, pp. 413–416.

Craver, Carl F (2007). Explaining the brain: Mechanisms and the mosaic unity of
neuroscience. Clarendon Press.

Diesmann, Markus et al. (2001). ‘State space analysis of synchronous spiking in
cortical neural networks’. In: Neurocomputing 38, pp. 565–571.

35

https://doi.org/10.48550/ARXIV.2112.09018
https://arxiv.org/abs/2112.09018

BIBLIOGRAPHY 36

Fokker, Adriaan Daniël (1914). ‘Die mittlere Energie rotierender elektrischer Di-
pole im Strahlungsfeld’. In: Annalen der Physik 348.5, pp. 810–820.

Freeland, Elana (2014). Chemtrails, HAARP, and the full spectrum dominance of
planet earth. Feral House.

Garrett, Bob and Gerald Hough (2017). Brain & Behavior: An Introduction to
Behavioral Neuroscience. Sage Publications.

Gross, Charles G (2012). A hole in the head: more tales in the history of neuros-
cience. MIT Press.

Hartline, DK and DR Colman (2007). ‘Rapid conduction and the evolution of giant
axons and myelinated fibers’. In: Current Biology 17.1, R29–R35.

Hebb, Donald Olding (1949). The organization of behavior: A neuropsychological
theory. Wiley and Sons.

Jerison, Harry (2012). Evolution of the brain and intelligence. Elsevier.
Kriener, Birgit et al. (2008). ‘Correlations and population dynamics in cortical

networks’. In: Neural Computation 20.9, pp. 2185–2226.
Lucas, Keith (1909). ‘The “all or none” contraction of the amphibian skeletal

muscle fibre’. In: The Journal of Physiology 38.2-3, p. 113.
Madadi Asl, Mojtaba, Alireza Valizadeh and Peter A Tass (2017). ‘Dendritic and

axonal propagation delays determine emergent structures of neuronal networks
with plastic synapses’. In: Scientific reports 7.1, pp. 1–12.

Markram, Henry (2012). ‘The human brain project’. In: Scientific American 306.6,
pp. 50–55.

Markram, Henry et al. (1997). ‘Regulation of synaptic efficacy by coincidence of
postsynaptic APs and EPSPs’. In: Science 275.5297, pp. 213–215.

Morrison, Abigail, Ad Aertsen and Markus Diesmann (2007). ‘Spike-Timing-Dependent
Plasticity in Balanced Random Networks’. In: Neural Computation 19, pp. 1437–
67. doi: 10.1162/neco.2007.19.6.1437.

Morrison, Abigail, Markus Diesmann and Wulfram Gerstner (2008). ‘Phenomen-
ological models of synaptic plasticity based on spike timing’. In: Biological
cybernetics 98.6, pp. 459–478.

Planck, VM (1917). ‘Über einen Satz der statistischen Dynamik und seine Erweit-
erung in der Quantentheorie’. In: Sitzungberichte der.

Potjans, Tobias C and Markus Diesmann (2014). ‘The cell-type specific cortical mi-
crocircuit: relating structure and activity in a full-scale spiking network model’.
In: Cerebral cortex 24.3, pp. 785–806.

Purves, Dale et al. (2008). Neuroscience. 4th. Vol. 857.
Rotter, Stefan and Markus Diesmann (1999). ‘Exact digital simulation of time-

invariant linear systems with applications to neuronal modeling’. In: Biological
cybernetics 81.5, pp. 381–402.

https://doi.org/10.1162/neco.2007.19.6.1437

BIBLIOGRAPHY 37

Smirnov, Nickolay (1948). ‘Table for estimating the goodness of fit of empirical
distributions’. In: The annals of mathematical statistics 19.2, pp. 279–281.

Somogyi, Peter and Thomas Klausberger (2005). ‘Defined types of cortical in-
terneurone structure space and spike timing in the hippocampus’. In: The
Journal of physiology 562.1, pp. 9–26.

Spreizer, Sebastian et al. (Mar. 2022). NEST 3.3. Version 3.3. doi: 10.5281/
zenodo.6368024. url: https://doi.org/10.5281/zenodo.6368024.

Sterratt, David et al. (2011). Principles of computational modelling in neuros-
cience. Cambridge University Press.

Tchumatchenko, Tatjana et al. (2011). ‘Spike Correlations – What Can They Tell
About Synchrony?’ In: Frontiers in Neuroscience 5. issn: 1662-453X. doi: 10.
3389/fnins.2011.00068. url: https://www.frontiersin.org/articles/10.
3389/fnins.2011.00068.

Teramae, Jun-nosuke, Yasuhiro Tsubo and Tomoki Fukai (2012). ‘Optimal spike-
based communication in excitable networks with strong-sparse and weak-dense
links’. In: Scientific reports 2.1, pp. 1–6.

Tiesinga, Paul, Jean-Marc Fellous and Terrence J Sejnowski (2008). ‘Regulation
of spike timing in visual cortical circuits’. In: Nature reviews neuroscience 9.2,
pp. 97–107.

Zhang, Yang et al. (2020). ‘Brain-inspired computing with memristors: Challenges
in devices, circuits, and systems’. In: Applied Physics Reviews 7.1, p. 011308.

https://doi.org/10.5281/zenodo.6368024
https://doi.org/10.5281/zenodo.6368024
https://doi.org/10.5281/zenodo.6368024
https://doi.org/10.3389/fnins.2011.00068
https://doi.org/10.3389/fnins.2011.00068
https://www.frontiersin.org/articles/10.3389/fnins.2011.00068
https://www.frontiersin.org/articles/10.3389/fnins.2011.00068

Appendix A

Detailed overview of NEST
objects

NEST has its own terminologies being used. Here is the description of some of the
objects used within the framework which have been modified or utilized in this
work.

Spike Generator

These are models which can be imagined as the origin of the spikes in the system.
Since a neuron by itself does not create any signal unless it is a sensory neuron,
these spike generators are responsible for creating signals in the connected network.
A Poisson generator is a specific spike generator that uses Poisson distribution to
produce spikes.

Parrot Neuron

A spike generator in NEST, should not be directly connected to the model of
a neuron but rather connected through a specific neuron solely for this purpose
called the parrot Neuron. The function of the parrot neuron is to repeat the
signals from the spike generator to the neuron it is connected to. Since it repeats
everything it receives, the neuron is aptly named as parrots tend to repeat what
it hears. If multiple parrot neurons are connected to a spike generator, each will
produce a unique spike pattern from the generator.

38

39

Table A.1: Connection Rules available in NEST

Connection Rule Description

All-to-All All the neurons from the source are connected
to the target

Fixed Indegree The neurons are connected randomly with tar-
get neurons having fixed incoming connections

Fixed Outdegree The neurons are connected randomly with
source neurons having fixed outgoing connec-
tions

Fixed Total Number The neurons are connected randomly with a
limit on the total number of connections

One-to-One Source and target neurons are connected in one
on one correspondence

Pairwise Bernoulli Number of connections is dependant on the
specified probability of total connections

Symmetric Pairwise Bernoulli Similar to Pairwise Bernoulli, with the slight
difference that the connections are made in
both the directions, that is both from source
to target and target to source

Connection types

For a neural network to work as a network, it should all be connected properly.
The connection is managed in NEST by specifying the source, target, connection
properties, and finally synaptic properties. The connection properties in NEST
currently support seven different types of connection rules. The connection rules
and their descriptions are provided in Table A.1

The source and target for a connection can be a single neuron or a group of neurons.
Except for the case of a One-to-One connection in which there should be an equal
number of source and target neurons. NEST maintains all the connections in
a connection matrix. With spatial class, NEST also supports the use of spatial
placement of neurons and their connections.

40

Random Generators

NEST comes with in-built random generators, which can provide a list of random
numbers and are also used to set the random seed for the simulation. Running
a simulation with a different random seed is useful for researchers to properly
analyze the result from the simulation. Also, running with different random seeds
will give results that can be eliminated as a random fluke.

Recording Devices

NEST recording devices mimic physical recorders, used for recording the phys-
ical properties or events occurring during the simulation. Voltmeter, Multimeter,
and SpikeRecorder are examples of such devices. Recorders are useful devices to
measure the actual data from the simulation. If no recording device is connected
to the simulation, then only the final state of the simulation can be obtained.

NEST kernel

The NEST Kernel is an important part of the NEST framework. All simulations
run in the kernel and the kernel changes its state when running the simulation.
Internally all communications are handled by the Kernel and there is a kernel
manager subroutine that is responsible for managing the activities of the kernel.
General simulation properties such as simulation time resolution, minimum delay,
and maximum delay are configured as Kernel attributes.

Although NEST support parallel simulation for large network of neurons, NEST
Kernel implementation currently does not support running multiple independent
simulations parallelly in a single NEST kernel.

Appendix B

Network Parameters for testing

The tables below give the list of network parameters, that were utilized for testing
the implementation.

Table B.1: Parameters of the Poisson spike generator for testing

Parameter Description Value

Inhibitory firing rate Firing rate of the generator rep-
resenting inhibitory population

20,000 spikes/s

Excitatory firing rate Firing rate of the generator rep-
resenting excitatory population

93,600 spikes/s

External firing rate Firing rate of the generator rep-
resenting external population

13,600 Hertz spikes/s

41

42

Table B.2: Parameters of the neuron models for testing

Parameter Description Value

C m Membrane capacitance 250.0 pF

E L Resting Membrane potential -70.0 mV

I e Resting membrane current 0.0 mV

tau m Membrane time constant 15.0 ms

tau syn ex Rise time for the excitatory alpha signal 2.0 ms

tau syn in Rise time for the inhibitory alpha signal 2.0 ms

t ref Refractory time period 2.0 ms

V reset Reset potential of the membrane 0.0 mV

V th Spike threshold voltage -55.0 mV

V m Membrane potential -70.0 mV

43

Table B.3: Parameters of the synaptic models for testing

Parameter Description Value

Inhibitory connection weight Weight of the synapse, con-
necting the inhibitory popula-
tion to the postsynaptic neuron

-225.0 pA

Excitatory connection weight Weight of the synapse, con-
necting the excitatory popula-
tion to the parrot neuron

45.0 pA

External connection weight Weight of the synapse, con-
necting the external popula-
tion to the postsynaptic neuron

45.0 pA

STDP synaptic weight Weight of the synapse, con-
necting presynaptic parrot
neuron to the postsynaptic
neuron

45.0 pA

α The alpha value represents
the depression factor, only for
STDP synapse

0.057

λ The lambda value represents
the weight update factor for
STDP synapse

0.1

τ The tau value represents the
time window for the facilitation
and depression in STDP syn-
apse

15.0 ms

µ The mu value represents the
exponentiation factor for facil-
itation in STDP synapse

0.4

delay The total propagation delay,
depicting the sum of axonal
and dendritic delay for STDP
synapse

10.0 ms

axonal delay The axonal delay for STDP
synapse increased in steps of
0.1 ms

0.0 to 10.0 ms

Appendix C

Parameters for analysis of weight
distribution

The following tables contain the parameter values used for analysing the effect of
axonal delay, on synaptic weight distribution

Table C.1: Parameters of the Poisson spike generator for analysis

Parameter Description Value

Inhibitory firing rate Firing rate of the generator representing
inhibitory population

7,680 Hertz

Excitatory firing rate Firing rate of the generator representing
excitatory population

8 Hertz

External firing rate Firing rate of the generator representing
external population

16,800 Hertz

44

45

Table C.2: Parameters of the neuron models for analysis

Parameter Description Value

C m Membrane capacitance in picoFarad 250.0 pF

E L Resting Membrane potential 0.0 mV

I e Resting membrane current 0.0 mV

tau m Membrane time constant 10.0 ms

tau syn ex Rise time for the excitatory alpha signal 0.3258 ms

tau syn in Rise time for the inhibitory alpha signal 0.3258 ms

t ref Refractory time period 0.5 ms

V reset Reset potential of the membrane 0.0 mV

V th Spike threshold voltage 20.0 mV

V m Membrane potential 5.7 mV

46

Table C.3: Parameters of the synaptic models for analysis

Parameter Description Value

Inhibitory connection weight Weight of the synapse, connect-
ing the inhibitory population to
the postsynaptic neuron

-192.5 pA

Excitatory connection weight Weight of the synapse, connect-
ing the excitatory population to
the parrot neuron

38.5 pA

External connection weight Weight of the synapse, connect-
ing the external population to
the postsynaptic neuron

38.5 pA

STDP synaptic weight Weight of the synapse, connect-
ing presynaptic parrot neurons
to the postsynaptic neuron

38.5 pA

α The alpha value represents
the depression factor, only for
STDP synapse

0.057

λ The lambda value represents the
weight update factor for STDP
synapse

0.1

τ The tau value represents the
time window for the facilitation
and depression in STDP syn-
apse

15.0 ms

µ The mu value represents the ex-
ponentiation factor for facilita-
tion in STDP synapse

0.4

delay The total propagation delay, de-
picting the sum of axonal and
dendritic delay for STDP syn-
apse

1.0, 10.0 ms

axonal delay The axonal delay for STDP syn-
apse, increased in steps of 0.25
ms, for total delay of 10.0 ms,
axonal delay is multiplied by 10.

0.0 to 1.0 ms

47

Thank you.

	Introduction
	Theoretical Background
	A brief explanation of biological signal transmission
	Modelling of neuronal signals
	Modelling the synaptic connections
	Spike-Time Dependant Plastic Synapse
	An overview of NEST-Simulator

	State-of-the-Art synaptic model
	Motivation for including propagation delays in STDP model
	Effect of propagation delays in a network model

	Methodology
	Proposed algorithm
	Testing the new model
	Analysis of weight distribution
	Optimizing the parameter
	Benchmark Performance

	Results
	Discussion
	Bibliography
	Detailed overview of NEST objects
	Network Parameters for testing
	Parameters for analysis of weight distribution

