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Abstract

Lattice thermal conductivity is a key materials property in applications related
to thermal functionality, such as thermal barrier coatings, thermal conductors
in microelectronics, and solid-state waste-heat recovery devices. The lattice
thermal conductivity governs the rate of heat energy transfer in thermoelectric
materials, which are materials that can directly convert heat to electricity and
vice versa. These materials become interesting in applications that require
electricity generation or local cooling. Thermoelectric materials depend on a low
lattice thermal conductivity to attain high heat-to-electricity conversion efficiency.
The materials used in present thermoelectric generators are often based on toxic
or scarce elements. New high-efficiency thermoelectric materials are therefore
desired for sustainable and environmentally friendly energy harvesting. Two main
research challenges are investigated in this thesis: 1) reducing the lattice thermal
conductivity to enhance thermoelectric performance, and 2) identifying new
compounds with low lattice thermal conductivity. Addressing these challenges
experimentally is a daunting task – especially for 100s or 1000s of compounds –
as experiments are costly, time-consuming, and require expert domain knowledge.
This thesis, therefore, relies on lattice thermal conductivity from theoretical
calculations based on quantum mechanical simulations.

Addressing challenge 1), the lattice thermal conductivity of 122 half-Heusler
compounds is calculated using density functional theory and the temperature-
dependent effective potential method. Phonon scattering from partial sublattice
substitutions and grain boundaries are included in calculations, in an attempt
to reduce the lattice thermal conductivity. We find that isovalent substitutions
on the site hosting the heaviest atom should be performed to optimally reduce
the lattice thermal conductivity in most half-Heuslers. Compounds with large
atomic mass differences can have a large drop in lattice thermal conductivity
with substitutions. Examples of such compounds are AlSiLi and TiNiPb, which
achieve a ∼ 70 % reduction of their lattice thermal conductivity when substituting
Si by Ge and Pb by Sn at 10 % concentration. The reduction from additional
scattering mechanisms enables a handful half-Heuslers to attain a lattice thermal
conductivity close to 2 W/Km at 300 K. Calculations for full-Heusler AlVFe2
reveal that the introduction of 15 % Ru substitutions on the Fe-site and 100 nm
grain boundaries can reduce the lattice thermal conductivity from 46 W/Km to
7 W/Km.

Tackling challenge 2) is done by computational screening for low lattice
thermal conductivity compounds. Coupling calculations with machine learning
accelerates the screening. When training the machine learning model on
calculated lattice thermal conductivities, it learns to recognize descriptor patterns
for compounds with low lattice thermal conductivity. The size of the training
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set is limited by the large computational cost of calculating lattice thermal
conductivity. It is therefore challenging to obtain a diverse set of training
compounds, especially so because low lattice thermal conductivity compounds
tend to be rare. We find that including certain compounds in the training can
be crucial for identifying low lattice thermal conductivity compounds. Active
sampling enables scouting of the compound space for compounds that should
enter the training set. Principal component analysis and Gaussian process
regression are used in the active sampling schemes. With Gaussian process
regression we screen 1573 cubic compounds, where 34 have predicted lattice
thermal conductivity ≤ 1.3 W/Km at 300 K – as well as electronic band gaps –
indicating that they could be potential thermoelectric compounds.

The findings in this thesis show that certain compounds could have a drastic
reduction in the lattice thermal conductivity with sublattice substitutions.
Thermoelectric compounds with favorable electronic properties – but high lattice
thermal conductivity – can be investigated in future studies if there is a potential
for a large drop in the lattice thermal conductivity with sublattice substitutions.
The machine learning and active sampling schemes are scalable, and future works
could expand upon this thesis by including different compound classes in training
and screening. This would enlarge the search space for promising thermoelectric
compounds, increasing the likelihood of encountering high-efficiency candidates.
It is also possible to combine the two challenges faced in this thesis. A machine
learning model can be trained to predict the lattice thermal conductivity of
compounds with sublattice substitutions. This would further increase the pool
of possible compounds where promising thermoelectric compounds could reside.
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Sammendrag

Termisk gitterledningsevne er en viktig materialegenskap i tekniske instrumenter
som anvender varmeledningsteknologi, slik som termiske barriere-belegg, termiske
ledere i mikroelektronikk, og varmegjenvinningsenheter. Denne egenskapen
styrer raten av varmeenergi-overføring i termoelektriske materialer. Disse
materialene kan omgjøre varmeenergi til elektrisk energi og motsatt, og er
derfor lovende i produkter som avhenger av elektrisitetsgenerering eller utnytter
lokal kjøling. Termoelektriske materialer må ha lav termisk gitterledningsevne for
å opprettholde høy effektivitet. Dagens termoelektriske materialer er ofte basert
på giftige eller sjeldne materialer, slik som bly eller tellur. Det er derfor nyttig
å finne nye materialer med høy effektivitet for å videre anvende termoelektrisk
energi-høsting på en bærekraftig måte. To hovedutfordringer er undersøkt i denne
avhandlinga: 1) reduksjon av termisk gitterledningsevne for å øke termoelektrisk
effekt, og 2) identifikasjon av nye materialer med lav gitterledningsevne. Å
løse disse utfordringene eksperimentelt er krevende siden eksperimenter er dyre,
tar mye tid, og krever ekspert-kunnskap. I denne avhandlinga brukes derfor
teoretiske beregninger basert på kvantemekaniske simuleringer for å estimere
termisk gitterledningsevne.

I arbeidet med utfordring 1) beregnes termisk gitterledningsevne til 122
half-Heusler-materialer basert på temperaturavhengige materialsimuleringer.
For å redusere termisk gitterledningsevne inkluderes ekstra fonon-sprednings-
mekanismer: sub-gitter-substitusjoner (legeringer) og korngrenser. Vi finner at
isovalente substitusjoner på gitter-plassen som innehar det tyngste atomet gir
den største reduksjonen i termisk gitterledningsevne for de fleste materialene.
Materialer med stor atommasse-forskjell kan ha en stor reduksjon i termisk
gitterledningsevne med substitusjoner. AlSiLi og TiNiPb er eksempler på slike
materialer, og oppnår en ∼ 70 % reduksjon i termisk gitterledningsevne når Si
er substituert med Ge og Pb er substituert med Sn med 10 % konsentrasjon.
Reduksjonen fra ekstra spredningsmekanismer gjør at en håndfull half-Heuslere
oppnår termisk gitterledningsevne nærme 2 W/Km. Beregninger for full-
Heusleren AlVFe2 viser at introduksjonen av 15 % Ru-substitusjon på Fe-
gitterplassen og 100 nm korngrenser kan redusere termisk gitterledningsevne fra
46 W/Km til 7 W/Km.

Utfordring 2) er utforsket med data-drevne søk for materialer med lav termisk
gitterledningsevne. Teoretiske beregninger sammen med maskinlæring gjør
det mulig å søke igjennom flere materialer. Maskinlæringsmodellen lærer å
gjenkjenne materialer med lav termisk gitterledningsevne ved å forstå likheter
mellom egenskapene til materialene. Fordi det er dyrt å beregne termisk
gitterlednindsevne blir typiske treningssett små. Vi bruker derfor metoder
som aktivt velger hvilke materialer som burde inngå i treningssettet. Prinsipal-
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komponent-analyse og regresjon basert på Gaussiske prosesser er anvendt for
å finne materialer til trening. Ved bruk av regresjonen søker vi blant ∼ 1500
materialer, og finner at 34 har prediktert termisk gitterledningsevne under
1.3 W/Km ved 300 K – i tillegg til elektronisk båndgap – som indikerer at de
kan være mulige termoelektriske materialer.

Observasjonene i denne avhandlinga viser at spesifikke materialer kan ha en
drastisk reduksjon i termisk gitterledningsevne med sub-gitter-substitusjoner.
Termoelektriske materialer med gode elektriske egenskaper – men høy termisk
gitterledningsevne – kan bli studert i framtidige studier om de har et stort
potensial for reduksjon i termisk gitterledningsevne. Maskinlæringsmodellen og
metoden som gjør aktivt utvalg av treningssettet kan skaleres, og framtidig arbeid
kan ekspandere på denne avhandlingen ved å inkludere andre materialklasser
i treningen og søket. Dette vil øke størrelsen til material-rommet og kan øke
sannsynligheten for å finne kandidater med høy termoelektrisk effektivitet. Det
er også mulig å kombinere erfaringene fra de to utfordringene i denne avhandlinga.
En maskinlæringsmodell kan trenes for å predikere termisk gitterledningsevne
til materialer med subgitter-substitusjoner. Dette kan videre øke mengden
materialer inkludert i søket og nye termoelektriske materialer kan forhåpentligvis
bli funnet.

vi



Preface
This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the Norwegian University of Life Sciences, Faculty of
Science and Technology. The work in this thesis was done from 2019 to 2023
at the Department of Mechanical Engineering and Technology Management in
the Material Theory and Informatics group. Main supervision was given by
Associate Professor Kristian Berland. Regular supervision was also given by
two co-supervisors, Professor Ole Martin Løvvik at SINTEF Sustainable Energy
Technology and the Department of Physics, University of Oslo, and Associate
Professor Oliver Tomic at the Department of Data Science, Norwegian University
of Life Sciences.

This doctoral work resulted in three published articles and one article to be
submitted. The articles are presented at end of this thesis. The doctoral program
has involved taking courses counting in total 30 ECTS, which is equivalent to
one semester of study. Most of the work was done at the Norwegian University
of Life Sciences in Ås. Some work was also done during sporadic visits to the
SINTEF office in Oslo. During COVID-19 lockdowns I mostly worked at home
office in Trøndelag. March to June 2022 was spent in Vienna, Austria. This
research stay was hosted by Professor Georg K. H. Madsen in the Theoretical
Materials Chemistry group at the Vienna University of Technology.

Parts of the work in this thesis were inspired by the research project Allotherm
(Project No. 314778), funded by the Research Council of Norway. The goal of
this project is to use theoretical calculations to identify promising thermoelectric
alloy candidates and verify the thermoelectric performance with experiments.

The PhD was internally funded by the Norwegian University of Life Sciences.
The Norwegian e-infrastructure for research and education, Sigma2, granted
access to the national high-performance computing clusters used for computations
in the thesis.

vii





Acknowledgements
First, I would like to thank my main supervisor, Kristian Berland. His supervision
enabled me to improve my scientific writing and communication, do research,
and attain a new level of attention to detail. Whenever I ran out of creativity or
patience I could always rely on Kristian. For taking me on as the group’s first
PhD candidate, he has my gratitude.

I would like to thank my co-supervisors Ole Martin Løvvik and Oliver Tomic.
They taught me scientific methods that were used throughout the work and
motivated me to pursue my scientific goals. I am also grateful that Ole Martin
introduced me to his research group at SINTEF and that Oliver introduced me
to the Data Science Department at the Norwegian University of Life Sciences.

Georg K. H. Madsen has my gratitude for allowing me to visit his research
group at TU Wien in the spring of 2022. The group members welcomed me with
open arms and made my trip to Austria a highlight of my PhD both scientifically
and socially.

I want to thank all group members in the Materials Theory and Informatics
Group. All the coffee breaks, chats, lunches, and friendly banter have been
welcome and much needed for the completion of this PhD. I want to highlight
the coffee chats with Elin and Mojtaba during the COVID-19 lockdowns as well.
Although our meetings were digital it was always pleasant to see your faces on
the screen. Now you will soon be the senior PhD candidates in the group, I hope
you enjoy the experience!

I would like to thank the following people for feedback on the thesis and
proof-reading: Elin Dypvik Sødahl, Seyedmojtaba Seyedraoufi, Øven Andreas
Grimenes, Sebastian Bichelmaier, and Siri-Unn Sagen.

Lastly, my thanks to my friends, family, and my girlfriend who all supported
and encouraged me during my work. Both between and during COVID-19
lockdowns you have shown me that there is an interesting world outside of the
PhD universe. I am grateful for all the fine moments we have shared, and I am
sure there are many more to come.

ix





Foreword: What is a PhD?
What is a PhD and what is its purpose? These questions have been presented
to me on several occasions during the last three years. To present the PhD
education I will try to conceptualize it in comparison to what is known by most
people outside academia. In Fig. 1 there is a sketch of what we typically regard
as "formal" education. When we start school, we acquire a broad set of skills.
This set of skills is "common", in that almost anyone (that is, almost anyone
within the constellation) can familiarize themselves with the topics and themes
studied. In high school we tend to specialize to a small degree. Here, again most
knowledge acquired is familiar to most, and some time is spent developing skills
such as writing, mathematics, and communication. A B.Sc. is more specialized.
It will either prepare the student for a specified occupation or lay the foundation
for further studies. An M.Sc. is much specialized. Special courses are taken
to build up to a thesis. The M.Sc. thesis is proof that the student has a good
understanding of the specialized topic. Now, on to the PhD. The PhD thesis
is typically so specialized that often only a handful of people will be able to
fully understand its contents. Likewise, as with the M.Sc, the thesis displays
that the student has a solid understanding of its topics. An important aspect
that differentiates the PhD education from others is that the goal is to discover
something new scientifically. Through the PhD one should contribute to ones
research field, and present the discoveries in a way such that other researchers
can build upon it. This would be the sliver of the blue bulge outside the green
disc in Fig. 1, expanding the limits of our knowledge. In essence, it is training to
be a researcher while being a researcher, akin to laying the tracks with the train
running. The PhD lies in the intersection between being a student of a scientific
discipline and a contributor to the discipline. In short, during the works of a
PhD, one is a scientific apprentice.

xi



Foreword: What is a PhD?

Knowledge

Elementary School

High School

B.Sc.

PhD

M.Sc.

Figure 1: Progress of learning throughout education, adapted from [1].
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Chapter 1

Introduction

1.1 Motivation and Background

Solid-state materials have influenced the development of human societies for
millennia. The importance of materials has been so substantial for certain epochs
that we have labeled historical periods based on them – such as the Iron age –
and in retrospect, our period will perhaps be referred to as the age of Silicon.
Humans used complex crystalline materials, such as obsidian or rock crystal
quartz, as tools for cutting, tanning, and showing wealth. Fig. 1.1 (left panel)
displays a picture of a somewhat new (3000 BC) crystal dagger. Egyptians used
iron oxide for dyeing clothes and painting their Pharaohs’ tombs. Bronze – a
strong combination of copper and tin – lead to a paradigm shift in farming
and warfare. Transparent glass enabled light to pass through while keeping
the elements at bay. As a testament to the rigidity of glass silicates, stained
glass windows from 1065 have survived to this day in the Augsburg Cathedral,
shown in Fig. 1.1 (right panel). The discovery and exploitation of the magnetic
properties of iron alloys made land and sea traversal more efficient by enabling
the construction of compasses. This invention amplified global trade and the
spread of religions and facilitated knowledge transfer between scholars from all
corners of the world.

What enabled the previously mentioned technologies to make a societal
impact was the underlying physical properties of the materials. Understanding
complex properties on the atomic scale is necessary for industrial and scientific
development in the digital age. Knowledge about quantum tunneling, for example,
enables transistors to work in solid-state data storage drives. The interest in
novel materials with extraordinary properties is growing, and many resources
have been allocated to research, e.g. through the Materials Genome Initiative [5,
6]. Research grants are often allocated to projects that aim to improve industrial
processes or effectivize energy production, storage, and usage. Within energy
technology, state-of-the-art materials research has enabled environmentally
friendly energy harvesting. Fine-tuning of semiconductors increases solar cell
efficiency making them more prominent in commercial and private use, and new
battery technologies are a welcome addition to energy management and the
electrification of the transport sector.

Solid-state materials do not only allow us to harvest wind energy with
windmills made from steel or solar energy with silicon-based solar cells. Heat
energy can be harvested with thermoelectric materials that can directly convert
heat to electricity in an environmentally friendly manner. In these materials,
the movement of electrons and atoms governs the efficiency of heat-to-electricity
conversion. From a theoretical standpoint, the understanding of atomic-scale
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Figure 1.1: Left panel: Rock crystal dagger found in Spain. Photograph: Miguel
Angel Blanco de la Rubia. Image is taken from Ref. [3]. Right panel: Glass
window in the Augsburg Cathedral depicting King David. Photograph: Hans
Bernard, CC BY-SA 3.0. Image is taken from Ref. [4]

.

properties is paramount for explaining the thermoelectric effect. As of now,
thermoelectric materials are typically used in niche applications, such as outer
space devices, USB chargers, and stove-top fans, while large-scale applications are
not as widespread. The expansion of thermoelectric technologies requires cheap,
non-toxic, and efficient thermoelectric materials made from earth-abundant
elements. The optimization of thermoelectric properties and the discovery of
new materials are thus substantial fields of research.

The thermoelectric figure-of-merit, ZT , indicates the heat-to-electricity
conversion efficacy in thermoelectric materials. ZT depends on electronic and
atomic transport properties and is inversely proportional to the total thermal
conductivity. The total thermal conductivity determines a crystalline material’s
ability to conduct heat. It consists of two parts, electronic thermal conductivity
and lattice thermal conductivity. In semiconductors, the latter is typically
significantly larger than the former. Top-performance thermoelectric materials,
therefore, require low lattice thermal conductivity to attain a high heat-to-
electricity conversion efficiency. Finding ways to reduce the lattice thermal
conductivity or identifying materials with low lattice thermal conductivity can
therefore be viable routes to obtain new promising thermoelectric materials.

A reliable way to find if a material has high thermoelectric efficiency is through
laboratory experiments. Experiments require much expertise, equipment, and
time. There are billions of different combinations of elements, and a given
combination can exist in a variety of different structures. The Materials Project
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database, for example, contains ∼ 150000 materials [7]. Finding the best
material for thermoelectric applications becomes equivalent to finding a needle in
a haystack. Using computational methods – where thermoelectric properties such
as the lattice thermal conductivity are estimated based on theory – can be a viable
option for accelerated identification of promising thermoelectric materials [8–10].
This type of digital material search is often labeled computational screening.
With screening, it is possible to analyze thousands of materials, identify promising
candidates, and further condense these down to an even smaller subset based
on filtering criteria. These candidates can then be proposed for experimental
realization, which is the final test to verify real-world thermoelectric properties.

1.2 Thesis Introduction and Articles

The body of this thesis builds a foundation for the contents of the attached
scientific articles. The thesis is partly written based on regulations and
suggestions from the Faculty of Science and Technology at the Norwegian
University of Life Sciences. One such suggestion is that the thesis should be
readable and understandable for a new PhD candidate starting in the same field.
Achieving this has been an ambition of mine while writing this thesis. The thesis
is written in an effort to solidify the overarching research goals in a somewhat
broad and pedagogical manner. The thesis also includes results from smaller
studies that did not make it into any of the articles. The intent is that the
thesis can serve as an introduction to the process of discovering thermoelectric
materials and that it also promotes ideas for future research.

The main topic of this thesis is the identification of low lattice thermal
conductivity materials with potential for thermoelectric applications. The lattice
thermal conductivity is calculated using quantum mechanical simulations based
on density functional theory. These calculations are computationally expensive
needing thousands of hours on a supercomputer. To accelerate the estimation
of the lattice thermal conductivity, machine learning is employed. Alloying
– introducing sublattice substitutions – effectively reduces the lattice thermal
conductivity and is studied separately from the machine learning-based works.
The lessons learned and materials found can help guide the design of materials in
the laboratory, hopefully resulting in new real-world thermoelectric applications
for renewable energy conversion.

In Article I, we explore the use of machine learning for predicting the lattice
thermal conductivity of half-Heusler materials. Many of these materials have
favorable electronic properties – making them promising for thermoelectric
applications – but they also have high lattice thermal conductivity. To gain
insight into the lattice thermal conductivity as well as to obtain machine learning
training data the lattice thermal conductivity of 122 half-Heusler compounds
is calculated. The case study reveals that the choice of compounds used for
training the machine learning model is crucial for discovering low lattice thermal
conductivity materials. We provide an approach for selecting important materials
to include in the training of the machine learning model, which could easily be
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expanded to different material classes.
In Article II, we study the effect of alloying half-Heusler materials for reducing

the lattice thermal conductivity using computational methods. Alloying means
introducing an extra element into the composition, e.g. exchanging 10 % of Ge
with Sn in TiNiGe, resulting in TiNiGe0.9Sn0.1. Alloying is often utilized to
reduce the lattice thermal conductivity although the reduction varies between
materials. We provide a large dataset of lattice thermal conductivity calculations
with different alloying elements. We find several trends in the data, indicating
both how a material should be alloyed, as well as which materials could have
a drastic reduction of the lattice thermal conductivity when alloyed. These
rules of thumb can guide material and alloying element selection for finding new
thermoelectric materials.

Article III continues in the tracks of Article I. Here we expand the material
search to a large subset of cubic materials in the Materials Project database [7].
Screening is conducted on ∼ 1500 materials to separate low lattice thermal
conductivity materials from the rest. Active material sampling based on Gaussian
process regression identifies 30 materials with high uncertainty, which are
subsequently added to the training set. We highlight 34 compounds with
electronic band gaps and low lattice thermal conductivity. Na2TlSb and
Ca3AsBr3 – two new potential thermoelectric materials – are studied more
in-depth to attain a better understanding of their lattice transport properties.
The active sampling scheme and machine learning model are built in a general
fashion, enabling further studies to include other material classes.

Article IV concerns screening and calculated transport properties of materials
from the Materials Project database. Standard density functional theory
calculations often underestimate the electronic bandgap; a key property in
thermoelectric materials. In this study, we screen ∼ 1000 materials and reassess
those with zero band gap using a hybrid functional. Hybrid functionals have
been found to often provide more accurate band structures and band gaps. Eight
materials that have zero band gap with standard density functional theory have
non-zero band gap with the hybrid functional. These materials are studied
further and the thermoelectric figure of merit is calculated. The calculations
indicate that MgSc2Hg and Li2CaSi have promising thermoelectric properties.

1.3 Outline

The upcoming chapters give relevant background material for the topics studied
in this thesis. Chapter 2 first presents a short introduction to thermoelectricity
and thermoelectric materials. Afterward is an elaboration on the theory lattice
dynamics, which lays the foundation for lattice thermal conductivity calculations.
Chapter 3 concerns two main topics with results and discussions: 1) Machine
learning for predicting the lattice thermal conductivity, and 2) lattice thermal
conductivity calculations. The chapter ends with a discussion of the limitations
and implications of the work. Chapter 4 presents the conclusions, before the
scientific articles of the thesis are included at the end.
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Chapter 2

Materials and Methods

This chapter provides background theory and concepts relevant to the following
results and discussions as well as the articles attached at the end of the thesis.
First, thermoelectricity and thermoelectric materials are discussed. Second, the
equations of motion for phonons are presented, and the phonon dispersions of
Si are used as an example. Third, the theory of lattice thermal conductivity
and phonon scattering mechanisms are outlined. Lastly, the chapter covers the
temperature-dependent effective potential method which forms the basis of the
lattice thermal conductivity calculations in the thesis.

2.1 Thermoelectricity: Principles and Materials

The thermoelectric effect allows for electricity to be harnessed from heat
as well as the reverse process; using electricity for heating and cooling. In
thermoelectrics, the heat-electricity conversion occurs without any moving parts.
Thermoelectric generators can thus be essentially maintenance free and noiseless.
The thermoelectric effect is used for cooling in car seats, wine refrigerators, and
scientific equipment. It is also used for heat-to-electricity conversion in wood
stove fans, thermometers, and space rovers. Applications of thermoelectrics can
involve wearable devices that harness body heat to charge cell phones or medical
and monitoring sensors connected to the "Internet of Things" [11]. There are
also good prospects to employ thermoelectrics in larger scale industries that
generate vast amounts of heat, e.g. in metal furnaces, where waste heat is often
used for heating water or simply let out into the surroundings.

One aspect limiting the use of thermoelectric materials in large-scale waste
heat regeneration units is their relatively low efficiency. Thermoelectric materials
are typically therefore still mostly used in niche products. Nonetheless, efforts
have been made to improve thermoelectric materials, and record-breaking
thermoelectric efficiencies have been reported over the last decades [12–14].
This research shows that there are good prospects to improve thermoelectric
efficiency, both in terms of optimizing known materials as well as discovering
new ones. High-performance materials often contain toxic elements such as Pb
or Te, or rare earth elements [15]. It is a focus in the research community to
make efficient thermoelectric materials that contain non-toxic, Earth-abundant
elements in accordance with rules based on environmental laws set in place to
protect the environment, product users, and workers [16]. This section covers
basic concepts of thermoelectricity, such as the Seebeck effect and the Peltier
effect. It ends with a discussion on high-performance thermoelectric materials
from the literature.
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2.1.1 Seebeck and Peltier Effect

Certain materials attain a voltage difference when there is a temperature
difference across the material. This property is known as the Seebeck effect,
named after the scientist who discovered it circa 200 years ago, Thomas Johann
Seebeck. The discovery led to the definition of the Seebeck coefficient, α. This
coefficient represents a material’s ability to sustain a voltage, V , when there is a
temperature difference, ∆T , across the material,

α = V

∆T
. (2.1)

When a material with non-zero α has a temperature difference across it, mobile
charge carriers diffuse between the hot side to the cold side. This in turn results
in an electric field within the material because of a higher charge density on one
side than the other, as illustrated in Fig. 2.1.
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Figure 2.1: Illustration of the Seebeck effect in a thermoelectric material. The
arrow indicates the direction of the electric field.

Jean Charles Athanase Peltier discovered that a current passing through a
material could change the temperature locally, initiating a temperature difference
on each side. The effect was dubbed the Peltier effect. This effect gives name to
the Peltier cooler, a device that can use electricity for local cooling and heating.
As an analogue to the Seebeck coefficient, the Peltier coefficient is defined as

Π = Q

I
, (2.2)

where Q is the heat generated per unit of time and I is the current passing
through the material. Materials exhibiting the Seebeck effect – and the reverse
Peltier effect – are called thermoelectric materials.

2.1.2 Thermoelectric Figure of Merit

A thermoelectric generator harvests electric energy from a temperature gradient
in a thermoelectric material. The maximum heat-to-electricity conversion
efficiency is given by [17]

ηmax = Th − Tc

Th

√
1 + ZTavg − 1

1 + ZTavg + Tc/Th
, (2.3)
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where Th is the temperature on the hot side, Th is the temperature on the cold
side, Tavg = (Th + Tc)/2, and Z is the thermoelectric figure of merit. Eq. 2.3 is
limited by the assumption that Z is temperature independent, and is therefore
most accurate when the temperature difference is small.

The dimensionless figure of merit (ZT ) of a thermoelectric material
conventionally determines the thermoelectric energy conversion efficiency.
This quantity enables comparison of the conversion efficiency of different
thermoelectric materials, where Z can be taken as temperature dependent.
The dimensionless figure of merit is defined as

ZT = α2σT

κ
= PT

κ
. (2.4)

Here, α is the Seebeck coefficient, σ is the electrical conductivity, P = σS2 is the
power factor, T is the absolute temperature, and κ is the thermal conductivity.
The thermal conductivity is divided into two parts, κ = κℓ + κe, where κℓ is the
lattice thermal conductivity (LTC) and κe is the electronic thermal conductivity.
Obtaining a high ZT requires that the thermoelectric material has high α and
σ, and low κ. A high α corresponds to a large voltage difference as seen from
Eq. 2.1. A low κ means that heat energy is transferred slowly and that a high
temperature gradient can be maintained. ZT is made up of interdependent
parameters; optimizing one can lead to changes in the others. An example of
this is seen with the Wiedemann-Franz law, which states that the electrical
conductivity and electronic thermal conductivity are proportional, κe = σLT ,
where L is the Lorentz number. An optimal charge carrier density thus maximizes
the electronic part of ZT . The LTC is decoupled from the Wiedemann-Franz
law – a low LTC is thus required for attaining high ZT .

2.1.3 Thermoelectric Materials

As discussed above, there are different material property requirements for
attaining a high ZT . Typically, the best-performing thermoelectric materials
are doped semiconductors. Doped semiconductors can maintain a high α and
σ at the same time [12]. The value of α is tied to the electronic structure
and bandgap, Eg. In metals, which have Eg = 0, α is low. This typically
makes metals poor thermoelectric materials, although they can have large σ.
Semi-metals with properties in-between that of metals and semiconductors can
attain suitable charge carrier densities and have shown promising thermoelectric
performance [18–20].

Fig. 2.2 shows ZT of high-performance thermoelectric materials taken from
Ref. [12]. The shape of the ZT curves dictates the optimal temperature range for
a material. The maximum ZT ranges from ∼ 0.5 (p-type SiGe) to ∼ 1.2 (p-type
TAGS). For low temperatures, Bi2Te3 (n-type) and Sb2Te3 (p-type) are most
efficient, and for high temperatures, SiGe (n-type) and Yb14MnSb11 (p-type)
come out on top. It is worth noting that it is not solely ZT that decides the
optimal material to put in a device from an engineering standpoint. Other factors
such as longevity and toxicity also impact what material is most suited for a
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Figure 2.2: Thermoelectric figure of merit for high-performance thermoelectric
materials. The top panel shows n-type materials and the bottom panel shows
p-type materials. The plots are taken from Ref. [12]

Table 2.1: Max ZT for selected compounds based on Ref. [13].

SnSe Ta0.74V0.1Ti0.16FeSb La2Ti2O7 Ge0.9Sb0.1Te1.03
ZT 3.1 [21] 1.5 [22] 2.6 [23] 1.9 [24]

given application. For example, lead could potentially be used in thermoelectric
materials for space probes but could be less desirable in wearable thermoelectric
devices.

Efforts have been made to achieve high ZT in different material types and
classes; SnSe [25, 21, 26], Cu2Se [27, 28], ZnO [29, 30], half-Heuslers [31–33],
full-Heuslers [34, 35], and perovskites [36, 37], to name a few. A summary of
high-performance materials based on Ref. [13] is shown in Table. 2.1. SnSe has
recently shown its promise as a highly efficient thermoelectric material [25]. For
a polycrystalline sample ZT = 3.1 at 783 K was reported from experiments [21].
The high ZT was a result of favorable electronic properties and an ultra-low LTC
of 0.07 W/Km. An illustration of the room temperature Pnma phase for SnSe is
shown in Fig. 2.3. There is a large variety in the structural types of thermoelectric
materials, e.g. layered and cubic, monocrystalline and polycrystalline, and non-
oxide and oxide materials. The large variety of material types combined with
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the vast number of possible element combinations makes up a large materials
space with potential novel thermoelectric materials.

Figure 2.3: Illustration of the Pnma phase for SnSe. The red atoms represent
Sn and the purple atoms represent Se.

2.1.4 Relevance for the Articles

Article I:
This article consists of a case study exploring how to reliably identify low

LTC compounds using machine learning. The study includes an analysis of the
half-Heusler class of compounds. Among the half-Heuslers, there are several
promising thermoelectric candidates [31, 38]. Screening for low LTC can be a
viable option to discover new efficient thermoelectric materials. The screening
schemes in the article are extendable to other classes of compounds. The machine
learning predicted LTC can be obtained without extensive calculations and can
potentially be employed for large compound sets.
Article II:

In this article, we also study the half-Heusler compounds. Here partial
isovalent sublattice substitutions and grain boundaries are introduced in
calculations to reduce the LTC. The half-Heuslers have been shown to have
favorable electronic transport properties, while having relatively high intrinsic
LTC, limiting their attainable ZT [39]. The calculations reveal that several of
the half-Heuslers with high intrinsic LTC can have a drastic reduction of the
LTC with the introduction of additional phonon scattering mechanisms. The
findings in the article could be adopted to other compound classes which in turn
could yield promising thermoelectric compounds with low LTC and high ZT .
Article III:

In this work we train a machine learning model to predict the LTC of cubic
compounds from the Materials Project database [7]. In the screening study we
include metals, semiconductors, and insulators. We find known TE compounds,
such as Sr- and Ba-based full-Heuslers. We also find new low LTC semiconductors,
where Na2TlSb and Ca3AsBr3 are highlighted. These compounds can be explored
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further in continuing studies including the calculation of the electronic properties
for obtaining ZT .
Article IV: This work contains a screening study of compounds with four atoms
in the primitive cell, where the electronic transport properties are calculated for
compounds with band gaps emerging with a hybrid functional. Calculations show
peak ZT ∼ 1 for the full-Heuslers MgSc2Hg and Li2CaSi. These compounds
also display relatively low LTC ≤ 5 W/Km at 300 K. While the toxicity of Hg
unfortunately reduces the applicability of MgSc2Hg in thermoelectric devices,
Li2CaSi contains non-toxic elements.
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2.2 Lattice Dynamics

The topic of lattice dynamics involves understanding atomic vibrations in a
crystalline solid. The collective movement of atoms, called phonons, participate
in a number of material phenomena in solids [40], such as heat flow, thermal
expansion, phase transitions, and propagation of sound. Phonon behavior is
affected by several material properties — temperature, interatomic distances,
atomic bonding, and defects to name a few. This section presents a basic
formalism of lattice dynamics and the harmonic approximation of the lattice
potential energy with notation based on the book Physics of Phonons [40].
The phonon dispersions of Si are presented to link theory and practice. The
section also outlines the theory of lattice thermal conductivity and phonon
scattering mechanisms. Lastly, potential routes for achieving low lattice thermal
conductivity are discussed.

2.2.1 Lattice Potential Energy and Phonons

To obtain an expression for the lattice potential energy it is assumed that the
potential energy of the crystal lattice depends on atomic displacements from
equilibrium. A distortion of atoms away from the equilibrium positions should
increase the potential energy. In the following u(bl) is the displacement of atom
b in unit cell l, and summations are over cells and atoms. The potential energy,
U , can be expressed as a Taylor expansion,

U = U0 +
∑
lbα

∂U

∂uα(bl)

∣∣∣∣
0
uα(bl) + 1

2!
∑

lb,l′b′

∑
αβ

∂2U

∂uα(bl)∂uβ(b′l′)

∣∣∣∣
0
uα(bl)uβ(b′l′)

+ 1
3!

∑
lb,l′b′,l′′b′′

∑
αβγ

∂3U

∂uα(bl)∂uβ(b′l′)∂uγ(b′′l′′)

∣∣∣∣
0
uα(bl)uβ(b′l′)uγ(b′′l′′) + . . . ,

(2.5)
where U0 is the equilibrium potential energy which can be set to zero for the
dynamical problem, and α, β, and γ are Cartesian coordinates. The second term
on the right-hand side corresponds to a force that is zero when evaluated at
equilibrium. Within the harmonic approximation, the Taylor series is expanded
to the second-order derivative,

Uharm ≡ 1
2

∑
bl,b′l′

∑
αβ

∂2U

∂uα(bl)∂uβ(b′l′)

∣∣∣∣
0
uα(bl)uβ(b′l′). (2.6)

The next step is to introduce a term representing the force on atom bl in
direction α when atom b′l′ is displaced in direction β using the second derivative
of the potential energy evaluated at equilibrium,

Φαβ(bl, b′l′) = ∂2U

∂uα(bl)∂uβ(b′l′)

∣∣∣∣
0
. (2.7)

The equations of motion then become

11



2. Materials and Methods

mbüα(bl) = −
∑
b′l′β

Φαβ(bl, b′l′)uβ(b′l′), (2.8)

where mb is the mass of atom b. The force matrix, Φ, has several symmetry
relations among which is the lattice translational symmetry. This allows
translating the unit cell by l,

Φαβ(bl, b′l′) = Φαβ(b0, b′(l′ − l)). (2.9)

Combining Eq. 2.8 and Eq. 2.9 the equations of motion become

mbüα(bl) = −
∑
b′l′β

Φαβ(b0, b′l′)uβ(b′l′). (2.10)

As a solution to Eq. 2.10 a plane wave ansatz is used,

uα(bl) = 1
√

mb

∑
q

Uα(q, b) exp [i(q · x(l) − ωt)], (2.11)

where x(l) is the equilibrium position of unit cell l, q is a wave vector, Uα(q, b)
is the amplitude, and ω is the frequency. Combining Eq. 2.10 and Eq. 2.11 we
arrive at

ω2Uα(qb) =
∑
b′β

Dαβ(bb′|q)Uβ(q, b), (2.12)

where the representation of the dynamical matrix is

Dαβ(bb′|q) = 1
√

mbmb′

∑
l′

Φαβ(b0, b′l′) exp (iq · x(l′)). (2.13)

The solutions of Eq. 2.12 can be obtained when the following determinant is
zero,

|Dαβ(bb′|q) − ω2δαβδbb′ | = 0, (2.14)

where δij is the Kronecker delta.
With this equation, solutions on the form ω = ω(qs) are sought,

corresponding to vibrational frequencies at wave vector q and branch s. The
number of phonon branches depends on the number of atoms in the unit cell,
p, such that s = 1, 2, 3 . . . , 3p. For the 3p eigenvalues ω2(qs) at q there is an
eigenvalue equation from rewriting Eq. 2.12,

ω2(qs)ϵα(b, qs) =
∑
b′β

Dαβ(bb′|q)ϵβ(b′, qs), (2.15)

with eigenvectors ϵ(b, qs). The collection of ω(qs) is called the phonon
dispersions. The frequencies have periodicity in the same manner as the reciprocal
lattice, and solutions can be limited to q within the first Brillouin zone. Three
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branches, called acoustic, are such that ω(q) → 0 for q → 0, and 3p−3 branches,
called optical, are such that ω(q) ̸= 0 for q → 0. If a solution to Eq. 2.14 results
in an eigenvalue ω2 < 0, it is a sign that the crystal is dynamically unstable. For
Im(ω) ̸= 0 the displacements from equilibrium will grow exponentially, seen from
the time-dependent part of the displacement oscillations, exp (−iωt), of Eq. 2.11.
In this case, the energy decreases when atoms are moved away from equilibrium.

2.2.2 Phonon Dispersions of Si

Fig. 2.4 shows the phonon dispersion relations for Si in a diamond lattice. Γ, X,
W , K, L, and U are high symmetry points in the Brillouin zone. Γ corresponds
to q = 0 and long wavelength phonons. The primitive cell contains two Si
atoms, giving rise to three acoustic and three optical branches. For the acoustic
branches when q → 0 the two atoms in the primitive cell vibrate in the same
direction, while in the optical branches, the atoms vibrate against each other.
Acoustic and optical branches can be transversal or longitudinal. In transversal
motion, the atoms move perpendicular to the direction of the wave, q, while
for longitudinal motion, the atoms move parallel to q. Close to Γ there is two
transversal acoustic (TA) branches and one longitudinal acoustic (LA) branch.

The velocity of the acoustic phonons in the long-wavelength limit, q → 0, is
called the speed of sound, connecting microscopic and macroscopic properties.
The phonon group velocity can be calculated as vqs = dωqs/dq. vqs for the LA
branch is typically higher than for the TA branch close to q = 0. The calculated
vqs for the three acoustic branches for Si close to the Γ-point in the direction
of X are vTA1

qs = 5192 m/s, vTA2
qs = 5192 m/s, and vLA

qs = 7441 m/s. These
values can be compared to previous experimental estimates, calculated based
on the elastic tensor [41, 42], vTA

qs = 5843 m/s and vLA
qs = 8433 m/s. There is a

difference between the velocities, but the ratio between the LA and TA velocities
is similar at ∼ 1.4. The velocities for the two TA modes between Γ and X are
identical as the dispersions are overlapping. Such branches are often labeled
as degenerate. Close to the Γ-point, the optical branches are flatter than the
acoustic branches, and the phonon group velocity of the optical phonons is lower
than the group velocity of the acoustic phonons in this region.

2.2.3 Lattice Thermal Conductivity

The lattice thermal conductivity (LTC) expresses the rate of heat transport
per unit temperature due to the phonons. The heat transport depends on the
phonon frequency, ωλ, the phonon group velocity, vλ, and the non-equilibrium
phonon distribution, nλα, where λ = (qs), and α is a Cartesian direction. With
a temperature gradient, ∇Tα, and solid volume, V , the heat conducting phonon
current can be expressed as

Jα = 1
V

∑
λ

ℏωλvλαnλα. (2.16)
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Figure 2.4: Phonon dispersions for Si in the diamond structure.

The non-equilibrium phonon distribution can be approximated as a deviation
from the equilibrium phonon distribution, ñλ. With a small temperature gradient
the phonon distribution becomes [40]

nλα ≈ ñλ − vλατλα
dñλ

dT

dT

dα
, (2.17)

where τλα is the phonon lifetime. The equilibrium distribution does not contribute
to the heat transport, such that when inserting Eq. (2.17) into Eq. (2.16) the
phonon current becomes

Jα = − 1
V

∑
λ

ℏωλ
dñλ

dT
vλαvλα

dT

dα
. (2.18)

Here, the phonon heat capacity is cλ = ℏωλdñλ/dT . Combining Eq. (2.18) with
Fourier’s law, J = −κ∇T , we arrive at an expression for the LTC,

καβ = 1
V

∑
λ

cλvλαvλβτβλ. (2.19)

This tensor contains nine elements,

κ =

κxx κxy κxz

κyx κyy κyz

κzx κzy κzz.

 , (2.20)

The off-diagonal elements correspond to heat conduction that is non-parallel
to the temperature gradient. The inverse of the phonon lifetime, 1/τβλ, is the
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phonon scattering rate. Phonon scattering mechanisms, such as three-phonon
and defect scattering, are detailed in the next section.

2.2.4 Three-Phonon, Mass-Disorder, and Grain-Boundary
Scattering

If phonons are taken as fully non-interacting, phonon scattering would be zero
and the LTC infinite. Three-phonon scattering events cause finite LTC in a
perfect lattice. Fig. 2.5 shows an example of calculated three-phonon scattering
rates as a function of frequency. The number of points corresponds to the number
of q-points used to discretize the Brillouin zone in Eq. (2.19). The scattering
rate is given by

1
τλ

= ℏπ

8
∑
λ′λ′′

|Φλλ′λ′′ |2[(nλ′ + nλ′′ + 1)δ(ωλ − ωλ′ − ωλ′′)

+2(nλ′ − nλ′′)δ(ωλ − ωλ′ + ωλ′′)]. (2.21)

Here, the δ-functions ensure energy and momentum conservation in three-phonon
interactions, q ± q′ + q′′ = G and ω ± ω′ = ω′′. These interactions represent two
possible cases, one where two phonons combine to a third and one where one
phonon decays into two, as illustrated in the inset of Fig. 2.5. In the following,
the atom and cell indices, b and l, are contracted to a single index, i, denoting
an atom. The three-phonon matrix element, Φλλ′λ′′ , is given as

Φλλ′λ′′ =
∑
ijk

∑
αβγ

ϵλ
αiϵ

λ′

βjϵλ′′

γk√
mimjmk

√
ωλωλ′ωλ′′

× Φαβγ
ijk ei(qri+q′rj+q′′rk). (2.22)

Here, ijk are atom indices, ϵλ is the eigenvector of mode λ, and Φαβγ
ijk are the

third-order force constants. Details on the third-order force constants and how
to obtain them are elaborated in Sec. 2.3.

There are additional physical mechanisms that cause phonon scattering, such
as sublattice substitutions. A substituent atom has a different mass and bonding
to its neighbors. An illustration of an atomic substitution is shown in Fig. 2.6.
One way to include the effect of substitutions in the phonon scattering rate is
through mass-disorder (md) scattering. In this model, the mass of the atom
is changed to an effective average mass. E.g. when substituting Pb by Sn in
Pb1−xSnxTe the effective mass of Pb becomes (1 − x) % the mass of Pb plus
x % the mass of Sn. The difference in mass is reflected in the mass-variance
parameter,

gi =
∑

p

cp
i

(
mp

i − m̄i

m̄i

)2

. (2.23)
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Figure 2.5: Phonon frequencies and scattering rates for full-Heusler AlVFe2 at
300 K. The inset illustrates three-phonon interactions.

Figure 2.6: The red atom is a substitute in the chain of atoms. The waves-like
shapes illustrate the phonon which scatters on the substitute.

Here, atom i is substituted by atom p at concentration cp
i , mp

i is the mass of
atom p, and m̄i =

∑
p cp

i mp
i is the average atomic mass. The md-scattering rate

is given as [43, 44]

1
τmd

λ

= π

2
∑
λ′

ωλωλ′

∑
i

gi|ϵi†
λ · ϵi

λ′ |2δ(ωλ − ωλ′), (2.24)

where the sum over i goes over all atoms in the cell. When no substitutions are
included, 1/τmd

λ only contains the effect of atomic isotopes. The md-scattering
increases for higher frequencies, and typically impacts high frequency acoustic
phonons [45]. An example of how md-scattering reduces the LTC is shown in
Sec. 3.2.2.
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Grain boundaries affect phonon transport through grain-boundary (gb)
scattering mechanisms. Grain boundaries in polycrystalline compounds cause
phonons of different wavelengths to scatter, as illustrated in Fig. 2.7. The gb
shown is between two differently oriented lattices indicated by red and purple
discs.

Figure 2.7: Illustration of grain boundary scattering. The dashed line indicates
the grain boundary.

Calculating gb-scattering on an atomic level is challenging, as grains with different
orientations and sizes can form in a variety of different ways. The size of the
grains also poses a modeling challenge from a first-principles point of view. An
approximation of the gb-scattering can be obtained with a computationally
efficient diffusive scattering model. In this model phonons with mean-free paths
comparable to the grain size are absorbed and re-emitted in the scattering
process. The gb-scattering rate is given as [40]

1
τgb

λ

= vλ

d
, (2.25)

where vλ is the phonon group velocity and d is the grain size. The grain size
can be tuned for a specific compound according to the average grain size found
in experiment, or set to a smaller value as an upper bound on the scattering
rate due to gbs. The gb-scattering typically suppresses low-frequency acoustic
phonons. Sec. 3.2.2 shows an example of how gb-scattering lowers the LTC.

2.2.5 Lattice Thermal Conductivity Models

Calculating the LTC with the three-phonon scattering rate is computationally
expensive when based on density functional theory (DFT) calculations. There
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are alternative models that can be used to calculate the LTC which are less
expensive. One model is the Slack model for the LTC [46],

κℓ,Slack = A
Maµn1/3θ3

D
γ2T

. (2.26)

Here, A = 2.34 × 10−8/(1 − 0.514/γ + 0.28/γ2), Ma is the average atomic mass,
µ3 is the volume per atom, n is the number of atoms in the primitive cell, θD
is the Debye temperature, and γ is the Grüneisen parameter. Another model
which can be used to estimate the minimum LTC is the Cahill model [47],

κℓ,Cahill =
(π

6

)
kBn2/3

∑
i

vi

(
T

θD,i

)2 ∫ θD,i/T

0

x3ex

(ex − 1)2 dx, (2.27)

where the sum is taken over two transverse and one longitudinal branch, with
vi and θi being the group velocity and Debye temperature for branch i. The
Debye temperature and Grüneisen parameter can be obtained from the phonon
dispersion relations. The Debye temperature can be expressed as being the
temperature associated with the highest frequency of a normal vibration mode,
ωi,max, by the relation θD,ikB = ℏωi,max. The Grüneisen parameter can be
obtained from dispersions at different volumes, γi = (−V/ωi)(∂ωi/∂V ), and
characterizes the relationship between changes in phonon frequency and volume.
The Debye temperature and Grüneisen parameter can also be estimated based
on the elastic tensor from DFT [48, 49]. How to calculate the Debye temperature
using the elastic tensor is shown in Sec. 2.3.

2.2.6 What Causes Low Lattice Thermal Conductivity?

When analyzing the LTC it can be useful to note the units of the LTC, typically
given as W/mK ∼ J/smK. The LTC is the energy transferred per second, per
meter, per Kelvin. From Eq. (2.19) there are three central properties that affect
the LTC: the heat capacity, the phonon group velocity, and the relaxation time.
These properties are not independent of each other, such that altering one could
affect the others. If the heat capacity is low, the phonons carry less heat energy.
If the group velocity is low, the phonons transfer the heat at a slower rate. If
the relaxation time is low, phonons scatter more frequently, limiting their ability
to transfer heat.

Three-phonon scattering events effectively reduce the phonon lifetimes.
Compounds with high three-phonon scattering rates are often labeled as
anharmonic compounds. PbTe is a high-performance thermoelectric material,
where its low LTC has been attributed to its high anharmonic (three-phonon)
scattering rate [50]. The same is the case for the well-known thermoelectric
GeTe [51]. The heightened phonon scattering in this compound has been linked
to its proximity to a structural phase transition. Pal et al. found a class of
quaternary chalcogenides with high scattering rates [52], showing that a large
variety of compounds have this attribute.
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Rattling is a phenomenon that has been been linked to low LTC. A
rattling atom is loosely defined as a weakly bound atom with long atomic
displacements [53]. The rattling atoms can be thought of as filler atoms in cage-
like voids in the structure, e.g. as seen in clathrates, giving rise to flat phonon
branches [54]. Pal et al. found a class of rattling quaternary chalcogenides [52].
They observed strongly localized phonons where few atoms in the cell contributed
to the vibrations. Rattling atoms can facilitate low phonon velocities or high
scattering and have also been found in low LTC skutterudites [55] and half-
Heusler compounds [56].

Increasing the total scattering rate by introducing substitutions can reduce
the LTC. Substituted atoms increase sublattice disorder and act as local defects
as illustrated in Fig. 2.6. Sublattice disorder can be introduced by partially
substituting an element with another element of the same periodic group
maintaining the same valence. These substitutions yield high mass variance and
can be used as an efficient strategy where different substitution concentrations
are investigated to optimally reduce the LTC [45, 57–60].

Doping is typically done to enhance the electronic properties of thermoelectric
compounds. Although done at low concentrations, doping slightly increases
sublattice disorder. The dopant atoms have a different atomic sizes, which could
introduce strain in the lattice. Doping can lead to lower LTC [61], although in
other cases doping increases both the LTC and the total thermal conductivity [62].

Enhancing phonon scattering with grain boundaries is also a viable route
for reducing LTC. Grain boundaries emerge in polycrystalline compounds
and effectively scatter phonons as illustrated in Fig. 2.7. Fine-tuning of the
grain sizes has been studied both theoretically and experimentally, such as for
ZnO [29, 63], half-Heuslers [45, 64–66], and perovskites [67, 68]. The sizes of the
grain boundaries impact phonon transport – smaller grain boundaries facilitate
more scattering. Grain boundary sizes observed in experiments vary between
compounds and manufacturing methods. For half-Heuslers they av been observed
to be in the range of 60 to 400 nm [64, 66].

Several other scattering mechanisms impact the LTC, such as vacancies [69–
71], electron-phonon interactions [72, 73], dislocations [74], precipitates [75],
pores [76], and twin boundaries [77, 78]. The relationship between these scattering
mechanisms and lattice thermal transport is outside the scope of this thesis.
Lastly, it should be noted that for thermoelectric compounds, the goal is to
attain high ZT , not just low LTC. If the introduction of additional phonon
scattering mechanisms negatively affects electronic transport properties it could
result in a net lowering of ZT .

2.3 Temperature-Dependent Effective Potential (TDEP)

To calculate the LTC as presented in the previous section, Eq. (2.19), third-order
force constants are needed. These force constants correspond to a third-order
expansion of the lattice potential energy Taylor series. Several softwares can
be used in the process of obtaining force constants from ab initio calculations,
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such as Phono3py [79, 80], ShengBTE [81], and hiPhive [82]. One method for
doing finite temperature lattice dynamics is the temperature-dependent effective
potential (TDEP) method as developed by Hellman et. al [83–85]. The TDEP
package contains programs for extracting second-, third-, or higher-order effective
force constants. It can also be used for calculating properties such as phonon
dispersions, free energies, and the LTC including different phonon scattering
mechanisms.

Throughout this work, TDEP uses atomic positions and forces calculated
with DFT as input. But in principle, any method that provides these properties,
such as force fields or machine learning models, can be used with TDEP. Most
of the theory written out in the section is based on Refs. [83–88], as well as
the PhD thesis by Nina Shulumba [89], which gives an in-depth elaboration on
lattice dynamics and the TDEP method. It should also be mentioned that the
examples in the online TDEP manual [90] have also been of much use throughout
the work of this thesis.

2.3.1 TDEP methodology

The TDEP method mainly works as a tool to obtain a model Hamiltonian for
doing lattice dynamics. When expanding the Hamiltonian to the third order the
following expression is obtained,

Ĥ = U0 +
∑
iα

p2
iα

2mi
+ 1

2!
∑
i,j

∑
α,β

Φαβ
ij uα

i uβ
j + 1

3!
∑
i,j,k

∑
α,β,γ

Φαβγ
ijk uα

i uβ
j uγ

k . (2.28)

Here, the first two terms on the right-hand side are the potential energy of
the static lattice and the kinetic energy of the atoms. The displacement from
equilibrium of atom i in direction α is indicated by uα

i , and Φαβ
ij and Φαβγ

ijk are
the second- and third-order force constants representing two- and three-body
atomic interactions. These force constants are often referred to as harmonic
and anharmonic force constants. For a two-body interaction, the force constant
matrix contains 32 variables, as shown in the following expression,

Φij =

Φαα
ij Φαβ

ij Φαγ
ij

Φβα
ij Φββ

ij Φβγ
ij

Φγα
ij Φγβ

ij Φγγ
ij

 , (2.29)

while for three-body interaction the force constant matrix contains 33 variables.
There are approaches implemented in TDEP that reduce the number of force
constants that needs to be calculated. One such method is to use constraints
based on crystal symmetry. The symmetry constraints result in Φ containing a
combination of symmetry equivalent (reducible) and inequivalent (irreducible)
components, effectively reducing the number of unknown variables. Another
method affecting the number of force constants is the cutoff radius for atomic
interactions, rc. rc defines a sphere within which two- or three-body interactions
are considered. Outside the sphere, the interactions are set to zero.
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Fig. 2.8 illustrates two third-order force constants as blue and red triangles.
The red triangle is confined by a smaller rc, and atoms i, j, and k are displaced
from equilibrium, indicated by ui, uj , and uk. The blue triangle is bound by a
larger rc. This force constant would not be considered with rc corresponding to
the red circle. This illustrates how increasing rc increases the number of force
constants considered if more non-symmetry equivalent force constants are within
rc.

An example of how the number of irreducible force constants increases for
increasing rc is shown in Fig. 2.9. The results are calculated for a 432-atom
supercell of orthorhombic ZnSb. This compound has fairly low symmetry when
compared to e.g. cubic compounds. The number of force constants increases
as a function of the cutoff radius, increasing rc from 4 Å to 5 Å increases the
number of force constants from 423 to 2772. Between 3.2 and 3.8 Å there is
a plateau where the number of constants does not increase. In this region no
new irreducible force constants are introduced; only atoms that correspond to
symmetry equivalent force constants are being included, or alternatively, no
new atoms are within the increasing rc. An appropriate rc can be obtained by
convergence testing unless all possible interactions in the simulation cell are
taken into consideration. Its value will depend on which material property is to
be calculated and the desired accuracy. Within the TDEP framework, rc can be
set to different values for second- and third-order force constants.

Figure 2.8: Illustration of third-order interatomic force constants. The green
spheres indicate atoms, while the red and blue shaded triangles show two different
three-atom interactions, each within a cutoff radius indicated by the red and
blue circles. For the red triangle, atoms are displaced from their equilibrium
positions. The illustration is made with inspiration from Ref. [89].

The total force on an atom is a result of all possible n-body interactions, while
for the model the force on the atom depends on two- and three-body interactions
that involve the atom. The model force on atom i in direction α can be expressed
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Figure 2.9: Number of irreducible force constants for orthorhombic ZnSb as a
function of rc. The horizontal axis indicates rc for third-order force constants
while the vertical axis shows the number of irreducible force constants.

as

fM
iα =

∑
j

∑
β

Φαβ
ij uβ

j + 1
2

∑
jk

∑
βγ

Φαβγ
ijk uβ

j uγ
k . (2.30)

All forces for the atoms in the cell can be grouped into the force vector FM.
TDEP works by matching the forces of the model, FM, and the forces calculated
with DFT, FDFT. By minimizing the difference between FM and FDFT we can
obtain force constants that best represent the system. The minimization problem
is expressed as

min
Φ

∆F = 1
Nc

Nc∑
i=1

|Fi
DFT − Fi

M|, (2.31)

where the sum goes over Nc configurations and the force difference is minimized
using a least-squares solution.

Uncorrelated thermally excited configurations are desired as supercells that
are used as input to DFT calculations to obtain FDFT. These configurations
should be a diverse representation of the phase space. Ab initio molecular
dynamics is often used to obtain realistic configurations at the desired
temperature. A challenge with this approach is that many configurations (one
from each time step) in the molecular dynamics run are correlated with each
other. It is therefore useful to sample the molecular dynamics run, e.g. by only
considering every 5th or 10th step. Thus, only a fraction of the calculations is
useful as input to TDEP. With molecular dynamics, the system must also be
equilibrated at the desired temperature before sampling.

An alternative to molecular dynamics is to generate configurations with a
stochastic sampling approach [91]. This is implemented in the TDEP code [87,
89]. The approach limits computational expenses as no configurations need to
be discarded. To create the configurations the instantaneous atomic positions,
uiα, and velocities, u̇iα, of atom i in a cell of Na atoms is initiated by [92, 87]
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uiα =
3Na∑
s=1

ϵs
iα < As

i >
√

−2 ln (ζ1) sin 2πζ2 (2.32)

u̇iα =
3Na∑
s=1

ωsϵs
iα < As

i >
√

−2 ln (ζ1) cos 2πζ2. (2.33)

Here, ω2
s is the eigenvalue of mode s, ϵs

iα is the eigenvector of mode s, ζ are
randomly drawn from a uniform distribution (0, 1), and < As

i > is a thermally
averaged amplitude in the classical limit. Details on how to approximate ω2

s and
ϵs

iα are discussed later. < As
i > can be obtained from [92],

< As
i >≈ 1

ωs

√
kBT

mi
, (2.34)

with T being the temperature and mi the atomic mass. A requirement is
that the positions and velocities should correspond to a canonical ensemble. If
second-order force constants are available, uiα, u̇iα, < As

i >, and ϵs
iα can be

calculated straightforwardly by solving the equations of motion for the supercell.
If second-order force constants are not available, an approximation can be made.
These force constants can be sufficient for making uncorrelated configurations
while being computationally efficient to obtain. A pair potential is the starting
point, considering atom i and j at distance rij [87],

∂U(r)
∂rij

= 0 (2.35)

∂2U(r)
∂r2

ij

= η/r4
ij . (2.36)

For the equilibrium lattice, the first derivative is zero, the second derivative
is positive and only substantial for small rij , and η is a constant. In this pair
potential, the second-order force constants can be calculated analytically,

Φij(r) = − η

r6

rxrx rxry rxrz

rxry ryry ryrz

rxrz ryrz rzrz

 , (2.37)

with r being the vector between atoms i and j. The parameter η tunes the force
constants such that the phonons of the systems are within the correct frequency
range. η can be obtained from the relationship between the zero-point energy of
the phonons and the Debye model [87],

1
Na

∑
i

ℏωi(η)
2 = 9kBθD

8 . (2.38)

To obtain η the Debye temperature, θD, must be calculated. This can be done
using the following expression [48, 49],
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θD = h

kB

[
3ρ

4π

]1/3
van−1/3, (2.39)

where ρ is the number of atoms per unit volume, n is the number of atoms in the
primitive cell, and va is the average phonon velocity. va can be calculated with
DFT, e.g. by using the elastic tensor from finite differences. Obtaining a set of
thermally excited configurations can be done as follows: 1) the primitive cell is
relaxed to obtain the equilibrium positions, 2) the elastic tensor is calculated,
3) an appropriately sized supercell is constructed from the relaxed cell, and
4) thermally excited supercell configurations are computed based on atomic
displacements and velocities calculated with Eq. (2.35) and Eq. (2.36).

To obtain effective second- and third-order force constants at a specific
temperature, T , we need configurations from an ensemble at T . The temperature
is set in the amplitude, Eq. (2.34). Fig. 2.10 shows the absolute difference between
atomic positions from a canonical ensemble, rcan, and at equilibrium from DFT,
requ. The temperature of the canonical ensemble is set to 100 and 300 K. All
atoms in configurations from the canonical ensemble are displaced. The largest
position difference for the configuration at 100 K is ∼ 0.1 Å and at 300 K it is
∼ 0.15 Å. The average absolute difference at 100 K is 0.056 Å and at 300 K it is
0.085 Å.
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Figure 2.10: Histogram showing the displacements of atoms from equilibrium
positions for supercell configurations with 108 atoms at 100 K and 300 K.

It should be mentioned that while the TDEP method is an effective way
to obtain second- and third-order force constants, significant computational
resources are required. In the TDEP manual, it is mentioned as a rule of thumb
that convergence testing can be carried out starting at around 10 equations per
irreducible force constant [90]. Each supercell configuration with forces calculated
with DFT provides 3Na equations, where Na is the number of atoms. For a
system with 128 atoms and 500 irreducible force constants, ∼ 15 configurations
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can be used as a starting point. Calculating the forces for a configuration
with DFT roughly takes ∼ 5 hours with 40 CPUs – 200 CPU-hours – for
cubic compounds studied in this thesis. Obtaining the force constants using 15
configurations then requires ∼ 3000 CPU-hours of computer time. Typically
more than 15 configurations are necessary to obtain accurate third-order force
constants, further increasing the computational expense. The computational
expense also increases for systems with low symmetry, as the number of irreducible
force constants increases. Calculating the third-order force constants – which
are needed for the LTC – for thousands or tens of thousands of compounds is
therefore a formidable task.
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2.3.2 Relevance for the Articles

Article I:
In this article the LTC for 122 half-Heusler compounds is calculated based

on DFT using the Vienna Ab initio Simulation Package (VASP) [93–95] and the
TDEP method [83, 85]. The effective force constants are extracted at 300 K. The
intrinsic LTC is considered with three-phonon scattering and scattering from
isotopes using the natural distribution of isotopes. In this article, a machine
learning model is trained where the features include the Debye temperature,
Eq. (2.39) and LTC calculated with Slack’s model, Eq. (2.26).
Article II:

Here the LTC of the 122 half-Heusler compounds is calculated including
scattering from isovalent sublattice substitutions and grain boundaries according
to Eq. (2.24) and Eq. (2.25). The substitution concentration is set to 10 %,
and the grain sizes are set to 100 and 200 nm. For each compound, 12 LTC
calculations are done: intrinsic LTC, LTC with substitutions on the X-, Y -, and
Z-sites, LTC with 100 and 200 nm grain boundaries, and LTC with substitutions
on the X-, Y -, and Z-sites in addition to 100 and 200 nm grain boundaries.
Article III:

In this work, a machine learning method is trained on the intrinsic LTC of
268 compounds calculated with DFT and TDEP. Force constants are extracted
at 300 K. 122 of these are the previously mentioned half-Heuslers, while 146
are cubic compounds from the Materials Project database [7]. The phonon
dispersions, lifetimes, density of states, and spectral LTC for Na2TlSb and
Ca3AsBr3 are analyzed to identify possible origins of the low LTC.
Article IV:

In this article, eight compounds are found to have emerging electronic band
gaps at the hybrid functional level. The LTC for these compounds is calculated
using TDEP and three compounds, MgSc2Hg, Li2CaSi, and Ba2HgPb, are found
to have LTC less than 5 W/Km at 300 K.
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Chapter 3

Results and Discussion

This chapter presents results and discussion on the topic of identifying low
lattice thermal conductivity (LTC) compounds. Results that did not make it
into the articles are also included. The first section of the chapter serves as
an introduction to machine learning (ML) and features for material property
predictions. The next part elaborates on ML for predicting the LTC, and
possible avenues for choosing a representative training set, so-called active
sample selection. The following sections concern LTC calculations. First is a
discussion on how erroneous force constants affect calculated LTC, and second
is a study on mass-disorder and grain-boundary scattering for reducing the LTC
of AlVFe2. This is followed by a comparison of calculated LTC and thermal
conductivities from experiments. Lastly, the chapter outlines research challenges
and proposes new ideas for future research where the discussions are tied to the
articles at the end of the thesis.

3.1 Machine Learning in Material Informatics

Machine learning (ML) is an umbrella term, along with "artificial intelligence",
that encapsulates a large number of methods that learn something from data.
The concept of model learning is close to how humans learn. Learning to ride
a bicycle can be viewed as repeating similar movement patterns (getting up
on the bike, pushing the pedals) to maintain balance. In ML terms this could
be viewed as identifying the actions that contribute to and the actions that
counteract balancing on the bike. Kids (typically) learn not to be rude to other
kids. Often this comes through trial and error where the kids learn that their
actions can inflict distress on others and/or trouble for themselves. From an ML
point of view this could be thought of as how a model is "punished" when doing
bad (making inaccurate predictions), and "rewarded" when doing good (making
accurate predictions). In ML we use a set of features and a model that are used
to predict a target. As an example, we can attempt to find features that can
be used to predict how much ice cream will be sold by an ice cream stand on
a given day. Features could be e.g. the temperature, whether it is sunny, and
if it is a weekend. A warm, sunny Sunday could yield more sales than a cold,
rainy Monday. Both features and target could be classes. The temperature is
continuous, while "is it sunny" is binary and thus a class. It is also interesting
to note how the features relate to the target. Would yesterday’s stock price
be a good feature for predicting ice cream sales? Several ML challenges must
be resolved when modeling different problems. Which ML method should we
choose and at what complexity level is desired? What features should be used in
training? This section presents examples of ML applied in material science. Two
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ML cases are explored: predicting cell volume from density functional theory
(DFT) and LTC at different temperatures. This is followed by a comparison of
active sampling methods.

3.1.1 Introduction: Predicting DFT Volume

Applying tools and ideas from informatics in materials science – materials
informatics – has become a hot topic in recent years. The advent of materials
databases that gather experimental and calculated data in a structured manner
enables the use of statistical methods and ML [96–98]. As an introductory
example take the simple linear regression model. The model can be expressed as

ŷi = C +
p∑

j=1
ajxj

i . (3.1)

Here, C is a constant term, ŷi is the prediction for a sample i, and yi is the target
value. The target is the "true" value and is sometimes labeled "measurement".
Each of the p features, xj

i , are assigned a weight, aj . In material informatics,
the features are often labeled "material descriptors" or simply "descriptors". The
model training is done by obtaining C and aj that minimize the error between
the predicted ŷi and target, yi. The error can be computed as the residual sum
of squares for N samples,

∑N
i=1(yi − ŷi)2.

As a case study, we use an example from materials science; predicting the
DFT relaxed volume per atom of a compound based on atomic properties.
N = 41 compounds with two atoms in the primitive cell are used with four
features, the average electronegativity, < χ >, average covalent radius, < r >,
standard deviation of the electronegativity, σχ, and the standard deviation of
the covalent radii, σr. By minimizing the residual sum of squares the following
model expression is obtained,

Vmodel = −9.0 − 5.6 < χ > +35.7 < r > +5.4σχ − 17.1σr. (3.2)

χ is the Pauling electronegativity and the unit of r is Å. The predictions of the
model using Eq. (3.2) are shown in Fig. 3.1. The average relative error of using
Eq. (3.2) is 13 %.
The relationship between the features and the volume per atom can be interpreted.
A large < r > corresponds to a large effective size of the atoms and hence a larger
Vmodel. When r is different between the two atoms in a compound σr becomes
large and Vmodel is smaller. It is also interesting to note that this model can
extrapolate beyond material volumes seen in training. For example, a two-atom
system containing two fluorine atoms has a negative Vmodel from Eq. (3.2).

The problem of extrapolating to a negative volume can be solved by
manipulating the problem formulation. With the natural logarithm of the
volume and the features, the following expression is obtained,
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Figure 3.1: Linear regression model for predicting the compound volume per
atom. The horizontal axis shows the volume per atom calculated with DFT, and
the vertical axis shows the predicted volume, Vmodel, calculated with Eq. (3.2).

log(Vmodel,log) = C + a1 log(< χ >) + a2 log(< r >) + a3 log(σχ) + a4 log(σr).
(3.3)

Training of the linear regression model yields the following expression after taking
the exponent on both sides,

Vmodel,log = e2.3 < χ >0.04< r >2.3 σ−0.06
χ σ−0.07

r , (3.4)

This model can not extrapolate to negative values and performs similarly to
the previous regression model. The predictions are shown in Fig. 3.2 and the
average relative error is 12 %. The exponents of < χ >, σχ, and σr are relatively
small. Small changes in these features make less difference in the predictions.
Fig. 3.2 also shows the volume predicted by a model that is trained using only
one feature, < r >, resulting in the following expression,

V̂model,log = e2.6 < r >2.1 . (3.5)

The constant term increases slightly while the exponent of < r > decreases. The
error is 17 %, a slight increase over the previous models.

The linear regression is straightforward to use and the simple expressions
obtained here for the DFT compound volume can useful, e.g. as a starting
point before DFT relaxations. It could be extra beneficial for reducing the
computational expense if a large number of compounds are to be relaxed in
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Vmodel,log = e2.3 < χ >0.04< r >2.3 σ−0.06
χ σ−0.07

r

V̂model,log = e2.6 < r >2.1

Figure 3.2: Linear regression model for predicting the volume per atom. The
horizontal axis shows the volume per atom calculated with DFT, and the vertical
axis shows the predicted volume calculated with Eq. (3.4) (blue disks) and
Eq. (3.5) (orange disks).

a high-throughput fashion. It should be noted that models specialized for
compound sub-classes can achieve better performance than the models obtained
here. A model made by Miyazaki et al. had an error of ∼ 5 % between computed
and predicted lattice parameters for half-Heuslers [99].

Absorbing the details of ML and materials informatics, such as feature
engineering, model selection, validation schemes, data selection, and so on can
be a challenge. This blog post from the Citrine web page [100] and the links
within give a short introduction to material informatics. The work by Wang
et al. [101] provides broad guidelines for the field, and the authors include ML
examples in Jupyter notebook format. The advantage of notebooks is that they
are easily adapted to different data. The work by Seko et al. [102] tackles one of
the main challenges in ML for compound properties; how to generate structured
features from compound sets.

3.1.2 Features for Machine Learning in Materials Science

Features in material informatics are descriptors that represent a material in
a structured way. Features should have a general form such that the features
can be obtained for all materials studied. E.g. inter-layer distance can be a
useful feature for layered materials while it is hard to define such a distance
for non-layered materials. Features for specific compound classes can enhance
model performance. Miyazaki et al. studied the half-Heusler compounds using
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ML and features tailored to the composition for predicting the lattice thermal
conductivity and volume [99]. The half-Heuslers have three atoms in the primitive
cell, XY Z, and Miyazaki et al. found that the features (rX + rY + rZ)/3 − rX

and (mX + mY + mZ)/3 − mX , where r was the atomic radius and m was the
atomic mass, were important features. Specialized features such as the absolute
difference of atomic radius of elements in binary compounds, |rA − rB | and the
sum, rA + rB , have been used to determine bonding types in compounds [103].
These features enabled the identification of compositions AB that had large
differences in energy when comparing zinc blende and rock salt crystal structures.

To make general features based on compositions one can start with a vector,
l = [a1, · · · , an], where a is a descriptor (such as atomic radius or mass), and
n is the number of atoms in the primitive cell. A possible starting point for
effectively obtaining a is the Mendeleev python package [104], which contains
different atomic descriptors. Matminer [105] can also be used to obtain a from
descriptors based on the atoms or the structure. The function F (l) enables l
to be converted into a feature and can handle l of any length larger than zero.
F (l) can take many forms, such as the minimum, maximum, average, median,
standard deviation, number of elements, or number of unique elements. The
point of F (l) is that it should be able to map l of any length to a value. It is
also possible to take information from the crystal structure itself and use it to
construct features, e.g. the space group or average coordination number. The
Voronoi structure has been used to calculate features related to symmetry and
structure in a general fashion [106, 107]. The Voronoi structure for a lattice
point is defined by planes perpendicular to the vector connecting the point with
its closest neighboring lattice points at the halfway point of the vector. Fig. 3.3
shows an example of a 2D Voronoi structure. The number of faces and shape of
the faces of the Voronoi structure capture part of the local environment in the
structure. For a given compound, a for an atom could for example be given by
the number of faces or area of all faces.

The previously discussed features are based on the atoms and the lattice.
Another option is to calculate features with DFT. Such features are useful
when the calculation of the features is much less computationally expensive
when compared to obtaining the target property. Two examples are the relaxed
volume per atom and the bulk modulus. The role of these features when using
ML to predict the LTC is explored in Article I. The DFT computed electronic
band structure provides features, e.g. the electron effective mass and band gap.
Phonon dispersions can be somewhat more computationally expensive to obtain,
while they provide features linked to lattice dynamics, such as phonon group
velocities, maximum frequencies, effective spring constants, and first-moment
frequencies [56].

Overfitting often occurs in ML and may worsen if the number of features
is large. Using a large number of features can also lead to runtime or memory
issues. Feature selection schemes enter as useful tools for reducing the number
of features. These schemes work by removing redundant or correlated features.
There are different types of schemes providing good feature subsets, many of
which have been employed with ML models predicting the LTC [99, 108–110].
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Figure 3.3: Voronoi structure illustration (turquoise) for the central atom (green).

In Article I we use a scheme called exhaustive feature selection. This scheme is
computationally costly and brute-forces the best feature subset by evaluating
all possible feature subsets. Article III employs an iterative scheme, sequential
feature selection, that identifies a feature subset by observing the performance
drop when feature values are randomly shuffled.

Domain knowledge is crucial for constructing the initial feature set. The bulk
modulus can for example be related to atomic bonding and phonon transport,
and the number of atoms in the unit cell can affect the phonon dispersions
and the fraction of acoustic branches [39]. Knowing which features are more or
less relevant for the target property can also reduce feature redundancy, as less
relevant features can be removed.

3.1.3 Machine Learning the Lattice Thermal Conductivity: Which
Model is Best?

Using ML to predict the lattice thermal conductivity (LTC) is a core topic in
this thesis. Evaluating the ML performance of different models is important for
attaining high accuracy. The works by Zhu et al. [110] and Miyazaki et al. [99]
contain performance comparisons of popular ML models. Different ML models
have different strengths and weaknesses, making it challenging to identify the
optimal one. Examples of models used for predicting the LTC are random forests
regression (RFR) [110–113], boosted trees methods [99, 112], Gaussian process
regression (GPR) [108, 114], and neural networks [110, 115].
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Jaafreh et al. [112] trained an ML method using a dataset of 119 compounds
with LTC at different temperatures. The LTC was obtained based on DFT
calculations, Phonopy [79], and Phono3py [80]. They showed that good
performance can be achieved when predicting the LTC at different temperatures
using the popular RFR model. Fig. 3.4 shows a decision tree, the core component
in RFR. The decision tree starts with a sample (compound) at the top and
propagates it through the logical splits (rectangles) until a leaf node is reached
(circles). In this decision tree the compound can be evaluated on four features:
The average mass, mavg; the volume, V ; the average covalent radius, ravg;
and the number of elements, N . RFR combines many different decision trees
in a randomized fashion. Each decision tree is based on random subsets of
features and compounds, resulting in a variety of trees that make up the
"forest". When a sample is propagated through all decision trees of the forest,
its predicted value is the average across predictions for individual decision trees,
LTCavg = (1/N)

∑N
i=1 LTCi, where the sum goes over all decision trees. Since

the leaf nodes are LTC from compounds used for training, LTCavg is bound by
the lowest and highest LTCi in the training set.

number of elements

YesNo

YesNo

YesNo

No Yes

Compound

Figure 3.4: Illustration of a decision tree.

In the following, we use different ML models and assess the performance when
predicting the LTC. The LTC is calculated with the temperature-dependent
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Figure 3.5: Predictions of the LTC using RFR, SVR, and Lasso.

effective potential (TDEP) method. The dataset consists of 220 compounds with
two, three, and four atoms in the primitive cell. Five temperatures are used,
200 K, 300 K, 400 K, 500 K, and 600 K, making a total of 220×5 = 1100 samples.
As features, the average, standard deviation, median, minimum, maximum, and
ratio of minimum to maximum of the following properties of the atoms in the
primitive cell are used: electronegativity, electron affinity, dipole polarizability,
valence, covalent radius, and mass. The volume per atom, number of atoms in the
primitive cell, number of unique atoms in the primitive cell, and the temperature
are also included. In the following RFR is compared to two other ML models,
support vector regression (SVR) and Lasso. The SVR model is non-linear. In
simplified terms, it makes predictions based on how close an unseen compound
is in feature space to other compounds. The Lasso model is linear, but different
from the simpler linear regression, it minimizes the sum of the weights, aj in
Eq. (3.1), with so-called regularization. The performance is computed as an
average over a 5-fold cross-validation (CV) where hyperparameters are optimized
using a randomized grid search.

Fig. 3.5 shows the predictions made by the three models from the 5-fold
CV compared to the TDEP LTC. The R2-score is used to evaluate prediction
accuracy. It is defined as R2-score = 1 −

∑
i(yi − ŷi)2/

∑
i(yi − ȳ)2, where yi

is the calculated LTC for sample i, ŷi is the ML predicted LTC, and ȳ is the
average of the calculated LTC. The R2-score for Lasso, RFR, and SVR, is 0.76,
0.94, and 0.99, respectively. The R2-scores for the RFR and SVR models are
comparable. While the R2-score using the Lasso model is substantially lower,
training this model is much faster than training the RFR and SVR models.

Six compounds are withheld from the training and validation process as a test
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set. These compounds are LaPtSb, TiNiPb, CuCl, RbBr, Li2InBi, and ZrSiRu2.
The predictions for the compounds are shown in Fig. 3.6. The R2-scores are
-0.19, 0.72, and 0.22 for Lasso, RFR, and SVR, respectively. The RFR and SVR
models are the least accurate for CuCl. If CuCl is removed from the test set,
the R2-scores are -0.30, 0.89, and 0.91 for Lasso, RFR, and SVR.
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Figure 3.6: ML LTC predictions on the test set using Lasso (upper panel), RFR
(lower left panel), and SVR (lower right panel). For each compound, the LTC is
predicted at 200, 300, 400, 500, and 600 K.

The features used in these ML models come from tabulated data or
computational inexpensive DFT calculations. There have been proposed several
descriptors linked to anharmonicity and low LTC, such as first frequency
moments [56], three-phonon scattering phase space [115], and statistical
anharmonicity measures [116]. Using such descriptors as features in ML models
can increase performance, and is viable if the computational expense of obtaining
the descriptors is sufficiently low. A descriptor based on second-order force
constants could be approximately an order of magnitude less computationally
expensive to obtain than the LTC itself [117].

The RFR and SVR models performed worst when predicting the LTC for
CuCl. If no training compounds exhibit the same properties as CuCl it could be
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challenging to recognize it as a low LTC compound. Ensuring a representative
and diverse training set is investigated in Article I and Article III. The following
subsection provides a discussion of the concept of active sample selection.

3.1.4 Active Sample Selection

Active sample selection – also called active learning – is important when the
training data is not necessarily representative of the data set we want to explore.
Small training sets often require active sampling, as the size alone does not enable
the sets to be representative. When predicting the LTC, obtaining training sets
becomes a challenge because computing the LTC for training is computationally
expensive. Sample diversity is also important with larger training sets if the
unseen data is non-uniform and distributed. Fig. 3.7 illustrates how the structure
of the data can affect how its sampled, where the sampled data points are green
crosses. The data on the left is connected and uniform, while on the right it is
separated. One of the sub-regions of the right data is left un-sampled as a result.

Similar techniques to active learning have also been employed in the DFT
community. VASP [93–95] contains a method for on-the-fly ML force fields where
DFT calculations are done for configurations with high ML uncertainty [118]. A
Bayesian linear regression model provides energy predictions and uncertainties.
Adversarial attacks have been used to expand training domains for neural
network interatomic potentials [119]. New configurations to be calculated with
first principles methods are found iteratively by evaluating the difference in
energy predictions of neural networks trained on different data subsets. Training
cluster-expansion models is computationally expensive, requiring large sets of
configurations evaluated with DFT. It has been found that a group of models
(an ensemble) trained on overlapping subsets of the data can find configurations
that should enter the training set [120], effectively reducing the number of DFT
calculations needed. A review of active sampling strategies, utility functions,
and challenges in materials science can be found in Ref. [121].

Principal component analysis (PCA) can be used for active sample selection,
as explored in Article I. PCA acts as a dimensionality reduction, taking correlated
features into account. Principal components are made by projecting points in
feature space onto a new set of axes that maximize the variance. An example of
the construction of a principal component (PC) is shown in Fig. 3.8. The original
space is spanned by two features, X1 and X2. The blue points indicate different
compounds in the space. The projections of the blue points onto the line are
shown as green points, where the line is computed such that the green points
have their variance maximized. This defines the first PC. On the axis defined
by the orange line, the projections are scalars because of the dimensionality
reduction. This concept can be expanded for more features and perpendicular
first, second, third, and so on, PCs can be constructed. There are several options
when it comes to using PCA for active sampling, including choosing which or
how many PCs should be used to span the space. One approach is to iteratively
include the compound with the largest Euclidean distance from any compound
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Figure 3.7: Examples of distributed data. The red shape and purple shapes
represent different data sets. The green crosses are sampled data points.

in the training set in the PC space. This approach, using the two first PCs, is
used in Article I.
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Figure 3.8: The horizontal and vertical axes show two different features
(compound descriptors). The original data (blue points) are projected onto
the orange line which corresponds to the first PC.

Gaussian process regression (GPR) is a probabilistic regression method and
is used in Article III, both for doing predictions as well as active sampling. In
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contrast to PCA, using GPR for active sampling requires a training set with
target values, i.e. the calculated LTC. For GPR the covariance function, often
called kernel, is central. It measures the similarity of different compounds. There
is a variety of kernels available and the choice of a suitable kernel depends on the
underlying structure of the data. A common kernel is the radial basis function
(RBF) kernel,

k(x, x′) = exp
[

−(x − x′)2

2ℓ2

]
. (3.6)

Here, ℓ is a characteristic length-scale parameter, and x and x′ are variables
representing two compounds. When x and x′ are similar, k(x, x′) goes towards
unity, and similarly, k(x, x′) goes towards zero for dissimilar x and x′. With n
training compounds and a new compound x∗ we define three matrices to contain
the covariance functions between all samples [122],

K =


k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
... . . . ...

k(xn, x1) k(xn, x2) · · · k(xn, xn)

 , (3.7)

K∗ = [k(x∗, x1), k(x∗, x2), · · · k(x∗, xn)], (3.8)

K∗∗ = k(x∗, x∗). (3.9)

If y is the vector of targets for the n compounds the probability of a prediction
y∗ given y is p(y∗|y). This probability corresponds to a Gaussian distribution,

y∗|y ∼ N (K∗K−1y, K∗∗K−1KT
∗ ). (3.10)

The estimate for y∗ is then the mean of the distribution,

ȳ∗ = K∗K−1y. (3.11)

It then follows that the uncertainty of the new prediction y∗ can be obtained
through the variance of the prediction,

var(y∗) = K∗∗ − K∗K−1KT
∗ . (3.12)

Fig. 3.9 illustrates GPR predictions and uncertainties where training is done on
nine data points. The prediction variance increases in regions with few or no
training data.

GPR-based active sampling can be done as follows: 1) train the model
with available LTC, 2) do predictions on the unseen compounds, 3) find those
with uncertainty over a predefined threshold, 4) calculate the LTC for these
compounds, 5) include the new compounds in the training. It is also possible to
do it differently by, 3) finding the compound with the highest uncertainty, 4)
using the ML predicted LTC as the target value and including it in the training
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Figure 3.9: GPR illustration with predictions (orange line) and uncertainties
(purple).

set, 5) repeating 4) until a suitable set of compounds is obtained and then
calculate the LTC for the set. This approach is similar to that done in Article
III. Both these approaches enable calculation of the LTC in bulk for the whole
set of actively sampled compounds – an advantage when using high-performance
computational clusters.

Fig. 3.10 shows a comparison of compounds chosen with active sampling
using PCA and GPR. The scenario is the same as in Article I, with a test set
of 35 compounds and a training pool of 87 compounds. Note that the five
compounds with the lowest LTC are placed in the test set. The objective is to
find compounds that should be moved from the test set to the training pool to
increase the accuracy of predictions on the test set. The compound included
with PCA-based sampling is the one in the test set with the largest Euclidean
distance to any compounds in the training pool. The compound included with
GPR-based sampling is the one in the test set with the highest GPR uncertainty.
In the GPR sampling, the compounds selected are iteratively included in the
model training. In the first iteration, both methods choose to include BaBiK. In
the second iteration, PCA sampling includes CdPNa, while the GPR sampling
includes LiZnSb. When five compounds are sampled four are the same across
the two methods, BaBiK, CdPNa, LaPtSb, and GaNiNb. Only the PCA-based
sampling includes LaRhTe, while only the GPR-based sampling includes LiZnSb.

Next is a case study with different sampling schemes and LTC predictions
done by GPR models, similarly as done in Article III. Fig. 3.11 displays the
Spearman rank correlation and RMSE between predicted LTC and TDEP LTC
with models based on three sampling schemes: random, GPR STD, and PCA.
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Figure 3.10: Illustration of compounds from active sampling using PCA and
GPR STD. The left axis (red) shows the distance in PC space between the
compound in the test set farthest from the training pool and its closest training
pool neighbor. The right axis (blue) shows the GPR STD of the compound with
the highest GPR STD in the test set.

Figure 3.11: Spearman correlation (left panel) and RMSE for the three
compounds with the lowest TDEP LTC (right panel) for predictions made
on the test set (vertical axis) vs. number of compounds sampled to the training
set (horizontal axis).
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The RMSE is taken for the three compounds with the lowest TDEP LTC. The
initial training set (0 on the horizontal axis) is made of 151 compounds with
three atoms in the primitive cell. The pool that the models can sample from
consists of 60 compounds with 2, 4, 5, and 6 atoms in the primitive cell. The test
set is made of 27 compounds with the same number of atoms in the primitive
cell as the pool. The compounds in the pool and test set are randomly shuffled
150 times to provide the standard deviation of plotted values. The Spearman
rank correlation can be used to measure how the models differentiate low and
high LTC compounds. It describes with a value [−1, 1] how well two variables
can be fitted by a monotonic decreasing, [−1, 0), or increasing, (0, 1], function.
For less than 11 sampled compounds PCA sampling has the highest Spearman
correlation and lowest RMSE. When more than 11 compounds are sampled the
GPR STD-based model outperforms the others. With GPR STD-based sampling
a correlation > 0.78 is achieved with 28 sampled compounds, PCA-based and
random sampling need 45 and 47 compounds to achieve similar scores.

3.2 Lattice Thermal Conductivity Calculations

This section presents results and discussions concerning lattice thermal
conductivity (LTC) calculated with the temperature-dependent effective potential
(TDEP) method. First, the section outlines how noise added to third-order force
constants affects calculated LTC. Second is a case study where mass-disorder and
grain-boundary scattering is used to reduce the LTC of AlVFe2 – a thermoelectric
compound with high intrinsic LTC. Here it is also shown how different scattering
mechanisms scatter phonons of different energies. Lastly, the section presents a
comparison of calculated LTC and experimental values.

3.2.1 Lattice Thermal Conductivity with Noisy Force Constants

In the previous section, Article I, and Article III, the core objective is to predict
the LTC directly using machine learning (ML). An alternative to this is to do
ML for predicting the interatomic force constants (FCs) (or irreducible force
constants (IFCs) that are mapped back to FCs) instead and then solve the phonon
Boltzmann transport equation (BTE) to obtain the LTC. The computational
expense of solving the phonon BTE is modest compared with the expense of
doing supercell force calculations with DFT. The ML-FCs are from one point
of view more flexible than a direct ML prediction of the LTC, as the ML-FCs
can be used for other purposes, such as calculating phonon dispersions and
Grüneisen parameters. Carrete et al. [111] used a PCA-based method to predict
the IFCs. Obtaining the IFCs and the LTC only required a handful of DFT
supercell calculations and the solution of the phonon BTE for each compound.
Using this method they achieved higher accuracy than when directly predicting
the LTC. There have also been other efforts made to reduce the computational
cost of obtaining FCs, e.g. using compressive sensing [123] and ML [82, 124],
which yielded accurate LTC. The goal of this subsection is not to predict the FCs
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Figure 3.12: Values of the true IFCs are shown on the horizontal axis and noisy
IFCs on the vertical axis. (a) shows all IFCs, while (b) shows IFCs close to zero.

with ML, but rather analyze what happens to the LTC when IFCs are slightly
inaccurate, as one could expect from an ML model.

In the following, noise is introduced in the third-order IFCs for AlVFe2.
The noisy IFCs are obtained by adding random noise drawn from a Gaussian
distribution to each IFC. The Gaussian distribution has a mean of the average
of the IFCs, < IFC >, calculated with DFT and TDEP (labeled true IFCs), and
standard deviation of 0.1 · σIFC, where σIFC is the standard deviation of the true
IFCs. The ith noisy IFC is then IFCGaussian

i = IFCi + ϵ, where ϵ is drawn from
the distribution. Fig. 3.12 shows a comparison of the true IFCs and the IFCs
with Gaussian noise displayed as orange triangles. The average relative error of
the noisy IFCs is ∼ 300 %. For the large IFCs close to ±0.9 eV/Å3 the absolute
error of the noisy IFCs is low compared to the absolute values of the IFCs.

Another set of noisy IFCs is made by multiplying each IFC with a random
number, N , drawn from a uniform distribution 0.25 ≤ N ≤ 1.75, IFCUniform

i =
IFCi × N . Fig. 3.12 displays these IFCs as red circles. The average relative error
of the IFCs is ∼ 37 %. This choice of noise has a noticeable effect on IFCs with
high absolute value.

Changing the IFCs directly impacts the three-phonon scattering rate,
Eq. (2.21). Fig. 3.13 shows the LTC calculated with the true IFCs, and an
uncertainty region bound by the LTC calculated with the noisy IFCs. The
second-order IFCs are left unchanged. Using IFCs with Gaussian noise results
in an LTC that is ∼ 20 % lower than with true IFCs at 300 K. Using uniform
noise the LTC is ∼ 20 % higher. The sum of the absolute value of the true IFCs
is 0.75 eV/Å3, with Gaussian noise 0.86 eV/Å3, and uniform noise 0.67 eV/Å3.
The three largest IFCUniform

i have smaller absolute values than their true IFC
counterparts. Decreasing (increasing) values of the third-order IFCs can result
in lower (higher) three-phonon scattering and thus higher (lower) LTC.

The uncertainty is only based on two LTC calculations, one using IFCGaussian

and one using IFCUniform, and in this case, IFCGaussian results in a lower LTC
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and IFCUniform results in a higher LTC. A different random seed can give noisy
IFCs that differ from those used here. In the ideal case 10s or 100s of LTC
calculations with IFCUniform and IFCGaussian using different random seeds should
be performed to obtain an accurate uncertainty region.
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Figure 3.13: LTC as a function of temperature for AlVFe2 using true IFCs
(purple), with uncertainty based on calculations using IFCs with Gaussian noise
and uniform noise.

To check if even larger errors in large IFCs can be acceptable the LTC is
calculated with noisy IFCs using a uniform distribution as previously using an
interval 0.15 ≤ N ≤ 1.85. These IFCs have an average relative error of 40 %.
Using these IFCs the LTC calculation fails to converge. Carrete et al. [111]
found that calculations could fail to converge when using IFCs from Mg2Si to
calculate the LTC of other half-Heusler compounds. Correctly identifying and
predicting large-value IFCs with ML can be a requirement to ensure the accuracy
and convergence of LTC calculations.

3.2.2 Atomic Substitutions and Grain Boundaries Reduce Lattice
Thermal Conductivity in Full-Heusler AlVFe2

While exploring new thermoelectric compounds one can encounter candidates
with favorable electronic properties but high LTC, resulting in a low ZT and
poor thermoelectric performance. For these compounds, a viable option is to
reduce the LTC by introducing additional phonon scattering mechanisms such as
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alloying elements or grain boundaries (gbs) in manufacturing. The effect of such
scattering mechanisms can be simulated with computational methods before the
costly and difficult manufacturing, guiding the compound design for lowering
the LTC.

AlVFe2 is a cubic full-Heusler compound, XY Z2, as illustrated in Fig. 3.14.
This thermoelectric compound has been recently studied, with experimental
zT ∼ 0.1 for Al1−xGexVFe [125], ∼ 0.2 for Al1−xTaxVFe [126], and ∼ 0.3 for
Al1−ySiyV1−xTaxFe [127]. These values are low compared to high-performance
thermoelectric compounds, but the interest in the compound could partially
be attributed to the zT ∼ 5 obtained for a metastable phase in thin-film
AlV0.8W0.2Fe2 [128], as well as its favorable electronic transport properties at
room temperature [127]. In Article IV it was found that AlVFe2 in the full-
Heusler structure could achieve ZT of ∼ 0.25 at 300 K with a fixed LTC of
4 W/Km using theoretical calculations. The LTC calculated with TDEP is much
higher than 4 W/Km, it is ∼ 46 W/Km at 300 K. It is therefore interesting
to uncover whether the LTC of this compound comes close to 4 W/Km when
including additional phonon scattering mechanisms in calculations. In the
following case study, the phonon dispersions and LTC are calculated with TDEP,
and partial sublattice substitutions and gbs are introduced to reduce the LTC of
AlVFe2.

Figure 3.14: Crystal structure of AlVFe2.

The phonon dispersions and site-projected DOS in Fig 3.15 shows which
atoms vibrate at different energies. There is a energy gap between low- and
high-energy optical phonons. Gaps between phonon branches can prevent three-
phonon scattering events [129]. This could partially explain why AlVFe2 has a
relatively high intrinsic LTC, although branch gaps have been found for low LTC
compounds, e.g. for the half-Heuslers BaBiK and CdPNa [56]. Acoustic phonons
have high group velocity for low energies and can contribute substantially to
the LTC [130], as seen from Eq. (2.19). Suppressing acoustic phonons is thus
a viable route for reducing the LTC. The Al atom is the lightest and has high
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projected DOS for high-energy optical phonons. These phonons are above the
gap in the phonon dispersions. The heavier V and Fe atoms have high DOS
for middle energy phonons, in the range of 25-40 meV. There are both acoustic
and optical phonons in this range below the dispersion gap. For low-energy
vibrations, the Fe atom has the highest projects DOS.

Γ XU |K Γ L

Wave vector

0

10

20

30

40

50

E
n

er
gy

[m
eV

]

0.0 0.5 1.0

DOS [meV−1]

Total

Al

V

Fe

Figure 3.15: Phonon dispersion (left panel) and DOS (right panel) for AlVFe2.
The projected DOS for the two equivalent Fe atoms are summed.

Partial substitution is done using the elements within the same group in the
next period. These substitutions maintain the same number of valence electrons
in the structure and are often labeled as isovalent or isoelectronic substitutions.
Thus, Al is substituted by Ga, V by Nb, and Fe by Ru. Substituting with
a heavier element can lead to a high mass variance parameter, gi, Eq. (2.23),
increasing the mass-disorder scattering rate, Eq.(2.24).

In the following we label the intrinsic LTC as κint
ℓ , with Al substituted by Ga,

κ
Al/Ga
ℓ , V substituted by Nb, κ

V/Nb
ℓ , and Fe substituted by Ru, κ

Fe/Ru
ℓ . Fig. 3.16

shows the LTC of AlVFe2 with substitutions on the different sites with different
substitution concentrations. Increasing the concentration increases gi, leading
to a reduction of the LTC. It is interesting to note the importance of the choice
of substitution site for AlVFe2. At 5 % substitution concentration the LTC is
reduced by 50 % when substituting Al by Ga, 60 % when substituting V with
Nb, and 65 % when substituting Fe by Ru. gi at 5 % concentration is 0.21, 0.07,
and 0.07 when substituting Al by Ga, V by Nb, and Fe by Ru, respectively. The
high gi for Al substituted by Ga comes from the large mass difference between
the Al and Ga atoms when compared to the other substitutions. Although the
highest gi is for substitution on the Al-site, it results in the lowest LTC reduction.
At 15 % substitution concentration κ

Fe/Ru
ℓ = 12.5 W/Km, which is the lowest

calculated LTC. In this case, the LTC is reduced by 72 %.
When studying the effect of substitutions at 10 % for the half-Heusler class

of compounds in Article II, we found that for most compounds the optimal
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Figure 3.16: Lattice thermal conductivity at 300 K (vertical axis) for AlVFe2
with different substitution concentrations (horizontal axis) and sites.

substitution site was the site hosting the heaviest atom. This is also the case for
AlVFe2. Additionally, we observed that compounds with large mass differences
of the atoms in the parent compound could have a large reduction in LTC with
substitutions. AlVFe2 has a relatively large mass difference with MFe/MAl ≈ 2.
Although in this case study there are no other full-Heuslers to compare with,
AlVFe2 has a sizeable reduction in the LTC with substitutions, but not as large
as some of the half-Heuslers. One such compound was LiBSi, which had an 80 %
reduction in the LTC when substituting 10 % Si with Ge. LiBSi was also one of
the half-Heuslers with the largest mass difference, MSi/MLi ≈ 4.

Fig. 3.17 shows the intrinsic LTC, κint
ℓ , and LTC with substitutions at 15 %

concentration for different temperatures. κint
ℓ is reduced by 62 % when going

from 300 K to 800 K, while κ
Fe/Ru
ℓ is reduced 49 %. This shows that substitutions

are more effective at lower temperatures, κ
Fe/Ru
ℓ is 72 % lower than κint

ℓ at 300 K,
while κ

Fe/Ru
ℓ is 63 % lower at 800 K.

With optimal site substitution (substituting Fe by Ru at 15 % concentration),
the LTC is not low when compared to high-performance TE compounds (often
< 1 W/Km around room temperature), and not as low as the target fixed value
of 4 W/Km from Article IV. Further reduction of the LTC can be done by
introducing gbs in calculations. The LTC including gb-scattering is labeled
κgb

ℓ . The κgb
ℓ with 300, 200, and 100 nm gbs is 37.1, 34.6, and 29.2 W/Km,

respectively, at 300 K. The reduction with 100 nm gbs is 36 % when compared to
κint

ℓ . The sizes and shapes of gbs vary between compounds, and submicrometer-
sized grains have been reported for AlVFe2 [131]. Using 100 nm gbs can be
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Figure 3.17: Lattice thermal conductivity for AlVFe2 as a function of temperature.
The temperature is indicated on the horizontal axis and the LTC on the vertical
axis.

used as a possible best-case scenario for reducing the LTC and is used in the
following.

Fig 3.18 displays the LTC with a combination of scattering from substitutions
and gbs. The yellow square indicates κint

ℓ . Substitution of Fe with 15 % Ru
and 100 nm gbs leads to a 84 % reduction of the LTC. The LTC is not as low
as 4 W/Km as assumed in Article IV, AlVFe2 achieves an LTC of ∼ 7 W/Km.
With an electronic thermal conductivity of ∼ 1 W/Km [132], the resulting
thermoelectric figure of merit for AlVFe2 becomes ZT = 0.16 at 300 K. Although
the LTC reduction for AlVFe2 is sizeable based on these calculations, it does
not attain a high ZT .

The spectral LTC can be used to analyze the phonons that are responsible for
heat transport, and also which phonons are suppressed with additional scattering
mechanisms. Fig. 3.19 displays the spectral LTC for AlVFe2 in four cases: 1)
with no additional scattering mechanisms, 2) with scattering from 100 nm gbs, 3)
with 15 % substitution of Fe by Ru, and 4) with scattering from 100 nm gbs and
15 % substitution. The dashed lines correspond to the cumulative LTC, which is
the integral of the spectral LTC. The cumulative LTC at a given energy can be
interpreted as how much LTC is accumulated from phonons with energy less than
the given energy. A comparison of the DOS (Fig. 3.15) with the spectral κint

ℓ

shows that although the phonon DOS is relatively low energies less than 20 meV,
these phonons contribute significantly to the LTC. At 20 meV the cumulative κint

ℓ

is ∼ 22 W/Km. In the opposite case, phonons around 50 meV have a high DOS,
while their contribution to LTC is low. The difference of the spectral κint

ℓ and
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Figure 3.18: Lattice thermal conductivity at 300 K (vertical axis) with 100 nm
grain boundaries for AlVFe2 with different substitution concentrations (horizontal
axis) and sites.

κint
ℓ + 100 nm gbs (green and orange lines) shows that gb-scattering is effective

in the range 1-10 meV, while phonons in the range 20-40 meV are less affected.
The introduction of substitutions, κ

Fe/Ru
ℓ , seemingly does the opposite; lower

energy phonons are less affected, while higher energy phonons are suppressed. In
the case of κ

Fe/Ru
ℓ , almost no contribution to κ

Fe/Ru
ℓ occurs over 30 meV. Lastly,

when combining the two scattering mechanisms, κ
Fe/Ru
ℓ + 100 nm gb, both

low and high-energy phonons are effectively suppressed. Most of the remaining
heat-conducting phonons are mid-energy phonons in the range 5-20 meV.

In conclusion, the LTC of AlVFe2 can be reduced from ∼ 46 to ∼ 7 W/Km
at 300 K when substituting Fe with 15 % Ru and introducing 100 nm gbs. Such
a large reduction could be the difference between a mediocre and promising
thermoelectric compound, although an LTC of ∼ 7 W/Km is still too high for
AlVFe2 to be a promising thermoelectric compound.
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Figure 3.19: Spectral LTC (solid lines, left vertical axis) and cumulative LTC
(dashed lines, right vertical axis) as a function of phonon energy for AlVFe2 at
300 K.

3.2.3 Lattice Thermal Conductivity Calculations: Comparison with
Experiment

Screening for low LTC (κℓ) compounds is often done based on calculations as
investigated in previous subsections. In the end, it is the experimental lattice
thermal conductivity, κexp

ℓ , or total thermal conductivity, κexp, that determines
the real-world thermoelectric efficiency observed in applications. It is therefore
interesting to assess the accuracy of theoretical intrinsic κℓ obtained with the
TDEP method, κTDEP

ℓ , when compared to experimental values.
Fig. 3.20 shows a comparison between κTDEP

ℓ and κexp
ℓ or κexp for a set of

insulators and semiconductors. The calculations include three-phonon scattering.
For compounds displayed with κexp the references do not list the electrical
conductivity, σ, which would have enabled estimation of the electronic thermal
conductivity, κe, and κℓ, using the Wiedemann-Franz law. For insulators
and semiconductors it is typical that κℓ is higher than κe, and in general
κ = κℓ + κe > κℓ. κTDEP

ℓ is higher than κexp and κexp
ℓ except in the case of

BP. For TiNiSn (Ref. [66]), ZrNiSn, NbCoSn, and VFeSb the average absolute
relative error between κexp

ℓ and κTDEP
ℓ is 55 %. The ordering of compounds

from low to high κTDEP
ℓ is close to consistent with κexp

ℓ . For TiNiSn and ZrNiSn

49



3. Results and Discussion

the ordering of κTDEP
ℓ is different compared to κexp

ℓ although it is a close call.
The lowest and highest κexp

ℓ included to make the average value for TiNiSn in
Fig. 3.20 are 4 W/Km [66] and 7.5 W/Km [133] while κTDEP

ℓ = 16.6 W/Km.

AgBr

TiNiSn

ZrNiSn

NbCoSn

VFeSb

MgO

BP

CsI

Figure 3.20: Calculated κTDEP
ℓ (this work) versus experimental κexp

ℓ or κexp.
For TiNiSn [66, 133–135], ZrNiSn [66], NbCoSn [136], and VFeSb [137], κexp

ℓ is
shown on the horizontal axis, while for AgBr [138], CsI [139], MgO [140], and
BP [141] κexp is shown. The data is taken at 300 K except for MgO for which
it is taken at 400 K. For TiNiSn an average with standard deviation is shown
where data is taken at 300 K from Refs. [66, 133] and ∼ 323 K from Refs. [134,
135]

There are several possible reasons for the discrepancy between the TDEP
calculations and values from experiments. In these calculations, only three-
phonon scattering is included. Higher-order four-phonon scattering is one
mechanism that if included could reduce κTDEP

ℓ , making it closer to κexp
ℓ [142].

Additional sample-dependent phonon scattering mechanisms can also partly
explain the discrepancy between experimental κTDEP

ℓ and κexp
ℓ [143, 144].

Vacancies are voids in the lattice that can scatter phonons and have been
observed in experimental samples such as for the half-Heuslers [145, 146]. The
role of vacancies has also been studied theoretically [147], e.g. for NbCoSb [148].
This compound can have regions with Nb vacancies and impurity-rich regions
with higher Nb concentrations where the Nb atoms act as interstitials. Grain
boundaries are also often present in experimental samples and the size and shape
of the grains impacts how much κℓ is reduced [66, 149, 150].

Several other mechanisms can yield experimental results lower than
calculations, such as oxygen impurities [46, 151], phase separations [152,
153], and twin boundaries [77, 78]. Incorporating the effects of additional
scattering mechanisms in calculations can provide calculated κTDEP

ℓ closer to
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κexp
ℓ . Including some of these mechanisms – such as four-phonon scattering – in

calculations, would come at a significant computational cost [142, 147], while
other mechanisms could require the development of new simulation software.
Nevertheless, based on Fig. 3.20, the ranking of low to high κℓ is close to
consistent between calculations and experiment.

3.3 Limitations and Implications

Research projects are typically limited in terms of time and resources and also
confined to certain topics. It is not uncommon to encounter challenges or
problems that can not be solved within the current project. This section presents
limitations of the works in this thesis. First is a discussion on the state of
materials databases and screening studies. This is followed by a discussion on
the limitations of lattice thermal conductivity (LTC) calculations. Afterward is
a note on experimental work – in the end, experimental results prove real-world
thermoelectric efficiency. Lastly, the section outlines ideas regarding machine
learning (ML) screening for compounds with large LTC reduction from sublattice
substitutions.

3.3.1 Databases and Screening Alternatives

The advent of materials databases with over 100 000 digital compound entries has
accelerated materials discovery [154–156]. Compound entries are continuously
being added to the databases but challenges remain about the "completeness" of
database contents. A database materials property that becomes more reliable
with more compound entries is the formation energy used to calculate the
energy above the convex hull, ∆Ec. The convex hull shows what phases are
most energetically stable and thermodynamic stability is achieved for ∆Ec =
0 eV/atom. The construction of a reliable convex hull requires density functional
theory (DFT) energies for compounds with different element concentrations as
well as energies for compounds with the same element concentrations and different
crystal structures. ∆Ec < 0.1 eV/atom is used as a screening criterion in Article
III to find compounds that are more likely to be stable. The low LTC compound
Na2TlSb has ∆Ec = 0 eV/atom in Materials Project [7, 157] as of 30/6/22. There
are no other compounds with the same composition in the database and two with
the same elements, NaTl2Sb and Na6TlSb4. Recommending Na2TlSb for further
theoretical study or experimental realization thus poses a predicament; it could
have competing phases that are more energetically favorable that are not in the
database. It should be noted that the convex hull is based on 0 K calculations,
and that metastable phases can exist at finite temperatures. Calculating DFT
energies to populate the convex hull comes at a significant computational cost.
Data sharing in material informatics thus becomes important for obtaining
properties such as ∆Ec. For e.g. SiO2 there are hundreds of compound entries in
the Materials Project making a robust convex hull, providing thermodynamically
stable structures.
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Material databases contain only a fraction of all theoretically possible
compounds. Populating a 4-atom structure with 50 different elements results
in 50!/(50 − 4)! = 5527200 combinations. With changes to space group and
stoichiometry, the number of compounds is in the 100s of millions. Many
databases have also already been screened to identify promising candidates for
different applications. Jaafreh et al. tackled these challenges by constructing
hypothetical prototype compounds on the form AmBnXy that were not available
in the Inorganic Crystal Structure Database (ICSD) and used ML to predict
the LTC [112], identifying new low LTC compounds. Legrain et al. [158]
also conducted a study exploring compound stability of prototype structures
not available in databases. They screened 71,178 half-Heusler compounds
to find stable candidates. These studies highlight the benefit of compound
exploration outside of conventional databases. Future studies not limited by
the size and content of conventional material databases can provide hitherto
unknown compounds with enticing properties.

Several choices must be made before conducting a screening study. Which
compound classes should be screened, should databases be used, and if so,
which databases? Different materials databases cater to different users, e.g. by
containing experimental or computational results. Combining compounds from
different databases is also an option. Such cases can benefit from the Open
Databases Integration for Materials Design (OPTIMADE) [159, 160] which
handily contains an API to connect to a variety of databases. Previous research
provides valuable insights and training data for ML. Several ML studies have
used LTC from the literature, and authors have shared data sets or referred
to sources with calculated or experimental LTC that could serve as a starting
point for developing future models [108, 110, 115, 161]. The work by Antunes
et al. contains an extensive collection of sources for LTC, power factors, ZT ,
electronic thermal conductivity, etc. as well as sizes of the data sets [162]. Data
sharing reduces the chance of duplicate calculations or experiments, and more
data and data diversity could be crucial for model development. ML material
informatics also benefits from code sharing and pre-trained models. Coupling
pre-trained models with standardized ML packages for material science such as
matminer [105] can provide an interesting path forward, where curated data,
compound feature generators, and previous ML models are in one place.

This thesis is focused on the LTC, but screening based on calculated electronic
properties also enables accelerated identification of thermoelectric compounds.
The MaterialsProject contains ∼ 35000 compounds with calculated electronic
structure and band gap, 0.5 < Eg < 2.5 eV [7]. High-ZT compounds can
be explored based on their electronic structure by linking band structure
characteristics and high ZT [163]. The increasing availability of electronic
properties in databases promotes such screening studies. Efficient DFT
calculations for electronic transport properties not available in databases also
enable high-throughput screening. Compound sets in such studies could be
comparable to or larger than compound sets used in DFT-based low LTC
screening studies. For example, a recent report presented calculated electronic
transport properties of ∼ 1000 silicides [164].
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There is an alternative to go straight for predicting ZT directly using ML
instead of dividing the electronic and lattice transport parts [165, 166]. Jaafreh
et al. [165] obtained from literature experimental ZT for 332 compounds at
different temperatures, yielding 3869 samples for ML training. Using their ML
model Jaafreh et al. predicted ZT for more than 105 hypothetical ternary
compounds, AxByCz, x + y + z = 1. The model was validated using well-known
thermoelectric compounds, such as half-Heusler Zr0.5Hf0.5NiSn, highlighting the
potential of their method.

3.3.2 Limitations of Calculated Lattice Thermal Conductivity

LTC calculations based on DFT and the TDEP method are analyzed throughout
this thesis. While Sec. 3.2.3 showed that the calculations are viable for compound
ranking from low to high LTC, there is no guarantee that calculated LTC is
accurate for all compounds studied.

The 0 K volume calculated with DFT is used in the LTC calculations.
Neglecting the effect of thermal expansion can impact the LTC directly (Eq. 2.19),
and also indirectly through the changes in force constants from differences
in interatomic distances. Force constants and the equilibrium volume – and
thus the LTC – can also differ notably for different DFT exchange-correlation
functionals [167, 168].

The effects of four-phonon scattering on the LTC are not analyzed in this
thesis. Including higher-order, four-phonon scattering mechanisms can effectively
reduce LTC [142]. For the low LTC compound GeTe, the LTC was reduced from
3.8 to 1.7 W/Km – a ∼ 50 % drop – when including four-phonon in addition to
three-phonon scattering [169]. There is a substantial extra computational cost of
calculating the fourth-order force constants required to obtain the four-phonon
scattering rate. It might therefore not be suitable to include in screening studies
as done in this thesis, although efforts have been made to accelerate the process
of obtaining fourth- and higher-order force constants [82].

Simulating the effect of phonon scattering from sublattice substitutions
through the mass-disorder scattering model implies uncertainty in the calculated
LTC. The isotope-like scattering from mass-disorder is not necessarily always
accurate, especially for higher concentrations [43, 44, 60]. In real-world
compounds, the substituent atoms might not be evenly distributed. This is in
contrast to the virtual crystal approximation and effective masses; each unit
cell is identical. The accuracy of the mass-disorder model could be addressed
by using the special quasirandom structure (SQS) approach [89, 170] which
involves treating alloys explicitly. The assumption that it is possible to solute
the substituent at the given concentration can yield erroneous results, as it
could lead to phase separation in experiments [153]. The strain induced from
sublattice substitutions is also not considered, and this effect has been observed
significantly impact the LTC [171].

In real-world compounds, the grains vary in size and shape. Smaller grains
typically scatter more phonons than large grains. The properties of the intersect
at the grain boundary also affect how phonons are scattered. With the grain-
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boundary scattering model in this work, the grain size is fixed, and long-
wavelength phonons are scattered. Addressing the effect of grain boundaries
on the LTC with more sophisticated scattering models can be useful to further
understand the role of grain boundaries in reducing the LTC [172, 173], e.g. by
allowing for grains of different sizes and shapes in the model.

3.3.3 Integration of Theory and Experiments

Theoretical screening studies typically involve more compounds than experimen-
tal studies. Experiments are time-consuming, expensive, and require a great
deal of expertise, limiting the number of compounds studied. Screening studies
often suggest compounds to be realized experimentally, underlining the impor-
tance of connecting theory and experiment. What is a promising compound
with extraordinary properties if it is never realized for real-world applications?
One project that combines experienced researchers from both realms is the
Allotherm project [174], which is a joint computational and experimental en-
deavor to discover new thermoelectric compounds. This project is funded by
the Research Council of Norway, an institution that invests in research and
innovation on behalf of the Norwegian government. Allotherm has contributed
to the attached articles, and project meetings provided valuable research input
for this thesis. Feedback from experimentalists can aid theoretical compound
exploration, especially when the goal is experimental realization. It can e.g.
be beneficial if compounds that can not be made with current instruments or
compounds that are toxic are removed from the screening study in later stages.
Interdisciplinary research – where theory and experiment work in tandem – can
thus be advantageous over doing an initial theoretical screening study followed
by experiments.

3.3.4 Machine Learning for Lattice Thermal Conductivity with
Sublattice Substitutions

Sublattice substitutions (or alloying) can be an efficient way to reduce LTC as
explored in Subsection 3.2.2 and Article II. Some compounds with relatively high
intrinsic LTC achieve a large reduction. These compounds might be discarded in
traditional studies focusing solely on the intrinsic LTC. There have been efforts
to accelerate the screening of alloyed compounds at arbitrary stoichiometry. Li
et al. [175] linked the alloyed LTC to intrinsic LTC and configurational entropy.
They found good agreement between predicted and experimental alloyed LTC
for tetradymites and half-Heuslers. Searching for compounds that have drastic
LTC reduction with alloying can also be done with ML. Such a study could be
conducted similarly as in Articles I and III using an active sampling scheme. It
would also be possible to train an ML model to predict the LTC with different
substitution sites and concentrations. The mass-variance parameter, Eq. (2.23),
and substitution concentrations can be explored as potential features in the ML
model. Article II shows that the mass ratio of the atoms in the parent compound
can play a role in how large the LTC reduction is. The mass ratio can therefore
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be a promising feature for identifying compounds with large LTC reduction. The
necessary LTC for ML training can be calculated or gathered from the literature.
Calculations from Article II and the references therein can be useful as a starting
point for such a study.
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Chapter 4

Conclusions and Outlook

The main objective of this thesis was to identify new low lattice thermal con-
ductivity (LTC) compounds for thermoelectric applications using computational
methods. The research was based on two avenues: 1) Screening for compounds
with low LTC using machine learning (ML), and 2) reducing the LTC by intro-
ducing mass-disorder and grain-boundary scattering.

4.1 Computational Screening for Promising Thermoelectric
Compounds

Article I presented a case study on ML for predicting the intrinsic LTC for half-
Heusler compounds using random forest regression (RFR). The lattice thermal
conductivities for training were calculated based on density functional theory
(DFT) and the temperature-dependent effective potential (TDEP) method. The
study showed that if certain compounds were left out of the training, the R2-
score was low and the model failed at identifying low LTC compounds in the
test set. Active sample selection based on principal component analysis (PCA)
and the features enabled the identification of crucial compounds to add to the
training set. These compounds were found by evaluating compounds that were
far from the training set in the space spanned by principal components. With the
addition of three actively sampled compounds to the training set, the R2-score
for predictions on the remaining test set drastically increased, enabling the model
to correctly identify low LTC compounds.

Article III concerned an ML study with the aim to predict the LTC of
cubic compounds in the Materials Project database [7]. A Gaussian Process
Regression (GPR) model was trained for predicting the LTC and obtaining
prediction uncertainties. The features were constructed to be compact and
transferable, enabling extended screening of other compound classes or prototype
structures in future studies. Active sampling based on the uncertainties indicated
which compounds should be selected to be added in training. A comparison of
the active sampling scheme and random sampling showed that a high R2-score
could be achieved with fewer compounds in the training set when compounds
were actively sampled. Thirty compounds with high uncertainty were sampled
from the Materials Project and added to the training set. Two compounds
with non-zero band gaps were highlighted in the study, Ca3AsBr3 and Na2TlSb.
Ca3AsBr3 was found during active sampling while Na2TlSb was found during
screening with ML predicted LTC of 0.6 W/Km. The LTC calculated with TDEP
for these compounds was 0.5 and 3.8 W/Km. Na2TlSb had low phonon group
velocities in flat phonon dispersion branches as well as low phonon lifetimes. An
analysis of the spectral LTC for the two compounds showed that mid-energy
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optical phonons contributed significantly to the LTC of Ca3AsBr3 while for
Na2TlSb almost all contribution to the LTC came from low-energy acoustic
phonons.

Article IV presented a screening study of 1093 cubic compounds in the
Materials Project database. The goal was to find promising thermoelectric
candidates that could be missed in screening when evaluating the electronic
band structure at the standard DFT level. Eight compounds had emerging
electronic band gaps when assessed at the hybrid functional level of DFT. One
of these compounds was AlVFe2, a compound with intrinsic LTC on the higher
end. The potential of lowering the LTC of this compound with sublattice
substitutions and grain boundaries was studied in this thesis. Ba2HgPb had the
lowest LTC among the eight compounds, although it did not display especially
promising thermoelectric properties. The compounds with highest thermoelectric
performance were the full-Heuslers MgSc2Hg and Li2CaSi, with ZT ∼ 2.

The thesis presented a comparison of three ML models; Lasso, RFR, and
support vector regression (SVR), for predicting the LTC at different temperatures.
SVR performed best in cross-validation, while RFR performed best on the test
set. Lasso – a linear model – performed worst in both cases. A comparison
of active sampling with PCA and GPR showed that for the half-Heuslers the
two schemes selected almost the same compounds; four out of the five sampled
were identical. When comparing active sampling based on PCA and GPR,
and random sampling, the PCA- and GPR-based sampling came out on top,
providing more accurate LTC predictions for low LTC compounds.

The focus of this thesis has been on predicting the LTC directly using ML.
There is an alternative to do ML for the force constants instead, potentially
using similar features to those used in this work. With ML-force constants,
one can obtain additional properties, such as phonon dispersions and lifetimes.
These properties can be useful for interpreting lattice transport and gaining
new physical insights. This thesis investigated the effect of adding different
kinds of noise to the third-order force constants and then calculating the LTC.
Introducing larger errors in force constants with large absolute values reduced
the accuracy of the LTC. It could be necessary to differentiate strong force
constants from the rest for an accurate assessment of the LTC using ML-force
constants.

This work has involved predicting the LTC of cubic compounds efficiently
with ML, enabling accelerated screening. While several cubic compounds have
been shown to have high thermoelectric efficiency, it would be beneficial to
include other types of compounds in screening, e.g. orthorhombic and layered
compounds. Such compounds are readily available in materials databases. The
features and active sampling scheme used in this thesis should be adaptable
to different compound classes. A natural continuation of the works in this
thesis would be to expand the ML method using active sampling to identify new
promising low LTC candidates.

Increasing computational resources promote LTC calculations for different
compound classes and for complex compounds that require additional DFT-level
input. It will be beneficial to gather these calculations in a structured way in
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databases to easily enable future research [162]. Increasing the size and variety
of the compounds used for training can yield accurate ML models that can be
employed for screening. Larger training sets can also lead to the employment of
ML methods that can require large compound sets for training, such as neural
networks or graph neural networks [176]. Deep neural networks have been shown
to attain high accuracy in materials design and discovery, and may likely be
even more prominent in the future of materials informatics [177].

4.2 Sublattice Substitutions and Grain Boundaries to
Reduce Lattice Thermal Conductivity

Article II explored the potential of sublattice substitutions and grain boundaries
for reducing the LTC of 122 half-Heusler compounds. The substitution
concentration was set to 10 %, and grain boundaries of 50 nm and 100 nm were
used. The choice of substitution site was found to be important for optimally
reducing LTC – i.e. substituting on the site with the heaviest atom was optimal
for 102 of the 122 compounds. Some of the half-Heuslers with medium-to-high
intrinsic LTC, such as AlSiLi and TiNiPb, had a substantial LTC reduction
of ∼ 70 % with optimal substitution. It was shown that compounds with a
large atomic mass difference in the parent compound can have especially large
LTC reduction with substitutions. Introducing grain boundaries in addition
to substitutions enabled four compounds with medium-to-high intrinsic LTC;
LiZnSb, AlSiLi, BiPdSc, and VRhSn, to achieve LTC of < 2.2 W/Km at 300 K.

In this thesis, the LTC of full-Heusler AlVFe2 including sublattice substitu-
tions and grain boundaries was studied. Al was substituted by Ga, V by Nb,
and Fe by Ru with concentrations of 5, 10, and 15 %. The largest LTC reduction
was obtained using 15 % Ru substitutions, resulting in a 72 % drop. It was
shown that the LTC can be reduced from ∼ 46 W/Km to ∼ 7 W/Km – an 84 %
drop – with 15 % Ru-substitution and 100 nm grain boundaries. Based on the
spectral LTC, the grain boundaries scattered low-energy acoustic phonons, and
substitutions scattered high-energy phonons.

The thesis highlighted the importance of including additional scattering
mechanisms when screening for compounds with low LTC. Discarding thermo-
electric compounds with relatively high intrinsic LTC – but favorable electronic
properties – can result in promising candidates being missed. Coupling screening
of electronic properties together with a scheme to identify compounds with
large LTC reduction with additional scattering mechanisms can be an approach
to identify new high-efficiency thermoelectric candidates. With agile screen-
ing methods future studies can take advantage of prototype structures during
screening, and e.g. take temperature, doping concentration, and substitution
concentration as free parameters. The prospect of discovering thermoelectric
materials that have high efficiency while simultaneously being cheap, non-toxic,
and easy to manufacture remains bright.
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A B S T R A C T

Low lattice thermal conductivity is essential for high thermoelectric performance of a material. Lattice thermal
conductivity is often computed using density functional theory (DFT), typically at a high computational cost.
Training machine learning models to predict lattice thermal conductivity could offer an effective procedure
to identify low lattice thermal conductivity compounds. However, in doing so, we must face the fact that
such compounds can be quite rare and distinct from those in a typical training set. This distinctness can be
problematic as standard machine learning methods are inaccurate when predicting properties of compounds
with features differing significantly from those in the training set. By computing the lattice thermal conductivity
of 122 half-Heusler compounds, using the temperature-dependent effective potential method, we generate a
data set to explore this issue. We first show how random forest regression can fail to identify low lattice
thermal conductivity compounds with random selection of training data. Next, we show how active selection
of training data using feature and principal component analysis can be used to improve model performance
and the ability to identify low lattice thermal conductivity compounds. Lastly, we find that active learning
without the use of DFT-based features can be viable as a quicker way of selecting samples.

1. Introduction

With their ability to convert heat to electricity, thermoelectrics find
use in several niche technologies ranging from wine coolers, hiking
stoves with mobile phone chargers, and radioisotope thermoelectric
(TE) generators used to power e.g. the Curiosity Mars rover. Ther-
moelectrics could also contribute to reducing global greenhouse gas
emissions through waste heat recovery, but their role is currently lim-
ited by the modest efficacy realized in devices [1,2]. Another limitation
is the fact that several state-of-the-art TE materials contain toxic or rare
elements [3,4]. Finding new TE materials has therefore gathered much
scientific interest in recent years [5].

The efficiency of TE materials is conventionally given by the dimen-
sionless figure of merit, which is expressed as 𝑍𝑇 = 𝜎𝑆2𝑇 ∕(𝜅𝑒 + 𝜅𝓁),
where 𝜎 is the electrical conductivity, 𝑆 is the Seebeck coefficient, 𝑇
is the absolute temperature, 𝜅𝑒 is the electronic thermal conductivity,
and 𝜅𝓁 is the lattice thermal conductivity. High 𝑍𝑇 requires both a
high power factor,  = 𝜎𝑆2, and low total thermal conductivity. In
non-metals, 𝜅𝓁 is typically much larger than 𝜅𝑒, but in heavily doped

∗ Corresponding author.
E-mail address: rasmus.andre.tranas@nmbu.no (R. Tranås).

semiconductors, 𝜅𝓁 and 𝜅𝑒 can be more comparable in size [6,7];
nonetheless, a low 𝜅𝓁 is still typically needed for achieving high 𝑍𝑇 .

High-throughput screening based on first-principle calculations
have in recent years been much used in the search for new TE materi-
als [8–14]. Many studies focus on electronic properties and use simple
models or estimates of 𝜅𝓁 . One reason for this is that computing 𝜅𝓁
comes at a significant computational cost. The cost arises because ac-
counting for the phonon–phonon interactions due to the anharmonicity
of the lattice vibrations requires obtaining third-order force constants
extracted from a large number of supercell-based density functional
theory (DFT) calculations [15–17]. For this reason, machine learning
(ML) methods are increasingly supplementing first-principles based
calculations for predicting 𝜅𝓁 [18–25]. Pre-trained ML models can in
turn also be made available in convenient web-based applications [26].

The half-Heusler (HH) compounds are a class of cubic compounds
with three atoms in the primitive cell, belonging to the 𝐹 4̄3𝑚 space-
group. As shown in Fig. 1, the 𝑋𝑍 sublattice forms a rocksalt structure,
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Fig. 1. The HH crystal structure, displayed as the unit cell. The primitive cell is made
from the three atoms 𝑋, 𝑌 , and 𝑍.

while the 𝑌 𝑍 sublattice forms a zinc-blende structure [27–29]. Sev-
eral HH compounds have a high power factor in combination with
relatively low 𝜅𝓁 , making HHs attractive for TE applications [8,13,30–
36]. Recently, Feng et al. [37] used DFT-based calculations to show
that the four HH compounds: CdPNa, BaBiK, LaRhTe, and LaPtSb have
very low 𝜅𝓁 . LaPtSb and BaBiK also have promising electronic transport
properties in addition to low 𝜅𝓁 and could have a 𝑍𝑇 competitive
with top performing TE materials [38–40]. Because 𝜅𝓁 of these four
compounds is much lower than for typical HHs, the set of HH com-
pounds presents itself as a dataset well suited for investigating ML
methods to separate low and high 𝜅𝓁 compounds. The high symmetry of
HHs also reduces the computational cost of calculating 𝜅𝓁 compared to
more complex systems such as layered compounds and compounds with
distorted symmetries [41–43]. The reduced cost allows us to generate
both training and test sets for assessing 𝜅𝓁 .

Our study is based on 122 HH compounds for which 𝜅𝓁 is computed
explicitly using DFT. The compounds are based on a combination of
dynamically stable HHs, 54 from groups 4-9-15 (Ti,Zr,Hf)(Co,Rh,Ir)(As,
Sb,Bi), 4-10-14 (Ti,Zr,Hf)(Ni,Pd,Pt)(Ge,Sn,Pb), and 48 HHs from groups
5-8-15 (V,Nb,Ta)(Fe,Ru,Os)(As,Sb,Bi) and 5-9-14 (V,Nb,Ta)(Co,Rh,Ir)
(Ge,Sn,Pb). The last 20 HHs are the remaining stable compounds
studied by Feng et al. [37], based on a revision of the 75 stable HHs
identified by Carrete et al. [18].

2. Methods

2.1. Lattice thermal conductivity

DFT calculations in this work are done with the VASP [44–46]
software package using the Perdew–Burke–Ernzerhof (PBE) generalized
gradient approximation for solids, PBEsol [47,48]. The plane-wave
energy cutoff is set to 600 eV. For relaxations, we use an 11 × 11 × 11
𝐤-point sampling of the Brillouin zone. The electronic self-consistent
loop is iterated until the energy difference falls below 10−6 eV, while
ionic positions are relaxed until forces fall below 1 meV∕Å. The lattice
thermal conductivity, 𝜅𝓁 , is calculated with the temperature-dependent
effective potential (TDEP) method [16,49], taking into account three-
phonon and isotope–phonon scattering [50,51]. Fifty configurations
based on 3 × 3 × 3 repetitions of the primitive cell are used to obtain
second- and third-order force constants. The atomic configurations are
taken from a fixed-temperature canonical ensemble at 300 K, where
the zero-point motion of the phonons is matched with the Debye
temperature [52]. The Debye temperature is obtained from the Voigt
approximation of the bulk and shear moduli [53]. A 3 × 3 × 3 𝐤-
point grid is used for the supercell DFT force calculations. We employ
a cutoff for second-order pair-interactions of 7 Å while for third-order
pair-interactions, the cutoff is set slightly larger than half the width
of the supercell (i.e. 6.1 Å for NbCoGe). For the calculation of 𝜅𝓁 ,
the reciprocal space is discretized on a 35 × 35 × 35 𝐪-point grid.
In a convergence study for NbCoGe, we find these cutoffs to give a
numerical error of 𝜅𝓁 less than 3%.

Fig. 2. Flowchart for building the baseline model.

2.2. Machine learning model

Random forest (RF) regression is a non-linear ML method used in
industry and academia alike [54]. An ensemble of decision trees forms
the RF model, where each tree is trained on a subset of randomly
chosen features and training samples. This randomness makes RF less
prone to overfitting. RF has been shown to perform well in earlier
ML studies involving the lattice thermal conductivity [23]. In the RF
regression, a given input sample is sorted in each of the decision trees
based on its features, so that in a given tree, the sample is assigned to a
𝜅{𝑖..}
𝓁 in the training set. Finally, the predicted outcome is given by the

mean ⟨𝜅{𝑖..}
𝓁 ⟩ of the predictions of the ensemble of decision trees.

In ML, failing to identify key features can result in overfitting
and reduce method interpretability [55,56]. Feature selection is here
performed using exhaustive feature selection (EFS) in combination with
RF regression. EFS assesses the predictive performance of every subset
of extracted features and finds the features that give the best outcome
of a chosen performance metric. We here choose to use Spearman
rank correlation as the metric with five-fold cross-validation, as this
correlation measures the predicted ranking of compounds. This brute-
force approach carries a significant computational cost, but with the
limited number of features in our study, this cost is small compared to
that of computing 𝜅𝓁 . EFS is done with the MLxtend [57] code, while
RF regression is done using Scikit-learn [58]. In the RF model, for each
set of features hyperparameters are optimized using a hyperparameter
grid search.

Fig. 2 shows a flowchart for the baseline model. In the model, 87 of
the 122 compounds are semi-randomly selected as the training pool for
ML, while 35 are left out to provide a test set for model assessment. By
semi-randomly, we refer to the fact the five lowest 𝜅𝓁 compounds are
in the test set. We make this choice to emulate a not too improbable
scenario that could easily arise for larger material classes when only
modest-size training sets are used. From the training pool, 10 unique
training sets of 40 compounds are selected randomly. The models are
retrained based on the features obtained with EFS for final model
evaluation. Our baseline model predictions are given by the average
of the predictions of these 10 RF models.

In the active sampling scheme, we use principal component analysis
(PCA) with the hoggorm [59] package to identify compounds possessing
combinations of feature values that are distinct from those in the
training pool. PCA accounts for correlations between features by con-
structing orthogonal principal components (PC) as linear combinations
of feature vectors in feature space. The PCs are oriented in the direction
of maximum variance and the features are centered and scaled to unit
variance. The PCA analysis is based on all compounds in the study.
Using PCA, we identify three compounds, BaBiK, CdPNa, and LaPtSb,
that are needed to cover the feature space mapped out by the first two
PCs. These three are subsequently included in the training sets from the
baseline model, such that the 10 training sets for the active sampling
model contain 43 compounds that are used with RF and EFS.

Our study is based on 14 features: 9 are tabulated while 5 are ob-
tained from low-cost DFT calculations. Two of these, the volume of the
relaxed primitive unit cell, 𝑉 , and corresponding mass density, 𝜌, could
in principle have been obtained from typical tabulated data, standard
experiment, or in the absence of such data, from ML models [60–62].
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Fig. 3. 𝜅TDEP
𝓁 for the HHs at 300 K (blue bars), 500 K (turquoise bars), and 700 K (red bars).

The tabulated features together with 𝑉 and 𝜌 are grouped as the easily
available tier-0 features. Tabulated features are as follows: the ratio be-
tween the lightest and heaviest atoms in the primitive cell [63], 𝑚𝑟, the
average atomic mass, 𝑚𝑎, the standard deviation of the atomic masses,
𝑚𝑠 = 1∕3

(∑
𝑖=𝑋,𝑌 ,𝑍 (𝑚𝑖 − 𝑚𝑎)2

)1∕2, as well as corresponding features
for the electronegativity [64], 𝜒 , and covalent atomic radius [65], 𝑟.
The remaining three, which together with the tier-0 features constitute
the tier-1 features, are the lattice thermal conductivity from the Slack
model [66], 𝜅𝑠, the Debye temperature, 𝜃𝐷, and the bulk modulus, 𝐵.
These three are related to the elastic tensor [67], and are hence the
most time-consuming features to generate. Sections 4.1–4.3 are based
on tier-1 features, while Section 4.4 compares the ML performance of
models based on tier-0 and tier-1 features.

Higher-order features beyond what we consider, such as the three-
phonon scattering phase space, effective spring constants, and first
moment frequencies from the phonon density of states [18,37,68],
could improve the predictions of the ML model, but we here limit
ourselves to features that are based on properties that one can expect to
be continuously added in material databases such as the MaterialsPro-
ject [69]. Therefore, using such simple features supports a methodology
that can later be adopted for screening of larger material databases.

3. Results: Density functional theory calculations

3.1. Lattice thermal conductivity of half-Heusler compounds

Fig. 3 shows the lattice thermal conductivity calculated with TDEP,
𝜅TDEP
𝓁 , at 300 K, 500 K, and 700 K for the 122 HHs. Appendix:

Table A.1 reports 𝜅TDEP
𝓁 at 500 K. At 500 K, the span of 𝜅TDEP

𝓁 goes
from 0.85 W/mK (LaPtSb) to 23.45 W/mK (LiBSi). Compounds with
heavy atoms on the 𝑋- or 𝑍-site, such as La, Ba, Bi, and Pb, or
with high average mass, typically have lower 𝜅TDEP

𝓁 . The correlation
between lattice thermal conductivity and the average mass has been
observed for experimental lattice thermal conductivity with compounds
across different spacegroups [20]. The ordering of the five lowest 𝜅TDEP

𝓁
materials from low to high 𝜅TDEP

𝓁 is consistent with the findings of Feng
et al. [37]. The Vanadium-containing compounds VRuBi, VFeBi, VIrPb,
VOsBi, VRhPb, and VCoPb have negative phonon frequencies and are
not studied further. The two latter have previously been predicted to
decompose into elemental phases [70].

In the following, the ML models are based on 𝜅TDEP
𝓁 at 500 K, which

also indicates low lattice thermal conductivity at 300 K and 700 K.
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Fig. 4. (a) Scatter plot for the compounds, with 𝑉 on the horizontal axis and 𝐵 on
the vertical axis. (b) PCA plot for the compounds using tier-1 features. The first PC is
shown on the horizontal axis and the second is on the vertical axis. The blue convex
hull is the area of the PC space spanned by the 87 materials in the training pool, while
the orange convex hull is the area spanned with inclusion of the test compounds.

4. Results and discussion: Machine learning

4.1. Using principal component analysis for diversifying training sets

Fig. 4(a) shows the position of the compounds in the space spanned
by 𝑉 and 𝐵, two features which are known to correlate with the lattice
thermal conductivity [18,20,71]. In general, low 𝑉 materials tend to
have less compressed acoustical phonon band structures, increasing the
phonon group velocity [72] and thus also the lattice thermal conductiv-
ity. Higher 𝐵 can also be related to stiffer atomic bonds and increased
phonon velocities. This is reflected in a Spearman correlation of −0.69
between 𝜅TDEP

𝓁 and 𝑉 and 0.58 between 𝜅TDEP
𝓁 and 𝐵 for the compounds

in the training pool. The plot shows that some of the compounds in
the test set fall outside the convex hull spanned by 𝑉 and 𝐵 of the
compounds in the training pool. Including such outliers in the training
sets could result in more accurate ML predictions. However, as 𝐵 and
𝑉 also have a Spearman correlation of −0.51, —i.e. higher 𝑉 tend to
relate to less stiff bonds and thus lower 𝐵 — solely relying on these two
features could risk missing important compounds and correlations. This
motivates the use of PCA, which offers a more systematic procedure to
take all features and their correlations into consideration.

Fig. 4(b) indicates the position of the compounds in the test set
and training pool in the subspace spanned by the two first PCs. This
subspace accounts for 56.0% of the cumulative explained variance (EV)
of the feature space. Mapping these two features back to the original
feature space, we find the cumulative explained variances of 𝑉 and 𝐵

Fig. 5. Selection frequencies for the 14 features in the EFS using RF regression for the
baseline (blue bars) and active sampling (orange bars) models.

to be 78.6% and 77.2%. A comparison of the two convex hulls shows
that the low 𝜅𝓁 compounds lie outside of convex hull spanned by the
training pool.

While PCA can support a human-guided selection of training sets,
we choose to formalize this in a systematic procedure that is better
suited for automation of the active sampling. The specific compounds
to be included are determined iteratively by identifying the compound
in the test set with the largest Euclidean distance in the PC space
to the closest compound in the current training pool until a marked
drop in distance arises. The procedure identifies that three additional
compounds, BaBiK, CdPNa, and LaPtSb, should be included in the
training process. These compounds are highlighted with red circles in
Fig. 4, and Fig. 7 shows the distance in PC space after each iteration.

4.2. Exhaustive feature selection analysis

Fig. 5 compares the EFS feature selection frequency of the baseline
and active sampling ML models. The baseline and active sampling
models use on average 5.7 and 5.9 features out of the 14 potential
features, respectively. The relatively few features selected is in line with
the recent results of Miyazaki et al. [60] finding that using a limited
subset of features gives the best ML performance, which can be linked
to the fact that redundant features can cause overfitting. In both the
baseline and active sampling models, 𝐵 and 𝑉 are the most frequently
selected features, in agreement with their high Spearman correlation
with 𝜅TDEP

𝓁 .
There are some notable differences between the EFS for the active

sampling model and the baseline model. In particular, the selection
frequency of 𝑚𝑠 increases from 0.3 to 0.6 for the active sampling model.
This result reflects that the variation of masses in the primitive cell
is linked to low lattice thermal conductivity, such as for BaBiK. The
selection frequencies for 𝜅𝑠 and 𝐵 also increase for the active sampling
model.

4.3. Enhanced machine learning performance with active sampling

Fig. 6(a) compares the predictions of the baseline model and the
active sampling model on a logarithmic scale as used in the training.
The error bars indicate the standard deviation of the predictions of
the 10 models. The figure shows that the active sampling model has a
superior ability to identify the compounds with low 𝜅TDEP

𝓁 . Predictions
for the three compounds found with PCA, highlighted with red circles,
are not provided for the active sampling model as they are included
in the training sets of the model. Fig. 6(b) shows the corresponding
comparison with a linear scale, with compounds sorted according to
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Fig. 6. (a) Parity plot for predictions made on the test set. The horizontal axis shows
log(𝜅TDEP

𝓁 ) at 500 K, while the vertical axis shows the predictions. Blue (orange)
circles indicate the predictions made by the baseline (active sampling) model. (b)
Corresponding comparison for 𝜅TDEP

𝓁 . The turquoise bars indicate 𝜅TDEP
𝓁 at 500 K.

Fig. 7. Distance in PC space between the compound that is farthest from the training
pool and its closest training pool neighbor after each iteration of sampling. Orange
indicates PC space distance in the space spanned with tier-1 features, and purple shows
the results for tier-0 features. The green line indicates the point at which we stop the
inclusion of more compounds.

𝜅TDEP
𝓁 . In most of the cases, the active sampling model predictions, 𝜅AS

𝓁 ,
are higher than 𝜅TDEP

𝓁 for low 𝜅TDEP
𝓁 compounds, and vice versa for high

𝜅TDEP
𝓁 compounds. This is also seen in the logarithmic scale of Fig. 6(a).

Even if the numerical precision of the active sampling model for the
compounds with low 𝜅TDEP

𝓁 is quite modest, which can be linked to the
limited sampling in this region of feature space, the model identifies

Fig. 8. (a) PCA plot for the compounds using tier-0 features. The horizontal axis shows
the first PC while the vertical axis shows the second. (b) Selection frequencies from the
EFS using RF regression for the active sampling models using tier-0 and tier-1 features.
(c) Predicted and TDEP lattice thermal conductivity using active sampling models based
on tier-0 and tier-1 features.

Table 1
Performance metrics for predicting log(𝜅TDEP

𝓁 ) for the
32 test compounds using the active sampling and
baseline models. The metrics are: R2-score, root-
mean-square error (RMSE), Spearman correlation, and
Pearson correlation. The standard deviations are in
parenthesis.

Active Baseline

R2 0.84 (0.03) 0.36 (0.13)
RMSE 0.21 (0.02) 0.43 (0.04)
Spearman 0.85 (0.04) 0.79 (0.07)
Pearson 0.93 (0.02) 0.64 (0.09)

the compounds with the lowest 𝜅TDEP
𝓁 . Appendix: Table A.1 provides

the numerical values of 𝜅TDEP
𝓁 and 𝜅AS

𝓁 at 500 K.
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Table A.1
Calculated 𝜅TDEP

𝓁 at 500 K for the HHs. The 32 compounds in the final test set are highlighted with bold text, and predictions made with the
active sampling model (tier-1) are in parenthesis.

𝜅𝓁 [W/mK] 𝜅𝓁 [W/mK] 𝜅𝓁 [W/mK] 𝜅𝓁 [W/mK]

LaPtSb 0.85 ZrPtGe 8.27 ZrCoBi 11.54 (10.41) TaCoGe 15.47
LaRhTe 1.11 (1.79) TiPdSn 8.42 NbIrSn 11.57 (11.13) VRuAs 15.52
BaBiK 1.99 NbRuBi 8.70 (8.18) HfCoAs 11.64 TiPdGe 15.78
CdPNa 2.58 TiPtSn 8.88 TiRhSb 11.72 GaNiNb 15.88 (14.65)
LiZnSb 3.76 (4.92) HfIrAs 9.04 HfRhAs 11.76 NbOsAs 15.95
TaIrPb 5.20 ZrNiPb 9.10 (10.37) TaIrSn 11.84 SiCoTa 16.28
TiPtPb 5.43 VOsSb 9.12 NbOsSb 11.86 VRhGe 16.57 (15.54)
BiPdSc 5.44 (5.92) AlSiLi 9.18 ZrRhSb 11.89 VCoGe 16.58
BiNiY 5.46 ZrPtSn 9.20 (9.32) HfCoBi 12.11 (10.20) TaRuAs 16.60
HfPtPb 5.48 HfPdSn 9.32 NbCoSn 12.23 GaPtTa 16.75
HfPdPb 5.86 VRuSb 9.32 TaFeBi 12.40 VOsAs 16.82
TaOsBi 5.90 ZrPdSn 9.37 HfCoSb 12.48 TaRhGe 16.85
TiPdPb 5.94 AsNiSc 9.46 ZrNiGe 12.48 VIrGe 16.95 (15.76)
TaRhPb 5.95 TaCoPb 9.66 (12.55) NbRuSb 12.52 GeFeW 17.07
NbIrPb 6.07 NbRhSn 9.92 (11.44) TiIrSb 12.73 (10.35) TaFeSb 17.10 (14.85)
ZrPtPb 6.50 (6.48) NbCoPb 9.95 TaRuSb 13.12 (11.83) AlAuHf 17.11
HfIrBi 6.58 HfNiPb 9.96 (9.96) TaCoSn 13.38 NbIrGe 17.21
ZrPdPb 6.59 (6.42) HfPtSn 9.98 VFeSb 13.40 TiRhAs 17.52 (14.06)
TiIrBi 6.68 HfPdGe 10.28 HfIrSb 13.65 TaOsAs 18.09
ZrIrBi 6.88 (6.62) TiNiSn 10.50 (13.83) TeFeTi 13.82 TiCoBi 19.10
BiNiSc 6.97 ZrNiSn 10.84 (12.00) TiCoSb 13.90 (13.87) NbCoGe 19.37
HfRhBi 7.00 ZrIrSb 10.97 TiNiPb 13.91 TaIrGe 19.57
VIrSn 7.01 ZrPdGe 10.98 ZrCoAs 13.91 (13.97) TiCoAs 19.92
TaRuBi 7.02 (7.58) HfPtGe 11.08 TiIrAs 14.12 NbRuAs 20.21
VRhSn 7.11 TeRuZr 11.11 ZrCoSb 14.29 NbCoSi 20.31
ZrIrAs 7.20 (10.76) HfNiSn 11.29 TiPtGe 14.34 NbRhGe 20.63
NbRhPb 7.21 VCoSn 11.30 ZrRhAs 14.54 NbFeAs 22.20
NbOsBi 7.26 TaRhSn 11.37 TiNiGe 14.78 (16.15) VFeAs 22.60
ZrRhBi 7.33 NbFeBi 11.40 NbFeSb 15.00 LiBSi 23.45
AlGeLi 7.68 HfNiGe 11.41 (13.41) TaFeAs 15.12 (16.37)
TiRhBi 7.85 HfRhSb 11.49 TaOsSb 15.16 (12.16)

Table 1 summarizes various performance metrics of the ML models.
The baseline model predictions, log(𝜅BL

𝓁 ), has a Spearman correla-
tion of 0.79 with log(𝜅TDEP

𝓁 ), which is larger than the correlation of
Carrete et al. [18] of 0.74. Their model is based on fewer training
samples, but more complex features. However, even though the Spear-
man correlation metric is fair and the low 𝜅TDEP

𝓁 compounds do tend
to be in the lower end of the spectrum of log(𝜅BL

𝓁 ), the model fails to
differentiate between the truly low 𝜅TDEP

𝓁 compounds and the rest. The
Spearman correlation of the active sampling model increases to 0.85.
The superior ability of the active sampling model to predict properties
of compounds with low 𝜅TDEP

𝓁 results in improvement of the other
performance metrics as well.

4.4. Machine learning at tier-0 level

The need for DFT-level input can be a drawback of using tier-1
features, as in some cases, experimental or calculated lattice constants
are known while elastic tensors or bulk moduli are lacking. Thus, to
uncover the potential of ML based on simpler features, we compare
compound sampling and ML using tier-0 and tier-1 features. PCA-
based active sampling with tier-0 features identifies the same three
compounds as found earlier, as shown in Figs. 7 and 8(a). We allow
for LiZnSb to be in the test set in this case, even though the drop-off
in PC distance is less steep, as it allows for direct comparison of ML
performance when using tier-0 and tier-1 features.

Fig. 8(b) compares the EFS selection frequencies of the active sam-
pling models with tier-0 and tier-1 features. The average number of
features chosen in the EFS for the active sampling model (tier-0) is 4.7,
and increased selection frequencies are seen for 𝜒𝑎 and 𝑟𝑠.

Fig. 8(c) shows that the active sampling model (tier-0) identifies
the lowest 𝜅TDEP

𝓁 compound, but fails to differentiate the second and
third lowest from the rest. This model has weaker predictivity overall
compared to the active sampling model (tier-1), with an R2-score of
0.73 and Spearman correlation of 0.78. Despite that tier-0 features
are used, the active sampling model (tier-0) outperforms the baseline
model, underlining the importance of sample selection.

We also note that pre-sampling using PCA with tier-0 features could
be used for pruning the test set. This can be done by excluding com-
pounds that lie close to or within already sampled compound clusters
in PC space. This would reduce the number of compounds in the test
set, and thus reduce the computational resources needed for calculating
the tier-1 DFT features.

While the performance gain when using more complex features
and larger training sets has been demonstrated in earlier studies [20–
23,60,73–75], this work demonstrates that using rather modest training
set sizes and low feature complexity can give reliable predictions by
adopting active sample selection.

On a cautionary note, the use of semi-random selection rather than
truly random selection accentuates the performance gains when doing
active sampling. We also find that only including one or two of the
low lattice thermal conductivity compounds in the models significantly
reduces performance compared to including all three. Performance
with a truly random model would hence be sensitive to exactly which
training samples are selected. In any case, a key advantage of PCA is
that when used in the process to include additional HH compounds,
we have a procedure to identify whether the properties of a given
compound can be predicted reliably.

4.5. Comparison with experiments

Computed and predicted lattice thermal conductivities do not al-
ways agree perfectly with that of experiments. For comparison, the
𝜅TDEP
𝓁 for NbCoSn and ZrNiSn of 12.2 W/mK and 10.8 W/mK are

higher than lattice thermal conductivity measured in experiments:
7.0 W/mK [76] and 8.7 W/mK [77] for NbCoSn; 5.4 W/mK [78] and
6.1 W/mK [79] for ZrNiSn. Predictions made by the active sampling
model (tier-1) for NbCoSn and ZrNiSn are 13.4 W/mK and 12.0 W/mK,
respectively, when trained on calculated data. At the current level of
theory, the difference between the ML predictions and TDEP lattice
thermal conductivity is therefore much lower than that of experiment
and theory. Sample dependent phonon scattering mechanisms due to
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physical properties such as grain boundaries, intrinsic disorder, and
antisite defects can drastically reduce lattice thermal conductivity [79–
85], and can explain why experimentally measured lattice thermal
conductivity is lower than predictions when computed lattice ther-
mal conductivity only includes three-phonon and isotope scattering.
Including such scattering mechanisms in the calculated lattice thermal
conductivity can give values closer to that of experiment [81,86],
which future studies should contemplate including in ML training for
making models more representative of the lattice thermal conductivity
of real-world samples.

5. Summary and conclusion

This study has explored strategies for using machine learning for
finding low lattice thermal conductivity compounds using a limited
number of training samples. Moreover, rather simple features were
used, which can be found directly in material databases or computed
straightforwardly. The exploration was made possible by computing lat-
tice thermal conductivity with the temperature-dependent effective po-
tential method for 122 half-Heusler compounds. We first demonstrated
how a model based on a semi-random pool of materials (i.e. assumed
‘‘bad luck’’ in the training set) was unable to separate the truly low
lattice thermal conductivity compounds in the test set from the rest. To
improve the model, we used active sample selection based on principal
component analysis. This approach suggested three compounds to be
included in the training process. The subsequent inclusions resulted in a
substantial improvement of model performance, in particular the ability
to identify the remaining low lattice thermal conductivity compounds
in the test set. Active sample selection without density functional
theory-based features also identified necessary compounds to include
in the model, but excluding the features in the model training resulted
in weaker predictivity.

Our study demonstrates how active sampling can improve machine
learning predictivity by accurately predicting properties of compounds
dissimilar from the typical ones in a material class. More narrowly,
we expect the procedure outlined here to be adopted to study broader
classes of materials to systematically identify new low lattice thermal
conductivity compounds.
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Appendix

Table A.1 shows 𝜅TDEP
𝓁 for the HH compounds. Predictions made

with the active sampling model (tier-1) are in the parenthesis.
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Abstract: Low thermal conductivity is an important materials property for thermoelectricity. The
lattice thermal conductivity (LTC) can be reduced by introducing sublattice disorder through partial
isovalent substitution. Yet, large-scale screening of materials has seldom taken this opportunity into
account. The present study aims to investigate the effect of partial sublattice substitution on the LTC.
The study relies on the temperature-dependent effective potential method based on forces obtained
from density functional theory. Solid solutions are simulated within a virtual crystal approximation,
and the effect of grain-boundary scattering is also included. This is done to systematically probe
the effect of sublattice substitution on the LTC of 122 half-Heusler compounds. It is found that
substitution on the three different crystallographic sites leads to a reduction of the LTC that varies
significantly both between the sites and between the different compounds. Nevertheless, some
common criteria are identified as most efficient for reduction of the LTC: The mass contrast should
be large within the parent compound, and substitution should be performed on the heaviest atoms.
It is also found that the combined effect of sublattice substitution and grain-boundary scattering can
lead to a drastic reduction of the LTC. The lowest LTC of the current set of half-Heusler compounds
is around 2 W/Km at 300 K for two of the parent compounds. Four additional compounds can reach
similarly low LTC with the combined effect of sublattice disorder and grain boundaries. Two of
these four compounds have an intrinsic LTC above ∼15 W/Km, underlining that materials with high
intrinsic LTC could still be viable for thermoelectric applications.

Keywords: half-Heusler; lattice thermal conductivity; alloying; optimal substitution site; density
functional theory; temperature-dependent effective potential

1. Introduction

The ability to convert excess heat into electricity and vice versa makes thermoelectricity
interesting for a range of niche applications requiring local cooling or electricity generation.
More effective thermoelectric materials could increase the applicability of thermoelectricity
and thereby contribute to reducing energy consumption and carbon emissions [1,2]. The
figure-of-merit of a thermoelectric material is at an operational temperature T given by

ZT =
σS2T

κe + κ`
, (1)

where S is the Seebeck coefficient, σ is the electrical conductivity, and κe and κ` are the
electronic and lattice thermal conductivity (LTC), respectively. The electronic contributions
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to ZT exhibit conflicting dependency of the charge carrier concentration, requiring opti-
mization of the doping level [3–6], though there has been significant progress in recent
years [7–10].

Alloying, i.e., formation of solid solutions, is a widely used approach to modify materi-
als, including their thermoelectric, optoelectronic [11,12], and electrolytic properties [13,14].
It can also be used to modify band gaps, defect formation densities, and structural phase
transitions [15–19]. Introducing additional elements can, however, complicate materials
synthesis e.g., by undesirable formation of secondary phases [20–26]. Still, much progress
has been made in ensuring single-phase alloys for certain material classes [27] including
half-Heuslers [28–30].

Half-Heusler (HH) compounds are ternary compounds with an XYZ composition,
where the XZ sublattice forms a rocksalt structure and the YZ sublattice represents a
zinc-blende structure [31]. The thermoelectric properties of HHs have been intensively
studied [32–44]. While their electronic properties tend to be beneficial, they typically suffer
from high LTC [45].

For optimizing thermoelectric properties, many studies have focused on identifying
alloys with band structures that can provide a high power factor P = σS2 without increas-
ing κe too much [46–48]. For such materials, the problem is reduced to that of lowering
κ` while maintaining beneficial electronic properties [6]. An efficient strategy to reduce
the LTC is to introduce sublattice disorder, for instance through partial isovalent atomic
substitutions on one or more of the sublattices of the compound [49–54]. Such substitutions
can be effective as they often have a limited effect on the electronic mobility [55–58] and
hence the attainable P .

Several studies have explored partial substitution on the X-site of HHs, e.g., replacing
a fraction of Zr in ZrNiSn by Ti or Hf [59–62], or replacing a fraction of Nb in NbCoSn by
Sc or Ti [63,64]. Z-site substitution has also been investigated in ZrCoSb, replacing Sb by
Sn [65,66]. It would be useful to establish a systematic overview of the effectiveness of
substitutions at different sites at reducing the LTC. An indicator of this can be provided by
the magnitude of the mass-variance parameter [67], given as

gi = ∑
j

cj
i

(
mj

i − m̄i

m̄i

)2

. (2)

Here, cj
i is the concentration of atom j substituting atom i, mj

i is the mass of the

substituent atom, and m̄i = ∑j cj
im

j
i is the average atomic mass. However, the nature of

the phonon modes also plays a significant role, as exemplified for TixZryHf1−x−yNiSn in
Ref. [61]. In this paper, we use first-principles calculations to assess the change in LTC
when introducing sublattice disorder on each of the three crystallographic sites of 122 HHs.

2. Methods
2.1. Thermal Transport and Phonon Scattering Mechanisms

The LTC is calculated with the temperature-dependent effective potential (TDEP) ap-
proach [68,69], in which the finite-temperature second- and third-order force constants are
extracted based on atomic displacements and forces. Within phonon Boltzmann transport
theory employing the relaxation-time approximation, the LTC is given by

κ` =
1
V ∑

λ

cλv2
λτtot

λ , (3)

where λ = (qs) indicates the wave vector q and the phonon mode s. Further, cλ is the
phonon heat capacity, vλ the phonon group velocity, and τtot

λ the total phonon relaxation time.
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The scattering rate from three-phonon scattering is given by

1
τλ

=
h̄π

8 ∑
λ′λ′′
|Φλλ′λ′′ |2[(nλ′ + nλ′′ + 1)δ(ωλ −ωλ′ −ωλ′′)

+2(nλ′ − nλ′′)δ(ωλ −ωλ′ + ωλ′′)]. (4)

Here, n is the equilibrium phonon distribution function, and Φλλ′λ′′ are the three-
phonon matrix elements,

Φλλ′λ′′ = ∑
ijk

∑
αβγ

ελ
αiε

λ′
βjε

λ′′
γk√mimjmj

√
ωλωλ′ωλ′′

×Φαβγ
ijk ei(qri+q′rj+q′′rk). (5)

Here, ijk are indices of atoms, αβγ are Cartesian coordinates, mi is the mass of atom i,
ελ

αi is component α of the eigenvector for mode λ and atom i, ri is the lattice vector of atom

i, and Φαβγ
ijk are the third-order force constants. The mass-disorder (md) scattering rate is

given by [67]
1

τmd
λ

=
π

2 ∑
λ′

ωλωλ′ ∑
i

gi|εi†
λ · εi

λ′ |2δ(ωλ −ωλ′), (6)

where εi
λ′ is the polarization vector and gi is the mass-variance parameter. For the unmixed

compounds, τmd
λ only contains the effect of natural isotopes, while for mixed compounds

it also includes the distribution of isovalent mixing. These effects are both captured in gi,
but it should be noted that the natural isotope contribution is considerably smaller than
the contribution of the mixing distribution [61,67].

We also investigate the effect of grain-boundary (gb) scattering. The scattering rate of
grain boundaries is given by [70]

1

τ
gb
λ

=
vλ

d
, (7)

where vλ is the phonon velocity and d is the characteristic domain (grain) size. We denote
the intrinsic LTC arising from the combined effect of three-phonon scattering and isotope
scattering as κint

` , with the additional effect of md-scattering as κmd
` , and with gb-scattering

added on top of that as κ
md,gb
` .

2.2. Alloying Scheme

The 122 HHs in this study are based on the 74 stable compounds found by Feng et al. [71],
as well as the additional 48 ones studied in Ref. [72]. Sublattice disorder is introduced by
partially substituting with the element of the same group in the next period except for
period 6 elements, which are substituted with period 5 elements. One exception, Te, is
substituted with Se to omit the radioactive Po. For sublattice solid solutions, consisting solely
of compounds predicted to be stable by Feng et al. [71] which are listed in the supplementary
material (SM), we linearly interpolate the lattice parameter and the force constants of the
parent compound with those of the fully substituted compound. Throughout the study, we
use a 10% mixing concentration. For instance, for Zr0.9Hf0.1NiSn, the X-site effective mass
is equal to 90% Zr plus 10% Hf isotopic mass. Likewise, the lattice parameter and the force
constants consist of 90% of those calculated for ZrNiSn and 10% of those for HfNiSn. For
the remaining compounds, we use force constants and lattice parameter from the parent
compounds to limit computational costs.

2.3. Computational Details

Density functional theory (DFT) calculations are done using the VASP [73–75] software
package using the generalized gradient approximation (GGA) functional PBEsol [76,77].
The plane-wave cutoff is set to 600 eV. The electronic self-consistency cutoff is set at 10−6 eV.
Atoms are relaxed until all forces fall below 1 meV/Å. Second- and third-order force
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constants are extracted from fifty supercell configurations with 3× 3× 3 repetitions of
the primitive unit cell. For each configuration, atoms are displaced from equilibrium
according to a canonical ensemble set to T = 300 K. Realistic atomic displacements are
calculated by assuming that the zero-point energy of the phonons corresponds to the Debye
temperature [78]. The Debye temperature is obtained from the elastic tensor [79], which is
calculated with DFT using the frozen phonon approach. In the supercell calculations, we
use a 3× 3× 3 k-point sampling of the Brillouin zone. The elastic tensor calculations are
done with the primitive unit cell and an 11× 11× 11 k-point sampling.

When extracting the force constants, the cutoff radii of the third-order and second-
order interactions are ∼2% and ∼12% larger than half the width of the supercell, respec-
tively. These choices ensure that the force-constant matrices have equal sizes, allowing
straightforward interpolation. The phonon-mode Brillouin zone integration in Equation (3)
is sampled on a 35× 35× 35 q-point mesh.

3. Results and Analysis
3.1. Lattice thermal conductivity with Mass-Disorder and Grain-Boundary Scattering

Figure 1a–c shows the LTC with intrinsic scattering, κint
` , and with the additional

md-scattering included, κmd
` , for the 122 HH compounds. Figure 1d plots κint

` versus κmd
` ,

where the color of the triangles indicates substitution site, displaying the reduction in
LTC for each of the substitutions. On average, X-site substitution reduces the LTC by
43%, somewhat less than the ∼49% reduction at Y- and Z-sites. There is a substantial
variation in κmd

` when substituting the different sites, as shown by the large vertical spread
of the triangles and the distributed bins of the histogram. To exemplify, partial X-site
substitution of VIrGe (Figure 1c) reduces the LTC by 14%, while the reduction with Z-site
substitution in LiBSi (Figure 1a) is 80%. The site-dependence can also differ greatly from
one compound to the next. In the case of ZrRhSb and ZrPdPb (Figure 1c), the reduction is
quite similar for the three different substitution sites, while for VFeSb (Figure 1c), X- and
Z-site partial substitution leads to a reduction of 21% and 70%, respectively. In total, we
find 91 compounds with more than a 25% difference between the largest and smallest κmd

`
obtained for the different substitution sites.

Based on this data, it is interesting to formulate some basic guidelines on which
substitution site to select to most efficiently reduce the LTC. One simple rule, which we
previously noted as a trend in Ref. [80], is to substitute on the site hosting the heaviest
atom. This rule gives the correct result for 102 out of the 122 compounds. Among the 20
compounds not following this rule, there are only 4 cases in which the κmd

` obtained with
heaviest-site substitution and optimal-site substitution differ by more than 15%. These 4
counterexamples can be explained by the fact that the mass-variance parameter gi of the
optimal-site substitutions for these compounds is more than 50% larger than that of the
heaviest-site substitution.

Another possible rule for attaining the largest LTC reduction could be to use the
substitution with the highest gi. In general, however, this turns out to be less efficient than
substituting on sites with heavy atoms; often a high gi coincides with lighter atoms, which
are associated with high-frequency phonon contributions to heat transport [61]. This is
exemplified by NbCoPb, which is optimally substituted on the Z-site. Given the relatively
similar mass of Pb and Sn, Z-site substitution results in merely gZ = 0.02; the lighter Co
partially substituted by Rh yields, on the other hand, gY = 0.04, while Nb substituted by
Ta corresponds to gX = 0.07.

Figure 1e shows the effect of introducing gb-scattering on the LTC, including optimal-
site substitutions. The relative drop in LTC is larger for compounds with high κint

` . For the
20 compounds with lowest κint

` , the reduction in LTC using 100 nm grains and substitution
on the optimal site is on average 69%, while for the 20 compounds with the highest κint

` ,
the average reduction is 85%. When optimal-site substitution has been included, reducing
the grain size from 100 nm to 50 nm only gives a modest reduction in LTC; the average
drop compared to the intrinsic LTC changes from 79% to 83%.
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Figure 1. The (a–c) panels compare the LTC involving only intrinsic scattering κint
` (grey bars) with

that obtained from the addition of md-scattering on sites X, Y, and Z (blue, orange, green), i.e.,

κ
md(X)
` at 300 K. Dots mark the optimal substitution site. Panel (d) plots κint

` against κmd
` . The blue,

orange, and green triangles indicate substitution on the X-, Y-, and Z-sites, respectively, with the one
most effectively reducing the LTC highlighted. The inset histogram shows the distribution of the

most effective substitution divided by the least effective one, min(κmd(X,Y,Z)
` )/max(κmd(X,Y,Z)

` ). In
panel (e), only results for the most effective substitution site are shown; in addition filled (empty)
discs indicate κ

md,gb
` with gb size of 100 nm (50 nm).
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Grain boundaries most efficiently scatter less energetic acoustic phonons [62,81], while
mass disorder scatters more energetic phonons [61,82,83]. It is therefore interesting to
assess the reduction achieved with gb-scattering without the inclusion of md-scattering.
We find that introducing gb-scattering with grain sizes of 100 and 50 nm reduces LTC on
average by 42% and 54%, respectively, see details in the SM. This reduction is hence more
modest than that of 10% substitution on the optimal site.

3.2. Compounds with Low Lattice Thermal Conductivity

Certain compounds reach very low LTC with the introduction of md- and gb-scattering.
Some of these are simply compounds that already have a low intrinsic LTC, such as
LaPtSb, LaRhTe, BaBiK, and CdPNa. For these compounds, it is interesting to gauge
whether additional scattering mechanisms provide a substantial reduction in the LTC.
Others are compounds which exhibits a significant drop in LTC with the inclusion of
additional scattering mechanisms. It is useful to identify the key characteristics of these
compounds, for the sake of developing effective thermoelectric optimisation and material
identification strategies.

In Figure 2, we compare the intrinsic LTC, κint
` , with the LTC where md-scattering has

been included, κmd
` , for the compounds with lowest κmd

` at temperatures 300 K, 500 K, and
700 K. As a reference, NbCoSn, ZrNiSn, and the average LTCs for all HHs are also included.
For partial substitution on the optimal site (reducing LTC the most), we also display the
effect of gb-scattering with a grain size of 100 nm.
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Figure 2. κint
` and κmd

` for the 10 HH compounds with the lowest κmd
` at 300 K, compared with

NbCoSn, ZrNiSn, and the average of all HH compounds as reference. Brown bars indicate the
intrinsic LTC, while blue, orange, and green bars indicate the LTC with substitutions on X-, Y-, and
Z-sites. Sub-bars of increasing color intensity indicate the LTC at 300 K, 500 K, and 700 K. Purple bars
indicate κ

md,gb
` , where substitution is done on the site reducing LTC the most, including gb-scattering

using a domain size of 100 nm.

For the compounds with the largest potential drop in LTC, there is a strong substitution
site sensitivity. In general, we find that these compounds are characterized by a large
mass difference between the heaviest and lightest atoms in the parent compound, with
substitution on the heaviest atom being preferable. This can be exemplified by TiNiPb
and AlSiLi, which exhibit the largest potential drop in LTC with the introduction of md-
scattering; Pb is much heavier than Ti and Ni, and Al and Si are much heavier than Li.
TiNiPb has a relatively high κint

` = 22.2 W/Km at 300 K, but Z-site substitution brings it
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down to κmd
` = 4.6 W/Km, whereas X-site substitution results in 13.0 W/Km and Y-site

results in 8.2 W/Km. AlSiLi has the largest reduction with Y-site substitution, resulting in
κmd
` = 3.9 W/Km, quite similar to that of X-site substitution, which results in 4.0 W/Km,

while Z-site substitution results in 8.5 W/Km.
For the compounds with lowest κint

` , i.e., LaPtSb, LaRhTe, BaBiK, and CdPNa, substi-
tution on the optimal site reduces, on average, the LTC by 38%, while the average reduction
for all the HHs is 58%. Thus, while the reduction achieved by introducing additional
scattering mechanisms is lower for these compounds, it is still substantial. It is also in-
teresting to compare LiZnSb and CdPNa. Both these compounds have a quite similar
mass-variance parameter gi at the optimal substitution site: gi = 0.05 for substitution on
the X-site in CdPNa and gi = 0.04 for Z-site substitution in LiZnSb. Nonetheless, the effect
of substitution is far stronger for LiZnSb. Similar to AlSiLi, LiZnSb is characterized by one
of the atoms being much lighter than the other two.

When gb-scattering is introduced in addition to md-scattering, LiZnSb, AlSiLi, BiPdSc,
and VRhSn achieve κ

md,gb
` ≤ 2.2 W/Km, comparable to the values of the compounds with

the lowest intrinsic LTC without such scattering mechanisms. In comparison, NbCoSn
and ZrNiSn have κ

md,gb
` of 3.9 W/Km and 3.6 W/Km, and the average for the HHs of this

study is κ
md,gb
` = 3.6 W/Km when using optimal-site substitutions.

Figure 3 shows the change in κ
md,gb
` with temperature. While the relative ordering

of low to high κ
md,gb
` compounds tends to be retained with temperature, there is some

difference in the relative reduction with increasing temperatures for different compounds.
Interestingly, the compounds having a low intrinsic LTC, LaPtSb, LaRhTe, BaBiK, and
CdPNa, have a relatively large reduction in κ

md,gb
` with temperature, on average 44% when

going from 300 to 800 K. The average reduction for all HHs is only 32% over the same
temperature span. The compounds that attain a low κ

md,gb
` , LiZnSb, AlSiLi, BiPdSc, VRhSn,

BiNiY, and TiNiPb, have an average reduction of 33%, i.e., similar to that of the average
for the HHs. Among these, the largest reduction is found for BiNiY, for which the LTC
decreases by 40% when going from 300 to 800 K. In general κ

md,gb
` shows a more modest

reduction with temperature than κint
` , which on average is reduced by 62%. The slight

differences between the temperature dependence from one compound to the next, on the
other hand, almost vanish without the presence of additional scattering mechanisms.
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4. Discussion

While our paper provides valuable guidance on the optimization of sublattice solid
solutions for reducing the LTC, there are certain limitations of our analysis to bear in
mind. First, the study is based on the virtual crystal approximation, in which the sublattice
disorder is not accounted for explicitly. For a selection of the compounds, we simply use
the average “virtual” mass on a site, while for others we also interpolate the force constants
and lattice parameters, as discussed in Section 2.2. These limitations imply uncertainty in
the calculated numbers.

Second, we neglect strain-induced scattering when the mass-disorder effect is consid-
ered. In a recent paper, Arrigoni et al. [84] showed that force-constant disorder can in some
systems significantly reduce the predicted LTC. For In0.5Ga0.5As the reduction was ∼40%,
while for Si0.3Ge0.7 it was less than 10%. The difference between the LTC obtained with in-
terpolation of the mass, lattice parameter, and force constants compared with interpolation
of only the mass provides some indication of the magnitude of the strain-induced scattering.
This is because a large shift would imply that force constants of the two compounds are
quite different, indicating large strain-induced scattering matrix elements. As detailed in
the SM, we find that interpolating the lattice parameter and force constants changes the
LTC on average by 6.6% for substitution on the X-site, 7.3% for the Y-site, and 7.2% for
the Z-site. Thus, while this change is modest, it is not insubstantial; for some compounds,
e.g., for Y-site substituted NbCoSn it is quite large, having a relative deviation of 23%.
Nonetheless, md-scattering provides a rough lower bound of the scattering introduced
through substitution. One could argue that a large mass-variance tends to correlate with
variance in the effective size of the atoms and as such strain induced-scattering. Thus, one
could hope that much of the strain-induced scattering would be described indirectly by the
mass-variance. However, strain affects more atom sites than the mass-disorder, which is
entirely local. The relative difference in the effect of substitution on different sites would
therefore be somewhat affected by strain. The significance of this is difficult to evaluate,
but we assume that the key trends identified here remain valid.

Third, we use a substitution concentration of 10% throughout this work. Increasing
the concentration could further reduce LTC, but in terms of synthesis, higher concentrations
can also lead to phase separation [66,85]. We do note, however, that phase separation could
in some cases be beneficial for thermoelectric performance [86]. Sublattice miscibility is not
considered in this paper, but several HH alloys demonstrate substitution concentrations
higher than 10% [59,60,62,66,87,88]. However, some cases, such as 10% substitution of Li
with Na in X-site substituted LiZnSb could be unfeasible.

Given the many approximations, we perform a rough comparison with experiment to
obtain an indication of the accuracy of the predictions. In doing so, we first consider that
the computed intrinsic LTC is often much larger than the experimental LTC, especially for
unmixed compounds [61,62,72]. This overestimation can, at least partially, be explained by
the many impurities and defects present in real-world samples [35,89–91]. To correct for
this, we first compute an effective contribution to the thermal conductivity arising from md-
scattering, based on Matthiessen’s rule: 1/κ′` = 1/κmd

` − 1/κint
` . This expression can then be

compared with a corresponding experimental quantity, 1/κ′`,exp = 1/κmixed
`,exp − 1/κ

parent
`,exp . An

underlying assumption in this comparison is that the phonon scattering due to impurities
and other defects not related to mixing is quite similar in the mixed (κmixed

`,exp ) and pure

compound (κparent
`,exp ). Under this assumption, it is meaningful to compare κ′`,exp with the

theoretical counterpart κ′`, allowing for a rough comparison of the computed effect of md-
scattering with the mixing induced experimental effect. Comparing X-site substitution in
ZrNiSn at 500 K, we obtain in this work κ′` = 9.9 W/Km, which is in reasonable agreement
with the experimental value of κ′`,exp = 7.0 W/Km for Zr0.9Hf0.1NiSn [59]. Moreover, for
X-site substitution in VFeSb at 300 K, we find κ′` = 21.8 W/Km, which can be compared
with κ′`,exp = 18.7 W/Km [92] for V0.9Nb0.1FeSb. These differences are sizeable but still
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point to the general validity of using md-scattering as a rough indicator of the effect of
mixing on the LTC.

We also present results both with and without gb-scattering. The gb-scattering model
is highly idealized, assuming perfect scattering of long-wavelength acoustic phonons.
Real-world materials have grains of different sizes and orientations which scatter phonons
differently. Domain sizes of 50 and 100 nm are assumed here, while depending on the
preparation method, experimentally average grain sizes have been reported in the 60
to 400 nm range [62,93,94]. Nonetheless, gb-scattering provides some indication of how
grains and other macroscopic defects filter out the contributions of mostly long-wavelength
phonons to the LTC.

On a final note, one must keep in mind that substitutions and grain boundaries also
impact electron transport. The additional electron scattering introduced causes a reduction
in the electron mobility and in turn the conductivity σ [60]. However, the subsequent
reduction in ZT would be lessened by the simultaneous reduction in the electronic thermal
conductivity κe. LaPtSb, LaRhTe, BaBiK, and CdPNa have κ

md,gb
` ≤ 1.2 W/Km, comparable

to well-known low LTC thermoelectric materials such as PbTe [95,96] and SnSe [10,97]. This
value is similar to or even lower than κe in several doped HHs [80], e.g., κe = 1.4 W/Km
for NbCo0.94Ni0.06Sn [98] and κe = 1.5 W/Km for ZrPtSn0.92Sb0.0.08 [99]. Thus, with the
identification of low LTC comparable to κe, emphasis can shift to design strategies that
reduce κe.

5. Conclusions

This study has investigated the effect of isovalent sublattice-substitutions and grain
boundaries on the lattice thermal conductivity (LTC) of 122 half-Heusler compounds.
Calculations were done using density functional theory and the temperature-dependent
effective potential method. We have shown that several compounds with relatively high
LTC could be promising thermoelectric materials because of a substantial reduction in
LTC with the introduction of additional phonon scattering mechanisms. In general, the
largest reduction in LTC was achieved when substituting on the site hosting the heaviest
atom rather than substituting on the site hosting the atom having the largest mass-variance
parameter. We identified four compounds with quite large intrinsic LTC; LiZnSb, AlSiLi,
BiPdSc, and VRhSn, for which the LTC fell below 2.2 W/Km at 300 K with the introduction
of mass-disorder and grain-boundary scattering. For the four compounds with the lowest
intrinsic LTC, we found that both mass-disorder and grain-boundary scattering can further
reduce LTC, although the relative reduction is smaller, resulting in an LTC below 1.2 W/Km.

Our study highlights that the presence of elements with large masses can be beneficial
for thermoelectric materials. Such elements both reduce phonon velocities and allow for
large mass-disorder scattering. However, compounds with heavy atoms are typically
associated with expensive and rare elements like La, Pt, and Pd, or toxic elements such as
Pb and Te. This makes them less desirable for new large-scale thermoelectric applications.
However, the low LTC of Ga-substituted AlSiLi and Bi-substituted LiZnSb illustrates that
it can be sufficient that one or two of the atoms are substantially heavier than the others
once mass-disorder and grain-boundary scattering effects are taken into account. It is
interesting to note that the reason for the large drop in LTC seen for such compounds could
be connected to the nature of phonon modes. The substantial mass difference in zinc-blende
compounds has been linked to large gaps between acoustic and optical phonons and small
three-phonon scattering phase-space volume [100]. Such compounds would therefore
typically have intrinsic LTC on the higher end, and thus potentially a large reduction
in LTC with the introduction of additional scattering mechanisms. The identification of
compounds with a large drop in LTC with the introduction of additional scattering mecha-
nisms highlights the importance of going beyond three-phonon scattering when screening
materials for thermoelectric applications. The prospect of finding efficient thermoelectric
materials that are also cheap, easy to manufacture, and non-toxic remains bright.
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The lattice thermal conductivity is a key material property in power electronics, thermal barriers,
and thermoelectric devices. Identifying a wide range of low lattice thermal conductivity compounds
is important for thermoelectric power generation, due to the many criteria for such materials. Here,
we present a machine learning model using an active learning scheme based on Gaussian process
regression, which is used to accurately predict the lattice thermal conductivity of cubic compounds.
The features are based on atomic and structural information to enable efficient screening of materials
databases and hypothetical compounds. The lattice thermal conductivity used for training is cal-
culated using density functional theory and the temperature-dependent effective potential method.
Iteratively adding 30 compounds based on the uncertainty measure of the Gaussian process regres-
sion to the training set reduces prediction uncertainty up to ∼ 35 %. The machine learning model
is used to screen 1573 compounds in the Materials Project database. Among the compounds
with band gaps, 34 have predicted lattice thermal conductivity ≤ 1.3 W/Km at 300 K. Two ma-
terials identified, Na2TlSb and Ca3AsBr3, are studied to obtain insight into the origin of the low
lattice thermal conductivity. Our study highlights the benefit of data-driven active sampling. The
machine learning model and active sampling scheme can be extended to broader classes of systems
in a systematic exploration of low lattice thermal conductivity compounds.

I. INTRODUCTION

The thermal conductivity of semiconductors and tech-
nical ceramics is a key material parameter for many ap-
plications. For power electronics, high thermal conduc-
tivity is needed to divert heat away from transistor com-
ponents, while thermal barrier materials in jet engines or
thermoelectrics, require low thermal conductivity. Ther-
moelectric devices, with their ability to convert heat into
electricity, could play a role in reducing global energy
consumption by harvesting waste heat [1–3].
The efficiency of thermoelectric materials is given by

the figure-of-merit, ZT , which at temperature T is given
as

ZT =
σS2T

κℓ + κe
, (1)

where σ is the electrical conductivity, S is the Seebeck
coefficient, κe is the electronic thermal conductivity, and
κℓ is the lattice thermal conductivity. A high ZT mate-
rial must both have a low value of κℓ and good electronic
properties. The latter are highly interlinked; increasing
the value of σ by increasing doping concentration, re-
duces S and also increases κe [4]. The value of κℓ and
the electronic properties are less connected, but not en-
tirely so. For instance, the half-Heuslers [5], can have
favorable electronic properties but suffer from larger in-
trinsic lattice thermal conductivity. These compounds
can be competitive by taking measures to reduce lat-
tice thermal conductivity, such as by increasing phonon

scattering from introducing grain boundaries [6, 7], point
defects [8, 9], or alloying elements [4, 10–13]. Still, such
measures tend to also decrease electronic mobility and
thus also σ [14–16]. Materials with intrinsically low κℓ

are therefore attractive. High performance thermoelec-
tric compounds, such as PbTe [17, 18], Bi2Te3 [19, 20],
and SnSe [21, 22], can attain κℓ < 1 W/Km at room
temperature. However, materials with both low κℓ and
attractive electronic properties are quite rare. It is there-
fore important to map out many material candidates with
low κℓ. In addition to the many competing criteria for
high performance, it is desirable to identify environmen-
tally friendly and cheap materials that can be realized
with conventional synthetization methods. Many of the
most widely used thermoelectric materials contain toxic
or rare earth elements [23, 24].

Obtaining experimental lattice thermal conductivity is
a time-consuming task requiring expert skills and costly
equipment, reducing the number of compounds studied.
In the literature, lattice thermal conductivity for ∼ 100-
200 compounds are reported [5, 25, 26]. High-throughput
computational screening using density functional theory
(DFT) has in recent years accelerated the identification of
low κℓ compounds [27–31] and there is a growing number
of computed κℓ values in the literature [32, 33]. Nonethe-
less, calculation of κℓ requires substantial computer re-
sources. The large cost comes from the high number of
large supercell calculations with DFT needed for comput-
ing the three-phonon scattering rates [34, 35]. Recent
works have used techniques such as compressive sens-
ing [36] or machine learning (ML) [37] to reduce the
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FIG. 1: Flowchart for model construction and screening.

computational cost by limiting the number of configu-
rations required to be treated with DFT. ML is increas-
ingly also being adopted to predict physical properties
directly in thermal energy research [38] and for screening
of low lattice thermal conductivity compounds [32, 39–
47]. Such methods became of particular interest after the
advent of structured material databases, such as Mate-
rials Project [48], OQMD [49], and NOMAD [50],
as they enable effective screening on compounds that are
readily formatted for use with ML.

ML training sets for lattice thermal conductivity are
typically quite modest in size, i.e. covering ∼ 40-200
compounds [25, 26, 32, 43], but it is often applied to 1000s
or even 10000s of compounds. This low ratio is an issue
because it becomes highly likely that some unseen com-
pounds have significantly different properties than those
in the training set [51]. Ensuring a training set repre-
sentative of the set of unseen compounds is thus crucial
for the accurate predictions needed to identify new low
lattice thermal conductivity compounds [52]. The refine-
ment of training sets i.e. active sampling – has gathered
significant attention recently [53], such as in training ML
force fields [54–57], due to the large computational cost of
ab initio calculations. Additionally, when starting from
literature data, which is common in ML, the training
set easily becomes unbalanced. Certain material classes
could be quite well sampled – such as the half-Heuslers, a
starting point for this paper – while other material classes
are more sparsely sampled.

In this work, we couple ML and active sampling to
predict lattice thermal conductivity of 1573 cubic com-
pounds in the Materials Project database. Fig. 1
outlines the workflow. Explicit lattice thermal conduc-
tivity calculations based on density functional theory
(DFT) and the temperature-dependent effective poten-
tial (TDEP) method [35, 58] provide data for training,
which together with Gaussian process regression enable
active sampling, which results in an accurate ML model.

FIG. 2: One dimensional active sampling with GPR:
feature axis on the horizontal and prediction on the
vertical. The purple (blue) shaded region gives the

GPR STD before (active) sampling.

II. METHODS

A. Gaussian Process Regression

Gaussian process regression (GPR) and classification
have seen much usage in materials science [59, 60], in-
cluding for training of force-fields [54, 61], for materi-
als discovery [62], and for predicting thermal- [63] and
lattice-thermal conductivity [25, 39]. A prediction with
GPR, κ∗

ℓ , for a compound with features, x∗, given a vec-
tor of training κℓ, {κℓ}, and corresponding features, X,
is based on a distribution p(κ∗

ℓ |{κℓ}, X,x∗). The distri-
bution provides GPR with a distribution mean and a
variance, where the mean is the model prediction and
the variance can be interpreted as the uncertainty of the
prediction. Kernels incorporate the co-variance between
compound features into the model and enable calcula-
tion of the distributions. When the features of two com-
pounds are similar, x ≈ x′, the co-variance is high and
k(x, x′) is near its maximum. The GPR model used in
this work is based on the Matern kernel, expressed as

k(x, x′) =
1

Γ(ν)2ν−1
(rd(x, x′))

ν
Kν (rd(x, x

′)) . (2)

Here, Γ(ν) is the gamma function, d(x, x′) is the Eu-
clidean distance, Kν is a modified Bessel function, and
r =

√
2ν/ℓ, where ν is a free parameter. The length-

scale parameter, ℓ, toggles how fast k(x, x′) drops off for
increasing dissimilarity between compounds.
We employ an active sampling scheme based on uncer-

tainties from GPR, the GPR standard deviation (STD)
of predictions [64]. GPR STD-based active sampling has
been used to determine structures that should be treated
with ab initio methods instead of ML [55]. Fig. 2 shows
GPR predictions and STD for a toy model trained on six
data points (purple, before active sampling) and a model
trained on seven data points (blue, after active sampling).
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FIG. 3: R2-scores for predictions made on the test set
(vertical axis) vs. number of compounds sampled to the

training set (bottom horizontal axis). The top
horizontal axis shows the number of training

compounds.

When the new point to sample is added in the training
the accuracy of the GPR predictions increases and the
GPR STD reduces.
The active sampling scheme selects new compounds

from the Materials Project iteratively. It starts by
sampling the compound with the highest GPR STD and
adding it to the training set with lattice thermal con-
ductivity equal to the prediction from the GPR model.
This process is repeated for 29 compounds. 15 of the
29 compounds have strictly positive phonon dispersions
from TDEP at 300 K and are dynamically stable. For
these compounds, the TDEP lattice thermal conductiv-
ity, κTDEP

ℓ , is calculated, and the compounds are in-
cluded in the training. This process of obtaining a block
of 15 compounds is carried out once more in a similar
fashion. In the second block, 15 out of 30 compounds are
dynamically stable. The two blocks constitute 30 actively
sampled compounds and their κTDEP

ℓ .

B. Validation of Active sampling scheme

To validate the active sampling scheme, we construct
three data sets based on the compounds presented in
Sec. IID, a start training set, training pool, and test set
(110, 108, and 20 compounds, respectively). In each iter-
ation, a compound is moved from the training pool to the
training set. For the random sampling model, the com-
pound moved from pool to training is randomly selected
from the pool, while for the active sampling model, the
compound moved is the one in the training pool with the
highest GPR STD. For each sampled compound, both
models are retrained and used to predict on the test set.

Fig. 3 displays the R2-scores for predictions on the
test set using active and random sampling. The blue line
shows the R2-score of the model sampling random com-
pounds to include in the training and the green line shows
the score of the model sampling the compounds with the
highest GPR STD. The shaded regions are standard devi-
ations from 100 different random splits of the training set
and training pool. At 0 and 108 on the horizontal axis,
the training sets are identical (no compounds sampled,
all compounds sampled), and the R2-scores for the mod-
els are the same. The active sampling scheme achieves a
high R2-score with fewer samples than the random sam-
pling while having a lower standard deviation.

C. Features and Dataset

Features used for ML are generated from material
properties obtained directly from databases and the
atomic structure. To account for the fact that different
compounds have a different number of atoms, we define
averages < () >, medians m̄(), and standard deviations
σ(), of different atomic properties, i.e. covalent radii [65],
r, electronegativities [66], χ, masses [67], m, number of
valence electrons, Nval, the number of s, p, d, and f elec-
trons, Ns, Np, Nd, and Nf in the valence shell [68], and
dipole polarizabilities [69], µdip, where µdip describes the
charge distribution response of the atom when an exter-
nal electric field is applied. We also include the number
of elements in the primitive cell, Nele.
To represent information related to coordination and

symmetry we construct features from the Voronoi struc-
ture [43, 70, 71] of the lattice. The Voronoi structure
for an atom situated in a lattice is defined by planes
perpendicular to the vector connecting the atom with
its closest neighbors at the halfway point of the vector.
Fig. 4 shows the Voronoi structure of a body-centered
cubic lattice, with a perimeter highlighted in purple and
a Voronoi polyhedron encapsulating the central atom.
As features, we use corresponding averages, medi-

ans, and standard deviation of the total length of all
perimeter circumferences for the atom,

∑
n Lper,n, the

product of the perimeter circumference and the sum
of the covalent radius of the atom and its neighbors,∑

n Lper,n(r+rn), the volume of the sphere defined by the
covalent radius for the atom divided by the volume of the
Voronoi polyhedron, Vcovrad/VVor, the effective coordi-
nation number (ECN), ECN = (

∑
n Lper,n)

2/
∑

n L
2
per,n,

the Voronoi weighted Steinhardt’s parameters [72, 73],
Si, i = (1, 2, 3, 4), and coordination number, Ncor. The
Voronoi-based features are calculated using Pyscal [74]
and are scaled by the DFT calculated lattice parameter.
The features are standardized by subtracting the mean
and dividing by the standard deviation and summarized
in Appendix A, Table II.
The features require no DFT calculations, enabling

accelerated rapid screening of hypothetical materials
databases such as the Materials Project [48]. Only
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Face-perimeter circumference

Covalent radius
Electronegativity
Mass
Valence
s, p, d, f electrons

Features

FIG. 4: Voronoi structure for the central atom and
features obtained from atomic properties.

the atomic configuration and crystal structure are needed
for feature construction. Higher-order features requiring
calculations – e.g. volume, bulk modulus [25, 52], and
properties related to anharmonicity [32, 75] – can im-
prove ML performance, although the computational cost
could limit the number of compounds studied. The Ma-
terials Project provides DFT computed volume for
all compounds in the database and bulk modulus for a
subset. We avoid using these features for two main rea-
sons: The DFT parameters in the Materials Project
vary from those used in this work, and using such features
prevents employing the model on prototype compounds
in future studies [43, 76, 77].

Functions used to construct features use the array of
properties of individual atoms as input. Our chosen
functions have good scalability to e.g. supercells with
low-concentration impurities. Avoiding functions such
as minimum and maximum reduces the likelihood that a
feature changes abruptly in a supercell with impurities.

Including all available features in ML training can lead
to overfitting and poor accuracy. Forward sequential fea-
ture floating selection (SFFS) [78] obtains a suitable fea-
ture subset by removing redundant features. This scheme
iteratively includes the feature that maximizes the R2-
score in the feature subset. When a feature is included
all features in the subset are removed one-by-one and if
the removal of a feature increases the R2-score it is re-
moved. Model hyperparameters are tuned during each
evaluation of a subset and 10-fold cross-validation (CV)
is used. For the initial model, feature selection is done
with SFFS using a set of 218 compounds, where 20 com-
pounds are reserved as a test set. After completing the
active sampling SFFS is done using 268 compounds. We
use the code from Mlxtend [79] for the SFFS, while
the GPR model is as implemented in Scikit-learn [80].
After feature selection, it is interesting to note the impor-
tance of individual features. In this work, we analyze the
feature importance from feature permutation. The fea-
ture importance is defined as the reduction in R2-score
when feature values are shuffled randomly, shuffling one
feature at a time going through all features.

Structure Space 
group

Number of 
compounds

gamma 
brass-derived 215

NS: 24
NI: 0
NA: 5

half-Heusler, 
zinc blende 216

NS:209
NI:152
NA: 0

tetrafluoride 217
NS: 2
NI: 0
NA: 0

perovskite 221
NS: 358
NI: 32
NA: 5

LaRuSn 
3-type 223

NS: 4
NI: 0
NA: 2

cuprite 224
NS: 4
NI: 0
NA: 2

full-Heusler, 
rock salt 225

NS: 858
NI: 53
NA: 4

Laves 227
NS: 103

NI: 1
NA: 7

CsCl-derived 229
NS: 13
NI: 0
NA: 3

FIG. 5: Number of screened compounds (NS),
compounds in the initial training set (NI), and actively

sampled compounds (NA).

D. Compound Set

The initial compound set contains 238 cubic com-
pounds. It consists of 122 half-Heusler compounds from
Ref. [52] in addition to a random selection of 106 cu-
bic compounds from the Materials Project [48]. We
have also included known low lattice thermal conductiv-
ity compounds. These are CsI [81], CuCl [82], TlCl [83],
TlBr [84], Cu2S [85], Ag2S [86], Ba2BiAu [87, 88],
Ba2SbAu [89], Sr2SbAu [89], and Ba2HgPb [87].

The set of unknown compounds to be screened is a
subset of the remaining cubic compounds in the Mate-
rials Project database [48, 90]. Fig. 5 summarizes the
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compounds. We exclude compounds containing elements
H, Yb, Lu, Po, and U. Compounds with more than eight
atoms in the primitive cell, one atom in the primitive cell,
or compounds with non-zero magnetic moments are also
excluded. Lastly, compounds with energy higher than
0.1 eV/atom over the convex hull are removed from the
data set.

E. Lattice Thermal Conductivity

The TDEP [35, 58] method enables extraction of ef-
fective second- and third-order force constants at finite
temperature that are needed to compute lattice ther-
mal conductivity. This method compares DFT forces
with effective forces on configurations with atomic dis-
placements to calculate force constants that best repli-
cate DFT forces. From the phonon Boltzmann transport
equation within the relaxation-time approximation lat-
tice thermal conductivity, κℓ, can be expressed as,

κℓ = καα =
1

V

∑

qs

cqsv
2
αqsταqs. (3)

Here, α is a Cartesian direction, V is the volume, q is
the wave vector, s is the branch, cqs is the phonon heat
capacity, vαqs is the group velocity, and ταqs is the life-
time. The κℓ = καα holds for cubic compounds as off-
diagonal terms in the κℓ tensor are zero and κℓ in the
three Cartesian directions is the same. DFT calculations
are done with the VASP [91–93] software package. For
compounds with four or less atoms in the primitive cell,
we use the Perdew–Burke–Ernzerhof (PBE) generalized
gradient approximation for solids, PBEsol [94, 95], while
for the rest of the compounds we use the vdW-DF-cx
functional [96, 97]. PBEsol enables computation of ac-
curate lattice parameters and vibrational properties [98],
and vdW-DF-cx provides accurate lattice parameters for
cubic perovskites [99] and has good transferability be-
tween compounds [100, 101]. For relaxations, a 500 eV
plane-wave energy cutoff and a 11 × 11 × 11 k-point
(four or less atoms) or 9 × 9 × 9 k-point (five or more
atoms) sampling is used. Self-consistency in the elec-
tronic iterations is reached at 10−6 eV, and atomic po-
sitions are relaxed until no forces are above 1 meV/Å.
Second- and third-order force constants are extracted
from DFT force calculations on fifty configurations of
3 × 3 × 3 repetitions of the primitive cell (4 × 4 × 4 for
compounds with two atoms in the primitive cell), us-
ing TDEP. These thermally excited configurations have
displaced atomic positions corresponding to a canonical
ensemble at T = 300 K [102]. The finite temperature dis-
placements are obtained by matching the zero-point en-
ergy of the phonons to the Debye temperature calculated
from the elastic tensor [103]. The cutoffs for the second-
and third-order force constants are set to be ∼ 12 % and
∼ 2 % larger than half the width of the supercell. The
q-point grid for the phonon-mode integration in Eq. (3)

is discretized as 35 × 35 × 35 for compounds with less
than five atoms in the primitive cell and 30× 30× 30 for
the rest.

III. RESULTS AND DISCUSSION

A. Model Construction with Active Sample
Selection

The initial GPR model is based on the 238 compounds
presented in Sec. IID and their TDEP κℓ, κ

TDEP
ℓ . Fea-

ture selection with SFFS provides a feature subset that
yields better model performance compared to using all
features. Table II displays the 20 chosen features. The
SFFS selects ten features based on the Voronoi tessela-
tion structure, while the remaining are based on tabu-
lated data for χ, Nval, r, µdip, m, Np, and Nele. The
feature importance is also shown in Appendix A, Ta-
ble II. The importance is higher than zero in all cases,
showing that all features increase model performance.
The top three features are the standard deviation of
electronegativity, σχ, median number of valence elec-
trons, m̄(Nval), and the standard deviation of the prod-
uct of perimeters and sum of covalent radii of neighbors,
σ(
∑

n Lper,n(r + rn)). σχ correlates most with κTDEP
ℓ ,

out of all features. The Spearman correlation is −0.46,
–i.e. compounds with a large variation in χ of individual
atoms tend to have lower κTDEP

ℓ . The group 4 and 5 half-
Heuslers have m̄(Nval) = 4 or m̄(Nval) = 5, as for TiNiSn
and NbCoSb, which are differentiated from compounds
such as zincblende AgBr and CuCl with m̄(Nval) = 9.
The median mass, m̄(m), is negatively correlated with
κTDEP
ℓ . A similar correlation has been seen when com-

paring the mean atomic mass and experimental lattice
thermal conductivity [25]. The presence of heavy atoms
can contribute to lowering the phonon group velocity and
thus also κℓ [104].

0 2 4 6
ln(κTDEP

` , [W/Km])

0

2
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ln
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FIG. 6: Prediction accuracy for the ML model. The
horizontal axis shows the logarithm of κTDEP

ℓ and the
vertical axis shows the logarithm of κIML

ℓ .
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Fig. 6 compares predictions from the validation of the
initial ML model, κML

ℓ , and κTDEP
ℓ . The purple markers

show the average predictions from a 10-fold CV repeated
10 times with shuffled training data. The yellow markers
show the predictions of the test set, which is withheld
during feature selection and hyperparameter optimiza-
tion. The error bars show the respective standard devi-
ations. The R2-score for the predictions on the training
set is 0.83 and for the test set, 0.89. The Spearman cor-
relation for the training set is 0.91 and for the test set,
0.95. The high correlations show that the model accu-
rately ranks compounds from low to high κTDEP

ℓ . In the
following the model is trained on all 238 compounds with
predictions κIML

ℓ .

Fig. 7 (a) shows the high-uncertainty compounds ac-
tively sampled from the set of cubic compounds from
Materials Project. The GPR STD of the iteratively
sampled compounds is shown as bars. Before sampling
Hg4Pt (first green bar from the left) the model is re-
trained with the compounds corresponding to red bars
and their κTDEP

ℓ . The GPR STD increases between the
two blocks from SnI4 to Hg4Pt, possibly resulting from
the removal of unstable compounds and change in tar-
get values from ML predictions to κTDEP

ℓ . The sampled
compounds consist of 21 with more than five atoms in the
primitive cell, 38 different elements, and 7 space groups.
Fig. 5 shows that the active sampling yields compounds
with space groups not present in the training set at the
start of the sampling.

Fig. 7 (b) displays κTDEP
ℓ and κIML

ℓ for the sampled
compounds. Appendix B Table III contains κTDEP

ℓ for
the total 268 cubic compounds at 300 K. The data can
also be found in the supplementary materials. I4Sn,
InTl3, CsBi2, have low κTDEP

ℓ of 0.41, 0.56, 0.79 W/Km,
respectively. The highest κTDEP

ℓ is obtained for GeSi7
with κTDEP

ℓ = 59.48 W/Km. Cs2Se has κTDEP
ℓ =

1.35 W/Km and has been found in a previous screening
study by Juneja et al. [41]. A comparison of κTDEP

ℓ and
κIML
ℓ shows that κIML

ℓ is significantly higher than κTDEP
ℓ

for I4Sn and InTl3, with relative errors of 270 and 500 %.

In Fig. 8 (a) we show the compounds to be screened
in the space spanned by the normalized average mass,
< m >, and standard deviation of the electronegativity,
σχ. The colorbar displays the GPR STD. In the left
panel the initial model is used, in the middle panel the
model is re-trained with κTDEP

ℓ from the first block of 15
actively sampled compounds (red stars), and in the right
panel the model is re-trained with the full 30 compounds
(red and green stars). Dark pockets in the left panel
have high GPR STD, corresponding to high uncertainty
compounds. The GPR STD decreases when compounds
are sampled to the training set, seen as blue discs turn
to gray/white discs. In the left panel, the average GPR
STD of the 100 compounds with the highest GPR STD is
1.7, in the middle panel it is 1.2, and in the right panel, it
is 1.1 – a 35 % reduction compared to the starting point.
The large spread of the actively sampled compounds in
Fig. 8 (a) and (b) shows that the active sampling yields

compounds with a large span of feature values.
A 10 times shuffled 10-fold CV including compounds

from the active sampling with the previously obtained
features gives an R2-score of 0.77 and Spearman corre-
lation of 0.89. Feature selection with SFFS yields 18
features where 11 features are the same before and after
active sampling. The features are shown in Table II. Af-
ter SFFS the shuffled 10-fold CV yields predictions with
an R2-score of 0.81 and Spearman correlation of 0.93.
Next, we compare predictions made by the initial

model, κIML
ℓ , trained on 238 compounds, and the ac-

tive sampling model, κAML
ℓ , trained on 268 compounds.

There are 55 compounds with κAML
ℓ < 2 W/Km that

have κIML
ℓ > 4 W/Km. Tl3Bi and In3Bi have κAML

ℓ

∼ 80 % lower than κML,i
ℓ , with κAML

ℓ of 0.71 and
0.86 W/Km, respectively. Na2TlSb has κAML

ℓ ∼ 35 %
lower than κIML

ℓ , with κAML
ℓ = 0.6 W/Km.

Fig. 9 shows κTDEP
ℓ for the training compounds and

κAML
ℓ for the screened compounds. The range of κTDEP

ℓ
covers the range of κAML

ℓ . κAML
ℓ spans three orders

of magnitude, where the lowest is CsK3 with κAML
ℓ =

0.26 W/Km. BAs is a zincblende compound known
for its high thermal conductivity [105] and is the com-
pound with highest κAML

ℓ in the study with κAML
ℓ =

304.54 W/Km. This compound has been researched for
its potential in thermal management applications, and
experimental thermal conductivity has been measured at
1300 W/Km [106]. Among the other compounds with
κAML
ℓ on the higher end are also BeO with κAML

ℓ =
100.95 W/Km, and BeSe with κAML

ℓ = 76.53 W/Km.
These two compounds have previously been reported
with κℓ = 250 W/Km for BeO, and κℓ = 633 for BeSe,
based on theoretical calculations. While κAML

ℓ signifi-
cantly underestimates the previous values, the ML model
can separate these high κℓ compounds from the rest.

B. Screening of Low Lattice Thermal Conductivity
Compounds

Table I lists the 34 out of the 1573 compounds which
attain κAML

ℓ ≤ 1.30 W/Km and non-zero band gap, Eg,
reported in the Materials Project. The supplemen-
tary materials contain κAML

ℓ for all compounds. An ad-
ditional 89 compounds are listed with Eg = 0 eV in the
Materials Project, which can make them less suit-
able for thermoelectric applications. Note that some of
these might be incorrectly labeled as metallic due to us-
age of standard DFT in the generalized gradient approx-
imation, rather higher level of theory, such as at the
hybrid functional level. In fact, we recently identified
Ba2HgPb, which has very low lattice thermal conduc-
tivity (in the training set listed in Table III), as such a
compound [107]. The Eg for the compounds in Table I
ranges from 0.04 eV (Ba2SnHg) to 4.39 eV (CsCaBr3).
The average mass of the compounds varies significantly,
with the lightest having an average mass of 59.8 u (K3Sb)
and the heaviest having 165.6 u (TlI). The lowest ratio
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FIG. 7: (a) Bars show the GPR STD after each actively sampled compound is added to the training set. Red bars
correspond the first active sampling (AS) block of 15 compounds, and green the second. The orange line shows the
GPR STD from the initial model before active sampling. (b) κTDEP

ℓ and κIML
ℓ for the actively sampled compounds.

between the lightest and heaviest mass of elements in
the compounds is 0.11 (Na2TlBi) and the highest is 0.79
(Ba2AgSb). The compounds range from 2 to 5 atoms in
the primitive cell and span three different space groups:
221 (perovskite), 225 (full-Heusler), and 227 (Laves).
Jaafreh et al. found several compounds containing Cs
with low lattice thermal conductivity in their screening
study [43]. The low lattice thermal conductivity was at-
tributed to low phonon lifetimes and high anharmonic-
ity. In the same fashion, in this work we identify 10
Cs-containing compounds to have κAML

ℓ < 1.30 W/Km.

Seventeen of the compounds in Table I have not pre-
viously to our knowledge, been identified as low-lattice
thermal conductivity compounds. These are shown with
bold text, while seventeen other compounds have previ-
ously been researched. The full-Heusler Ba2AgSb has
κAML
ℓ = 0.47 W/Km and κℓ of 1.4 W/Km [108] has

previously been calculated, where the low κℓ was at-
tributed to strong phonon anharmonicity. Ba2AgSb and
Ba2AgBi have also shown to have low calculated κℓ and

ZT ≈ 1 [109]. He et al. identified a class of full-Heuslers
X2Y Z, X = Ca, Sr, and Ba, Y = Au, Z = Sn, Pb, As,
Sb, and Bi, with low κℓ using high-throughput screen-
ing [87]. We find one compound with X = Ca, five with
X = Sr, and four compounds with X = Ba to have
κAML
ℓ ≤ 1.30 W/Km.

The full-Heusler Na2TlSb is one of the low lattice
thermal conductivity compounds we identified, κAML

ℓ =
0.60 W/Km. It is on the convex hull with Eg = 0.38 eV
reported in Materials Project. A separate TDEP
calculation is performed to validate the ML prediction,
resulting in κTDEP

ℓ = 0.50 W/Km. The standard devi-
ation of the electronegativity of the atoms in the primi-
tive cell is high, corresponding to a κTDEP

ℓ on the lower
end. While previous research has identified low κℓ full-
Heuslers, Na2TlSb distinguishes itself by having a very
large mass ratio between the lightest and heaviest, i.e.
Na and Tl elements.

Fig. 10 shows the phonon dispersions, phonon life-
times, spectral κTDEP

ℓ , and site-projected density of
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FIG. 9: Distribution of κTDEP
ℓ for training compounds

and actively sampled compounds (bottom horizontal
axis) and κAML

ℓ for screened compounds (top horizontal
axis).

states (DOS) for Na2TlSb at T = 300 K. There are
two frequency gaps in the phonon dispersions (panel
(a)), between acoustic branches and low-energy optical
branches, and between low-energy optical branches and
high-energy optical branches. There is a flat acoustic
mode (blue in panel (a)) in the U |K − Γ direction. This
mode corresponds to low-velocity phonons with lifetimes
on the higher end (blue markers in panel (b)). The
combination of low phonon velocity and high lifetimes
can yield low κℓ seen from Eq. 3. Low-energy acoustic
phonons (green and orange) have the highest phonon life-
times. These phonons are reflected in the spectral κTDEP

ℓ
(panel (c)) which peaks in this energy range. Acous-
tic phonons in the energy range 0.5-5.0 meV contribute
∼ 75 % to κTDEP

ℓ . Interestingly, there is also a con-
tribution to κTDEP

ℓ from low energy optical phonons,
corresponding to an increase in the spectral κTDEP

ℓ at
∼ 9 meV. A comparison of the phonon dispersions and
DOS (panel (d)) reveals that the different atoms vibrate
at different energies separated by the phonon gaps – a
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TABLE I: Compounds with lowest κAML
ℓ at 300 K with

EMP
g > 0 eV from the Materials Project

database [48].

.

Formula mp-id κAML
ℓ [W/Km] EMP

g [eV]

Ba2AgSb mp-984720 0.47 0.21
Ba2AgBi mp-1183207 0.50 0.06
Ba2SnHg mp-867912 0.56 0.04
Na2TlSb mp-866132 0.60 0.38
CsRb2Bi mp-1185546 0.64 0.19
CsK2Bi mp-581024 0.67 0.86
KBi2 mp-23279 0.68 0.14
K2RbBi mp-1184754 0.70 0.14
CsRb2Sb mp-984761 0.73 0.65
K2RbSb mp-976148 0.80 0.69
Ba2AsAu mp-861937 0.81 0.52
K3Bi mp-568516 0.86 0.13
Sr2BiAu mp-867193 0.87 0.39
TlI mp-23197 0.91 0.43
Rb3Sb mp-33018 0.96 1.48
Sr2SnHg mp-867169 0.98 1.81
RbGeI3 mp-571458 1.01 0.55
K3Sb mp-10159 1.01 0.68
CsK2As mp-1183938 1.02 0.71
Sr2HgPb mp-867207 1.05 0.12
CsRbAu2 mp-1183931 1.06 0.71
CsCdBr3 mp-570231 1.09 0.70
Ca2AsAu mp-867113 1.11 0.20
RbAu mp-30373 1.13 0.37
Sr2HgGe mp-1187086 1.13 0.05
CsCaBr3 mp-30056 1.13 4.39
RbCaBr3 mp-1209227 1.14 4.08
KRbAu2 mp-1184997 1.16 0.09
CsPbBr3 mp-600089 1.19 1.78
KI mp-22901 1.22 3.24
Sr2ZnPb mp-1187098 1.25 0.05
CsSnBr3 mp-27214 1.26 0.60
NaTl2Bi mp-865145 1.26 0.20
Cs2HgTe mp-1185537 1.30 1.80

possible consequence of the large mass variation. The
blue line in the DOS shows that Tl vibrations dominate
in the acoustic range, while Sb contributes to low-energy
optical phonons (orange), and Na to high-energy optical
phonons (purple).
Ca3AsBr3 is the first compound selected during active

sampling. It has seven atoms in the primitive cell, space
group 221, Eg = 1.67 eV, and relatively low κTDEP

ℓ =
3.8 W/Km. Fig. 10 panels (e)-(h) show the phonon dis-
persions, lifetimes, spectral κTDEP

ℓ , and phonon DOS.
The high lifetimes above 10−10 s correspond to the two
low-energy acoustic branches (blue and orange). A sub-
stantial contribution to κTDEP

ℓ of ∼ 55 % originates from
nine low to medium energy optical branches in the range
7.5-17.5 meV. The DOS shows that phonons in the acous-
tic region originate from Br vibrations, while high-energy
optical phonons stem from Ca vibrations. Although Br
and As have similar mass, As contributes less in the
acoustic region. For this compound, unlike for Na2TlSb,
the different atoms vibrate in a wide range of energies,

possibly because of the relatively low mass variation in
Ca3AsBr3.
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FIG. 10: (a) Phonon dispersions, (b) phonon lifetimes, (c) spectral κTDEP
ℓ , and (d) site-projected DOS for

Na2TlSb. The coloring in panels (a) and (b) corresponds to phonon branches. The coloring in panel (d) corresponds
to atoms. In (d) the PDOS for equivalent atoms is summed. (e)-(h) are the same plots for Ca3AsBr3.

IV. SUMMARY AND CONCLUSION

In this paper a machine learning (ML) model was
trained to predict the lattice thermal conductivity, κℓ,
of 1573 cubic compounds in the Materials Project
database. The computed κℓ used for training was
obtained using density functional theory (DFT) and
the temperature-dependent effective potential method.

Rather simple features based on atomic properties and
the Voronoi structure were used. No DFT calculations
were needed to obtain the features. We first demon-
strated that active sampling based on uncertainties from
Gaussian process regression performed better than ran-
dom sampling. The active sampling model achieved accu-
rate predictions with fewer training compounds; a crucial
component in ML for the computational expensive κℓ. A
total of 30 compounds were actively sampled from the
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Materials Project and added to the training set. The
model identified 34 low κℓ compounds (≤ 1.3 W/Km)
with band gaps that could be explored for thermoelectric
applications. The full-Heusler Na2TlSb achieved low ML
predicted κℓ = 0.6 W/Km. To validate the prediction
we calculated the κℓ using DFT and the temperature-
dependent effective potential method and obtained a
κℓ = 0.5 W/Km. The low phonon velocities and phonon
lifetimes in Na2TlSb were shown to contribute to the low
κℓ.
Active sample selection enables the expansion of train-

ing sets to include other compound classes straightfor-
wardly. It is also possible to include compounds with
sublattice substitutions to expand the compound space
to include more promising low κℓ candidates. Model
building and exploration can be executed with on-the-fly
generation of prediction uncertainties, serving as a guide-
line pointing to compounds to sample next. As the active
sampling scheme attempts to identify compounds dissim-
ilar to the ones in the training set, it could be likely that
dynamically unstable compounds are included. An em-

pirical or ML model predicting dynamical stability would
be a complement to the selection scheme, enabling robust
compound exploration in future studies yielding low κℓ

compounds dissimilar to typical ones.
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TABLE II: Features used for training the GPR model. The features obtained from feature selection are marked by x
in the two rightmost columns. The feature importances are shown in parenthesis. Further information is detailed in

Sec. II C

Feature Description SFFS before ac-
tive sampling

SFFS after ac-
tive sampling

< r > Average covalent radius x (0.098) x (0.232)
m̄(r) Median covalent radius x (0.066) x (0.182)
σ(r) Standard deviation covalent radius - x (0.045)
< χ > Average electronegativity - -
m̄(χ) Median electronegativity - -
σ(χ) Standard deviation electronegativity x (0.328) x (0.126)
< µdip > Average dipole polarizability x (0.097) x (0.060)
m̄(µdip) Median dipole polarizability x (0.045) -
σ(µdip) Standard deviation dipole polarizability - -
< m > Average atomic mass - -
m̄(m) Median atomic mass x (0.034) -
σ(m) Standard deviation atomic mass - -
< Nval > Average number of valence electrons x (0.092) x (0.062)
m̄(Nval) Median number of valence electrons x (0.187) x (0.146)
σ(Nval) Standard deviation number of valence electrons - -
< Ns > Average number of s electrons - -
m̄(Ns) Median number of s electrons - x (0.037)
σ(Ns) Standard deviation number of s electrons - -
< Np > Average number of p electrons - -
m̄(Np) Median number of p electrons x (0.066) -
σ(Np) Standard deviation number of p electrons - -
< Nd > Average number of d electrons - -
m̄(Nd) Median number of d electrons - -
σ(Nd) Standard deviation number of d electrons - -
< Nf > Average number of f electrons - -
m̄(Nf) Median number of f electrons - -
σ(Nf) Standard deviation number of f electrons - -
Nele Number of elements x (0.048) -
<

∑
n Lper,n > Average sum of face perimeters of Voronoi polyhedrons - x (0.044)

m̄(
∑

n Lper,n) Median sum of face perimeters of Voronoi polyhedrons x (0.051) x (0.053)
σ(

∑
n Lper,n) Standard deviation sum of face perimeters

of Voronoi polyhedrons
x (0.058) -

< Vcovrad/VVor > Average volume of sphere defined by covalent radius
divided by the volume of the Voronoi polyhedron

x (0.069) x (0.127)

m̄(Vcovrad/VVor) Median volume of sphere defined by covalent radius
divided by the volume of the Voronoi polyhedron

x (0.033) x (0.027)

σ(Vcovrad/VVor) Standard deviation volume of sphere defined by covalent
radius divided by the volume of the Voronoi polyhedron

- x (0.045)

<
∑

n Lper,n(r + rn) > Average product of face perimeter and
sum of covalent radius of atom neighbors

x (0.032) x (0.082)

m̄(
∑

n Lper,n(r + rn)) Median product of face perimeter and sum
of covalent radius of atom neighbors

- -

σ(
∑

n Lper,n(r + rn)) Standard deviation product of face perimeter and
sum of covalent radius of atom neighbors

x (0.146) x (0.092)

< VVor > Average Voronoi polyhedron volume - x (0.004)
m̄(VVor) Median Voronoi polyhedron volume - -
σ(VVor) Standard deviation Voronoi polyhedron volume - -
< (

∑
n Lper,n)

2/
∑

n L2
per,n > Average effective coordination number x (0.071) x (0.093)

m̄((
∑

n Lper,n)
2/

∑
n L2

per,n) Median effective coordination number x (0.060) -
σ((

∑
n Lper,n)

2/
∑

n L2
per,n)) Standard deviation effective coordination number x (0.054) x (0.140)

< Ncor > Average coordination number - -
m̄(Ncor) Median coordination number - -
σ(Ncor) Standard deviation coordination number - -
S1 1st Steinhardt’s parameter - -
S2 2nd Steinhardt’s parameter x (0.030) -
S3 3rd Steinhardt’s parameter - -
S4 4th Steinhardt’s parameter - -
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TABLE III: Calculated κTDEP
ℓ at 300 K for 268 compounds used in training. The actively sampled compounds are

shown in bold.

κℓ [W/Km] κℓ [W/Km] κℓ [W/Km] κℓ [W/Km] κℓ [W/Km]

Ag2S 0.19 CsBr 2.66 HfPdPb 9.33 TaCoPb 15.60 TiPdGe 23.11
CsRb3 0.20 CuCl 2.69 TaOsBi 9.33 HfPtSn 15.70 VRuAs 23.19
KRb3 0.24 Rb2O 2.80 SrF2 9.54 HfPdGe 15.70 TiIrAs 23.30
K3Na 0.29 RbI 2.82 TaRhPb 9.61 ZrGeRu2 15.94 TaFeAs 24.09
CuCl 0.38 CsI 2.93 NbIrPb 9.74 HfNiPb 16.03 NbFeSb 24.10
Na2TlBi 0.39 CaMg3 3.10 Li2Te 9.90 TiSnRu2 16.08 TaOsSb 24.70
I4Sn 0.41 RbF 3.16 ZrPdPb 10.05 ZrNiSn 16.18 NbOsAs 25.21
Ba2BiAu 0.41 BaBiK 3.17 LaOF 10.14 TeRuZr 16.35 VCoGe 25.28
CsAu 0.45 Li2TlBi 3.18 MgTe 10.24 ZrPdGe 16.40 TaCoGe 25.52
Ba2HgPb 0.49 RbBr 3.19 KF 10.35 NbCoPb 16.41 TaRhGe 25.68
Cu2S 0.50 AgI 3.20 ZrPtPb 10.37 HfGeRu2 16.47 GaNiNb 25.76
CsK2Bi 0.53 LiPt2 3.23 HfIrBi 10.44 F3Mg3N 16.50 NbIrGe 26.08
Ba2SbAu 0.56 Li2CaSi 3.41 CrGa4 10.45 TiNiSn 16.56 TaRuAs 26.08
TlBr 0.56 Rb2S 3.46 TiIrBi 10.58 VCoSn 17.32 AlAuHf 26.28
InTl3 0.59 Cu3As 3.48 NiZn 10.69 TaIrSn 17.51 GeFeW 26.50
AgI 0.61 Li2InBi 3.59 Be2Cu 11.02 TaRhSn 17.63 VOsAs 26.81
Bi2Cs 0.79 Sr3BiN 3.67 TaRuBi 11.08 NbOsSb 17.64 TaFeSb 27.05
Sr2SbAu 0.82 LaBiPd 3.74 HfRhBi 11.10 ZrIrSb 17.65 VRhGe 27.12
MgHg3 0.83 Li3S4V 3.81 ZrIrBi 11.14 ZrRhSb 17.76 TaOsAs 27.20
TlCl 0.84 Ca3AsBr3 3.82 VIrSn 11.19 HfNiGe 17.77 VIrGe 27.54
AgCl 0.93 YNiP 3.84 BiNiSc 11.37 HfRhSb 17.82 GaPtTa 27.93
Ca2SbAu 0.94 AgCl 3.88 ZrIrAs 11.45 HfNiSn 17.85 TiRhAs 28.42
AgBr 0.96 LiBr 4.21 ScSbPt 11.51 NbIrSn 18.08 SiCoTa 28.79
Hg4Ni 1.12 CdPNa 4.51 NbOsBi 11.64 NbFeBi 18.30 TaIrGe 29.03
AgBr 1.13 RbF 4.60 TaTlO3 11.66 ZrNiGe 18.30 NbCoGe 29.24
MgZn2 1.18 HgSe 4.64 ZrAsIr 11.70 HfPtGe 18.39 ReW3 29.32
Al2Ba 1.22 Ca2CdPb 4.83 ZrRhBi 11.73 ZrCoBi 18.41 TiCoAs 29.49
KNa2Bi 1.26 BaO 4.88 ScNiP 11.76 ZrSbRh 18.62 NbRuAs 29.65
Cs2Se 1.35 LiCaAs 4.99 NbRhPb 11.83 TiTeRu 18.64 NbRhGe 29.85
YbPd 1.36 Au2S 5.15 VRhSn 11.86 HfCoAs 18.84 TiCoBi 30.50
LaPtSb 1.37 CdF2 5.17 ScTeRh 12.41 ZnSe 18.87 VFeAs 30.58
RbCl 1.38 CePt3 5.20 ScSbPd 12.47 HfRhAs 18.88 VGaFe2 33.72
Ba3Sr 1.50 Cu3TaTe4 5.23 Li2Se 12.97 ZrSnRu2 18.92 LaAs 34.49
KNa2Sb 1.53 Cu2O 5.49 AlGeLi 13.00 TaFeBi 19.06 NbCoSi 34.80
Hg4Pt 1.54 LaY3 5.55 LiCdAs 13.04 TiRhSb 19.07 NbFeAs 35.39
Cd3Pd 1.71 RbBr 5.58 TiRhBi 13.12 NbRuSb 19.19 GaAs 38.31
LaRhTe 1.72 Ca2Ge 5.72 CdS4Zn3 13.14 NbCoSn 19.51 VSiRh 42.88
CaLi2 1.77 BrK 5.98 ZrPtGe 13.50 LaP 19.81 LiBSi 43.98
TlPdF3 1.77 LiZnSb 6.01 VRuSb 13.72 TiIrSb 19.89 AlVFe2 45.89
AuBe 1.78 Cu3LiO3 6.50 TiPdSn 13.80 HfCoBi 19.90 GeSi7 59.48
TlZnF3 1.86 Ca3SbN 7.02 NbRuBi 13.89 HfCoSb 19.93 AlBi 61.10
Pt3Pb 2.02 TePb 7.07 TiPtSn 14.12 HfSnRu2 20.32 RuO2 78.94
CaCl2 2.04 HfBRh3 7.12 ZrPdSn 14.25 VFeSb 20.44 BeTe 89.09
Sr3Ca 2.04 SnTe 7.20 VOsSb 14.34 TaRuSb 21.24 LiBeSb 92.45
NaZnAs 2.06 GeTe 7.57 HfIrAs 14.43 HfIrSb 21.32 SiC 409.91
Ca2HgPb 2.06 AuZr3 8.52 ZrNiPb 14.45 TaCoSn 21.57 BP 442.90
BaPd2 2.09 BiPdSc 8.61 AcAlO3 14.54 B6Ca 22.01 BN 658.74
CsF 2.20 TiPtPb 8.71 HfPdSn 14.55 ZrCoSb 22.20 C 2039.96
RbI 2.22 TaIrPb 8.72 HfSiRu2 14.67 TiNiGe 22.22
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InAg3 2.63 CuBr 9.31 NbRhSn 15.33 TiPtGe 22.74
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Philipsen, S. Lebègue, J. Paier, O. A. Vydrov, and J. G.
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ABSTRACT

A finite electronic band gap is a standard filter in high-throughput screening of materials using density functional theory (DFT). However,
because of the systematic underestimation of band gaps in standard DFT approximations, a number of compounds may be incorrectly pre-
dicted metallic. In a more accurate treatment, such materials may instead appear as low band gap materials and could have good thermoelec-
tric properties if suitable doping is feasible. To explore this possibility, we performed hybrid functional calculations on 1093 cubic materials
listed in the MATERIALS PROJECT database with four atoms in the primitive unit cell, spin-neutral ground state, and a formation energy within
0.3 eV of the convex hull. Out of these materials, we identified eight compounds for which a finite band gap emerges. Evaluating electronic
and thermal transport properties of these compounds, we found the compositions MgSc2Hg and Li2CaSi to exhibit promising thermoelectric
properties. These findings underline the potential of reassessing band gaps and band structures of compounds to identify additional potential
thermoelectric materials.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0058685

Thermoelectrics, with their ability to turn temperature gradients
into electricity, can contribute to making the transition into a green
economy with reduced greenhouse emission by recovering some of
the waste heat generated in various industrial processes.1–3 While ther-
moelectric materials have traditionally not been sufficiently efficient
for this task, great strides forward have been made in recent years.
This has in turn intensified the hunt for novel thermoelectric materi-
als,4–10 including the adoption of high-throughput screening and
material informatics11,12 approaches.

The thermoelectric figure-of-merit ZT ¼ rS2T=ðje þ j‘Þ, which
is the measure of the conversion efficacy, is given by the conductivity r,
the Seebeck coefficient S, the electronic je, and lattice thermal j‘ con-
ductivity. Among these, all but j‘ are strongly linked to the electronic
band structure. The electronic band gap Egap is a particularly important
parameter, determining the temperature for the onset of minority car-
rier transport, which causes a marked drop in S. It also has an indirect
influence on the band curvature, i.e., as revealed by k � p-theory.13
Following Sofo and Mahan,14 a band gap of approximately 6–10 kBT

has been traditionally considered attractive. However, their analysis was
based on a direct band gap model with a single valley. Given its link to
the band curvature, the band gap Egap can also be viewed as a scale fac-
tor making a low band gap material more prone to exhibit multiple val-
leys in multipocketed band structures;15 nonetheless, the need to limit
bipolar transport has made the existence of a finite band gap a standard
criterion in most screening studies.7 Recently, attention has been broad-
ened to other types of materials: Semi-metals with a strong asymmetry
between conduction and valence bands have been marked as potential
thermoelectric materials.16,17 Gapped metallic systems, which possess a
band gap within the conduction or valence band, could also potentially
exhibit good thermoelectric properties, once the band edge is sufficiently
doped toward the Fermi level.18

A completely different reason for not discarding predicted metal-
lic systems is that a number of them might have been mislabeled due
to various approximations used in density functional theory (DFT).19

In particular, the commonly used generalized gradient approximation
(GGA) systematically underestimates band gaps.20,21 This is less the
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case for hybrid functionals,22 which mix a fraction of “exact” Fock
exchange with the GGA.23,24 In the empirical linear relations between
experimental and computed band gaps of Morales-Garc�ıa et al.,21 the
offset of about 0.92 eV roughly indicates that compounds with a band
gap smaller than this are likely to be incorrectly predicted as metallic
by GGA.

In this work, we computed the band gap of 1093 cubic nonmag-
netic materials listed in the MATERIALS PROJECT database25 with four
atoms in the primitive unit cell and a formation energy within 0.3 eV
of the convex hull. These compounds include the full Heusler com-
pounds with space group Fm�3m, inverse Heuslers with space group
F�43m (both with composition X2YZ), and binary AB3 compounds.
This reassessment resulted in eight compounds that were possibly mis-
labeled metallic by GGA. DFT calculations were performed using the
VASP26–29 software package. The consistent-exchange van der Waals
vdW-DF-cx functional30,31 was used for obtaining relaxed crystal
structures and lattice thermal conductivities. While mostly used for
modeling non-covalently bonded solids, recent studies have shown
that vdW-DF-cx can improve structure and energetics compared to
that of GGA of ionic and covalently bonded structures as well.32–34 To
identify materials that could possess a band gap at the hybrid level, we
first computed the band gap using merely a 4� 4� 4 k-sampling of
the Brillouin zone, including spin–orbit coupling using the HSE0623,35

hybrid functional. Such a low sampling can result in inaccurate Kohn-
Sham energies, and we acknowledge that there is a slight risk that
some compounds with very low band gap are missed. However, gener-
ally, the coarse sampling will cause a few systems to incorrectly appear
with a finite or too large band gap. All systems with a finite band gap
in the first stage were, therefore, reassessed with a 12� 12� 12
k-point sampling of the Fock operator and charge density, which
is used to compute the band structure path using 101 k-points along
W-L-C-X-K to obtain an accurate band gap. For the new band gap
compounds, the electronic transport properties were computed with
the Boltzmann transport equation in the constant relaxation time
approximation with s ¼ 10�14 s using BOLTZTRAP.36 To ensure dense
grid sampling, we used a corrected k � p-based interpolation
method,37,38 using the same computational parameters as in Ref. 39.
The lattice thermal conductivity, j‘, was computed using the
temperature-dependent effective potential (TDEP) method.40,41 A
canonical ensemble was used to generate 50 uncorrelated configura-
tions based on a 3� 3� 3 repetition of the relaxed primitive cell.42

The positions and forces of the supercells allowed for extraction of sec-
ond- and third-order force constants. The cutoff for second-order
interactions was set to 7 Å, while for third-order, a cutoff slightly larger
than half the width of the supercell was used. Reciprocal space discreti-
zation for Brillouin zone integrations was done using a 35� 35� 35
q-point grid. Isotope scattering was also included. All supplementary
GGA calculations in this Letter were based on the version of
Perdew–Burke–Ernzerhof (PBE).43

Among the 1093 compounds materials examined, eight com-
pounds have a band gap at the HSE06 level as listed in Table I; corre-
sponding band structures are provided in the supplementary material
(SM).

Figure 1 shows the computed j‘ for the identified compounds.
Very low values of j‘ were found for Ba2HgPb ranging from
0.46W/mK at 300K to 0.17W/mK at 800K. This compound was also
studied by He et al.44 predicting values of j‘ somewhat larger than

ours. Possible reasons for this difference include their use of a com-
pressive sensing lattice dynamic technique45 to obtain third-order
force constants and other technical details, differing exchange correla-
tion functionals, and the phonon-mode renormalization inherit to
TDEP. Comparing TDEP and PHONOPY, Feng et al.46 found lower j‘
for TDEP than with the standard-finite difference approach and
argued that TDEP is better suited to describe low-j‘ materials.

Based solely on Fig. 1, only Ba2HgPb, Li2CaSi and MgSc2Hg have
low enough j‘ to conceivably be good thermoelectric materials. Yet, the
literature is riddled with examples of how various disorder-related scat-
tering mechanisms, such as grain boundaries, defects, and substitutions,
can dramatically lower j‘.

47–54 For this reason, we used j‘ ¼ 4W=mK
as the maximum for all materials in further comparisons.

Figure 2 plots the optimal doping concentration against peak ZT
for each of the compounds in temperature steps of 100K from 300 to
800K, for doping concentration between 1019cm�3 and 3� 1021 cm�3.
Based on this plot, we deem Li2CaSi and MgSc2Hg to have great poten-
tial as thermoelectric n-type materials, while MgSc2Hg and AlVFe2 have
some potential as p-type thermoelectrics. n-type AlVFe2 has been stud-
ied earlier theoretically at the hybrid functional level55 and experimen-
tally.56,57 The study of Mikami et al.56 measured ZT in a similar range
once doping and sublattice disorder were introduced. While Li2CaSi is
reported as stable in the Fm�3m Heusler phase in MATERIALS PROJECT;

TABLE I. Properties of new band gap compounds.

Compound No. of valence Ehull (MP) Band gap (eV)

AlVFe2 24 0 0.78
Ba2HgPb 20 0 0.06
HfSnRu2 24 0 0.21
Li2CaSi 10 0 0.01
MgSc2Hg 20 0 0.23
TaInRu2 24 0 0.05
TiSiOs2 24 0 0.55
VGaFe2 24 0 0.66

FIG. 1. Lattice thermal conductivity of identified compounds computed with TDEP.
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experimentally, it has been crystallized in the orthorhombic Pmmm
phase.58 The related Li2CaSn, on the other hand, does crystallize in
the Heusler phase. No experimental realizations of MgSc2Hg are
known to us.

The origin of the high ZT of Li2CaSi andMgSc2Hg can be related
to their band structures as shown in Fig. 3. The band structure of
Li2CaSi exhibits some noticeable features: (i) Dirac points at the C-
point with a band opening of 0.01 eV, (ii) near convergence of a num-
ber of additional bands at the C-point, (iii) electron bands that are flat
in the C-X direction, but dispersive in the X-K direction. In our study,
we find similar features in the band structure of HfSnRu2 and

TaInRu2, which also exhibit relatively high ZT for n-type doping.
While Bilc et al.55 argued that band structures of this type can give rise
to high ZT due to the their effectively low-dimensional transport, Park
et al.59 demonstrated that flat-and-dispersive band structures, specifi-
cally for the case of Fe2TiSi, can cause large effective scattering phase-
space, which significantly reduces the power factor. In contrast,
MgSc2Hg band structure has a multi-valley structure, in particular, in
the conduction band. In fact, with the exception of the highly disper-
sive band in the X-point, the band structure can be viewed as a partial
realization of a d-function like transport distribution function, which
in the analysis of Mahan and Sofo is optimal for thermoelectric per-
formance.60 Other cubic structures, such as the 10-valence electron
full-Heusler compounds predicted by He et al.,61 also have similarly
attractive band structure features.

Figure 4(a) shows Pisarenko-type plots for the thermoelectric
properties of MgSc2Hg at 300, 600, and 800K, while Fig. 4(b) shows
the underlying distribution functions giving rise to these properties.
They are related to through the transport distribution function Rð�Þ as
follows:36,60

r ¼ e2
ð
d�Rð�� lFÞf1ð�� lFÞ; (1)

rS ¼ ðe=TÞ
ð
d� ð�� lFÞRð�� lFÞf1ð�� lFÞ; (2)

j0 ¼ ð1=TÞ
ð
d�Rð�� lFÞð�� lFÞ2f1ð�� lFÞ; (3)

where lF is the Fermi level and f1 is the Fermi window, given by
the derivative of the Fermi-Dirac function, f1ð�� lFÞ ¼ �dfFD=d�.
The open-circuit electronic thermal conductivity j0 is related to the
closed-circuit by je ¼ j0 � TrS2. The temperature dependence stems
explicitly from the Fermi-Dirac function and implicitly from the tem-
perature dependence of lF. A dashed line indicates the peak of Rð�Þ
for comparison with the band structure as shown in Fig. 3. Figures
show that for MgSc2Hg, the magnitude of je is a key factor limiting
ZT at elevated temperatures. They also show that a minimum in je at
600 and 800K occurs at a higher doping concentration than what
maximizes S. They both reach extreme values due to a minimum in
the bipolar transport, but the second moment ð�� lFÞ2 entering into
j0 [Eq. (3)] shifts the optimum of je to a higher doping concentration.
The figure also indicates that the rapidly rising Rð�Þ up to the peak
occurring at 0.55 eV explains why S can be quite large despite a low
band gap even at high doping concentrations. At the same time, it
shows that this rapid rise is the cause of the large values of je at high
temperatures.

Figures 4(c) and 4(d) show corresponding results for Li2CaSi. It
is interesting to note that while the band gap is tiny, the low Rð�Þ in
the valence band makes this compound resemble a wide band-gap
semiconductor. In fact, at optimal doping concentration, the bipolar
transport almost entirely occurs within the conduction band. While
the limited bipolar transport results in higher S at lower doping con-
centrations, Li2CaSi lacks the beneficial peak in Rð�Þ present in
MgSc2Hg, which limits je at higher temperatures and doping concen-
trations. The low band gap of Li2CaSi makes it interesting to also con-
sider the properties of Li2CaSi as predicted at the GGA level. In this
case, a finite gap is retained at the C point but the material is self-
doped and the flat-and-dispersive band crosses the Fermi level at zero

FIG. 2. Optimized ZT at different temperatures from 300 to 800 K with arrows indi-
cating increasing temperature in steps of 100 K. The vertical axis gives the opti-
mized ZT, while the horizontal gives the corresponding doping concentration.

FIG. 3. Electronic band structures of Li2CaSi and MgSc2Hg.
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extrinsic doping. An optimal ZT¼ 0.76 at 800K is predicted—further
details in the supplementary material.

While we in this study assessed the properties of 1093 four-atom
materials using sub-converged hybrid functional calculations, other
approaches could also be worth exploring. We investigated the poten-
tial of analyzing the GGA-level density of states, in which “narrowing”
could hint of a finite band gap. Details can be found in the supplemen-
tary material. Interestingly, this approach clearly indicated all com-
pounds except the MgSc2Hg compound; precisely, the property that
made this material into a promising thermoelectric, i.e., the high den-
sity of states close to the band edges at the hybrid level, made the den-
sity-of-states narrowing at the GGA-level vanish. We, therefore, do
not generally recommend this approach to uncover high performance
thermoelectric materials.

In this Letter, we have demonstrated that the use of GGA-level
band structures can cause promising thermoelectric materials to be
discarded because they are falsely predicted to be metallic. This was
illustrated with the finding of new thermoelectric compounds with a
band gap appearing at the hybrid functional level: Out of the 1093
studied compounds, eight were identified with a band gap by hybrid
calculations and not by GGA calculations. Out of these, a few were
also promising for thermoelectric applications: MgSc2Hg, Li2CaSi, and
to some extent AlVFe2. The Heusler MgSc2Hg compound, in particu-
lar, exhibits excellent potential as a thermoelectric material. We
are not aware of any experimental realization of this compound or

in-depth stability analysis. Moreover, the toxicity of Hg reduces the
attractiveness of this compound for general-purpose applications. In
addition to realizability, we stress that the use of a constant relaxation-
time approximation is a coarse approximation. The inclusion of
proper electron–phonon scattering can have a decisive impact upon
the power factor and predicted ZT properties.62 Another concern is
whether hybrid functionals in fact do provide accurate band structures
for these intermetallic compounds, which can be investigated for
instance by performing GW-level calculations, as earlier done for
selected half Heuslers.63 Despite these caveats, our study clearly under-
lines that high performing thermoelectric materials can be uncovered
through the reassessment of electronic band gaps.

On a final note, it is interesting that three compounds with lowest
j‘ and two of the compounds with the highest n-type ZT violated the
octet rule or the corresponding 18- and 24-electron rules. This viola-
tion is a feature shared with the well-known thermoelectric PbTe and
related compounds.61,64 The existence of lone s-pairs has earlier been
linked to low thermal conductivity.61,65,66 One could speculate that
going beyond GGA could be particularly pertinent for the electronic
band structure of octet violating systems, similar to what we found ear-
lier for PbTe.38

See the supplementary material for computed band structures at
the HSE06 level, density of states at the PBE level of theory, and band
structure and n-type thermoelectric properties of Li2CaSi.

FIG. 4. (a) and (c) Thermoelectric properties of MgSc2Hg [Li2CaSi] as a function of doping concentration at 300, 600, and 800 K. In (b) and (d), the green background shows
the corresponding transport distribution function Rð�Þ. The left and right sides of the vertical axis show the contributions to the first and second moments of the Rð�Þ weighted
by the derivative f1ð�Þ ¼ �dfFDð�Þd�, which is proportional to, respectively, TrS and the closed circuit thermal conductivity j0. Results for 600 K omitted for clarity in (d).
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