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Abstract

The definition of target volumes and organs at risk (OARs) is a critical part of
radiotherapy planning. In routine practice, this is typically done manually by
clinical experts who contour the structures in medical images prior to dosimetric
planning. This is a time-consuming and labor-intensive task. Moreover, man-
ual contouring is inherently a subjective task and substantial contour variability
can occur, potentially impacting on radiotherapy treatment and image-derived
biomarkers. Automatic segmentation (auto-segmentation) of target volumes and
OARs has the potential to save time and resources while reducing contouring vari-
ability. Recently, auto-segmentation of OARs using machine learning methods has
been integrated into the clinical workflow by several institutions and such tools
have been made commercially available by major vendors. The use of machine
learning methods for auto-segmentation of target volumes including the gross tu-
mor volume (GTV) is less mature at present but is the focus of extensive ongoing
research.

The primary aim of this thesis was to investigate the use of machine learning meth-
ods for auto-segmentation of the GTV in medical images. Manual GTV contours
constituted the ground truth in the analyses. Volumetric overlap and distance-
based metrics were used to quantify auto-segmentation performance. Four differ-
ent image datasets were evaluated. The first dataset, analyzed in papers I–II, con-
sisted of positron emission tomography (PET) and contrast-enhanced computed
tomography (ceCT) images of 197 patients with head and neck cancer (HNC). The
ceCT images of this dataset were also included in paper IV. Two datasets were
analyzed separately in paper III, namely (i) PET, ceCT, and low-dose CT (ldCT)
images of 86 patients with anal cancer (AC), and (ii) PET, ceCT, ldCT, and T2
and diffusion-weighted (T2W and DW, respectively) MR images of a subset (n =
36) of the aforementioned AC patients. The last dataset consisted of ceCT images
of 36 canine patients with HNC and was analyzed in paper IV.

In paper I, three approaches to auto-segmentation of the GTV in patients with
HNC were evaluated and compared, namely conventional PET thresholding, clas-
sical machine learning algorithms, and deep learning using a 2-dimensional (2D)
U-Net convolutional neural network (CNN). For the latter two approaches the
effect of imaging modality on auto-segmentation performance was also assessed.
Deep learning based on multimodality PET/ceCT image input resulted in superior
agreement with the manual ground truth contours, as quantified by geometric over-
lap and distance-based performance evaluation metrics calculated on a per patient
basis. Moreover, only deep learning provided adequate performance for segmenta-
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tion based solely on ceCT images. For segmentation based on PET-only, all three
approaches provided adequate segmentation performance, though deep learning
ranked first, followed by classical machine learning, and PET thresholding. In pa-
per II, deep learning-based auto-segmentation of the GTV in patients with HNC
using a 2D U-Net architecture was evaluated more thoroughly by introducing new
structure-based performance evaluation metrics and including qualitative expert
evaluation of the resulting auto-segmentation quality. As in paper I, multimodal
PET/ceCT image input provided superior segmentation performance, compared
to the single modality CNN models. The structure-based metrics showed quan-
titatively that the PET signal was vital for the sensitivity of the CNN models,
as the superior PET/ceCT-based model identified 86 % of all malignant GTV
structures whereas the ceCT-based model only identified 53 % of these structures.
Furthermore, the majority of the qualitatively evaluated auto-segmentations (∼
90 %) generated by the best PET/ceCT-based CNN were given a quality score
corresponding to substantial clinical value. Based on papers I and II, deep learning
with multimodality PET/ceCT image input would be the recommended approach
for auto-segmentation of the GTV in human patients with HNC.

In paper III, deep learning-based auto-segmentation of the GTV in patients with
AC was evaluated for the first time, using a 2D U-Net architecture. Furthermore,
an extensive comparison of the impact of different single modality and multimodal-
ity combinations of PET, ceCT, ldCT, T2W, and/or DW image input on quan-
titative auto-segmentation performance was conducted. For both the 86-patient
and 36-patient datasets, the models based on PET/ceCT provided the highest
mean overlap with the manual ground truth contours. For this task, however,
comparable auto-segmentation quality was obtained for solely ceCT-based CNN
models. The CNN model based solely on T2W images also obtained acceptable
auto-segmentation performance and was ranked as the second-best single modality
model for the 36-patient dataset. These results indicate that deep learning could
prove a versatile future tool for auto-segmentation of the GTV in patients with
AC.

Paper IV investigated for the first time the applicability of deep learning-based
auto-segmentation of the GTV in canine patients with HNC, using a 3-dimensional
(3D) U-Net architecture and ceCT image input. A transfer learning approach
where CNN models were pre-trained on the human HNC data and subsequently
fine-tuned on canine data was compared to training models from scratch on canine
data. These two approaches resulted in similar auto-segmentation performances,
which on average was comparable to the overlap metrics obtained for ceCT-based
auto-segmentation in human HNC patients. Auto-segmentation in canine HNC
patients appeared particularly promising for nasal cavity tumors, as the average
overlap with manual contours was 25 % higher for this subgroup, compared to the
average for all included tumor sites.
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In conclusion, deep learning with CNNs provided high-quality GTV auto-
segmentations for all datasets included in this thesis. In all cases, the best-
performing deep learning models resulted in an average overlap with manual con-
tours which was comparable to the reported interobserver agreements between
human experts performing manual GTV contouring for the given cancer type and
imaging modality. Based on these findings, further investigation of deep learning-
based auto-segmentation of the GTV in the given diagnoses would be highly war-
ranted.
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Sammendrag

Definisjon av m̊alvolum og risikoorganer er en kritisk del av planleggingen av
str̊alebehandling. I praksis gjøres dette vanligvis manuelt av kliniske eksperter
som tegner inn strukturenes konturer i medisinske bilder før dosimetrisk plan-
legging. Dette er en tids- og arbeidskrevende oppgave. Manuell inntegning er
ogs̊a subjektiv, og betydelig variasjon i inntegnede konturer kan forekomme. Slik
variasjon kan potensielt p̊avirke str̊alebehandlingen og bildebaserte biomarkører.
Automatisk segmentering (auto-segmentering) av m̊alvolum og risikoorganer kan
potensielt spare tid og ressurser samtidig som konturvariasjonen reduseres. Auto-
segmentering av risikoorganer ved hjelp av maskinlæringsmetoder har nylig blitt
implementert som del av den kliniske arbeidsflyten ved flere helseinstitusjoner,
og slike verktøy er kommersielt tilgjengelige hos store leverandører av medisinsk
teknologi. Auto-segmentering av m̊alvolum inkludert tumorvolumet gross tumor
volume (GTV) ved hjelp av maskinlæringsmetoder er per i dag mindre teknologisk
modent, men dette omr̊adet er fokus for omfattende p̊ag̊aende forskning.

Hovedm̊alet med denne avhandlingen var å undersøke bruken av maskinlærings-
metoder for auto-segmentering av GTV i medisinske bilder. Manuelle GTV-
inntegninger utgjorde grunnsannheten (the ground truth) i analysene. Mål p̊a vol-
umetrisk overlapp og avstand mellom sanne og predikerte konturer ble brukt til å
kvantifisere kvaliteten til de automatisk genererte GTV-konturene. Fire forskjel-
lige bildedatasett ble evaluert. Det første datasettet, analysert i artikkel I–II,
bestod av positronemisjonstomografi (PET) og kontrastforsterkede computerto-
mografi (ceCT) bilder av 197 pasienter med hode/halskreft. ceCT-bildene i dette
datasettet ble ogs̊a inkludert i artikkel IV. To datasett ble analysert separat i
artikkel III, nemlig (i) PET, ceCT og lavdose CT (ldCT) bilder av 86 pasienter
med analkreft, og (ii) PET, ceCT, ldCT og T2- og diffusjonsvektet (henholdsvis
T2W og DW) MR-bilder av en undergruppe (n = 36) av de ovennevnte analkreft-
pasientene. Det siste datasettet, som bestod av ceCT-bilder av 36 hunder med
hode/halskreft, ble analysert i artikkel IV.

I artikkel I ble følgende tre tilnærminger til auto-segmentering av GTV evaluert og
sammenlignet for humane pasienter med hode/halskreft: (i) konvensjonell PET-
terskling, (ii) klassiske maskinlæringsalgoritmer og (iii) dyp læring ved bruk av et
2-dimensjonalt (2D) U-Net konvolusjonelt nevralt nettverk (CNN). For de to sist-
nevnte tilnærmingene ble effekten av bildemodalitet p̊a auto-segmenteringsytelsen
ogs̊a undersøkt. Dyp læring basert p̊a multimodale PET/ceCT-bilder resulterte
i signifikant bedre samsvar med de manuelle GTV-konturene, sammenlignet med
de øvrige tilnærmingene. Videre resulterte dyp læring i akseptabel segmenter-
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ingsytelse kun basert p̊a ceCT-bilder. For segmentering kun basert p̊a PET
ga alle tre tilnærmingene adekvat segmenteringsytelse, selv om dyp læring ble
rangert som den beste tilnærmingen, etterfulgt av klassisk maskinlæring og PET-
terskling. I artikkel II ble auto-segmentering av GTV hos humane pasienter med
hode/halskreft ved bruk av en 2D U-Net-arkitektur evaluert mer grundig ved å in-
trodusere nye strukturbaserte ytelsesm̊al og inkludere kvalitativ ekspert-evaluering
av de automatisk genererte GTV-konturene. Som i artikkel I ga CNN-modellen
basert p̊a multimodale PET/ceCT-bilder den beste segmenteringsytelsen, sam-
menlignet med CNN-modeller basert p̊a enten ceCT eller PET-bilder. De struk-
turbaserte ytelsesm̊alene viste kvantitativt at PET-signalet var avgjørende for sen-
sitiviteten til CNN-modellene, ettersom den høyest rangerte PET/ceCT-baserte
modellen identifiserte 86 % av alle GTV-strukturene, mens den ceCT-baserte
modellen bare identifiserte 53 % av disse strukturene. Videre ble majoriteten
av de kvalitativt evaluerte auto-segmenteringene (∼ 90 %) generert av den høyest
rangerte PET/ceCT-baserte CNN-modellen gitt en kvalitetssk̊ar tilsvarende be-
tydelig klinisk verdi. Basert p̊a artikkel I og II, er dyp læring med kombinert
PET/ceCT-bildedata den anbefalte tilnærmingen til auto-segmentering av GTV
hos humane pasienter med hode/halskreft.

I artikkel III ble dyp læring-basert auto-segmentering av GTV hos pasienter med
analkreft evaluert for første gang ved bruk av en 2D U-Net CNN-arkitektur. Videre
ble det utført en omfattende sammenligning av effekten ulike enkeltmodaliteter og
multimodalitets-kombinasjoner av PET, ceCT, ldCT, T2W og/eller DW bildedata
har p̊a den kvantitative auto-segmenteringsytelse. For b̊ade 86-pasient og 36-
pasient-datasettene ga modellene basert p̊a PET/ceCT høyest gjennomsnittlige
overlapp med de manuelle GTV-konturene. I disse analysene ble det imidlertid
oppn̊add sammenlignbar auto-segmenteringskvalitet for utelukkende ceCT-baserte
CNN-modeller. CNN-modellen basert utelukkende p̊a T2W-bilder oppn̊adde ogs̊a
akseptabel auto-segmenteringsytelse og ble rangert som den nest beste enkelt-
modalitets-modellen for datasettet med 36 pasienter. Disse resultatene indikerer at
dyp læring potensielt kan være et allsidig fremtidig verktøy for auto-segmentering
av GTV hos pasienter med analkreft.

I artikkel IV ble dyp læring-basert auto-segmentering av GTV hos hunder med
hode/halskreft evaluert for første gang ved å anvende en 3-dimensjonal (3D) U-Net
CNN-arkitektur og ceCT-bildedata. En overføringslæring-tilnærming der CNN-
modeller ble forh̊andstrent p̊a humane hode/halskreft data og deretter finjustert
p̊a hundedata ble sammenlignet med å trene modeller fra grunnen av p̊a hunde-
data. Disse to tilnærmingene resulterte i lignende auto-segmenteringsytelser, som
i gjennomsnitt var sammenlignbare med ceCT-basert auto-segmentering hos hu-
mane hode/halskreft-pasienter. Auto-segmentering av hode/halskreft i hund virket
spesielt lovende for svulster i nesehulen, ettersom gjennomsnittlig overlapp med
manuelle GTV-konturer var 25 % høyere for denne undergruppen, sammenlignet
med gjennomsnittet for alle inkluderte tumorlokaliteter.
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Dyp læring-basert auto-segmentering resulterte i GTV-konturer av høy kvalitet
for alle datasett inkludert i denne avhandlingen. I alle tilfeller resulterte de høyest
rangerte dyplæringsmodellene i gjennomsnittlig overlapp med manuelle konturer
som var sammenlignbar med rapporterte tall for overensstemmelsen mellom men-
neskelige eksperter som utfører manuell GTV-inntegning for den gitte krefttypen
og avbildningsmodaliteten. Basert p̊a disse funnene vil ytterligere undersøkelse
av dyp læring-basert auto-segmentering av GTV i de gitte diagnosene være svært
berettiget.
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GTV gross tumor volume
HD Hausdorff distance
HD95 95th percentile Hausdorff distance
HECKTOR head and neck tumor segmentation and outcome

prediction
HNC head and neck cancer
HNSCC head and neck squamous cell carcinoma
HPV human papillomavirus
IMRT intensity-modulated radiotherapy
IV intravenous
LASSO least absolute shrinkage and selection operator
LDA linear discriminant analysis
ldCT low-dose computed tomography
LoG Laplacian of Gaussian
LR logistic regression
MICCAI medical image computing and computer assisted

intervention

xvii



MR magnetic resonance
MRI magnetic resonance imaging
MSD median surface distance
OARs organs at risk
PET positron emission tomography
PPV positive predictive value
PTV planning target volume
QDA quadratic discriminant analysis
radiotracer radioactive tracer
ReLU rectified linear unit
RF random forest
SUV standardized uptake value
SVM support vector machines
T2W T2-weighted
TN true negative
TP true positive
TPR true positive rate
VMAT volumetric modulated arch therapy

xviii



Chapter 1

Introduction and aims

Radiotherapy is one of the most widely used cancer treatments [26, 27]. The pri-
mary aim and challenge of radiotherapy is to accurately deliver a sufficiently high
radiation dose to the target volume, eradicating the cancer cells within, while
minimizing concurrent damage to surrounding normal tissues and organs [28, 29].
Modern advances in radiotherapy delivery allow highly conformal doses to the tar-
get volume, thereby reducing radiation-induced normal tissue toxicities [30–34].
However, optimal high-precision radiotherapy requires more accurate definition
of both target volumes and critical normal tissue structures, known as organs at
risk (OARs), compared to conventional radiotherapy techniques. Accurate defi-
nition of target volumes and OARs is, therefore, a critical step of high-precision
radiotherapy planning [35].

In routine clinical practice, the definition of target volumes and OARs is typically
done manually by clinical experts who outline the structure boundaries in medical
images. This process, which is commonly referred to as contouring or delineation,
is time-consuming and labor-intensive [36]. The time spent on contouring has
increased substantially with the advent of high-precision radiotherapy, as multi-
modality image interpretation is used more extensively and more accurate volume
definitions are required [37–39]. Another limitation of manual contouring is its
subjective nature. Considerable lack of contour agreement has been reported in a
range of diagnoses for human experts contouring the same volume (interobserver
variability) [37,40], and, though less frequently studied, lack of agreement also oc-
curs for the same human expert contouring the same volume at different occasions
(intraobserver variability) [35]. Contouring variability could potentially impact on
treatment outcome and quality of life, as inadequate contour definition has been
associated with poorer disease control and increased toxicity [37, 41, 42]. Integra-
tion of automatic segmentation (auto-segmentation) methods in the radiotherapy
planning workflow can reduce interobserver variability and contouring time [43,44],
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thereby potentially improving clinical outcomes and providing the clinical experts
with more time for patient consultations and other tasks. An expected increase in
cancer incidence of almost 50 % within 2040 [45], and the increased focus on adap-
tive radiotherapy strategies, where re-contouring of structures is required during
the course of treatment [46], both emphasize the relevancy of contouring automa-
tion.

The general concept of auto-segmentation for radiotherapy has been studied for
more than two decades, and span methods of varying complexity such as inten-
sity thresholding, atlases, and machine learning algorithms [47–50]. Advances in
computational resources and algorithms, along with increasing dataset sizes has
led to several breakthroughs within the field of artificial intelligence during this
time-period, with deep learning algorithms achieving human-level performance on
various complex tasks outside the medical domain, as summarized in [51]. Deep
learning, which is a subfield of artificial intelligence and machine learning, has
also quickly obtained a central position within medical image analysis over the
past few years [50]. Though still a field of extensive research, clinically accept-
able auto-segmentation of several OARs can be achieved using deep learning with
convolutional neural networks (CNNs) [52, 53] and such tools are currently com-
mercially available [54, 55]. Auto-segmentation of target volumes including the
gross tumor volume (GTV) is to the best of our knowledge not yet commercially
available but is the focus of extensive ongoing research efforts including several
public challenges [56,57].

The overall aim of this thesis was to investigate the use of machine learning meth-
ods for automatic GTV segmentation in medical images. The specific aims were
as follows:

1. To compare and evaluate thresholding methods, classical machine learning
algorithms and deep learning with CNNs for auto-segmentation of the gross
primary tumor volume (GTV-T) and involved nodal volume (GTV-N) in
patients with head and neck cancer (HNC) based on either positron emission
tomography (PET), contrast-enhanced computed tomography (ceCT), or
combined PET/ceCT images (paper I).

2. To further assess CNNs for auto-segmentation of the GTV-T and GTV-N in
HNC patients based on either PET, ceCT, or combined PET/ceCT images
using larger image regions of interest than in paper I, also providing new
quantitative structure-based performance evaluation metrics and qualitative
human performance evaluation of automatically generated contours (paper
II).
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3. To evaluate the use of CNNs for automatic GTV segmentation in patients
with anal cancer (AC), comparing the effects of different single modality
and multimodality combinations of PET, CT and/or MR images on auto-
segmentation performance (paper III).

4. To evaluate the applicability of CNNs for auto-segmentation of the GTV-T
and GTV-N in canine HNC patients based on ceCT images, also assessing the
impact of transfer learning from human HNC patients on auto-segmentation
performance (paper IV).
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Chapter 2

Theoretical background

2.1 Cancer
Cancer refers to a broad group of diseases that originates from mutations in the
genetic material (DNA) of normal cells [58,59]. Cancer progression is characterized
by continual unregulated cell proliferation, which for solid cancers results in the
formation of a malignant primary tumor, also referred to as a malignant neoplasm,
capable of destructive invasion of nearby tissues and subsequent spread to other
parts of the body (metastases) [58,59]. Cancers can be classified according to the
cell type from which they originate and the anatomical site of initial development
[60]. The majority of solid cancers can be broadly classified as either carcinomas,
sarcomas, or lymphomas [58,59]. Carcinomas, which originate from epithelial cells,
account for approximately 80–90 % of all human cancers [58,60,61].

Available cancer treatments include surgery, radiotherapy, and systemic treatment,
including chemotherapy, targeted therapy, hormonal therapy, and immunotherapy.
The selected treatment(s) commonly depends on the cancer type and site, as well
as the stage of the disease, i.e., to what extent the disease has spread at the time
of diagnosis [26]. The internationally accepted tumor–node–metastasis (TNM)
system is widely used for staging of solid cancers [62]. Briefly, the TNM system
uses alphanumeric codes to describe the extent of the primary tumor (T1–T4), the
absence or presence and degree of regional lymph node involvement (N0–N3), and
the absence or presence of distant metastasis (M0-M1). The rules used for these
categorizations may vary between cancer sites [63].

2.1.1 Cancer in humans
Cancer ranks as a leading cause of death in the human population [64]. In 2020,
an estimated number of approximately 19 million new cancer cases and close to 10
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million cancer deaths occurred worldwide. The global cancer incidence is expected
to increase by 47 % within 2040 solely due to aging, which is associated with
increased risk of cancer, and growth of the population. Changes in the prevalence
and geographical distribution of known cancer risk factors may aggravate this
trend, potentially also leading to more abrupt increases in cancer burden and
associated strain on the healthcare systems, especially in lower income countries
experiencing social and economic transition [45].

Head and neck cancer

HNC is a common term for malignancies that originate from the anatomical sites
of the upper aerodigestive tract [65]. An illustration of the different head and
neck cancer regions is shown in figure 2.1. As of 2020, HNC was the seventh
leading type of cancer by incidence worldwide accounting for approximately 900
000 cancer cases [45]. Most HNCs ( 90 %) are head and neck squamous cell car-
cinomas (HNSCCs) of the oral cavity, oropharynx, hypopharynx, and larynx [66].
Historically, smoking, and heavy alcohol consumption have been the major risk
factors for head and neck SCCs in humans. In recent years, there has been a
marked rise in oropharyngeal SCCs associated with carcinogenic human papillo-
mavirus (HPV) infection [67]. HNC is a diverse group of malignancies, and the
recommended treatment strategy depends on the primary tumor site, in addition
to cancer stage and relevant patient factors. Radiotherapy, often in combination
with concomitant chemotherapy (cisplatin), is an integral part of the management
of most patients [65,68].

Figure 2.1: Illustration of the different head and neck cancer regions. Reproduced with permis-
sion from Terese Winslow. For the National Cancer Institute ©2012 Terese Winslow LLC, U.S.
Govt. has certain rights.
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Anal cancer

AC is a relatively rare form of cancer defined as malignant neoplasms of the anus
and anal canal [69]. Anal SCC (ASCC) is the most common histological subtype,
accounting for approximately 80 % of all cases [59, 69]. The incidence of ASCC
has been increasing in many Western populations over the past years, primarily
as a consequence of increased prevalence of HPV infection [69, 70]. An estimated
50 865 people were diagnosed with AC worldwide in 2020 [45]. Radiotherapy with
concomitant chemotherapy (mitomycin C and 5-fluorouracil) is the standard of
care for ASCC patients with local or locoregional disease [70].

2.1.2 Cancer in dogs
As for humans, cancer ranks as a leading cause of death in domestic dogs, and
the estimated incidence rates of canine cancer is similar to that of humans [71].
Accurate worldwide cancer statistics are lacking in veterinary medicine, but it has
been estimated that roughly 6 million dogs are diagnosed with cancer annually
in the U.S. alone [72]. The treatment of veterinary cancer patients has evolved
alongside human cancer treatment [71], and the main treatment options are in
principle the same as for humans. In clinical practice, however, treatments such
as radiotherapy and chemotherapy are generally less available for dogs and the
treatment selection is to a greater extent influenced by economic and practical
factors than for humans.

Companion dogs share the human environment, and spontaneously developed ca-
nine cancers share key features with the equivalent human cancers, including clin-
ical presentation, biology, and treatment response. Moreover, the disease progres-
sion is often considerably faster, and certain rare cancers are more frequent in dogs
than in humans [71]. Therefore, dogs with naturally occurring cancers have been
used to model human cancers within the field of comparative oncology, expanding
the knowledge of both canine and human cancers [71,73–76].

Canine head and neck cancer

Canine HNC is less formally defined than human HNC and often refers to more
anatomical primary tumor sites of the head and neck region than those included
in the human HNC definition, such as the thyroid gland and ear [77–79]. Several
studies have reported the oral cavity as the most frequent canine HNC location and
malignancies of the oral cavity have been ranked as the 4th most common cancer in
dogs [78, 80, 81]. The nasal cavity has been reported as the second most common
canine HNC location in a study on Danish dogs [78]. Compared to its human
counterparts, canine HNCs display a greater variety of cancer cell subtypes and
SCCs are less predominant [82,83]. For most canine HNCs, surgery is the primary
treatment. Radiotherapy is, however, increasingly available in veterinary medicine
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[84] and constitutes the primary treatment of choice for canine nasal cancers [77,
82]. Multimodal treatments including surgery, radiotherapy, and chemotherapy
may also be considered for the treatment of canine HNCs [77].

2.2 Medical imaging
Medical imaging is an integral part of the management of patients with cancer.
Various medical imaging modalities are used for diagnosis and initial staging, plan-
ning and delivery of treatment, and evaluation of treatment response [59,85]. Com-
puted tomography (CT), positron-emission tomography (PET), and magnetic res-
onance imaging (MRI) are the three main imaging modalities used in the process
of radiotherapy planning [86]. All three modalities are used to generate cross-
sectional images of the interior anatomy or tissue function of the patient, based on
the detection of electromagnetic radiation. The resulting 2D images each represent
a slice of the scanned tissue with a given thickness and position in space, which
can be combined to form a 3D representation of the imaged region. Thus, each
2D image pixel represents a volume element (voxel) of tissue with a given location
on a 3D grid [87].

2.2.1 Computed tomography
CT provides anatomical images with high spatial resolution and low acquisition
time and is the most commonly used cross-sectional imaging modality [85]. CT
takes advantage of the variation in attenuation of x-ray photons according to tissue
density [59]. In a CT examination, a rotating source and detector assembly is used
to emit x-ray beams through the patient from different angles and subsequently
detect the transmitted attenuated beams. The patient is advanced through the
scanner, until the desired region is covered. The collected raw data are processed
with a tomographic reconstruction method to form a series of 2D images of the
internal anatomy of the patient [59].

CT image intensities are commonly expressed using the Hounsfield unit (HU)
scale which is a dimensionless scale for radiodensity, i.e., the opacity to x-ray
photons [88], typically having a range of [–1 024, 3 071] HU [89]. For the purpose
of image interpretation and analysis, the high dynamic range of the CT images
is typically reduced using windowing, where a selected range (i.e., a “window”)
of HU values is mapped to a gray scale. By adjusting the midpoint and range
of the window, referred to as the window center and width, the brightness and
contrast of the image can be altered to highlight different anatomical structures.
Narrow window widths (50–350 HU) are well suited to examine areas of similar
radiodensities, such as soft tissues [90]. An example is shown in figure 2.2.
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Depending on the anatomical region and the indication of the CT examination,
contrast-enhanced CT (ceCT) may be appropriate to increase the visibility of
low-contrast normal tissues or pathologies [91]. Intravenous (IV) iodine-based CT
contrast agents enhance vascular structures and are used routinely for a wide range
of cancer diagnoses [85,92,93]. Iodinated agents act by increasing the radiodensity,
and thereby the CT image intensity, by an amount proportional to the iodine
concentration [94]. Following an IV injection, the contrast agent is distributed
by the cardiovascular system, and the CT acquisition is timed to coincide with
optimal contrast differences in the target region or organ [94].

2.2.2 Positron emission tomography
PET is a molecular nuclear imaging technique that provides functional information
based on the distribution of a radioactive tracer (radiotracer) containing a positron
emitting radionuclide. In a PET examination, the radiotracer is administered to
the patient, whereupon it distributes within the body according to its biochemical
properties before the radionuclide in the tracer decays [59]. Positrons emitted
by the radionuclide have short lifetimes in biological tissues and travel a short
distance (typically ≤ 1 mm, depending on the radionuclide) before they interact
with electrons by annihilation [95]. The majority of annihilations result in two
0.511 keV gamma photons that move at an angle of approximately 180◦ relative to
each other [96]. Such annihilation photon-pairs form the basis of the PET signal
and are registered by a ring of detectors surrounding the imaged region of the
patient. Based on this, the line connecting the two detector elements, also known
as the line of response, and the position of the annihilation event can be determined
[95]. The PET detectors are made up of scintillation crystals that convert high
energy gamma photons to visible light, which is further converted to an electrical
signal in a photosensor [97]. The collected raw data are subject to error corrections
before reconstruction to images where the intensity is proportional to the tracer
uptake [95].

The spatial resolution of PET is limited by several factors including detector
size [98], and PET, therefore, has lower spatial resolution than CT and MRI [99].
This has contributed to the development of hybrid imaging methods combining
PET and CT or PET and MRI [99]. Currently, PET imaging is most commonly
performed with a hybrid PET/CT scanner [100]. The CT provides tissue density
information used for attenuation correction of the PET images, resulting in im-
proved PET image quality, as well as high-resolution anatomical information for
improved localization of the PET signal upon image interpretation [101].
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Figure 2.2: (a) Coronal image slice of a patient with head and neck cancer. Left: original
contrast-enhanced CT image. Center: windowed (w) contrast-enhanced CT image (center: 70
HU; width: 200 HU). Right: FDG PET image. (b) Axial image slice of the same patient. Left:
gross tumor volume (GTV-T) and involved nodal volume (GTV-N) shown as a binary mask.
Center: windowed (w) contrast-enhanced CT image (center: 70 HU; width: 200 HU). Right:
FDG PET image.

The PET signal is commonly expressed as the standardized uptake value (SUV )
prior to image interpretation, using the following definition:

SUV = r

a′/w
, (2.1)

where r is the radioactivity concentration [kBq/ml] measured in a volume of in-
terest, usually an image voxel, a′ is the activity administered to the patient [kBq],
and w is the body weight of the patient [g] [102].

Radionuclides used for PET imaging must have appropriate physical half-lives,
preferably a low maximum positron decay energy limiting the positron range
prior to annihilation, a high fraction of decays occurring via positron emission,
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as well as suitable chemical characteristics [95, 101]. The glucose analogue 18F-
fluorodeoxyglucose (FDG) is by far the most commonly used tracer in clinical
oncologic PET imaging [103]. Due to its construction, where one of the glucose
hydroxyl groups is replaced with radioactive 18F, FDG is taken up as unlabeled
glucose but cannot be fully metabolized and is concentrated in the cells until 18F
decays. As a result, FDG PET imaging provides a map of the glucose consumption
in the patient [103], which is elevated in most cancers [103, 104]. An FDG PET
image of a patient with HNC is shown in figure 2.2.

FDG PET imaging is shown to have high sensitivity for detection of regional
lymph node metastases, distant metastases and second primary tumors in a range
of cancer diagnoses [104]. FDG PET is also used routinely for assessment of cancer
treatment response and long-term patient monitoring for recurrence detection [59].
A limitation of FDG PET is that the tracer uptake is not fully cancer specific.
For example, high glucose metabolism and associated elevated FDG uptake is not
restricted to cancer cells, but can also be present in certain organs, and in areas of
infection or inflammation [103, 105]. On the other hand, not all malignancies dis-
play increased metabolic activity [105]. This can potentially lead to false positive
or false negative FDG PET image interpretation [104,105].

2.2.3 Magnetic resonance imaging
MRI is based on the concept of nuclear spin and the fact that atomic nuclei with
non-zero spin possess a magnetic dipole moment. In principle, all nuclei with
non-zero spin may be used for MRI [106], but the vast majority of clinical MRI
examinations are based on the 1H nucleus (the proton), which is highly abundant
in biological tissues [107]. Under the influence of a strong external magnetic field,
the magnetic dipole moment of each proton in the imaged tissue will align itself
with the external field while precessing with a frequency ω0 known as the Larmor
frequency, given by [108]:

ω0 = γB0, (2.2)

where γ is the gyromagnetic ratio, which is specific to the type of nucleus [107],
and B0 is the magnetic field strength. In sum, the above alignments result in a net
equilibrium magnetization parallel to the external field B0 (by convention defined
as the z direction of the system) [108].

The net magnetization is vanishingly small compared to B0 and is, thus, not
practically feasible to detect while in equilibrium [108]. By exposing the protons
to electromagnetic radiation with the Larmor frequency, which for clinical field
strengths is within the radio-frequency region, nuclear resonance occurs, and pro-
tons are excited to a higher energy level [107]. As a result, all the nuclear spins
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are brought into phase and the net magnetization is flipped into the transver-
sal xy-plane while precessing about B0. This precession movement represents a
time-variant magnetic field which is detected in a receiver coil [108]. After the elec-
tromagnetic radio frequency pulse is turned off, the protons return to their initial
energy state and the nuclear spins dephase in a process known as relaxation. This
results in an exponential recovery of longitudinal equilibrium magnetization and
decay of transversal magnetization which are characterized by two independent
time constants T1 and T2, respectively, both of which are tissue specific [107].
The change in transversal magnetization following a radio frequency pulse is reg-
istered as a time-variant decaying signal by the receiver coil [108].

To localize signals in space, secondary gradient fields must be applied in addition
to B0 causing the magnetic field strength, and thereby the Larmor frequency, to
vary systematically with position [109]. The intrinsic contrast of MRI primarily
depends on the proton density and the T1 and T2 relaxation times of the imaged
tissue, along with other tissue specific parameters. The image contrast can be
manipulated by placing emphasis on, i.e., weighting one of the tissue parameters
over the others [107]. The desired weighting and spatial information is achieved
by applying a suitable MRI sequence consisting of specific combinations of radio
frequency pulses and gradients [109].

Compared to CT, MRI provides superior soft tissue contrast and does not involve
the use of ionizing radiation [110]. The limitations of MRI include long acquisition
time and the fact that it is subject to unique image artefacts that may degrade
image quality [107, 110]. The possibility of weighting different tissue parameters
makes MRI highly versatile [108]. Furthermore, MRI can be used to image tissue
function using for example dynamic contrast enhanced MRI to assess perfusion
and permeability [111], or diffusion-weighted (DW) MRI to assess the thermal
diffusion of water molecules which can be altered by pathologic conditions such as
cancer [112].

DW MRI is relatively easy to implement and can provide clinically relevant in-
formation for a range of cancer types [113]. In a DW acquisition, dephasing and
rephasing gradients which are equal in strength but exactly opposite, are ap-
plied as part of the MRI sequence. These two gradients will have no net effect
on stationary protons, whereas diffusing protons will acquire a phase change as
their positions change between dephasing and rephasing [107]. This results in a
diffusion-dependent attenuation of the MR signal, i.e., a signal loss [112]. The
diffusion-weighted MR signal S can be expressed as:

S(b) = S0e
−bADC , (2.3)

where b is the degree of diffusion-weighting [s/mm2], and depends on the strength,
duration, and timing of the applied gradients, S0 is the signal without any diffusion-
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weighting (i.e., b = 0), and ADC is the apparent diffusion coefficient [mm2/s] [112]
which is an intrinsic tissue specific parameter [107].

DW images are commonly obtained for several different b values [113]. Higher b
values result in images where the areas of high diffusion will appear hypointense,
whereas the low-diffusion regions appear hyperintense [112]. Cancerous tissues,
which can have high cellularity and associated restricted diffusion, will typically
have low ADC values and appear hyperintense on DW images with high b values.
To quantify the diffusion information in the DW images, ADC maps can be cal-
culated based on two or more DW images acquired with different b values [108].
As implicit in its name, ADC values not only depend on water diffusion, though
this is the largest contributor, but are also influenced by other forms of molecular
motion such as capillary perfusion [108,114]. The latter effects can potentially be
minimized by selecting appropriate b values for the ADC calculations [115].

2.3 Radiotherapy and target volumes
2.3.1 Radiotherapy
Radiotherapy is one of the main treatment modalities for cancer and may be used
alone or in combination with other treatments, such as surgery, chemotherapy,
and immunotherapy [26, 27]. The most commonly used radiotherapy approach is
external beam irradiation with high energy (MeV) photons generated by a linear
accelerator [116]. Briefly, radiotherapy is based on the use of ionizing radiation
to damage exposed cancer cells, with cancer cell death as a desired end result
[117, 118]. The mechanisms of radiation-induced cell damage are not selective
to cancer cells, and irradiation of normal tissues during radiotherapy may result
in acute and/or late toxicity [30]. Thus, the fundamental aim and challenge of
radiotherapy is to ensure sufficiently high radiation dose to the cancer cells while
keeping the dose to surrounding normal tissues at acceptable levels [28,29].

Radiotherapy has undergone considerable technical developments over the past
decades [119, 120]. Intensity modulated radiotherapy (IMRT), which is an ad-
vanced form of 3D conformal radiotherapy (3D-CRT), is considered the state-of-
the-art technology for external beam photon radiotherapy [121, 122]. In IMRT,
the intensities of multiple small photon beams (beamlets) are modulated to accu-
rately conform the high dose to the shape of the target volume while minimizing
the dose to critical normal tissue structures (OARs) [122]. Volumetric modulated
arc therapy (VMAT) is a further refined form of IMRT where the radiation source
is moved in an arc around the patient [119]. Such high-precision techniques are
particularly relevant for cancers where the target volume is located in close proxim-
ity of radiation sensitive OARs. IMRT/VMAT is shown to reduce normal tissue
toxicity compared to conventional 3D-CRT for both HNC and AC [32, 34] and
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is recommended for both these groups of patients [68, 70]. High precision tech-
niques including IMRT are also highly relevant for the treatment of canine HNC
patients [123,124].

Radiotherapy must be carefully planned to maximize its therapeutic ratio. After
diagnosis and referral, a simulation CT scan of the patient immobilized in the
treatment position is acquired and imported to the treatment planning system.
The simulation CT usually forms the basis for definition of target volumes and
OARs. Other imaging modalities, such as PET and MRI, may be used to support
volume definitions [85]. As CT images hold intrinsic information on tissue densi-
ties and, thus, can be converted to 3D density maps, the simulation CT also forms
the basis for calculation of radiotherapy dose distributions used in treatment plan
design [125, 126]. Following volume definitions, the treatment objectives must be
defined, including the desired doses to target volumes and dose constraints for
OARs. An optimization process is initialized in the treatment planning system,
and the expected dose distribution associated with the above objectives is calcu-
lated. The resulting dose plan is evaluated and, if necessary, the objectives are
adjusted and a new optimization process performed, until the dose plan is found to
be satisfactory [127]. The approved treatment plan is imported to the treatment
system and delivered to the patient after the patient positioning and treatment
setup have been verified [85].

The total prescribed radiation dose is conventionally delivered in smaller fractions
over multiple weeks. As normal tissue cells typically have a better ability to repair
radiation-induced damages compared to cancer cells, this allows healthy cells to
recover to a greater extent than cancer cells between fractions. Fractionation also
increases the probability of irradiating cancer cells at their most radiosensitive, as
parameters linked to radiosensitivity, such as cell cycle stage and re-oxygenation,
vary over the course of treatment [85]. Factors such as tumor and normal tissue
anatomy may also change over the course of treatment [46]. Adaptive radiotherapy
is an advancing treatment strategy, where the treatment plan is re-evaluated and,
if deemed necessary, adjusted during the course of treatment [46,128].

2.3.2 Target volume definitions
Traditionally the following three main target volumes are used in radiotherapy
[35, 129–131]: the GTV, the clinical target volume (CTV), and the planning tar-
get volume (PTV). In general, the GTV is defined as the macroscopic volume of
the tumor that can be determined by clinical examination (observation, palpation)
and medical imaging, and may include the primary tumor (GTV-T), involved re-
gional lymph nodes (GTV-N) and/or distant metastasis (GTV-M) [35]. The GTV
usually corresponds to the regions of highest cancer cell density, and sufficient
radiation dose must be delivered to the entire GTV to achieve local tumor con-
trol [35, 132]. In addition, the regression of the GTV may affect treatment plan
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adaptation during the course of treatment and could potentially also predict treat-
ment outcome [35]. The CTV includes the GTV and regions outside the GTV with
suspected microscopic cancer infiltration, or with a high risk of involvement ac-
cording to clinical experience, that should be treated adequately [35, 129]. The
PTV is defined by adding a margin to the CTV to ensure that the prescribed dose
is delivered to all parts of the CTV with an acceptable probability, taking uncer-
tainties and variations in CTV size, shape, and position, as well as patient and
beam positioning into account [35, 85]. The GTV, CTV and PTV are illustrated
in figure 2.3.

CTV

PTV

Visible with 
medical imaging  

Area at risk of 
microscopic 
disease

Expansion accounting 
for uncertainties

GTV

Figure 2.3: Illustration of the three main target volumes used in radiotherapy. GTV: gross
tumor volume; CTV: clinical target volume; PTV: planning target volume. Based on a figure
from [85].

2.3.3 Contouring of target volumes
The definition of target volumes and OARs is a critical part of radiotherapy plan-
ning, as all subsequent steps follow from their definition [40]. Due to the resulting
reduced target volume margins and steep dose gradients, optimal high-precision
radiotherapy requires more accurate definition of both target volumes and OARs
than conventional radiotherapy [35, 40, 41]. In clinical practice, target volumes
and OARs are typically defined manually by clinical experts who outline the given
structures in medical images within the treatment planning system. This process is
referred to as contouring or delineation. Cancer site-specific contouring guidelines
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supplement the general volume definitions (cf. section 2.3.2) and give recommen-
dations on the optimal imaging modalities for contouring [38,39,133–135]. Modern
radiotherapy techniques have been accompanied by increasing use of multimodal
image interpretation [37], particularly for contouring of the GTV [38,39,135,136].

Manual contouring is known to be time-consuming and labor-intensive, partic-
ularly for cancer sites with complex anatomy and many OAR structures such
as HNC [36, 37]. As manual contouring is a subjective task, it is also inher-
ently prone to intra- and interobserver variability. Contouring guidelines, atlases,
and peer review strategies are used to increase contouring quality and consis-
tency [41]. However, considerable interobserver variabilities still occur [37, 40],
and manual contouring is recognized as a main source of geometric uncertainty
within the process of radiotherapy planning and delivery [40]. Inaccurate con-
tour definitions could result in reduced dose to the target volume or unacceptably
high dose to normal tissues, potentially increasing the risk of locoregional fail-
ure or normal tissue toxicity [40]. Uncertainties introduced by contour variability
may further be a confounder in single and multi-center clinical radiotherapy tri-
als [40, 137]. Auto-segmentation methods hold the potential to address the above
challenges [43,44,50,137] and could facilitate adaptive radiotherapy strategies that
rely on fast and accurate volume definition [46]. Consequently, auto-segmentation
methods and their potential application within the radiotherapy workflow have
received significant attention over the past years [50]. In addition, the applica-
tion of auto-segmentation could facilitate large scale multi-centric radiomics stud-
ies [138].
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Materials and methods

3.1 Patient cohorts
3.1.1 Human head and neck cancer dataset
Papers I and II were based on a dataset consisting of FDG PET/ceCT images and
corresponding manual GTV delineations of 197 patients with HNC. The ceCT
images and GTV delineations of the same set of patients were also included and
used for the transfer learning analysis in paper IV. The data was collected as
part of a retrospective study including patients with HNSCC of the oral cavity,
oropharynx, hypopharynx, and larynx, scheduled for radiotherapy at Oslo Uni-
versity Hospital in the period from 2007 to 2013 [139]. All patients were treated
with primary radiotherapy (IMRT; 68–70 Gy in 2 Gy fractions). Most patients
also received concurrent chemotherapy (cisplatin, 40 mg/m2 per week) and the
hypoxic radiosensitizer nimorazole.

FDG PET/ceCT imaging was performed at baseline with a Siemens Biograph 16
scanner. Both the visible primary tumor volume (GTV-T) and involved lymph
nodes (GTV-N) were included in the GTV. The manual GTV delineations were
made prospectively at the time of initial treatment planning and were used for
radiotherapy planning. Delineations were based on FDG PET and ceCT image
information as well as relevant clinical information such as the endoscopy report
[139].

3.1.2 Anal cancer dataset
Paper III was based on pre-treatment images and corresponding manual GTV
delineations of in total 86 patients with ASCC. Two datasets consisting of the
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following image data were analyzed separately: (i) FDG PET, low-dose CT (ldCT)
and ceCT images of all 86 patients, and (ii) FDG PET, ldCT, ceCT, T2-weighted
(T2W) MR and ADC images of a subset of 36 patients. The 36 patients in the
latter dataset had consented to a study-specific 3.0 T MR examination including
T2W and DW imaging. For paper III, regression analysis [115] based on b-values
of 200, 400, 600 and 800 mm2/s was used to condense the DW series to an ADC
map.

The included patients were part of the prospective ANCARAD observational
trial (NCT01937780) [140] and were scheduled for chemoradiotherapy at Oslo
University Hospital between 2013 and 2016. All patients received radiotherapy
(IMRT/VMAT (67 %) or 3D-CRT (33 %); 54 or 58 Gy in 2 Gy fractions), and
the majority of patients were given concurrent chemotherapy (one or two cycles
of mitomycin C and 5-fluorouracil).

PET/ldCT images were obtained with a Siemens Biograph mCT 40 scanner and
ceCT images were obtained with a General Electric LightSpeed Pro 16 scanner.
The study-specific MR examination was performed with a Phillips Ingenia 3.0
T scanner. According to current practice for radiotherapy of anal cancer, the
GTV was defined to include the visible tumor tissue and the entire anal canal
and/or rectum circumference when tumor involvement was present. Delineations
of involved lymph nodes (GTV-N) were not included in paper III. For all patients,
the manual delineations were based on ceCT, FDG PET and standard (i.e., not
study-specific) T2W images. As for the human HNC dataset, the delineations
were made prospectively and used for radiotherapy planning.

3.1.3 Canine head and neck cancer dataset
The canine dataset analyzed in paper IV consisted of ceCT images and corre-
sponding manual GTV delineations of 36 dogs with malignant neoplasms of the
head and neck region. The ceCT data were collected retrospectively by reviewing
the imaging database and patient record system at the University Animal Hospital
at the Norwegian University of Life Sciences. ceCT images were acquired with a
General Electric BrightSpeed S scanner. Manual delineations were made retro-
spectively based on the ceCT image information. As for the human HNC dataset,
the canine GTV included both the GTV-T and GTV-N.

3.2 Automatic segmentation methods
Auto-segmentation for radiotherapy has been studied for more than two decades
and numerous methods have been proposed for various cancer diagnoses and imag-
ing modalities [47–50]. For automatic target volume segmentation, most methods
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fall into one of three main approaches listed in the order of increasing complex-
ity: intensity thresholding, classical machine learning and deep learning. In paper
I, PET thresholding, classical machine learning and deep learning methods for
automatic GTV segmentation were compared, whereas papers II–IV focused on
automatic GTV segmentation using deep learning only.

The relationship between machine learning, deep learning, and the discipline of ar-
tificial intelligence, is often visualized as shown in figure 3.1. Artificial intelligence
may be defined as “the effort to automate intellectual tasks normally performed
by humans” [141]. One approach to artificial intelligence, termed the knowledge
base approach, is to hard-code all the formal rules a computer system would need
to solve a given task automatically. Machine learning, on the other hand, is the
capability to perform a task by learning from input data without such hard-coded
knowledge [51]. Deep learning refers to the subfield of machine learning where
a hierarchy of concepts, also referred to as layered representations of the data,
is learned jointly to perform a task [51, 141]. These layered representations are
in most cases learned by deep learning models that use neural network architec-
tures [141].

Artificial 
intelligence

Machine 
learning

Deep 
learning

Figure 3.1: Euler diagram illustrating the relationship between artificial intelligence, machine
learning and deep learning.

The classical machine learning and deep learning approaches to artificial intel-
ligence are visualized schematically in figure 3.2. Deep learning algorithms in-
herently learn increasingly complex representations (features) of the input data,
whereas solving complex tasks using classical machine learning algorithms gener-
ally requires a feature engineering step, where handcrafted features are created
from the initial input before data is fed to the algorithm [51].
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Figure 3.2: Flowcharts showing the main components of the classical machine learning (top
row) and deep learning (bottom row) disciplines. Shaded boxes indicate components capable of
learning from data. Based on a figure from [51].

Most machine learning algorithms belong to one of two branches: supervised and
unsupervised learning [51]. Both supervised and unsupervised learning, or hy-
brids of the two approaches, may be used for segmentation tasks. In this thesis,
the focus is on supervised classification algorithms, using the clinical expert GTV
delineations as a binary outcome variable, also referred to as the ground truth.
Supervised learning relies on the following three fundamental components: (1) in-
put data, (2) labeled examples of the outcome, and (3) an objective (loss) function
that measures how well the output of the algorithm matches the example (ground-
truth) outcome. The objective function is optimized in the learning process, i.e.,
during model training [141].

3.2.1 Thresholding
Thresholding is a simple form of image segmentation, where the pixel intensity
values of an entire image, or a region of interest within an image, are separated
into foreground and background based on a threshold value q [142, 143]. The
thresholding operation fT can be defined as follows [143]:

fT (a) =
{
a0 for a < q

a1 for a ≥ q
, (3.1)

where a denotes an original pixel value, a0 and a1 are the two fixed foreground
and background intensity values the pixels are mapped to, and the threshold value
q is within the range of the original pixel intensity values. Numerous approaches
to selecting the optimal threshold value q exist [142–144].
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In paper I, thresholding of the PET images was done using either an absolute
SUV threshold, a percentage of the maximum SUV (SUVmax) threshold, or a
multi-step thresholding method based on the Laplacian of Gaussian (LoG) trans-
formation [142] of the PET images (referred to as LoG thresholding). Each of
the above thresholding methods was optimized by maximizing the mean over-
lap between the segmentations and the manually delineated GTV structures, as
measured by the Sørensen-Dice similarity coefficient (cf. section 3.4.1 below). In
addition, thresholding with 41 % of the SUVmax threshold, which has previously
been recommended for PET thresholding [104,145], was included for comparison.

3.2.2 Classical machine learning methods
In paper I, we evaluated the following six classical machine learning classification
algorithms: linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), Gaussian näıve Bayes (GNB), logistic regression (LR), linear support vec-
tor machines (SVM), and random forest (RF). Segmentation was performed by
using different combinations of voxel-wise features derived from the original PET
and/or CT images as input to the classification algorithms.

Classical machine learning algorithms expect the data to be structured as a 2D
feature matrix and a response vector. Thus, prior to classification, the 3D image
stacks were unfolded into 2D matrices where each row vector contained the input
feature(s) of one unique voxel, and the ground truth delineations were unfolded into
a vector with the corresponding class membership y ∈ {0, 1}, using a procedure
previously described in Torheim et al. [146]. As the number of voxels in the
foreground (class 1; voxels belonging to the GTV) and the background (class
0) were highly imbalanced, with the majority of voxels (94 %) belonging to the
background, the majority class was randomly under-sampled to achieve 50–50
class-balance for each patient in the training data.

LDA, QDA, and GNB can all be categorized as generative classification algorithms,
which model the joint probability distribution p(X, yk), or equivalently the con-
ditional probability distribution p(X | yk) and the prior class probability p(yk),
of the given observable input X for each class yk [147]. Based on this, the above
models use Bayes’ theorem to determine the conditional probability p(yk | X)
for each class [148]. Both LDA and QDA model the conditional class density of
each class p(X | yk) as a multivariate Gaussian distribution [149]. LDA further
assumes that the classes share the same covariance matrix, which results in linear
decision boundaries separating pairs of classes. QDA relaxes the assumption of
one shared covariance matrix, resulting in quadratic decision boundaries between
pairs of classes. Näıve Bayes classifiers are based on the näıve assumption that
the features of X are independent within each class. This simplifies the estimates
needed to model each class density p(X | yk) which for GNB is found as the
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product of univariate Gaussians (one for each input feature in X) [149]. Unless
the covariance matrices of the classes are identical, GNB will result in quadratic
decision boundaries between pairs of classes.

LR is a discriminative classification algorithm, which models the conditional prob-
ability p(yk | X) for each class directly [147]. LR is constructed to achieve this
via functions that are linear in X under the constraint that the class probabilities
p(yk | X) sum to one [149]. Thus, similarly to LDA, LR results in linear deci-
sion boundaries between classes. LR, however, relies on fewer assumptions and
is thus more general. SVM and RF can also be defined as discriminative algo-
rithms, as they perform a direct mapping from input X to class membership y.
However, contrary to LR, SVM and RF are not developed from a probabilistic
view. SVM [150, 151] is developed from a geometric perspective and identifies an
optimal hyperplane separating the classes by maximizing the margin between the
training observations of each class in the feature space. SVM can be kernelized
to generate non-linear decision boundaries [152]. In paper I, however, the linear
SVM classifier was used, which results in linear decision boundaries between pairs
of classes. RF [153] is an ensemble-based classification method which repeatedly
(b = 1, 2, . . . , B times) selects a random bootstrap sample of N training observa-
tions with replacement and then grows a random-forest decision tree Tb to these
data. For each terminal node of the tree, m of P predictors (features) are selected
at random, and the best variable/split point is determined before the node is split
into two daughter nodes, until the pre-selected minimum number of observations
per tree leaf (minimum node size) is reached. The class membership of a new
observation is predicted as the majority vote of the B trees [149].

Regularization refers to techniques used to constrain a model to make it simpler
and reduce the risk of overfitting to the training data, thereby improving the
model generalizability [51,154]. In paper I, both LR and SVM were trained using
LASSO (least absolute shrinkage and selection operator; L1) [155] or Ridge (L2)
regularization. Details on the above classifiers and regularization techniques, and
their mathematical descriptions, can be found in for example Hastie et al. [149].

3.2.3 Deep learning methods
The fundamental components of a neural network are illustrated in figure 3.3.
Layers are combined to form a network. Simply put, the layers, which consist of
units called (artificial) neurons, are characterized by a set of weights and bias terms
that are trainable parameters. The layers take one or more tensor(s) as input,
process the input, and output one or more tensor(s). A suitable loss function is
used to measure the predictive performance of the network. Deep leaning models
are usually trained iteratively on smaller batches of the full training data, i.e.,
minibatches, selected at random. During training, the network maps the input to
predictions, and the loss score of the given training iteration is calculated [141].
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Based on this, a feedback signal is passed to an optimization algorithm (optimizer)
which updates the weights and biases using some variant of the stochastic gradient
descent algorithm [51]. A description of the mathematical concepts underpinning
deep learning can be found in for example Goodfellow et al. [51].

Predictions 𝑌

Layer
(data transformation)

Loss
function

True labels 𝑌

Input 𝑋

Loss score

Layer
(data transformation)

Optimizer

Weights

Weights

Weight 
update

Figure 3.3: Fundamental concepts of a neural network. Based on a figure from [141].

Convolutional neural networks (CNNs) [156] are a class of neural networks used
for tasks where the input data has a grid-like format, such as digital images.
With CNNs images can be processed directly. As indicated by its name, a CNN
employs the mathematical convolution operator in its layers. CNNs are, however,
often implemented using the related, but conceptually simpler, cross-correlation
operator, which differs from convolution in that it does not involve flipping of the
operator kernel. The operator kernel values (weights) are learned during training,
and the above distinction is not important for the application to CNNs. Thus,
within the field of deep learning both above operations are commonly referred to
as convolution [51]. The same convention will be used in the remainder of this
text.

An example convolution of a 2D image matrix I and a 2D kernel K (without
flipping of the kernel) is given in figure 3.4. As convolution will shrink the output
dimensions, the image is commonly padded along each axis prior to convolution to
let the output have the same size as the image. In the case of images with multiple
channels, separate convolutions are performed on each image channel and the final
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output is obtained by adding the result of each channel.

3 6 5 1 9

1 9 2 3 6

1 7 2 0 1

2 3 8 1 8

1 9 2 6 3

-1 0 1

-2 0 2

-1 0 1
5

Image matrix 𝐼

Kernel 𝐾

Figure 3.4: Illustration of a 2D convolution of an image matrix I and a 3 × 3 kernel K. The
output pixel value is calculated as follows: −1 × 3 + (−2) × 1 + (−1) × 1 + 0 × 6 + 0 × 9 + 0 ×
7 + 1 × 5 + 2 × 2 + 1 × 2 = 5.

A convolutional layer commonly consists of multiple convolutions performed in
parallel. As convolution is a linear mapping of the input, each element of the
convolution output is commonly passed to a non-linear activation function, such
as the rectified linear unit (ReLU), to allow more complex models to be learned
[51]. The size of the convolution kernel is smaller than the input, a typical choice
in 2D CNNs is a 3 × 3 kernel, which enables CNNs to learn local patterns in
the input. To increase the receptive field of the network, and efficiently build a
hierarchy of features, down-sampling, or pooling, operations are applied in between
convolutional layers. One of the most frequently used pooling techniques is the
max pooling operation [157], which returns the maximum output value within a
sliding window.

Network architecture and training scheme

In the deep learning experiments of papers I–IV, we used the U-Net [158] CNN
architecture, which is one of several existing CNN architectures designed for se-
mantic segmentation. As illustrated in figure 3.5, the U-Net is made up of a
contracting path (left) and an expanding path (right), also referred to as the de-
coder and encoder parts of the network, along with long-distance skip connections.
The contracting path takes an input image and performs repeated convolutions
followed by max pooling [157] operations for down-sampling. The expanding path
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performs up-sampling operations to recover the original image size, also referred
to as up-convolutions or transposed convolutions, each followed by convolutions on
concatenated feature maps created via the skip connections. The use of skip con-
nections preserves features learned in the contracting path, that otherwise would
have been discarded in the down-sampling operations. All convolutions, except
the last, are followed by the ReLU activation function. The final network output
is a segmentation mask.
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Figure 3.5: Illustration of the 2D U-Net architecture [158]. The input and output layers (fea-
ture maps) are shown as boxes, where the box length represents the number of channels (also
indicated with a number) and the box height represent the spatial size. In the illustration,
dim1 and dim2 refer to the x and y-dimensions of the input image.

In this thesis, 2D (papers I–III) and 3D (paper IV) U-Net [158,159] architectures
were applied using convolutional kernels of size 3 × 3 and 3 × 3 × 3, respectively.
In all papers, the ReLU activation function was applied after each convolution,
followed by batch normalization [160]. Briefly, batch normalization adaptively
normalizes the output from one layer before it is fed to the next layer during train-
ing [51]. The application of batch normalization is shown to give faster and more
stable training, thereby allowing for deeper networks [141, 161]. All architectures
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of papers I–IV used a sigmoidal activation function after the final convolutional
layer, which outputs a number in the range [0,1] and thus can be regarded as
the class 1 probability in the case of two classes y ∈ {0, 1} [154]. The resulting
probability maps can be converted to binary segmentation maps using a threshold
value of, e.g., 0.50.

All CNNs were trained using the Adam (adaptive moment estimation) algorithm
[162], which performs adaptive learning rate optimization. The CNN models
trained from scratch were initialized using He weight initialization [163]. Reg-
ularization in the form of early stopping, i.e., stopping training if the validation
set loss does not improve for a given number of training epochs, was used for all
CNN models of papers I–III, and for the pre-training of CNN models in paper IV.
Paper III also included regularization in the form of dropout [164]. With dropout
regularization, a specified fraction of randomly selected neurons in one or more
layers are set to zero at each training iteration and thus “dropped out”. Both
above techniques are among the most commonly used regularization techniques
for neural networks [51,154].

Loss functions

Different loss functions may be used, depending on the application. In medical
image segmentation, it is often useful that the loss function can handle severe
imbalance between the foreground and background classes. This motivated the
Dice loss function (LDice) [165], which is based on the Sørensen-Dice similarity
coefficient (cf. section 3.4.1 below), and is defined as:

LDice = 1− 2
∑N
i=1 yiŷi∑N

i=1 y
2
i +

∑N
i=1 ŷ

2
i

, (3.2)

where ŷi denotes the predicted probability of pixel i belonging to the foreground
(class 1), yi is the true pixel class, and the summation runs over all N input image
pixels.

In papers I, III, and IV, LDice was used as the objective function in all evaluated
deep learning models. In paper II, the LDice was compared to the following three
other losses: the fβ loss [106] with weighting parameter β = {2, 4} and the bi-
nary cross-entropy loss (LBCE). The fβ loss is a generalization of LDice, which
allows for different weighting of false positive and false negative predictions. The
weighting parameter β is a positive real-valued number. For β = 1, fβ is equal
to the LDice, whereas higher β values (β > 1) increasingly penalize false nega-
tive classifications more than false positive classifications [106]. LBCE provides
an unweighted measure of the difference between the probability distributions of
the ground truth and the predictions [141, 166], and was included in paper II
due to its widespread use in classification tasks in particular but also in semantic
segmentation tasks [166].

26



3.3 Model evaluation strategies

Image augmentation

CNNs generally require a substantial number of training samples to generalize
well. Image augmentation, i.e., creating new modified images from the original
ones, may be viewed as a form of regularization which aims at increasing the
generalizability of the models by expanding the available image data [51, 167].
Multiple image augmentation methods exist [167]. In paper III, models trained
using image augmentation in the form of 2D elastic deformation [168] of training set
images was compared to models trained without the use of image augmentation.
In paper IV, models were trained using image augmentation in the form of 3D
rotation, zooming, and flipping [169], or 3D elastic deformation applied to training
data.

Transfer learning

Transfer learning has been proposed as another means of addressing the challenge
of limited training samples. In transfer learning, the knowledge gained in solving
one problem is subsequently used to solve a separate problem, referred to as the
source and target problem, respectively [170]. These problems can each be char-
acterized using the concepts of domain and task. According to transfer learning
definitions, a domain consists of a feature space and its probability distribution,
while a task consists of a label space and a prediction function where the latter
is learned from training data [171]. Using this terminology, the aim of transfer
learning is to improve the learning of the target prediction function based on the
information available in the source domain and task (see [171] for details). Differ-
ent transfer learning approaches have been used in training deep learning models
for a range of applications. For semantic segmentation and other vision applica-
tions, the most common transfer learning approach is to pretrain a model on a
more data rich source domain and task, and subsequently fine–tune this model on
the target domain and task, with the aim of improved target task learning [170]. In
paper IV, this approach was used for cross-species transfer learning. CNN models
were pretrained on the larger human HNC dataset and fine-tuned on the smaller
canine HNC dataset, allowing all layers to be updated during fine-tuning, i.e.,
without freezing any of the pretrained layers.

3.3 Model evaluation strategies
When evaluating different supervised machine learning models there are generally
two major goals: (1) To estimate the performance of all the trained models in
order to select one best model, or in some cases a selection of the best models,
and (2) To estimate the performance of the selected model(s) on previously unseen
data, that is, to estimate the generalizability [149]. Both of the above goals can be
met by dividing the available data into a training, validation, and test set, where
the validation set is used for model selection and the test set is used to assess
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generalizability. This is commonly the preferred approach in a data rich situation.
Another commonly used approach to estimate prediction performance is K-fold
cross-validation, where the data is first divided into K folds. For the kth fold of
data, the remaining K–1 folds are used to train the model, and the kth fold is used
to estimate performance. This procedure is repeated for k = 1, 2, . . . ,K [149].

In paper I, we used five-fold cross-validation for model selection and a separate
hold-out test set to assess model generalizability, whereas partitioning of data into
a training, validation, and test set was used in paper II. All the models of paper III
were evaluated using five-fold cross-validation. In paper IV, the human dataset was
partitioned into a training, validation, and test set, whereas a modified four-fold
cross-validation procedure was used to evaluate the models trained with canine
data. The latter procedure consisted in using two folds of data for training, and
the remaining two folds as a validation and test set, repeating the procedure until
each fold had been used once as a validation set and once as a test set.

3.4 Performance measures
Auto-segmentation performance may be evaluated using quantitative geometric
performance measures, qualitative assessment, dosimetric analysis, and/or quan-
tification of time-savings [172], of which the former two were used in this thesis.
The geometric performance measures can be subdivided into overlap-based met-
rics and distance-based metrics and are most often calculated patient-wise (i.e.,
on a per patient basis). Multiple patient-wise geometric performance metrics were
included in papers I–IV of this thesis, with the aim of providing complementary
information on the auto-segmentation quality, as recommended in [144]. Paper
II also introduced quantitative structure-based performance metrics and included
qualitative assessment.

3.4.1 Overlap-based metrics
Overlap metrics are calculated based on the two sets of voxels in the predicted
auto-segmentation P and the ground truth delineation G, which reside in a voxel
space. The most widely used overlap metric is the Sørensen-Dice similarity metric
(Dice) [173,174], defined as:

Dice = 2|P ∩G|
|P |+ |G| , (3.3)

where |P | and |G| denote the cardinalities of P and G, and |P ∩ G| denotes the
cardinality of their intersection. Dice ranges from 0 (no overlap between P and
G) to 1 (perfect overlap between P and G). As seen from equation 3.3, Dice can
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be calculated without knowing which set of voxels constitutes the ground truth.
Thus, Dice does not separate between false positive and false negative predictions.
To distinguish between these two error types, the positive predictive value (PPV ,
also known as precision) and the true positive rate (TPR, also known as sensitivity
or recall) can be reported [144]. PPV and TPR are defined as [175]:

PPV = TP

TP + FP
, (3.4)

and

TPR = TP

TP + FN
, (3.5)

where TP , FP , and FN are the true positive, false positive, and false negative
voxel predictions, respectively. Thus, PPV is the fraction of the predicted seg-
mentation that overlaps with the ground truth delineation, whereas TPR is the
fraction of the ground truth delineation that overlaps with the predicted segmen-
tation. The above overlap-based metrics are illustrated in figure 3.6.
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FPTN

FN

TPRDice PPV
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Figure 3.6: Illustration of the Dice, T P R and P P V performance metrics measuring the
agreement between a reference (ground truth) volume G and a predicted volume P . Dice:
Sørensen-Dice similarity coefficient; T P R: true positive rate; P P V : positive predictive value;
T P : true positive; F P : false positive; T N : true negative; F N : false negative. Based on a fig-
ure from [144].
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3.4.2 Distance-based metrics
If we now let P and G denote the sets of surface boundary voxels in the prediction
and ground truth delineation, respectively, the Hausdorff distance (HD) between
the two sets may be defined as [175]:

HD(G,P ) = max(h(P,G), h(G,P )), (3.6)

where h(P,G) = max
p∈P

min
g∈G
||p− g|| is the directed Hausdorff distance from P to G,

which identifies the maximum of all (Euclidian) distances from the voxel points p ∈
P to their nearest voxel point g ∈ G, and, conversely, h(G,P ) = max

g∈G
min
p∈P
||g − p||

is the directed Hausdorff distance from G to P .

As HD measures the maximum mismatch between P and G, it is sensitive to
outliers. To mitigate this, the max operator in h(P,G) and h(G,P ) can be replaced
by a quantile [176] to exclude the most extreme observations. Commonly, the 95th
percentile is used for this purpose, and the resulting metric is then referred to as
the 95th percentile HD (HD95).

The average surface distance (ASD) measures the typical distance between P and
G and may be defined as [175]:

ASD(G,P ) = max(d(P,G), d(G,P )), (3.7)

where d(P,G) = 1
P

∑
p∈P min

g∈G
||p− g|| is the directed average Hausdorff distances

from P to G, which identifies the average of all (Euclidian) distances from the
voxel points p ∈ P to their nearest voxel point g ∈ G, and, conversely, d(G,P ) =
1
G

∑
g∈G min

p∈P
||g − p|| is the directed average Hausdorff distance from G to P .

The surface distance metrics reported in papers I, III, and IV were calculated
between sets P and G in accordance with the definitions in equations 3.6 and 3.7
(i.e., the metrics were defined as the maximum of the two calculations performed
from P to G and vice versa), whereas the surface distance metrics reported in
paper II were calculated solely based on the distances from P to G. Papers I–IV
all includedHD95 and ASD. In addition, the median (50th percentileHD) surface
distance (MSD) was included in papers II and III as a supplement to ASD, since
the median is more robust to outliers than the average.

The HD, HD95 and/or ASD metrics are commonly reported in the literature,
and often accompany Dice, as they potentially provide complementary informa-
tion [49,172]. It should, however, be noted that the exact definitions and compu-
tational implementations of the distance-based metrics may vary between studies,
potentially affecting the resulting metric values.
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3.4.3 Structure-based metrics
The use of structure-based quantitative performance metrics may be an adequate
supplement to the conventional geometric patient-wise metrics, particularly in the
case of multiple ground truth structures. For the human HNC dataset, a large
proportion of the patients (76 %) had nodal involvement and, therefore, several
ground truth structures. This can complicate the interpretation of the patient-
wise distance-based metrics. In general, the distance-based metrics can be skewed
if the model falsely predicts or misses structures, as illustrated in 3.7. To allow for
a more in-depth assessment of the auto-segmentation performance, particularly
when multiple ground truth structures are present, a framework for structure-
based performance evaluation was introduced in paper II.

Hausdorff distance (HD)
(a)

Structure-wise HD
(b)

Ground truth
Prediction

Ground truth
Prediction

Figure 3.7: Example of how the patient-wise surface distance metrics can be affected by a
falsely predicted structure (structure 3) (a), and how this issue can be alleviated by calculating
the surface distance metrics only for predicted structures that have an overlap with the ground
truth above a certain threshold (structures 1 and 2) (b). Adapted from paper II [2].

Briefly, the structure-based performance evaluation in paper II included the follow-
ing: First, the predicted structures where 50 % of the predicted voxels overlapped
with the ground truth, were defined as correctly identified by the CNN model. For
each such structure, the surface distance metrics HD95, MSD and ASD were cal-
culated separately. Second, for each patient, structure-based sensitivity (SensGT )
and positive predictive value (PPVCNN ) were calculated. SensGT was defined as
the per patient fraction of ground truth structures where > 50 % of the ground
truth voxels overlapped with a predicted structure. PPVCNN was defined as the
per patient fraction of predicted structures where > 50 % of the predicted voxels
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overlapped with a ground truth structure. Third, the volume of each predicted
structure having > 50 % overlap with ground truth voxels (V olumetrue) and the
volume of each predicted structure having ≤ 50 % overlap with ground truth voxels
(V olumefalse) were calculated.

3.4.4 Qualitative assessment
Qualitative assessment of auto-segmentations by one or more clinical expert(s) can
convey information about the degree of clinical acceptability that is not captured
by quantitative metrics [172]. In paper II, auto-segmentations generated by the
best-performing model in terms of mean per patient Dice were qualitatively as-
sessed by an experienced oncologist (> 7 years’ experience with manual contouring
for radiotherapy in HNC patients). The oncologist was presented with the ground
truth and CNN-generated contours of 15 randomly selected test set patients. For
each patient, the oncologist was asked to identify which of the presented contours
was generated by the CNN model, if possible. A scoring system ranging from 1
(no to little clinical value) to 10 (impossible to identify as CNN-generated, i.e.,
high clinical value) was used.

3.5 Statistical analysis
In papers I and III, the effect of algorithm and/or imaging modality on the quan-
titative segmentation performance was evaluated using the non-parametric Fried-
man test [177], which performs one-way repeated measures analysis of variance
on ranks. If significant differences were detected, the Friedman test was followed
by Nemenyi’s one-sided many-to-one test or two-sided multiple pairwise compar-
isons [178]. In paper III, the effect of image augmentation on Dice performance
was also assessed using the paired Wilcoxon signed-rank test [178]. A significance
level of 0.05 was used for all statistical tests.
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4.1 Paper I

4.1 Paper I
A comparison of methods for fully automatic segmentation
of tumors and involved nodes in PET/CT of head and neck
cancers
In paper I, we evaluated and compared three different approaches to auto-
segmentation of the GTV in human HNC patients based on PET/ceCT images,
namely (i) PET thresholding, (ii) classical machine learning including feature en-
gineering and various classification algorithms, and (iii) deep learning using CNNs.
For the latter two approaches, the effect of imaging modality on auto-segmentation
quality was assessed by comparing auto-segmentations obtained using ceCT, PET,
or PET/ceCT image input. In addition, the effect of reducing the dynamic range
of the ceCT images (windowing) was assessed. The segmentation task was consid-
ered a two-class problem (class 1: GTV-T and GTV-N; class 0: unaffected tissues).

Images were cropped from full size to a volume of interest including a 20 mm edge
around the GTV-T and GTV-N in the axial plane and 1 mm in the z-direction. The
197 included patients were divided into a training set (157 patients) and a hold-
out test set (40 patients). Five-fold cross-validation on the training set was used
to tune hyper-parameters and compare models. For each approach, models were
ranked separately based on the per patient cross-validation Dice performances and
one model was selected for hold-out test set evaluation.

Four PET thresholding methods, six classical machine learning classifiers, and one
deep learning CNN architecture (2D U-Net with LDice loss function) were eval-
uated. The resulting mean cross-validation Dice scores of the best-performing
models were 0.62 for PET thresholding, 0.24 (ceCT) and 0.66 (PET; PET/ceCT)
for classical machine learning, and 0.66 (ceCT), 0.68 (PET) and 0.74 (PET/ceCT)
for deep learning. For the deep learning models that included ceCT image input,
there was a small increase in mean Dice when the ceCT images were pre-processed
with windowing (center: 60 HU; width: 100 HU). For the selected thresholding
(absolute SUV threshold of 3.25), classical machine learning (SVM with PET voxel
intensities in 3D neighborhoods), and deep learning (2D U-Net with PET/ceCT
input) models, the mean per patient Dice on the hold-out test set was 0.63, 0.68,
and 0.75, respectively. The PET/ceCT-based CNN model resulted in significantly
higher cross-validation Dice than the single modality CNN models (p ≤ 0.0001)
and significantly better cross-validation and test set Dice, TPR, PPV , and sur-
face distance metrics (ASD, HD95), than the best-performing thresholding and
classical machine learning models (p ≤ 0.0001).

Our results show that deep learning was able to take advantage of the complemen-
tary information in the molecular PET and anatomical ceCT images to improve
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auto-segmentation quality. In addition, the deep learning approach provided ac-
ceptable auto-segmentations based solely on ceCT images. This was not the case
for the classical machine learning approach, which resulted in low-quality ceCT-
based segmentation and no added benefit of combining PET and ceCT compared
to using PET only. For solely PET-based segmentation, however, all three seg-
mentation approaches provided more similar results. In conclusion, deep learning
with multimodality PET/ceCT image input resulted in superior target coverage
and less inclusion of unaffected tissues, strongly suggesting that this is the most
appropriate approach, of those evaluated in paper I, for GTV auto-segmentation
for radiotherapy of HNC.
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4.2 Paper II
Deep learning-based auto-delineation of gross tumour
volumes and involved nodes in PET/CT images of head and
neck cancer patients
In paper II, deep learning-based auto-segmentation using the 2D U-Net architec-
ture with PET, ceCT, or PET/ceCT input was evaluated more in-depth for the
same task and patients as in paper I. As in paper I, the effect of reducing the
dynamic range of the ceCT images (windowing) was also assessed. For each image
input, four different loss functions were compared. To allow for thorough evalua-
tion of auto-segmentation performance for all patients, including those with nodal
involvement where the ground truth consists of multiple structures, we introduced
new structure-based performance metrics to supplement existing conventional met-
rics. A selection of the resulting auto-segmentations was also assessed qualitatively
by an experienced oncologist.

Compared to paper I, all images were cropped to a larger axial region measuring
191 × 265 mm2. All image slices without ground truth contours were excluded.
For model training, evaluation and comparison, the patients were divided into
training (142 patients), validation (15 patients), and test (40 patients) sets, where
the test set patients were the same as in paper I. In the case of ceCT windowing,
a narrow soft tissue window with center value corresponding to the median HU
value within the GTV-T and GTV-N of the training data was used (center: 70
HU; width: 200 HU). For each image input, the model with the highest mean per
patient Dice on the validation set was selected for test set evaluation.

Choice of loss function had minor effect on validation performance as all perfor-
mance metrics showed little variation for the different losses, whereas choice of
image input had a substantial effect. Furthermore, there was a positive effect of
ceCT windowing, particularly for solely ceCT-based auto-segmentation. The se-
lected models obtained mean per patient Dice scores on the test set of 0.56 (ceCT;
f2 loss), 0.69 (PET; LDice loss), and 0.71 (PET/ceCT; f2 loss). The ceCT, PET,
and PET/ceCT-based CNN models identified on average 53 %, 77 % and 86 %
of the ground truth structures in the test set patients, as measured by SensGT .
Thus, the PET uptake was more important than the ceCT signal for the detection
of ground truth structures. However, a considerable increase in SensGT was seen
when combining both PET and ceCT images, compared to using either of the
single modality inputs. The PET/ceCT model also resulted in the lowest distance
metrics, both on a per patient and a per structure basis. For all model inputs, the
structure-based distance metrics (ASD, MSD, HD95) were substantially lower
than the corresponding patient-wise distance metrics, indicating that the patient-
wise distance metrics were affected negatively by false positive structures predicted
by the CNN models. As an example, the mean patient and structure-wise test set
ASD of the PET/ceCT model was 4.7 mm and 1.0 mm, respectively. The ten-
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dency to include false positive structures in the predicted auto-segmentations was
also reflected by poor mean PPVCNN test set scores of 28 % (ceCT), 45 % (PET)
and 33 % (PET/ceCT). However, the average volume of falsely predicted struc-
tures (V olumefalse) in the test set was small for all three evaluated models (ceCT:
0.56 cm3; PET: 0.45 cm3; PET/ceCT: 0.54 cm3). The oncologist gave 13 of 15
randomly selected test set auto-segmentations predicted by the PET/ceCT-based
CNN model a score of 8 or higher on a scale from 1 to 10.

In summary, as in paper I, the best overall segmentation performance was seen
for the CNN model based on multimodality PET/ceCT input. The majority of
the PET/ceCT-based auto-segmentations evaluated by the oncologist had con-
siderable clinical value and could be used for radiotherapy with only minor to
moderate revision. Furthermore, the inclusion of our newly introduced structure-
based metrics allowed for a more in-depth quantitative analysis of the results.
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4.3 Paper III
Deep learning-based automatic delineation of anal cancer
gross tumour volume: a multimodality comparison of CT,
PET and MRI
In paper III, deep learning-based auto-segmentation of the AC GTV was assessed
for the first time, with emphasis on comparing single modality and multimodality
combinations of PET, ceCT, ldCT and/or MR input. The impact of image aug-
mentation consisting of 2D excessive random elastic deformations applied to 50 %
of the training set images was also assessed. As in paper I and II, we used the 2D
U-Net architecture.

Images were cropped to encompass approximately the same pelvic region (median
in plane dimensions: 188 × 188 mm2). 80 % of the image slices without ground
truth contours were removed by random sampling from the datasets. Five-fold
cross-validation was used to train models and evaluate performance. The ldCT and
ceCT images were pre-processed using a narrow soft tissue window with {center,
width} of {32, 220} HU and {70, 300} HU, respectively.

For both datasets, the highest mean cross-validation Dice (86-patient dataset:
0.76; 36-patient dataset: 0.83) was observed for the multimodality models based on
PET and ceCT images with the inclusion of image augmentation. Contrary to our
findings for HNC in paper I and II, similar mean Dice performances were obtained
for the single modality models based on ceCT (86-patient dataset: 0.74; 36 patient
dataset: 0.81). The models with the highest mean and median Dice generally
also resulted in the lowest distance-based metrics (HD95, ASD and MSD). The
overall lowest distance metrics were observed for the 36-patient dataset, but all of
the above models resulted in median MSD ≤ 2.50 mm. For both datasets, there
was a significant gain in Dice performance when using the radiotherapy planning
ceCT images over the ldCT images, either alone or in combination with PET.

The somewhat poorer performance metrics for the 86-patient dataset was ex-
plained by a higher incidence of difficult to segment patients, not present in the
36-patient dataset. For most models, the inclusion of image augmentation mod-
erately increased the mean and median Dice, but the effect was only statistically
significant for the smallest dataset (p < 0.001). Based on our results for the 36-
patient dataset, there was no added benefit of including MR information, compared
to using PET and ceCT or solely ceCT as model input. However, the CNN model
based solely on T2W MR images was the second-best single modality model and
provided a mean cross-validation Dice of 0.77. In conclusion, the evaluated CNN
approach provided high-quality automatic GTV segmentations based on either
single modality or multimodality image input.
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4.4 Paper IV
Automatic gross tumor segmentation of canine head and neck
cancer using deep learning and cross-species transfer learning
In paper IV, deep learning-based auto-segmentation of the GTV in canine patients
with HNC was evaluated for the first time. Two main approaches were assessed:
(i) training CNN models from scratch based on ceCT images of canine patients,
and (ii) using cross-species transfer learning where models were pretrained on
ceCT images of human HNC patients and thereafter fine-tuned on ceCT images
of canine patients. In this study, we used the 3D U-Net architecture. The impact
of varying network complexity, image augmentation scheme, and different ceCT
window settings of the input images was assessed.

Images were pre-processed to include a 191 × 265 × 173 mm3 volume of inter-
est. The human dataset was divided into training (126 patients), validation (31
patients) and test (40 patients) sets, whereas the canine dataset was divided into
four equally sized folds. For each unique model configuration, the training of ca-
nine models was repeated four times using a cross-validation strategy where each
fold of data was used once as a validation set and once as a test set in separate
model runs. This strategy was selected to obtain a robust performance evalua-
tion under the constraint of limited canine data. Based on the Dice performances
on validation and test data, we selected one model trained from scratch and one
transfer learning model for more in-depth performance evaluation.

Models trained from scratch or by using transfer learning resulted in relatively sim-
ilar performances with mean validation (test) Dice scores in the range of 0.45–0.62
(0.39–0.55) and 0.52–0.57 (0.46–0.52), respectively. Despite breed-related varia-
tion in the canine head and neck anatomy and size, the average overlap with
the expert ground truth contours was comparable to what has been obtained for
solely ceCT-based GTV segmentation in human HNC patients, as exemplified by
our results in paper II. The models selected for further performance evaluation
had the lowest complexity in terms of U-Net depth and number of filters in the
first layer, used image augmentation in the form of zooming, rotation and flipping,
and included pre-processing of the ceCT images using a narrow soft tissue win-
dow. Auto-segmentation appeared particularly promising for canine patients with
nasal cavity tumors, which was the most frequent tumor site in our dataset. For
this subgroup of canine patients, both approaches resulted in mean Dice scores
of 0.69. In conclusion, our results show promise for future application of deep
learning-based auto-segmentation for canine HNC patients.
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The overall contribution of this thesis is to expand the scholarly knowledge of the
applicability of thresholding, classical machine learning and deep learning methods
for automatic definition of target volumes used for radiotherapy in patients with
cancer. Prior to the investigations in papers I and II, most studies on auto-
segmentation of target volumes in patients with HNC, with the exception of [43,
179, 180], were based solely on FDG PET images, used semi- or fully automatic
classical machine learning methods and/or included a low number of patients (<
30) [181–188]. Solely FDG PET-based auto-segmentation methods will generally
be limited by false positive and false negative uptake regions, as the FDG uptake is
not fully cancer specific. The majority of the above PET-only studies relied on an
operator to draw a region around or within the tumor [182–185] or focused on small
pre-defined regions only including the tumor and its immediate background [186].
In contrast, papers I–II included a considerable number of patients, used larger
image regions of interest, compared the segmentation performance obtained using
single vs. multimodality PET and ceCT image input, and included deep learning
methods. Papers III and IV are furthermore the first studies to investigate deep
learning-based auto-segmentation of the GTV in patients with AC and canine
HNC.

For all datasets investigated in this thesis, the performances of the best-performing
auto-segmentation models were comparable to reported interobserver agreements
between human experts performing the corresponding task manually, as measured
by the Dice overlap metric. For ceCT and PET/ceCT-based manual contouring
of the GTV-T in HNC, the mean interobserver Dice agreement has been reported
to be 0.56–0.57 (ceCT) [189,190] and 0.69 (PET/ceCT) [190]. In comparison, the
best-performing deep learning models of papers I–II and paper IV obtained mean
test set Dice scores of 0.55–0.56 (ceCT), 0.69 (PET), and 0.71–0.75 (PET/ceCT)
for auto-segmentation of both the GTV-T and GTV-N. For AC, the median Dice
interobserver agreement has been reported to be 0.80 and 0.74 for GTV-contouring
based on PET/ceCT and T2W/DW/ceCT images [191]. In comparison, the deep
learning model of paper III resulted in median cross-validation Dice scores of
0.78 (PET/ceCT; 86-patient dataset), 0.85 (PET/ceCT; 36-patient dataset) and
0.82 (T2W/ceCT; 36-patient dataset), with the inclusion of image augmentation.
Though these interobserver studies were not conducted on the same datasets as
in our analyses, with the exception of [191] which included a subset of the AC
patients of paper III, and were limited by a relatively low number of patients (n
= 10–19), the above comparisons give an indication of the performance of the
given auto-segmentation models relative to human experts. As such, the above
comparisons show promise for the future application of deep learning-based auto-
segmentation of the GTV for the given cancers. However, caution is required
not to over-interpret such comparisons in terms of clinical readiness as the errors
made by human experts and a machine learning algorithm may differ substantially
due to differences in contextual knowledge, which are not captured by the Dice
overlap metric. It should also be noted that substantial inter-patient variability

45



Chapter 5. Discussion

in auto-segmentation performance occurred for all the investigated datasets.

5.1 Comparison of automatic segmentation meth-
ods

The segmentation method comparison of paper I identified deep learning as su-
perior to PET thresholding and classical machine learning for the task of GTV
segmentation in patients with HNC. This was particularly the case for ceCT and
PET/ceCT image input, where deep learning substantially outperformed the clas-
sical machine learning approach. The differences between all three approaches were
only moderate for PET-based segmentation, though deep learning ranked highest,
followed by the SVM classical machine learning classifier and PET thresholding
optimized with respect to Dice. Similar results were found in the first MICCAI
(medical image computing and computer assisted intervention) challenge on PET
tumor segmentation [186], which included both simulated, phantom, and clinical
images of HNC and lung cancer patients. In [186] a CNN was ranked highest fol-
lowed closely by classical machine learning methods. Hatt et al. [186] also included
fixed thresholds of 40 % and 50 % of the SUVmax for comparison purposes, which
they found to be among the poorest performing algorithms. The latter is also in
line with our results for the fixed 41 % threshold. Thus, in the case of simple
PET thresholding, optimization of the threshold value for the given task appears
critical.

To our knowledge, no other studies but paper I and the above MICCAI challenge
have compared thresholding, classical machine learning, and deep learning using
data from HNC patients. The dataset used in [186] was created to fulfill spe-
cific criteria for a general benchmark dataset used to compare PET-based auto-
segmentation algorithms [192], and the images were restricted to regions of interest
that only included the tumor and its immediate background. In contrast, paper
I focused on and thereby expanded the knowledge on the three aforementioned
auto-segmentation approaches for a larger clinical HNC image dataset, using less
restricted image regions of interest including both tumor and afflicted lymph nodes,
and single vs. multimodality PET and/or ceCT image input.

The main focus of medical image segmentation studies and public challenges has
shifted towards deep learning using CNNs over the past years [50, 138, 186, 193].
As CNNs extract complex latent features that would be difficult for a human
to engineer, they are often superior to other methods for difficult tasks. This
is supported by the success of CNNs for CT-based segmentation in a range of
diagnoses and applications, as summarized in for example [50], as well as in our
findings for CT-based segmentation in paper I. However, depending on the task
and resources at hand, less complex methods could suffice, as exemplified by our
results for solely PET-based segmentation in paper I. Thus, even though CNNs are
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the current state-of-the-art approach for semantic segmentation, it can be argued
that method comparisons as the one conducted in paper I remain relevant to
document differences in performance and aid informed method selection. Ideally,
such comparisons should be done on an openly available dataset.

5.2 Deep learning experiments
5.2.1 Impact of imaging modality
As for manual contouring, the optimal imaging modalities for auto-segmentation
may depend on the task at hand, as well as image quality. For the deep learn-
ing analyses of papers I and II, molecular PET information in combination with
anatomical and morphological ceCT information provided the highest quality seg-
mentations. This is in line with the two other studies comparing single- and mul-
timodality PET/ceCT-based segmentation of the GTV-T and GTV-N in HNC
using deep learning [179, 180]. According to current delineation guidelines [38],
MR should now be used in addition to PET/ceCT for manual target volume con-
touring in some of the HNC sites included in this thesis. The potential benefit of
combining ceCT, PET, and anatomical MR images for deep learning-based auto-
segmentation of the GTV-T and GTV-N in HNC was assessed recently by Ren
et al. [194]. They found that all multimodal input combinations including PET
information (PET/ceCT, PET/MRI, PET/ceCT/MRI) achieved comparable per-
formances, suggesting that the inclusion of MR input was redundant, whereas
combining anatomical MR and ceCT resulted in markedly lower performance.
Though we did not evaluate MR images in our HNC studies, the structure-based
performance evaluation in paper II also identified PET as vital for detecting a high
proportion of the GTV structures, reflecting the sensitivity of FDG PET imaging
in detecting FDG avid malignancies [104]. It should be noted that several studies
have evaluated solely MR-based auto-segmentation of the primary tumor (GTV-
T) in patients with either oropharyngeal or nasopharyngeal cancer [43, 195–197],
resulting in particularly promising results for nasopharyngeal cancer [43,197]. As
nasopharyngeal cancer has different biology and clinical behavior than the other
HNC sites [139], patients with nasopharyngeal cancer were not included in the
human HNC dataset of this thesis, nor in Ren et al. [194].

CNN models based on PET/ceCT also ranked first for auto-segmentation of AC
in paper III. However, for this task there was no statistically significant difference
between PET/ceCT and ceCT-based segmentations. As in [194], there was no
gain in segmentation performance when combining all three modalities (PET,
ceCT and MR), whereas the CNN model based on T2W MR images ranked as the
second-best single modality model. Apart from paper III, no other studies to date
have evaluated deep learning-based automatic target volume segmentation in AC.
Our results indicate that a high degree of overlap with manual delineations can
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be obtained for several single modality or multimodality inputs. Particularly MR
and PET/ceCT-based auto-segmentation are highly clinically relevant, as these
modalities constitute state-of-the-art imaging for patients with AC in the U.S. and
Europe [70,198]. Even though single modality imaging with ceCT is not considered
state-of-the-art, ceCT-based auto-segmentation could be relevant in some clinical
settings due to the associated cost and efficiency benefits. For the more frequent
pelvic cancers, cervical and rectal cancer, auto-segmentation of the visible tumor
tissue using CNNs has been evaluated for PET, T2W or T2W/DW image input [5,
199–205]. However, comparative studies of the effects different imaging modalities
and modality combinations have on auto-segmentation performance as performed
in paper III of this thesis have, to the best of our knowledge, not been conducted.

One limitation of paper III is the low number of patients in the dataset including
MR images. The fact that the manual GTV delineations were based on routine
rather than the study-specific MR images included for analysis in paper III may
also have impacted on the auto-segmentation results for this modality. Further-
more, as the GTV according to clinical practice for AC included the anal canal
and/or rectum circumference when involved [39, 135], the ranking of modalities
in paper III may not be valid for segmentation of visible tumor tissue only. A
comparison with visible tumor tissue segmentation would have been of interest,
as the macroscopic tumor tissue could be a candidate for dose escalation in the
context of dose painting [191] and is relevant for the derivation of image-based
biomarkers. This was, however, outside the scope of paper III and would require
manual re-contouring of a considerable number of patients.

5.2.2 Network architecture and configurations
The field of semantic segmentation is developing rapidly, and several new CNN
architectures have been proposed after the U-Net [158] was first introduced, as
reviewed in [206,207]. The U-Net is, however, a mature network with documented
strong performance for a wide range of medical applications and diagnoses. Thus,
the U-Net was a natural method of choice in our deep learning experiments, where
the focus was on applicability rather than method development. Recent work
by Isensee et al. [208] show that the U-Net surpasses specialized deep learning
pipelines in a range of biomedical segmentation challenges, when a standardized
framework for the experimental set-up, including pre- and post-processing, is used.
This suggests, in line with the review by Litjens et al. [209], that the exact net-
work architecture is not the driving force for obtaining good results. The use of
3D over 2D convolutions is, however, typically associated with a measurable in-
crease in model performance and 3D convolutions are considered state-of-the-art
for medical image segmentation [138, 180, 193]. However, there are other factors
to consider when selecting between a 2D and 3D architecture. As 3D CNNs have
more trainable parameters than their 2D counterparts, the model complexity, and
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thus time, memory, and power requirements, are increased accordingly. This was
the main reason for selecting a 2D architecture in papers I and II. The use of 3D
CNNs could potentially also rely on more comprehensive image pre-processing due
to e.g. out-of-plane voxel anisotropy. Furthermore, the surge in complexity of 3D
over 2D CNNs could potentially impact on stability and reproducibility, expanding
the required number of training samples. In paper III, the low number of patients
in the smallest dataset as well as field of view limitations of the study-specific
MR images also contributed to the choice of a 2D architecture. Even though the
number of samples was equally low in paper IV, we opted for a 3D architecture
with a desire to maximize the model performance on a difficult task. However, the
inclusion of a reference 2D network could have been appropriate.

The 3D U-Net architecture with or without modifications, combined loss func-
tions, image augmentation, and ensembles of models were used by the majority
of participants, including the winning teams, in recent MICCAI challenges fo-
cusing on PET/ceCT-based segmentation of the GTV-T in oropharyngeal cancer
patients collected from multiple centers [138, 193]. Measurable improvements in
quantitative performance metrics would be expected for our PET/ceCT-based
HNC experiments using similar configurations. The general positive effect of im-
age augmentation observed in papers III and IV of this thesis are also in favor
of the inclusion of augmentation schemes to increase auto-segmentation perfor-
mance. The type of augmentation scheme is, however, highly relevant for the
effect, and several augmentation options not included in this thesis could also be
investigated as outlined and thoroughly reviewed in [206] and [167], respectively.
One relevant option to consider, which can be viewed as a form of training and
test-time image augmentation, is to include multiplanar image slices as input to
a 2D network, thereby combining the benefits of 3D image information and the
parameter efficiency of 2D CNNs [210].

5.2.3 Transfer learning experiments
For the transfer learning analysis of paper IV, we opted for a strategy where
all layers of the pretrained models were fine-tuned on the target task. Another
transfer learning approach is to fine-tune only certain layers, which is commonly
done by having shared (i.e., frozen) lower layers and task-dependent (i.e., trainable)
higher layers [51,154]. The latter approach has been identified as superior to fine-
tuning all layers for some medical applications, e.g., in [211]. However, according
to a recent extensive study on transfer learning where several different medical
segmentation tasks in humans were investigated, the former approach consistently
gave better or equally good segmentation results as partial fine-tuning [170].

The results of Karimi et al. [170] further suggest that the effect of transfer learn-
ing on medical segmentation performance is highly task/data dependent and that
significant effects of transfer learning, besides increased convergence speed, are
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most likely when the number of training samples is low (∼ 3–15), and/or the seg-
mentation task is difficult. In Ghafoorian et al. [211], the improvement in white
matter hyperintensity segmentation performance using transfer learning compared
to training from scratch saturated at ∼ 75 target training samples. The segmenta-
tion task of paper IV is considered challenging and only 18 canine target samples
were used for training in each model run. Thus, a transfer learning approach might
be expected to be beneficial, based on the findings in the above studies. However,
the pronounced dissimilarities between the human source data and canine target
data, summarized in detail in paper IV, as well as the heterogeneity within the
datasets, could be contributing factors to why transfer learning did not outperform
training from scratch in paper IV.

5.3 Data cleaning and image pre-processing
Data cleaning and image pre-processing can have substantial impact on auto-
segmentation performance. Even though all image and contour data were screened
prior to the experiments in papers I–IV, we did not clean our datasets by re-
moving anomalous cases such as patients with CT beam hardening artefacts or
atypical ground truth structures. In a clinical setting, more careful attention
to the quality and representativeness of the data used for training would be
recommended to promote more stable segmentation performance. Furthermore,
as HNC is a heterogeneous group of malignancies with different characteristics
and incidence rates, several auto-segmentation studies, and public challenges on
HNC focus solely on a single high-incidence and/or highly distinct primary tumor
site [43,138,193,195–197,212,213], potentially leading to improved results.

In this thesis, all images were pre-processed by defining a region or volume of in-
terest encompassing the GTV structure(s), and in papers I–III most or all image
slices without ground truth delineations were disregarded for both training and
validation/test data. This pre-processing step was guided by the ground truth
mask and/or the patient anatomy and was not fully automized. The definition of
a region or volume of interest is customary in medical image segmentation studies,
as it reduces the computational costs and makes the segmentation task less im-
balanced, thereby limiting the number of false positive predictions. The potential
effect of the region of interest on auto-segmentation performance is exemplified by
the differences in performances for the PET/ceCT-based CNN models of papers I
and II, where the mean Dice, HD95, and ASD were 0.75, 5.79 mm and 1.36 mm
in paper I (most restricted region of interest) and 0.71, 21.2 mm and 4.7 mm in
paper II (less restricted region of interest).

To truly have a fully automatic segmentation pipeline the volume of interest def-
inition should also be completely automatized. Furthermore, to avoid any “in-
formation leakage” the data used for model evaluation should ideally not be pre-
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processed using ground truth information other than what can be inferred from the
training data. With computational resources being more readily available and the
increased use of 3D convolutions, there is a general trend towards having larger 3D
image volumes as model input, as in paper IV of this thesis. However, the defini-
tion of a volume of interest is generally still required and associated with increased
performance. Multi-step “course-to-fine” auto-segmentation pipelines, where au-
tomatic volume of interest definition is included prior to semantic segmentation,
were presented by several top-ranked teams in the latest MICCAI head and neck
tumor segmentation and outcome prediction (HECKTOR) challenge [214]. When
using an existing target volume auto-segmentation tool in clinical practice, volume
of interest definitions in new patients could alternatively also be done manually
by a human expert as part of a semi-automatic contouring routine.

In papers I–II and IV, the union of the GTV-T and GTV-N were treated as a
single class and the segmentation task was, thus, considered a two-class problem.
This was motivated by the associated improved class-balance between the minority
class, i.e. the union of the GTV-T and GTV-N, and the majority class, i.e. the
background, compared to treating the GTV-T and GTV-N as two separate classes.
Furthermore, the potentially similar image characteristics between the GTV-T and
GTV-N, e.g., high FDG uptake, were considered a potential complicating factor
for successful three-class segmentation. Preliminary experiments not included in
paper II give some credence to this hypothesis, as inferior results were obtained
for three-class segmentation compared to two-class segmentation. The fact that
the GTV-N according to current practice is prescribed the same radiotherapy dose
as the GTV-T also contributed to having the union of the GTV-T and GTV-N as
one class. However, separation of the GTV-T and GTV-N segmentations in two
different classes could still be advantageous, for example in the context of radiomics
studies where it may be desirable to extract separate image-based features from the
GTV-T and GTV-N [215]. Three-class segmentation of the GTV-T and GTV-N
was addressed in the 2022 MICCAI HECKTOR challenge [216], where the top-
ranked team obtained a mean Dice score of 0.80 and 0.78 for auto-segmentation of
the GTV-T and GTV-N, respectively [214]. The high number of patients (n = 883,
multi-centric data) and the fact that only oropharyngeal cancers were included in
the associated dataset may have contributed to the successful use of a three-class
approach in this case, along with methodological choices.

5.4 Model performance assessment
Dice and the other quantitative performance metrics included in this thesis provide
information on the geometric agreement between contours but are limited by their
inability to capture contextual differences, such as proximity to OARs, that may
impact on clinical applicability [172,217]. Several studies have demonstrated poor
correlation between Dice or its related metric, the Jaccard similarity coefficient,
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and clinical applicability in terms of qualitative scoring and dose plan quality, as
summarized recently in [172]. The newer performance metrics surface Dice [52]
(DiceS) and added path length (APL) [218] are hypothesized to be more clinically
meaningful, as they quantify the degree of revision required for an auto-segmented
contour to match the contour it is compared against, within a predefined tolerance.
Still, DiceS and APL are also global geometric metrics limited by their inability
to provide information on the location of errors [217]. Vaassen et al. [218] found
DiceS and APL to correlate better with time spent on manual revision of auto-
generated OAR contours in patients with lung cancer, compared to the volumetric
Dice and HD metrics. Conflicting findings have, however, been reported for OAR
and CTV segmentation in prostate cancer [219].

The structure-based performance metrics introduced in paper II do not capture
contextual information. However, they allow for a more in-depth quantitative
assessment of the auto-segmentation results, particularly in the case of multiple
ground truth structures, and could be used to supplement conventional patient-
wise metrics for such tasks. This is inferred from, and exemplified by, the perfor-
mance analysis of paper II, as briefly detailed in the following. As the structure-
based distance metrics were on average lower than the patient-wise distance met-
rics, it could be deduced that the patient-wise distances were in fact skewed by
false positive structures. The structure-based sensitivity metric further showed
quantitatively that the PET signal was vital for the sensitivity of the CNN models
in detecting malignant structures, which is critical for radiotherapy. All evaluated
models were, however, prone to including false positive structures in the predicted
auto-segmentation. However, the structure-based volumetric size metric showed
that the falsely predicted structures on average were small, and thus potentially
could be filtered out in a post-processing step to reduce the need for manual revi-
sion.

Qualitative evaluation is generally highly valued in the medical community, as it
provides an overall assessment of the clinical applicability of the contours. Such
evaluation is, however, subjective, and resource-demanding. Furthermore, the
design of the qualitative evaluation procedure requires attention to details. Among
the factors to keep in mind is that human experts could be biased against contours
they identify as generated by an AI algorithm. Regardless, the majority of the
auto-generated contours (87 %) randomly selected for qualitative evaluation in
paper II were found to have high clinical value (score of 8 or higher). Moreover,
13 % of the auto-generated contours could not be identified as generated by an
AI algorithm (score of 10). In paper II both the manually delineated and auto-
generated contours were shown simultaneously to the expert for each patient, and
the colors of the two contours were assigned at random. To avoid the potential
bias introduced by evaluating both contours simultaneously, a better strategy could
have been to randomly draw either an auto-generated or a manually delineated
contour from each patient. The latter approach was taken in Gooding et al. [220],
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where both manual and automatic contours were assessed on a slice-by-slice basis
by several experts.

Similarly to our initial qualitative assessment in paper II, the evaluation in [220]
was inspired by the Turing test [221] and consisted in determining the origin of each
contour (manual or automatic). Gooding et al. [220] found a better correspondence
between time savings and the contour misclassification rates than the quantitative
Dice, HD95, and ASD metrics. In Lustberg et al. [222], there were only moderate
differences in the actual time needed to revise contours receiving scores of 1–3 on
a four-point scale. This questions the ability of humans to estimate the degree of
revision required. In paper II, we used a ten-point scale where only the extremes
were formally defined (score 1: little to no clinical value; score 10; not possible
to separate automatic from manual contour). In retrospect, we acknowledge that
this might be an unnecessarily wide and too loosely defined scale. Furthermore,
due to the subjective nature of qualitative scoring, it would have been preferable
to have multiple experts to evaluate the contours.

In summary, selection of appropriate performance measures is vital to properly
assess auto-segmentation algorithms. As pointed out in [172], it can be instruc-
tive to consider the main goals of auto-segmentation, time savings and reduced
contour variability, when designing and selecting performance evaluation metrics
for future auto-segmentation studies. Using metrics that correlate with clinical
usefulness will likely be increasingly important as auto-segmentation of target vol-
umes evolves. However, the conventional geometric metrics are simpler and less
resource-demanding to obtain compared to direct quantification of time savings,
qualitative assessment and dosimetric evaluation, and will likely remain important
for inter-study comparisons. Furthermore, the geometric measures are generally
well suited to measure contour agreement [172].

Another important methodological choice is the model evaluation strategy. If the
amount of data is too limited to have a separate hold-out test set as we had in
papers I–II, a cross-validation procedure as the one used in paper IV would be rec-
ommended to obtain independent validation and test set results, even though this
reduces the number of training samples compared to the simple cross-validation
procedure used in paper III. Furthermore, the test set evaluations of this thesis
only included internal test data. To fully evaluate the model generalizability an
external test set with data from one or several other institutions would be required.
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Chapter 6

Conclusions and future
perspectives

The overall aim of this thesis was to investigate the use of machine learning meth-
ods for automatic GTV segmentation in medical images. The results presented in
this thesis consolidates deep learning as a method of choice for auto-segmentation
within the medical domain and adds to a growing body of literature showing that
CNNs can provide high quality GTV segmentations in various cancer diagnoses.
For all cancer types investigated in papers I–IV of this thesis, namely HNC, AC,
and canine HNC, the highest ranked CNN models resulted in automatic segmen-
tations which on average had an overlap with manual ground truth contours that
was on par with reported interobserver agreements for manual contouring. Based
on these findings, it is inferred that further investigation of CNNs for automatic
GTV segmentation in the given cancer diagnoses is highly warranted. The inter-
institutional generalizability of our models was, however, not assessed, as all papers
only included single center data. Thus, inter-institutional generalizability would
be relevant to assess in any related future work.

The comparison of methods for auto-segmentation of the GTV-T and GTV-N
in patients with HNC, conducted in paper I, showed that the added benefit of
using CNNs over less complex algorithms can depend on the imaging modality in
question. For segmentations based solely on PET images, all investigated methods,
including conventional PET thresholding, classical machine learning algorithms,
and deep learning with CNNs, provided fair overall quantitative segmentation
performance. For ceCT and PET/ceCT-based segmentation, on the other hand,
CNNs outperformed classical machine learning algorithms. The combination of
PET and ceCT image input resulted in superior CNN performance for the given
task in both papers I and II. Thus, of the evaluated approaches, deep learning
with CNNs using multimodality PET/ceCT image input would be recommended
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for segmentation of the GTV-T and GTV-N in HNC. Furthermore, the proposed
structure-based performance metrics introduced in paper II provided a more in-
depth assessment of the CNN model characteristics and can with advantage be
used as a supplement to existing conventional patient-wise metrics, particularly in
the case of multiple ground truth structures. A possible extension of the analyses
of papers I and II would be to evaluate the potential added benefit of using a 3D
rather than a 2D CNN, and to assess the effect of different image augmentation
schemes.

Combined PET/ceCT input also resulted in the highest overlap with the ground
truth GTV delineations for deep learning-based segmentation of the AC GTV in
paper III. For this task, however, comparable CNN performance was obtained for
single modality ceCT image input. Several multimodality models incorporating
T2W MR images also performed well, and the CNN based solely on T2W images
ranked as the second-best single modality model. Thus, the findings in paper
III suggest that the given segmentation task could be performed satisfactorily
based on several different image inputs. Paper III was, however, limited by the
low number of patients with MR images, and the lack of test set evaluation. A
natural extension of paper III would, therefore, be to evaluate and compare MR,
PET, and ceCT-based auto-segmentation for a larger number of AC patients, also
including test set evaluation to assess model generalizability. Ideally, such an
analysis would include two different segmentation tasks, namely segmentation of
the GTV as defined in routine clinical practice/paper III, and segmentation of the
visible tumor tissue only.

The analysis of canine HNC patients in paper IV indicated that cross-species trans-
fer learning from a larger human HNC cohort could increase segmentation quality
for individual patients. On average, however, the best segmentation performance
was achieved training canine HNC models from scratch. Differences in source and
target domains as well as the heterogeneous nature of HNC may have complicated
the transfer learning analyses. In paper IV only ceCT-based segmentation was in-
vestigated as this was the common modality available for both humans and dogs.
Pre contrast imaging is, however, part of the routine CT imaging protocol for the
canine patients. Thus, a relevant next step for automatic GTV segmentation in
this group of patients would be to investigate the potential added benefit of includ-
ing both pre and post contrast CT images. Furthermore, a subgroup analysis of
dogs with nasal cavity tumors would be warranted, as this was the most numerous
subgroup that on average obtained the most promising auto-segmentations. Due
to the low number of canine patients it could be reasonable to opt for a 2D CNN
in further analyses of this dataset, or alternatively compare the performances ob-
tained with 2D and 3D CNNs. Implicitly including 3D information as input to a
2D network by the use of image augmentation as in [210] could also be relevant.

Though deep learning-based segmentation of the GTV provided highly promis-
ing results, substantial between-patient variability in segmentation quality could
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occur. The poorest performance was generally seen for patients with atypical im-
age and/or GTV characteristics, indicating that the network was limited by the
number of representative training samples. Such variability is not unique for the
auto-segmentation analyses included in this thesis. The relatively low number of
training samples available within the medical domain has been pointed out as one
major unresolved issue for the application of deep learning-based medical auto-
segmentation [223]. Strategies that could lead to more stable auto-segmentation
performance with a limited number of training samples is thus an important field
of study. In this context, several strategies are relevant. First, the effect of more
careful data curation, e.g. excluding patients with image artefacts and in the case
of HNC restrict the auto-segmentation task to the single most frequent cancer site,
could be investigated. Second, potential ways to incorporate clinical and contex-
tual information into the supervised deep learning models could possibly lead to
improved and more stable performance. Third, strategies such as transfer learning,
unsupervised learning, and learning from noisy labels could all potentially reduce
the required number of training samples [224, 225]. The latter two approaches
are particularly relevant if the number of labeled samples is the limiting factor of
the dataset size, which was not the case in this thesis. On another note, multi-
centric studies, potentially also including openly available datasets [226], could be
performed to increase the number of patients, also allowing for systematically com-
paring the stability and generalizability of single and multi-center-based models.

Given the risk of variable auto-segmentation performance, full automation of GTV
segmentation in clinical practice without any human quality assurance and/or con-
tour revision is not likely at present. In this context, optimal implementation of
GTV auto-segmentation tools and documentation of their clinical usefulness are
two important fields to consider in future work. With respect to optimal im-
plementation, there is a need for further development of methods that can in-
form clinicians about uncertainties in the predicted auto-contours and identify
new patients that deviate from the training set distribution, also known as out-
of-distribution samples [223, 227]. Identification of patients not suited for an ex-
isting auto-segmentation tool is important to keep clinicians from wasting time
on low-quality auto-contours, as it can be assumed that there is no time-savings
associated with auto-segmentation if more than about 40 % of the auto-contour
requires manual revision. Clinical usefulness in terms of time-savings and reduced
interobserver variability has already been documented for deep learning-based au-
tomatic GTV segmentation in several cancer diagnoses, as exemplified in [43, 44].
However, further studies quantifying the clinical usefulness of auto-segmentation
tools are likely needed to motivate their implementation into the clinical workflow.
As direct quantification of clinical usefulness can be highly resource demanding in
itself, it is also relevant to derive and report surrogate performance metrics that
correlate with clinical usefulness [172]. A standardized framework with recommen-
dations for the calculation and reporting of quantitative and qualitative perfor-
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mance metrics could also be a welcome addition to the field of auto-segmentation
for radiotherapy.
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Abstract 

Target volume delineation is a vital but time-consuming and challenging 

part of radiotherapy, where the goal is to deliver sufficient dose to the 

target while reducing risks of side effects. For head and neck cancer 

(HNC) this is complicated by the complex anatomy of the head and neck 

region and the proximity of target volumes to organs at risk. The purpose 

of this study was to compare and evaluate conventional PET thresholding 

methods, six classical  machine learning algorithms and a 2D U-Net 

convolutional neural network (CNN) for automatic gross tumor volume 

(GTV) segmentation of  HNC in PET/CT images. For the latter two 

approaches the impact of single vs. multimodality input on segmentation 

quality was also assesed. 197 patients were included in the study. The 

cohort was split into training and test sets (157 and 40 patients, 

respectively). Five-fold cross-validation was used on the training set for 

model comparison and selection. Manual GTV delineations represented 

the ground truth. Tresholding, classical machine learning and CNN 

segmentation models were ranked separately according to the cross-

validation Sørensen-Dice similarity coefficient (𝐷𝑖𝑐𝑒). PET thresholding 

gave a maximum mean 𝐷𝑖𝑐𝑒 of 0.62, whereas classical machine learning 

resulted in maximum mean 𝐷𝑖𝑐𝑒 scores of 0.24 (CT) and 0.66 (PET;  

PET/CT). CNN models obtained maximum mean 𝐷𝑖𝑐𝑒 scores of 0.66 

(CT), 0.68 (PET) and 0.74 (PET/CT). The difference in cross-validation 

𝐷𝑖𝑐𝑒 between multimodality PET/CT and single-modality CNN models 

was significant  (𝑝 ≤ 0.0001). The top-ranked PET/CT-based CNN model 

outperformed the best-performing thresholding and classical machine 
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learning models, giving significantly better segmentations in terms of 

cross-valdiation and test set 𝐷𝑖𝑐𝑒, true positive rate, positive predictive 

value and surface distance-based metrics (𝑝 ≤ 0.0001).  Thus, deep 

learning based on multimodality PET/CT input resulted in superior target 

coverage and less inclusion of surrounding normal tissue.  

 

Keywords: Head and neck cancer, PET/CT, gross tumor volume, automatic segmentation, thresholding, 

machine learning, deep learning, CNN.  

 

1. Introduction 

More than 800 000 cases of head and neck cancer (HNC) were diagnosed 

worldwide in 2018 (Bray et al 2018). The majority of HNCs are squamous cell 

carcinomas (HNSCC) of the oral cavity, oropharynx, hypopharynx and larynx (Argiris et 

al 2008; Haddad and Shin 2008). Most patients are diagnosed with locally advanced, 

nonmetastatic disease, where standard treatment is concurrent radio-chemotherapy 

(Halperin et al 2013).  

For radiotherapy in general, the challenge is to deliver sufficient doses to the target 

volumes (TVs) whilst keeping the doses to the organs at risk (OARs) at acceptable levels 

in order to prevent major toxicities. For HNC, this is further complicated by the complex 

anatomy of the head and neck region, as well as close proximity between TVs and OARs 

(Grégoire et al 2015; O'Sullivan et al 2012). Highly conformal dose radiotherapy 

techniques such as intensity-modulated radiotherapy and volumetric arc therapy reduce 

radiation-related toxicities (O'Sullivan et al 2012) but require precise and accurate 

volume definitions (Eisbruch and Gregoire 2009; Grégoire et al 2015). In clinical 

practice, the current gold standard for TV delineation is manual contouring in the 

radiotherapy treatment planning system. However, manual delineation is time-consuming 

and encumbered with intra- and interobserver variability (Bird et al 2015; Gudi et al 2017; 

Kosmin et al 2019; Lin et al 2019). Automatic segmentation (auto-segmentation) could 

potentially alleviate intra- and interobserver variations and reduce time spent on 
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delineations, as shown recently by Lin et al (2019), leading to improved TV dose 

coverage and sparing of OARs.  

Radiotherapy planning of HNSCC of the oral cavity, pharynx and larynx is usually 

performed using CT images of the patient in treatment position. 18F-

fluorodeoyxyglucose-PET (FDG-PET) may be used as a supplementary modality as it 

can provide additional information for TV delineations (Grégoire et al 2015). Most 

previous studies on auto-segmentation of HNC involve segmentation of OARs or 

nodal/elective TVs in planning CT images (see Kosmin et al (2019) for a review) or 

segmentation of the primary tumor volume in FDG-PET images (Berthon et al 2017; 

Comelli et al 2018; Comelli et al 2019a; Comelli et al 2019b; Stefano et al 2017). For 

the CT-based auto-segmentation studies, methods range from Atlas-based algorithms to 

deep learning using convolutional neural networks (CNNs) (Kosmin et al 2019). The 

above PET-based studies are based on a limited number of patients (< 30) and apply 

semi- or fully automatic classical machine learning methods to segment the gross tumor 

volume (GTV) (Berthon et al 2017) or a biologically relevant TV within the GTV 

(Comelli et al 2018; Comelli et al 2019a; Comelli et al 2019b; Stefano et al 2017).   

There are, however, a multitude of approaches for PET auto-segmentation 

available, ranging from fixed thresholding to various machine learning methods (Hatt et 

al 2017). In the most comprehensive comparison of PET auto-segmentation methods to 

date, including simulated, phantom and clinical FDG-PET image data for patients with 

HNC, a deep learning approach using CNNs was ranked first, followed by various 

classical machine learning methods (Hatt et al 2018). This comparison study 

demonstrated that the performance of all methods was dependent on the FDG-PET uptake 

properties of the tumor and background tissue, leading to substantial variations in patient-

wise segmentation quality (Hatt et al 2018). As the FDG-PET uptake is not fully cancer 
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specific, an auto-segmentation method capable of utilizing CT or multimodality PET/CT 

images is likely to be more robust towards abnormal uptake characteristics, potentially 

leading to higher quality segmentations for patients with atypical uptake. Both Yu et al 

(2009) and Huang et al (2018) have performed auto-segmentation of GTVs in combined 

PET/CT images but for a limited number of HNC patients (≤ 22). A recent study by Guo 

et al (2019) propose a deep learning framework for GTV segmentation in HNC, obtaining 

superior auto-segmentations using multimodality PET/CT rather than single modality 

input for 250 patients. PET/CT also resulted in the highest-quality GTV auto-

segmentations when deep learning-based segmentation was applied on images of patients 

with oropharyngeal cancer (𝑛 = 202) (Andrearczyk et al 2020).  

To summarize, most previous studies performing auto-segmentation of GTVs in 

HNC have been limited by the low number of patients included and/or have not 

investigated the use of single modality vs. multimodality PET/CT images. Furthermore, 

most  PET-only-based studies have relied on a human operator to locate a region of 

interest within or around the TV (Comelli et al 2018; Comelli et al 2019a; Comelli et al 

2019b; Stefano et al 2017), or focus on small pre-selected volumes of interest (VOIs) 

encompassing the immediate region surrounding each TV (Hatt et al 2018). There is, 

therefore, a need for evaluating different automatic segmentation methods on images with 

less biased VOIs for larger HNC patient cohorts, comparing the segmentation 

performance obtained using single and multimodality images. This is the focus of our 

present work.   

The purpose of this study was to evaluate thresholding, classical machine learning 

and deep learning for automatic GTV segmentation based on PET/CT images of patients 

with HNSCC. Auto-segmentations were obtained in a cohort of 197 patients, using (i): 

Conventional PET thresholding methods, (ii): A classical machine learning approach 
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where different classifiers and advanced feature engineering were explored, and (iii): A 

deep learning approach using CNNs which inherently derives features automatically. The 

impact of imaging modality on segmentation quality was evaluated by comparing the 

results obtained using CT or PET images or the combination of the two modalities as 

input to the classical machine learning and deep learning approaches.  

2. Materials and methods 

2.1 Study  

2.1.1 Patients and treatment 

The present study includes patients with HNSCC of the oral cavity, oropharynx, 

hypopharynx and larynx, treated with curatively intended radio(chemo)therapy. The 

patient cohort of 225 patients and the treatment regime have been described previously 

(Moan et al 2019). In the current study, we excluded patients who did not have a contrast 

enhanced CT along with the PET examination, resulting in 197 patients eligible for 

analysis. Characteristics of the eligible patients are summarized in table 1. The study was 

approved by The Regional Ethics Committee (REK) and the Institutional Review Board.  

Exemption from study-specific informed consent was granted by REK as this is a 

retrospective study and the patients are de-identified.  

 

2.1.2 Imaging and manual delineations  

FDG-PET/CT scans were performed on a Siemens Biograph 16 (Siemens 

Healthineers GmbH, Erlangen, Germany) with a radiotherapy compatible flat table and 

radiotherapy fixation mask. The PET/CT protocol consisted of a radiotherapy optimized 

PET/CT acquisition from the skull base to the mid chest with arms down (5 mins/bed 
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position) followed by a standard whole-body PET/CT acquisition. For the current 

analysis, only the radiotherapy planning PET and corresponding contrast-enhanced CT 

images were included. Details on the imaging protocol can be found in appendix A. All 

TV delineations were done at the time of treatment planning, also described in (Moan et 

al 2019), following the DAHANCA Radiotherapy Guidelines (2013). The gross primary 

tumor volume (GTV-T) and, if present, the involved nodal volume (GTV-N) were first 

Table 1. Patient characteristics summarized for all eligible patients and for the patients included in the 

training and test sets (𝑛 = number of patients). 

 All patients Training set Hold-out test set 

Characteristica  (𝒏 = 197)  (𝒏 = 157)  (𝒏 = 40) 

Age [years]    

Mean (range) 60.3 (39.9–79.1) 60.6 (39.9–79.1) 59.4 (43.0–77.0) 

Sex    

Female  49 (24.9%) 38 (24.2 %) 11 (27.5 %) 

Male  148 (75.1 %) 119 (75.8 %) 29 (72.5 %) 

Tumor stage    

T1/T2 96 (48.7 %) 76 (48.4 %) 20 (50.0 %) 

T3/T4 101 (51.3 %) 81 (51.6 %) 20 (50.0 %) 

Nodal stage    

N0 47 (23.9 %) 37 (23.6 %) 10 (25.0 %) 

N1 23 (11.7 %) 19 (12.1 %) 4 (10.0 %) 

N2 120 (60.9 %) 95 (60.5 %) 25 (62.5 %) 

N3 7 (3.6 %) 6 (3.8 %) 1 (2.5 %) 

Tumor site    

Oral cavity 17 (8.6 %) 14 (8.9 %) 3 (7.5 %) 

Oropharynx 143 (72.6 %) 113 (72.0 %) 30 (75.0 %) 

Hypopharynx 16 (8.1 %) 15 (9.6 %) 1 (2.5 %) 

Larynx   21 (10.7 %) 15 (9.6 %) 6 (15.0 %) 

GTV-Tb [cm3]    

Mean (range) 25.0 (0.8–285.0) 25.2 (0.8–285.0) 24.3 (1.4–157.6) 

GTV-Nc [cm3]    

Mean (range) 19.3 (0.5–276.7) 25.6 (0.5–276.7)  19.5 (0.5–76.4) 

a Percentages may not sum to exactly 100 due to rounding. 

b Gross primary tumor volume 

c Involved nodal volume (for patients with nodal stage ≥ N1) 
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contoured manually by an experienced nuclear medicine physician based on FDG-PET 

findings. The resulting delineations were further refined by one or two oncology residents 

based on the contrast-enhanced CT and clinical information. For final quality assurance, 

the delineations were reviewed by a senior oncologist.  

 

2.2 Image pre-processing  

The PET/CT image series and DICOM radiotherapy planning structures were 

exported to an external computer and pre-processed using Interactive Data Language 

(IDL) v8.5 (Harris Geospatial Solutions, Broomfield, CO, USA). For each patient, the 

PET, CT and structure series were resampled to an isotropic voxel size of 1 × 1 × 1 mm3 

and registered to a common frame of reference. PET image values were expressed as 

standardized uptake values (SUV), normalized to body weight. All further pre-processing 

was performed using MATLAB® 2019a (The Mathworks, Inc. Natick, Massachusetts, 

USA). 

Image regions consisting of high SUV brain tissues were identified and excluded 

by applying a two-dimensional region-growing function on the maximum intensity 

projection of the PET images. The images were cropped to a VOI containing the GTV-T 

and GTV-N. Each VOI was defined by including a 20 mm edge around the manually 

delineated GTV structures in the axial plane, and one extra slice in the 𝑧-direction. Image 

slices in-between delineated structures were not included in the VOI. The above VOI 

definition resulted in a reduced data set, where the total number of GTV-T and GTV-N 

voxels constituted approximately 6 % of all included voxels. This proportion varied 

moderately between patients, depending on the primary tumor volume and/or the extent 

of nodal involvement. A typical VOI is shown in figure 1(a), along with the corresponding 

PET/CT images.  
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Figure 1. Schematic overview of the experimental set-up. (a) Left: The image data consisted of radiotherapy PET/CT 

images. CT-W denotes CT with an applied window setting (shown: center 60 HU and width 100 HU). Manual gross 

tumor volume delineations were used as the ground truth in the experiments. A volume of interest (VOI; white square) 

was defined prior to auto-segmentation. Each image voxel within the VOI was represented by its intensity value. For 

the classical machine learning approach, intensities within 2D or 3D voxel neighborhoods were used as features. Right: 

Various 1D and 2D image transformations were further evaluated as features for the classical learners (examples from 

left: local binary patterns of CT-W, natural logarithm and gradient magnitude of PET).  (b) Auto-segmentations were 

obtained using PET thresholding, six classical machine learning classifiers (linear discriminant analysis (LDA), 

quadratic discriminant analysis (QDA), Gaussian naïve Bayes (GNB), logistic regression (LR), support vector 

machines (SVM) and random forest (RF)) and one CNN architecture (2D U-Net). (c) The cohort of 197 patients was 

split into training and test sets. Superior models were selected for further evaluation, based on the Sørensen-Dice 

similarity coefficient between auto-segmentations and the ground truth. 
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2.3 Model training and validation  

Auto-segmentations were obtained using four PET thresholding methods, six 

classical machine learning classification algorithms and one CNN architecture. The 

thresholding, classical machine learning and CNN methodologies are described in detail 

in sections 2.5, 2.6 and 2.7, respectively. An overview of the analysis is shown in figure 

1.  

The manual GTV-T and GTV-N delineations were used as the ground truth when 

training and evaluating auto-segmentation models. The auto-segmentation task was 

considered as a two-class classification problem: tumor and involved lymph node tissues 

belonging to GTV-T or GTV-N (class 1), or unaffected tissues (class 0).  

Patients were divided into a training set (157 patients; 80 %) and an internal hold-

out test set (40 patients; 20 %), stratified with respect to tumor stage (cf. table 1). A 

random sampling five-folded cross-validation procedure, stratified by tumor stage, was 

used with the training set for hyper-parameter tuning and model comparison. This ensured 

comparable tumor stage distributions across the training and hold-out test sets, as well as 

the cross-validation folds. The generalization performance of the superior thresholding, 

classical machine learning and CNN auto-segmentation models was evaluated on the 

hold-out test set. Prior to final test set evaluation, the superior thresholding and classical 

machine learning models were retrained on the full training set.  

Thresholding and classical machine learning were performed using MATLAB®. The 

CNN models were trained using Python and TensorFlow.  

  

2.4 Performance evaluation 

The Sørensen-Dice similarity coefficient (𝐷𝑖𝑐𝑒) (Dice 1945; Sørensen 1948) was 

used to assess the cross-validation performance of each auto-segmentation model. 𝐷𝑖𝑐𝑒 



 

10 

 

may be defined using either set notation or the number of true positive (𝑇𝑃), false positive 

(𝐹𝑃) and false negative (𝐹𝑁) voxels:  

 𝐷𝑖𝑐𝑒 =  
2|𝑃⋂𝐺|

|𝑃| + |𝐺|
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
. (1) 

 

In equation (1) 𝐺 and 𝑃 denotes the set of voxels included in the ground truth (𝐺) 

delineation and the predicted (𝑃) segmentation mask, respectively. Hence, 𝐷𝑖𝑐𝑒 measures 

the degree of spatial overlap between the ground truth and the predicted segmentation 

mask given as output by an auto-segmentation model. 𝐷𝑖𝑐𝑒 scores of 0.70 or higher may 

be considered as good overlap between volumetric segmentations (Zijdenbos et al 1994). 

Based on the 𝐷𝑖𝑐𝑒 performance, we selected the superior thresholding, classical machine 

learning and CNN models, respectively, for further assessment and comparison, using the 

methodology described in section 2.8 below.  

The superior models were further evaluated in terms of true positive rate (𝑇𝑃𝑅), 

positive predictive value (𝑃𝑃𝑉), the 95th percentile Hausdorff distance (𝐻𝐷95) 

(Huttenlocher et al 1993) and mean surface distance (𝑀𝑆𝐷) (Taha and Hanbury 2015).  

These metrics provide complementary information on the quality of the predictions.  

𝑇𝑃𝑅, also called sensitivity, is the fraction of the ground truth delineation that 

overlaps with the predicted segmentation mask, and is defined in terms of 𝑇𝑃 and 𝐹𝑁 

voxels:  

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (2) 

 

On the other hand, 𝑃𝑃𝑉, also called precision, is the fraction of the predicted 

segmentation mask that overlaps with the ground truth delineation, expressed as:  

 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. (3) 
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The Hausdorff distance (𝐻𝐷) is defined as the maximum distance between the surface 

voxels of the ground truth set 𝐺 and the predicted mask set 𝑃, expressed as (Taha and 

Hanbury 2015):  

 𝐻𝐷(𝐺, 𝑃) = max(ℎ(𝐺, 𝑃), ℎ(𝑃, 𝐺)), (4) 

 

where ℎ(𝐺, 𝑃) is the directed 𝐻𝐷 defined as:  

 ℎ(𝐺, 𝑃) = max
𝑔∈𝐺

min
𝑝∈𝑃

∥ 𝑔 − 𝑝 ∥ .     (5) 

 

∥ 𝑔 − 𝑝 ∥ in equation (5) denotes the Euclidian norm between surface points 𝑔 and 𝑝. As 

𝐻𝐷 is known to be sensitive to outliers, it is not recommended to use this metric directly 

(Zhang and Lu 2004). Therefore, it was replaced by the 95th percentile 𝐻𝐷 (𝐻𝐷95) which 

excludes the most extreme observations. Furthermore, the 𝑀𝑆𝐷 is defined as the mean 

distance between the surface voxels of the ground truth set 𝐺 and the predicted set 𝑃, 

given by: 

 

 𝑀𝑆𝐷(𝐺, 𝑃) = max(𝑑(𝐺, 𝑃), 𝑑(𝑃, 𝐺)), (6) 

 

where 𝑑(𝐺, 𝑃) is the directed average 𝐻𝐷 defined as: 

 

 

 𝑑(𝐺, 𝑃) =
1

|𝐺|
∑ min

𝑝∈𝑃
∥ 𝑔 − 𝑝 ∥

𝑔∈𝐺

. (7) 

 

The 𝑀𝑆𝐷 metric provides the typical distance between the ground truth delineation and 

the predicted segmentation, whereas 𝐻𝐷95 reflects the longest distance and thus the most 

severe mismatch between the surface voxels of the two sets. The above distance metrics 

can provide clinically relevant information about the differences in edges between 

segmentations not captured by 𝐷𝑖𝑐𝑒 due to its intrinsic volume dependency. Furthermore, 

𝐷𝑖𝑐𝑒 does not separate between type 1 errors (𝐹𝑃) and type II errors (𝐹𝑁). However, 
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reporting both 𝑇𝑃𝑅 and 𝑃𝑃𝑉 conveys distinct information about both error types (Hatt et 

al 2017). All our performance metrics were calculated on a per patient basis. 𝐻𝐷95 and 

𝑀𝑆𝐷 were calculated using an in-house-developed Python library available at 

https://github.com/yngvem/mask_stats. 

  

2.5 Auto-segmentation using PET thresholding 

PET thresholding was performed using either an absolute SUV threshold, a 

percentage of the maximum SUV (SUVmax) threshold, or a method based on Laplacian 

of Gaussian (LoG) filtering, with basis in the procedure outlined in (Gonzalez and Woods 

2010), hereinafter referred to as LoG-based thresholding.  

LoG-based thresholding consisted of several sequential operations, where the 

overall objective was to use edges, as indicated by the LoG filter, to improve 

segmentations obtained by thresholding. Initially, the original images (PET) were 

transformed with a 3D LoG filter with standard deviations (𝑆𝐷s) of {1.5, 2.0, 2.5, 3.0, 

3.5, 4.0, 4.5} mm in the convolution kernel. For each 𝑆𝐷 the corresponding kernel size 

was 𝑛3 with 𝑛 ≥ 6 𝑆𝐷.  To avoid unwanted edge effects, LoG filtering was performed 

prior to exclusion of brain tissues and image cropping. The resulting LoG filtered images 

(fLoG) were converted to absolute values and percentile thresholding was used to create 

a binary mask. This mask was applied on the product of fLoG and PET to exclude the 

least relevant background voxels. Otsu’s method (Otsu 1979) was then applied on the 

masked fLoG × PET to segment tumor/lymph nodes from the background. 

The above thresholding models were optimized with respect to 𝐷𝑖𝑐𝑒, by 

maximizing the mean 𝐷𝑖𝑐𝑒 per patient (𝑚𝐷𝑖𝑐𝑒) for each training fold in the cross-

validation procedure. The absolute SUV threshold was varied from 0 to 8 with an 

incremental change of 0.25, while the percentage of SUVmax threshold was varied from 0 



 

13 

 

to 100 % using increments of 1 %. For LoG-based thresholding, the percentile value was 

varied from 50 to 95 with increments of 5.  

For comparison, we also used a fixed percentage threshold equal to 41 % of the 

SUVmax, which has been recommended for PET thresholding (Boellaard et al 2015; Davis 

et al 2006).     

 

2.6 Auto-segmentation using classical machine learning 

2.6.1 Feature extraction 

Segmentation based on classical machine learning was performed using different 

combinations of image features derived from the original PET and CT images as model 

input. The effect of imaging modality was assessed using either CT features, PET features 

or combinations of PET and CT features as input to the classifier. In addition, we 

evaluated the effect of reducing the dynamic range of the CT images (windowing) by 

replacing the original CT features with features based solely on windowed CT images 

(CT-W). 

The original voxel intensity values constituted the simplest features, while the 

original intensities in 2D and 3D neighborhoods surrounding each voxel were used as 

spatial features. As illustrated in figure 1(a), the 2D neighbors were defined as the 8-

neighborhood within a given axial image slice (previously described in (Torheim et al 

2017)), whereas the 3D neighbors were defined as the 26-neighborhood also including 

voxels from adjacent image slices.  

For CT, CT-W and PET, we also evaluated several 1D and 2D image 

transformations for inclusion as features by assessing their point-biserial correlation with 

the ground truth, using training data only. The 1D transformations included the natural 

logarithm, exponential, square and square root of intensity values as defined in (van 
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Griethuysen et al 2017). Evaluated 2D transformations included the gradient magnitude 

and direction using the Sobel operator (Gonzalez and Woods 2010), the LoG filter 

(Gonzalez and Woods 2010), local binary patterns (LBP) (Ojala et al 2002) and the 1st 

level Haar (Gonzalez and Woods 2010) and Coiflet (Daubechies 1993) discrete stationary 

wavelets. LoG filtering was performed with 𝑆𝐷s of {1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5} mm, 

whereas LBP used sample radii of {1, 2, 4, 6} mm and a constant sample size of 8 voxels. 

As for LoG-based thresholding, the spatially dependent (2D) transformations were 

performed prior to exclusion of high SUV brain voxels and VOI definition.  

Additionally, we evaluated 10 different CT window settings with window centers 

of {60, 70} HU, corresponding to typical intra-tumor intensity values, and window widths 

of {100, 200, 350, 500, 1000} HU. The various window settings were considered both 

for inclusion as features in the CT-based classification and for determining the settings 

for CT-W.  

All transformations with an absolute point-biserial correlation with the ground 

truth equal to or larger than that of the corresponding non-transformed images were 

included as features. Similarly, the window setting having the highest point-biserial 

correlation with the ground truth was selected for creating CT-W, namely (centre: 60 HU; 

width: 100 HU).  

 

2.6.2 Standardization, image unfolding and class-imbalance 

For each patient, the original and transformed 3D image stacks were standardized 

separately to zero mean and a standard deviation of one. Prior to performing voxel-wise 

classification, the standardized 3D image stacks were unfolded into 2D data matrices 𝑋 

where each row consisted of the given input feature(s) for one unique voxel, as described 

in detail in (Torheim et al 2017). The delineated structures were unfolded to a 
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corresponding response vector 𝑌, containing the class membership of each voxel (class 0 

or 1 according to the ground truth). In total, 31 different 𝑋 matrices (see figure 4) were 

used as input to the classification algorithms. For the 𝑋 matrices consisting of single 

modality 2D or 3D neighborhoods, we also assessed the effect of sorting each voxel and 

its neighborhood in descending order according to intensity value. These sorted 𝑋 

matrices gave an overall representation of changes in neighborhood voxel intensities, 

rather than focusing on the intensities with respect to voxel location. 

To alleviate the severe class-imbalance between affected (class 1) and unaffected 

tissues (class 0), the majority class (i.e. the unaffected tissues class) was randomly under-

sampled to obtain 50-50 class-balance per patient for each training fold in the cross-

validation scheme. Random under-sampling is a naïve approach for handling imbalanced 

data sets but has been shown to improve classification accuracy for the minority class 

(Batuwita and Palade 2010; Chawla et al 2002; Zhang and Mani 2003).   

 

2.6.3 Classification algorithms  

Machine learning-based auto-segmentation was performed using six classical 

machine learning algorithms, namely linear discriminant analysis (LDA) (Fisher 1936), 

quadratic discriminant analysis (QDA) (Hastie 2001), Gaussian naïve Bayes (GNB) 

(Hastie 2001), logistic regression (LR) (Hastie 2001), linear support vector machines 

(SVM) (Cortes and Vapnik 1995) and random forest (RF) (Breiman 2001). Both LR and 

SVM were trained for a range of logarithmically spaced regularization parameter values 

λ, using either LASSO-type (least absolute shrinkage and selection operator) (Tibshirani 

1996) or Ridge-type (Hastie 2001) regularization, also  referred to as L1 and L2 

regularization, respectively. The λ value was varied until a peak in 𝑚𝐷𝑖𝑐𝑒 was observed 

for the cross-validation procedure (LR: 𝜆 ∈ [10−6, 104]; SVM: 𝜆 ∈ [10−6, 102] ). RF 
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was trained with fixed parameters (number of predictors (𝑃) to select at random for each 

split: √𝑃; minimum number of observations per tree leaf: 1; bootstrap sample size equal 

to the number of training set observations), apart from the number of trees which was 

varied from 2 and up to 128 until convergence of the cross-validation 𝑚𝐷𝑖𝑐𝑒.  

 

2.7 Auto-segmentation using CNNs  

A 2D U-Net CNN architecture (Ronneberger et al 2015) with the Dice loss 

function (Milletari et al 2016) was trained to perform auto-segmentation in axial image 

slices, based on single- (PET, CT, CT-W) or multimodality (PET/CT, PET/CT-W) image 

input (without standardization of the image stacks). The settings used for CT-W was the 

same as for classical learning (centre: 60 HU; width: 100 HU).  Due to varying VOI size 

between patients, the image slices were padded with zeros to obtain a common matrix 

dimension of 176 × 176 mm2.  CNN models were trained using the Adam optimizer 

(Kingma and Ba 2014) with a learning rate of 10-5. Details on the CNN architecture are 

given in appendix B.  

 For CNN model selection, the superior input modality was determined first based 

on the 𝑚𝐷𝑖𝑐𝑒 from five-fold cross-validation (cf. section 2.8 below). Next, the one out 

of the five cross-validation models with the highest 𝑚𝐷𝑖𝑐𝑒 in its associated validation 

fold was selected for final test set evaluation.  

 

2.8 Statistical analysis  

Thresholding, classical machine learning and CNNs were first evaluated 

separately based on the 𝐷𝑖𝑐𝑒 scores from five-fold cross validation, using a non-

parametric Friedman test (Friedman 1937) for repeated measures one-way analysis of 

variance on ranks. If the Friedman test detected significant differences, Nemenyi’s many-
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to-one test (Hollander et al 2014; Pohlert 2020) was used to compare the treatment effect 

of the considered models or algorithms on the 𝐷𝑖𝑐𝑒 or 𝑚𝐷𝑖𝑐𝑒, respectively. The model 

or algorithm with the highest Friedman rank sum was used as the control, testing the null 

hypothesis stating no difference in rank sums, against the one-sided alternative hypothesis 

stating that the control had a significantly higher rank sum than the model or algorithm it 

was compared against. Thus, a rejection of the null hypothesis indicated that the control 

model or algorithm obtained superior segmentation quality in terms of 𝐷𝑖𝑐𝑒 or 𝑚𝐷𝑖𝑐𝑒.  

Friedman test with Nemenyi pairwise comparisons (Hollander et al 2014; Pohlert 

2020) was further used to compare the per patient segmentation performance of the 

selected thresholding, classical machine learning and CNN models. 

The statistical analysis was conducted in R (R Development Core Team 2019), 

using the PMCMRplus package (Pohlert 2020). All tests were conducted with a 

significance level of 0.05.  

The patient-wise performance metrics and associated summary statistics are 

shown in combined box- and violin plots, where the violin part visualizes the data 

distribution using kernel density estimation to obtain the probability density function. 

Box plots include median value and interquartile range (white box), mean value (red dot), 

whiskers for the 5th–95th percentile and outliers (black dots). Violin plots were created 

using a Gaussian smoothing kernel and distribution tails were trimmed to only include 

the observed data range.   
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3. Results 

3.1 Auto-segmentations obtained by PET thresholding 

The per patient 𝐷𝑖𝑐𝑒  of the threshold-based segmentation models are shown in 

figure 2, along with corresponding summary statistics and optimal thresholding 

parameters. Absolute SUV thresholding (Tabs) and the optimized percentage of SUVmax 

threshold resulted in 𝑚𝐷𝑖𝑐𝑒 scores of 0.62 and 0.59, respectively. In comparison, the 

reference 41 % of SUVmax threshold and LoG-based thresholding obtained 𝑚𝐷𝑖𝑐𝑒 scores 

of 0.51 and 0.53, respectively.  

 

Figure 2. Combined box- and violin plots of the per patient Sørensen-Dice similarity coefficient (𝐷𝑖𝑐𝑒) between 

manual delineations and auto-segmentations obtained using PET thresholding on the training set (𝑛 = 157 patients). 

Threshold optimization and subsequent auto-segmentation was performed using five-fold cross-validation. 

Reported thresholds are averaged over the five cross-validation training folds. Results of Friedman test (evaluating 

the difference in per patient 𝐷𝑖𝑐𝑒 between models) and subsequent many-to-one comparisons with absolute SUV 

as control model, are indicated in the figure (significance level 𝛼 = 0.05, one-sided Nemenyi many-to-one test).  
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The absolute SUV thresholding model (Tabs) ranked highest and displayed 

significantly higher per patient 𝐷𝑖𝑐𝑒 than the remaining models (figure 2). Thus, Tabs was 

selected for further evaluation.   

 

3.2 Auto-segmentations obtained by classical machine learning 

3.2.1 Comparisons across imaging modalities 

An overview of the cross-validation 𝑚𝐷𝑖𝑐𝑒 for the various classification models, 

based on data from either CT, CT-W, PET, PET/CT or PET/CT-W is shown in figure 3, 

and the exact numeric 𝑚𝐷𝑖𝑐𝑒 values for each algorithm and input combination are given 

in figure 4.   

Auto-segmentation models based solely on PET resulted in 𝑚𝐷𝑖𝑐𝑒 in the same 

range as PET/CT and PET/CT-W-based models (𝑚𝐷𝑖𝑐𝑒: 0.39–0.66; figure 4). Thus, 

there was no added gain in 𝑚𝐷𝑖𝑐𝑒 segmentation performance when combining PET with 

the CT or CT-W data (figure 3). Auto-segmentation based solely on CT or CT-W 

performed poorly with 𝑚𝐷𝑖𝑐𝑒 ranging from 0.12 to 0.24 (figure 4), indicating inferior 

agreement with the ground truth delineations. For CT and CT-W, there was only minor 

variation in 𝑚𝐷𝑖𝑐𝑒 across classification algorithms, but RF resulted in the highest 𝑚𝐷𝑖𝑐𝑒 

for most inputs (figure 4).  

Replacing the original CT data with CT-W generally led to improvements 

in 𝑚𝐷𝑖𝑐𝑒 (figure 4). However, the highest ranked CT and CT-W models had an identical 

𝑚𝐷𝑖𝑐𝑒 of 0.24. Both models resulted in patchy and imprecise segmentations. 
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Figure 3. Overview of the mean per patient Sørensen-Dice similarity coefficient (𝑚𝐷𝑖𝑐𝑒) between manual delineations 

and auto-segmentations obtained by six machine learning algorithms, using image input based on either CT, CT-W 

(CT with windowing), PET, PET/CT or PET/CT-W. Each point corresponds to a unique combination of image input 

and classifier. Results were obtained from five-fold cross-validation on the training set (𝑛 = 157 patients). Results for 

random forest (RF) using CT or CT-W input and support vector machines (SVM) using PET, PET/CT or PET/CT-W 

are highlighted.  
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Figure 4. Heat map of the mean per patient Sørensen-Dice similarity coefficient (𝑚𝐷𝑖𝑐𝑒) between manual delineations 

and  auto-segmentations obtained using the machine learning classifiers random forest (RF), linear discriminant 

analysis (LDA), quadratic discriminant analysis (QDA), Gaussian naïve Bayes (GNB), logistic regression (LR) and 

support vector machines (SVM), with different image input data based on CT, CT-W, PET or combinations of these. 

The models achieving highest 𝑚𝐷𝑖𝑐𝑒 are shown in bold. Results were obtained from five-fold cross-validation on the 

training set (𝑛 = 157 patients). Friedman test results (evaluating the difference in 𝑚𝐷𝑖𝑐𝑒 between algorithms for PET, 

PET/CT and PET/CT-W-based input) and subsequent many-to-one comparisons with SVM as control algorithm, are 

indicated in the figure (significance level 𝛼 = 0.05, one-sided Nemenyi many-to-one test).  
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3.2.1 Algorithm and model selection  

Due to the poor overlap with ground truth delineations, models based solely on 

CT or CT-W were not included in further model selection. For the remaining machine 

learning models, the Friedman test indicated a significant difference in 𝑚𝐷𝑖𝑐𝑒 depending 

on which classification algorithm was used (figure 4). The highest ranked algorithm was 

the SVM classifier, obtaining consistently higher 𝑚𝐷𝑖𝑐𝑒 than the other algorithms.  For 

the SVM models based on PET, PET/CT or PET/CT-W, 𝑚𝐷𝑖𝑐𝑒 ranged from 0.63 to 0.66.   

The Friedman test also indicated a significant difference in per patient 

𝐷𝑖𝑐𝑒 segmentation performance across the included SVM models (𝑝 < 0.0001). The 

three SVM models with the highest 𝑚𝐷𝑖𝑐𝑒 (figure 4) were also ranked highest based on 

the per patient 𝐷𝑖𝑐𝑒, having identical Friedman rank sums. These models used L1 

regularization and PET, PET/CT or PET/CT-W intensity values with 3D neighbors sorted 

in descending order as input features, respectively. Due to the feature selection property 

of the L1 regularization, the highest ranked PET/CT and PET/CT-W models were 

essentially the same, giving approximately identical per patient 𝐷𝑖𝑐𝑒 cross-validation 

results.  

Each of the three top-ranked SVM models achieved significantly higher per 

patient Dice segmentation performance than the lower ranked SVM models (Nemenyi 

many-to-one test, all 𝑝 ≤ 0.05). Although the top-ranked models were inseparable based 

on rank sums, the SVM model that only considered PET intensity values (PET 3Ds in 

figure 4, henceforth referred to as SVMPET) was singled out for further evaluation, based 

on its superior 𝑆𝐷 and median 𝐷𝑖𝑐𝑒 performance (𝑆𝐷: 0.13 vs. 0.17; median: 0.68 vs. 

0.65).  
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Figure 5. Combined box- and violin plots of the per patient Sørensen-Dice similarity coefficient (𝐷𝑖𝑐𝑒) between 

manual delineations and auto-segmentations obtained using a 2D U-Net CNN architecture with the following image 

input (from left): PET/CT-W (CT-W: CT with windowing), PET/CT, PET, CT-W or CT. Results were obtained from 

five-fold cross-validation on the training set (𝑛 = 157 patients). Results of Friedman test (evaluating the difference in 

per patient 𝐷𝑖𝑐𝑒 between CNN models) and subsequent many-to-one comparisons with the PET/CT-W-based model 

as control, are indicated in the figure (significance level 𝛼 = 0.05, one-sided Nemenyi many-to-one test).  

 

3.3 Auto-segmentations obtained by CNNs 

𝐷𝑖𝑐𝑒 scores obtained using the 2D CNN models with different input modalities 

are shown in figure 5. The CNN approach resulted in adequate to high overall 𝐷𝑖𝑐𝑒 

performance for all input modalities, including CT and CT-W, and there was a substantial 

increase in performance for multimodality vs. single modality input (𝑚𝐷𝑖𝑐𝑒: 0.74 

(PET/CT-W); 0.73 (PET/CT): 0.68 (PET ); 0.66 (CT-W); 0.64 (CT)).  

The CNN model based on PET/CT-W images (henceforth referred to as U-

NETPET/CT-W) was ranked highest according to the Friedman rank sum and obtained 

significantly higher per patient 𝐷𝑖𝑐𝑒 than all single-modality models (figure 5). Based on 

its superior ranking, U-NETPET/CT-W was selected for hold-out test set evaluation.     
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3.4 Performance of the superior models 

The combined cross-validation and hold-out test set segmentation performance of 

the superior thresholding (Tabs), classical machine learning (SVMPET) and CNN (U-

NETPET/CT-W) models are shown in figure 6. Separate summary statistics for the cross-

validation and hold-out test sets are given in table 2. For all three models, the 

segmentation performance on the hold-out test set was comparable to its cross-validation 

performance (table 2).  

As shown in figure 6, U-NETPET/CT-W obtained significantly higher quality 

segmentations than the thresholding and classical machine learning models for all metrics 

(𝑝 ≤ 0.0001; figure 6 (a-e)).  SVMPET further achieved significantly better 𝐷𝑖𝑐𝑒 than Tabs 

(𝑝 ≤  0.0001; Figure 6 (a)), and somewhat higher mean and median 𝑇𝑃𝑅 and 𝑃𝑃𝑉.  

SVMPET and Tabs obtained comparable mean, 𝑆𝐷 and median 𝑀𝑆𝐷, whereas Tabs 

thresholding resulted in the lowest mean, 𝑆𝐷 and median 𝐻𝐷95 of the two.   

Representative auto-segmentations obtained on the hold-out test set are shown in 

figure 7, where the segmentation contours predicted by the superior models are compared 

to the ground truth. All models resulted in relatively high-quality segmentations for low 

background FDG-PET signal, combined with high and homogeneous tracer uptake within 

the GTV-T and/or GTV-N. Neither of the PET-only models (SVMPET and Tabs) were 

capable of segmenting low FDG-PET uptake regions within ground truth delineations 

(figure 7 (a)). These two models were also prone to include 𝐹𝑃 voxels with moderate to 

high SUV. This tendency was, however, more pronounced for thresholding than for 

classical machine learning (figure 7 (b) and (c)). Superior 𝐻𝐷95 of Tabs relative to SVMPET 

(cf. figure 6; table 2) was in  many cases related to the thresholding model’s inclusion of  

more voxels in the segmentation mask, thereby coinciding with or being in the proximity 

of ground truth edges, and in particular the GTV-N boundaries (figure 7 (b)).  Auto-
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segmentations obtained by SVMPET were generally more refined than thresholding (figure 

7 (b) and (c)). The multimodality U-NETPET/CT-W model was as expected more robust 

towards atypical FDG-PET uptake characteristics than the PET-only models and was, 

therefore, to a greater extent capable of segmenting low-uptake regions (figure 7 (a)) and 

GTV-N edges (figure 7 (b)), as well as avoiding inclusion of 𝐹𝑃 voxels. 
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Figure 6. Combined box- and violin plots of the per patient segmentation performance of the superior CNN (U-Net 

with PET/CT-W input), classical machine learning (SVM classifier using 3D neighborhood PET information) and PET 

thresholding (absolute SUV) models. The data shown are combined results from cross-validation on the training set 

(𝑛= 157 patients) and evaluation on the hold-out test set (𝑛 = 40 patients). (a) Sørensen-Dice similarity coefficient 

(𝐷𝑖𝑐𝑒), (b) true positive rate (𝑇𝑃𝑅), (c) positive predictive value (𝑃𝑃𝑉), (d) 95th percentile Hausdorff distance (𝐻𝐷95), 

(e) mean surface distance (𝑀𝑆𝐷). For each performance metric (a-e), the results of Friedman test (evaluating the 

difference in per patient performance between models) and subsequent pairwise comparisons are indicated 

(significance level 𝛼 = 0.05, two-sided Nemenyi pairwise comparisons). 
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Table 2. Median, mean and standard deviation (𝑆𝐷) of per patient segmentation performance metrics (𝐷𝑖𝑐𝑒, 𝑇𝑃𝑅, 

𝑃𝑃𝑉, 𝐻𝐷95, 𝑀𝑆𝐷) for the superior PET thresholding (Tabs), classical machine learning (SVMPET) and CNN (U-

NETPET/CT-W) models. Results were obtained using five-fold cross-validation (CV) on the training set (𝑛 = 157 patients) 

and evaluation on the hold-out test set (𝑛 = 40 patients). 

  
Tabs 

(thresholding) 

SVMPET 

(classical learning) 

U-NETPET/CT-W 

(deep learning) 

Metric CV Test set CV Test set CV Test set 

 
Dice Mean 0.62 0.63 0.66 0.68  0.74  0.75  
 SD 0.15 0.16 0.13  0.14 0.10 0.09 

 Median 0.64 0.69 0.68 0.72 0.76 0.78 

 

TPR Mean 0.64 0.66  0.68 0.68  0.75  0.76  
 SD 0.21 0.20 0.13 0.13 0.15 0.15 

 Median 0.69 0.72 0.70 0.68 0.79 0.81 

 

PPV Mean 0.67 0.66 0.68 0.69 0.76  0.78  
 SD 0.17 0.19 0.20 0.18 0.12 0.10 

 Median 0.68 0.68 0.71 0.74 0.78 0.79 

 

HD95 Mean 9.45  9.88 10.96 10.62 5.98 5.79 

[mm] SD 7.99 7.53 9.02 7.48 4.96 4.60 

 Median 6.92 7.31 7.81 8.80 4.47 4.74 

 

MSD Mean 2.94 2.73 2.88 2.64 1.53 1.36 

[mm] SD 3.16 1.74 2.24 1.50 1.37 0.79 
 Median 2.08 2.17 2.17 2.43 1.11 1.15 
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Figure 7. Example auto-segmentation contours in superior, central and inferior image slices (columns) from three 

different patients (a-c). The shown auto-segmentations were obtained by absolute SUV PET thresholding (green), 

classical machine learning using the support vector machines (SVM) classifier with 3D neighborhood PET information 

(yellow) and a 2D U-Net CNN based on combined PET/CT-W image input (red). The per patient Sørensen-Dice 

similarity coefficient for thresholding, SVM and U-Net models, respectively, were: (a) 0.68, 0.70, 0.74; (b) 0.62, 0.79, 

0.76; (c) 0.71, 0.73, 0.79.   
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4. Discussion 

In this study, we evaluated PET thresholding methods,  classical machine learning 

classifiers and a U-Net CNN based on either CT, CT-W, PET, PET/CT or PET/CT-W 

input for fully automatic segmentation of the primary tumor and involved nodes in a 

cohort of 197 patients with HNSCC. The CNN approach outperformed both thresholding 

and classical machine learning, providing the highest overlap with the ground truth for 

all input modalities. The top-ranked CNN model used combined PET/CT-W information 

(U-NETPET/CT-W) and resulted in significantly better segmentations in terms of 𝐷𝑖𝑐𝑒, 𝑇𝑃𝑅, 

𝑃𝑃𝑉, 𝐻𝐷95 and 𝑀𝑆𝐷, compared to the best-performing classical learning (SVMPET) and 

thresholding (Tabs) models. SVMPET further achieved significantly better 𝐷𝑖𝑐𝑒 

performance than the top-ranked thresholding model. The higher 𝑇𝑃𝑅 and 𝑃𝑃𝑉 of the 

CNN model indicates better TV coverage as well as less inclusion of normal tissue, 

respectively, than the other two model approaches. The significantly smaller distance 

metrics of the selected CNN model further indicate more accurate and precise 

delineations, which could translate into less need for manual revision of the 

segmentations in a clinical setting.   

Fixed PET thresholding has limitations but is still in widespread use due to its 

simplicity. The observed difference in segmentation performance between optimized and 

non-optimized percentage thresholds in our study emphasizes the advantages of threshold 

optimization, both with respect to application and patient cohort. As an example, our 

optimized percentage threshold led to an increase in 𝑚𝐷𝑖𝑐𝑒 of 0.08 (16 %), relative to 

the fixed 41 % threshold.  The optimization also resulted in a considerably lower 

thresholding percentage (27 %) than the established 41 % of SUVmax (Boellaard et al 

2015; Davis et al 2006). This could in part be attributed to the fact that the ground truth 
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delineations in our study were based on CT, in addition to PET. Therefore, the 

delineations typically encompassed larger volumes than the hypermetabolic regions. 

Of the evaluated classical machine learning algorithms, SVM provided the 

highest-quality auto-segmentations in terms of 𝑚𝐷𝑖𝑐𝑒, whereas the LR algorithm ranked 

second. Contrary to most of the other evaluated algorithms, linear SVM and LR do not 

require the assumption of a specific probability distribution, only that the classes are 

linearly separable (Hastie et al 2001). The two classifiers will generally give similar 

results, but smaller variations may occur due to their different construction. LR is 

developed from a probabilistic perspective, assigning optimal probabilities for each voxel 

belonging to the tumor class. In contrast, linear SVM is developed from a geometric 

perspective, finding the linear subspace that maximises class separation of the voxels. 

The superior SVM model, SVMPET, used original PET image intensities with 3D 

neighbors sorted in descending order according to intensity. Thus, classification was 

based on the extent of high SUV in the voxel neighborhood, rather than the exact position 

of such voxels.  

For PET-only-based segmentation, the superior thresholding and classical 

machine learning models performed comparably to the CNN model, achieving a cross-

validation 𝑚𝐷𝑖𝑐𝑒 of about 0.65, indicating that information required for PET 

segmentation lay in the voxel intensities rather than subtle and complex spatial patterns. 

A simple thresholding approach may thus be sufficient for preparatory PET segmentation, 

as an assistance to the human expert.    

Previous studies on PET-based auto-segmentation have achieved 𝑚𝐷𝑖𝑐𝑒 in the 

range 0.77–0.87 for classical learners (Berthon et al 2017; Comelli et al 2018; Comelli et 

al 2019a; Comelli et al 2019b; Hatt et al 2018; Stefano et al 2017). In the comparison 

study by Hatt et al. (2018), fixed thresholding based on 40 % of the SUVmax resulted in 



 

31 

 

an 𝑚𝐷𝑖𝑐𝑒 of 0.70, whereas an 𝑚𝐷𝑖𝑐𝑒 of 0.80 was reported for the CNN model. However, 

differences in image data (Hatt et al 2018), the basis of ground truth delineations (Berthon 

et al 2017), TV definition (Comelli et al 2018; Comelli et al 2019a; Comelli et al 2019b; 

Hatt et al 2018; Stefano et al 2017), prior VOI definition (Hatt et al 2018), and/or the 

level of automation (Comelli et al 2018; Comelli et al 2019a; Comelli et al 2019b; 

Stefano et al 2017) make direct comparisons between the above studies and our present 

work challenging. Methods in (Comelli et al 2018; Comelli et al 2019a; Comelli et al 

2019b; Stefano et al 2017) depended on the user manually drawing a line within or a 

contour around the cancer-region excluding healthy tissues with high tracer uptake and 

thus limiting the number of 𝐹𝑃 voxels. Moreover, involved nodes were not included in 

any of these studies. In (Hatt et al 2018) the methods were applied on a combination of 

simulated, phantom and clinical data, where the number of clinical images was limited, 

and the pre-defined VOI was restricted to encompass only the immediate background of 

each primary tumor. Therefore, the auto-segmentation task of these studies may be 

considered less challenging than performing fully automatic segmentation of both the 

GTV-T and GTV-N within larger VOIs, as in our present work.    

  The most recent studies performing PET-based auto-segmentation of HNSCC 

(Guo et al 2019; Andrearczyk et al 2020) evaluate deep learning for single- and 

multimodality PET/CT input, including both the nodal and primary tumor GTV, in 

addition to larger image VOIs. Both these studies were based on multi-center patient 

cohorts, which may be more challenging than our present single-center task. When basing 

the segmentation solely on PET images, the DenseNet (Guo et al 2019) and 3D V-Net 

(Andrearczyk et al 2020) obtained 𝑚𝐷𝑖𝑐𝑒 of 0.64 and 0.58, respectively. The former is 

comparable to out SVMPET and PET-based CNN models, which obtained cross-validation 

𝑚𝐷𝑖𝑐𝑒 of 0.66 and 0.68.   
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Regardless of segmentation approach, our PET-only-based models performed 

relatively poorly on patients with considerable false positive and/or false negative FDG-

PET uptake regions, indicating the disadvantages of performing auto-segmentation based 

solely on molecular imaging. None of the classical machine learning algorithms 

considered in this study provided satisfactory auto-segmentations in CT or CT-W images, 

and there was no gain in segmentation performance when PET images were combined 

with the anatomical CT or CT-W information. In general, segmentation performance of 

the classical CT or CT-W models benefitted from the inclusion of image transformations, 

suggesting a non-linear relationship between the CT signal and the ground truth. The 

success of CNNs, which automatically find complex as well as subtle patterns within 

images, for CT-based segmentation of a range of diagnoses and applications (see 

Cardenas et al 2019), as well as the fair performance of our CT-based CNN models, 

support this hypothesis.  Guo et al (2019) and Andrearczyk et al (2020) achieved 𝑚𝐷𝑖𝑐𝑒 

scores of 0.31 and 0.49 for solely CT-based GTV segmentation using CNNs. This is 

considerably lower than our CT-based CNN models (𝑚𝐷𝑖𝑐𝑒: 0.64–0.66) but still 

constitutes a substantial increase in 𝑚𝐷𝑖𝑐𝑒 compared to our classical machine learning 

approach (𝑚𝐷𝑖𝑐𝑒: 0.24). Thus, information required for segmentation was present in CT 

images, but manually engineering the relevant features with a classical machine learning 

approach is difficult. Using CNNs, bypassing the feature engineering step, should 

therefore be the preferred approach for CT-based segmentation.  

In contrast to the classical machine learning algorithms, our 2D U-Net was further 

able to improve segmentation performance significantly given multimodality PET/CT 

input, resulting in 𝑚𝐷𝑖𝑐𝑒 scores of 0.73–0.75. This is in line with both Guo et al (2019) 

and Andrearczyk et al (2020), where PET/CT also gave superior results with 𝑚𝐷𝑖𝑐𝑒 
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scores of 0.71 and 0.60, respectively. Thus, it appears that simpler classification 

algorithms such as our proposed SVM model are comparable to CNNs when 

segmentation is based solely on PET images, but that CNNs can take advantage of the 

complementary information contained within PET/CT images to improve segmentation.  

Several previous studies have evaluated inter-observer variability in manual GTV 

delineations for HNSCC (Bird et al 2015; Gudi et al 2017; Kajitani et al 2013; Murakami 

et al 2008; Riegel et al 2006). However, only Gudi et al. (2017) report the inter-observer 

agreement for PET/CT using 𝐷𝑖𝑐𝑒, allowing for direct comparison to our present work. 

Gudi et al. (2017) investigated variations in GTV-T and OAR delineations between three 

experienced radiation oncologists, each with more than 10 years’ experience in 

contemporary HNC radiotherapy. Manual delineations were made for 10 different 

HNSCC cases. The agreement between observers using either (contrast-enhanced) CT or 

FDG-PET/CT to perform GTV-T delineations corresponded to an overall 𝐷𝑖𝑐𝑒 

performance of (𝑚𝐷𝑖𝑐𝑒 ± 𝑆𝐷) 0.57 ± 0.12 and 0.69 ± 0.08, respectively. Thus, the 

reported inter-observer agreements were comparable to 𝐷𝑖𝑐𝑒 performances of all our 

CNN models (𝑚𝐷𝑖𝑐𝑒: 0.64–0.75; 𝑆𝐷s: 0.10–0.15) and our classical SVMPET model (0.66 

± 0.13).     
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5. Conclusions 

In this study, we conducted an extensive evaluation of the applicability of several 

PET thresholding methods, classical machine learning classifiers and a 2D U-Net CNN 

architecture using single or multimodality PET/CT input, for fully automatic 

segmentation of the primary and nodal GTV in 197 patients with HNSCC. Such auto-

segmentation methods have not previously been evaluated and compared in a large 

HNSCC patient cohort. All models using only PET-based input resulted in fair overall 

𝐷𝑖𝑐𝑒 segmentation performance. Classical machine learning classifiers were unable to 

provide satisfactory auto-segmentations based solely on input derived from CT images, 

nor could they utilize the combined anatomical and molecular information in 

multimodality PET/CT to improve segmentation quality over PET-only models. This was 

not the case for the CNN models, which outperformed classical learners for auto-

segmentation based on CT-only or combined PET/CT input. The superior model was the 

U-Net based on PET and windowed CT images, resulting in higher-quality auto-

segmentations than the best-performing PET thresholding and classical learning methods.  

Acknowledgements 

This work is supported by the Norwegian Cancer Society (Grant Number 160907-2014 

and 182672-2016). We thank Dr. Jens Petter Wold for valuable suggestions. The authors 

declare no conflicts of interest. 

Ethical Statement 

The study was approved by The Regional Ethics Committee (REK) and the Institutional 

Review Board.  Exemption from study-specific informed consent was granted by REK 

as this is a retrospective study and the patients are de-identified.  



 

35 

 

Appendix A. Protocol for PET/CT image acquisition 

Table A1. Image acquisition and reconstruction parameters for the radiotherapy PET/CT (𝑛 = number of patients). 

 

CT 

Scan mode Helical (rotation time 0.5 s, pitch 0.75) 

Peak tube voltage 120 kV 

Automatic exposure control CareDose with quality reference mAs 300 

Reconstructed slice thickness 2.00 mm 

Reconstruction filter: B30f/B30s 

Matrix size 512 x 512 

Pixel size 0.98 × 0.98 mm2 (𝑛 = 161) 

 1.37 × 1. 37 mm2 (𝑛 = 30) 

 0.89 × 0.89 mm2 (𝑛 = 2) 

 0.96 × 0.96 mm2 (𝑛 = 1) 

 0.92 × 0.92 mm2 (𝑛 = 1) 

 0.88 ×0.88 mm2 (𝑛 = 1) 

 0.82 × 0.82 mm2 (𝑛 = 1) 

 
PET 

Reconstruction algorithm Ordered Subset Expectations maximization (OSEM), 

 4 iterations, 8 subsets 

Bed position overlap 25 % 

Post reconstruction filter Gaussian, full width at half maximum 3.5 mm 

 Gaussian, full width at half maximum 2.0 mm (𝑛 = 3) 

 Gaussian, full width at half maximum 5.0 mm (𝑛 = 1) 

Matrix size: 256 × 256 

Voxel size (𝑥 – 𝑦 – 𝑧) 2.66 × 2.66 × 2.00 mm3 (𝑛 = 143) 

 2.66 × 2.66 × 5.00 mm3 (𝑛 = 21) 

 1.77 × 1.77 × 2.00 mm3 (𝑛 = 20) 

 2.66 × 2.66 × 1.00 mm3 (𝑛 = 5) 

 1.33 × 1.33 × 2.00 mm3 (𝑛 = 4) 

 4.06 × 4.06 × 2.00 mm3 (𝑛 = 2) 

 4.06 × 4.06 × 1.00 mm3 (𝑛 = 2) 

 

According to the hospital’s procedures, FDG was administered intravenously to the 

patient after at least six hours of fasting. Between injection and imaging, the patient rested 

in a quiet, dimly lit room. Median time from injection to imaging in this cohort was 89 

mins (𝑆𝐷: 21.5; range: 60-270).  Median administered dose was 378 MBq (range: 328–

422). The radiotherapy planning PET/CT (contrast enhanced CT) was performed prior to 
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a standard whole-body PET/CT on a radiotherapy compatible flat table with head support 

in a radiotherapy fixation mask. The radiotherapy planning CT was optimized for the 

head and neck region; using the contrast agent Visipaque 320 mg I/mL 100 mL with flow 

3.5 mL/s, and CT acquisition performed after a delay of about 30 s. This CT scan was 

used for attenuation correction and image fusion for image interpretation.  Only the 

radiotherapy PET/CT data were included in our analysis, and the image acquisition and 

reconstruction parameters for these series are found in table A1. 
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Appendix B. CNN architecture  

Table B1. CNN model architecture.  

Name Inputs Output shape 

Conv1 Input 176 × 176 × 64 

Conv2 Conv1 176 × 176 × 64 

MaxPool1 Conv2 88 × 88 × 64 

Conv3 MaxPool1 88 × 88 × 128 

Conv4 Conv3 88 × 88 × 128 

MaxPool2 Conv4 44 × 44 × 128 

Conv5 MaxPool2 44 × 44 × 256 

Conv6 Conv5 44 × 44 × 256 

MaxPool1 Conv6 22 × 22 × 256 

Conv7 MaxPool3 22 × 22 × 512 

Conv8 Conv7 22 × 22 × 512 

MaxPool1 Conv8 11 × 11 × 512 

Conv9 MaxPool4 11 × 11 × 1024 

Conv10 Conv9 11 × 11 × 1024 

ConvTranspose1 Conv10 22 × 22 × 512 

Conv11 ConvTranspose1 & Conv8 22 × 22 × 512 

Conv12 Conv11 22 × 22 × 512 

ConvTranspose2 Conv12 44 × 44 × 256 

Conv13 ConvTranspose2 & Conv6 44 × 44 × 256 

Conv14 Conv11 44 × 44 × 256 

ConvTranspose3 Conv10 88 × 88 × 128 

Conv15 ConvTranspose3 & Conv4 88 × 88 × 128 

Conv16 Conv11 88 × 88 × 128 

ConvTranspose4 Conv10 176 × 176 × 64 

Conv17 ConvTranspose4 & Conv2 176 × 176 × 64 

Conv18 Conv11 176 × 176 × 64 

FinalConv Conv18 176 × 176 × 1 

 

The CNN architecture is given in table B1. The convolutional (Conv) and transposed 

convolutional (ConvTranspose) layers used a 3 × 3 convolution kernel and were followed 

by the ReLU activation function. Batch normalization was used after each Conv layer, 

and a bilinear interpolation was included after each ConvTranspose layer. Relevant code 

for the experiments is available on https://github.com/huynhngoc/PMB-2020.  
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Abstract
Purpose Identification and delineation of the gross tumour and malignant nodal volume (GTV) in medical images are vital
in radiotherapy. We assessed the applicability of convolutional neural networks (CNNs) for fully automatic delineation of
the GTV from FDG-PET/CT images of patients with head and neck cancer (HNC). CNN models were compared to manual
GTV delineations made by experienced specialists. New structure-based performance metrics were introduced to enable
in-depth assessment of auto-delineation of multiple malignant structures in individual patients.

Methods U-Net CNN models were trained and evaluated on images and manual GTV delineations from 197 HNC patients.
The dataset was split into training, validation and test cohorts (n = 142, n = 15 and n = 40, respectively). The Dice score,
surface distance metrics and the new structure-based metrics were used for model evaluation. Additionally, auto-delineations
were manually assessed by an oncologist for 15 randomly selected patients in the test cohort.

Results The mean Dice scores of the auto-delineations were 55%, 69% and 71% for the CT-based, PET-based and PET/CT-
based CNN models, respectively. The PET signal was essential for delineating all structures. Models based on PET/CT
images identified 86% of the true GTV structures, whereas models built solely on CT images identified only 55% of the true
structures. The oncologist reported very high-quality auto-delineations for 14 out of the 15 randomly selected patients.

Conclusions CNNs provided high-quality auto-delineations for HNC using multimodality PET/CT. The introduced
structure-wise evaluation metrics provided valuable information on CNNmodel strengths and weaknesses for multi-structure
auto-delineation.

Keywords Deep learning · Delineation · Head and neck cancer · Automatic delineation

Introduction

Radiotherapy (RT) with concurrent chemotherapy is the
preferred curative treatment option for inoperable head and
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neck cancer (HNC) [1]. An essential part of RT is tumour
delineation, where the tumour and involved lymph nodes
are carefully outlined in medical images. This task is vital
to ensure that all malignant tissues are included in the RT
treatment volume.

Positron emission tomography/X-ray computed tomog-
raphy (PET/CT) is a highly useful modality for imag-
ing and subsequent delineation of HNC for RT [2]. In
most cases, CT is performed with an iodinated contrast
agent [3]. Tumours and involved nodes may be detected
on PET images, as these regions normally have higher
metabolic activity than surrounding healthy tissue. How-
ever, PET is limited by low spatial resolution, and com-
bining PET images with high-resolution CT images may
improve delineation quality. Several studies have found a
significant reduction in interobserver variability for man-
ual gross tumour volume (GTV) delineations in HNC when
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using combined PET/CT instead of CT [4–7]. Despite this,
considerable interobserver variations still occur. In a recent
HNC interobserver study, the average overlap between
PET/CT-based GTV delineations made by expert radiation
oncologists was 69% (as measured by the Dice score) [7].
Moreover, the manual delineation process is time consum-
ing and can be a bottleneck in RT planning. Finding meth-
ods to improve delineation quality and reduce the workload
is therefore highly warranted.

Automatic tumour delineation using deep convolutional
neural networks (CNNs) can potentially provide delineation
consistency and time-efficiency. Recent studies show a high
degree of overlap between expert’s tumour delineations and
those proposed by CNNs [8–10]. There has, to date, been
few studies on CNN auto-delineation of HNC lesions using
multimodality images. In [8], Lin et al. used a 3D CNN
to successfully auto-delineate the GTV of nasopharyngeal
cancers from PET/MRI images. These delineations were
evaluated both quantitatively and qualitatively, the latter by
expert oncologists. Likewise, Huang et al. [9] used a 2D
CNN to delineate the GTV of HNC lesions in PET/CT
images. Although very promising, these studies did not
consider involved lymph nodes, which, according to current
practice, should be prescribed the same RT dose as the GTV.
A typical patient with HNC may have multiple involved
neck nodes and delineating these is essential for adequate
RT [2]. This issue was addressed by Guo et al. [10] who
used 3D CNNs to delineate both the GTV and involved
nodes in CT, PET and combined PET/CT images. In the
latter study, the quality of the network delineations was
evaluated quantitatively on a patient-wise basis, regardless
of the number of structures delineated.

The scoring of involved lymph nodes does, however,
constitute a challenge in evaluating the quality of auto-
delineations. This is apparent for occult or small lesions
that have been judged as malignant by the expert but
not by the auto-delineation method (false negatives).
For these situations, the overall performance of the
automatic method may be interpreted as poor when assessed
using, for example, distance-based metrics, despite a high
agreement for the tumour and larger nodes. The same
problem also arises for false positive predictions, where
the auto-delineation program may incorrectly delineate an
hypermetabolic region as part of the GTV. In this case,
the distance between this falsely delineated structure and
the true GTV may be very large, even though there is
high agreement between all other predicted structures and
the ground truth. Thus, there is a need for standardised
methods to estimate the performance of multi-structure
auto-delineation, when the expert delineations include both
primary tumour and involved nodes.

The aim of the current study was threefold. First, we
evaluated 2D CNN models for fully automatic delineation

of both the gross (primary) tumour volume (GTV-T) and
the malignant nodal volume (GTV-N) in patients with HNC.
Secondly, as all patients underwent a combined PET/CT
examination prior to treatment, network performance was
assessed using single-modality (CT or PET) as well
as multimodality (PET/CT) image input, to determine
which modality or modality combination provided the
most accurate auto-delineations. Thirdly, we introduce a
new framework for structure-wise performance evaluation
of multi-structure auto-delineations, as a supplement
to already well-established performance metrics. This
framework provides additional metrics to quantify the
similarity between the expert’s ground truth and the network
predictions when more than one contoured structure is
present in the ground truth, thereby enabling thorough
evaluation of the strengths and weaknesses of auto-
delineation approaches. Finally, auto-delineations were
qualitatively assessed by an expert oncologist.

Material andmethods

Imaging and contouring

HNC patients referred to curative chemoradiotherapy at
Oslo University Hospital from January 2007 to December
2013 were retrospectively included, as described in [11].
Briefly, inclusion criteria were squamous cell carcinoma of
the oral cavity, oropharynx, hypopharynx and larynx treated
with curatively intended radio(chemo)therapy and available
radiotherapy plans based on FDG PET/CT. Nasopharyngeal
cancers were excluded, as were patients with known distal
metastases and post-operative radiotherapy without residual
tumour. In addition, patients without a contrast-enhanced
planning CT were excluded, resulting in 197 patients
included in the current analysis. Patient characteristics are
provided in Supplementary Table A1 (Online Resource 1).
The study was approved by the Regional Ethics Committee
(REK) and the Institutional Review Board. Exemption from
study-specific informed consent was granted by REK.

All patients had an RT optimised PET/CT scan (CT with
contrast enhancement) taken on a Siemens Biograph 16
scanner (Siemens Healthineers Gmbh, Erlangen, Germany).
After ≥ 6 h of fasting 370±20 MBq FDG was injected, and
the patient rested for about one hour until imaging. Image
acquisition was performed on an RT-compatible flat table
with head support in an RT fixation mask. PET acquisition
time was 5 min/bed position with 25% overlap between
positions. The PET coincidence data were reconstructed
using the OSEM4,8 algorithm with a Gaussian post-
reconstruction filter with full width at half maximum equal
to 3.5 mm for 193 patients, 2 mm for 3 patients and 5 mm for
1 patient. PET pixel size varied between 1.33 and 4.06 mm
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(mode 2.66 mm for 143 patients) in a 256×256 matrix with
a slice thickness of 1.0–5.00 mm (mode 2.00 mm for 169
patients). CT images were obtained with a peak tube voltage
of 120 kV, giving a reconstructed matrix of 512×512, a pixel
size of around 1.0 mm and a slice thickness of 2.0 mm. The
Visipaque contrast agent was used, and the CT acquisition
was performed after a delay of about 30 s post-injection.
All PET and CT image series were resampled to a common
isotropic 1×1×1 mm3 reference frame. The resulting image
slices were cropped to a 191-by-265 mm2 axial region of
interest, keeping the patient in the centre of the full image
stack.

The primary tumour (GTV-T) and, if present, malignant
lymph nodes (GTV-N) were manually delineated by an
experienced nuclear medicine specialist, based on the
FDG uptake. These delineations were further refined by
one to two (of many) oncology residents based on the
contrast-enhanced CT and clinical information such as the
endoscopy report. The delineations were finally approved
by one of several senior oncologists. All delineations
were performed at the time of initial RT (i.e. the patients
received RT based on these delineations). The union of the
manual GTV-T and GTV-N delineations were defined as
the ground truth and used for training and evaluation of
the CNN models. An overview of the number of manually
delineated structures per patient and their volumes is given
in Supplementary Tables A2 and A3 (Online Resource 1).

Model architecture and training

A U-Net architecture following the setup described in [12]
was trained to delineate GTV-T and GTV-N in the PET/CT
image slices. There was one addition to the original U-
Net architecture, namely that batch normalisation [13] was
applied after each ReLU non-linearity. Model details are
provided in Supplementary Table A4 (Online Resource 1).

Four different loss functions were compared as follows:
(1) the cross-entropy loss, (2) the Dice loss [14] and (3)
the fβ loss with β ∈ {2, 4} [15]. For each loss function,
the models were trained using CT images only, PET images
only and both PET and CT images. Additionally, the impact
of CT windowing on model performance was assessed,
using a narrow soft-tissue window of width 200 HU and
a centre of 70 HU (range: [−30, 170] HU). The window
centre of 70 HU corresponded to the median HU value
within the GTV-T and GTV-N in the training set. In total,
20 models were run (i.e. 4 loss functions × (3 image input
combinations without windowing + 2 input combinations
with windowing)).

To assess model performance, we split the patients
into three cohorts, stratifying by the primary tumour
(T) stage of the TNM staging system to ensure similar
patient characteristics across cohorts: A training cohort (142

patients), a validation cohort (15 patients) and a test cohort
(40 patients). Patient characteristics of these cohorts are
given in Supplementary Table A1 (Online Resource 1).
To compare models, the patient-wise Dice score (1) was
evaluated on patients in the validation cohort. Then, for each
modality, the model achieving the highest Dice score was
used to delineate in images from the test cohort. These test
cohort auto-delineations were evaluated in depth, using the
qualitative and quantitative methods described below.

To train the model, we used the Adam optimiser [16] with
the β-values1 recommended in [16] and a learning rate of
10−4. The model was trained for 20 epochs, and the network
coefficients were saved to disc (checkpointed) every second
epoch. After training a model, we compared the average
Dice score per image slice of each coefficient checkpoint.
The coefficient checkpoint with the highest slice-wise Dice
was used for subsequent performance analysis.

No post-processing was applied on the model output,
such that the raw delineations provided by the CNN models
were assessed without modifications.

Quantitative performance evaluation

Patient-wise metrics

Similarity and surface-distance metrics were used to assess
the quality of the predicted delineations generated by the
CNN models. Firstly, we measured overall delineation
accuracy by the patient-wise (i.e. per patient) Dice score.
The Dice score is given by:

Dice(X, X̂) =
∣
∣
∣X ∩ X̂

∣
∣
∣

1
2

∣
∣
∣X

∣
∣
∣ + 1

2

∣
∣
∣X̂

∣
∣
∣

, (1)

where |X| and |X̂| are the number of voxels in the ground
truth, and the predicted delineations, respectively, and |X ∩
X̂| denotes the number of voxels in the intersection between
the ground truth and predicted delineations.

Next, we computed three surface-distance-based metrics
for each patient (i.e. patient-wise): (1) the 95th percentile
Hausdorff distance (HD95), (2) the average surface distance
(ASD) and (3) the median surface distance (MSD), all
three of which were calculated from the same set of
boundary distances. For a boundary voxel i in the predicted
delineation, we computed its smallest distance Di to the
ground truth boundary X̃, given by:

Di = min
x̃j ∈X̃

dist( ˆ̃xi , x̃j ), (2)

where dist( ˆ̃xi , x̃j ) is the (Euclidean) distance between the

predicted boundary voxel i with coordinates ˆ̃xi and the true

1These are different β values than those for the fβ loss.
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(a) (b)

Fig. 1 The illustration in a demonstrates how the surface-distance
based metrics (HD = maxi Di ) can be non-informative in the presence
of falsely predicted structures. As CNN structure 3 (red, CNN) does
not overlap with any of the true manually delineated structures (blue,
Oncologist), it is defined as a falsely predicted structure. Computing

distance metrics between the false structure 3 and true structures will
increase the metrics. The illustration in b shows how this problem can
be alleviated by only computing the surface-distance-based metrics for
predicted structures (red, labelled 1 and 2) that have sufficient overlap
with the manually delineated ground truth (blue, labelled 1 and 2)

boundary voxel j with coordinates x̃j . From the set of all
such distances, we computed HD95 as its 95% quantile,
ASD as its average and MSD as its median. Thus, the HD95

measures how severe the largest delineation error is, and the
ASD and MSD measure the overall delineation error. These
surface-distance metrics should be as small as possible.

Structure-wise metrics

The distance-based metrics can be skewed if the CNN
model misses a true structure or falsely predicts an
additional structure not included in the ground truth, as
illustrated in Fig. 1a. If distance-based metrics are to capture
the delineation quality of the structures that are actually
detected, they should be computed for true and predicted
structures that overlap. Thus, we computed the degree of
overlap between true and predicted structures, giving the
coverage fraction (CFrac):

CFrac(X̂k, X) =
∣
∣
∣X̂k ∩ X

∣
∣
∣

∣
∣
∣X̂k

∣
∣
∣

. (3)

Here X̂k is the set of voxels in the kth structure of the
predicted mask. An illustration of the CFrac is given in
Fig. 2. If the CFrac was greater than 0.5, the predicted
structure was defined as correctly identified by the CNN
model. Thereafter, HD95, MSD and ASD were computed
separately for all structures in the auto-delineation with
CFrac ≥ 0.5, as shown in Fig. 1b, giving structure-wise
distance metrics not skewed by falsely predicted structures.

To further assess the performance of the CNN model, we
defined a structure-wise sensitivity and positive predictive
value. The number of true negative structures cannot be
defined, and the number of true positive structures varies
according to perspective (ground truth vs auto-delineation).
As illustrated by the example in Fig. 2, there are two
structures (1 and 2, red) in the auto-delineated mask that
obtain a CFrac above 0.5 with the ground truth, and one that
does not (red structure 3). The auto-delineation, therefore,

has two true positive structures and one false positive
structure. Thus, we define the structure-wise positive
predictive value with respect to the CNN model (PPVCNN)
as:

PPVCNN = TPCNN
TPCNN + FP

, (4)

Fig. 2 Illustration of the coverage fraction metric CFrac. The left
column gives the CFrac (3) for the overlap between the predicted
(red, CNN) and true (blue, Oncologist) structures relative to the CNN
structure (red). In this case, the PPVCNN is 0.7, as two of the structures
(red, 1 and 2) proposed by the CNN-model were delineated by the
oncologist, and one (red, structure 3) was not. The right column gives
CFrac for the overlap between the CNN (red) and true (blue) structures
relative to the true structure (blue). The SensGT is equal to 0.5 since
one true structure (blue, 1) was identified by the CNN-model and one
was not (blue, 2), as its coverage fraction was less than 0.5
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where TPCNN is the number of true positive structures in the
auto-delineation mask and FP is the number of false positive
structures. For Fig. 2, TPCNN = 2 and FP= 1, giving a
PPVCNN=0.7 (rounded to one significant digit).

Likewise, for Fig. 2, there is one structure (1, blue) in
the ground truth that obtain a CFrac above 0.5 with the
auto-delineation mask, meaning that there is only one true
positive with respect to the ground truth. Consequently, we
define structure-wise sensitivity with respect to the ground
truth (SensGT):

SensGT = TPGT
TPGT + FN

, (5)

where TPGT is the number of true positive structures with
respect to the ground truth and FN is the number of
structures in the ground truth not delineated by the CNN
model (false negatives). In Fig. 2, TPGT = 1 and FN= 1,
giving a SensGT = 0.5.

Finally, to further assess errors made by the CNN model,
we calculated (1) the volume of structures in the auto-
delineation that obtained a CFrac > 0.5 with the ground
truth (Volumetrue), and (2) the volume of structures in the
auto-delineation that obtained a CFrac ≤ 0.5 with the
ground truth (Volumefalse). For the delineations in Fig. 2,
the Volumetrue is the mean volume of CNN (red) structures
1 and 2 and Volumefalse is the volume of CNN structure 3.

Qualitative evaluation

The CNN model with superior mean Dice performance was
qualitatively evaluated by an expert oncologist with more

than 7-year experience in HNC target volume delineation.
The expert was presented with the ground truth and the
delineations made by the CNN-model for 15 patients
randomly selected from the test cohort. The expert did not
know which contour was CNN-generated and which was
human-generated. For each of these patients, the oncologist
was asked to identify (if possible) which delineation was
generated by the CNN model. The oncologist scored the
quality of the selected auto-delineation masks using a score
from one to ten. A score of one represented a delineation
with little to no clinical value and a score of ten represented
a delineation where the oncologist was unable to identify
whether the mask was generated by the CNN model or
human specialists, implying high clinical value.

Code

Models were trained using Python and TensorFlow. Code
for running the experiments is provided at https://github.
com/yngvem/EJNMMI-20. Performance metrics were com-
puted using an in-house developed Python library provided
at: https://github.com/yngvem/mask stats.

Results

Comparison of models

The average model performance on the validation cohort
is summarised in Table 1. All models had an average Dice
between 0.40 and 0.65. Note that standard deviations of

Table 1 The performance
(mean ± one standard
deviation) of CNN models
trained using different
modalities

Modality

PET CT PET/CT

– CTW CT CTW CT

Patient-wise Dice (%) 61 ± 2 55 ± 2 48 ± 5 63 ± 1 62 ± 1

ASD (mm) 8.1 ± 2.6 11 ± 3 13 ± 7 7.0 ± 0.8 8.0 ± 3.1

MSD (mm) 4.5 ± 1.9 5.6 ± 0.8 7.8 ± 2.5 4.6 ± 1.0 4.6 ± 2.6

HD95 (mm) 31 ± 14 38 ± 17 50 ± 44 24 ± 2 32 ± 17

SensGT (%) 75 ± 5 60 ± 9 53 ± 11 75 ± 4 78 ± 7

PPVCNN (%) 25 ± 5 22 ± 6 21 ± 11 26 ± 4 28 ± 11

Structure-wise ASD (mm) 1.6 ± 0.2 2.1 ± 0.4 2.4 ± 0.6 1.6 ± 0.3 1.4 ± 0.2

MSD (mm) 1.1 ± 0.2 1.7 ± 0.4 1.9 ± 0.6 1.1 ± 0.3 0.92 ± 0.14

HD95 (mm) 4.9 ± 0.7 5.6 ± 1.0 6.0 ± 1.0 4.5 ± 0.5 4.4 ± 0.6

Volumetrue (cm3) 17 ± 5 9.7 ± 3.7 11 ± 3 15 ± 4 16 ± 3

Volumefalse (cm3) 1.1 ± 1.3 0.41 ± 0.17 1.6 ± 2.6 0.58 ± 0.54 0.58 ± 0.41

Choice of loss function had little effect on performance, and averaging therefore was done over models
trained with different loss functions. CTW and CT columns represent models trained with and without CT
windowing, respectively. All models were evaluated on the validation cohort
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Table 2 Performance on the
test cohort for the CNN models
with the highest Dice score on
the validation set, using
different input modalities

Modality

PET CT PET/CT

Mean Std. Mean Std. Mean Std.

Patient-wise Dice ( %) 69 17 56 21 71 16

ASD (mm) 4.2 4.3 6.1 5.1 4.7 4.8

MSD (mm) 1.9 4.0 3.1 5.4 1.8 4.0

HD95 (mm) 18 16.5 22.2 11.7 21.2 17.1

SensGT ( %) 77 31 53 41 86 27

PPVCNN ( %) 45 29 28 17 33 23

Structure-wise ASD (mm) 1.1 0.6 1.4 1.4 1.0 0.6

MSD (mm) 0.61 0.54 0.96 1.45 0.56 0.67

HD95 (mm) 4.0 2.6 4.1 2.5 3.3 1.8

Volumetrue (cm3) 17 22 7.2 12 15 24

Volumefalse (cm3) 0.45 1.1 0.56 1.7 0.54 3.0

The CT images were pre-processed using windowing

the Dice score and structure-wise performance metrics were
relatively small, indicating that the model performance was
stable between models trained with the same modality and
windowing option, but with different loss functions. Thus,
loss function choice had little effect on performance.

Imaging modality and Hounsfield windowing of CT
images, however, had a clear effect on performance. Models
trained on both PET and CT images had the highest patient-
wise Dice performance and the lowest surface distances,
indicating a high degree of overlap between the model
prediction and the ground truth. Models trained solely on
PET images had lower Dice and larger surface distances
than PET/CT models, but outperformed models based on
CT images on all performance metrics. Note that patient-
wise surface distances were both larger and more varied
than structure-wise due to measurements between false
positive structures and the ground truth.

From Table 1, it is also apparent that models, on average,
identified more than 50% of the manually delineated
structures in the validation cohort (SensGT). Particularly
models built using PET images had high detection rates,
identifying more than 75% of true structures. However, the
models generated many false positive structures, which is
apparent from the low PPVCNN. On average, less than a
third of all delineated structures in the CNN masks (for all
modalities) were also present in the ground truth. Despite
this, the Dice was high, indicating that the false positive
structures were small in volume (see Volumefalse in Table 1).

Performance on the test cohort

For each input-modality, the model that achieved the highest
average Dice score on the validation cohort was selected

for further evaluation on the test cohort. The best PET-
based model was trained with the Dice loss function. The
best CT-based and PET/CT-based models were trained
using CT-windowing and the f2 loss function. Test cohort
performance metrics are shown in Table 2 and Fig. 3. The
CT model had the lowest patient-wise Dice score (56%) as
well as the largest patient-wise distance metrics, indicating
poorer overlap between the predicted delineation and the
ground truth relative to PET and PET/CT models. PET and
PET/CT models achieved high Dice performance (69% and
71%, respectively) and structure-wise sensitivity (SensGT)
(77% and 86%, respectively), indicating that these models
had high overlap with the ground truth and detected the
majority of the manually delineated structures (i.e. few false
negative structures, Eq. 5).

Even though the CT model on average identified 53% of
the manually delineated structures (SensGT), it was unable
to identify even a single structure for 10 patients in the
test cohort (data not shown). In contrast, the PET and
PET/CT models failed to identify a single structure for only
two patients. Moreover, from the boxplots overlayed on
the violin plots in Fig. 3a, we see that the 25th percentile
SensGT was 15% for the CT-based model, while it was 50%
for the PET-based model and 93% for the PET/CT-based
model, again highlighting the PET/CT model’s high rate of
structure identification.

The structure-wisemetrics illustrate (see Table 2 and Fig. 3)
that using both the PET and CT signal simultaneously
was beneficial compared to only using one modality. All
structure-wise surface distance metrics were smaller for the
PET/CT model and spanned a narrower range with fewer
large outliers compared to the models that used only a single
modality. Thus, PET/CT-based auto-delineations were more
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Fig. 3 Violin plots with boxplots
overlayed (dark gray box within)
for test cohort performance
metrics of models achieving the
highest Dice based on each
imaging modality. a Patient-wise
Dice score and structure-wise
sensitivity (SensGT). b
Structure-wise HD95 and ASD
distance metrics. Note that the
axis for ASD is cut off at 6 mm
to improve visualisation for the
PET and PET/CT-based models.
There was one structure
generated by the CT-based
model which had an ASD
outside this range (13 mm).
Refer to Table 2 for details

(a) (b)

accurate with fewer large deviations between the predicted
and true structure boundaries.

Note also that the structure-wise distance metrics
(ASD, MSD, HD95) were considerably smaller than the
corresponding patient-wise distance metrics (Table 2).
This indicates that the patient-wise distance metrics were
influenced by measurements between falsely delineated
structures (false positives) and the ground truth (see Fig. 1a).
This is further supported by the metric PPVCNN, which
was below 50%, indicating that the CNN models tended
to delineate several false positive structures (i.e. large FP,
Eq. 4). However, the volumes of the erroneously predicted
structures (Volumefalse) were small compared to the true
structure volumes (see Supplementary Table A2, Online
Resource 1). This is also reflected by the high Dice score
of all the models. Furthermore, the average volume of the
erroneous structures (Volumefalse) for the PET/CT model
was 0.54 cm3. There were only five true structures in the
entire data set (< 5%) smaller than or equal to this size (data
not shown).

Fig. 4 Qualitative evaluation by an experienced oncologist of 15
PET/CT-based CNN delineations, randomly selected from the test
cohort. A score of 1 corresponds to a CNN delineation requiring
extensive revision whereas a score of 10 corresponds to a CNN
delineation that was indistinguishable from a manual delineation

Qualitative performance evaluation

The score distribution of the oncologist’s evaluation of the
PET/CT-based CNN delineations for 15 patients in the test
cohort is shown in Fig. 4, with performance details given
in Table 3. The majority of the CNN delineations were of
high quality. Thirteen delineations were scored 8 or higher,
indicating that the CNN delineations only required minor
modifications by an oncologist. For the two cases receiving
a score of 10, the oncologist was unable to decide which
delineation was generated by the CNN model and human
specialists. Only one case was assessed to a score < 7. This
auto-delineation received a score of 2, indicating that major
revision was required.

Figure 5 shows a representative image slice for three
patients whose PET/CT delineation was qualitatively
assessed by an oncologist. Animations of these delineations
are provided in Online Resources 2, 3 and 4 and
performance metric details are highlighted in italics in
Table 3. The upper row shows a patient for whom the
oncologist was unable to differentiate between the PET/CT-
based auto-delineation and the ground truth (Online
Resource 2). For this patient, both the PET- and the
PET/CT-based models performed well, whereas the CT-
based model missed the primary tumour in the larynx.
The middle row shows a patient for whom the PET/CT-
based auto-delineation obtained a qualitative score of 8
(Online Resource 3). The CT-based auto-delineation only
identified one structure and contained two false positive
structures. PET-based auto-delineation, however, correctly
identified both structures. Likewise, the PET/CT-based
auto-delineation correctly identified both structures, but
included one false positive structure. This false positive
structure resulted in a high patient-wise HD95 of 50 mm.
However, the correctly identified structures had an average

2788 Eur J Nucl Med Mol Imaging  (2021) 48:2782–2792



Table 3 Performance metrics
for 15 randomly selected
patients in the test cohort,
whose auto-delineated contour
(generated by the superior
PET/CT model) was evaluated
by an experienced oncologist

HD95 (mm) ASD (mm) MSD (mm)

Score Dice ( %) SensGT ( %) PPVCNN ( %) SW PW SW PW SW PW

2 24 0 45 3.4 45 1.8 13 1.8 4.9

7 73 100 17 4.6 30 1.5 4.8 1.1 1.0

8 74 100 17 4.9 33 1.5 4.7 1.0 1.4

8 74 40 29 4.1 17 1.1 2.6 0.57 1.0

8 74 100 33 3.4 50 1.1 5.4 0.63 1.4

8 77 100 25 4.6 30 1.4 5.4 0.72 1.4

8 73 67 14 3.9 23 1.1 4.8 0.59 1.4

8 88 100 25 4.9 6.8 1.5 1.8 0.88 0

9 75 100 33 3.4 9.7 1.0 2.1 0.56 1.0

9 85 100 22 4.3 8.1 1.2 1.9 0.50 1.0

9 74 50 56 3.1 3.7 1.1 1.1 0.75 0

9 85 100 38 3.0 5.0 0.73 1.1 0.14 0

9 78 100 33 3.0 42 0.90 5.8 0.40 1.0

10 77 75 75 3.0 4.1 0.86 1.2 0.40 1.0

10 73 100 33 3.6 8.8 1.2 2.5 0.74 1.0

Dice, SensGT and PPVCNN are given patient-wise. For split metrics, PW represents the patient-wise
metric and SW represents the structure-wise metric. Representative auto-delineations for the italicised rows
(patients) are shown in Fig. 5

structure-wise HD95 of 3.4 mm (Table 3), indicating that the
CNN model delineated these structures adequately, more in
line with the oncologist’s evaluation. The bottom row shows
the patient for whom the PET/CT-based auto-delineation
obtained a qualitative score of 2 (Online Resource 4).
Here, all models, regardless of input-modality, failed at
delineating the true structures, likely caused by the strong
beam hardening artefacts and low PET-signal.

Discussion

Comparison to previous work

To the best of our knowledge, only three previous studies
have evaluated the use of CNNs for auto-delineation of
the GTV in HNC using multimodal images [8–10]. The
PET/MRI-based 3D CNN of Lin et al. [8] and the PET/CT-
based 2D CNN described in Huang et al. [9] obtained a
median Dice score of 79% and a mean Dice score of 74%,
respectively, for auto-delineation of the primary tumour
volume. As in the present study, Guo et al. [10] achieved
superior auto-delineation performance of the GTV-T and
GTV-N for combined PET/CT input, compared to using
single modality CT or PET input. Their PET/CT-based 3D
network (Dense Net) resulted in a mean Dice of 71%.
Similarly, our 2D U-Net obtained a mean Dice of 71% for

PET/CT-based GTV-T and GTV-N auto-delineation. One
notable difference between the present study and the results
reported by Guo et al. is the quality of auto-delineations
obtained using solely CT images. By only including CT
intensities in the range [−30, 170] HU, we obtained a mean
Dice of 56%, whereas Guo et al. reported a considerably
lower mean Dice of 31% using a wider CT window in the
range [−200, 200] HU [10].

Despite differences across imaging modalities in the
above studies, the median or mean agreement between
CNNs using multimodality input and the expert’s ground
truth is above 70%. Previous studies conclude that there
are considerable interobserver variations in manual HNC
target volume delineations [4–7, 17]. In Bird et al. [17],
the Dice agreement between five clinicians (three radiation
oncologists and two radiologists) was only 56% when
delineating the GTV in CT images. Similarly, Gudi et al.
[7] found that the Dice agreement between three radiation
oncologists was 57% when the GTV was delineated using
CT images and 69% when delineated using PET/CT-
images. Thus, the interobserver variability of clinicians
is similar to the performance of the present CNN-model,
which, when evaluated on the test cohort, had an average
Dice score of 56% and 71% for the CT and PET/CT-
based models, respectively. Furthermore, Lin et al. [8] found
that the interobserver and intraobserver variability between
oncologists, as well as the contouring time, decreased
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Fig. 5 The predicted (red) and
true (blue) delineations for one
representative image slice from
three different patients in the test
cohort. From left to right: CT-
based predictions; PET-based
predictions; PET/CT-based
predictions. From top to bottom,
different subjects for whom an
experienced oncologist gave the
PET/CT-based predictions a
qualitative score of 10, 8 and 2,
respectively. Performance
metrics for the shown patients
are marked with italicised text in
Table 3. Animations are given in
Online Resources 2 (top
patient), 3 (middle patient) and 4
(bottom patient)

significantly when CNN-based auto-delineations were used
to assist manual delineations, highlighting the possible
clinical value of auto-delineation tools.

Clinical usefulness of CNN-based auto-delineation

Both the quantitative performance metrics and the qual-
itative oncologist’s evaluation illustrate that despite the
moderate amount of training samples and the simple CNN
architecture, the models produced delineations of high qual-
ity. We observed that the auto-delineations could be useful
in RT with just minor to moderate refinements required,
such as removing false positive structure, delineating a
missing structure, or refining the delineation boundary. We
infer this conclusion both from the qualitative scores pro-
vided by an expert oncologist as well as the quantitative
surface-distance metrics. The average structure-wisesurface
distances between true and predicted delineated structures

were on the same order of magnitude as the CT resolu-
tion (∼ 1 mm). Furthermore, structure-wise HD95 were
on the same order of magnitude as the PET resolution (∼
3 mm). We can, in other words, conclude that the CNN
model generated highly accurate auto-delineations, with few
exceptions.

The CNN model does, however, exhibit some weak-
nesses. Some CNN delineated structures are false positives.
Moreover, not all ground truth structures are detected. The
false positive structures are of minor concern, as most of
them are smaller than the resolution of the PET-images.
A simple post-processing procedure can easily remove
such small structures. In contrast, the lack of sensitivity
is more problematic, since all malignant structures should
be treated. However, the average SensGT was 86% for the
PET/CT model, and all structures were identified for 75%
of the patients in the test cohort. It was further noted that
many of the patients with low CNN performance had beam
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hardening artefacts on the CT image, leading to slices with
little-to-no information from the CT-signal, as can be seen in
the bottom row of Fig. 5. This implies that the model worked
well for a large portion of the patients, but a small number of
patients would still require considerable manual refinements
before RT. Lastly, our models were trained and evaluated on
images acquired at one single centre. An important next step
is an assessment of our models’ generalisability to images
stemming from other centres.

The effect of imagingmodality

The CT signal indicates the mass density of tissue. However,
we are interested in the properties of soft-tissue tumours
and involved lymph nodes, which are only represented in
a small section of the CT range. As such, analysing the
entire CT range is unnecessary and could even make it
harder to find relevant features. This motivated the reduction
in dynamic range of the CT images, utilising a soft-tissue
window ranging from −30 to 170 HU.

From a deep learning perspective, such an a priori
decrease in dynamic range is not expected to affect model
performance to a great extent, as the same transformation
can be learned by a two-layer neural network with ReLU
activation functions. Nevertheless, our experiments strongly
suggest that decreasing the dynamic range of the CT images
can have a considerable positive effect on model perfor-
mance. This increase in performance will likely be less
prominent as the dataset size grows, because then, it may be
easier for the model to learn the windowing-operation. Fur-
ther discussion of imaging modalities will, therefore, only
consider CT and PET/CTmodels where the CT images were
pre-processed using the given Hounsfield window settings.

When we compare the performance of the models
based on their input modality, we notice that the PET
signal was essential for discovering the involved lymph
nodes correctly. Without the PET-signal, the models, on
average, only discovered 60% (SensGT) of the manually
delineated structures (GTV-T and GTV-N) in the validation
cohort. For patients in the test cohort, the CNN model
performed worse. The highest performing CT-based CNN-
model only managed to identify 53% of the manually
delineated structures. Conversely, models trained using
only PET images and models trained using both PET and
CT images, delineated on average 75% of the malignant
structures for the validation cohort. On the test cohort, the
highest performing PET and PET/CT models discovered
77% and 86%, respectively. Thus, we conclude that the PET
signal was crucial for obtaining auto-delineation models
with sufficient sensitivity.

A benefit of CT, compared to PET, is its higher
spatial resolution. In our experiments, the surface distances

between the detected structures and their corresponding
ground truth boundaries were smaller for the models that
incorporated the CT signal as compared to those without CT
input. Hence, the high resolution of the CT was essential to
identify the small details and provide an accurate boundary
of the structures. Finally, combining the PET signal with
the CT signal improved all quantitative performance metrics
except for the PPVCNN, for most patients. We therefore
recommend using a fused PET/CT approach for auto-
delineation of head and neck tumours and involved nodes.

The performancemetrics

By including structure-wise performance metrics, as
opposed to only voxel- and patient-wise performance met-
rics, we were able to quantitatively analyse the results in
a more in-depth fashion. These structure-wise metrics are
meant as a supplement providing additional information on
the quality of the auto-delineation, not as a replacement of
the well-established and commonly reported metrics, which
must be reported to enable cross-study comparisons. Thus,
it is the joint information provided by the different types of
metrics that we consider useful.

The added information content of the structure-wise met-
rics is demonstrated in Tables 2 and 3. We see that the
patient-wise surface distances are relatively large—especially
the HD95 metric. However, the corresponding structure-
wise distance metrics are much smaller. As these metrics
were only calculated for auto-delineated structures that
overlapped by more than 50% with the ground truth, falsely
predicted structures that would otherwise skew the distance-
metrics were avoided. Thus, the discrepancy between the
patient-wise and the structure-wise distance metrics indi-
cates that the models predict false positive structures. Fur-
thermore, the small structure-wise distance metrics demon-
strate that the models performed well for the true structures
they actually detected and delineated, thereby indicating
how much manual modification is required by the clinician.
Likewise, the structure-wise sensitivity, PPV and volumes
were very informative as to the types of errors the mod-
els make, such as how many true structures they miss, how
many false structures they predict and how large these are.

Conclusions

In summary, we show that CNNs can be used for accurate
and precise GTV delineations of HNC using multimodality
PET/CT. Furthermore, our proposed structure-wise perfor-
mance metrics enabled in-depth assessment of CNN pre-
dictions and errors, which may facilitate the use of such
auto-delineation tools in RT planning.
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3. Grégoire V, Thorwarth D, Lee JA. Molecular imaging-guided
radiotherapy for the treatment of head-and-neck squamous cell
carcinoma: does it fulfill the promises? Semin Radiat Oncol.
2018;28(1):35–45.

4. Ashamalla H, Guirgius A, Bieniek E, Rafla S, Evola A,
Goswami G, Oldroyd R, Mokhtar B, Parikh K. The impact
of positron emission tomography/computed tomography in edge
delineation of gross tumor volume for head and neck cancers. Int
J Radiat Oncol. 2007;68(2):388–95. ISSN 0360-3016.

5. Murakami R, Uozumi H, Hirai T, Nishimura R, Katsuragawa
S, Shiraishi S, Toya R, Tashiro K, Kawanaka K, Oya
N, Tomiguchi S, Yamashita Y. Impact of FDG-PET/CT fused
imaging on tumor volume assessment of head-and-neck squamous
cell carcinoma: intermethod and interobserver variations. Acta
Radiol. 2008;49(6):693–9.

6. Kajitani C, Asakawa I, Uto F, Katayama E, Inoue K, Tamamoto
T, Shirone N, Okamoto H, Kirita T, Hasegawa M. Efficacy
of FDG-PET for defining gross tumor volume of head and neck
cancer. J Radiat Res. 2013;01(4):671–8. ISSN 0449-3060.

7. Gudi S, Ghosh-Laskar S, Agarwal JP, Chaudhari S, Rangarajan
V, Paul SN, Upreti R, Murthy V, Budrukkar A, Gupta
T. Interobserver variability in the delineation of gross tumour
volume and specified organs-at-risk during IMRT for head and
neck cancers and the impact of FDG-PET/CT on such variability
at the primary site. J Med Imaging Radiat Sci. 2017;48(2):184–92.
ISSN 1939-8654.

8. Lin L, Dou Q, Jin Y-M, Zhou G-Q, Tang Y-Q, Chen W-L, Su
B-A, Liu F, Tao C-J, Jiang N, et al. Deep learning for automated
contouring of primary tumor volumes by MRI for nasopharyngeal
carcinoma. Radiology. 2019;291(3):677–86. PMID: 30912722.

9. Huang B, Chen Z, Wu P-M, Ye Y, Feng S-T, Wong C-YO,
Zheng L, Liu Y, Wang T, Li Q, et al. Fully automated delineation
of gross tumor volume for head and neck cancer on PET-CT using
deep learning: a dual-center study. Contrast Media Mol Imaging
2018. 2018.

10. Guo Z, Guo N, Gong K, Li Q. Gross tumor volume segmentation
for head and neck cancer radiotherapy using deep dense multi-
modality network. Phys Med Biol. 2019;64(20):205015.

11. Moan JM, Amdal CD, Malinen E, Svestad JG, Bogsrud TV,
Dale E. The prognostic role of 18F-fluorodeoxyglucose PET in
head and neck cancer depends on HPV status. Radiother Oncol.
2019;140:54–61. ISSN 0167-8140.

12. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks
for biomedical image segmentation. In: International conference
med image comput comp assist interv. Springer; 2015. p. 234–41.

13. Ioffe S, Szegedy C. Batch normalization: accelerating deep
network training by reducing internal covariate shift. In:
International conference mach learn; 2015. p. 448–56.

14. Milletari F, Navab N, Ahmadi S-A. V-net: fully convolutional
neural networks for volumetric medical image segmentation. In:
4th international conference on 3d vision. IEEE; 2016. p. 565–71.

15. Hashemi SR, Salehi SSM, Erdogmus D, Prabhu SP,
Warfield SK, Gholipour A. Asymmetric loss functions and
deep densely-connected networks for highly-imbalanced medical
image segmentation: application to multiple sclerosis lesion
detection. IEEE Access. 2019;7:1721–35. ISSN 2169-3536.

16. Kingma DP, Ba JL. ADAM: a method for stochastic optimization.
In: International conference learn represent; 2014.

17. Bird D, Scarsbrook AF, Sykes J, Ramasamy S, Subesinghe M,
Carey B, Wilson DJ, Roberts G, McDermott N, Karakaya E,
Bayman E, Sen M, Speight R, Prestwich RJD. Multimodality
imaging with CT, MR and FDG-PET for radiotherapy target
volume delineation in oropharyngeal squamous cell carcinoma.
BMC Cancer. 2015;15(1):1–10.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

2792 Eur J Nucl Med Mol Imaging  (2021) 48:2782–2792



Deep learning based auto-delineation of gross tumour volumes
and involved nodes in PET/CT images of head and neck
cancer patients
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A Supplementary material

A.1 Dataset statistics

Table A1 shows patient characteristics for the entire patient
cohort and the patients included in the training, validation
and test cohorts. In addition, Table A2 shows summary statis-
tics for the distribution of structure sizes in the ground truth
for the three cohorts. Table A3 shows summary statistics for
the number of structures in the ground truth for each patient
in the cohorts.

A.2 Architecture

Table A4 shows the architecture of the neural networks. All
convolutional layers except the last and all up-convolutional
(transposed strided convolution) layers consisted of a (3×3)-
(up-)convolution, followed by a ReLU activation function and
finally a batch normalisation layer. Up-convolutional layers
also included a bilinear interpolation layer after batch nor-
malisation to match the layer before downsampling. The fi-
nal convolutional layer consisted of a (1 × 1)-convolution fol-
lowed by a sigmoidal activation function. All convolutional
and up-convolutional layers included a bias-term for each out-
put channel and all convolution-weights were initialised using
the normally distributed He-scheme. The code for the experi-
ments are available on GitHub: https://github.com/yngvem/
EJNMMI-2020.

C.M. Futsaether
Norwegian University of Life Sciences
E-mail: cecilia.futsaether@nmbu.no
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Table A1 Patient characteristics.

All patients Train Validation Test
Characteristica (n = 197) (n = 142) (n = 15) (n = 40)

Age [years]
Mean 60.3 60.7 58.8 59.4
Range 39.9–79.1 39.9–79.1 43.2–73.7 43.0–77.0

Sex
Female 24.9 % 25.4 % 13.3 % 27.5 %
Male 75.1 % 74.7 % 86.7 % 72.5 %

TNMb

T1 9.1 % 9.2 % 6.7 % 10.0 %
T2 39.6 % 39.4 % 40.0 % 40.0 %
T3 23.4 % 23.9 % 20.0 % 22.5 %
T4 27.9 % 27.5 % 33.3 % 27.5 %
N0 23.9 % 25.4 % 6.7 % 25.0 %
N1 11.7 % 12.0 % 13.3 % 10.0 %
N2 60.9 % 58.5 % 80 % 62.5 %
N3 3.6 % 4.2 % 0 % 2.5 %

AJCC/UICCb stage
I 1.0 % 1.4 % 0 % 0 %
II 8.6 % 9.2 % 0 % 10.0 %
III 19.8 % 19.7 % 20.0 % 20.0 %
IV 70.1 % 69.0 % 80.0 % 70.0 %

Tumour site
Oral cavity 8.6 % 7.0 % 26.7 % 7.5 %
Oropharynx 72.6 % 73.2 % 60.0 % 75.0 %
Hypopharynx 8.1 % 9.2 % 13.3 % 2.5 %
Larynx 10.7 % 10.1 % 0 % 15.0 %

GTV-Tc [cm3]
Mean 25.0 23.9 37.3 24.3
Range 0.8–285.0 0.8–285.0 2.6–247.2 1.4–157.6

GTV-Nd [cm3]
Mean 19.3 26.6 37.4 19.5
Range 0.5–276.7 0.5–276.7 2.6–247.2 0.5–76.4

a Percentages may not sum to exactly 100 due to rounding.
b 7th edition
c Gross primary tumour volume
d Involved nodal volume (for patients with nodal stage ≥ N1)

Table A2 Summary statistics for structure sizes.

Cohort

Train Validation Test

Mean [cm3] 17 22 16
Standard deviation [cm3] 31 43 24
25% percentile [cm3] 2.2 2.3 2.3
Median [cm3] 7.2 6.3 6.2
75% percentile [cm3] 18 27 21
Min [cm3] 0.10 0.35 0.31
Max [cm3] 28 25 17

Table A3 Summary statistics for the number of structures
per patient.

Cohort

Train Validation Test

Mean 2.5 2.3 2.3
Standard deviation 1.4 0.86 1.2
25% percentile 2.0 2.0 1.0
Median 2.0 2.0 2.0
75% percentile 3.0 3.0 3.0
Min 1.0 1.0 1.0
Max 10 4.0 6.0
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Table A4 Model architecture.

Name Inputs Output shape

Conv1 Dataset 191 × 265 × 64
Conv2 Conv1 191 × 265 × 64
MaxPool1 Conv2 95 × 132 × 64
Conv3 MaxPool1 95 × 132 × 128
Conv4 Conv3 95 × 132 × 128
MaxPool2 Conv4 47 × 66 × 128
Conv5 MaxPool2 47 × 66 × 256
Conv6 Conv5 47 × 66 × 256
MaxPool3 Conv6 23 × 33 × 256
Conv7 MaxPool3 23 × 33 × 512
Conv8 Conv7 23 × 33 × 512
MaxPool4 Conv8 11 × 16 × 512
Conv9 MaxPool4 11 × 16 × 1024
Conv10 Conv9 11 × 16 × 1024
UpConv1 Conv10 23 × 33 × 512
Conv11 UpConv1 & Conv8 23 × 33 × 512
Conv12 Conv11 23 × 33 × 512
UpConv2 Conv12 47 × 66 × 256
Conv13 UpConv2 & Conv6 47 × 66 × 256
Conv14 Conv13 47 × 66 × 256
UpConv3 Conv14 95 × 132 × 128
Conv15 UpConv3 & Conv4 95 × 132 × 128
Conv16 Conv15 95 × 132 × 128
UpConv4 Conv16 191 × 265 × 64
Conv17 UpConv4 & Conv2 191 × 265 × 64
Conv18 Conv17 191 × 265 × 64
FinalConv Conv18 191 × 265 × 1
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Deep learning-based automatic delineation of anal cancer gross tumour 

volume: A multimodality comparison of CT, PET and MRI 

  

Abstract 

Background: Accurate target volume delineation is a prerequisite for high-precision 

radiotherapy. However, manual delineation is resource-demanding and prone to 

interobserver variation. An automatic delineation approach could potentially save time 

and increase delineation consistency. In this study, the applicability of deep learning for 

fully automatic delineation of the gross tumour volume (GTV) in patients with anal 

squamous cell carcinoma (ASCC) was evaluated for the first time. An extensive 

comparison of the effects single modality and multimodality combinations of computed 

tomography (CT), positron-emission tomography (PET) and magnetic resonance 

imaging (MRI) have on automatic delineation quality was conducted.  

Materials and methods: 18F-fluorodeoxyglucose PET/CT and contrast-enhanced CT 

(ceCT) images were collected for 86 patients with ASCC. A subset of 36 patients also 

underwent a study-specific 3T MRI examination including T2- and diffusion-weighted 

imaging. The resulting two datasets were analysed separately. A two-dimensional U-Net 

convolutional neural network (CNN) was trained to delineate the GTV in axial image 

slices based on single or multimodality image input. Manual GTV delineations 

constituted the ground truth for CNN model training and evaluation. Models were 

evaluated using the Dice similarity index (Dice) and surface distance metrics computed 

from five-fold cross-validation. 
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Results: CNN-generated automatic delineations demonstrated good agreement with the ground 

truth, resulting in mean Dice scores of 0.65–0.76 and 0.74–0.83 for the 86 and 36-patient 

datasets, respectively. For both datasets, the highest mean Dice scores were obtained using a 

multimodal combination of PET and ceCT (0.76–0.83). However, models based on single 

modality ceCT performed comparably well (0.74–0.81). T2W-only models performed 

acceptably but were somewhat inferior to the PET/ceCT and ceCT-based models.  

Conclusion: CNNs provided high-quality automatic GTV delineations for both single and 

multimodality image input, indicating that deep learning may prove a versatile tool for target 

volume delineation in future patients with ASCC.   

Keywords: anal cancer; radiotherapy; gross tumour volume; automatic delineation; deep 

learning.                                               
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Background 

Anal squamous cell carcinoma (ASCC) is a rare malignancy with increasing global 

incidence [1], for which chemoradiotherapy is the standard curative treatment [2]. 

Modern radiotherapy (RT) techniques such as intensity-modulated RT (IMRT) delivers 

highly conformal dose distributions to the target volume (TV), ensuring high tumour 

control and reduced normal tissue doses with subsequent decrease in acute and late 

toxicities [2]. IMRT has been shown to be superior to three-dimensional (3D) conformal 

RT in reducing acute toxicity in patients with ASCC [3]. However, the reduced TV 

margins and steep dose gradients resulting from high precision RT require consistent 

and precise TV delineations [4, 5].  

Manual TV delineation is a highly resource-demanding task and has been 

recognised as a main source of uncertainty within the RT workflow [4]. Inadequate TV 

definition can potentially lead to under-dosing of the tumour, thereby increasing relapse 

risk, or result in increased morbidity [5–7]. Guidelines, delineation atlases and quality 

assurance protocols decrease delineation variability [4–6, 8], yet interobserver variations 

remain an issue, with considerable delineation discrepancies occurring in approximately 

10 % of RT plans [5].  

The optimal imaging modalities for TV delineation remain unclear for many 

diagnoses [4, 5, 7], including ASCC [9]. Patients with ASCC may undergo several 

imaging procedures in conjunction with staging and RT planning, including computed 

tomography (CT), magnetic resonance imaging (MRI) and/or positron-emission 

tomography (PET) using 18F-fluorodeoxyglucose (FDG) [2, 10]. Pelvic MRI is 
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considered state-of-the-art imaging for ASCC and is used routinely for staging at many 

European centres, as it provides superior soft-tissue contrast resulting in detailed 

information on local and regional tumour extent [11]. PET has high sensitivity for 

detecting primary, regional and metastatic disease [12], and should be considered for RT 

planning according to U.S. guidelines [10]. TV delineation for ASCC is commonly 

performed in RT planning CT images. Ideally, the CT images should be co-registered 

with MR and/or PET images [13], but this practice varies. According to current 

guidelines [8] all available clinical and image information should be used when 

contouring gross tumour volumes (GTVs) for IMRT. 

The more extensive use of multimodality image interpretation accompanying 

modern RT techniques as well as the requirement of highly accurate delineations has 

increased TV contouring time substantially [5, 7]. It is therefore of vital importance to 

develop and evaluate methods to improve the efficacy and accuracy of TV delineation. 

Deep convolutional neural networks (CNNs) have successfully been used for automatic 

tumour delineation in a range of diagnoses [14]. Using CNNs to support manual GTV 

delineations can reduce contouring time and delineation variability [15]. CNNs can 

further be used for systematic studies of the impact of imaging modality on automatic 

delineation quality by introducing single or multiple input channels to the network [16, 

17].  

Automated TV delineation for ASCC using deep learning has to our knowledge 

not yet been explored. However, the widespread use of IMRT and multimodality 

imaging, as well as the proximity of TVs and critical organs such as the small bowel and 
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bladder [2], suggest that auto-delineation could be advantageous for this group of 

patients. In this study, we investigated the use of a deep two-dimensional (2D) CNN for 

fully automatic GTV delineation of ASCC. As ASCC patients may undergo various 

imaging procedures, we conducted a comprehensive comparison of the effects single 

modality and multimodality combinations of CT, PET and MRI sequences have on the 

quality of CNN-generated auto-delineations.  

 

Materials and methods 

Patient cohort and imaging 

ASCC patients scheduled for curative chemoradiotherapy at Oslo University Hospital 

between 2013–2016 and enrolled in the prospective ANCARAD observational study 

(NCT01937780) [18] were included. The study was approved by the Regional Ethics 

Committee, and all patients gave written informed consent. Patients with biopsy-proven 

ASCC and visible tumour on baseline PET, previously included for analysis in [19], 

were eligible (𝑛 = 93). Staging was performed according to the 7th edition AJCC 

tumour–node–metastasis (TNM) system [20]. RT was delivered with volumetric 

modulated arc therapy/IMRT (n = 62) or 3D conformal RT (n = 31) to doses of 54 or 58 

Gy. Concomitant chemotherapy with one or two cycles of mitomycin C and 5-

fluorouracil was given to most patients.   

Patients without a RT planning contrast-enhanced CT (ceCT) scan acquired with 

Iomeron® contrast agent were excluded from the present study, resulting in 86 patients 

with a complete set of pre-treatment PET and planning ceCT images. PET was 
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performed with a non-enhanced low-dose CT (ldCT) scan. A subset of 36 patients had 

consented to a study-specific 3T MRI examination before treatment, with a dedicated 

protocol including T2- and diffusion-weighted sequences (T2W and DW, respectively). 

See Supplementary Table A1 for image acquisition details.    

To properly assess the effect of MRI sequences on auto-delineation quality, both 

in combination and comparison with other modalities, the included patients were 

analysed as two separate datasets consisting of: (i) PET, ldCT and ceCT images (n = 86) 

and (ii) PET, ldCT, ceCT, T2W and DW images (n =36), hereinafter referred to as DS-

86 and DS-36 respectively. Patient characteristics are given in Table 1.  

 

Manual contouring  

Contouring was performed in the Eclipse Treatment Planning System (Varian Medical 

Systems - Paolo Alto, CA, USA) by a trained oncologist (C.U.) supported when 

necessary by an experienced MR radiologist (B.H.) and/or a nuclear medicine specialist 

(E.H.).  The GTV was manually delineated to include the visible tumour and the 

circumference of the anal canal and/or rectum when involved, as seen on axial images, 

according to current practice [8, 21]. GTV contours were defined in the planning ceCT 

image basis, supported by PET and MR T2W images, where T2W images were acquired 

with a standard (i.e. not study-specific) MRI protocol. Involved lymph nodes were not 

evaluated in the present study.   
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Image pre-processing  

Images were imported to the MICE toolkit (NONPI Medical AB, Umeå, Sweden) and 

co-registered using rigid transformation and mutual information criteria [22]. The image 

matrices were linearly interpolated to the reference frame and resolution of the planning 

ceCT.  A representative volume of interest (VOI), encompassing approximately the 

same pelvic region in the image series was selected for all patients (median in-plane 

matrix dimensions: 188188; median number of image slices per patient: 41) during co-

registration. This reduced memory consumption and computational burden throughout 

the analysis. The VOI was selected to be as large as possible, keeping the patient in the 

centre of axial image slices, but at the same time excluding irrelevant areas outside the 

patient. 

The DW series was condensed into an apparent diffusion coefficient (ADC) map 

by regression analysis [23], using b-values of 200, 400, 600, 800 mm2/s, to produce 

images reflecting water diffusion. The condensation into one single image series also 

made the impact of this MRI sequence comparable to the other single modality image 

series. 

The study-specific DW sequence did not cover the entire tumour for all patients. 

This was also the case for some T2W image series.  The affected image slices, mostly 

containing peripheral tumour regions located cranially or caudally, were also removed 

from the other image series in DS-36, reducing the number of slices in this dataset by 

about 14 %.    
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Both CT series were pre-processed using a narrow soft-tissue window, with 

centres and widths defined as the mode and two times the standard deviation, respectively, 

of the intensity values within manual GTV delineations. This resulted in ldCT and ceCT 

window settings ({centre, width}) of {32, 220} HU and {70, 300} HU, respectively.  

After VOI-definition and elimination of image slices with insufficient MRI field-

of-view from DS-36, approximately 50 % of the slices in the two datasets did not 

contain manual GTV delineations. To focus model training on delineation of the GTV, 

80 % of the slices without manual delineations were randomly removed from the 

datasets. The resulting number of image slices in DS-86 and DS-36 are given in 

Supplementary Table A2.   

 

CNN architecture and training 

A 2D U-Net CNN architecture [24] with the Dice loss function [25] was implemented 

for GTV delineation in axial image slices using Python and TensorFlow (see 

Supplementary Appendix B for architecture details). The U-Net was preferred over 

more recent architectures as it is a mature network with documented strong 

performance, often surpassing specialised deep learning pipelines for a wide range of 

medical applications and diagnoses [26]. Due to the limited number of training samples 

and large number of input modalities and combinations thereof, as well as the FOV 

limitations of the MRI sequences, we used a 2D rather than a 3D architecture, thus 

reducing the number of trainable parameters and GPU-memory requirements.  
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Five-fold cross-validation was used to acquire a robust estimate of CNN 

performance. Each dataset was divided into five cross-validation folds (Supplementary 

Table A2) using stratified random sampling to ensure comparable GTV distributions 

across folds.  The manual GTV delineations constituted the ground truth used for 

training and evaluation. Models were trained using the Adam optimiser with standard 

parameters and a learning rate of 10-4 [27].  The effect of imaging modality and 

modality combinations was assessed for both datasets by training separate single and 

multimodality models based on the available image input. In the case of multimodal 

models, each image modality was treated as a separate network input channel. All 

evaluated model inputs are specified in Figures 1 (DS-86) and 2 (DS-36).  

Expanding the number of training images by adding modified versions of the 

existing image data (image augmentation) has been shown to increase CNN model 

performance for TV delineation [28]. To assess the impact of such increased input 

variance, all our experiments were run without and with image augmentation, consisting 

of randomised, excessive elastic image deformation [29] applied on a random subset of 

50 % of the images during training.   

 

Performance evaluation  

CNN performance was first evaluated using the Dice similarity coefficient (Dice) [30], 

describing the spatial overlap between voxels belonging to the ground truth and the 

auto-delineations. Perfect and no overlap correspond to Dice scores of 1 and 0, 

respectively. Models were further assessed using the 95th percentile Hausdorff distance 
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(HD95) [31] and the average and median Hausdorff surface distances (ASD and MSD) 

between the ground truth and automatic GTV contours.  Performance metrics were 

calculated on a per patient basis, as defined in Supplementary Appendix C.  

 

Statistical analysis 

Effects of imaging modality and image augmentation on validation Dice were evaluated 

using the non-parametric Friedman test [32] followed by Nemenyi multiple pairwise 

comparisons [33] (PMCMRplus R package [34]) and the paired Wilcoxon signed-rank 

test in R, respectively. Statistical tests were two-sided with a significance level of 0.05. 

 

Results 

Cross-validation Dice scores of models based on different image inputs are shown in 

Figures 1 (DS-86) and 2 (DS-36). Several single and multimodality models had good 

overlap with the ground truth (mean Dice ≳ 0.75–80). The highest mean Dice was 

obtained for PET/ceCT or ceCT (DS-86; Figure 1) and PET/ceCT, PET/ceCT/T2W or 

ceCT (DS-36; Figure 2). PET, ldCT and ADC resulted in the poorest overall Dice 

scores. 

Overall validation Dice performances were somewhat poorer for DS-86 (Figure 

1) than for DS-36 (Figure 2). This was explained by a higher number of difficult 

delineation cases in DS-86.  The most problematic DS-86 patients had a substantial 

number of image slices without ground truth delineations, where the CNN falsely 

delineated a contour. The two patients where the PET, ldCT or PET/ldCT models failed 
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completely (Dice ~ 0–0.2) also had atypical PET uptake or an atypical shape of the 

ground truth GTV. Such difficult patients were not present in the DS-36 dataset, which 

contained fewer challenging delineation cases. This was in part attributed to the limited 

FOV of the DS-36 MRI series (see Materials and methods: Image pre-processing). The 

model rankings according to cross-validation Dice (Figures 1 and 2) were, however, 

consistent between DS-86 and DS-36, indicating agreement on the effect of the imaging 

modalities common for both sets.  

Randomised image augmentation gave moderate increases in mean and median 

Dice for most models (Figures 1 and 2; Wilcoxon signed-rank test; DS-86: not 

significant; DS-36: p < 0.001).  Furthermore, the DS-86 models based on PET/ceCT and 

ceCT obtained significantly better Dice than PET/ldCT, PET and ldCT-based models 

(Supplementary Table D1), whereas no significant difference was found between the 

PET/ceCT and ceCT-based models. Similar trends were detected for the smaller DS-36 

set, where the PET/ceCT model obtained significantly better Dice than all other models 

except those based on PET/ceCT/T2W or ceCT (models with image augmentation; 

Supplementary Table D2). Furthermore, the ceCT model (with augmentation) obtained 

significantly better Dice than all other single-modality models, including T2W.  

HD95, ASD and MSD performances of selected single and multimodality models 

are given in Table 2 (see Supplementary Table E1 for all model results). The two 

models obtaining the highest mean and median Dice scores (PET/ceCT and ceCT) also 

gave the lowest distance-based metrics. For both datasets, the PET/ceCT and ceCT 

models resulted in median MSD smaller than or equal to the slice thickness of the 
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planning ceCT (2.50 mm). As for the Dice metric, the larger distance metrics of DS-86 

can be explained by the higher incidence of difficult delineation cases. On a per patient 

basis, there was a significant negative correlation between Dice and each distance-based 

metric for the top-ranked DS-36 and DS-86 PET/ceCT models (Spearman’s rank 

correlation; Supplementary Figure E1). For the DS-86 a small sub-group of patients 

with smaller and less distinct tumours (stage T1-T2) showed poor performance. No 

other tumour stage groupings were seen.  

Example auto-delineations are shown in Figure 3 for models based on 

PET/ceCT, ceCT and T2W images, respectively (see also Supplementary Videos E1 and 

E2). All three models gave high-quality GTV auto-delineations for most image slices 

(Figure 3 (a)), but the T2W model generally had somewhat lower overlap with the 

ground truth (Figure 3 (b)). The models could result in poor auto-delineations for 

atypical image slices. Particularly very large ground truth GTVs, often including 

heterogeneous regions with up to several substantial air-filled zones were challenging 

(Figure 3 (c)). All models were also prone to delineating false positive regions 

encompassing the rectum or anal canal circumference in slices not containing a ground 

truth delineation (see Supplementary Videos E1 and E2 for examples). Though the 

PET/ceCT and ceCT models resulted in very similar auto-delineations, the PET/ceCT 

model generally gave the most refined auto-delineations for somewhat atypical GTVs 

(Figure 3 (d)).  
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Discussion  

In this study, deep learning for automatic GTV contouring in patients with ASCC was 

evaluated for the first time. The 2D U-Net approach produced high-quality GTV 

delineations for a range of single or multimodality CT, PET and/or MR image inputs 

(mean Dice ≳ 0.75–0.80). Our results suggest that deep learning tools could be useful 

for GTV contouring in ASCC patients, regardless of the exact imaging regimens.   

Multimodality PET/ceCT images provided the highest mean agreement with the 

ground truth, but single modality ceCT models performed comparably well. Though the 

T2W-only models were somewhat inferior to ceCT-only models, the T2W-based model 

with image augmentation provided an acceptable mean Dice of 0.77. Combining all 

three modalities (PET/ceCT/T2W) did not increase DS-36 Dice performance, compared 

to PET/ceCT or ceCT-based models.  

Using either PET/ceCT, ceCT or MRI for TV delineation could simplify the RT 

workflow, compared to using both MRI and ceCT or all three modalities.  Both 

PET/ceCT and MRI-based auto-delineation is highly clinically relevant, as these 

modalities represent state-of-the-art practice in the U.S. and Europe. Single modality 

imaging with ceCT, on the other hand, is not considered state-of-the-art for ASCC 

diagnosis and staging [2, 10], but TV delineation based solely on RT planning ceCT 

images could be relevant in some clinical settings due to cost and efficiency benefits. 

MRI is the imaging modality of choice for visualisation of tumour and normal tissue 

anatomy in the pelvic region, and MRI-only RT planning could therefore be relevant for 

patients with ASCC. The feasibility of MRI-only RT planning using synthetic-CT (sCT) 
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for dose calculations was recently studied for anorectal cancer patients, where results 

indicate that conditional generative adversarial networks can produce clinically 

acceptable sCT images [37].  An MRI-only RT approach has certain potential 

advantages compared to using CT as primary and MRI as secondary RT planning 

modality, the most important being avoidance of geometric uncertainties introduced by 

registration of CT and MRI and the possible cost and efficiency benefits of avoiding the 

CT scan [38]. The latter could be particularly relevant within an adaptive RT workflow 

based on MR-only imaging [38], where auto-delineation may play a key role in making 

the required replanning feasible. Further exploration of MRI-based auto-delineation of 

both TVs and OARs in patients with ASCC is, therefore, warranted. 

The lowest mean Dice was obtained for models based solely on PET or ADC. As 

the manual GTV delineation in this study, following clinical practice, included the anal 

canal and/or rectum circumference, the ground truth may include areas of non-affected 

tissues and air volumes.  This influences the CNN learning process, particularly for 

models based solely on functional imaging (PET, ADC) which is generally more cancer 

specific than anatomical imaging with clearer boundaries between visible tumour tissue 

and surrounding regions included in the GTV. For example, FDG PET images have 

higher correlation with tumour specimens than CT and MR (T2W) images [35]. 

Moreover, manual tumour delineations based on ADC maps are significantly smaller 

than T2W-based delineations [36]. Hence, our inferior results for PET and ADC models 

could be related to the GTV definition, and our ranking of modalities may not translate 

to auto-delineation of visible tumour tissue only. 
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The limited number of training samples available in our datasets may have 

affected the generalisability and robustness of our models. Though the evaluated CNN 

generally performed well, the network failed on certain images. There are two main 

modes of failure, both likely related to the few representative training samples. First, the 

network delineates a false positive region encompassing the rectum and/or anal canal in 

many image slices without ground truth delineations. Second, the network struggles to 

correctly delineate atypical GTVs in general and particularly very large GTV contours, 

encompassing heterogeneous regions with multiple substantial air-filled areas, typical 

for patients with an anal abscess and/or fistula.  Cross-institutional studies involving 

more patients, potentially using distributed learning for cross-centre training [39], or 

using transfer learning [40] based on other tumour sites could potentially alleviate some 

of these difficulties, thereby increasing model robustness and generalisability. A two-

step procedure where image slices with tumour tissue are pre-selected, either manually 

or by a separate deep learning classification [41], could further limit the former failure 

mode. For ASCC patients presenting with abscess, fistula or other conditions where the 

tumour is not fully visible, special attention to manual revision of the auto-delineated 

GTV contours would still be recommended.    

For the more frequently occurring pelvic cancers, cervical squamous cell 

carcinoma and rectal adenocarcinoma, CNNs for TV delineation have been explored but 

only for single modality PET [41], T2W [28, 43–47] or combined T2W/DW images 

[47]. Reported mean Dice scores for T2W-based CNN auto-delineation of the visible 

rectal or cervical tumour volume (0.72–0.84) [28, 43–47] are comparable to our T2W-



17 

 

based results (0.75–0.77). Combining T2W and DW images for auto-delineation of the 

visible rectal tumour did not improve mean Dice (0.70 [48]), relative to the above T2W-

only studies [28, 43–47], which is consistent with our results for T2W and ADC. U-Net 

delineation of cervical tumours in PET images [42] gave a mean Dice of 0.80, which is 

higher than our PET-only models (mean Dice: 0.65–0.76). This discrepancy is likely 

related to differences in TV definition. For auto-delineation of the rectum, previous 

studies obtained mean Dice values of 0.90–0.94 [28, 45] for T2W and 0.79 [49] for 

ceCT. The latter is comparable to our result for ceCT (0.74–0.81). Note that in [28] and 

[45] a very limited number of representative image slices (1–3) were selected from each 

patient, potentially affecting performance.   

Few studies have evaluated the impact of imaging modality on interobserver 

variability for manual tumour delineations in ASCC [9, 50, 51], where only [9] included 

PET and ceCT images in addition to MRI sequences. Rusten et al. [9] investigated the 

interobserver and inter-modality variability for PET/ceCT vs. MRI/ceCT-based 

delineations of the GTV and the visible tumour tissue in a subset of the patients (𝑛=19) 

included in our current study. The reported interobserver agreement was 0.80 and 0.74 

(median Dice) for GTV delineations based on PET/ceCT and MRI/ceCT (including 

T2W and DW), respectively, which is somewhat lower than the median Dice obtained 

by our CNN approach for DS-36 (PET/ceCT: 0.82–0.85; T2W/ceCT: 0.80–0.82). 

Furthermore, inter-modality agreement between PET/ceCT and MRI/ceCT 

corresponded to a median Dice of 0.75 for the GTV [9], indicating good agreement 

between PET/ceCT and MRI/ceCT-based manual delineations. The latter is in 
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accordance with our current results, where PET/ceCT and T2W/ceCT models provided 

similar auto-delineations.   

In conclusion, our proposed CNN approach provided high-quality fully 

automatic GTV delineations in ASCC patients, based on either single or multimodality 

images. The overlap between CNN-generated auto-delineations and the ground truth 

was comparable to interobserver agreement between experts performing manual GTV 

delineation in ASCC. This demonstrates the potential of CNN as a versatile tool for 

automatic TV delineation.   
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Figure 1. Box plots of the cross-validation Dice scores (DS-86 dataset). CNN models were 

trained on different modalities (y-axis) with or without image augmentation (orange vs. blue).  

Dice: Dice similarity coefficient; SD: standard deviation; PET: positron-emission tomography; 

ceCT: contrast-enhanced computed tomography; ldCT: low-dose computed tomography.  
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Figure 2. Box plots of the cross-validation Dice scores (DS-36 dataset). CNN models were 

trained on different modalities (y-axis) with or without image augmentation (orange vs. blue). 

Dice: Dice similarity coefficient; SD: standard deviation; PET: positron-emission tomography; 

ceCT: contrast-enhanced computed tomography; T2W: T2-weighted; ldCT: low-dose computed 

tomography; ADC: apparent diffusion coefficient.  
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Figure 3. Manual ground truth (yellow) and CNN-generated (orange) GTV contours in 

representative image slices (a)–(d) for the DS-36 dataset. CNN-generated auto-delineations were 

based on (from left) PET/ceCT, ceCT and T2W images, respectively. These DS-36 auto-

delineations were representative of the corresponding DS-86 results. CNN: convolutional neural 

network; GTV: gross tumour volume; PET: positron-emission tomography; ceCT: contrast-

enhanced computed tomography; T2W: T2-weighted; SUV: standardised uptake value.  
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Table 1. Patient and tumour characteristics for the DS-86 and DS-36 datasets.  

 DS-86b DS-36c 

Characteristica  (𝑛 = 86)  (𝑛 = 36) 

Age [years]   

Mean (range) 62.0 (40.8–88.8) 60.9 (40.8–88.8) 

Sex   

Female  66 (76.7 %) 29 (80.6 %) 

Male  20 (23.3 %) 7 (19.4 %) 

Tumour staged   

T1 4 (4.7 %) 0 (0 %) 

T2 41 (47.7 %) 20 (55.6 %)  

T3 16 (18.6 %) 6 (16.7 %) 

T4 25 (29.1 %) 10 (27.8 %) 

Nodal staged   

N0 40 (46.5 %) 15 (41.7 %) 

N1 11 (12.8 %) 4 (11.1 %) 

N2 18 (20.9 %) 10 (27.8 %) 

N3   17 (19.8 %) 7 (19.4 %)  

HPV status   

Positive 74 (86.1 %) 33 (91.7 %) 

Negative  11 (12.8 %) 3 (8.3 %) 

Unknown 1 (1.2 %)  0 (0 %) 

GTV [cm3]   

Mean (range) 59.2 (9.9–311.8) 

 
 

49.7 (11.4–136.8) 
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aPercentages may not sum to exactly 100 due to rounding. bAll 86 included patients having 

positron-emission tomography and contrast-enhanced computed tomography images 

available. cSubset of 36 patients that agreed to a study-specific 3T magnetic resonance 

imaging examination. dAccording to the  

7th edition AJCC TNM system [20]. GTV: gross tumour volume; HPV: human 

papillomavirus. 
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Table 2. Distance-based performance metrics for selected single and multimodality models 

(with image augmentation). 

Dataset Input modality HD95 [mm] ASD [mm] MSD [mm] 

  Mean ± SD Median Mean ± SD Median Mean ± SD Median 

DS-86 PET/ceCT 16.06 ± 8.88 13.73 3.31 ± 1.64 3.09 2.85 ± 2.34 2.50 

 ceCT 19.15 ± 13.98 16.40 3.66 ± 1.75 3.27 3.14 ± 2.22 2.50 

        

DS-36 PET/ceCT 7.07 ± 4.43 5.43 1.76 ± 1.04 1.58 1.30 ± 1.16 0.90 

 PET/ceCT/T2W 8.34 ± 6.42 6.44 1.98 ± 1.13 1.75 1.54 ± 1.01 1.27 

 ceCT 8.07 ± 4.43 7.50 1.89 ± 1.08 1.68 1.41 ± 1.24 1.27 

 T2W 12.13 ± 15.59 8.30 2.57 ± 1.16 2.43 2.05 ± 1.09 1.80 

 

PET: positron-emission tomography; ceCT: contrast-enhanced computed tomography; T2W: T2-weighted; HD95: 

95th percentile Hausdorff distance; ASD: average surface distance; MSD: median surface distance; SD: standard 

deviation.  
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Appendix A. Image data 

Supplementary Table A1. Image acquisition details. 

MRI 

Scanner Philips Ingenia 3.0 T, 

 Philips, Amsterdam, Netherlands 

T2W   

90 
 Pulse sequence TSE 

 Flip angle 90°  

 TR/TE 3712/80 ms 

 Matrix size 627  627 

 Voxel size (𝑥 – 𝑦 – 𝑧) 0.36  0.36  5 mm3 

DW  

 Pulse sequence SE-EP single-shot   

 Flip angle 90°  

 TR/TE 6843/65 ms 

 B-values 0, 10, 20, 40, 80, 160, 200, 400, 800, 1 000, 1 200, 1 500 mm2/s 

 Matrix size 320  320 

 Voxel size (𝑥 – 𝑦 – 𝑧) 1.25  1.25  4 mm3  

PET/ldCTa  

Scanner  Biograph mCT 40, 

 Siemens Medical Solutions, Erlangen, Germany 

Patient positioning  Flat tabletop 

PET  

 Administered FDG activity  3 MBq/kg, ~ 60 min prior to imaging 

 (standard IV dose)  

 Reconstruction algorithm  OSEM, 2 iterations, 21 subsets, including PSF-TOF 

 Matrix size  400  400 

 Voxel size (𝑥 – 𝑦 – 𝑧) 2  2  3 mm3 

ldCT  

 Reconstructed slice thickness 3 mm 

 Pixel size (range) 0.43  0.43 mm2 – 0.98  0.98 mm2 

ceCTb 

Scanner  General Electric LightSpeed Pro 16 scanner  

 GE Healthcare, Chicago, Illinois, USA  

Contrast medium  Iomeron®  

Matrix size  512  512 

Voxel size (𝑥 – 𝑦 – 𝑧) 0.9  0.9  2.5 mm3  
 

aPET with a non-enhanced ldCT scan used for attenuation correction and localisation. bceCT for 

radiotherapy planning purposes. MRI: magnetic resonance imaging; T2W: T2-weighted; TSE: turbo 

spin-echo; TR: repetition time; TE: echo time; DW: diffusion-weighted; SE-EP: spin-echo echo-planar; 

PET: positron-emission tomography; FDG: 18F-fluorodeoxyglucose; IV: intravenous; OSEM: ordered 

subset expectations maximization; PSF-TOF: point spread function-time of flight; ldCT: low-dose 

computed tomography; ceCT: contrast-enhanced computed tomography.  
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Supplementary Table A2. Number of patients and image slices in the cross-validation folds of 

datasets DS-86 and DS-36. 

 DS-86  DS-36 

 Patients Image slices Patients Image slices 

Fold 1 17 441 7 104 

Fold 2 18 380 8 140 

Fold 3 17 430 7 133 

Fold 4 17 422 7 139 

Fold 5 17 418 7 128 

Total 86  2 091 36 644 

 

 

Appendix B. CNN architecture and experiments 

All experiments were run using deoxys (https://deoxys.readthedocs.io/en/latest/), our 

in-house-developed publicly available Python framework for running deep-learning 

experiments, with emphasis on target volume auto-delineation.  

 

The CNN architecture used in the present study is outlined in Supplementary Table B1. 

As the volume of interest varied between patients, the image slices were padded with 

zeros to get a common in-plane matrix dimension of 236 × 236 before inputting them 

to the network.  The convolutional (Conv) and transposed convolutional (ConvTransp) 

layers used a 3×3 convolution kernel and were followed by the ReLU activation function. 

Batch normalization was used after each Conv layer, and a bilinear interpolation was 

included after each ConvTransp layer. Dropout was applied to the Conv10 layer (end of 

the encoder path) with a keep probability of 0.5. Relevant code for the experiments, 

including the customised image augmentation scheme, is available from 

https://github.com/argrondahl/Acta-Oncologica-2021.  
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Supplementary Table B1. 2D U-Net convolutional neural network architecture.  

Name Inputs Output shape 
Activation 

Function 

Batch 

Normalisationa 

Conv1 Input 236 × 236 × 64 ReLU Yes 

Conv2 Conv1 236 × 236 × 64 ReLU Yes 

MaxPool1 Conv2 118 × 118 × 64 - No 

Conv3 MaxPool1 118 × 118 × 128 ReLU Yes 

Conv4 Conv3 118 × 118 × 128 ReLU Yes 

MaxPool2 Conv4 59 × 59 × 128 - No 

Conv5 MaxPool2 59 × 59 × 256 ReLU Yes 

Conv6 Conv5 59 × 59 × 256 ReLU Yes 

MaxPool3 Conv6 29 × 29 × 256 - No 

Conv7 MaxPool3 29 × 29 × 512 ReLU Yes 

Conv8 Conv7 29 × 29 × 512 ReLU Yes 

MaxPool4 Conv8 14 × 14 × 512 - No 

Conv9 MaxPool4 14 × 14 × 1024 ReLU Yes 

Conv10 Conv9 14 × 14 × 1024 ReLU Yes 

Dropoutb Conv10 14 × 14 × 1024 - No 

ConvTransp1 Dropout 29 × 29 × 512 ReLU Yes 

Conv11 ConvTransp1 & Conv8 29 × 29 × 512 ReLU Yes 

Conv12 Conv11 29 × 29 × 512 ReLU Yes 

ConvTransp2 Conv12 59 × 59 × 256 ReLU Yes 

Conv13 ConvTransp2 & Conv6 59 × 59 × 256 ReLU Yes 

Conv14 Conv11 59 × 59 × 256 ReLU Yes 

ConvTransp3 Conv10 118 × 118 × 128 ReLU Yes 

Conv15 ConvTransp3 & Conv4 118 × 118 × 128 ReLU Yes 

Conv16 Conv11 118 × 118 × 128 ReLU Yes 

ConvTransp4 Conv10 236 × 236 × 64 ReLU Yes 

Conv17 ConvTransp4 & Conv2 236 × 236 × 64 ReLU Yes 

Conv18 Conv11 236 × 236 × 64 ReLU Yes 

FinalConv Conv18 236 × 236 × 1 Sigmoid No 
 

aBatch size of 16. bKeep probability of 0.5. Conv: convolutional layer; MaxPool: max pooling layer; 

ConvTransp: transposed convolutional layer; ReLU: rectified linear unit. 
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Appendix C. Performance metric calculations 

The reported Dice similarity index was calculated per patient based on the true positive 

(𝑇𝑃), false positive (𝐹𝑃) and false negative (𝐹𝑁) voxels, respectively, summarised over all 

included image slices of the given patient:  

 
Dice =  

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2|𝑃⋂𝐺|

|𝑃| + |𝐺|
, 

 

(A1) 

where |𝑃| and |𝐺| denotes the number of voxels in the patient’s predicted auto-

delineation and ground truth delineation, respectively, and |𝑃⋂𝐺| is the number of 

voxels in the intersection between the prediction and ground truth.  

Similarly, the distance-based metrics (95th percentile Hausdorff distance, average 

surface distance, median surface distance) were calculated over all the included image 

slices (constituting a 3D image stack) of each patient, using the deepmind Python library 

(https://github.com/deepmind/surface-distance).   
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Appendix D. Statistical analysis 

Supplementary Table D1. p values from Nemenyi post-hoc pairwise comparisons of per patient 

Dice similarity coefficient for models based on different image modalities with (without) the 

inclusion of image augmentation for DS-86. 

 ceCT ldCT PET PET/ceCT 

ldCT  <0.0001 

(<0.0001) 
   

PET <0.0001 

(<0.0001) 

0.999 

(0.899) 
  

PET/ceCT 0.689 

(0.277) 

<0.0001 

(<0.0001) 

<0.0001 

(<0.0001) 
 

PET/ldCT <0.0001 

(0.034) 

0.053 

(0.047) 

0.047 

(0.002) 

<0.0001 

(<0.0001) 

 

Statistically significant p values in bold. 

Friedman test for models with image augmentation: p = 3.46×10-30.  

Friedman test for models without image augmentation: p = 1.12×10-21. 

PET: positron-emission tomography; ceCT: contrast-enhanced computed tomography; ldCT: 

low-dose computed tomography. 
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Supplementary Table D2. p values from Nemenyi post-hoc pairwise comparisons of per patient Dice similarity coefficient for models based on 

different image modalities with (without) the inclusion of image augmentation for DS-36. 

 ADC ceCT ldCT PET PET/ceCT PET/ 

ceCT/ 

T2W 

PET/ 

ldCT/ 

 

PET/ 

ldCT/ 

T2W 

PET/ 

T2W 

T2W T2W/ 

ADC 

 

T2W/ 

ceCT 

ceCT <0.0001 

(0.021) 
           

ldCT 0.999 

(1.00) 

0.003 

(0.029) 
          

PET 0.999 

(0.919) 

0.001 

(0.773) 

1.00 

(0.946) 
         

PET/ceCT <0.0001 

(<0.0001) 

0.971 

(0.960) 

<0.0001 

(<0.0001) 

<0.0001 

(0.035) 
        

PET/ceCT/T2W <0.001 

(0.004) 

0.999 

(0.999) 

0.008 

(0.006) 

0.003 

(0.472) 

0.908 

(0.997) 
       

PET/ldCT 0.584 

(0.857) 

0.224 

(0.857) 

0.986 

(0.897) 

0.938 

(1.00) 

0.002 

(0.057) 

0.366 

(0.584) 
      

PET/ldCT/T2W 0.209 

(0.089) 

0.606 

(0.999) 

0.809 

(0.114) 

0.629 

(0.960) 

0.019 

(0.773) 

0.773 

(0.999) 

0.999 

(0.983) 
     

PET/T2W 0.366 

(0.792) 

0.407 

(0.908) 

0.929 

(0.842) 

0.809 

(1.00) 

0.007 

(0.082) 

0.584 

(0.672) 

1.00 

(1.00) 

1.00 

(0.992) 
    

T2W 0.999 

(0.998) 

0.001 

(0.346) 

1.00 

(0.999) 

1.00 

(0.999) 

<0.0001 

(0.003) 

0.003 

(0.134) 

0.946 

(0.999) 

0.651 

(0.672) 

0.826 

(0.999) 
   

T2W/ADC 0.999 

(0.998) 

<0.001 

(0.346) 

1.00 

(0.999) 

1.00 

(0.999) 

<0.0001 

(0.003) 

0.002 

(0.134) 

0.929 

(0.999) 

0.606 

(0.672) 

0.792 

(0.999) 

1.00 

(1.00) 
  

T2W/ceCT <0.001 

(0.029) 

0.999 

(1.00) 

0.032 

(0.039) 

0.012 

(0.826) 

0.714 

(0.938) 

0.999 

(0.999) 

0.629 

(0.897) 

0.938 

(1.00) 

0.826 

(0.938) 

0.013 

(0.407) 

0.011 

(0.407) 
 

T2W/ldCT 0.256 

(0.714) 

0.539 

(0.946) 

0.857 

(0.773) 

0.693 

(0.999) 

0.013 

(0.114) 

0.714 

(0.754) 

0.999 

(1.00) 

1.00 

(0.997) 

1.00 

(1.00) 

0.714 

(0.998) 

0.672 

(0.998) 

0.908 

(0.965) 
 

Statistically significant p values in bold. 

Friedman test for models with image augmentation: p = 1.50×10-15.  

Friedman test for models without image augmentation: p = 8.87×10-8. 

PET: positron-emission tomography; ceCT: contrast-enhanced computed tomography; ldCT: low-dose computed tomography; T2W: T2-weighted; ADC: apparent diffusion coefficient.  
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Appendix E. Auto-delineation performance 

Supplementary Table E1. Distance-based performance metrics for all DS-86 and DS-36 models with image augmentation (in bold: the two models of 

each dataset displaying the best distance metrics). 

Dataset Input modality HD95 [mm] ASD [mm] MSD [mm] 

  Mean ± SD Median Mean ± SD Median Mean ± SD Median 

DS-86 PET/ceCT 16.06 ± 8.88 13.73 3.31 ± 1.64 3.09 2.85 ± 2.34 2.50 

 ceCT 19.15 ± 13.98 16.40 3.66 ± 1.75 3.27 3.14 ± 2.22 2.50 

 PET/ldCT 19.23 ± 14.52 15.66 4.30 ± 2.07 3.76 4.06 ± 2.59 3.23 

 ldCT 20.01 ± 13.70 17.23 4.54 ± 1.50 4.41 4.46 ± 2.22 3.75 

 PET 24.49 ± 13.27 23.08 4.98 ± 2.15 4.51 4.77 ± 2.84 4.02 

        

DS-36 PET/ceCT 7.07 ± 4.43 5.43 1.76 ± 1.04 1.58 1.30 ± 1.16 0.90 

 PET/ceCT/T2W 8.34 ± 6.42 6.44 1.98 ± 1.13 1.75 1.54 ± 1.01 1.27 

 ceCT 8.07 ± 4.43 7.50 1.89 ± 1.08 1.68 1.41 ± 1.24 1.27 

 T2W/ceCT 9.42 ± 7.27 5.44 2.12 ± 1.19 1.71 1.68 ± 1.07 1.27 

 T2W/ldCT 9.26 ± 8.13 7.01 2.19 ± 0.99 1.92 1.80 ± 1.13 1.80 

 PET/ldCT/T2W 9.91 ± 12.21 6.87 2.19 ± 1.06 1.85 1.82 ± 1.12 1.80 

 PET/T2W 8.80 ± 5.49 7.23 2.22 ± 0.98 1.92 1.84 ± 1.15 1.80 

 PET/ldCT 7.93 ± 3.27 7.86 2.19 ± 0.91 2.05 1.81 ± 1.05 1.80 

 T2W/ADC 8.87 ± 3.74 8.58 2.39 ± 0.87 2.34 1.99 ± 1.03 1.80 

 T2W 12.13 ± 15.59 8.30 2.57 ± 1.16 2.43 2.05 ± 1.09 1.80 

 ldCT 11.79 ± 9.86 9.87 2.60 ± 1.07 2.54 2.10 ± 1.18 2.50 

 ADC 12.07 ± 12.03 9.76 2.92 ± 2.00 2.48 2.48 ± 1.95 1.91 

 PET 10.73 ± 8.36 7.55 2.55 ± 1.44 2.22 2.23 ± 1.13 2.01 

Two patients with no predicted gross tumour volumes were excluded from the affected calculations (pertain to DS-86 PET/ldCT, ldCT and PET-based models).  

HD95: 95th percentile Hausdorff distance; ASD: average surface distance; MSD: median surface distance; SD: standard deviation. PET: positron-emission tomography; ceCT: 

contrast-enhanced computed tomography; ldCT: low-dose computed tomography; T2W: T2-weighted; ADC: apparent diffusion coefficient. 



  page 9 of 9 

 

 

 

Supplementary Figure E1.  Per patient Dice plotted against the different distance-based performance metrics for the best DS-86 (a) and DS-36 (b) 

models (both based on PET/ceCT). HD95: 95th percentile Hausdorff distance; ASD: average surface distance; MSD: median surface distance; rs: 

Spearman rank correlation; T: tumour stage; PET: positron-emission tomography; ceCT: contrast-enhanced computed tomography.  
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Abstract 

Background: Radiotherapy (RT) is increasingly being used on dogs with spontaneous head and neck 

cancer (HNC), which account for a large percentage of veterinary patients treated with RT. Accurate 

definition of the gross tumor volume (GTV) is a vital part of RT planning, ensuring adequate dose 

coverage of the tumor while limiting the radiation dose to surrounding tissues. Currently the GTV is 

contoured manually in medical images, which is a time-consuming and challenging task.  

Purpose: The purpose of this study was to evaluate the applicability of deep learning-based automatic 

segmentation of the GTV in canine patients with HNC.  

Materials and methods: Contrast-enhanced computed tomography (CT) images and corresponding 

manual GTV contours of 36 canine HNC patients and 197 human HNC patients were included. A 3D 

U-Net convolutional neural network (CNN) was trained to automatically segment the GTV in canine 
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patients using two main approaches: (i) training models from scratch based solely on canine CT 

images, and (ii) using cross-species transfer learning where models were pretrained on CT images of 

human patients and then fine-tuned on CT images of canine patients. For the canine patients, 

automatic segmentations were assessed using the Dice similarity coefficient (Dice), the positive 

predictive value, the true positive rate, and surface distance metrics, calculated from a four-fold cross-

validation strategy where each fold was used as a validation set and test set once in independent 

model runs.  

Results: CNN models trained from scratch on canine data or by using transfer learning obtained mean 

test set Dice scores of 0.55 and 0.52, respectively, indicating acceptable auto-segmentations, similar 

to the mean Dice performances reported for CT-based automatic segmentation in human HNC 

studies. Automatic segmentation of nasal cavity tumors appeared particularly promising, resulting in 

mean test set Dice scores of 0.69 for both approaches.  

Conclusion: In conclusion, deep learning-based automatic segmentation of the GTV using CNN 

models based on canine data only or a cross-species transfer learning approach shows promise for 

future application in RT of canine HNC patients.  
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1 Introduction 

Head and neck cancer (HNC) is a heterogeneous group of malignant neoplasms originating from the 

different anatomical sites of the upper aerodigestive tract [1] and is relatively frequent in both humans 

and dogs. For humans, HNC is the seventh leading cancer by incidence worldwide [2], of which 90 % 

are squamous cell carcinomas (SCCs) of the oral cavity, oropharynx, hypopharynx, and larynx [3]. 

The incidence rate of HNC in dogs is similar to that of humans, but canine HNC patients present a 

greater variety of cancer subtypes and SCCs are less predominant than in humans [4-6]. For the same 

cancer subtypes, however, dogs with spontaneous tumors have been used as a comparative species in 

cancer research, taking advantage of the relative similarity of tumor biology and anatomic size 

between human and canine patients [7-9].  

In humans, the main curative treatment modalities for HNC are surgery, radiotherapy (RT), 

chemotherapy, or a combination of these. Treatment decisions are typically based on primary tumor 

site and stage. However, most human HNC patients receive RT as an integral part of treatment [1]. At 

present, the most frequently used RT technique for HNC in humans is intensity-modulated RT 

(IMRT) [1]. IMRT is a high-precision technique, offering highly conformal radiation doses to the 

target and improved sparing of surrounding critical normal tissue structures, known as organs at risk 

(OARs), compared to conventional and 3-dimensional (3D) conformal RT [10-12]. These advantages 

are highly relevant for the treatment of HNC due to the complex anatomy of the head and neck region 

with immediate proximity between irradiated target volumes (TVs) and OARs.  

In dogs, surgery is the primary treatment for most HNCs, but RT is indicated as the primary 

treatment for sinonasal tumors where full surgical resection is challenging [4, 13, 14]. Multimodal 

treatment with surgery, RT and chemotherapy may also be considered for canine HNC patients, 

particularly for cancers with significant risk of metastatic spread [13]. Though veterinary RT facilities 

are small in size and number compared to human facilities, RT has increasingly become available for 

veterinary patients [15]. Tumors of the head and neck in dogs and cats account for a large percentage 

of the neoplasms treated with RT in veterinary patients [15, 16]. Recently, more precise RT 

techniques such as image guided RT and IMRT have also been used for many patients in veterinary 

medicine [14, 17].  

Accurate definition of TVs and OARs is required for successful high precision RT [18], 

regardless of species. Tumor and/or organ volume contours can also be required for extraction of 

quantitative image-based features used in radiomics studies [19], where the primary aim is to identify 

imaging biomarkers. In clinical practice, TV and OAR definition is typically performed manually by 

clinical experts who contour the given structures on axial anatomical images, usually RT planning 

computed tomography (CT) images, using functional images as support if available. Manual 

contouring is, however, inherently subject to intra- and interobserver variability, introducing 
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significant geometric uncertainties in RT planning and delivery [18]. Inaccurate contour definitions 

can severely affect treatment outcome, potentially leading to underdosing of TVs and associated 

increased risk of locoregional failure or too high dose to normal tissues and subsequent increased RT 

toxicity [20-22].  Furthermore, manual contouring is time and labor-intensive, particularly for HNC 

where the complexity and number of structures are considerable [23].  

Recognizing the limitations of manual contouring, various automatic segmentation (auto-

segmentation) methods and their potential application in the RT planning workflow have received 

significant attention. Over the past decade, deep learning methods have rapidly gained a central 

position within medical image analysis, particularly for semantic segmentation tasks such as 

contouring of RT structures. Many studies have shown that deep learning with convolutional neural 

networks (CNNs) can provide highly accurate auto-segmentations in human subjects, surpassing 

alternative segmentation methods [24-30]. Moreover, the use of CNNs to guide manual contouring 

can decrease both contouring time and inter-observer variability [31, 32]. Several studies have 

evaluated the use of CNNs for segmentation of the gross tumor volume (GTV) or OARs in human 

HNC subjects, achieving high-quality segmentations based on RT planning CT, positron emission 

tomography (PET) and/or magnetic resonance (MR) images [29-31, 33-41]. Even though there is 

increased focus on various deep learning applications in veterinary medicine, as exemplified by [42-

46], few studies have evaluated the use of CNNs for semantic segmentation tasks in veterinary 

patients [47-49]. Only two studies [48, 49] have focused on RT structures. Park et al. [48] used CNNs 

to contour various OARs in canine HNC patients (n = 90) based on CT images, obtaining similar 

segmentation performance as reported for humans, whereas Schmid et al. [49] applied CNNs to 

contour the medial retropharyngeal lymph nodes in CT images of canine HNC patients (n = 40) 

obtaining acceptable performance. Auto-segmentation of the GTV or any other TV has, to the best of 

our knowledge, not previously been explored for veterinary patients including dogs. Given the 

increased use of RT for canine HNC patients, it is highly warranted to investigate the applicability of 

automatic GTV segmentation in this group of patients.  

One challenge for machine learning (in general) and deep learning (in particular) in the 

medical domain is that the number of available samples is often limited. Supervised CNN algorithms 

generally require large, labelled training sets. As the contouring process is laborious and must be done 

by a clinical expert to ensure satisfactory contour quality, it might not be feasible to label numerous 

images if this is not done prospectively at the time of treatment. Moreover, in the case of relatively 

rare diseases the number of available subjects will be low. Transfer learning has been proposed as a 

strategy to tackle limited training data [50].  

The essence of transfer learning is to apply knowledge gained from solving one problem, 

referred to as the source problem, to solving a novel, separate problem, referred to as the target 
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problem [50, 51]. This approach has also been applied to deep learning-based medical segmentation 

tasks (for a summary, see [52]). In veterinary science, transfer learning has been used successfully to 

segment acutely injured lungs in a limited number of CT images of dogs, pigs and sheep using a CNN 

model pretrained on a larger number of CT images of humans [47]. These findings suggest that cross-

species transfer learning from humans to dogs could potentially be used to increase the performance 

of other segmentation tasks such as GTV segmentation, particularly when the number of canine 

subjects is low [50].  

The objective of the present study was to evaluate the applicability of CNNs for fully 

automatic segmentation of the GTV in canine HNC based on CT images. In addition, the impact of 

transfer learning from a larger cohort of human HNC patients on auto-segmentation performance was 

investigated. Two main approaches to model training were assessed: (i) training CNN models from 

scratch based solely on CT images of canine patients (n = 36), and (ii) using a transfer learning 

approach where CNN models were pretrained on CT images of human HNC patients (n = 197) and 

subsequently fine-tuned on CT images of canine patients. These two approaches were compared to a 

reference approach (iii) where CNN models trained solely on human data were applied directly to 

canine data, without transfer learning. 
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2 Materials and Methods 

In the present work, two different datasets consisting of contrast-enhanced CT images of canine and 

human patients, referred to as the canine and human datasets, respectively, were used to train CNN 

auto-segmentation models. Characteristics of the patients in the canine and human datasets can be 

found in Table 1 and Table 2, respectively. CT imaging and reconstruction parameters are 

summarized in Table 3.  

 

2.1 Patients and imaging 

Canine dataset 

The canine data was collected retrospectively by reviewing the imaging database and the patient 

record system of the University Animal Hospital at the Norwegian University of Life Sciences 

(NMBU). Potential patients were identified by searching the imaging database over the years 2004–

2019, resulting in 1 304 small animal cases that were reviewed using the following inclusion criteria: 

canine patients with confirmed malignant neoplasia of the head or cervical region with a complete 

imaging examination including contrast-enhanced CT. A total of 36 canine cases met these criteria 

and were included in the canine HNC dataset. As these data were generated as part of routine patient 

workup, approval from the animal welfare committee was not required. Baseline CT imaging was 

performed pre and 1 min post intravenous contrast administration, using a GE BrightSpeed S CT 

scanner (GE Healthcare, Chicago, Illinois, USA). The animals were scanned in sternal recumbency 

under general anesthesia.   

 

Human dataset 

The human data used in this study was obtained from a retrospective study of HNC patients with SCC 

of the oral cavity, oropharynx, hypopharynx, and larynx, treated with curative radio(chemo)therapy at 

Oslo University Hospital between 2007 and 2013 [53]. The study was approved by The Regional 

Ethics Committee and the Institutional Review Board. 18F-fluorodeoxyglucose (FDG) PET/CT 

imaging was performed at baseline on a Siemens Biograph 16 (Siemens Healthineers GmbH, 

Erlangen, Germany) with a RT compatible flat table and RT fixation mask. Only the RT planning 

contrast-enhanced CT images were included in our present work and patients who did not receive 

contrast agent were excluded from the analysis, resulting in a dataset of 197 patients. This set of 

patients has previously been described and analyzed in two separate auto-segmentation studies [29, 

34]. Further details on the FDG PET/CT imaging protocol can be found in [29].  
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Table 1. Patient characteristics of the canine dataset.  

Characteristica 
All patients 

(n = 36) 

Fold 1 

(n = 9) 

Fold 2 

(n = 9) 

Fold 3 

(n = 9) 

Fold 4 

(n = 9) 

Age [years]      

Mean  

(range) 

7.7  

(1.1–13.6) 

8.3  

(4.6–13.6) 

7.9  

(1.1–11.1) 

8.2  

(4.4–10.1) 

6.2  

(2.0–10.0) 

Sex      

Female  13 (36 %) 2 (22 %) 4 (44 %) 4 (44 %) 3 (33 %) 

Male  23 (64 %) 7 (78 %) 5 (56 %) 5 (55 %) 6 (67 %) 

Weight [kg]      

Mean 

(range) 

32.1 

(8.2–74.5) 

26.9 

(13.0–38.9) 

35.3 

(8.8–74.5) 

30.9 

(8.2–45.4) 

35.4 

(14.8–52.0) 

Tumor site      

Oral cavity 5 (14 %) 3 (33 %) 1 (11 %) 0 (0 %) 1 (11 %) 

Nasal cavity 14 (39 %) 2 (22 %) 5 (56 %) 5 (56 %) 2 (22 %) 

Nasopharynx 1 (3 %) 0 (0 %) 0 (0 %) 0 (0 %) 1 (11 %) 

Other 16 (44 %) 4 (44 %) 3 (33 %) 4 (44 %) 5 (56 %) 

Nodal status      

Node 

involvement 
4 (11 %) 2 (22 %) 1 (11 %) 1 (11 %) 0 (0 %) 

GTV-T [cm3]      

Mean  

(range) 

69.7  

(4.5–358.7) 

50.0  

(8.8–123.9) 

57.0  

(4.5–195.0) 

48.3  

(8.5–91.5) 

123.4  

(12.4–358.7) 

GTV-N [cm3]      

Mean  

(range) 

 

9.8  

(0.002–38.1) 

 

0.5  

(0.03–1.1) 

 

38.1  

(NA) 

 

0.002  

(NA) 

 

NA 

(NA) 

 
a Percentages may not sum to exactly 100 due to rounding. 

GTV-T: gross primary tumor volume; GTV-N: involved nodal volume (for patients with node 

involvement); NA: not applicable. 
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Table 2. Patient characteristics of the human dataset.  

Characteristica All patients 

(n = 197) 

Training set  

(n = 126) 

Validation set  

(n = 31) 

Test set  

(n = 40) 

Age [years]     

Mean (range) 60.3 (39.9–79.1) 60.5 (39.9–78.9) 60.7 (48.4–79.1) 59.4 (43.0–77.0) 

Sex     

Female  49 (25 %) 28 (22 %) 10 (32 %) 11 (28 %) 

Male   148 (75 %)  98 (78 %)  21 (68 %) 29 (72 %) 

Tumor stageb     

T1/T2 96 (49 %)  61 (48 %) 15 (48 %) 20 (50 %) 

T3/T4 101 (51 %) 65 (52 %) 16 (52 %) 20 (50 %) 

Nodal stageb     

N0  47 (24 %)  29 (23 %)  8 (26 %) 10 (25 %) 

N1  23 (12 %)  15 (12 %) 4 (13 %) 4 (10 %) 

N2  120 (61 %) 78 (62 %) 17 (55 %) 25 (62 %) 

N3  7 (4 %)  4 (3 %)  2 (6 %) 1 (3 %) 

Tumor site     

Oral cavity 17 (9 %)  10 (8 %) 4 (13 %) 3 (7 %) 

Oropharynx  143 (73 %)  91 (72 %)  22 (71 %) 30 (75 %) 

Hypopharynx 16 (8 %) 12 (10 %) 3 (10 %) 1 (3 %) 

Larynx   21 (11 %)  13 (10 %)  2 (6 %) 6 (15 %) 

GTV-T [cm3]     

Mean (range)  25.0 (0.8–285.0) 26.0 (0.8–285.0)  21.8 (0.8–78.2) 24.3 (1.4–157.6) 

GTV-N [cm3]     

Mean (range) 

 
 24.3 (0.5–276.7) 

 
 27.5 (0.5–276.7) 

 
 17.7 (0.9–77.8) 

 
19.5 (0.5–76.4) 

 
a Percentages may not sum to exactly 100 due to rounding. 

 
b Staging according to the 7th edition AJCC/UICC tumor-node-metastasis system. 

GTV-T: gross primary tumor volume; GTV-N: involved nodal volume (for patients with nodal stage ≥ N1) 
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Table 3. CT imaging and reconstruction parameters.  

Human dataset (n = 197) 

Scanner Siemens Biograph 16, Siemens Healthineers GmbH, 

Erlangen, Germany 

Scan mode Helical (rotation time 0.5 s, pitch 0.75) 

Peak tube voltage 120 kV 

Reconstructed slice thickness 2.00 mm 

Reconstruction kernel B30f/B30s 

Matrix size 512 × 512 

Pixel size 0.98 × 0.98 mm2 (𝑛 = 161) 

 1.37 × 1. 37 mm2 (𝑛 = 30) 

 0.89 × 0.89 mm2 (𝑛 = 2) 

 0.96 × 0.96 mm2 (𝑛 = 1) 

 0.92 × 0.92 mm2 (𝑛 = 1) 

 0.88 × 0.88 mm2 (𝑛 = 1) 

 0.82 × 0.82 mm2 (𝑛 = 1) 

 
Contrast agent  Visipaque 320 mg iodine/mL  

Canine dataset (n = 36)  

Scanner  GE BrightSpeed S, GE Healthcare, Chicago, Illinois, USA 

 Scan mode Helical (rotation time 1.0 s, pitch 0.75) 

Peak tube voltage 120 kV 

Reconstructed slice thickness 1.25 mm (n = 3) 

 2.00 mm (n = 3) 

 2.50 mm (n = 24) 

 3.00 mm (n = 4) 

 3.75 mm (n = 2) 

Reconstruction kernel Standard  

Matrix size 512 × 512 

Pixel size (range) 0.22 × 0.22 mm2 – 0.49 × 0.49 mm2 

Contrast agent Omnipaque 300 mg iodine/mL  
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2.2 Manual GTV contouring  

Manual GTV contours were used as the ground truth for training and evaluation of auto-segmentation 

models. For both datasets, manual contouring was performed in axial image slices and the GTV was 

defined to encompass the gross primary tumor volume (GTV-T) and any involved nodal volume 

(GTV-N) if present.  

For the human patients, the GTV was contoured prospectively in the treatment planning system 

at the time of initial RT planning and in accordance with the previous DAHANCA Radiotherapy 

Guidelines [54]. Contouring was based on FDG PET and contrast-enhanced CT images. First, the 

GTV was contoured by an experienced nuclear medicine physician based on FDG PET findings. 

Next, one or two oncology residents refined the delineations based on contrast-enhanced CT images 

and clinical information. Finally, the delineations were quality assured by a senior oncologist.  

Contouring of the canine GTVs was performed retrospectively by a board-certified veterinary 

radiologist (H.K.S.) with radiation oncology residency training. Contours were defined based on 

contrast-enhanced CT images using the 3D Slicer software (https://www.slicer.org) [55]. The 

resulting delineations were smoothed in 3D Slicer using an in-plane median filter (5 × 5 kernel) 

before further image pre-processing.  This was done to minimize the differences between the canine 

GTVs and the human GTVs, as the latter were smoothed by default in the hospital treatment planning 

system.  

 

2.3 Image pre-processing  

All CT images and corresponding manual GTV delineations were resampled to an isotropic voxel size 

of 1.0 × 1.0 × 1.0 mm3 to achieve a consistent voxel size and retain the actual anatomical size ratio 

between patients/species. Details regarding the resampling of the human HNC dataset can be found in 

[29]. All other image pre-processing was performed using Python and SimpleITK [56]. 

The images of the human dataset were first cropped to a volume of interest (VOI) of size 191 × 

265 × 173 mm3, defined to encompass the head and neck region. Subsequently, the canine images 

were cropped and/or padded symmetrically about each axis to obtain the same image dimensions as 

the above VOI while keeping the patient in the center of each 3D image stack. If padding was applied, 

added voxels were given a value corresponding to background/air.   
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Figure 1. Schematic overview of the analysis. The human (A) and canine (B) datasets consisted of CT images 

and corresponding manual GTV delineations (green contours) cropped to a volume of interest of 191 × 265 × 

173 mm3. The human dataset was divided into a training, validation, and test set, whereas the canine dataset was 

divided into four folds used for model training and evaluation. (C) GTV auto-segmentations were generated 

using a 3D U-Net architecture with input image patches of size 112 × 112 × 112 mm3 (shown U-Net: depth of 3 

(3 max pooling operations) and F filters in the first convolutional layer). Auto-segmentation models were 

trained on either human or canine data, where the model trained on human data was further used for transfer 

learning (fine-tuning with canine data). (D) Model performances were first assessed using the Dice similarity 

coefficient (Dice; cf. equation (1), Section 2.5), measuring the overlap between manual ground truth 

delineations (𝐺) and predicted auto-segmentations (𝑃). The models with superior Dice characteristics were 

selected for further performance evaluation. CT: computed tomography; GTV: gross tumor volume; Conv: 

Convolution; BN: Batch Normalization; ReLU: Rectified Linear Unit; Up-conv: Up-convolution.  

 

2.4 Deep learning architecture and model training  

Canine auto-segmentations were obtained using two main approaches, namely (i) by training CNN 

models from scratch based on the canine dataset only, and (ii) a transfer learning approach where 

CNN models were pretrained on the human dataset and subsequently fine-tuned on the canine dataset. 

As a comparison to the above approaches, the CNN models trained on the human dataset only were 

evaluated directly on the canine dataset (i.e., without transfer learning).  A schematic overview of the 

analysis is given in Figure 1.  

 A 3D U-Net CNN architecture [57] with the Dice loss function [58] was used throughout this 

study. All models were trained using the Adam optimizer with an initial learning rate of 10-4 [59]. 

Further details about the CNN architecture are outlined in Figure 1C. Experiments were run on the 

Orion High Performance Computing resource at NMBU using deoxys, our in-house developed Python 

framework for running deep learning experiments with emphasis on TV auto-segmentation 

(https://deoxys.readthedocs.io/en/latest/).   

We assessed the impact of varying the following: (1) the complexity of the U-Net architecture, 

(2) the CT window settings of the input images, and (3) the training set image augmentation 

configurations. First, for the models trained from scratch on canine data, different U-Net complexities 

were assessed using network depths of 3, 4 and 5 with a corresponding number of filters in the first 

network layer of 32, 64 and 64. Second, we explored using CT window settings with a window center 

equal to the median Hounsfield unit (HU) value within the ground truth GTV voxels of the relevant 

training data (human training set: 65 HU; canine training sets: 93 HU (folds 1 and 2) and 96 HU 

(folds 3 and 4)) and a window width of either 200 HU or 400 HU. CNN models were trained using 

either one single input channel with windowed CT images, two separate input channels consisting of 

CT images with and without windowing, or three input channels where two were with different 
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window settings according to the canine and human training data, and the third channel consisted of 

CT images without windowing. Third, the following image augmentation configurations were 

evaluated: no image augmentation, image augmentation in the form of 3D rotation, zooming, and 

flipping, or 3D elastic deformations. Code for running the experiments, including the above image 

augmentation schemes, is available at https://github.comb.  

To train models and evaluate model performance, the datasets were divided as follows: Patients 

in the human dataset were split into a training (n = 126), validation (n = 31) and test (n = 40) set 

(Figure 1A) using randomly stratified sampling to obtain similar primary tumor stage distributions in 

each set (cf. Table 2; staging according to the 7th edition AJCC/UICC tumor-node-metastasis system). 

Patients in the canine dataset were randomly divided into four equally sized folds (n = 9). Following 

the cross-validation and test set evaluation strategy outlined in Figure 1B, each of these folds was 

used twice for model training (cyan), once as a validation set (orange) and once as a test set (purple). 

With this strategy, each canine model configuration was trained four times, and each patient was 

twice in the training set, once in the validation set and once in the test set. Thus, the validation and test 

set performances could be calculated for each of the 36 patients. This procedure was chosen to acquire 

a robust estimate of the auto-segmentation performance despite a limited number of canine patients, 

taking individual differences across patients into account and making the validation and test set 

performances less dependent on how the data was split. 

Most models were trained for 100 epochs, saving model weights (checkpointing) to disc every 

epoch. However, for the pretraining of models on human data, early stopping with patience 30 (i.e., 

stop training if validation loss does not improve for 30 consecutive epochs) was used to avoid 

overfitting to the source domain. For continued training (fine-tuning) of pretrained models, we 

compared initializing the Adam optimizer with an initial epoch set to 50 vs. 100. After training of one 

model, the optimal epoch was identified as the epoch maximizing the mean per patient Sørensen-Dice 

similarity coefficient [60, 61] (Dice; cf. Section 2.5 below) on validation data.  

 

2.5 Performance evaluation  

The quality of the CNN-generated auto-segmentations were first assessed using Dice [60, 61], which 

is a volumetric overlap metric quantifying the degree of spatial overlap between the set of voxels in 

the ground truth G and the predicted auto-segmentation P (Figure 1D). Dice is defined as: 

 
𝐷𝑖𝑐𝑒 =  

2 |𝑃 ∩ 𝐺|

|𝑃| + |𝐺|
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
, 

(1) 

 
b A permanent link to the GitHub repository will be provided upon acceptance.  
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where TP, FP and FN refer to the true positive, false positive, and false negative voxels, respectively. 

Dice ranges from 0 to 1, where 0 corresponds to no overlap and 1 corresponds to perfect overlap 

between the sets. Based on the Dice performances on validation and test data, we selected one model 

trained from scratch on canine data and one model trained with transfer learning for more in-depth 

performance evaluation and comparison.   

As Dice does not separate between FP and FN voxels and is known to be volume-dependent, 

the auto-segmentation performance of the two selected models were further assessed using the 

positive predictive value (PPV), the true positive rate (TPR), the 95th percentile Hausdorff distance 

(HD95) [62] and the average surface distance (ASD) [63].   

PPV and TPR, commonly also referred to as precision and recall, are defined as:  

 
𝑃𝑃𝑉 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 

(2) 

and 

 
𝑇𝑃𝑅 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. 

(3) 

As seen from equations (2) and (3), PPV is the fraction of the predicted auto-segmentation P that 

overlaps with G, while TPR is the fraction of the ground truth G that overlaps with P. In the context of 

TVs used for RT, PPV measures the degree of avoiding inclusion of normal tissue voxels in the auto-

segmentation, while TPR measures the degree of target coverage.  

 The distance metrics were calculated from the two sets of directed Euclidian distances 

between the surface voxels of P and G (set 1: all distances from P to G; set 2: all distances from G to 

P). The HD95 and ASD were then defined as the maximum value of the 95th percentiles and averages, 

respectively, of the above two sets of surface distances. HD95 reflects the largest mismatch between 

the surfaces of P and G, whereas ASD is used to quantify the typical displacement between the two 

surfaces. These metrics should both be as small as possible.  

The above performance metrics were calculated per patient, based on all voxels in the pre-

defined 3D VOI (cf. Section 2.3). The Python deepmind library was used for calculation of surface-

distance-based metrics (https://github.com/deepmind/surface-distance).  
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3 Results  

The validation and test set Dice performances of canine models trained with varying network 

complexity, CT window settings, number of input channels, and image augmentation schemes are 

summarized in Figure 2. Models trained from scratch (Figure 2A–2B) resulted in mean validation and 

test set Dice scores in the range 0.45–0.62 and 0.39–0.55, whereas models trained with transfer 

learning (Figure 2C–2D) resulted in validation and test set Dice scores ranging from 0.52–0.57 and 

0.46–0.52. In comparison, when evaluated on human data the pretrained human-based models 

resulted in mean validation and test set Dice scores of 0.46–0.55 and 0.48–0.54. Models trained on 

human data only and evaluated directly on canine data resulted in unacceptably low mean Dice test 

scores of 0.02–0.08, even though some models achieved relatively high Dice scores for some patients 

(range of maximum Dice per model: 0.16–0.67) (data not shown).   

 For models trained from scratch on canine data, the highest mean validation Dice score (0.62) 

was observed for models S4 and S8 (Figure 2A), which both used one input channel with a narrow CT 

window width (200 HU), standard image augmentation (flipping, rotation, zooming) and a high model 

complexity (depth of 4 and 5, respectively, and 64 filters in the first layer). On the other hand, the less 

complex model S9 (depth of 3 and 32 filters in the first layer), which was otherwise identical to 

models S4 and S8, showed comparable mean validation Dice performance (0.60) and the highest 

median Dice (0.72). Moreover, models S8 and S9 resulted in similar overall test set Dice 

performances, whereas model S4 had poorer performance on test data (Figure 2B). As model S9 was 

the least complex and, therefore, the least resource-demanding to train, while at the same time 

providing competitive Dice performance, it was selected for further performance evaluation (Figure 3) 

and the given complexity and CT window width was used for the transfer learning experiments.   

For the transfer learning models, the highest mean validation Dice score (0.57) was observed 

for model T4 (Figure 2C; depth of 3 with 32 filters in the first layer, CT window width of 200 HU, 2 

input channels with window center derived from (1) human and (2) canine training data, standard 

image augmentation and initial epoch set to 50). However, model T2, which included an additional 

CT channel with no windowing, but was otherwise the same as model T4, displayed the highest test 

set mean Dice (0.52) and a favorable test set Dice interquartile range (Figure 2D), indicating a 

moderately better ability to generalize to previously unseen data. Thus, among the transfer learning 

models, model T2 was selected for computation of additional performance metrics (Figure 3).   

The two selected models (S9 and T2, Figure 2) generally showed similar auto-segmentation 

performances on test data, as indicated by the plots and summary statistics of Figure 3. For both 

models, there was substantial inter-patient variation in the resulting auto-segmentation quality. The 

model trained from scratch on canine data resulted in the best mean performances for all included 

metrics. In general, the canine-only model had larger tumor coverage (higher mean and median TPR) 



 

16 
 

but tended to include more normal tissue (lower median PPV) than the transfer learning model. The 

transfer learning model did, however, achieve the highest per patient overlap with ground truth 

contours (maximum Dice: 0.89) and the lowest per patient ASD (minimum ASD: 1.3 mm). In addition, 

the transfer learning model resulted in a higher number of very high-quality auto-segmentations (Dice 

≥ 0.85; 𝑛 = 5) than the model trained from scratch (𝑛 = 2). However, the transfer learning model 

tended to perform the poorest on more difficult-to-segment canine patients, as reflected by the poorer 

first quartile Dice, TPR, PPV and HD95 values.  

Example auto-segmentations are shown in Figures 4–6. In general, the two selected models 

achieved the highest quality auto-segmentations for patients with nasal cavity tumors, which was the 

most frequently occurring tumor site in the canine dataset. The canine-only and transfer learning 

models both achieved a mean test set Dice of 0.69 for nasal cavity tumors, compared to the 

corresponding Dice scores of 0.55 and 0.52 for all tumor sites. As exemplified in Figure 4, tumor 

regions with relatively homogeneous HU values within the ground truth were generally easier to 

segment correctly. High quality auto-segmentations were also seen for other tumor sites where the 

tumor was distinct from the surrounding normal tissues and clearly affected the anatomical 

shape/boundary of the animal (Figure 5). Peripheral parts of the GTV were often more difficult to 

segment than central parts (Figure 5; bottom row). In some cases, the auto-segmentations included 

substantial normal tissue regions due to over-estimation of the GTV boundaries or prediction of 

separate smaller false positive structures. False positive structures and inclusion of particularly brain 

and eye tissues in the predicted auto-segmentation were more pronounced for the model trained only 

on canine data (S9). An example is shown in Figure 6.  

Both models resulted in poor auto-segmentations for patients with atypical tumor sites, 

atypical GTV shapes and/or a substantial number of image slices with atypical/very heterogeneous 

HU values inside the ground truth GTV. Neither of the models was able to successfully segment the 

smaller canine GTV-N structures. The above patterns indicate that the auto-segmentation performance 

was dependent on the number of representative canine training samples, regardless of model training 

approach.  
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Figure 2. Combined box and swarm plots of per patient Dice scores for different model configurations, showing 

each patient as a separate data point (black). Top: (A) Validation and (B) test results for models S1–S9 trained 

from scratch on canine data. Bottom: (C) Validation and (D) test result for models T1–T4 trained using the 

transfer learning approach. Model configurations (S1-S9 and T1-T4) are as follows: Model complexity given by 

U-Net depth D and number of filters F in the first layer; CT window setting with window width W in HU; 

Image augmentation settings (Std aug: zooming, rotation and flipping; Elastic aug: elastic deformation on a 

proportion (0.53 or 1.00) of the training set images); Number of input channels (chan), default 1 channel unless 

otherwise stated; Initial epoch setting S, either 50 or 100 epochs (transfer learning only). SD: standard deviation. 
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Figure 3. Combined box and swarm plots of per patient auto-segmentation performance metrics for the two 

selected models trained from scratch on canine data (S9, Figure 2A, B) and trained using the transfer learning 

approach (T2, Figure 2C, D). Each patient is shown as a separate data point (black). Performance metrics: (A) 

Dice similarity coefficient (Dice), (B) positive predictive value (PPV), (C) true positive rate (TPR), (D) 95th 

percentile Hausdorff distance (HD95), (E) average surface distance (ASD). The exact positioning of individual 

data points in (A) may differ from the respective plots in Figure 2B and D, due to randomness in the swarm 

plots. SD: standard deviation; IQR: interquartile range. One patient without any predicted auto-segmentation 

was excluded from calculations of HD95 (D) and ASD (E). 

 



 

19 
 

 

Figure 4. Manual ground truth and automatic deep learning generated gross tumor volume contours in four CT 

image slices from one canine test set patient (nasal cavity tumor). Left column: Manual ground truth contours 

(green). Middle column: Auto-segmentation generated by model S9 (magenta; model trained from scratch on 

canine data only). Right column: Auto-segmentation generated by model T2 (blue; model trained using transfer 

learning). The two models resulted in Sørensen-Dice similarity coefficients of 0.85 (model S9) and 0.89 (model 

T2) for the given patient (calculated over all 173 image slices).  
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Figure 5. Manual ground truth and automatic deep learning generated gross tumor volume contours in four CT 

image slices from one canine test set patient (sarcoma). Left column: Manual ground truth contours (green). 

Middle column: Auto-segmentation generated by model S9 (magenta; model trained from scratch on canine data 

only). Right column: Auto-segmentation generated by model T2 (blue; model trained using transfer learning). 

The two models resulted in Sørensen-Dice similarity coefficients of 0.86 (model S9) and 0.84 (model T2) for 

the given patient (calculated over all 173 image slices).  
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Figure 6. Manual ground truth and automatic deep learning generated gross tumor volume contours in four CT 

image slices from one canine test set patient (nasal cavity tumor). Left column: Manual ground truth contours 

(green). Middle column: Auto-segmentation generated by model S9 (magenta; model trained from scratch on 

canine data only). Right column: Auto-segmentation generated by model T2 (blue; model trained using transfer 

learning). The two models resulted in Sørensen-Dice similarity coefficients of 0.72 (model S9) and 0.85 (model 

T2) for the given patient (calculated over all 173 image slices).  
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4 Discussion 

This is the first study to evaluate deep learning-based auto-segmentation of TVs for RT in veterinary 

patients. Although dogs display breed-related variation in the head and neck anatomy and size, which 

could potentially complicate the auto-segmentation task, our results show that CNNs can provide 

high-quality GTV auto-segmentations for this group of patients, despite a limited number of training 

samples. Our two main approaches, namely (i) CNN models trained from scratch on canine data or 

(ii) CNN models pretrained on human HNC patients and fine-tuned using canine patients (transfer 

learning), generally gave similar results. In both cases the mean overlap with the expert ground truth 

contours was similar to what is obtained for human HNC patients.  

Previous studies on human HNC subjects report mean validation and/or test set Dice scores in 

the range of 0.31–0.66 for CNN-generated auto-segmentations of the GTV based on CT images [29, 

33, 34, 64]. The relatively large variation in reported performances is likely related to differences in 

image pre-processing, such as CT window settings and VOI dimensions, the composition of the 

datasets and/or CNN architecture. Of the above studies, the highest mean Dice (0.66; cross-validation 

result [29]) was obtained using a 2-dimensional (2D) U-Net architecture and a considerably smaller 

pre-defined VOI than in our present work. Moe et al. [34] obtained a mean test set Dice of 0.56 using 

the same 2D U-Net architecture on larger image VOIs encompassing the entire head and neck region 

but excluding image slices without any ground truth delineation. Both [29] and [34] used the same 

single-center HNC patients as in our present study. The lowest mean 𝐷𝑖𝑐𝑒 scores (0.31 [33] and 0.49 

[64]) were reported for auto-segmentation in multi-center patient cohorts, which is generally more 

challenging than single-center segmentation, using wider CT window widths. Both latter studies used 

similarly sized image VOIs and 3D architectures, which are generally superior to their 2D 

counterparts, as in or present work. In comparison to the above human studies, our best-performing 

canine models trained from scratch or with transfer learning, both using a 3D U-Net architecture and a 

narrow CT window, resulted in similar or higher mean validation (test) Dice scores of 0.62 (0.55) and 

0.57 (0.52), respectively, compared to the above studies. The Dice performances of our CNN models 

were also comparable to the reported Dice agreement (0.56–0.57) between clinical experts performing 

manual GTV contouring in human HNC patients based solely on CT images [65, 66].  

Human cancer patients normally undergo several imaging procedures as part of diagnosis and 

treatment planning. It is also common to base contouring of the GTV on multimodal image 

information. Thus, most of the recent studies on GTV segmentation in human HNC patients 

investigate using multimodality images as input to the network for increased performance. As 

PET/CT imaging is becoming more common in veterinary medicine [67], it is worth noting that all the 

above human HNC studies reported significant increases (range: 12–129 %; median: 25 %) in mean 

Dice scores when using both FDG PET and CT images as CNN model input. Similar improvements 
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are likely possible for canine patients, provided that the lesions are comparably FDG PET avid. PET 

imaging is, however, not likely to become widely available for veterinary patients in the near future. 

A more realistic approach at present would be to investigate the potential added benefit of including 

both pre and post contrast CT images as input to CNN models trained from scratch on canine data. In 

the present work, however, we chose to focus solely on post contrast CT images as these images were 

also available for the human patients.  

As HNC is a heterogeneous group of cancers, many studies on human HNC subjects focus 

only on one anatomical primary tumor site. Specifically oropharyngeal cancer which is one of the 

most frequently occurring HNC sites in humans worldwide [2], or nasopharyngeal cancer which 

display very distinctive properties, are commonly analyzed separately [31, 36, 41, 64, 68-72]. A 

similar approach could be beneficial for further analyses of auto-segmentation of the GTV in canine 

HNC subjects. In our present work, the highest quality auto-segmentations were generally obtained in 

patients with nasal cavity tumors. This is likely influenced by the tumor site distribution in our 

dataset, where this was the most frequent site. However, nasal cavity tumors display distinctive 

characteristics in terms of shape and location and generally have high contrast between tumor tissue 

and normal tissues/background, all of which could aid auto-segmentation. GTV segmentation is also 

particularly relevant for this group of canine HNC patients, as RT is indicated as the primary 

treatment [4, 13, 14].  

Even though our results show that deep learning can provide high-quality GTV auto-

segmentations in canine HNC patients, there are currently several limitations to this approach that 

must be resolved to increase its potential clinical usefulness. First, regardless of model training 

approach, the auto-segmentation quality was variable between patients. The poorest performance was 

seen for patients with rare tumor sites and GTVs with atypical shapes or heterogeneous HU intensity 

values. This could be alleviated by having a larger training set where all tumor sites are represented to 

a greater extent. Another possibility, as outlined in the previous paragraph, is to focus on each tumor 

site separately. Furthermore, inclusion of both pre and post contrast CT images as model input may 

mitigate the issue of heterogeneous tumor intensities in some cases, as it can be relevant whether the 

heterogeneity is due to inherent anatomical factors or heterogeneous contrast enhancement. However, 

GTVs with very heterogeneous HU intensity values including relatively large proportions of bone 

and/or air might still be difficult to automatically segment correctly and would likely require 

intervention by a human expert. Secondly, the auto-segmentations could encompass false positive 

regions including OARs such as the eye and brain. To limit the need for human revision, smaller false 

positive structures could be removed in a post-processing step, using for example morphologic 

operations, whereas inclusion of OAR regions due to over-estimation of GTV boundaries could be 

reduced by combining OAR and TV segmentation. Segmentation of normal tissue structures such as 

OARs typically achieve higher Dice scores than TV segmentation, as organ shapes, locations and 
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intensities generally are less variable between patients than tumors, though some OARs are more 

difficult to segment than others due to, e.g., poor CT contrast. Reported mean Dice scores of CT-

based OAR segmentation using deep learning are 0.78–0.87 [30, 38-40] and 0.83 [48] for human and 

canine HNC patients, respectively, when averaged over various organ structures. Deep learning-based 

OAR segmentation may be considered clinically applicable for several OARs [37, 73] and is currently 

commercially available for RT in humans.    

Transfer learning provided high performance but did not improve the mean performance 

metrics compared to training canine models from scratch. There are several potential factors that can 

contribute to why transfer learning did not outperform training from scratch, specifically related to the 

differences between the human and canine datasets. First, there are obvious anatomical differences 

between the human and canine head and neck region that might not be overcome by the use of image 

augmentation and fine-tuning of the pretrained human model. Second, the presence and degree of 

nodal involvement was significantly higher for the human patients. The majority of the human 

patients (76 %) had known nodal involvement and the mean GTV-N size was similar to the mean 

GTV-T size, whereas few canine patients (11 %) had known nodal involvement and the GTV-N 

structures were all small in size compared to the GTV-T. Third, the anatomical tumor site and cancer 

subtype distributions were not comparable between the two species. Fourth, the ground truth GTV 

contours were delineated under different conditions. Fifth, the CT imaging was conducted using 

different scanners with different imaging and reconstruction parameters. Regardless of the above 

differences between source and target domains, the transfer learning approach resulted in the highest 

per patient Dice score and to a greater extent avoidance of OARs. Thus, there is reason to assume that 

some features learned in the source domain were useful in the target domain, but that the usefulness 

was variable among the canine subjects.   

A recent thorough investigation of transfer learning for different deep learning-based medical 

image segmentation tasks in humans, conducted by Karimi et al. [50], shows that transfer learning in 

general primarily decreased the training time for the target task and that improvements in auto-

segmentation performance often was marginal and largely relied on the data and task. According to 

their results, statistically significant effects of transfer learning only occurred when the number of 

target training samples was low (~ 3–15 subjects). In other cases, models trained from scratch and 

transfer learning models were comparable in terms of auto-segmentation quality. Cross-species 

transfer learning was not evaluated in Karimi et al. [50] but our results are in line with their findings 

for transfer learning between human domains and tasks. Gerard et al. [47] applied transfer learning to 

segment acutely injured lungs in CT images of dogs, pigs, and sheep, obtaining median Jaccard index 

scores ≥ 0.90, which corresponds to Dice scores ≥ 0.95, using a multi-resolution CNN model 

pretrained on CT images of humans without acutely injured lungs. Their proposed transfer learning 

method was, however, not compared to training models from scratch on the target domain. Thus, the 
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effect of transfer learning was not quantified, and the high performance could be related to the task or 

influenced by the CNN configuration rather than the transfer learning approach. 

To summarize, segmentation of the GTV in canine and human HNC patients is an inherently 

challenging task. In this study, CNN models for auto-segmentation of the GTV in canine HNC 

patients, trained either from scratch on canine data or by using a cross-species transfer learning 

approach, provided promising results with high performance metrics comparable to results achieved 

in human HNC auto-segmentation studies. Our results show that transfer learning has the potential to 

increase segmentation performance for some patients, but differences between source and target 

domains as well as the heterogeneity of the disease within species can complicate the modelling. 

Therefore, care must be taken when transferring auto-segmentation models between species. 
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