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Summary

Inference of relatedness between individuals is of interest in fields as disparate as animal
breeding, archaeology, medical genetics and genealogy. In the forensic context, emphasised
in this thesis, applications include paternity cases, pedigree reconstruction and disaster
victim identification.

We focus on two approaches to kinship inference: The likelihood ratio (LR) framework
and estimation of relatedness parameters. The former compares two hypotheses, while the
latter estimates the most likely set of relatedness parameters to describe the observations.
We restrict attention to relatedness between pairs of individuals.

Statistical properties of the LR for non-inbred relationships are already derived in the
literature. We extend this work to allow for inbred individuals, by modelling pairwise
relationships through the Jacquard coefficients.

Further, we investigate LR testing in the context of database searches, with focus on
a search type called blind search. A blind search comprises a large number of pairwise
comparisons and the expected performance of this search type needs to be addressed. In
particular, we demonstrate how to decide on optimal LR thresholds to control the Family
Wise Error Rate.

A Bayesian framework for kinship testing can be useful, particularly when there are more
than two hypotheses. We demonstrate this by including informative prior probabilities to
help distinguish between hypotheses.

Maximum likelihood estimation of relatedness is addressed in the thesis. The uncer-
tainty of the estimate is investigated through parametric and non-parametric bootstrap-
ping. We discuss the difference between these methods and how they attempt to mimic the
random process that created the genetic data of two individuals.
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Sammendrag

Avhandlingen handler om testing og estimering av familierelasjoner mellom individer. Det
er mange anvendelser, f.eks. innen oppdrett, arkeologi, medisinsk genetikk og slektskaps-
forskning. Anvendelsesområder i en rettsgenetisk sammenheng er blant andre farskapstest-
ing, rekonstruksjon av slektstrær og identifikasjon av omkomne etter katastrofer.

I denne avhandlingen fokuserer vi på to tilnærminger til inferens av slekskap: LR (’Like-
lihood ratio’) rammeverket og estimering av slektskapsparametre. Den første tilnærmingen
sammenligner likelihood for to hypoteser, mens den andre fremgangsmåten søker etter det
mest sannsynlige slektskapet blant alle mulige slektskap. Analysene i denne avhandlingen
er begrenset til parvise slektskap.

Statistiske egenskaper for LR for ikke-inngiftede individer er utledet i litteraturen. I
avhandlingen utvider vi dette arbeidet til slektskap generelt, ved bruk av Jacquard koeff-
isienter for modellering av slektskap.

Videre undersøker vi bruk av LR testing for databasesøk. Vi konsentrerer oss om en
søketype kalt ’blind search’, der alle par i en database blir testet for visse slektskap. Poten-
sielt mange tester blir utført i et slikt søk og det er derfor behov for å evaluere de statistiske
egenskapene til slike søk. Vi demonstrerer hvordan vi kan finne en optimal terskelverdi for
hver LR test, slik at ’Family Wise Error Rate’ holdes på et akseptabelt nivå.

En Bayesisk tilnærming til slektskapstesting kan være nyttig spesielt når det er mer enn
to hypoteser. Vi demonstrerer dette ved bruk av informative a priori sannsynligheter for
de forskjellige hypotesene.

Avhandlingens siste del omhandler estimering av slektskapsparametre. Parametrisk
og ikke-parametrisk bootstrap blir brukt til å undersøke usikkerheten i estimatene. Vi
diskuterer forskjellen mellom disse to bootstrapmetodene og hvordan de forsøker å et-
terligne den stokastiske prosessen som gir opphav til de genetiske dataene.
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1 Introduction

Inference of relatedness between individuals is important in several scientific disciplines.
Animal breeding, plant breeding, medical genetics and archaeological studies are some ex-
amples. This thesis focuses on relatedness inference in forensic genetics. Forensic genetics
refers to cases involving DNA evidence in legal settings. The genetic similarity between
the genomes of individuals contains information about how the individuals are related.
Statistical methods are applied to infer relationships, based on observations of DNA data.
Examples of applications of relatedness inference in forensic genetics are paternity test-
ing, disaster victim identification (DVI), pedigree reconstruction and immigration cases.
This thesis limits its attention to pairwise relatedness, i.e., relationships between pairs of
individuals.

It is important to distinguish between pedigree relationships and the realised relatedness.
The former refers to the pedigree connecting the individuals. Legislation in the society are
written on the basis of pedigree relationships for instance when specifying that siblings are
not allowed to marry.

One measure of relatedness is the level of identity-by-descent (IBD) between genomes [1].
The pedigree relationship quantifies the expected level of IBD sharing between individuals,
with respect to a pedigree connecting them. This differs from the realised relatedness that
describes the actual genetic similarity between individuals [2]. For instance, a pair of first
cousins are genetically unrelated if there is no IBD sharing for the markers investigated.

Two statistical methods for kinship inference are likelihood ratio (LR) testing and IBD
estimation. The LR framework compares the likelihood of two hypotheses, formulated as
two relationships. The analysis is limited to these two alternatives. In a standard paternity
case, the hypothesis that a man is the father of a child is compared to the hypothesis that
they are unrelated. However, the truth may be that the alleged father is an uncle of the
child. The two tested hypotheses and the true relationship are expressed parametrically by
the IBD coefficients. The expectation and variance of the LR as a function of these IBD
coefficients are derived in the literature. The work in this thesis extends these formulas to
also apply for inbred individuals.

Database searches are important in a forensic context. Blind search is a type of search
where all individuals in a database are compared and an LR is computed for each pair
[3]. A blind search is used as an initial step in e.g. a DVI case. Many LRs are computed
in a blind search. The number of false positives, also called type I errors, thus needs to
be controlled. An approach for choosing the optimal LR threshold in a multiple testing
scenario needs to be applied.

1
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Estimation aims to find the most likely relationship among all possible alternatives.
Maximum likelihood (ML) estimation finds the level of IBD sharing between two individ-
uals that most likely explains the observed DNA data. A measure of uncertainty should
accompany an estimate. Thompson [4], Milligan [5] and Anderson and Weir [6] study es-
timation of IBD based parameters. The latter assesses the uncertainty of the estimate
through non-parametric bootstrapping. However, the literature does not seem to contain
a proper discussion of the use of different bootstrapping methods in this forensic context
and the topic is therefore explored in this thesis.

A common assumption in kinship testing is that individuals are non-inbred. This is
often an adequate assumption. However, investigators may need tools that take inbreeding
into account, for instance in cases where incest is suspected. An important focus of this
thesis is therefore modelling and inference of inbred relationships.

1.1 Genetics

1.1.1 DNA, chromosomes and recombination

The human genome consists of about 3 · 109 base pairs, made from the nucleotides adenine
(A), thymine (T), cytosine (C) and guanine (G). They form the well-known double helix
structure of the DNA. Most of the human genome is the same from individual to individual,
but we target the areas that vary between individuals. The DNA strand is divided into 23
pairs of chromosomes. Chromosome pairs 1 to 22 are autosomal chromosomes. Chromosome
pair 23 contains the sex chromosomes. Females have two X-chromosomes and males have an
X- and a Y-chromosome. The DNA is located in the nucleus of our cells. An egg cell and a
sperm cell, called gametes, contain one chromosome from each chromosome pair. The DNA
of a child thus roughly consists of half of the mother’s DNA and half of the father’s DNA.
Figure 1 illustrates how chromosome pair 1 can be inherited from two parents to a child.
Each parent has two copies of chromosome 1, shown with different colours. Crossovers
occur when a gamete is produced. The result is that the child has a recombined version
of chromosome pair 1 from the mother and a recombined version from the father. This is
shown by the mix of colours along the chromosomes of the child.

The genetic distance d between two points along a chromosome is defined as the expected
number of crossovers between the points. This unit is called Morgan (M), named after
Thomas H. Morgan (1866-1945). A distance of 1 cM between two points corresponds to
an average of 0.01 crossovers between the points. The human genome is about 30M. The
female genome recombines more than the male genome, and hence, the female genome is
longer.

2
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Figure 1: Illustration of recombination along a chromosome, as explained in Section 1.1.1.

1.1.2 Genetic markers

A specific location or segment of the genome is called a locus or a genetic marker. Different
parts of the DNA have different functions. Some parts code for diseases. The genetic
markers used in forensic applications are located in so-called non-coding regions of the
genome. Two main types of markers used in forensics, STRs and SNPs, are explained next.
The short tandem repeat (STR) markers, also called microsatellites, consist of repeating
sequences of bases, usually from two to six bases. In general, the number of repeats makes
an allele. For instance, if the sequence of bases ATCA is repeated 10 times in a row, the
allele is called 10. Different number of repeats at a locus are possible, creating a set of
possible alleles for a marker. Diploid organisms have two alleles at a locus, one for each
chromosome of a chromosome pair. These two alleles define the genotype of a locus. A
DNA profile consists of genotypes from several loci. The alleles of the STR markers and
the possible genotypes vary between individuals, making them suitable for identification
purposes.

Single nucleotide polymorphisms (SNPs) is another group of genetic markers. A SNP
marker is made from alteration of a single base pair of the DNA. In general, the SNPs
are diallelic, i.e., there are two possible alleles at each locus [7]. Because the SNPs are
diallelic, a SNP marker contains less information about an individual than an STR marker
[8]. However, there are more SNPs in the genome than STRs. An advantage with the
SNP markers is that they are more robust against degradation, due to their short length,
compared to an STR marker.

STRs are the standard genetic markers used in forensic applications. The markers are
thoroughly investigated through the years and standards regarding the markers are agreed

3
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on [9]. A forensic DNA profile is typically genotyped for 16 to 35 autosomal STR markers.
They are chosen such that linkage between them are vanishingly small. A combination of
marker types can be needed for difficult cases, like resolving distant relationships [8].

Artefacts like drop-ins, drop-outs, stutters, silent alleles and genotyping error affect the
quality of the DNA profile [10]. In this thesis, these artefacts are not modelled.

1.1.3 Hardy-Weinberg equilibrium, linkage disequilibrium and θ-correction

The meaning of the term population may differ depending on the application. We will
describe a population as a set of people from a specific geographical region, or a socially
enclosed group of individuals. Some genotypes and alleles are more commonly observed
than others in a population. If a population is in Hardy-Weinberg Equilibrium (HWE), the
genotype frequencies stay the same from one generation to the next. The assumptions un-
derlying HWE are an infinite large population with random mating, no selection, migration,
population stratification or mutation. Consider a locus with alleles a and b with population
allele frequencies pa and pb, respectively. The possible genotypes in the population are a/a,
a/b and b/b, with corresponding genotype frequencies p2a, 2papb and p2b .

If the assumptions for HWE are not met, the above genotype frequencies do not apply.
Population stratification, for instance caused by a high level of background relatedness,
cause an excess of homozygous individuals. This can be adjusted for by a θ-correction.
The co-ancestry coefficient θ is defined on the interval [0, 1]. A population in HWE has
θ = 0. The level of background relatedness is typically in the interval θ = [0.01, 0.03] [11].
The so-called sampling formula adjusts the allele frequencies, depending on the number of
observed alleles of a type [3]. The probability of observing allele a as the first allele is pa.
Let bj be the number of times allele a is observed among the j − 1 previously observed
alleles. The probability that allele a is sampled as the j’th allele is

p′a =
bjθ + (1− θ)pa
1 + (j − 2)θ

.

In practice, the assumptions for HWE are never met completely. For instance, a population
always has a finite size.

Another population based concept is linkage disequilibrium (LD). LD refers to non-
random allelic association across loci in a population [12]. If a haplotype, i.e., a specific
combination of alleles at two or more loci, is observed more frequently in a population than
expected when assuming independence, the population is in LD.

4
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a/a

a/b

Figure 2: Pedigree for the example in Section 1.1.4. Father and daughter (the shaded individuals) are
genotyped for one marker.

1.1.4 Inheritance of alleles and linkage

Gregor Mendel established in the mid 19th century a set of principles for how traits are
inherited from a parent to its offspring. He experimented with cross breeding of pea plants,
recording traits as colour, size and shape. He concluded that each parent pass on an element
to an offspring. The trait observed corresponds to one of the elements, they are not blended
in the offspring. Furthermore, different traits are inherited independently of each other.
The latter proved to not necessarily be correct. The modern understanding of Mendelian
inheritance says that there is a 50% chance that either of the alleles at a locus is passed on
from a parent to a child. Consider the pedigree in Figure 2. The genotypes of the father
is a/a, with allele frequency pa and genotype frequency p2a, assuming the population is in
HWE. The daughter has the genotype a/b. The probability that allele a is passed on from
the father to the daughter is 1. The mother is not genotyped, and thus, the probability
of observing allele b is its population allele frequency pb. The joint probability of the
genotypes of the father and daughter is p2apb. Two loci located on different chromosomes
are regarded as independent of each other. Alleles at loci located on the same chromosome
are in general not inherited independently, however, if the loci are located on different ends
on the chromosome, they are regarded as independent. Chromosomes are passed on in
segments. Assume that the maternal allele at a locus of a parent is passed on to a child.
The maternal allele at a second locus, close to the first locus, is then likely to also be passed
on the the child. Linkage between loci is modelled by the recombination rate ρ. Loci on
different chromosomes are unlinked, hence ρ = 0.5. Fully linked loci have ρ = 0, meaning
that no crossover occurs between the loci. Two loci are recombined if an odd number of

5
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crossovers have occurred. Haldane proposed a function to relate the genetic distance d to
the recombination rate ρ [13]. The function

ρ =
1

2
(1− e−2d)

is called Haldane’s mapping function and models the number of crossovers along the genome
as a Poisson process where subsequent crossovers occur independently of each other. This
is not necessarily true, because the probability of a crossover event typically increases with
increasing distance from the last event.

1.1.5 Mutations

A mutation is the result of a change in the sequence of bases at a locus. A mutation
can be somatic or in the germline. A germline mutation is present in the reproductive
cells of an individual and is passed on from a parent to an offspring. This is not the case
for somatic mutations. When computing pedigree likelihoods, mutations are accounted
for through a mutation matrix M . Element mi,j gives the probability that allele i of a
parent ends up as allele j in the child. Stationary mutations models leave the population
allele frequencies unchanged from generation to generation [14]. The parametric form of
the likelihood function (2) does not model mutations. An expression for the likelihood of
a parent-offspring relationship that accounts for mutations is given in (3). Mutations are
discussed further in Section 1.3.

1.2 Relatedness

1.2.1 What does it mean to be related?

The definition of relatedness differs depending on the application. Legislation in the society
builds on a non-genetic definition of relatedness. For instance, in many countries an adopted
child and a biological child are not distinguished between by the law. In forensic genetics,
relatedness is associated with sharing of genetic material. A pedigree relationship specifies
the possibility that individuals share genetic material. Siblings (S), for instance, have the
possibility to share genetic material from their parents. If we search far enough back in
generations, most individuals will be related. In this thesis, a pedigree relationship refers
to a pedigree limited to a few generations. The inference of pedigree relationship between
individuals enables the results from statistical analyses to be used in legal settings.

From a pedigree point of view, two individuals are expected to share a certain amount of
genetic material. However, the actual amount of genome sharing between two individuals

6
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can differ from the expected. We call this the realised relatedness.

1.2.2 Identity-by-descent coefficients

Two homologous alleles are identical by state (IBS) if they are the same version of the allele.
If the IBS alleles are inherited from a common ancestor, i.e., the alleles are autozygous,
they are IBD. Browning et al. distinguish between ancient IBD, recent IBD and familial
IBD, depending on the definition of common ancestor [15]. For the applications in this
thesis, IBD is defined within a given pedigree of only a few generations, i.e., familial IBD.
The idea is that closely related individuals share more of their genomes IBD than more
distantly related individuals.

B

A

J J J J J J J J
KKK

Figure 3: The 15 possible IBD configurations for the four alleles of the individuals A and B. Dots denote
alleles and lines connect IBD alleles. Ignoring the difference between maternal and paternal alleles reduces
the 15 configurations to the nine Jacquard states J1, · · · , J9. Only the three last states are possible for
outbred individuals, denoted as the IBD states K0, K1 and K2.

There are several coefficients quantifying IBD sharing between and within individuals.
The coefficient of inbreeding f , introduced by Wright in the early 1920’s, defines the proba-
bility that two alleles at a locus are IBD [1]. If the parents of a child are unrelated, then the
child is outbred, i.e., f = 0 for the child. The kinship coefficient ϕ between two individuals
is the probability that a random allele from one individual is IBD to a random homologous
allele from another individual. While f quantify how inbred an individual is, ϕ describes
the relationship between two individuals.

7
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Figure 4: The IBD triangle with location of some common relationships. The dashed lines show how the
kinship coefficient ϕ relates to the IBD coefficients κκκ. The white area is the admissible region for κκκ. The
same figure occurs in Paper IV.

The four homologous alleles of two individuals must be in one of the 15 unique IBD states
shown in Figure 3, often reduced to the nine states J1, . . . , J9 called the Jacquard states [16].
For outbred individuals, only the last three states J9, J8 and J7, denoted K0, K1 and K2,
respectively, are possible. The so-called k-coefficients for two individuals were introduced
by Cotterman [17]. A more frequently used variant of these are the IBD coefficients κκκ =

(κ0, κ1, κ2) [4]. These IBD coefficients define the probabilities that two outbred individuals
share zero, one or two alleles IBD, i.e., κi = P(Ki) for i = 0, 1, 2. Without considering actual
genetic material, the coefficients are computed based on a pedigree structure and define the
expected proportion of the genomes in the different IBD states. Because κ0 + κ1 + κ2 = 1,
the coefficients can be visualised in the IBD triangle by the coordinates (κ0, κ2). Figure 4
shows the location of κκκ for some common pedigree relationships. The pedigree based IBD
coefficients are restricted by the inequality κ2

1 ≥ 4κ0κ2, limiting the coefficients to be located
in the white area of the triangle [18].

The Jacquard coefficients ΔΔΔ = (Δ1, . . . ,Δ9) extend the IBD coefficients to also model
inbred relationships [16]. Similar to κκκ, Jacquard coefficients are defined as Δi = P(Ji) for
i = 1, . . . , 9. The coefficients sum to one. A restriction of the Jacquard coefficient similar
to the restriction for κκκ is not known to the author.

The Jacquard coefficients are related to the kinship coefficient through the equation

ϕ = Δ1 +
1

2
(Δ3 +Δ5 +Δ7) +

1

4
Δ8.

8
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f

0

2

MZ

S

PO H,U,G FC UN

Figure 5: The concept of modelling background relatedness by founder inbreeding, exemplified by the figure
presented in Paper III. The common father of the half siblings is inbred. The IBD triangle shows how κκκ
changes with increasing f , as presented in Paper II.

For outbred relationships, this equation reduces to

ϕ =
1

2
κ2 +

1

4
κ1.

The dashed lines of Figure 4 show points in the IBD triangle with the same kinship coeffi-
cient. For instance, siblings and parent-offspring have the same kinship coefficient ϕ = 0.25.
Table 1 shows ϕ for some common relationships.

1.2.3 Founder inbreeding

The θ-correction accounts for background relatedness on a population level. The genotype
frequencies of all founders of a pedigree are affected. By assigning an inbreeding coefficient
to one or more founders of a pedigree, background relatedness can be modelled on a more
local level [19, 20]. Figure 5 shows the situation. We are interested in the relationship
between a pair of half siblings. The common father is inbred, his parents are cousins. The
pedigree above the father can be replaced by the inbreeding coefficient f = 0.0625. The
coefficient f contains the information needed to calculate the IBD coefficients of the half
siblings. Even though the common father is inbred, the half siblings are outbred. Table 1
shows ϕ and κκκ as a function of f for some common relationships. These functions, as
presented in Paper II, are visualised in Figure 5. As f increases from 0 to 1, the IBD
coefficients of half siblings (H), avuncular (U) and grandparent-grandchild (G) moves from
the point (0.5, 0) to (0, 0), the point of PO. A first cousin (FC) relationship moves along the

9
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Table 1: Relatedness coefficients as functions of founder inbreeding, in a selection of common relationships.
The same table occurs in Paper II.

Rel. ϕ ϕ(f) κκκ κκκ(f)

f1 f2

S 1
4

1
4 (1 +

f1+f2
2 ) ( 14 ,

1
2 ,

1
4 )

κ0(f1, f2) =
1
4 (1− f1)(1− f2)

κ1(f1, f2) =
1
2 (1− f1f2)

κ2(f1, f2) =
1
4 (1 + f1)(1 + f2))

f
H 1

8
1
8 (1 + f) ( 12 ,

1
2 , 0)

κ0(f) =
1
2 (1− f)

κ1(f) =
1
2 (1 + f)

κ2(f) = 0

f1 f2

U 1
8

1
8 (1 +

f1+f2
2 ) ( 12 ,

1
2 , 0)

κ0(f1, f2) =
1
2 (1− f1+f2

2 )

κ1(f1, f2) =
1
2 (1 +

f1+f2
2 )

κ2(f1, f2) = 0

f1 f2

FC 1
16

1
16 (1 +

f1+f2
2 ) ( 34 ,

1
4 , 0)

κ0(f1, f2) =
1
4 (3− f1+f2

2 )

κ1(f1, f2) =
1
4 (1 +

f1+f2
2 )

κ2(f1, f2) = 0

first axis, from (0.75, 0) to (0.5, 0). The genetic similarity between siblings becomes more
and more similar to MZ as the inbreeding coefficient of each founder f1 and f2 increases.

If the parent of a child is inbred with a coefficient of inbreeding f , the pairwise relation-
ship between the parent and child becomes inbred. The IBD coefficients are then invalid.
The Jacquard coefficients for this relationship is ΔΔΔ(f) = (0, 0, f, 0, 0, 0, 0, 1− f, 0).

1.2.4 Realised relatedness

Mendelian inheritance and recombination between loci make the actual proportion of IBD
sharing between individuals different from the expected values specified in Table 1. It is
possible (but very unlikely) for two first cousins to not share any part of their genomes
IBD, even though κ0 = 0.75. The cousins are then genetically unrelated.

Denote the realised relatedness between two individuals by
ΔΔΔR = (ΔR

1 , . . . ,Δ
R
9 ), or κκκR = (κR

0 , κ
R
1 , κ

R
2 ) for outbred relationships. They define the

proportion of the genomes of two individuals to be in the different IBD sharing states.

10



PhD thesis 1.3 Likelihood model of relatedness

Two pairs of individuals with the same realised relatedness can have different underlying
IBD patterns. One pair may share long but few IBD segments, while another pair may
share many short IBD segments. The realised relatedness κκκR is not restricted as the IBD
coefficients and can therefore be located in the inadmissible region of the IBD triangle.

The realised relatedness for PO is by definition always κκκR = (0, 1, 0). For unrelated
individuals (UN), the realised relatedness is always κκκR = (1, 0, 0). Pedigree relationships
with κ2 = 0, such as H, U, G and FC, have by definition a realised relatedness with κR

2 = 0.
Hill and Weir [2] derived expressions for the variation in the realised relatedness for a variety
of pedigree relationships.

1.3 Likelihood model of relatedness

The Elston-Stewart algorithm is a powerful tool for computation of pedigree likelihoods,
given a set of genetic data [21]. The algorithm is efficient for large pedigrees with relatively
few markers. The Lander-Green algorithm computes pedigree likelihoods by applying a
hidden Markov chain to model linkage between markers [22]. This algorithm is compu-
tationally heavy for pedigrees with many pedigree members. Both the Elston-Stewart
algorithm and the Lander-Green algorithm compute likelihoods for a pedigree structure.
The work in this thesis considers a parametric approach to computation of the likelihood
of the realised relatedness between pairs of individuals.

Let G1, . . . ,GM denote a set of M non-identically distributed discrete random variables,
where variable j corresponds to locus j. The sample space of Gj is the set of all possible
combinations of joint genotypes at locus j. The joint probability mass function of the M

independent random variables, conditional on the realised relatedness ΔΔΔR, is given by

P((G1, . . . ,GM) |ΔΔΔR) =
M∏
j=1

9∑
i=1

ΔiP(Gj | Ji). (1)

The probabilities P(Gj | Ji) are given in Table 2.

Example 1: The purpose of this example is to show how (1) is used to compute the
distribution of joint genotypes at a locus. Assume a SNP marker with alleles a and b and
allele frequencies pa = pb = 0.5. There are nine possible combinations of genotypes for a
pair of individuals. The left table of Table 3 shows the probability of each joint genotype
conditioned on κκκR = (0, 1, 0). The probability that two individuals are homozygous for

11
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Table 2: The probability P(G |Ji) of a pair of genotypes G = (gA, gB), conditioned on the Jacquard state
Ji. The letters a, b, c and d represent different alleles, with population frequencies pa, pb, pc and pd,
respectively. This is the same table as in Paper II.

G J1 J2 J3 J4 J5 J6 J7 J8 J9
a/a, a/a pa p2a p2a p3a p2a p3a p2a p3a p4a
a/a, b/b 0 papb 0 pap

2
b 0 p2apb 0 0 p2ap

2
b

a/a, a/b 0 0 papb 2p2apb 0 0 0 p2apb 2p3apb
a/a, b/c 0 0 0 2papbpc 0 0 0 0 2p2apbpc
a/b, a/a 0 0 0 0 papb 2p2apb 0 p2apb 2p3apb
b/c, a/a 0 0 0 0 0 2papbpc 0 0 2p2apbpc
a/b, a/b 0 0 0 0 0 0 2papb papb(pa+pb) 4p2ap

2
b

a/b, a/c 0 0 0 0 0 0 0 papbpc 4p2apbpc
a/b, c/d 0 0 0 0 0 0 0 0 4papbpcpd

allele a is

P(G = (a/a, a/a) | κκκR = (0, 1, 0)) = 0 · p4a + 1 · p3a + 0 · p2a
= 0.125.

The joint genotype distribution for the same marker conditioned on κκκR = (0.25, 0.5, 0.25)

is shown in the right table of Table 3. The probability of the genotypes (a/a, a/a) is

P(G = (a/a, a/a) | κκκR = (0.25, 0.5, 0.25)) = 0.25 · p4a + 0.5 · p3a + 0.25 · p2a
= 0.1406.

Table 3: Joint genotype distributions from Example 1, for a SNP markers with alleles a and b and allele
frequencies pa = pb = 0.5. a) Conditioned on κκκR = (0, 1, 0). b) Conditioned on κκκR = (0.25, 0.5, 0.25).

a)
a/a a/b b/b

a/a 0.125 0.125 0.000
a/b 0.125 0.250 0.125
b/b 0.000 0.125 0.125

b)
a/a a/b b/b

a/a 0.1406 0.0938 0.0156
a/b 0.0938 0.3125 0.0938
b/b 0.0156 0.0938 0.1406

Equation (1) defined the probability distribution of the joint genotypes at a locus.
Consider next the situation where we have observed the genotypes of two individuals. The
individuals A and B are genotyped for M independent loci. Denote the joint genotypes of
the DNA profiles by G = (G1, . . . , GM), where the genotypes at locus j is Gj = (gA,j, gB,j).
The likelihood of the realised relatedness ΔΔΔR when we have observed the DNA profiles G is

L(ΔΔΔR | G) =
M∏
j=1

9∑
i=1

ΔiP(Gj | Ji). (2)

12



PhD thesis 1.4 Likelihood ratio framework for kinship testing

The likelihood function (2) ignores linkage between markers. Multi-locus IBD coeffi-
cients [23, 24] would have to be considered if the loci are linked.

As mentioned previously, mutations of alleles from one generation to another are not
modelled in the likelihood. For mutations to be modelled, information about the pedigree
structure is needed. The realised relatedness ΔΔΔR contains no information of the pedigree
connecting the individuals. Furthermore, even though a mutation has occurred, this does
not change the underlying IBD state at that particular segment of the genome. Mutation
rates are typically low, and the error introduced when ignoring mutations in pedigree like-
lihood computations are vanishingly small [25]. However, if a mutation has occurred from
a parent to a child, the likelihood (2) of κκκR = (0, 1, 0) would be 0, even though the true
realised relatedness is κκκR = (0, 1, 0). Fortunately, a simple expression for the likelihood in
this case exists [3]. Let the observed alleles at a single locus of the parent and child be
gPA = (a/b) and gCH = (c/d), respectively, with corresponding allele frequencies pa, pb,
pc and pd. Let mij denote the probability that allele i from the parent mutates to allele j

observed for the child. The likelihood of κκκR = (0, 1, 0) that models mutations is given by
the formula

L(PO | gPA, gCH ,M) = 2−(I(a=b)+I(c=d))

papb((mac +mbc)pd + (mad +mbd)pc),
(3)

where I(i = j) = 1 if i = j and zero otherwise. The matrix M denotes the 2× 2 mutation
matrix with elements mij.

1.4 Likelihood ratio framework for kinship testing

The traditional approach to kinship testing in forensic genetics is the LR framework [26].
Two hypotheses are stated and the likelihoods of the hypotheses are compared. In pair-
wise kinship testing, the hypotheses are formulated as two relationships. Let HP (P for
prosecution) and HD (D for defence) denote the hypotheses. The relationships stated by
each hypothesis is expressed as a set of Jacquard coefficients, denoted ΔΔΔP and ΔΔΔD. The
LR comparing these hypotheses is expressed as

LR(HP ,HD | G) =
L(ΔΔΔP | G)

L(ΔΔΔD | G)
. (4)

The set of hypotheses are not necessarily exhaustive. Only two relationships are compared,
neither may be the true relationship between the individuals. To avoid infinite LRs, it is

13
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required that
P(G | HP ) > 0 ⇒ P(G | HD) > 0. (5)

This means that all DNA profiles possible to observe under HP are also possible to observe
under HD. This assumption is typically valid in applications relevant for this work.

1.4.1 Expectation and variance of the likelihood ratio

Slooten and Egeland [27] derived expressions for the expectation and variance of the LR,
as a function of the IBD coefficients for outbred individuals. These expressions were later
extended to condition on a true relationship that differs from the two hypotheses considered
by the LR [28]. Paper II of this thesis extends the latter to apply for general pairwise
relationships modelled by the Jacquard coefficients.

Consider the setup

HP : ΔΔΔ =ΔΔΔP = (ΔP
1 , . . . ,Δ

P
9 )

HD : ΔΔΔ =ΔΔΔD = (ΔD
1 , . . . ,Δ

D
9 ) = (0, . . . , 0, 1)

Truth : ΔΔΔ =ΔΔΔT = (ΔT
1 , . . . ,Δ

T
9 ).

(6)

We are concerned with the LR comparing HP : ΔΔΔP against HD: ΔΔΔD when the true source
of the data is the relationship ΔΔΔT . For simplicity, HD states unrelated. The LR computed
from a set of DNA profiles G is denoted LR(ΔΔΔP ,ΔΔΔT | G).

The likelihood ratio can be considered a random variable, denoted by LRΔΔΔP ,ΔΔΔT
for the

setup in (6). Let G be defined as in Section 1.3, for a single locus. The distribution of G is
determined by ΔΔΔT and is independent of ΔΔΔP and ΔΔΔD. The expectation of LRΔΔΔP ,ΔΔΔT

is

E(LRΔΔΔP ,ΔΔΔT
(G)) = ΔΔΔPB9ΔΔΔ

t
T . (7)

where the matrix B9 is given in Table 4. The constant L is the number of alleles at a
locus and t denotes the vector transpose. Paper II shows the details of the derivation. The
variance is computed through the general identity Var(X ) = E(X 2) − E(X )2. The first
expectation is computed as

E(LR2) =
9∑

i=1

ΔP
i ΔΔΔPBiΔΔΔ

t
T ,

14



PhD thesis 1.4 Likelihood ratio framework for kinship testing

Table 4: Elements of the symmetric matrix B9, given as E(LR(Ji, Jj)). Each row represents Ji, a Jacquard
state assumed by HP , while each column presents Jj , the true Jacquard state. The number of alleles at a
locus is denoted L and p denotes the population allele frequencies. The same table as in Paper II.

J1 J2 J3 J4 J5 J6 J7 J8 J9

J1

∑
1
p2

∑
1
p

∑
1
p

L
∑

1
p

L
∑

1
p

L 1

J2 L2 L L L L L 1 1
J3

1
2
(L+

∑
1
p
) L L 1 L L+1

2
1

J4 L 1 1 1 1 1
J5

1
2
(L+

∑
1
p
) L L L+1

2
1

J6 L 1 1 1

J7
L(L+1)

2
L+1
2

1
J8

L+4
3

1
J9 1

where element (j, k) of matrix Bi is

∑
G

P(G | Jj)

P(G | J9)

P(G | Jk)

P(G | J9)
P(G | Ji).

The variance of the LR then becomes

Var(LRΔΔΔP ,ΔΔΔT
(G)) =

9∑
i=1

ΔP
i ΔΔΔPBi(ΔΔΔT )

t − (
ΔΔΔPB9(ΔΔΔT )

t
)2
.

The expected LR for outbred relationships is independent of the allele frequencies at a
locus. This means that regardless of what population the tested individuals belong to, the
expected LR is the same as long as the length of the allele ladder, L, coincides. However,
the variance of the LR depends on the allele frequencies.

The expected LR for inbred relationships is in general dependent of the allele frequencies,
as seen from the terms in Table 4. The variance also depends on the allele frequencies.

Example 2: Consider a seemingly standard paternity setting. We want to evaluate the
expectation and variance of the LR that compares HP : The individuals are father and child
to HD: The individuals are unrelated. The true relationship between the individuals is
parent-offspring, but the father is inbred with a coefficient of inbreeding fT . The situation
is parametrically represented by

HP : ΔΔΔ =ΔΔΔP = (0, 0, 0, 0, 0, 0, 0, 1, 0)

HD : ΔΔΔ =ΔΔΔD = (0, 0, 0, 0, 0, 0, 0, 0, 1)

Truth : ΔΔΔ =ΔΔΔT (fT ) = (0, 0, fT , 0, 0, 0, 0, 1− fT , 0).

(8)
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Figure 6: Hypotheses corresponding to Example 2 in Section 1.4.1 and presented in the results of Paper
II. The hypothesis HP : Parent-offspring is compared to HD: Unrelated. The true relationship is given by
the rightmost pedigree, where the father is inbred. The Jacquard states J3 and J8 are the only states with
non-zero probability for the inbred pedigree.

Figure 6 shows the hypotheses and the true relationship in terms of pedigrees and the
corresponding Jacquard states with non-zero probability. Most of the Jacquard coefficients
in this setup are zero, and the expectation of the LR, computed by (7), nicely reduces to

E(LR) =
L+ 1

2
fT +

L+ 3

4
(1− fT ).

In this special case, the expectation is independent of the allele frequencies. The expected
LR for a standard paternity case, i.e. fT = 0, is (L+ 3)/4. By some derivation (see Paper
II for details), the variance of the LR is expressed as

Var(LR) =
3L+ s

4
fT +

(5L+ 3

8
+

s− L

16

)
(1− fT )

−(L+ 1

2
fT +

L+ 3

4
(1− fT )

)2
,

where s =
∑

1/pi, the sum of the inverse of the allele frequencies at the locus. Figure 7
shows how the expected LR for the setup (8) increases with increasing fT , for markers with
2, 10 and 50 alleles. The variance is shown by the grey areas in the figure, assuming uniform
allele frequencies p = 1/L. If the inbreeding of the father is not accounted for in the LR, we
would expect that the trust in a PO relationship increases as the true inbreeding increases.

1.4.2 The optimal LR threshold

We next discuss topics related to the interpretation of LR and the applications in paper III
in the thesis. How to interpret and report evidence based on LR is, and has been for years,

16



PhD thesis 1.4 Likelihood ratio framework for kinship testing

0

10

20

30

0.00 0.25 0.50 0.75 1.00

fT

E
(L

R
)

L

50

10

2

Figure 7: Expectation (lines) and variance (grey areas) of the LR for Example 2 in Section 1.4.1. Figure
from Paper II. The different lines show expectation for loci with 2, 10 and 50 alleles. Uniform allele
frequencies for each marker are used.

Claim H0 Claim H1Inconclusive

t0 t1
LR

0

Figure 8: How a conclusion is drawn in an LR test, depending of the value of the LR, as discussed in
Section 1.4.2.

a topic of discussion. The paper [29] and the references therein present different views.
Verbal scales, e.g. stating that there is very strong or maybe extremely strong support of
a proposition, depending on the size of the LR, are often used [30].

Figure 8 shows how a conclusion is drawn from an LR test. Let t0 < t1 denote two LR
thresholds. If LR ≥ t1, the evidence supports HP , i.e, we claim HP . If LR < t0 we claim
HD. For t0 ≤ LR < t1, the test is inconclusive. Then more data may be needed to reach
a conclusion. For the work in this thesis, we assume t0 = t1 = t, so that a conclusion is
always made. An important question is how to decide on an appropriate threshold.

When doing an LR test, the probability of claiming the wrong hypothesis is of concern.
Let the false positive rate (FPR) and true positive rate (TPR) for a threshold t be defined
as

FPR(t) = P(LR ≥ t | HD) and TPR(t) = P(LR ≥ t | HP ).

The FPR measures the probability of doing a type I error in an LR test, i.e., the probability
of falsely claiming HP . The TPR is the ability to detect the true hypothesis. Ideally, we
want FPR = 0 and TPR = 1. A high threshold makes the FPR small. Unfortunately, a
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high threshold makes the TPR small as well.

Kruijver describes an algorithm that computes the exact probability distribution of the
LR efficiently for up to about 10 STR markers [31]. Beyond this number of markers, the
distribution of the LR appears to be beyond the reach of exact calculation.

There exists an upper limit of the FPR given by the identity FPR ≤ 1/t [32]. In some
cases, this inequality is all that is needed. However, we generally approximate FPR through
simulation.

A group of methods used to decide on an optimal threshold are described next [33].
These methods are based on the receiver operating characteristic (ROC) curve of the LR.
The relationship between FPR and TPR is often visualised by a ROC curve , as shown in
Figure 9. The TPR is plotted as a function of the FPR, the latter often on a logarithmic
scale. Each point along the ROC curve corresponds to a given LR threshold.

The Youden Index J aims to maximise the objective function

J(t) = TPR(t)− FPR(t).

The goal is to maximize the distance between the ROC curve and the dashed diagonal line
of Figure 9. Alternatively, the Concordance probability method aims to maximise

CZ(t) = TPR(t)
(
1− FPR(t)

)
.

This means a maximisation of the area of the dotted rectangle shown in the ROC figure.
The last ROC based method presented in paper III and summarised below, finds a threshold
that minimises the Euclidean distance from the ROC curve to the point (0, 1), shown by
the long-dashed line in Figure 9. The point (0, 1) can be seen as an optimal point i.e., FPR
= 0 and TPR = 1. The optimal threshold is found by minimising

ER(t) =

√
FPR(t)2 +

(
1− TPR(t)

)2
. (9)

The consequence of falsely claiming a relationship and not detecting the true relationship
may not weigh equally, depending on the application. For instance, a false identification of
a family member in a missing person case may be more severe than a false positive when
removing related samples from a data base. A weight w may therefore be added as in
Equation (7) of Paper III. However, deciding on an appropriate weight w may by difficult
without specifying the costs associated with the two possible errors.
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Figure 9: Figure showing a conceptual ROC curve with ROC based objective functions described in Sec-
tion 1.4.2. The solid curve illustrates a ROC curve. Each point along the curve corresponds to an LR
threshold with corresponding FPR and TPR. Figure adapted from [33].

1.5 The Bayesian approach to kinship testing

The likelihood presented in (2) reflects the probability of observing the data we have, con-
ditional on a hypothesis. The LR in (4) compares the likelihood of two specific hypotheses.
In a Bayesian framework, we flip the situation around and evaluate the probabilities of the
hypotheses themselves, conditional on a set of observations. The general form of Bayes’
theorem, involving a set of k hypotheses and the observations G, is

P(Hi | G) =
P(G | Hi)P(Hi)∑k
j=1 P(G | Hj)P(Hj)

, for i = 1, . . . , k. (10)

Bayes’ theorem converts the prior probabilities πi = P(Hi) for i = 1, . . . , k, to posterior
probabilities P(Hi | G) through the evaluation of genetic data. As opposed to the likelihoods
and the LR, the posterior probabilities take values between 0 and 1, making them easier
to interpret. For instance, a posterior of 0.7 tells us that there is a 70% chance that HP is
true given the data and the prior. However, a prior has to be assigned to each hypothesis.
If a flat prior is used, i.e., πi = 1/k for i = 1, . . . , k, the posterior probabilities simply scale
the likelihoods.

By only considering the two hypotheses, and assuming a flat prior P(HP ) = P(HD) =
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0.5, Bayes’ theorem reduces to

P(HP | G) =
P(G | HP )

P(G | HP ) + P(G | HD)
=

LR
LR + 1

,

also called the Essen-Möller index W [34]. By assuming a flat prior of 0.5, we imply that
HP and HD are the only possible hypotheses.

An alternative form of (10) for two hypotheses is Bayes’ theorem on odds form, given
as

P(HP | G)

P(HD | G)
=

P(G | HP )

P(G | HD)
× P(HP )

P(HD)
.

In words, this can be stated as

Posterior odds = LR × prior odds.

With this setup, separate priors for the hypotheses are not needed, only the ratio between
them. The LR updates the prior belief in the hypotheses, and the result is the posterior
odds. A posterior odds of 0.25 implies that HD is four times more probable than HP . A
posterior odds of 2 tells that HP is twice as probable as HD.

The frequentist would evaluate the hypothesis through the LR, solely based on the
genetic observations. A Bayesian combines the genetic and non-genetic evidence of a case.
The Bayesian framework also enables more hypotheses to be compared without having to
decide on a reference hypothesis. Regardless of using the Bayesian or frequentist framework,
an investigator is no closer to inferring the truth if the truth is not among the considered
hypotheses.

1.6 Blind search and the problem of multiple testing

A search through a DNA database can have different purposes. The aim may be to look for
a direct match, i.e., to identify the individual a DNA sample originates from. Alternatively,
we may want to do a familial search, i.e., search for relatives of an individual [35]. In both
search applications, a single DNA profile is compared to all profiles in a database.

The purpose of a blind search is to detect pairwise relationships between DNA samples
in a database. Pairwise comparison between all DNA samples are performed, computing
an LR for each comparison. This can be an initial step in a DVI case [36, 37].

Let n denote the number of DNA samples in a database. A blind search among these
samples results in N = n(n− 1)/2 pairwise comparisons. We want to do a hypothesis test
comparing hypothesis H1 to H0. This means that we perform N LR tests, concluding with
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Claim H0 Claim H1 Total
H0 true TN FP N0

H1 true FN TP N1

Total W0 W1 N

Table 5: Summary of a multiple testing scenario, as described in Section 1.6. Adapted from [38]. Only W0,
W1 and N are observed in a real setting when the truth for each test is unknown.

H1 if the LR is a above a given threshold and H0 if the LR is below the threshold. The
outcome of a multiple testing scenario can be summarised as in Table 5. In a real case we
only observe the number of LRs below and above a given LR threshold, denoted W0 and
W1, respectively. The number of type I errors are denoted FP . The number of tests where
the true relationship H1 is detected is denoted TP . The number of times H0 is correctly
and wrongly claimed are denoted TN and FN . The number of pairs related according
to the two hypotheses are denoted N0 and N1. We want FP and FN to be as close as
possible to 0, while TN and TP stay as close as possible to 1. The possibly large number
of comparisons in a blind search, may cause the probability of type I errors to be large even
if the FPR for a single LR test is very small.

The Family Wise Error Rate (FWER) controls the amount of type I errors in a multiple
testing scenario [38]. The FWER, denoted by α, is defined as the probability of getting at
least one false positive out of N test. For N independent tests,

α = P(FP ≥ 1) = 1− (1− FPR)N ,

where FPR, the false positive rate for a single LR test, is assumed to be the same for each
test.

Paper III shows that the LRs in a blind search are not necessarily independent. Every
DNA profile is part of several comparisons, causing the LRs to be correlated. As an example,
consider two siblings A and B and an individual C unrelated to the siblings. We want to
compute the LR comparing H1: Siblings, against H0: Unrelated. The genomes of A and B
have a degree of similarity. If the LR comparing A and C is low, it is also likely that the
LR comparing B and C is low.

An upper limit of the FWER for N potentially dependent tests is given by the Bonferroni
bound

α ≤ N · FPR =
n(n− 1)

2
FPR.

An upper limit of the FPR, requiring α to stay below a given value is then computed
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by

FPRα ≤ 2α

n(n− 1)
.

An optimal threshold for the blind search is then found by, for instance, minimising (9),
with the constraint FPR ≤ FPRα.

An alternative approach to control the type I errors in a multiple testing setting is
through the False Discovery Rate (FDR) [39]. The FDR is defined as the expectation of
the ratio between the number of false positives and the number of tests where H1 is claimed,
i.e.,

FDR = E
(FP

W1

)
.

Benjamini and Hochberg [39] derive decision rules to control the FDR, based on p-
values for the test. Kruijver et al. argue against applying p-values in LR testing in forensic
genetics [40].

1.7 Maximum likelihood estimation of relatedness

In the kinship testing framework presented so far, a limited set of hypotheses are evaluated
and compared. Instead of a set of hypotheses, we can evaluate the likelihood function (2)
for all possible values of ΔΔΔR and choose the most likely set of coefficients to describe the
observations. This is ML estimation of ΔΔΔR and amounts to finding the estimate Δ̂ΔΔR that
maximises (2) in the parameter space

Ω = {(ΔR
1 , . . . ,Δ

R
9 ) |

9∑
i=1

ΔR
i = 1, 0 ≤ ΔR

1 , . . . ,Δ
R
9 ≤ 1} ∈ R9.

Thompson [4] describes ML estimation of the IBD coefficients. Milligan [5] compares
different methods of estimation (e.g. likelihood estimators and method-of-moments estima-
tor), by reduction of the IBD coefficients to the kinship coefficient. His work shows that
the ML estimator is more biased than the other estimators, especially for boundary points,
but has a smaller variance. Anderson and Weir [6] propose an approach for ML estimation
in subdivided populations. The mentioned papers do not distinguish between the realized
and the pedigree relationship. The estimate of κκκ is constrained to the admissible region of
the IBD triangle. This affects both the bias and variance estimates.
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1.7.1 Asymptotic properties of the ML estimator

The ML estimator has many desirable asymptotic properties, given that a set of regularity
conditions are fulfilled [41]. Let Xi for i = 1, . . . , n, denote n independent identically
distributed (i.i.d.) random variables with probability mass function f(x,θθθ), where θθθ is a
p-dimensional parameter vector. Three of the regularity conditions are:

1. The parameter set defines the probability mass function, i.e., f(x,θθθ) �= f(x,θθθ′) when-
ever θθθ �= θθθ′.

2. The sample space of X does not depend on θθθ.

3. The true value of θθθ is an interior point in the parameter space Ω.

The full set of regularity conditions are given in [41]. If all regularity conditions hold, then
θ̂θθ is a unique solution of δ

δθθθ
l(θθθ) = 0, and θ̂θθ converges in probability to the true parameter

value θθθ as n increases. The function l(θθθ) denotes the logarithm of the likelihood function.
If this holds, then √

n
(
θ̂θθ − θθθ

) D−→ Np

(
000, I−1(θθθ)

)
,

where I, the Fisher information, is the p×p covariance matrix of the gradient of log f(X , θθθ).
The elements of I are given as

Ijk = cov
( δ

δθj
log f(X , θθθ),

δ

δθk
log f(X , θθθ)

)
,

for j, k = 1, . . . , p. Furthermore, a lower bound on the variance of unbiased estimators of
θk is given by

Var
(
θ̂k
) ≥ (

J−1(θ̂θθ)
)
kk

n
,

where J−1(θ̂θθ) is the observed Fisher information.
Consider now the application in this thesis. Observations used in the ML estimation

are not i.i.d., the possible joint genotypes at the different loci have distinct probability
distributions. Thompson [4] stated that under certain conditions “P(G | κκκ) = P(G | κκκ′) if
and only if κκκ = κκκ′ ” for a single locus. The regularity condition 1 thus holds under certain
conditions. The regularity condition 3 does not hold. The Jacquard coefficients for the
most common pedigree relationships are located on the boundary of the parameter space.
Thus, ΔΔΔR is likely to be a boundary point as well. Regularity condition 2 holds if condition
3 holds (which it does not). If κR

0 = 0, meaning that the parameter is a boundary point,
then some joint genotypes are impossible to observe, and the sample space of G changes
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with the value of ΔΔΔR or κκκ. The asymptotic properties of the ML estimator therefore do
not apply. It is also worth to notice that the number of markers analysed is typically low
and the statistical properties of the ML estimator may therefore differ from the asymptotic
ones, even though the regularity conditions were to be fulfilled. Alternative methods for
assessing the uncertainty of the parameter estimate thus have to be applied as discussed
next.

1.8 Bootstrapping

Bootstrapping is used to assess the uncertainty of a parameter estimate when explicit for-
mulas are not available [42]. The observations of the data set X used in the estimation
is governed by a probability distribution F . Associated with F is a parameter of inter-
est θ. This parameter is estimated by θ̂ = T (X). Bootstrapping mimics the stochastic
process that created the original data, through the approximation F̂ . Bootstrap data sets
X∗

1 , . . . , X
∗
B are sampled from F̂ . A bootstrap estimate θ̂∗ = T (X∗) is computed for each

bootstrap data set. For a consistent bootstrap method, the sample variance of the boot-
strap estimates θ̂∗1, . . . , θ̂

∗
B approximates the variance of the original parameter estimate θ̂.

Increasing the observations in the data set X, decreases the variance of θ̂. Increasing B

makes the sample variance of the bootstrap estimates closer to the variance of θ̂. However,
how well F̂ approximates F affects how well θ̂ can be approximated.

The observations in our applications are two DNA profiles genotyped for M loci. The pa-
rameter we want to estimate is the nine-dimensional coefficient ΔΔΔR or the three-dimensional
κκκR, possibly reduced to the one-dimensional ϕR. Paper IV discusses parametric and non-
parametric bootstrap in light of the applications in this thesis. The bootstrapping proce-
dures differ in how bootstrap data sets are created, i.e., how they approximate F .

1.8.1 Non-parametric bootstrap

Bootstrap data sets are created by sampling observations with replacement from the original
data set. For our applications, this would be to randomly draw M loci from the original
DNA profiles, and do ML estimation on this new set of genotypes. The stochastic process
of selection of loci is reflected in the sample variance of the non-parametric bootstrap
estimates.

Each locus can appear several times in a bootstrap data set and different sets of loci are
used in each bootstrap estimate. The non-parametric way of resampling bootstrap data
sets may thus appear unnatural, particularly since markers typically are far from i.i.d.
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1.8.2 Parametric bootstrap

The loci are considered fixed when performing parametric bootstrap. A bootstrap data set
is created by sampling genotypes for each locus independently, conditioned on the estimate
Δ̂ΔΔR, i.e., sampling genotypes G from the distribution

P((G) | Δ̂ΔΔR) =
9∑

i=1

Δ̂iP(G | Ji). (11)

Imagine a big set of all possible joint genotypes for a locus, with the value of Δ̂ΔΔR as a
parameter for this set. By performing parametric bootstrap, we draw at random joint
genotypes from this set, with probabilities given by (11). The parametric bootstrap data
sets may well joint genotypes that are not present in the original DNA profiles.

There may be problems regarding the use of non-parametric bootstrap, as argued in the
last paragraph of Section 1.8.1. Parametric bootstrap seems to be the better bootstrapping
procedure in this application. However, simulations indicate that the difference between
the results of the two procedures is small. Non-parametric bootstrap should therefore not
be discarded as useful. Also, it is simple to implement.

1.8.3 Bootstrap confidence intervals and regions

A confidence interval or region quantifies the uncertainty of a parameter estimate. Often,
construction of confidence intervals are based on pivotal statistics, i.e., statistics with a
known probability distribution, where the distribution is independent on the parameter of
interest. As a general example, consider the random variable X , with unknown expectation
μ and variance σ. We have a set of n independent observations X = (x1, . . . , xn) of X .
Let X and s denote the sample mean and standard deviation, respectively. The random
variable

t =
x− μ

s/
√
n

is then student-t distributed with n− 1 degrees of freedom. Let t1−α/2 denote the 1− α/2

quantile of this distribution, so that P (−t1−α/2 < t < t1−α/2) = 1 − α. A (1 − α)100%

confidence interval for μ is then (X − t1−α/2 · s/
√
n,X + t1−α/2 · s/

√
n).

Consider next that we perform bootstrapping on the data set X, to assess the uncer-
tainty of the estimate μ̂ = x. If the bootstrap procedure properly approximates the distri-
bution of the data, then E(μ̂∗) = μ̂ and Var(μ̂∗) = Var(μ̂), where μ̂∗ denotes a bootstrap
estimate. Because the expectation of the bootstrap estimate differs from μ, the confidence
interval above can not be applied directly.
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Methods for constructing univariate bootstrap confidence intervals are thoroughly re-
viewed in the literature [42]. The percentile method constructs a confidence interval from
the percentiles of the empirical distribution of the bootstrap estimates, i.e., the interval
between the α/2 and 1 − α/2 percentile of the ordered set of bootstrap estimates. The
percentile-t method uses an pivotal statistic approximated from the bootstrap estimates,
similar to the t-statistic above. The bias-corrected and accelerated confidence interval ad-
just for bias and skewness in the bootstrap estimates [42]. Anderson and Weir [6] assess
the uncertainty of the estimate of the kinship coefficient through non-parametric bootstrap
and construct a confidence interval by the percentile method.

Construction and visualisation of confidence regions for multivariate parameters are
more difficult. Different approaches are described in the literature [43, 44]. For instance,
a likelihood-based 95% confidence region is a region where all parameter values inside the
regions are more likely than the parameters outside the region and covers the true parameter
in 95% of the times it is constructed.

1.9 Implementation

The computations in this thesis are performed using the programming language R. The
implementation builds on the ped suite [45], a collection of R packages for pedigree analy-
sis, freely available from CRAN. These R packages contain functionality for construction,
handling and plotting of pedigrees and marker data, simulation of independent markers,
computation of pedigree likelihoods, estimation of relatedness parameters and bootstrap-
ping.

The implementations for Paper II and Paper III are collected in two R packages avail-
able from the author. A parametric version of the likelihood function is implemented by the
author, facilitating computation of likelihood for all possible values of relatedness parame-
ters. The simulation of linked markers in Paper I is performed using the software Merlin
[46].
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2 Paper summaries

The work in this thesis consists of four papers. Paper I motivates and exemplify how
ignoring inbreeding can lead to false conclusions in kinship cases. Paper II elaborates on
statistical properties of the LR between pairs of individuals, and extends results from the
literature to also apply for inbred relationships. The use of LRs in kinship testing is the
topic of Paper III. Strategies for determining optimal LR thresholds for the multiple testing
scenario called blind search are discussed, and the use of a Bayesian framework for kinship
testing is shown. In Paper IV, attention is moved from the LR framework to estimation of
IBD parameters among all possible alternatives. The uncertainty of the parameter estimate
is investigated through bootstrapping.

2.1 Paper I

In this paper, the two frameworks for kinship inference are studied; a parametric approach
and a LR approach. The aim is to investigate through simulations how ignoring inbreeding
between individuals can lead to false conclusions in kinship cases.

For the parametric approach, an inbred grandparent-grandchild relationship and an
inbred first cousin relationship are considered. Marker data is repeatedly simulated on the
individuals of interest and the IBD coefficients between the individuals are estimated. When
ignoring the inbreeding, the inbred grandparent-grandchild relationship may be mistaken
as a sibling relationship. The first cousin relationship may be difficult to distinguish from
half siblings, grandparent-grandchild or avuncular.

Furthermore, we analyse the LR comparing a sibling relationship to an outbred grandparent-
grandchild relationship. The true relationship between the individuals is an inbred grandparent-
grandchild relationship. The results show that ignoring inbreeding can lead to the false
inference of a sibling relationship instead of grandparent-grandchild.

2.2 Paper II

Motivated by the preliminary simulation study of paper I, this second paper studies sta-
tistical properties of the LR for inbred relationships. Explicit formulas for the expectation
and variance of the LR comparing two outbred relationships, conditioned on a third true
relationship between the individuals, are previously derived in the literature. We extend
these derivations to apply for pairwise relationships in general, not only outbred.

The expectation of the LR for outbred individuals are independent of population allele
frequencies. This is not necessarily the case for inbred relationship, according to the for-

27



2 PAPER SUMMARIES Hilde K. Brustad

mulas we derive. The variance of the LR depends on the allele frequencies, regardless of
the presence of inbreeding or not. Low frequent alleles at a marker increase the variance of
the LR.

The effect of this increased variance becomes evident in a simulation study performed
in the paper. Repeated simulations of genetic data on a half sibling relationship with
founder inbreeding is performed. The LR comparing a full sibling relationship with founder
inbreeding to unrelated is computed for each simulation. The mean of the LRs deviates
from the expected value. This deviation is less for markers with uniform allele frequencies
than for markers with varying allele frequencies. These results show how exact expressions
can give insight to properties of the LR that simulations do not.

2.3 Paper III

Paper III evaluates the LR framework in a multiple testing setup. A blind search amounts
to pairwise kinship testing among all combinations of a set of DNA samples. An LR is
computed for each comparison. By a parametric implementation of the likelihood ratio,
the hypotheses tested can be any relationship, outbred or inbred. Furthermore, we do
not restrict our attention to autosomal markers, but also exemplify how X-chromosomal
markers can be useful in specific kinship cases.

Even though the probability of doing a type I error in a single LR test is vanishingly
small, the possibly large amount of comparisons in a blind search makes the overall proba-
bility of doing type I errors substantial. This motivates finding optimal LR thresholds in a
blind search setting.

We apply the Family Wise Error Rate to control the probability of getting at least
one false positive in the blind search. We show that the LRs in the blind search are not
necessarily independent of each other. Each individual are present in several of the pairwise
comparisons, possibly making the LRs dependent. Thus, an upper limit for the FWER is
given by a Bonferroni bound. This upper bound for the Family Wise Error Rate sets
an upper limit for the false positive rate (FPR) of a single LR computation in the blind
search. An optimal LR threshold is then determined through estimation of error rates from
simulated data.

The paper also applies a Bayesian framework to pairwise kinship testing. The Bayesian
framework enables us to compare more hypotheses than the two tested in the LR. Further-
more, we show how X-chromosomal markers can distinguish maternal and paternal half
siblings.
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2.4 Paper IV

This last paper shifts focus from the LR framework to estimation of the realised pairwise
relationship among all possible alternatives. The Jacquard coefficients, or the IBD coeffi-
cients for outbred relationships, can be estimated through a maximisation of the likelihood
function. We distinguish between the pedigree relationship and the realised relatedness
between individuals. The latter is estimated through the maximum likelihood estimation
of the Jacquard coefficients.

The uncertainty in the estimate needs to be addressed. The asymptotic properties of a
ML estimator can not be assumed to apply for the estimate of the realised relatedness since
most of the common pedigree relationships are located on the boundary of the parameter
space, making it likely that the realised relatedness is located on the boundary as well.
Bootstrapping is instead applied to approximate the variance of the estimate and construct
confidence regions for the coefficients.

The paper contains a fundamental discussion of how to define the data and of the
probability distribution of the data used in the ML estimation. This discussion leads
to a review of the parametric and non-parametric bootstrap. We argue that parametric
bootstrap is more reasonable to use because it better mimics the stochastic process that
generated the data. However, the two methods seem to give similar results, especially for
interior points of the parameter space.
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3 Discussion

This thesis focuses on statistical methods for inference of relationship between pairs of
individuals. We investigate relationships in general, not limiting attention to outbred in-
dividuals. Paper I contains a preliminary study of the effect of ignoring inbreeding in
pairwise kinship evaluations, motivating the work that follows in this thesis. The two main
approaches to kinship inference in forensic applications are based on the LR framework and
estimation of IBD parameters respectively. Paper II and III focus on the LR framework
while Paper IV addresses estimation.

Slooten and Egeland viewed the LR as a random variable [27, 28]. They derived formulas
for the expectation and variance of the LR, taking into account that the true relationship
between the individuals may differ from the tested hypotheses. The work in Paper II
extends these expressions to also apply for inbred individuals. For outbred relationships,
the expectation of the LR is independent of the allele frequencies. We show that this is not
generally the case for inbred relationships. The variance depends on the allele frequencies
in both cases, and becomes high for loci with rare alleles. The effect of this higher variance
is seen in simulated data. The mean LR over many simulations is considerably lower than
the expected value. This difference becomes smaller when allele frequencies are more evenly
distributed. However, for a locus with many alleles, the allele frequencies become small even
though they are evenly distributed. The expected LR increases as a function of the number
of alleles at a locus. The difference between the expected and observed LR is therefore
evident for loci with many alleles, even though the alleles have equal frequencies.

The relevance of exact results when simulation easily provides results, can always be
questioned. Nothnagel et al. evaluate the discriminatory power of the likelihood ratio by
simulations and exact expressions [47]. Typically, exact expressions require more restricted
assumptions. So, what’s the point of putting great effort into deriving exact results? A
general answer is that the exact counterparts may provide understanding not easily grasped
from simulations. The effect of parameters on results are more easily seen from a formula
than from simulation. In the problems addressed in paper II, the relevance of exact ex-
pressions are justified since a large number of Monte Carlo simulations may be needed
to provide exact results. In fact, the required number of simulations may be prohibitively
large. This is most easily seen from an example. The result E(LR | HD) = 1 holds under the
reasonable regularity condition (5). However, for a paternity case it is extremely unlikely
that unrelated individuals share an allele for all markers. Let p be the probability that two
unrelated people fit as parent-offspring. The expected number of simulations needed to get
a non-zero value of the LR is 1/p and one could easily have 1/p = 1012. Direct Monte Carlo

31



3 DISCUSSION Hilde K. Brustad

simulation will therefore not work, importance sampling as described in Kruijver [31] may
work. For this reason, the results in Paper II gives important knowledge of the nature of
the LR, that simulations are not able to give.

Paper III investigates the use of LRs in a multiple testing scenario. The goal is to
establish a framework for deciding on appropriate LR thresholds. A blind search compares
all DNA samples in a data base in a pairwise manner. The possibly large number of pairwise
comparisons requires a framework for controlling the overall number of type I errors.

As exemplified in Paper III, the LRs in a blind search are not necessarily independent
of each other. An upper limit for the FWER is therefore given by Bonferroni bound. This
bound is valid for dependent tests and is a function of the FPR of a single LR test. The
optimal LR threshold is derived through ROC-based methods. These methods exploit the
relation between the FPR and TPR. As discussed in Paper III, the consequence of doing a
false positive and a true positive may not weigh equally, depending on the application. For
instance, if the objective is to remove related individuals from a database, doing a type I
error is not problematic. Falsely identifying an individual in a missing person case, however,
is not wanted. The work in Paper III shows the importance of evaluating the overall error
rate of the blind search when deciding on appropriate LR thresholds.

The Bayesian approach to kinship testing is exemplified and discussed in Paper III. The
focus is on a single pair of individuals. Posterior probabilities for several hypotheses are
investigated, not only comparing two hypotheses as in the LR framework. The posteriors
are on a scale between zero and one, making them easy to interpret. However, a prior prob-
ability, preferably objective, needs to be specified for each hypothesis. A flat prior simply
scales the likelihood of each hypothesis, adding no extra information. Other informative
priors can be specified, adding non-genetic information.

The discussion relating to Bayesian and frequentist approaches in forensic applications
mirrors those in other areas. For instance, some labs report the posterior probability, or
Essen-Moller’s W [48], while others, probably most, give the LR as recommended by Gjert-
son et al. [26]. The arguments favouring a Bayesian approach, or a Bayesian supplement to
only reporting LRs, may be stronger for the applications of Paper III than for conventional
kinship cases. As pointed out above, posteriors are easier to interpret when many tests
are performed. Also, the blind search is frequently explorative. Often further analyses
are performed before conclusions are drawn and these final conclusions need not rely on
subjective priors.

Some kinships are not possible to distinguish from autosomal markers alone. For in-
stance, the likelihood of two sisters being maternal half siblings and paternal half siblings
are identical using autosomal markers. However, these relationships have different IBD
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coefficients for X-chromosomal markers, and hence, their likelihood differs. This is exem-
plified in Paper III, investigating the posterior probabilities of the relationships. It should
be noted that markers on the X-chromosome are not independent, violating the require-
ments of both the LR and the Bayesian framework. A combination of different marker
types can therefore give valuable information in specific kinship cases.

The blind search procedure discussed in Paper III is widely used. The implementations
we are aware of, like Familias, https://familias.no, are limited to some few selected rela-
tionships and independent autosomal markers. A useful continuation of Paper III would
be to provide a software implementation for general pairwise relationships. Also, including
X-chromosomal markers would be helpful. The X-chromosomal example in Paper III is a
proof of principle as independence markers and linkage equilibrium are assumed. A main
challenge for an implementation allowing for dependent markers relates to computational
speed. As pointed out, the number of comparisons is typically large, and an efficient imple-
mentation would be required. Further work is also needed to test the procedure described
to derive optimal LR thresholds. Testing on simulated data is easy, but not sufficient. Real
test data is needed. A challenge is then that the true relatedness is not known. However,
extended sets of markers, beyond the ones typically used in forensics could be used to get
closer to the true relationship.

Estimation of the Jacquard coefficients makes us able to investigate all possible pairwise
relationships [4, 5]. Paper IV explores the uncertainty of the estimate through parametric
and non-parametric bootstrap. As far as we know, parametric bootstrap has not previously
been used in applications similar to those we address. In our view, the parametric bootstrap
appears more reasonable than the non-parametric version, as this way of simulating data
mimics the process that generated the data better. However, in many cases the two versions
of the bootstrap produce similar results as exemplified in Paper IV. A problem is that
we do not know the true distribution of the parameter estimate and we can therefore not
conclude that one of the bootstrap procedures is more accurate than the other. The coverage
probabilities presented in Paper IV depends on the type of confidence interval/region used.
The bootstrapping procedures may perform differently for other types of intervals/regions.
Paper IV gives an important discussion of the use of bootstrap methods in forensic kinship
analysis.

Finally, we mention assumptions that are not specific to the applications of this the-
sis. Independence between markers is required in both the LR and estimation framework.
Multilocus IBD coefficients have to be used when markers are linked [23, 22]. Standard
forensic STR markers are close to independent. However, a higher number of markers may
be needed to reduce the uncertainty of the ML estimate to an acceptable level. The markers
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then become linked and linkage equilibrium could also be violated. The effect of violation of
HWE is often seen in the genotype frequencies of a population. Deviation from HWE can
in the likelihood equation (2) be accounted for by changing the joint genotype frequencies
in Table 2. This is also discussed in the section on founder inbreeding and θ-correction in
Paper IV. Anderson and Weir [6] propose an alternative to Table 2 that models structured
populations.

We have mentioned some topics for future work, particularly in connection with Paper
III. Regarding the other papers of the thesis, we consider Paper IV to be the one that
would be most interesting to expand on. There are several hard problems that need to
be addressed. For instance, a Bayesian approach would be interesting to explore. Also,
estimating parameters and construction of confidence intervals, when the parameter is at
the border of the parameter space remains a challenge, not only for the forensic applications
of this thesis.
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A B S T R A C T

Inbreeding is often ignored in forensic kinship inference, either because the exact genealogies are unknown, or
because current methods are inadequate for inbred pedigrees. In many situations, this may be a reasonable
simplification, but in other, it can lead to wrong inference of relatedness between two individuals. In order to
quantify the impact of ignoring inbreeding, we simulate marker data for a selection of inbred pedigrees, and
subject them to pairwise kinship inference using standard noninbred assumptions.

1. Introduction

Pairwise kinship evaluations are of great importance in forensics.
Usually, the individuals of interest are assumed to be noninbred and
pedigree founders are assumed to be unrelated and noninbred. In many
cases, these are reasonable assumptions. But what happens when the
assumptions are not valid?

We will look at two approaches to pairwise kinship inference, a
parametric and a likelihood ratio (LR) framework. Through simulations
of genetic data from inbred individuals, we apply these approaches to
kinship inference when ignoring inbreeding, and show how this affects
the results.

2. Method

2.1. Parametric approach to kinship inference

The parametric approach to kinship evaluations aims to estimate
values of relatedness parameters from genetic data. The relatedness
between individuals can be measured by the identity-by-descent (IBD).
A coarse measure of relatedness, based on the concept of IBD is the
kinship coefficient φ [1]. A more refined measure of relatedness in
terms of IBD status is the IBD coefficients κ=(κ0, κ1, κ2) [2]. The IBD
coefficients are only defined for pairwise noninbred individuals. The
Jacquard coefficients Δ=(Δ1, Δ2, …, Δ9) [3] extend the IBD coeffi-
cients to pairwise inbred individuals. One way to study the impact of
ignoring inbreeding is to compare estimates of the kinship coefficients
based on IBD or Jacquard coefficients. Only the latter appropriately
accommodates inbreeding.

2.2. LR approach to kinship inference

The LR describes how much more likely genetic data is explained by
one hypothesis, HP (stated as a pedigree), compared to another hy-
pothesis, HD. Problems arise when the true relationship between the
individuals of interest is not as stated by neither of the hypotheses.

2.3. Implementation

Simulation of STR markers, estimation of IBD coefficients, and LR
computations, were performed with the R package forrel, which is part
of the pedtools suite of packages of pedigree analysis. (https://github.
com/magnusdv/forrel). Simulations of linked markers has been per-
formed using the software Merlin [4]. Mutations, dropouts and silent
alleles are ignored for both linked and unlinked simulations.

3. Results

3.1. Parametric approach

Consider the pedigrees in Fig. 1. Twenty simulations of a set of
10,000 SNP markers, with uniform allele frequencies, for the in-
dividuals of interest (colored) are performed for each of the two pedi-
grees. Marker data are simulated as linked markers, with recombination
rate θ=0.01. Independence between markers is assumed when per-
forming maximum likelihood estimation of IBD and Jacquard coeffi-
cients.

The estimation does not consider any knowledge of the pedigree
connecting the individuals. Fig. 1c shows estimation of κ from simu-
lated data for the two different pedigrees. The cluster of blue points
corresponds to estimates with data from the inbred
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grandparent–grandchild pedigree. It is important to note that κ is in fact
undefined for this relationship, since the grandchild is inbred. Estimates
are located towards values of a sibling relationship (S), rather than a
grandparent–grandchild relationship (G). The first cousins in Fig. 1b are
not inbred, and so κ is defined and located at (0.652, 0) in the IBD
triangle. Estimates of κ (red points) seems to be quite accurate. How-
ever, due to inbreeding, the values of the IBD coefficients between the
cousins are different than what expected from a first cousin relation-
ship, and this relationship between the individuals is likely to be re-
jected if the founder inbreeding is ignored.

To compare estimates of κ for inbred relationships and Δ, we cal-
culate φ from both sets of coefficients. Fig. 1d shows φ for the inbred
grandparent–grandchild relationship. Correct calculations using Δ give
values of φ closer to the true coefficient (φ=0.25, dashed line, which
coincides with φ for a PO or S relationship), compared to calculations
based on κ.

3.2. LR approach

For the LR approach, 1000 simulations of a set of 13 unlinked STR
markers are performed, for the two individuals of interest.

Two pedigrees with inbreeding are considered. First, consider the
inbred grandparent–grandchild relationship in Fig. 2a, with genetic
data simulated on the grandmother and the grandson. Let HP assumed a
sibling relationship and HD a grandparent–grandchild relationship.
Based on these hypotheses, computations of the LR do not consider any
inbreeding. The density plot in Fig. 2a shows that the median of the
logarithm of LR is greater than zero, such that we have more trust in HP,
which states a sibling relationship, to explain the data, rather than HD.
An increase in the number of evaluated markers, yield an increase in
the LR.

Next, consider a first cousin relationship with inbred founders [5],
as in Fig. 2b. Genetic data are simulated on the two cousins, for in-
creasing values of founder inbreeding. Let HP assume a half sibling
relationship, and HD a first cousin relationship. The leftmost boxplot of
Fig. 2b shows LR for f=0. The logarithm of LR is negative, and we
have more trust in HD, a first cousin relationship, to be the origin of the
data. As f increases, the LR becomes positive, such that the data is more
likely to be explained by HP, a half sibling relationship, rather than the
first cousin relationship.

4. Discussion

In order to obtain reasonable accurate estimates, a higher amount of
data needs to be considered, which makes the use of unlinked markers
difficult. We have simulated linked markers, but estimates of para-
meters do not account for the linkage. We conjecture that properly
accounting for linkage will only influence point estimates moderately
for most applications. However, the impact on uncertainty estimates,
confidence intervals, may be more substantial. This will be explored in
future work.

5. Conclusion

A parametric approach to kinship inference aims to determine the
relationship between two individuals through estimation of appropriate
parameters, without any prior knowledge or assumptions of the relat-
edness between the individuals. In the LR framework, only the two
stated hypotheses can be compared. As the examples presented above
show, ignoring inbreeding in kinship evaluations can lead to wrong
inference in pairwise kinship evaluations. Understanding and modeling
inbreeding is important also for applications like disaster-victim

Fig. 1. IBD coefficients estimation and kinship coefficient computation. (For interpretation of the references to color in this figure citation, the reader is referred to
the web version of this article.)
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Abstract
In this paper we investigate various effects of inbreeding on the likelihood ratio (LR) in forensic kinship testing. The basic

setup of such testing involves formulating two competing hypotheses, in the form of pedigrees, describing the relationship

between the individuals. The likelihood of each hypothesis is computed given the available genetic data, and a conclusion

is reached if the ratio of these exceeds some pre-determined threshold. An important aspect of this approach is that the

hypotheses are usually not exhaustive: The true relationship may differ from both of the stated pedigrees. It is well known

that this may introduce bias in the test results. Previous work has established formulas for the expected value and variance

of the LR, given the two competing hypotheses and the true relationship. However, the proposed method only handles

cases without inbreeding. In this paper we extend these results to all possible pairwise relationships. The key ingredient is

formulating the hypotheses in terms of Jacquard coefficients instead of the more restricted Cotterman coefficients. While

the latter describe the relatedness between outbred individuals, the more general Jacquard coefficients allow any level of

inbreeding. Our approach also enables scrutiny of another frequently overlooked source of LR bias, namely background

inbreeding. This ubiquitous phenomenon is usually ignored in forensic kinship computations, due to lack of adequate

methods and software. By leveraging recent work on pedigrees with inbred founders, we show how background inbreeding

can be modeled as a continuous variable, providing easy-to-interpret results in specific cases. For example, we show that if

true siblings are subjected to a test for parent-offspring, moderate levels of background inbreeding are expected to inflate

the LR by more than 50%.

Keywords Kinship analysis · Inbred founders · IBD triangle · Jacquard coefficients · Likelihood ratios

Introduction

The conventional approach to forensic kinship testing includes

formulating two hypotheses and calculating a likelihood

ratio (LR) based on genetic data from genotyped individu-

als. Practice differs between countries and laboratories, but
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typically the LR or some version of it is included when

the case is reported. The conclusion based on the LR may

be flawed when the true pedigree connecting the individu-

als of interest differs from the pedigrees considered by the

hypotheses. As an example, consider a standard paternity

case, where the prosecution asserts that a certain man is the

father of a child, while the defense claims that the man and

the child are unrelated. The truth, on the other hand, may

be that the man is the child’s uncle. A special case of incor-

rect hypotheses occurs when inbreeding is not accounted

for. For example, if the alleged father is inbred, and this is

ignored when formulating the hypotheses, this may signif-

icantly bias the LR. One aim of this paper is to investigate

and quantify this effect.

Slooten and Egeland derived explicit equations for the

expected value and variance of the LR [1]. They also

extended this to cases where the true relationship differs

from those stated in the hypotheses [2]. However, in both of

these works only non-inbred individuals were considered.



An important contribution of this paper is the extension of

these results to general pairwise relationships. In particular,

we show that exact expressions for the expected value and

variance of the LR can be obtained also in cases with

inbreeding. The expressions are in general more involved

than in the non-inbred case, and not as easy to interpret.

However, we derive interesting and practical results in

important special cases.

A parametric approach to modeling background inbreed-

ing in kinship testing was recently introduced [3], employ-

ing the concept of inbred founders [4]. To exemplify,

consider a pair of paternal half siblings, whose father is

assigned an inbreeding coefficient f . As f increases from

0 to 1, the relationship between the half siblings becomes

genetically indistinguishable from that between parent and

child. We extend the theoretical framework of [1, 2] to

pedigrees with inbred founders. As a result, the impact of

background inbreeding on the expectation and variance of

the LR can be studied based on exact expressions. In cases

where the amount of inbreeding is unknown, we can still

provide guidance on the expected values for the LR. Our

approach conveniently allows a continuous range of pos-

sible true alternatives rather than a discrete set of specific

alternatives. To arrive at explicit results of practical interest,

we restrict attention to pairwise relationships. Furthermore,

as in the work of Slooten and Egeland, we ignore mutations,

dropouts, and silent alleles and we assume Hardy-Weinberg

Equilibrium (HWE). However, we explain how deviation

from HWE can be modeled by the so called theta (θ )

correction.

R scripts and functions used to obtain numerical results

in this paper are gathered in a R library (see the

“R implementation” section). Pedigree likelihoods and

marker simulations are performed with the forrel package

[3].

This paper is organized in the following manner: After

establishing some terminology and notation we review

the main results of [2] regarding the expected value and

variance of the LR for non-inbred pairs of individuals. We

then proceed to extend these results to general pairwise

relationships, including relationships in pedigrees with

background inbreeding. Several worked examples follow,

including a simulation study comparing our formulas with

real-life results. Finally, we discuss some consequences of

this work and how it relates to other aspects of forensic

genetics.

Definitions and notation

A central concept for measuring genetic relatedness is that

of identity by descent (IBD). Two alleles are said to be IBD

relative to a given pedigree if they are identical by state and

originate from the same ancestral allele within the pedigree

[5].

Coefficients of inbreeding and kinship

The coefficient of inbreeding f , introduced by Wright [6],

is the probability that an individual is autozygous at a given

autosomal locus, i.e., that the two homologous alleles are

IBD. This is the same as the kinship coefficient ϕ between

the parents of the same individual, defined as the probability

that a random allele from the mother is IBD to a random

allele from the father at the same locus.

Founders of a pedigree are conventionally assumed to be

unrelated and non-inbred. Following [3] we relax the second

assumption, allowing an arbitrary inbreeding coefficient

f to be assigned to any founder individual. For a given

pedigree with N founders, we denote the set of founder

inbreeding coefficients by f = (f1, f2, . . . , fN).

Background inbreeding in human populations is nor-

mally low, but may exceed 5% in certain cases [7, 8]. In

forensic case work inbreeding is common, ranging from

consanguineous marriages between cousins, f = 1/16

or lower, to incestuous relationships between siblings or

parent-child, both with f = 1/4. In breeding applications

values closer to 1 may occur.

Jacquard coefficients and likelihood of a pedigree

The kinship coefficient is a coarse measure of relatedness;

for instance, it has the same value for a parent-child rela-

tionship as for full siblings. A more refined measure is given

by the nine Jacquard coefficients [9] Δ = (Δ1, . . . , Δ9),

also called the condensed identity coefficients. These are the

expected relative frequencies of the

Jacquard states J1, . . . , J9 are depicted in Fig. 1. Alleles

within each individual are unordered, and hence, several

IBD configurations can correspond to the same Jacquard

state. Furthermore, Δ is related to ϕ through

ϕ = Δ1 + 1

2
(Δ3 + Δ5 + Δ7) + 1

4
Δ8.

The likelihood of two individuals being related according to

Δ, given their genotypes G = (g1, g2) at a marker may be

expressed by conditioning on the Jacquard state:

L(Δ | G) =
9∑

i=1

ΔiP (G | Ji). (1)

The conditional probabilities P(G | Ji) are listed in Table 1.

These probabilities are found by direct calculations; for

instance, P((aa, aa) | J1) = pa since J1 dictates that all

four alleles are IBD.



alleles A

alleles B

Fig. 1 The Jacquard states J1, . . . , J9 representing all possible IBD

patterns among the four alleles of two individuals at an autosomal

locus. Each row of dots represents the two alleles of an individual.

Connected dots indicate IBD. The states J9, J8, and J7 do not involve

inbreeding and are sometimes denoted K0, K1, and K2

IBD coefficients and inbred founders

For two non-inbred individuals, the first six Jacquard

coefficients are zero, and Δ9, Δ8, and Δ7 reduce to the

IBD coefficients κ = (κ0, κ1, κ2) introduced by Cotterman

[10]. They give the probabilities that, at a given autosomal

locus, the individuals share zero-, one-, and two-allele IBD,

respectively. Note that κ0 + κ1 + κ2 = 1, so κ can be

represented in a two-dimensional triangle with axes κ0 and

κ2. Thompson [11] showed that the IBD coefficients are

restricted to κ2
1 ≥ 4κ0κ2. This gives rise to an inadmissible

region for the parameters, in gray in Fig. 2.

Although the IBD coefficients are only defined for non-

inbred individuals, other members of the pedigree can

be inbred. For example, a pair of half siblings remain

outbred even if their shared parent is inbred. However, this

inbreeding will affect the relatedness coefficients. Table 2

lists the kinship and the IBD coefficients for some common

relationships, as functions of the founder inbreeding. The

effects are visualized in Fig. 2. In the half sibling example,

the genetic relationship approaches that of parent-child, as

the founder inbreeding increases towards 1. Similarly, the

IBD coefficients of full siblings with inbred parents may fall

anywhere in the lightly shaded region towards the point of

monozygotic twins.

Review of previous results

We next review the main results of [2] relevant for our

work. In particular we restate the explicit formulas for the

expectation and variance of the LR in the case of non-inbred

individuals.

The likelihood ratio as a random variable

We consider a kinship test involving genetic data from two

non-inbred individuals. Two hypotheses HP and HD about

the relationship are to be compared using the LR. For our

purposes, each hypothesis corresponds to a point in the

IBD triangle, denoted by κP and κD respectively. However,

the evidence may be generated from another pedigree,

corresponding to a third point κT . We therefore have the

Table 1 The conditional probability P(G | Ji) of a pair of genotypes G = (g1, g2), given a Jacquard state Ji

G J1 J2 J3 J4 J5 J6 J7 J8 J9

(aa, aa) pa p2
a p2

a p3
a p2

a p3
a p2

a p3
a p4

a

(aa, bb) 0 papb 0 pap
2
b 0 p2

apb 0 0 p2
ap

2
b

(aa, ab) 0 0 papb 2p2
apb 0 0 0 p2

apb 2p3
apb

(aa, bc) 0 0 0 2papbpc 0 0 0 0 2p2
apbpc

(ab, aa) 0 0 0 0 papb 2p2
apb 0 p2

apb 2p3
apb

(bc, aa) 0 0 0 0 0 2papbpc 0 0 2p2
apbpc

(ab, ab) 0 0 0 0 0 0 2papb papb(pa + pb) 4p2
ap

2
b

(ab, ac) 0 0 0 0 0 0 0 papbpc 4p2
apbpc

(ab, cd) 0 0 0 0 0 0 0 0 4papbpcpd

The symbols a, b, c, and d represent different alleles, with population frequencies pa , pb, pc, and pd respectively



κ0

κ2

MZ

S

PO H,U,G FC UN

Fig. 2 The IBD triangle with location of some common relationships.

The gray area is inadmissable. The arrows illustrate the effect of

founder inbreeding in the cases given in Table 2. PO, parent-child;

MZ, monozygotic twins; S, siblings; H, half siblings; U, avuncular; G,

grandparent grandchild; FC, first cousins; UN, unrelated

following setup, comprising the competing hypotheses and

the true relationship:

HP : κ = κP = (κP
0 , κP

1 , κP
2 )

HD : κ = κD = (κD
0 , κD

1 , κD
2 ) = (1, 0, 0)

T ruth : κ = κT = (κT
0 , κT

1 , κT
2 ).

Reflecting standard practice, we will always use unrelated-
ness as the defense hypothesis, i.e., κD = (1, 0, 0). It should

be noted, however, that this is not a theoretical requirement

for the methods presented here.

The concept of the likelihood ratio as a random variable

was discussed by Slooten and Egeland [1]. We review

the basics here, presented in a slightly simpler notation

sufficient for our purposes.

Denote by Ki , i = 0, 1, 2, the event that the individuals

share exactly i alleles IBD. As shown in Fig. 1, K0, K1,

and K2 are identical to the Jacquard states J9, J8, and J7

respectively. For fixed κP the likelihood ratio for a given

pair of genotypes G = (g1, g2) can be written as

LR(G) = P(G | HP )

P (G | HD)
= P(G | κP )

P (G | κD)

=
2∑

i=0

κP
i

P (G | Ki)

P (G | K0)
. (2)

Note that the final transition was obtained by applying (1)

in both the numerator and denominator. The probabilities

P(G | Ki) are given in Table 1.

Now, viewing the genotypes as a random variable G, we

define the random variable LR = LR(G). Note that the

distribution of G is completely determined by κT (assuming

HWE), hence the distribution of LR is determined by κP

and κT . If these parameters are clear from the context, we

will suppress them in our notation; otherwise, we write

Table 2 Relatedness coefficients as functions of founder inbreeding, in a selection of common relationships

Relationship ϕ ϕ(f ) κ κ(f )

f1 f2

S 1
4

1
4
(1 + f1+f2

2
) ( 1

4
, 1

2
, 1

4
) κ0(f1, f2) = 1

4
(1 − f1)(1 − f2)

κ1(f1, f2) = 1
2
(1 − f1f2)

κ2(f1, f2) = 1
4
(1 + f1)(1 + f2))

f

H 1
8

1
8
(1 + f ) ( 1

2
, 1

2
, 0) κ0(f ) = 1

2
(1 − f )

κ1(f ) = 1
2
(1 + f )

κ2(f ) = 0
f1 f2

U 1
8

1
8
(1 + f1+f2

2
) ( 1

2
, 1

2
, 0) κ0(f1, f2) = 1

2
(1 − f1+f2

2
)

κ1(f1, f2) = 1
2
(1 + f1+f2

2
)

κ2(f1, f2) = 0
f1 f2

FC 1
16

1
16

(1 + f1+f2

2
) ( 3

4
, 1

4
, 0) κ0(f1, f2) = 1

4
(3 − f1+f2

2
)

κ1(f1, f2) = 1
4
(1 + f1+f2

2
)

κ2(f1, f2) = 0



LRκP ,κT
. In the special case when HP equals the truth, i.e.,

κP = κT , we may simplify LRκP ,κT
to LRκP

.

Throughout, we assume the following condition to hold

P(G | HP ) > 0 ⇒ P(G | HD) > 0. (3)

In the present context, it means that all DNA profiles

that can occur under HP , can also occur under HD . In

our examples HD specifies unrelated individuals, and then

(3) holds. The condition also holds for mutation models

provided all elements of the mutation matrix are positive.

We do not model mutations in the work presented here,

as practical exact expression are then no longer available.

However, the implementation allows for general mutation

models. Without (3), likelihood ratios could be infinite, i.e.,

not defined.

Expected likelihood ratio

The expectation of LR may be found by summing over all

possible genotypes G in the standard way:

E(LR) =
∑
G

P (G)LR(G), (4)

where P(G) = P(G | κT ) = ∑
i κT

i P (G | Ki). An exact

expression for E(LR) when κP = κT was first derived in

[1] and extended in [2] to apply when κP �= κT . For the

latter situation it was shown that, for a single marker with L

alleles,

E(LR) = κP · A0 · (κT )t , (5)

where t denotes the vector transpose, and

A0 =
⎛
⎝1 1 1

1 L+3
4

L+1
2

1 L+1
2

L(L+1)
2

⎞
⎠ . (6)

Importantly, the expected value depends only on the number

of alleles, not on the allele frequencies. Furthermore, the

expectation is symmetric in κP and κT , so that

E(LRκP ,κT
) = E(LRκT ,κP

). (7)

Variance of the likelihood ratio

To derive the variance of LR we apply the general formula

var(X ) = E(X 2)−E(X )2. Since the last term follows from

Eq. 5, all that remains is to find the first term. Some notation

is needed:

s1 = 1
16

∑
a<b

(
pa

pb
+ pb

pa

)
,

s2 = ∑
a<b

1
2papb

,

s3 = ∑
a

1
pa

,

s4 = 1
4

∑
a<b

(
1
pb

+ 1
pa

)
,

s5 = ∑
a

1
p2

a
.

Furthermore, supplementing the matrix A0 given in Eq. 6,

we define matrices A1 and A2 by

A1 =
⎛
⎝ 1 L+3

4
L+1

2
L+3

4
5L+3

8
+ s1

L(L+7)
8

+ 2s1
L+1

2
L(L+7)

8
+ 2s1 s3 + s4

⎞
⎠ (8)

A2 =
⎛
⎜⎝ 1 L+1

2
L(L+1)

2
L+1

2
L(L+7)

8
+ 2s1 s3 + s4

L(L+1)
2

s3 + s4 s2 + s5

⎞
⎟⎠ (9)

It was shown in [2] that

E(LR2) =
2∑

i=0

κP
i κP Ai(κT )t ;

hence, the complete variance expression becomes

var(LR) =
2∑

i=0

κP
i κP Ai(κT )t − (

κP A0(κT )t
)2

. (10)

Contrary to the expected LR, the variance of the LR depends

on the allele frequencies.

Example: paternity testing

This example serves as an illustration of the above described

expected LR and the corresponding hypotheses. Consider a

paternity case, where a man is claimed to be the father of a

child (HP ). The truth is that a brother of the alleged father

is the true father of the child. The hypotheses and the true

relatedness are in terms of the IBD coefficients given as

HP : κ = κP = (0, 1, 0)

HD : κ = κD = (1, 0, 0)

T ruth : κ = κT = ( 1
2
, 1

2
, 0).

(11)

Figure 3 illustrates the hypotheses in terms of pedigrees,

and as points in the IBD triangle. Equation (5), with IBD

coefficients as in Eq. 11, simplifies to

E(LR) = L + 7

8
. (12)

The variance of LR becomes

var(LR) = 7L+9
16

+ s1

2
− (

L+7
8

)2
.
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Fig. 3 Pedigrees and location of IBD coefficients κP , κD , and κT for

a paternity case when the true relationship is avuncular

In the special case L = 2, and allele frequencies q and

1 − q, the variance expression reduces to

var(LR) = 11

64
+ 1

32

(1 − q)2 + q2

q(1 − q)
.

This expression is minimal when q = 0.5 and becomes

infinitely large when q or 1 − q approaches 0. If no

assumption is made for L, but all alleles are assumed

equally frequent, the variance reduces to

var(LR) = L(L + 12)

64
− 13

64
. (13)

Table 3 exemplifies these formulas for various realistic val-

ues of L, and compares the results with the corresponding

values if HP was true.

Likelihood ratio for general pairwise
relationships

In this section we extend the results reviewed above to

relationships between any pairs of individuals. In particular

we now allow inbreeding. For this to work we must pass

from the IBD coefficients to the full set of Jacquard

coefficients. For details regarding derivations of the results

(see the Appendix).

Expected likelihood ratio

We use the same setup for kinship testing as introduced

previously, but in order to allow general inbreeding,

we now formulate our hypotheses using Jacquard

coefficients,

HP : Δ = ΔP = (ΔP
1 , . . . , ΔP

9 )

HD : Δ = ΔD = (ΔD
1 , . . . , ΔD

9 ) = (0, . . . , 0, 1)

T ruth : Δ = ΔT = (ΔT
1 , . . . , ΔT

9 ).

Note that the defense hypothesis still corresponds to unre-

latedness. We are interested in the likelihood ratio compar-

ing HP with HD when the genotypes are generated by a

pedigree with the Jacquard coefficients ΔT . Equation (1)

implies that

LR(G) = P(G | ΔP )
P (G | ΔD)

=
9∑

i=1

ΔP
i

P (G | Ji )
P (G | J9)

.
(14)

As shown in the Appendix, the expected LR is

E(LRΔP ,ΔT
) = ΔP B9(ΔT )t , (15)

where B9 is the symmetric 9 × 9 matrix given in Table 4,

whose elements are E(LRJi ,Jj
), for 1 ≤ i, j ≤ 9. As

opposed to the non-inbred case, we see that the expected

value in general depends on the allele frequencies.

Variance of the likelihood ratio

In the Appendix matrices B1, . . . , B9 are defined and it is

shown that

E(LR2) =
9∑

i=1

ΔP
i ΔP Bi(ΔT )t . (16)

From this we obtain the variance formula

var(LR) =
9∑

i=1

ΔP
i ΔP Bi(ΔT )t − (

ΔP B9(ΔT )t
)2

. (17)

Pairwise relationships with inbred founders

As previously explained, a set of inbreeding coefficients

f can be assigned the founders of a pedigree to model

background inbreeding. The Jacquard coefficients of any

pair of pedigree members are then functions of f . It follows

that the formulas for expectation and variance of LR

Table 3 Expectation and variance of LR in the paternity example of Fig. 3, for loci with 2, 10, and 50 alleles

Truth κP κT E[LR] L = 2 L = 10 L = 50

PO (0, 1, 0) (0, 1, 0) L+3
4

1.250 (0.188) 3.250 (1.686) 13.250 (9.188)

U (0, 1, 0) ( 1
2
, 1

2
, 0) L+7

8
1.125 (0.234) 2.125 (3.234) 7.125 (48.230)

The variances are computed assuming uniform allele frequencies. The bottom row (U ) shows the values when the true pedigree is uncle-nephew,

as analyzed in the main text. For comparison, the top row shows the corresponding numbers when HP is true



Table 4 Elements of the symmetric matrix B9, given as E(LRJi ,Jj
)

J1 J2 J3 J4 J5 J6 J7 J8 J9

J1

∑
1
p2

a

∑
1
pa

∑
1
pa

L
∑

1
pa

L
∑

1
pa

L 1

J2 L2 L L L L L 1 1

J3
1
2
(L + ∑

1
pa

) L L 1 L L+1
2

1

J4 L 1 1 1 1 1

J5
1
2
(L + ∑

1
pa

) L L L+1
2

1

J6 L 1 1 1

J7
L(L+1)

2
L+1

2
1

J8
L+4

3
1

J9 1

Each row represents Ji , a Jacquard state assumed by HP , while each column presents Jj , the true Jacquard state

involving such pedigrees remain as in Eqs. 15 and 17, except

that the parameters ΔP and ΔT must be updated.

Specifically, let fP be a vector of founder inbreeding

coefficients in the pedigree assumed by HP , and fT

similarly in the true pedigree. The expectation and variance

of LR in this situation are then given by

E(LRΔP (f P ),ΔT (f T )) = ΔP (f P )B9(ΔT (f T ))t

and

var(LRΔP (f P ),ΔT (f T ))

=
9∑

i=1

ΔP
i (f P )ΔP (f P )Bi(ΔT (f T ))t

− (
ΔP (f P )B9(ΔT (f T ))t

)2
.

Note that the matrices Bi only depend on L and the

allele frequencies, and therefore are unchanged by founder

inbreeding.

Remark 1 It should be emphasized that the formulas (15)

and (17) are needed only when at least one of the tested

individuals are inbred in some of the involved pedigrees. If

both are non-inbred, the simpler expressions (5) and (10)

using IBD coefficients suffice. Importantly, this remains

true if other members of the pedigree are inbred, as long

as this does not lead to inbreeding in the tested individuals.

In particular, founder inbreeding may be accounted for in

Eqs. 5 and 10 simply by replacing κP and κT by κP (fP )

and κT (fT ) respectively.

Founder inbreeding and θ correction

The conventional approach to background relatedness in

forensics is the so called θ correction [12]. In an inbred

population, the composition of genotypes do not follow the

Hardy-Weinberg principle, implying that the frequencies

given in Table 1 no longer hold. The following approach

compensates for this by adjusting the allele frequencies.

Without loss of generality we can assume that alleles

observed are sampled sequentially. The probability that

allele i is sampled as the j th allele is given by the sampling
formula

p′
i = bj θ + θ̄pi

1 + (j − 2)θ
, (18)

where θ̄ = 1 − θ and bj denotes the number of alleles of

type i among the j − 1 previously sampled. Note that for

pairwise cases, the likelihood can be written

L(Δ(f ) | G, θ) =
9∑

i=1

Δi(f )P (G | Ji, θ), (19)

where P(G | Ji, θ) is calculated using Eq. 18. The matrices

B1, ..., B9 then change with θ , modifying the expectation

and variance of the LR. This emphasises a fundamental

difference between founder inbreeding and θ correction: f

modifies the relationship itself, while θ only impacts the

genotype probabilities.

Example: θ correction and founder inbreeding in a
paternity case

This example compares θ correction to founder inbreeding.

Consider first the hypothesis HD: A and B are unrelated.

Assume both individuals are homozygous a/a. Equation (18)

gives the likelihood

Lθ(HD) = pa(θ + θ̄pa)
2θ + θ̄pa

1 + θ

3θ + θ̄pa

1 + 2θ
.

If rather than using θ correction, we assign an inbreeding

coefficient f to A, the likelihood becomes

Lf (HD) = (fpa + (1 − f )p2
a)p

2
a .



Consider next the hypothesis HP 1: A is the father of B.

Equation (18) now gives

Lθ(HP 1) = pa(θ + θ̄pa)
2θ + θ̄pa

1 + θ

and so the LR with θ correction is

LRθ = Lθ(HP 1)

Lθ (HD)
= 1 + 2θ

3θ + θ̄pa

.

The inbreeding coefficient approach gives

Lf (HP 1) = (fpa + (1 − f )p2
a)pa

and LRf = 1/pa . Note that the LR does not depend on f

and that this is true for all genotype combinations for A and

B. The LRs for other genotype combinations for A and B

with θ correction are given in Table 10.8 in [13].

To illustrate (19) consider the hypothesis HP 2: A and B

are paternal half siblings whose father is inbred. Table 2 then

gives Δ8 = 1
2
(1 + f ) and Δ9 = 1

2
(1 − f ), and by Eqs. 18

and 19 we may write down the likelihood for any genotype

combinations. For instance, when A is homozygous a/a and

B homozygous b/b the likelihood is

L(f, θ) = 1

2
(1 − f )pa(θ + θ̄pa)

θ̄pb

1 + θ

θ + θ̄pb

1 + 2θ
.

The LR comparing HP 2 with A and B being unrelated

becomes 1
2
(1 − f ). If A and B share alleles, the LR will

depend also on θ .

R implementation

Utilities to perform the computations in this paper are

provided in a R library named InbredLR, available from

the first author, building on several packages in the ped
suite, notably pedprobr and forrel [3]. The core of InbredLR

are functions that compute the expectation and variance

of the likelihood ratio for pairwise relationships. The user

can specify the parameters (κ , f or Δ) or specify the

pedigrees, possibly with inbred founders. A function for

simulating marker data to estimate the distribution of LR is

also provided, as well as a function for visualizing pedigrees

HP and HD and the true pedigree and location of the

corresponding IBD coefficients in the IBD triangle.

Results

Paternity case for siblings with inbred founders

Consider two individuals who claim to be related as parent

and offspring. Their true relationship is siblings and their

parents coefficients of inbreeding are fT = (f1, f2).

Figure 4 shows the case. This example can be relevant

HP HD Truth

UNPO

MZ

κDκP

κT

f1 f2

Fig. 4 Hypotheses involved in “Paternity case for siblings with inbred

founders” and the location of the corresponding IBD coefficients κP ,

κD , and κT in the IBD triangle

for family reunion cases, where a parent-child relationship

would give right to residence permit, whereas a sibling

relationship would not. In [14] such a case is considered.

HP and HD and their true relationship are in terms of the

IBD coefficients given as

HP : κ = κP = (0, 1, 0)

HD : κ = κD = (1, 0, 0)

T ruth : κ = κT (f T ),

(20)

where κT (fT ) = κT (f1, f2) are as in the first row of

Table 2. Keeping in mind Remark 1, we apply (5) to find the

expected LR:

E(LR) = L − 1

8
(f1 + f2) + L + 3

4
. (21)

Figure 5 plots E(LR) as a function of the inbreeding level

(assuming f1 = f2), for a single locus with L = 2, 10 and

50 alleles.

Without founder inbreeding, E(LR) = (L + 3)/4.

Interestingly, this is the same as the expectation if HP was

true, i.e., if the two individuals were in fact father and

son (see first row of Table 3). The variance of LR differs

between the two cases, however (not shown here).

As the background inbreeding of the true sibling pedigree

increases, E(LR) increases. The expected LR of the

0
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0.00 0.25 0.50 0.75 1.00
fT

E
(L

R
) L

50
10
2

Fig. 5 E(LR) as function of background inbreeding level fT

(assuming f1 = f2), for L = 2, 10, and 50 alleles, for the paternity

case in Fig. 4. The shaded area shows one standard deviation below

and above E(LR), for uniform allele frequencies



paternity case (and hence the trust in HP ) is therefore

higher if the true relatedness is siblings with background

inbreeding, rather than the tested parent-child relationship.

The variance of LR decreases moderately for increasing

founder inbreeding. For increasing number of alleles L, the

slope of the expected LR increases.

The following calculation gives a simple approximation

of the inflation in the expected LR caused by background

inbreeding. Suppose f1 = f2 = f , and write (21) as

μ0 + μf , where μ0 = 1
4
(L + 3) is the expected LR

without founder inbreeding, and μf = 1
4
(L − 1)f is the

expected contribution caused by founder inbreeding. Note

that μ0 + μf = (1 + μf

μ0
)μ0, and that for L ≥ 5 we have

μf

μ0
= L−1

L+3
f ≥ 1

2
f . This implies that with N independent

markers, the total LR has expectation

[(1 + μf

μ0
)μ0]N ≥ (1 + 1

2
f )NμN

0 ≥ (1 + 1
2
f N)μN

0 .

This means that a background inbreeding level f will inflate

the expected LR by at least 1
2
f N . For example, if N = 20

and f = 0.05, the inflation rate is greater than 50%.

Siblings and half siblings with founder inbreeding

Distinguishing between siblings and half siblings can be

difficult based on unlinked markers. Mayor and Balding

address the problem in [15], with focus on the number of

loci needed. If the shared parent of the half siblings has

inbreeding coefficient fT > 0, the problem becomes even

more interesting.

Consider the situation shown in Fig. 6. The hypotheses

are

HP : κ = κP (f P )

HD : κ = κD = (1, 0, 0)

T ruth : κ = κT (fT ),

(22)

where fP = (f1, f2) are the parental inbreeding

coefficients in the HP pedigree and κP (fP ) and κT (fT )

are as in the first and second rows of Table 2, respectively.

HP HD Truth

UNPO

MZ
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κP

κT

f1 f2 fT

Fig. 6 The hypotheses involved in “Siblings and half siblings with

founder inbreeding” and the location of the corresponding IBD

coefficients κP , κD , and κT in the IBD triangle

L=2

L=10

L=20

1

2

3

4

5

6
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0

Fig. 7 E(LR) for the case in Fig. 6 as functions of background

inbreeding level fT , for fP = 0 (dashed line) and fP = 0.2 (solid

line), and L = 2, 10, and 20

This setup facilitates for modeling background inbreeding

in both the true pedigree and in HP . Equation (5) gives

E(LR) = L − 1

8

(
(f1 + f2)(fT + 1)

2
+ fT

)

+L + 7

8
. (23)

In Fig. 7, the expectation of LR is shown as a function of

founder inbreeding fT of the true half sibling pedigree, for

HP stating sibling pedigree with founder inbreeding fP = 0

and 0.2 (assuming f1 = f2), and L = 2, 10 and 20 alleles

at a locus. For increasing values of fT , E(LR) increases,

for all values of fP , and the evidence in favor of a sibling

relationship becomes stronger.

Consider next the situation when f1 = f2 = 0. HP

then assumes a sibling relationship without inbred founders.

Figure 8 shows E(LR) (dashed line) and LR computations

from 1000 sets of simulated data, as a function of fT .

The solid line gives the mean value of the simulated LR.

The expected LR increases slightly as founder inbreeding

increases. For Fig. 8a this seems to fit well with the mean

values of the LRs from simulated data. These simulation

assumes 13 loci, each of 3 alleles with allele frequencies

0.4, 0.3 and 0.3. In Fig. 8b, on the other hand, there

is a substantial difference between E(LR) and the mean

of the simulated LRs. These simulations use 13 CODIS

markers with allele frequencies ranging from 0.0003 to

0.5378 (allele frequencies are available as a part of the

R library InbredLR, see the “R implementation” section).

Alleles with low frequencies will more seldom be present

in the simulations. The expected LR only depends on the

number of alleles at a locus, but because of the rare alleles,

the simulations give in practice a lower number of alleles at

these loci. The simulations in Fig. 8c use the same markers,

but with uniform allele frequencies for alleles at a locus.

The expectation of the LR is independent of the allele

frequencies and is therefore not changed, but now the mean

of the simulated LRs is closer to the expected value. Even

though E(LR) is independent of the allele frequencies, the



Fig. 8 Simulations of LR for the case in Fig. 6. Each figure shows

1000 LR values, for five values of fT , each calculated from a

simulation of a complete set of genotypes for 13 loci. Solid lines show

mean of simulated LR. Dashed lines show E(LR). a Loci with 3

alleles with frequencies 0.4, 0.3 and 0.3. b CODIS loci with realistic

allele frequencies. c CODIS loci with uniform allele frequencies

variance is not, and small allele frequencies increase the

variance.

Finally, we offer an approximation of the inflation in the

expected LR due to background inbreeding. For simplicity,

we assume f1 = f2 = 0 so that HP states a normal sibling

relationship. From Eq. 23 the expected LR is μ0 = 1
8
(L+7)

if fT = 0. On the other hand, if fT > 0, the expected

contribution to the LR is μf = 1
8
(L − 1)fT . For L ≥ 5 we

have
μf

μ0
≥ 1

3
fT , and it follows that

(μ0 + μf )N = [(1 + μf

μ0
)μ0]N ≥ (1 + 1

3
f N)μN

0 .

A background inbreeding level of fT will inflate the

expected LR by at least 1
3
fT N . For example, with N =

20 and fT = 0.05, the inflation rate is greater than

33%.

Paternity case with inbreeding

Consider a paternity case with hypotheses as shown in

Fig. 9. The alleged father is indeed the true father and has

inbreeding coefficient f . We will analyze the consequences

HP HD Truth

J8

J3
f

Fig. 9 The hypotheses in a paternity case with inbreeding. To the

far right are the Jacquard states with nonzero probability in the true

relationship

of ignoring the inbreeding in HP . The hypotheses are

parameterized in the following way:

HP : Δ = ΔP = (0, 0, 0, 0, 0, 0, 0, 1, 0)

HD : Δ = ΔD = (0, 0, 0, 0, 0, 0, 0, 0, 1)

T ruth : Δ = ΔT (fT )

= (0, 0, fT , 0, 0, 0, 0, 1 − fT , 0).

The expression for the expected LR simplifies considerably

since most elements of ΔP and ΔT (fT ) are zero.

Equation (15) gives

E(LR) = L + 1

2
fT + L + 3

4
(1 − fT ),

and we see that E(LR) increases linearly from (L + 3)/4

to (L + 1)/2 as fT goes from 0 to 1.

Consider next the variance. For brevity, we define

h(i, j, k) = E(LRJi ,Jk
· LRJj ,Jk

). (24)

Note that h(i, j, k) is invariant under permutations of i, j, k.

Equation (16) gives

E(LR2) = ΔT
3 h(8, 8, 3) + ΔT

8 h(8, 8, 8)

= fT h(8, 8, 3) + (1 − fT )h(8, 8, 8).

Slooten and Egeland [1] derived the term not involving

inbreeding, i.e.,

h(8, 8, 8) = 5L+3
8

+ s3−L
16

.

To derive the remaining term we condition on the zygosity

of the son. If he is homozygous a/a, the father must also

be a/a (recall that we are conditioning on Jacquard state

J3). Conversely, if the son is heterozygous a/b, the father is

equally likely to be a/a or b/b. This gives

h(8, 8, 3) =
∑
a

p2
a

1

pa

1

pa

+
∑
a<b

2papb

(
1

2
(

1

2pa

)
2

+ 1

2
(

1

2pb

)
2
)

= L + 1

4

∑
a �=b

pb

p2
a

= 3L + s3

4
.
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Fig. 10 E(LR) as a function of fT in the paternity case in Fig. 9, for

a single marker with L = 2, 10 and 50 alleles. Shaded area shows

one standard deviation below and above E(LR), for uniform allele

frequencies

In summary,

var(LR) =
3L + s3

4
fT +

(
5L + 3

8
+ s3 − L

16

)
(1 − fT )

−
(

L + 1

2
fT + L + 3

4
(1 − fT )

)2

. (25)

This is a concave function with respect to fT . Figure 10

shows E(LR) and one standard deviation on each side as a

function of founder inbreeding fT , for different number of

alleles at a locus.

Discussion

In testing theory, the formulation of hypotheses is crucial.

Kinship problems, as considered in this paper, are no

exception. The convention of kinship testing is to compare

two specific relationships using the LR. In most applications

other than kinship problems, the hypotheses together span

many, if not all, alternatives. For instance, a common

example is testing of HWE against all possible deviations

from HWE. In forensic genetics, HP : “paternity” is

typically tested only against HD: “unrelated,” not all other

alternatives. For this reason, it becomes essential to study

what happens when the truth is neither of these hypotheses.

A pairwise non-inbred relationship can be presented by

a point in the IBD triangle (see Fig. 2), or in general by the

Jacquard coefficients (see Fig. 1). We have presented two

ways of expressing the hypotheses and the true relationship;

(i) through the Jacquard coefficients, and (ii) background

relatedness or founder inbreeding. These approaches let us

investigate the LR for a continuous range of relationships

and values of background relatedness. In both cases, the

impact on the LR has been studied by deriving exact

expressions for its mean and variance. In the latter case, the

required formula follows rather directly by extending results

in [1] and [2]. Explicit formulas for the expected LR has

been derived for several sets of relationships. In the case of

Jacquard coefficients, the explicit formulas are complicated

to derive, and they depend on allele frequencies. An

exact expression is given also for the variance. However,

as the variance depends on allele frequencies, simple

closed formulas can only be derived in special cases. For

general applications we rely instead on the exact numerical

implementation freely available in the R library InbredLR

accompanying this paper.

Equipped with the results of this paper, we can address

the following question when presented with a standard LR

comparing two completely specified hypotheses HP and

HD: What if the true relationship between the individuals

is not as stated by HP ? Or this slightly different question:

What if the true relationship is restricted to some particular

region of the IBD triangle. Obviously, the LR can be re-

evaluated to reflect the new specifications. However, the

exact expressions for expectation and variance of the LR

can in some cases directly allow for statements valid for

a continuous range of alternatives. For instance, regions

obtained by varying founder inbreeding have been displayed

in Fig. 2. Assume a LR has been reported in a paternity case

and that inbreeding in the father has been ignored. It is then

useful to know that accounting for inbreeding would imply

increase in the expected LR. This finding could be essential

as there may not be data available to estimate the inbreeding

coefficient for the father. Hence, exact LR calculation is not

feasible.

Because the definition of “common ancestor” sometimes

differs, there is a slight difference in the definition of IBD in

the literature. The paper [16] gives three definitions of IBD:

ancient IBD, recent IBD, and familial IBD. Our definition of

IBD goes in the category of familial IBD, where “common

ancestor” is restricted to a given pedigree.

The conventional approach to background relatedness in

forensics is the so called theta (θ) correction [12]. Typical

values are θ ∈ (0.01, 0.03). The θ parameter applies

on a population level. The genotype probabilities of all

founders in the pedigree are modified compared with what

HWE would give. Our approach does not model relatedness

between founders, but offers a richer model of inbreeding,

since individual inbreeding coefficients can be specified for

each founder.

Several authors (see, e.g., [2] and the references therein)

have discussed reporting the logarithm of the LR rather than

the LR. Nice expressions like the ones presented for the

expectation and the variance are then no longer available. In

most cases, the LR is reported on the original scale. In some

circumstances, as for paternity cases, the LR may be 0, and



then, the logarithm is not defined. Many papers including

[17] study the distribution of Z = log(LR) by simulation.

Equipped with the exact expressions of this paper, Z could

be analyzed without resorting to simulation, since the mean

and variance of Z can be derived from the counterparts for

the LR. However, if some allele frequencies are close to 0,

Z is not well approximated by a normal distribution for a

realistic number of markers. The reason for this is the large

variance when allele frequencies are small. For instance,

(25) shows an example where the expression for the

variance include terms of the form 1/pa and these become

large whenever the allele frequency pa is small. A similar

problem related to small allele frequencies is discussed

in the result section. This demonstrates that the center of

the log(LR) distribution, calculated from the expectation

of LR, can be inaccurate. However, this criticism applies

to the use of LR instead of log(LR) in general, and not

specifically to the expectations. We maintain that results like

the ones presented for the expectation and variance have

considerable theoretical interest, but should be used with

caution in practice.

This paper has mainly addressed the likelihood ratio

and its properties. The exclusion probability (EP), the

probability that genotypes will be incompatible with a

claimed relationship, is also an important statistic. The

impact of founder inbreeding on EP is discussed in [3].

Figure 4 illustrates a case where the true inbred rela-

tionship is not known, and Fig. 5 shows the corresponding

expected LR for a single marker. Increasing the number of

markers will, in this paternity case, increase the inflation of

the expected LR. This means that adding more markers to

the LR computation will not solve the problem. In general,

with a sufficient number of markers, the Jacquard, IBD, or

inbreeding coefficients can be estimated accurately, and the

true relationship detected. If such additional marker data is

not available, the impact of inbreeding can be studied as

exemplified by a paternity case with unknown inbreeding

earlier in the discussion and as illustrated in, e.g., Fig. 5. As

addressed in the “Introduction” section, different scenarios

can be investigated and LR results can be evaluated in light

of the analyses of these scenarios.

The present paper does not consider linked markers.

For independent loci, the inbreeding coefficients contain

sufficient information to compute the Jacquard coefficients

needed in our formulas for LR. While a similar approach

is conceivable also for linked markers, this would involve

multi-locus coefficients, which is outside the scope of this

work.
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Appendix: Expectation and variance of LR

Below we derive the expressions for the expectation and

variance of LR in the general pairwise case. Let Ji denote

Jacquard state i and ΔP
i and ΔT

i the probabilities of Ji

according to the relationship stated by HP and the true

relationship respectively. LRΔP ,ΔT
is then defined as the

likelihood ratio comparing HP :ΔP with HD:ΔD when the

marker data comes from the relationship ΔT . Similarly,

LRJi ,Jj
denotes the likelihood ratio comparing Jacquard

state Ji with unrelated, i.e., J9 when the marker data are

generated by Jj .

Equation (15) follows by combining (1), (14), and (4)

E(LR) = ∑
G

(
9∑

j=1

ΔT
j P (G | Jj )

9∑
i=1

ΔP
j

P(G|Ji)
P (G|J9)

)

=
9∑

i=1

9∑
j=1

ΔP
i ΔT

j

(∑
G

P(G|Ji)
P (G|J9)

P (G | Jj )

)

=
9∑

i=1

9∑
j=1

ΔP
i ΔT

j E
(LRJi ,Jj

)
= ΔP B9Δ

t
T .

(26)

In the case of no inbreeding, i.e., Δ1 = · · · = Δ6 = 0,

the above expression reduces to (5). The part of the 9 × 9

matrix B9 corresponding to (J7, J8, J9) coincides with the

matrix given in Eq. 6. Since E(LRJi ,Jj
) = E(LRJj ,Ji

),

B9 is symmetric. The elements of B9 are found by direct

calculation. For instance, entry (1, 1) equals

E(LRJ1,J1
) =

∑
a

pa

p4
a

pa =
∑
a

1

p2
a

.



Since the expectation has been calculated, to derive the

variance it remains only to find

E(LR2)

=
∑
G

(
9∑

k=1

ΔT
k P (G | Jk)

9∑
i=1

ΔP
i

P (G | Ji)

P (G | J9)

9∑
j=1

ΔP
j

P (G | Jj )

P (G | J9)

⎞
⎠

=
9∑

i=1

9∑
j=1

9∑
k=1

ΔP
i ΔP

j ΔT
k E

(LRJj ,Ji
LRJk,Ji

)

=
9∑

i=1

ΔP
i ΔP BiΔ

t
T .

The matrices B1, . . . , B9 are symmetric 9 × 9 matrices. The

simplest of these matrices is B9, given in Table 4. In general,

Bi consists of the elements {E(LRJj ,Ji
LRJk,Ji

)}j,k=1,...,9.

The values for i, j, k = 7, 8, 9 have been provided in the

“Review of previous results” section. Entry (j, k) of Bi is∑
G

P (G | Jj )

P (G | J9)

P (G | Jk)

P (G | J9)
P (G | Ji). (27)

All matrices can in principle be found from the above

expression, but exact calculations by hand become unprac-

tical and exact numerical calculation is more reasonable.

References

1. Slooten KJ, Egeland T (2014) Exclusion probabilities and

likelihood ratios with applications to kinship problems. Int J Legal

Med 128(3):415–425

2. Egeland T, Slooten KJ (2016) The likelihood ratio as a random

variable for linked markers in kinship analysis. Int J Legal Med

130(6):1445–1456

3. Vigeland MD, Egeland T (2019) Handling founder inbreeding in

forensic kinship analysis. Forensic Science International: Genetics

Supplement Series. https://doi.org/10.1016/j.fsigss.2019.10.175

4. Vigeland MD (2020) Relatedness coefficients in pedigrees with

inbred founders. J Math Biol 81:185–207. https://doi.org/10.1007/

s00285-020-01505-x

5. Thompson EA (2000) Statistical inference from genetic data on

pedigrees. IMS

6. Wright S (1922) Coefficients of inbreeding and relationship. The

American Naturalist 56:330–338

7. Buckleton J, Curran J, Goudet J, Taylor D, Thiery A, Weir BS

(2016) Population-specific FST values for forensic STR markers:

a worldwide survey. Forensic Science International: Genetics

23:91–100. https://doi.org/10.1016/j.fsigen.2016.03.004

8. Pemberton TJ, Rosenberg NA (2014) Population-genetic influ-

ences on genomic estimates of the inbreeding coefficient: a global

perspective. Human Heredity 77(1-4):37–48. https://doi.org/10.

1159/000362878

9. Jacquard A (1972) Genetic information given by a relative.

Biometrics 28(4):1101–1114

10. Cotterman CW (1940) A calculus for statistico-genetics. Disserta-

tion, The Ohio State University

11. Thompson EA (1976) A restriction on the space of genetic

relationships. Ann Hum Genet 40(2):201–204

12. Balding DJ, Nichols RA (1995) A method for quantifying

differentiation between populations at multi-allelic loci and its

implications for investigating identity and paternity. Genetica

96(1–2):3–12

13. Buckleton J, Triggs CM, Walsh SJ (2005) Forensic DNA evidence

interpretation. CRC Press, Florida

14. Gorlin JB, Polesky HF (2000) The use and abuse of the full-sibling

and half-sibling indices. Transfusion 40(9):1148–1149

15. Mayor LR, Balding DJ (2006) Discrimination of half-siblings

when maternal genotypes are known. Forensic Sci Int 159(2–

3):141–147

16. Browning BL, Browning SR (2011) A fast, powerful method for

detecting identity by descent. The American Journal of Human

Genetics 88(2):173–182

17. Nothnagel M, Schmidtke J, Krawczak M (2010) Potentials and

limits of pairwise kinship analysis using autosomal short tandem

repeat loci. Int J Legal Med 124(3):205–215

Publisher’s note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.





Paper III

61





Strategies for pairwise searches in forensic kinship1

analysis2

Hilde Kjelgaard Brustad∗, Margherita Colucci†, Mark A. Jobling†, Nu-
ala A. Sheehan‡, Thore Egeland∗3

April 8, 20214

Corresponding author5

Hilde Kjelgaard Brustad, hilde.brustad@nmbu.no6

Highlights7

• Search for general pairwise relationships.8

• Finding optimal thresholds for likelihood ratios.9

• Correcting for multiple testing in relationship searching.10

• Bayesian version of blind search.11

∗Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life
Sciences, 1432 Aas, Norway

†Department of Genetics & Genome Biology, University of Leicester, University Road,
Leicester LE1 7RH UK

‡Department of Health Sciences, University of Leicester, University Road, Leicester LE1
7RH UK

1



Abstract12

Testing kinship between pairs of individuals is central to a wide range of appli-13

cations. We focus on cases where many tests are done jointly. Typical examples14

include cases where DNA profiles are available from a burial site, a plane crash15

or a database of convicted offenders. The task is to determine the relation-16

ships between DNA profiles or individuals. Our approach generalises previous17

methods and implementations in several respects. We model general, possibly18

inbred, pairwise relationships which is important for non-human applications19

and in archaeological studies of ancient inbred populations. Furthermore, we do20

not restrict attention to autosomal markers. Some cases, such as distinguishing21

between maternal and paternal half siblings, can be solved using X-chromosomal22

markers. When many tests are done, the risk of errors increases. We address23

this problem by building on the theory of multiple testing and show how opti-24

mal thresholds for tests can be determined. We point out that the likelihood25

ratios in a blind search may be dependent so multiple testing methods and in-26

terpretation need to account for this. In addition, we show how a Bayesian27

approach can be helpful. Our examples, using simulated and real data, demon-28

strate the practical importance of the methods and implementation is based on29

freely available software.30

Keywords31

Kinship testing; Blind search; LR thresholds; Inbred relationships; X chromo-32

somal markers33

1 Introduction34

Inferring the relationship between pairs of individuals is central to many forensic35

applications. Examples include mass fatality incidents, which can be the result36

of accidental catastrophes like air crashes with a list of known victims [1] or ship-37

wrecks without passenger lists [2, 3]. Other applications are natural disasters38

like tsunamis, where the number of victims is unknown [4] and terrorism-related39

events [5]. The aim is to link DNA samples from the scene to putative victims40

(e.g. individuals reported missing since the event) and is known as disaster41

victim identification (DVI). There are various other important applications like42

searching for relationships among individuals in mass graves of archaeological43

relevance [6, 7, 8]. We may also check databases collected to estimate popula-44

tion statistics like allele frequencies. Duplicates and close relatives should be45

excluded prior to the statistical analysis or estimates of allele frequencies could46

be biased [9].47

As these cases involve unidentified DNA samples, a first step in the inves-48

tigation is to screen the data for related samples. This initial step is referred49

to as a blind search [10]. It is helpful to first position the topics that we are50

addressing in the wider context of database searching. Assume that there is a51
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1. Direct search 3. Blind search2. Familial search
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Figure 1: Different database searches. 1. Direct search: Search for direct
matches between or within databases. 2. Familial search: Search for related
individuals between databases. 3. Blind search: search for related individuals
within databases.

case database of DNA profiles. This could comprise profiles obtained from a52

crime scene, a disaster site or a burial site. In addition, there may be a reference53

database of DNA profiles like a national database of convicted offenders. There54

are various searches that can be performed to detect pairwise relationships as55

illustrated in Figure 1:56

1. Search for duplicates, i.e., direct search, performed within or between the57

databases. If this is done within a database, the objective is to merge58

identical samples. A search between databases corresponds to the widely59

discussed database search problem [11].60

2. Familial searching involves searching between databases [12]. A selected61

DNA profile is compared to the profiles of a database with the aim of62

detecting close kin relationships, such as parent-offspring or sibling rather63

than a direct match.64

3. Blind search. This is a search within a database and is the topic of this65

paper to be discussed below.66

In a blind search, comparisons are performed among all pairs of DNA samples.67

A likelihood ratio (LR), comparing the relationship specified by H1 to the one68

specified by H0, is computed for each pair. The LRs summarise the statistical69

DNA evidence. For pre-specified threshold values t0 and t1, small values of70

LR < t0 provide little evidence to reject H0, and are often interpreted as sup-71

porting H0, while large values of LR > t1 favour H1. A blind search typically72

involves a large number of comparisons. If there are n profiles in the database,73

the number of comparisons is n(n−1)/2, e.g. 4950 comparisons for 100 profiles.74
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The implications of this high number of pairwise comparisons in a blind search75

are of key concern in this paper. Also, it is not obvious how the thresholds t076

and t1 should be specified. Conventional thresholds used in paternity testing,77

for example, may not apply. The false positive rate FPR = P(LR > t1 | H0)78

and false negative rate FNR = P(LR < t0 | H1) should both be close to 0. Even79

if these error rates are small for each comparison, the probability that errors80

occur when many comparisons are done may be considerable. Determination of81

thresholds and optimisation of search strategies have been discussed in connec-82

tion with database searches and familial searching [13]. The classical statistical83

theory of multiple testing [14] is also relevant.84

Current implementations of blind search are limited to fairly simple outbred85

pedigree structures connecting the two individuals of interest. For example,86

Familias [10], a freely available kinship software package, accommodates parent87

offspring (PO), sibling (S), half sibling (H), first cousin (FC) and second cousin88

(SC) [15, 16]. We model general pairwise relationship, possibly with inbreeding,89

using the Jacquard coefficients [17]. By including X-chromosomal markers, some90

additional relationships can be addressed. For instance, paternal and maternal91

half sisters can be distinguished.92

Prior, non-DNA, information can sometimes be important. For instance,93

two individuals of the same age cannot possibly constitute a parent-offspring94

pair even if the DNA profiles suggest otherwise. To formally include prior infor-95

mation, we require a Bayesian approach. In the Bayesian framework we start96

out with a set of prior probabilities, reflecting our belief in the hypotheses, be-97

fore considering any genetic data. Our belief in each hypothesis is then updated98

by incorporating the DNA information. Informative priors can contribute addi-99

tional information to the genetic data and this will be reflected in the posterior100

probabilities. A more general prior distribution for pedigrees has been discussed101

elsewhere [18].102

Our paper is structured as follows. We first review the parametric rep-103

resentation of relationships and the corresponding parametric likelihood and104

likelihood ratio, for both autosomal and X-chromosomal markers. A review of105

the Bayesian approach to kinship testing is given, before we return to the like-106

lihood ratio and its properties. These properties are then incorporated when107

presenting the theory for evaluating the performance of a blind search. We then108

introduce the data used in the results section and give a brief description of our109

implementation. We provide several examples and conclude with a discussion110

of the challenges and the advantages of the work we present.111

2 Review of previous results112

2.1 Relatedness coefficients113

Two homologous alleles are identical by descent (IBD) if they are identical by114

state (IBS) and inherited from a common ancestor. IBD is therefore defined115

with reference to a specified pedigree. The idea is that closely related individuals116
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Figure 2: Left: Jacquard states J1, . . . , J9. Dots denote alleles, and lines connect
IBD alleles. Right: IBD triangle, with location of some common relationships.
Abbreviations: MZ - monozygotic twins, PO - parent offspring, S - full siblings,
H - half siblings, U - avuncular, G - grandparent grandchild, FC - first cousins,
UN - unrelated.

share more of their genetic material IBD than more distantly related individuals.117

The simplest measure of pairwise relationships is the kinship coefficient, ϕ,118

defined as the probability that a random allele at a locus from one individual is119

IBD to a random allele at the same locus from another individual. This is the120

same as the inbreeding coefficient f of a child of these two individuals [19].121

The Jacquard coefficients [17] provide a description of general pairwise re-122

lationships. The four alleles of two individuals are in one of the nine Jacquard123

states Ji for i = 1, . . . , 9 (see left panel of Figure 2). The probability that the124

alleles at a locus are in the different Jacquard states are given by the Jacquard125

coefficients, ΔΔΔ = (Δ1, . . . ,Δ9), where Δi = P(Ji). The coefficients sum to one.126

The first six Jacquard states model inbreeding in one or both of the indi-127

viduals. The only possible IBD states for two outbred individuals are J9, J8128

and J7, referred to as the IBD states K0, K1 and K2, respectively. Thus, for129

two outbred individuals, the Jacquard coefficients reduce to the IBD coefficients130

[20], κκκ = (κ0, κ1, κ2), where κi = P(Ki). Since
∑2

i=0 κi = 1, the coefficients can131

be visualised in the IBD triangle, with coordinates (κ0, κ2). Figure 2 shows the132

IBD triangle with the location of some common pedigree relationships. Thomp-133

son [21] showed that the coefficients satisfy the inequality κ2
1 ≥ 4κ0κ2, which134

creates an inadmissible region, shown in grey in Figure 2. This means that135

it is not possible to construct a pedigree connecting two individuals with IBD136

coefficients in the inadmissible region.137
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f

Figure 3: Figure showing the concept of founder inbreeding, as described in
Section 2.1.1. The shaded part showing the first cousin relationship, is modelled
by the inbreeding coefficient f .

2.1.1 Relatedness coefficients and founder inbreeding138

By assigning a coefficient of inbreeding to one or more of the founders of a139

pedigree, background relatedness can be modelled [22]. Inbreeding of a pedi-140

gree founder (or several founders) affects the genetic relationship between other141

members of the pedigree [23], but does not necessarily make the pedigree mem-142

bers of interest inbred. For example, if it is suspected that two individuals are143

paternal half-siblings and the paternal grandparents are first cousins, as depicted144

in Figure 3, the common father has an inbreeding coefficient f = 1/16. The IBD145

coefficients for these half siblings are given by κκκ = (0.469, 0.531, 0) in contrast146

with κκκ = (0.5, 0.5, 0) for the non-inbred setting with f = 0. It can be shown147

that there is some finite pedigree with founder inbreeding that corresponds to148

each admissible point in the IBD triangle [24].149

2.2 The likelihood function150

Our data comprise pairs of DNA profiles, genotyped at m unlinked loci. For a
single pair of individuals, A and B, let Gj = (gA,j , gB,j) denote their respective
genotypes at locus j for j = 1, . . . ,m. The likelihood of ΔΔΔ, i.e., the probability
of observing the data G = (G1, . . . , Gm) assuming ΔΔΔ to be true, is

L(ΔΔΔ) =

m∏
j=1

9∑
i=1

ΔiP(Gj | Ji). (1)

The probabilities P(Gj | Ji) are given in Table 9 in the Appendix. For outbred
individuals, the likelihood of κκκ is

L(κκκ) =
m∏
j=1

2∑
i=0

κiP(Gj | Ki), (2)
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P(G | K0) P(G | K1) P(G | K2) L(κκκ)
G1 = (ab, ac) 0.06 0.03 0 0.06 · κ0 + 0.03 · κ1

G2 = (bc, bb) 0.011 0.004 0 0.011 · κ0 + 0.004 · κ1

G3 = (aa, bc) 0.03 0 0 0.03 · κ0

Table 1: Likelihood of κκκ = (κ0, κ1, κ2), when observing genotypes for two indi-
viduals, for three unlinked loci, as described in the example of Section 2.3.

where the probabilities P (Gj | Ki) for i = 0, 1, 2 correspond to the last three151

columns of Table 9.152

2.3 Parametric representation of the likelihood ratio153

The likelihood ratio (LR) quantifies how much more likely it is that a set of
genetic data is explained by one hypothesis H1 than by another hypothesis H0.
In our applications, each hypothesis states a pairwise relationship, expressed by
a set of relatedness coefficients ΔΔΔ (or κκκ for outbred relationships). The LR that
compares (1) for two sets of coefficients ΔΔΔ1 and ΔΔΔ0 is

LR(ΔΔΔ1,ΔΔΔ0) =
P(G | H1)

P(G | H0)
=

L(ΔΔΔ1)

L(ΔΔΔ0)
. (3)

The hypotheses H1 and H0 are not necessarily exhaustive, meaning that there154

may be other hypotheses that better explain the data.155

Example: The purpose of this example is merely to illustrate how LRs can156

be easily computed for different sets of IBD coefficients using the representation157

in (3).158

Consider two individuals genotyped at three loci. Each locus has three159

alleles a, b and c, with population frequencies 0.5, 0.3 and 0.2, respectively. The160

genotypes at each locus are given in the first column of Table 1. The likelihood161

of κκκ for each locus are given in the last column.162

When comparing siblings, κκκ1 = (0.25, 0.5, 0.25) against unrelated κκκ0 =
(1, 0, 0), the LR becomes

LR(κκκ1,κκκ0) =
(0.06 · 0.25 + 0.03 · 0.5)

0.06

· (0.011 · 0.25 + 0.004 · 0.5)
0.011

· (0.03 · 0.25)
0.03

= 0.054.

(4)

Similarly, we find the LR for half siblings (or avuncular or grandparent grand-163

child), κκκ1 = (0.5, 0.5, 0), against unrelated, κκκ0 = (1, 0, 0), to be 0.256. The164

probabilities in the middle three columns of Table 1 are independent of the165

tested relationships.166
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2.4 Properties of the LR167

For specified thresholds t0 < t1, an LR < t0 essentially supports H0, while an168

LR ≥ t1 favours H1. More data may be required to conclude when t0 ≤ LR < t1169

[25]. For simplicity, we will assume t0 = t1 = t, so that a conclusion can always170

be drawn.171

When LR ≥ t, but H0 is true, we have a false positive (FP). If LR ≥ t and
H1 is true, we have a true positive (TR). We define the false positive rate (FPR)
and the true positive rate (TPR) as

FPR = P(LR ≥ t | H0), TPR = P(LR ≥ t | H1). (5)

The TPR measures the ability to detect the relationship, while the FPR is the172

probability of falsely declaring a relationship. The relationship between FPR173

and TPR is often visualised by a receiver operating characteristic (ROC) curve174

[26]. Figure 4 in Section 3.3 illustrates the concept of a ROC curve.175

2.5 The Bayesian approach to kinship testing176

A frequentist approach to evaluating kinship is based on the LR reflecting the177

probabilities of the data we have observed under two specified hypotheses. An178

alternative approach is provided by a Bayesian framework.179

Instead of just testing one hypothesis H1 against H0, we consider a set of
hypotheses Hi, i = 1, . . . , k, each against H0. With some prior belief in each
hypothesis π0, . . . , πk, Bayes’ theorem expresses the posterior probability of each
hypothesis as

P(Hi | data) = LRiπi∑k
j=0 LRjπj

, for i = 0, . . . , k , (6)

where LRi is the likelihood ratio when Hi is compared against H0 [10]. In fact,180

the denominator in the LR cancels out, so (6) actually compares the likelihood181

of each hypothesis against all the other hypotheses jointly.182

Just as for LRs, we cannot infer anything about the true relationship between183

the individuals as this might not be one of the hypotheses considered. For a flat184

prior, the posterior probabilities do not add any information to the data and185

are simply scaling the likelihoods (or LRs) relative to each. More informative186

priors, on the other hand, can contribute additional information and this will187

be reflected in the posterior probabilities. For example, the three relationships188

half-sibling (H), avuncular (U) and grandparental (G) all have the same IBD189

coefficients and identical likelihoods. They are hence indistinguishable in the190

traditional frequentist setting and in a Bayesian setting using flat priors. Age191

information can easily be incorporated into the Bayesian approach and may192

yield different posterior probabilities.193
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3 Methods for blind search194

3.1 The likelihood ratio for X-chromosomal markers195

X chromosomal markers are increasingly used in forensic applications to sup-196

plement or replace autosomal markers for some cases of practical importance197

[27]. One such example is shown in Figure 8. The females B and C are paternal198

half sibs while C and D are maternal half sibs. The distinction between mater-199

nal and paternal is captured by X-chromosomal markers but not by autosomal200

markers. The paternal half sibs share an allele IBD inherited from their father.201

The Jacquard coefficients and the likelihood calculation can be modified to ap-202

ply for independent X-chromosomal markers (details omitted). Obviously, the203

sex of the individuals in the pair matters. As an example note that there are204

only two possibilities, or two states, for a pair of males: either they share an205

allele IBD or they do not.206

Since the number of unlinked markers on the X chromosome is limited,207

linkage and linkage disequilibrium become an issue [28]. We will ignore such208

dependence in Example 5.5. However, relevant findings that take dependence209

into account can be checked using the freely available software FamLinkX [29].210

3.2 Estimation of FPR and TPR211

The true positive and false positive rates are determined by the hypotheses con-212

sidered, number of loci, properties of each locus and the LR threshold. These213

rates can be calculated numerically using the algorithm described in [30]. How-214

ever, this method only works for a small number of markers, say up to 10. In215

practice, we therefore resort to simulation. We denote estimates of FPR and216

TPR by F̂PR and T̂PR, respectively.217

Typically TPR is close to 1 and FPR close to 0. These values are generally218

poorly estimated from direct Monte Carlo simulation. For instance, assume219

FPR = 0.00001. Then 1 of 100000 simulations is expected to give a false posi-220

tive. The conventional number of simulations in the range 100-10000 is therefore221

likely to return an estimate of 0. Kruijver [30] describes several methods for es-222

timating small probabilities in forensic applications. One of these is importance223

sampling, which we use to estimate FPR in the results section. Details about224

importance sampling are given in Appendix B.225

3.3 Optimal LR threshold226

Intuitively we seek a threshold for LR that minimises the number of errors.227

Several approaches for choosing the optimal threshold have been suggested and228

compared [31]. We will focus on ROC-based methods.229

Figure 4 shows a general ROC curve. Each point on the curve corresponds
to a threshold t, with corresponding values for FPR and TPR. The value t in
the figure corresponds roughly to FPR = 0.4 and TPR = 0.6. The upper left
corner corresponds to FPR = 0 and TPR = 1 and is therefore called the optimal
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Figure 4: Figure showing the concept of a ROC curve with a corresponding
threshold. The rate TPR is plotted as a function of FPR. Each point on the
curve corresponds to an LR threshold t. The dashed line shows the Euclidean
distance (unweighted) from the optimal point (0,1) to the ROC curve, given by
(7).

point. Consequently, it is reasonable to choose a threshold that minimises the
weighted Euclidean distance between the ROC curve and the point (0,1),

ER(t) =

√
(wFPR(t))

2
+ (1− TPR(t))2. (7)

In our examples the weight w = 1. It may be that one of the errors, typically230

a false positive, is more important to avoid than the other, a false negative.231

The relative importance of errors can be modeled by using other values of w.232

Because we do not know the exact values of FPR and TPR, they are replaced233

by their estimates.234

3.4 The problem of multiple testing in blind search235

When doing a blind search among n DNA profiles, we compute one LR for236

each pair of DNA profiles, leaving us with a total of N = n(n − 1)/2 LRs,237

LR1, . . . ,LRN . If the true hypothesis is known in each case, the result of the238

search (or any other multiple testing scenario) can be summarised as shown in239

Table 2. In practice, the truth will only be known for simulated data.240

Assume that the only possibilities are the relationship stated by H1 or the241

null hypothesis H0, such that N0 + N1 = N . The number of type I errors242

or false positives is FP, while the number of false negatives is FN. Ideally, we243

want FP = 0 and FN = 0. However, this is not realistic. For a sufficiently244

large threshold t we will never reject H0 and there will be no false positives,245

i.e. FP = 0. Similarly, there will be no false negatives, FN = 0 (which means246
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Claim H0 Claim H1 Total
H0 true TN FP N0

H1 true FN TP N1

Total W0 W1 N

Table 2: The statistics of a blind search summarised, as described in Section 3.4.
Only W0, the number of LRs below t, and W1, the number of LRs above t, are
observed. Adapted from [32].

TP = N1), for a sufficiently small threshold. The challenge is to make both FP247

and FN acceptably small, or equivalently, make FP as small as possible and TP248

as close to N1 as possible.249

Even if the probability of a false positive is very small for a single pairwise250

comparison, the fact that there are so many tests in a blind search could lead251

to a substantial probability of at least one false positive. Approaches to analyze252

and control these false positives in a multiple testing setting have to be applied.253

The Family Wise Error Rate (FWER) [14] is often used for this purpose.254

FWER is defined as the probability of getting at least one false positive out
of N tests [32]. Let α denote the FWER. For N independent tests,

α = P(FP ≥ 1) = 1− (1− FPR)N ,

where the FPR, as defined in (5), is assumed to be the same for each test. As
we illustrate in the results section, the pairwise tests in a blind search are not
independent and so we use the Bonferroni bound

α ≤ N · FPR =
n(n− 1)

2
FPR.

Thus, to obtain an α below a given value, we choose a threshold so that

FPRα ≤ 2α/(n(n− 1)) (8)

for a fixed sample size n. Figure 5 plots FPRα as a function of α, for a blind255

search with 5, 10, 50, 100 and 200 individuals. The red vertical line is located256

at α = 0.05. The aim is to find the threshold t that minimizes ER(t) given in257

(7), with the constraint that FPR ≤ FPRα.258

4 Data and implementation259

4.1 Real data and simulations260

The DNA profiles evaluated in Section 5.3 and 5.4 are from 65 individuals of261

Northern European origin (Germany) forming 8 pedigrees, with a variety of262

declared kinships up to 7th degree (considered as number of meioses between263

each person [33]). Most founders were not genotyped, and pedigree sizes ranged264

from 5 to 17, with an average of 9 members per family. Genotyping was done265
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Figure 5: Highest acceptable value of FPR, as a function of α, given by (8) in
Section 3.4. Plotted for blind search with 5, 10, 50, 100 and 200 individuals.
The vertical line is located at α = 0.05.

via massively parallel sequencing using the ForenSeqTM DNA Signature Prep266

kit (Verogen Inc., San Diego, CA, USA) and will be discussed in full elsewhere.267

Samples were collected with informed consent. For the purposes of the cur-268

rent study, we consider only the length-based genotypes from 27 autosomal269

STRs contained in Plex B of this kit. Allele frequencies are based on the Eu-270

ropean dataset in PopSTR (http://spsmart.cesga.es/popstr.php [34, 35]) and271

downloaded from the Familias website (https://familias.no/download).272

The performance analysis in Section 5.2, that leads to the blind search in273

the following section, is based on simulated data assuming the same set of loci274

as the real data, i.e. the 27 autosomal STR loci described above. This set of275

STR markers is also used in the simulations for the last example in the results276

section.277

To demonstrate the use of X-chromosomal markers, data are simulated based278

on 12 X-chromosomal STR markers included in the kit ”Investigator Argus X-279

12”, with frequencies taken from an Argentinian database [36]. This is the most280

widely used kit for forensic applications.281

4.2 Implementation282

The analyses in this paper are all performed using R code developed by the283

authors. The code is available from the first author on request. The main engine284

of the code is an implementation of the parametric version of the likelihood285

function. This efficiently computes likelihoods for a series of relationships and286

convert to LRs and posterior probabilities. The code builds on the R libraries287

pedtools, ribd, forrel and pedmut developed by Magnus Dehli Vigeland, freely288

available from CRAN.289
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4.3 Assumptions290

All the equations above are based on (1) which is only valid under certain as-291

sumptions. Firstly, the population is assumed to be in Hardy-Weinberg Equilib-292

rium (HWE) and in Linkage Equilibrium (LE). Secondly, mutations are ignored.293

Mutation rates are usually small, and the errors induced by ignoring them in294

likelihood calculations are typically negligible [37]. However, for a parent off-295

spring (PO) relationship, i.e. κκκ = (0, 1, 0), the likelihood will be zero if the two296

samples have genotypes at any locus that are incompatible with this hypothesis,297

e.g. gA = aa and gB = bb. For this special case, there is a simple formulation of298

the likelihood that incorporates mutation (see [10]). We ignore allele drop-ins299

and drop-outs, null alleles and genotyping errors.300

5 Results301

The first example shows that the LRs in a blind search are not independent.302

The second example demonstrates how to evaluate the performance of a blind303

search such as we present in the third example. We then carry out a blind search304

on X-chromosomal markers before showing how inbreeding can be analysed.305

5.1 Correlation between LRs in a blind search306

In this example, we show by simulation a case where the LRs of a blind search307

are correlated. Consider the pedigree in Figure 6 and the hypotheses H1 stating308

a sibling relationship and H0 unrelated. Let LR1,3 denote the likelihood ratio309

when individual 1 is compared to 3 and define LR2,3 analogously. We use 10310

independent loci, each with 10 alleles and equal allele frequencies of 0.1. Note311

that the LRs are random variables. We simulate 1000 sets of DNA profiles for312

the three shaded individuals of the pedigree in Figure 6. The values of LR1,3 and313

LR2,3 are computed for each simulation. The results are shown in the scatter314

plot in Figure 6, the red line denoting a regression line.315

The estimated correlation between the logarithmic values of LR1,3 and LR2,3316

is 0.484. This shows that the LRs are not independent. In other words, the317

outcome of different comparisons cannot be interpreted independently if one318

individual is involved in several comparisons. We elaborate on the implications319

of this correlation in the discussion.320

5.2 From FWER to choice of LR threshold321

In Section 5.3, we carry out a blind search among 65 individuals, genotyped for322

a set of 27 STR loci. Here, we present the preliminary evaluation required to323

obtain optimal LR thresholds for that search.324

The first step is to decide on an acceptable value of α. From this value of α325

we can decide on an upper limit of the FPR and then the corresponding optimal326

LR threshold. For a blind search of n = 65 individuals, with the requirement327
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individual. Red line shows regression line. Right: Pedigree used for simulation
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that α ≤ 0.05, Equation (8) gives an upper limit for the false positive rate of328

FPR0.05 = 2.404 · 10−5.329

The next step is to analyse how the FPR and TPR relate to each other for330

this particular set of markers. This depends on what hypotheses we test in the331

blind search. In the next example, we consider the hypotheses H1: PO, H2:332

S, H3: H/U/G and H4: FC, all against H0: UN. We therefore consider these333

hypotheses when estimating FPR and TPR.334

Figure 7 shows ROC curves for the different hypotheses. The values for F̂PR335

and T̂PR are estimated from simulated data, as described in Section 3.2. For H1:336

PO, we only obtained estimates of FPR smaller than 10−7, with a corresponding337

estimated TPR of 0.999 or higher. This shows that the LR comparing PO to338

UN is high when the true relationship is PO and low otherwise. Parent offspring339

and unrelated individuals are easily distinguished as expected and so we have340

omitted this curve from the graph.341

The ROC curves show the estimated properties of a single computation of342

the LR, for the respective hypotheses, for this specific set of STR markers. The343

curves do not depend on the number of individuals in the blind search.344

The last step in the performance analysis is to identify the optimal threshold,345

by minimizing ER(t), with the constraint F̂PR ≤ FPRα. The highest optimal346

thresholds for α = 0.05 and α = 0.1 are listed in Table 3.347

5.3 Blind search with real data348

In this example we do a blind search on the data described in Section 4.1.349

The data set contains 65 DNA profiles. A blind search among these profiles350

results in 2080 pairwise comparisons. We want to test the hypotheses H1: PO,351

κκκ1 = (0, 1, 0), H2: S, κκκ2 = (0.25, 0.5, 0.25), H3: H/U/G, κκκ3 = (0.5, 0.5, 0), H4:352
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α = 0.05 ⇒ FPRα = 2.404 · 10−5

t F̂PR T̂PR

PO 65531 5.439 · 10−8 1.000
S 771 2.296 · 10−5 0.961
H 2501 2.365 · 10−5 0.184
FC 421 1.689 · 10−5 0.014

α = 0.1 ⇒ FPRα = 4.808 · 10−5

t F̂PR T̂PR

PO 65531 5.439 · 10−8 1.000
S 311 4.713 · 10−5 0.972
H 1551 4.770 · 10−5 0.232
FC 251 4.421 · 10−5 0.022

Table 3: Optimal thresholds for different relationships, with corresponding F̂PR

and T̂PR, for the analysis performed in Section 5.2. For α = 0.05 (left table)
and α = 0.1 (right table), for blind search with n = 65 individuals.

FC, κκκ4 = (0.9375, 0.0625, 0), against H0: UN, κκκ0 = (1, 0, 0). In the previous353

section, we obtained optimal thresholds for blind searches with these hypotheses354

(Table 3). A step wise mutation model is implemented in the evaluation of PO.355

Table 4 summarises the blind searches performed on the real data. This356

table is possible to construct because we know the true relationship for each357

pair from the pedigree information. In practice, only the sum of the last three358

rows (for each relationship) would be known.359

For PO, we are left with a list of 47 hits. 43 of these are true PO, while 4 of360

the 47 hits are pairs of individuals with another relationship. 3 pairs with true361

PO relationship are not detected. By lowering the threshold, the remaining362

3 pairs could have been detected.However, the probability of obtaining false363

positives increases by decreasing the threshold. For S, only one true sibling pair364

is not detected and there is only one false positive. However, the list of hits365

contains 66 pairs of individuals, 53 of these having another relationship.366
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PO S H/U/G FC

N1 46 13 64 21
TP 43 12 12 0
FP 0 1 2 0

H1 Claimed, other true 4 53 57 59

Table 4: Results of the blind search among n = 65 individuals in Section 5.3
with α = 0.05 where N1 denotes the total number of pairs in the sample with
the tested relationship, TP is the number of these pairs with a LR above the
threshold, and FP is the number of unrelated individuals with a LR above the
threshold. The last row gives the number of other (differently related) pairs
who also have a LR above the threshold

.

We conclude that the summary in Table 4 is consistent with the performance367

evaluation shown in Table 3. PO can easily be distinguished from UN. The368

more distant the tested relationship, the lower the power to distinguish it from369

unrelated. With the obtained optimal thresholds, the number of false positives370

stays low as desired. For each hypothesis tested, the list of pairs warranting371

further investigation comprises those in the final row of Table 4, i.e., those who372

do not have the tested relationship and who are also not unrelated.373

5.4 Analysis of posterior probabilities374

The result of each of the blind searches performed in Section 5.3 is a list of pairs375

with a LR above the threshold. Some pairs of individuals may appear in several376

of the lists, while other pairs may not be present in any of the lists. In this377

example, we turn to Bayesian analysis to further investigate specific pairs.378

Table 5 shows LR values for 7 pairs from the above blind search. Values379

above the LR thresholds are in bold font. The rightmost column gives the true380

relationship. Only the first two pairs have LR values above the thresholds given381

in the left table of Table 3 corresponding to α = 0.05. For pairs 3 to 7, the LRs382

are low, some below 1, indicating that a UN relationship is more plausible than383

the alternative hypothesis.

PO S H/U/G FC UN True

1 5.181·1010 1.205·108 1.825·107 5.593·104 1 PO

2 353.460 1.544·108 3.886·105 5.189·103 1 S

3 0 0.681 57.572 20.519 1 H

4 0 5.017·10-3 4.156 4.0984 1 U

5 0 0.030 13.269 16.916 1 G

6 0 1.115·10-4 0.163 1.375 1 FC

7 0 1.821·10-6 0.022 0.349 1 UN

Table 5: LR values for seven pairs of the blind search in Section 5.3. Values
for H, U and G are the same and shown in the column H/U/G. Values smaller
than 10−6 are set to 0.

16



384

Next we calculate posterior probabilities to see if it is possible to infer a385

relationship for the different pairs. LR thresholds are not required for this.386

Table 6 shows posterior probabilities for the different hypotheses, with flat prior387

probabilities, i.e., πi = 1/7 for i = 0, ..., 6. The highest probability for each pair388

is in bold and corresponds to the true relationship for several of the pairs. For389

example, the LRs comparing S, H/U/G and FC against UN for the second pair390

were all above the relevant LR thresholds. The posterior probability of S is close391

to 1, now making it possible to correctly infer this relationship. For pairs 3, 4392

and 5, the highest posterior probabilities are just below 0.3. Even though the393

corresponding relationship is the most probable, a posterior probability of 0.3394

is maybe not high enough to allow firm conclusions to be drawn.

PO S H/U/G FC UN True

1 0.997 0.002 0.0004 1.076·10-6 0 PO

2 2.272·10-6 0.993 0.002 3.336·10-5 0 S

3 0 0.0003 0.295 0.105 0.005 H

4 0 2.86·10-4 0.237 0.233 0.057 U

5 0 5.15 · 10-4 0.230 0.293 0.017 G

6 0 3.90 · 10-5 0.057 0.480 0.349 FC

7 0 1.29 · 10-6 0.0162 0.246 0.706 UN

Table 6: Posterior probabilities, computed from the LR values of Table 5, when
applying a flat prior, i.e., πi = 1/7 for i = 0, ..., 6, as described in Section 5.4.
Values for H, U and G are the same and shown in the column H/U/G. Proba-
bilities smaller than 10−6 are set to 0.

395

The relationships H, U and G are indistinguishable in the parametric frame-396

work presented in Section 2. Also posterior probabilities with a flat prior as in397

Table 6 can not differentiate between them. Additional information, preferably398

objective, needs to be considered.399

Suppose now that we have knowledge of how many pairs of the different400

relationships are present among the DNA profiles. This could be the case in a401

plane crash with a known passenger list. The number of pairs of the different402

relationships are given in row 2 (N1) of Table 4. There are 1867 unrelated pairs.403

The prior probabilities are π0 = 0.898 (UN), π1 = 0.022 (PO), π2 = 0.006 (S) ,404

π3 = 0.0020 (H), π4 = 0.016 (U), π5 = 0.013 (G) and π6 = 0.010 (FC).405

Posterior probabilities using these more informative priors are shown in Ta-406

ble 7. The prior probability of a PO relationships is π1 = 0.022, i.e., there is407

a chance of 2.2% that a pair of individuals has a PO relationship. The corre-408

sponding posterior probability for the first pair is 0.999. The genetic data give409

such strong support to PO, that even though the prior probability is low, the410

posterior probability of this relationship is approximately 1.411

In this blind search (as in most other blind searches), most pairs of individ-412

uals are unrelated, making the prior probability of UN close to 1 and the others413

low. This requires the LRs for the other relationships to be high in order to be414

supported by the posterior probabilities. For the relationships H/U/G and FC,415
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PO S H U G FC UN True

1 0.999 6.57·10-4 3.06·10-5 2.52·10-4 2.07·10-4 0 0 PO

2 8·10-6 0.988 7.65·10-4 0.006 0.005 5.36·10-5 0 S

3 0 0.001 0.038 0.317 0.259 0.072 0.312 H

4 0 2.94·10-5 0.007 0.062 0.051 0.038 0.841 U

5 0 1.26·10-4 0.017 0.143 0.117 0.116 0.608 G

6 0 0 3.42·10-4 0.003 0.002 0.015 0.979 FC

7 0 0 4.78·10-5 3.95·10-4 3.23·10-4 0.004 0.995 UN

Table 7: Posterior probabilities with informative priors, as described in Sec-
tion 5.4. Probabilities smaller than 10−6 are set to 0.

the LR of the true relationships against UN is typically low. The LR of UN416

against UN is always 1. The combination of priors and LRs makes the posterior417

probability of UN high while the posterior probability of the true relationship418

remains low.419

For this reason, this particular set of prior probabilities, even though objec-420

tive, does not help us to distinguish between the H, U and G relationships in421

these data.422

5.5 Blind search with X-chromosomal markers423

Because a male has only one X-chromosome, paternal half sisters (HSP) must424

inherit the same X-chromosome from their common father. Their second X-425

chromosomes, inherited from their respective mothers, are not IBD (since their426

mothers are unrelated), and hence, the IBD coefficients for a HSP relationship427

are κκκ = (0, 1, 0). The IBD coefficients for maternal half siblings (HSM), whether428

considering X-chromosomal or autosomal markers, are κκκ = (0.5, 0.5, 0). In the429

following example, we show with simulated data how X-chromosomal markers430

can distinguish between HSP and HSM.431

We simulated genotypes for 12 X-chromosomal STR markers, for the shaded432

individuals in Figure 8. Table 8 presents the average posterior probabilities433

over 100 simulations, for the relationships PO, S, HSP, HSM and UN, for the434

six possible comparisons between the individuals A, B , C and D. A flat prior435

πi = 1/5 for i = 0, . . . , 4 is assumed.436

The evidence in favour of C-D being HSM, shown in bold in Table 8, could437

not be obtained using autosomal markers. Since we are using a flat prior, the438

LR comparing maternal to paternal half sibs can be found from the posterior439

probability ratio, 0.81327/0.01916 = 42.4. This value may not be decisive on its440

own, but supplements other evidence. Note that HSP cannot be distinguished441

from PO using X-chromosomal markers alone as the row for the comparison A-442

C confirms. Age information, autosomal marker data or other non-DNA data443

may solve such cases.444
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A B C D

Figure 8: Pedigree connecting the individuals of the analysis in Section 5.5.
Marker data are simulated for the four daughters to demonstrate blind search
with X-chromosomal markers.

PO S HSP HSM UN

A-B 0.039 0.921 0.039 0.001 0.000

A-C 0.475 0.039 0.475 0.012 2 · 10−5

A-D 0.000 0.000 0.000 0.154 0.846

B-C 0.471 0.045 0.471 0.012 2 · 10−5

B-D 0.000 0.000 0.000 0.146 0.854

C-D 0.019 0.001 0.019 0.813 0.147

Table 8: Posterior probabilities averaged over 100 simulations for the compar-
isons between the four daughters in Figure 8.

.

5.6 Half siblings with inbred founder445

Computation of LRs and posterior probabilities is restricted to a limited set446

of predefined pedigree relationships in many current software implementations.447

The parametric form of the LR given in (3) enables us to compute LRs and448

do blind search for any pairwise relationship. In this example we show how449

background inbreeding can be modelled and how this can be taken into account450

in the Bayesian framework.451

Assume a set of DNA profiles among which we want to do a blind search. The452

number of profiles is not important. The pedigrees connecting the individuals453

are unknown, but we know that the individuals come from a population where454

inbreeding is common. We consider the hypotheses H1: PO, H2: S, H3: H and455

H4: H with founder inbreeding f = 0.25, all against H0: UN. The relationship456

in H4 is shown in Figure 9. Individuals A and B are outbred paternal half457
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A B

f = 0.25

Figure 9: Half sibling pedigree with founder inbreeding assumed in the analysis
in Section 5.6.

siblings, with the father being inbred with an inbreeding coefficient f = 0.25.458

This value of f corresponds to extreme inbreeding where the parents of the459

father are siblings. The IBD coefficients for the half sibling relationship are460

κκκ = (0.375, 0.625, 0).461

We consider one pair with true relationship H4. A total of 100 simulations of462

DNA profiles for this pair is performed. LRs and posterior probabilities, with a463

flat prior πi = 1/5, i = 0, . . . , 4 are computed for each simulation. Mean values464

of the posterior probabilities for the hypotheses H0, ...,H4, are: p̄1 = 0.017,465

p̄2 = 0.094, p̄3 = 0.374, p̄4 = 0.495 and p̄0 = 0.019. It can be seen that the466

mean posterior probability of hypothesis H(f) is about 0.5, making it possible467

to distinguish it from the half sibling relationship without inbreeding.468

The coefficient of inbreeding in this example is quite high. Lower values of469

f makes the pair genetically more similar to half siblings without inbreeding,470

and distinguishing these relationships becomes harder without additional infor-471

mation. This high degree of inbreeding may be more relevant for non-human472

applications.473

6 Discussion474

The topic of this paper is blind search, a procedure used to search for pairwise475

relationships among a set of unidentified DNA profiles. Each pairwise compar-476

ison is similar to a kinship test performed, for instance, to resolve a paternity477

dispute. In the paper, we focus mainly on issues related to multiple testing. For478

this reason we will not discuss Hardy-Weinberg equilibrium and other assump-479

tions that our applications share with other applications in forensic genetics.480

For instance, it is not obvious how evidence from different DNA sources like481

autosomal markers and X-chromosomal markers should be combined. However,482

this challenge is no different for a blind search than for a kinship test and is483

therefore not addressed here.484
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Case workers must decide on how the results of a blind search should be485

evaluated and reported. The context, or specific application, is obviously not486

irrelevant. In a DVI application, a false identification is likely to be a more487

serious error than missing an identification. To account for this, the metric for488

determining the threshold in (7) allows a weight to be specified which would489

penalise false identifications. Other applications, such as screening a database490

for relatives prior to estimating allele frequencies, may not require a weighting491

for errors. If costs can be specified for the possible errors, optimal decision rules492

can be derived as explained in Chapter 8.1 of [10] . However, there is hardly ever493

an objective way to balance the two errors that can occur and so specification494

of weights or costs may not be a viable option. We have used the unweighted495

form of the metric throughout.496

We only presented one method to determine an optimal threshold based on497

the distance illustrated in Figure 4 although several alternatives are available498

[31]. Results using different approaches were practically identical for the exam-499

ples we presented and so we chose not to discuss the thresholds based on the500

other metrics.501

Figure 6 shows that the LRs from a blind search may be correlated when502

the same individual is involved in two comparisons. This has several implica-503

tions. In particular, the results of different comparisons cannot be interpreted504

independently. Intuitively, we may get a high LR if unrelated individuals A and505

B happen to share a rare allele. Another individual C, who is a close relative of506

A, is likely to share this allele IBD with A and so we can also expect a high LR507

when comparing B and C. Importantly, the methods used to control the overall508

error rate must allow for dependence and for this reason we used the Bonferroni509

bound (8). Furthermore, a blind search will not necessarily provide a globally510

consistent ‘solution’ in the sense that the LRs may support impossible combina-511

tions of relationships, like one individual having two mothers. Finally, the true512

relationship may not be among the alternatives considered. This is also true for513

the Bayesian approach.514

A Bayesian interpretation might seem more appropriate than the frequentist515

alternative for blind search applications than for a kinship case. The alternative,516

based on the LR, is designed to deal with only two hypotheses. If there are517

several hypotheses, a reference hypothesis must be specified. The posterior518

probabilities reported using a Bayesian approach make comparison of several519

competing hypotheses simpler as they are between 0 and 1. However, as always,520

a prior is needed for the Bayesian approach and the choice of prior may be521

crucial. If DNA is of poor quality, leading to few markers being typed, or if the522

competing hypotheses specify relationships that are very close to each other,523

conclusions may hinge on the choice of the prior.524

An important aspect of this paper is the use of the parametric represen-525

tation of relationships. This enables us to investigate any admissible pairwise526

relationship between two outbred individuals. By defining founder inbreeding527

in a pedigree structure, as shown in Figure 3, background inbreeding can also528

be modelled [22]. Rather than proposing specific alternative relationships, we529

could simply estimate the coefficients describing the relationship. In the out-530
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bred case, these estimates can be plotted in the IBD triangle in Figure 2 which531

would indicate where these relationships lie in relation to the well known re-532

lationships. For instance, pairs with estimates close to (0.25, 0.25) could be533

classified as siblings.534

Throughout, we have restricted attention to pairwise testing. In principle,535

the blind search can be extended to search for relationship between triplets.536

However, the parametric approach based on the Jacquard coefficients then be-537

comes impractical. The number of parameters needed to describe the relation-538

ship between three individuals increases, from 2 to 15 in the outbred case.539

Issues to do with reporting DNA evidence are currently of key interest as540

evidenced by the so-called “DNA database controversy” (see [11] and references541

therein). The main message of this paper is that there are also problems related542

to multiple testing in kinship analyses which cannot be ignored.543
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victim identification by kinship analysis: the Lampedusa October 3rd, 2013556

shipwreck. Forensic Science International: Genetics, 44:102–156, 2020.557

[3] L. Olivieri, D. Mazzarelli, B. Bertoglio, D. De Angelis, C. Previderè,558
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A Table of genotype probabilities661

Table 9: The conditional probability P(G | Ji) of a pair of genotypes G =
(gA, gB), given a Jacquard state Ji. The symbols a, b, c and d represent different
alleles, with population frequencies pa, pb, pc and pd respectively.

(gA, gB) J1 J2 J3 J4 J5 J6 J7 J8 J9
(aa, aa) pa p2a p2a p3a p2a p3a p2a p3a p4a
(aa, bb) 0 papb 0 pap

2
b 0 p2apb 0 0 p2ap

2
b

(aa, ab) 0 0 papb 2p2apb 0 0 0 p2apb 2p3apb
(aa, bc) 0 0 0 2papbpc 0 0 0 0 2p2apbpc
(ab, aa) 0 0 0 0 papb 2p2apb 0 p2apb 2p3apb
(bc, aa) 0 0 0 0 0 2papbpc 0 0 2p2apbpc
(ab, ab) 0 0 0 0 0 0 2papb papb(pa + pb) 4p2ap

2
b

(ab, ac) 0 0 0 0 0 0 0 papbpc 4p2apbpc
(ab, cd) 0 0 0 0 0 0 0 0 4papbpcpd
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B Importance sampling662

Importance sampling is a method that can be used to approximate small prob-
abilities. We first introduce the indicator function,

I(LR > t) =

{
1, if LR ≥ t,

0, if LR < t.

The expectation of I becomes

E(I(LR ≥ t)) = 0 · P(LR < t) + 1 · P(LR ≥ t)

= P(LR ≥ t)

= FPR

It is therefore valid to say that FPR = E(I(LR ≥ t)). Then consider the
expression for the expected value in a more general sense. The value of the
function I is dependent on the value of the LR, which is a function of the
genotypes G of the DNA profiles. The probability distribution of G is governed
by the relationships that has generated the data. For this consideration, we
assume that this relationship is either H0 or H1. Denote by X the values that
I can take on. We then have

E(I(LR ≥ t)) =
∑
j

Xj · P(Gj | H0) ≈ 1

N

N∑
i=1

I(LRH0
i ≥ t).

In the last expression, the expected value is estimated by the sample mean
of I, from a set of N simulations. The genotypes G, and then also X, are
distributed according to H0, which is indicated by the superscript of the LR.
Then, consider the opposite probability distribution, P(G | H1), where the
genotypes are distributed according to H1. As long as P(Gj | H0) = 0 whenever
P(Gj | H1) = 0, we can write

E(I(LR ≥ t)) =
∑
j

Xj · P(Gj | H0)

P(Gj | H1)
P(Gj | H1) ≈ 1

N

N∑
i=1

I(LRH1
i ≥ t)

LRH1
i

.

Using this method, the LR is sampled under the wrong hypothesis (H1), instead
of the desired hypothesis (H0). The bias this introduces is adjusted for by the
weight LRH1 . An estimate of FPR is then

F̂PR =
1

N

N∑
i=1

I(LRH1
i ≥ t)

LRH1
i

.
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Estimating realised pairwise relatedness
with bootstrap confidence

Abstract: Estimation of pairwise relatedness from genetic marker data was estab-
lished several decades ago, and continues to be an important tool both in forensics
and other fields of genetics. Typical implementations use maximum likelihood
methods to estimate various relatedness coefficients, which describe the relationship
in different ways. In this work we investigate bootstrap approaches to assessing the
uncertainty of such estimates. In particular, we compare non-parametric bootstrap,
where existing marker data are sampled with replacement, to parametric bootstrap,
where marker data are sampled from the likelihood function. Differences and simi-
larities between the methods are discussed and examples based on simulated and
real data are given. In many cases both methods give similar results. However, we
argue that from a theoretical point of view parametric bootstrap is more reasonable
to use.

Keywords: Pairwise relatedness, Identity-by-descent (IBD), Bootstrap, Confidence
regions

1 Introduction

Relatedness is of interest in areas as disparate as human disease, gene mapping,
plant breeding and ecology [1]. In forensic applications, the focus has traditionally
been on the pedigree relationship connecting individuals [2], ranging from standard
paternity testing to disaster victim identification cases [3].

We restrict attention to pairwise relationships, i.e., how two individuals are
related. The traditional approach to relationship inference in forensic genetics is to
compare competing hypotheses by means of a likelihood ratio (LR). This approach
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Fig. 1: The pedigree relationship to the left gives rise to a IBD pattern between the
genomes of two individuals, summarised as the realised relatedness between two individ-
uals. We only observe genotypes at discrete points along the genome, and from this we
estimate the realised relatedness.

limits the analysis to a finite set of alternatives. A parametric LR approach that
considers all possible alternatives has been suggested [4].

An alternative approach to kinship testing is to estimate appropriate relat-
edness parameters. This approach is the focus of this work. Figure 1 summarises
our framework and approach. The panel to the left describes the pedigree relation-
ship between two brothers. The identity-by-descent (IBD) parameters describes
relationships between pairs of individuals. Two homologous alleles are IBD if they
are identical by state (IBS) and inherited from the same ancestor allele. Mendel’s
laws implies that non-inbred full brothers share 0, 1 or 2 alleles IBD at a random
autosomal locus, with probabilities 0.25, 0.50 and 0.25 respectively. Hence, these
numbers are also the expected fractions of the autosomal chromosomes sharing the
respective number of alleles. However, in a given pair of individuals, the actual
IBD-sharing proportions – referred to as the realised relatedness – may differ sub-
stantially from the expected values. The realised relatedness cannot be observed
directly, but can be estimated by means of genetic markers, as indicated by the
two middle panels of Figure 1. It should be noted that even with complete sequence
data from both individuals, the observed patterns of IBS will rarely determine IBD
status absolutely, hence there will always be some uncertainty in the estimation of
realised relatedness.

The aim of this work is to assess the uncertainty of the estimated realised
relatedness through bootstrapping and confidence regions. The literature in general
lacks a methodical discussion about the use of bootstrapping in the current context.
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Maximum likelihood (ML) estimation of pairwise relatedness has been reviewed
by Thompson [5], Milligan [6], and Anderson and Weir [7]. Milligan reduced esti-
mates of the more refined relatedness coefficients to the one-dimensional kinship
coefficient, and evaluated the estimator by means of bias, standard error and root
mean square error. Anderson and Weir [7] also assessed the uncertainty in the
kinship coefficient. They apply non-parametric bootstrap (resampling with replace-
ment) across loci. A confidence interval was then computed from the bootstrap
samples.

The choice made by previous authors to focus on the kinship coefficient is
sensible, as it is easier to evaluate than the nine-dimensional identity coefficients
of Jacquard [8]. However, these coefficients offer much more information about a
relationship than the single kinship coefficient. We aim to show that bootstrap
methods are well-suited to assess the uncertainty of higher-dimensional coefficients.
Moreover, we offer a comparison between parametric and non-parametric bootstrap.
We argue that the parametric bootstrap, which apparently has not been previously
used for kinship applications, in certain situations outperforms the non-parametric
version.

2 Review of previous results

In the following sections, we review the definitions of standard relatedness coeffi-
cients, and how these are estimated.

2.1 Pairwise relatedness coefficients

The kinship coefficient ϕ between two pedigree members is the probability that a
random allele from one individual is IBD to a random allele of another individual, at
the same autosomal locus. Building on work by Cotterman [9], Thompson defined
the coefficients κκκ = (κ0, κ1, κ2) as a more refined measure of relatedness, valid for
outbred individuals, where κi is the probability of sharing exactly i alleles IBD
at a random autosomal locus [5]. In symbols we write κi = P(Ki | pedigree), for
i = 0, 1, 2, where Ki is the event of sharing i alleles IBD (see Figure 2). Because
κ0 + κ1 + κ2 = 1, the coefficients can be visualised by the point (κ0, κ2) in the
IBD triangle of Figure 3.

Thompson [10] showed that κκκ is restricted by the inequality κ21 ≥ 4κ0κ2,
defining an inadmissible region in the IBD triangle (shown in grey). It is impossible
to construct a pedigree where the relationship between to pedigree members has
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B
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Fig. 2: The nine possible Jacquard states Ji for i = 1, 2, . . . , 9 between the four alleles of
the individuals A and B. Dots denote alleles, while lines connecting the dots indicate IBD
alleles. The last three states J9, J8 and J7 are for outbred individuals reduced to the IBD
states K0, K1 and K2, respectively.

IBD coefficients in the inadmissible region. The IBD coefficients relate to the
kinship coefficient through the equation ϕ = 1

4κ1 + 1
2κ2, illustrated by the dashed

lines in Figure 3.
Jacquard described inbred relationships by introducing the nine condensed

identity coefficients ΔΔΔ = (Δ1,Δ2, . . . ,Δ9) [8]. These coefficients, also called the
Jacquard coefficients are defined as the expected relative frequencies of the nine IBD
configurations (or states) J1, . . . , J9 shown in Figure 2, i.e. Δi = P (Ji | pedigree),
where i = 1, 2, . . . , 9. When both individuals are outbred, the states J1, . . . , J6
cannot occur, and ΔΔΔ reduces to κκκ. The Jacquard coefficients relate to the kinship
coefficient through the equation

ϕ = Δ1 +
1

2
(Δ3 +Δ5 +Δ7) +

1

4
Δ8. (1)

2.2 Realised relatedness

The realisation of a pedigree relationship, i.e., the actual proportion of the genomes
of two individuals in the different IBD-sharing states, may differ from the IBD-
sharing probabilities associated with their pedigree relationship [11]. We call these
actual IBD sharing proportion the realised relatedness, denoted by ΔΔΔR, or κκκR

for two outbred individuals. Some pairs of individuals may have genomes that
share long but few segments IBD, while other individuals have genomes that share
short but many, segments IBD, even though the realised relatedness is the same.
The IBD coefficients describing the realised relatedness, κκκR, is only restricted by
κR2 ≤ 1− κR0 .

Hill and Weir [12] viewed the realised relatedness, given a pedigree relationship,
as a stochastic variable and derived formulas for the variation and skewness of the
realised relatedness for a series of outbred pedigree relationships. They showed that
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Fig. 3: IBD triangle with location of some common relationships. Dashed lines show how ϕ

is related to the IBD coefficients. The inadmissible region for pedigree relationships is shown
in grey.

the realised IBD-sharing proportions between two genomes, for a given pedigree
relationship, vary considerably.

The corners of the IBD triangle represent the only (outbred) relationships with
no variance in realised relationship. For example, any outbred parent-offspring
(PO) relationship has κκκR = κκκ = (0, 1, 0). More generally, the realised value of any
pedigree-based coefficient of 0, is also 0. For example, all relationships located on
the bottom edge of the IBD triangle, including half siblings (H), avuncular (U),
grandparent-grandchild (G) and first cousins (FC), must satisfy κR2 = 0. The above
observations may be summarised as follows

Δi = 0 ⇒ ΔR
i = 0, i = 1, . . . , 9. (2)

2.3 Estimation of realised relatedness

Based on a set of DNA profiles, we are able to perform a maximum likelihood (ML)
estimation of the relatedness coefficients. Let G = (g1, . . . , gM ) denote two DNA
profiles genotyped at M independent loci, where gj = (gA,j , gB,j) is the genotypes
of individual A and B at locus j. The likelihood of ΔΔΔR, based on the observations
G, is given by the equation

L(ΔΔΔR) =

M∏
j=1

( 9∑
i=1

ΔR
i P(gj | Ji)

)
. (3)
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The probabilities P(gj | Ji) are given in Table 4. The estimated realised relatedness,
Δ̂ΔΔR, is the maximum of (3) in the parameter space

Ω = {(ΔR
1 , . . . ,ΔR

9 ) |
9∑

i=1

ΔR
i = 1, 0 ≤ ΔR

1 , . . . ,ΔR
9 ≤ 1} ∈ R

9. (4)

ML estimation of the IBD coefficients was described by Thompson in 1975 [5], and
investigated further and compared to other estimation methods by Milligan [6].
See also other references therein. These papers evaluate the estimation by reducing
κκκ to the one-dimensional kinship coefficient ϕ. Milligan concludes that the ML
estimator has the smallest variation, but is more biased under some conditions than
the other estimation methods he investigates. Anderson and Weir [7] also assess
the bias in the estimation of the kinship coefficient. The papers by Milligan and
Anderson and Weir do not distinguish between pedigree relationships and realised
relatedness. However, this does not affect the bias analysis for some relationships,
like PO and UN, because the realized relatedness for these relationships, in the
outbred case, are always ϕR = 0.25 and ϕR = 0, respectively, as a consequence
of (2).

Milligan points out that because the ML estimate is restricted to the biological
meaningful range, this introduces a bias in the estimate of relationships close to the
boundary. Many of the common and important pedigree relationships are located
on the border of the parameter space, and the corresponding realised relatedness
will also be located on the boundary as implied by (2). The limited number of
independent loci available is also an important contributor to bias, affecting both
interior and boundary points.

Given a set of regularity conditions, the ML estimate has many desirable
asymptotic properties [13]. One of the regularity conditions is that the parameter
should be part of the interior of the parameter space. In e.g. a forensic casework
setting, we are not able to know if the realised relatedness between two individuals
fulfill this requirement. Consequently, an explicit formula to quantify the uncertainty
of the ML estimate is not available for our applications. We therefore estimate the
uncertainty by bootstrapping [14].

The likelihood model (3) is only valid under certain conditions. We assume
throughout that the loci are independent and that the population is in Hardy-
Weinberg Equilibrium (HWE). Deviation from HWE affects the probabilities in
Table 4. Anderson and Weir [7] propose an estimator suitable for structured
populations, or equivalently, populations not in HWE. Mutations are not modeled
by (3). For mutations to be meaningful in this context, a pedigree would have to be
defined. In addition, artifacts like drop-ins, drop-outs, silent alleles and genotyping
errors are not modeled.
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3 Methods

Bootstrapping [14] is a group of simulation based methods used to assess the
uncertainty of a parameter estimate when an explicit formula for the uncertainty
is not available. The general idea behind bootstrapping is the following:

Suppose a set of observations G are generated from some unknown probability
distribution F. Associated with this distribution is our parameter of interest ΔΔΔR,
which we estimate by Δ̂ΔΔR = T (G). We generate bootstrap data sets G∗1, . . . , G∗B
from F̂, an approximation of F, aimed to mimic the stochastic process that generated
the original data. Bootstrap estimates are calculated from these new data sets, i.e.,
Δ̂ΔΔ
∗
b = T (G∗b ) for b = 1, . . . , B. The function T that estimates ΔΔΔR is not explicitly

known and estimation is therefore performed numerically.
The true variance of the bootstrap estimate is estimated by the sample variance

of the bootstrap estimates. We want the true variance of the bootstrap estimates to
approximate the variance of the original parameter estimate. There are two sources
of error regarding this approximation. One source is that the sample variance of
the bootstrap estimates is computed from a limited number of bootstrap estimates,
B. Increasing B will reduce the difference between the sample variance and the
true variance of the bootstrap estimates. The second source of error is subjected
to how well the bootstrap method approximates the distribution F. Increasing the
observations in the original data set G can contribute to decreasing this error.

Parametric and non-parametric bootstrap are two bootstrapping procedures
that differ in the way bootstrap data sets are generated. In other words, F̂ differ.

The validity of the bootstrap procedure depends on many of the same regularity
conditions as the ML estimator, the most important one being the requirement
that the parameter should be an interior point in the parameter space.

3.1 Non-parametric bootstrap

In non-parametric bootstrap, bootstrap data sets are made by resampling data with
replacement from the observation we have, i.e., randomly draw M joint genotypes
with replacement from our two DNA profiles.

Only the joint genotypes of the two original DNA profiles are possible to
observe in the bootstrap data sets. The same locus may appear several times in a
bootstrap sample, opposite to what is the case for the original DNA profiles. This
would not have been a problem if the markers had been independent identically
distributed (i.i.d). However, the markers are non-i.i.d and the question is then if
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the distribution of the bootstrap estimates resembles the true distribution of the
parameter estimator.

3.2 Parametric bootstrap

An alternative to the non-parametric bootstrap is parametric bootstrap. Bootstrap
data sets are obtained by sampling new joint genotypes at each locus individually,
from the probability distribution

P(G | Δ̂ΔΔR) =

9∑
i=1

Δ̂R
i P(G | Ji), (5)

where G is a random variable taking values in the joint genotypes that are possible to
observe at a locus. As an example, consider the case κ̂κκ = (0, 1, 0). Genotypes for the
bootstrap data sets are sampled from the distribution P(G | κ1 = 1) = P (G | K1).
From Table 4 we see that only joint genotypes with at least one allele IBS are
possible to sample.

After obtaining the original estimate Δ̂ΔΔR, the original DNA profiles are no
longer used. Hence, given a set of markers and corresponding allele frequencies, the
distribution of the parametric bootstrap estimates are equal for cases where the
original estimates Δ̂ΔΔR are the same.

3.3 Confidence regions

The uncertainty of a parameter estimate can be assessed by a confidence interval,
or a confidence region for a multi-dimensional parameter.

We first focus on the one-dimensional kinship coefficient ϕ, which relates to
the Jacquard coefficients through (1). Anderson and Weir [7] apply non-parametric
bootstrap and approximate a 95% confidence interval for ϕR as the interval
covered by the middle 95% of the bootstrap estimates, often called a percentile
bootstrap confidence interval. By this method, the bootstrap confidence interval
is constructed by the percentiles of the empirical distribution of the bootstrap
estimates. A (1 − α)100% bootstrap confidence interval for ϕR is given by the
interval

(ϕ∗(α/2), ϕ∗(1−α/2)),

where ϕ∗(1−α/2) is the 1 − α/2 percentile of the empirical distribution of the
bootstrap estimates. The one-dimensional confidence intervals we present in the
result section are given by this interval. To visualize a confidence region in nine-
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dimensions, as would be the case for ΔΔΔR, is not practical. We therefore evaluate
each Jacquard coefficient marginally by use of the percentile method.

Estimation of κκκR is nicely visualised in the IBD triangle. Instead of a confidence
interval, we construct a confidence region in two-dimensions. Different bootstrap
confidence regions are described in the literature [15, 16]. We construct a (1−α)100%

confidence region as an ellipse containing (1− α)100% of the bootstrap estimates.
The center of the ellipse corresponds to the mean of the bootstrap estimates (κ∗0, κ∗2),
where κ∗i =

∑B
b=1 κ̂

∗
i,b/B. The ellipse is rotated according to the eigenvectors of

the 2× 2 covariance matrix of the bootstrap estimates. The radius in the direction
of the first eigenvector is the 1− α percentile of ‖κ̂∗0,b − κ∗0‖ for b = 1, . . . , B. The
radius in the direction of the second eigenvector is computed by substituting κ0

with κ2.
We use the average Euclidean distance between the bootstrap estimates and

the ML estimate to compare the bootstrap methods. Define the random variable
D as the Euclidean distance between the estimate Δ̂ΔΔR and the parameter value
ΔΔΔR, i.e.,

D(F) = ‖Δ̂ΔΔR(F)−ΔΔΔR(F)‖.
with expectation E(D(F)) = δ. As indicated above, the parameter and its estimator
is a function of F, the true distribution of the data. We estimate F by F̂ through
the bootstrap procedure. An approximation of D is then given as

D(F ) ≈ D(F̂ ) = ‖Δ̂ΔΔ∗R − Δ̂ΔΔR‖.

We estimate δ by

δ̂ =
1

B

B∑
b=1

db, (6)

where db is the Euclidean distance between bootstrap estimate b and the ML
estimate. In the general case the distance will include both bias and variance. If
the bootstrap estimates are unbiased, i.e., E(Δ̂ΔΔ

∗
) = Δ̂ΔΔR, then a large value of δ

indicates a large variance in the bootstrap estimates, and consequently a large
variance of the original estimate.

The estimate of the relatedness coefficients will always be in the parameter
space. The confidence region may extend outside the parameter space, which may
not be desirable. A reparametrisation of the parameter space, making all estimates
a part of the interior of the parameter space is theoretically possible. However, this
is problematic, since many common pedigree relationships are in fact located on the
border of the parameter space. Our solution to the problem is simply to truncate
the confidence region. This approach resembles what is often done in applications
as when a negative lower bound for the confidence intervals of a variance is replaced
by 0.
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3.4 Data and Implementation

The results in this paper are obtained using the programming language R. Most of
the implementation is based on the ped suite libraries ribd, forrel and ibdsim2 freely
available from CRAN and described in the book [17]. Computation of pedigree
coefficients, and visualisations in the IBD triangle, are provided by ribd. Simulation
of marker genotypes are done in forrel, either by gene dropping through the pedigree
or parametrically using the likelihood distribution. This library also provides
maximum likelihood estimation of relatedness coefficients, and both parametric and
non-parametric bootstrapping. Functionality for simulation of the IBD patterns in
a pedigree is available in the library ibdsim2. Additional functionality for plotting
and computation of confidence regions is available from the first author.

A set of 23 STR markers and allele frequencies based on the Norwegian
population, available from https://familias.no/download, was used in Section 4.1
and for the computations for Figure 5 in Section 4.2. Genotype data in Section 4.4
are published in [18].

4 Results

We present the following results and examples: First, we give an example with
simulated DNA profiles of two siblings. The goal is to compare expected and
realised coefficients and parametric and non-parametric bootstrap. In the second
example, we investigate and compare the mean deviation in the parametric and non-
parametric bootstrap estimates as a function of the number of markers for different
outbred relationships. We then investigate how the bootstrap methods behave with
misspecified allele frequencies. At the end, estimation of the realised relatedness
and bootstrapping for a inbred relationship, with both real and simulated data, is
investigated.

4.1 From sibling pedigree to κ̂κκR with confidence region

Consider two full siblings, with pedigree coefficients κκκ = (0.25, 0.5, 0.25), corre-
sponding to the green asterisk in Figure 4. Using the R package ibdsim2 a realistic,
genome-wide IBD pattern between the siblings was simulated. This resulted in a
realised relatedness of κκκR = (0.216, 0.588, 0.196), shown by the black triangle in the
figure. Note that in a real case, both κκκ and κκκR would normally be unknown. Next,
DNA profiles for 23 independent STR markers, were simulated for the siblings,
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Fig. 4: Illustration for the example in Section 4.1 showing estimated realised relatedness
with 95% confidence region for both parametric (solid line) and non-parametric bootstrap
(dashed line). The pedigree relationship for siblings is indicated by a green asterisk, while a
black square shows realised relatedness. The red triangle shows the parameter estimate κ̂κκR.
Computed from 1000 bootstrap estimates.

conditionally on the IBD pattern already obtained. These profiles gave the estimate
κ̂κκR = (0.262, 0.4, 0.338), corresponding to the red triangle in Figure 4.

To assess the uncertainty of the estimate κ̂κκR we performed parametric and
non-parametric bootstrap, in both cases using B = 1000 replicates. The results
are illustrated by the solid and dashed blue ellipses in Figure 4, which show 95%
confidence regions for κκκR. We note that the two bootstrapping procedures give very
similar output in this case. In particular, both regions cover the true parameter κκκR.
The realised relatedness of parent-offspring (PO), half sibling (H), avuncular (U),
grandparent-grandchild (G), first cousin (FC) relationships and unrelated (UN)
individuals are by definition located along the first axis of the IBD triangle, i.e,
outside the confidence regions.

4.2 Mean deviation of bootstrap estimates

The results in this section compare the two bootstrap procedures by assessing the
average Euclidean distance between the estimate κ̂κκR and the bootstrap estimates.
Two DNA profiles, genotyped for 23 STR markers described in Section 3.4, are
simulated, and an estimate of δ, as given in (6), is computed from B = 1000
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Fig. 5: Average euclidean distance between κ̂̂κ̂κR and bootstrap estimates for different
κκκR, as described in Section 4.2, for parametric (blue) and non-parametric (red) boot-
strap.The values are the average over 200 simulated DNA profiles with 23 STR markers,
each bootstrapped with B = 1000. The five set of bars correspond to UN: κκκR = (1, 0, 0),
Q: κκκR = (0.531, 0.438, 0.031), H: κκκR = (0.5, 0.5, 0), PO: κκκR = (0, 1, 0) and S:
κκκR = (0.25, 0.5, 0.25).

bootstrap estimates. This is then repeated 200 times, each time simulating new
DNA profiles, and the average of δ̂ over these 200 simulations is computed. Figure 5
shows this average distance for five different values of the realised relatedness:
UN: κκκR = (1, 0, 0), Q (quadruple half first cousins): κκκR = (0.531, 0.438, 0.031), H:
κκκR = (0.5, 0.5, 0), PO: κκκR = (0, 1, 0) and S: κκκR = (0.25, 0.5, 0.25). The blue and red
bars correspond to parametric and non-parametric bootstrap, respectively. Table 1
shows the mean of the bootstrap estimates, averaged over the 200 simulations, for
the two bootstrapping methods.

From Figure 5 we see that there is a difference between the bootstrap methods at
the corner points UN and PO. Parametric bootstrap has a higher mean deviation
than the non-parametric method. Furthermore, we see from Table 1 that the
parametric method seems to be more biased than the non-parametric for PO. This
indicates that the methods behave differently for this boundary point. However, the
bootstrapping methods do not differ much for the boundary point H. The height
of the bars in Figure 5 are about the same, as well as the means in Table 1. The
bootstrap procedures seem to behave similarly for the interior points Q and S.

Next, we compare the mean deviation for parametric and non-parametric
bootstrap, as the number of markers increase from 5 to 200. Each marker has 10
alleles, with allele frequencies randomly sampled between 0 and 1, and scaled to
sum to 1.The comparisons are performed for the relationships UN, H, PO, and
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Tab. 1: Mean of 1000 bootstrap estimates, averaged over 200 simulations for realised
relatedness as explained in caption of Figure 5 and in Section 4.2, for both parametric and
non-parametric bootstrap.

Rel. Method κ∗0 κ∗1 κ∗2

UN Param 0.891 0.086 0.022
UN Nonparam 0.909 0.074 0.017
Q Param 0.540 0.398 0.061
Q NonParam 0.537 0.407 0.056
H Param 0.509 0.442 0.049
H Nonparam 0.505 0.454 0.040
PO Param 0 0.941 0.059
PO Nonparam 1.090 · 10−6 0.952 0.048
S Param 0.244 0.512 0.244
S Nonparam 0.244 0.512 0.244

S. The blue and red line in Figure 6 show mean deviation for parametric and
non-parametric bootstrap, respectively, with B = 1000.

For UN and PO and few markers, the mean deviation is somewhere between
0.1 and 0.2. The curves flattens out at about 50 markers, with a mean deviation of
about 0.05. For H and S, the parametric and non-parametric bootstrap perform
similarly. The mean deviation is higher for the low number of markers, and flattens
out to a value of about 0.1 for 100 markers and more.

The findings shown in Figure 5 and 6 support each other: The bootstrapping
methods behave similarly for the interior point S and the boundary point H, but
differ for the corner points PO and UN.

4.3 Coverage probabilities for ϕR and misspecified allele
frequencies

It is important for the likelihood model that the correct allele frequencies are
used. If individuals originate from two different populations or the population has
a strong subpopulation structure, accurate specification of allele frequencies is
difficult. Frequencies of alleles based on ancient DNA [18] may also be hard to
specify.

Table 2 shows coverage probabilities, mean values, and estimated bias for
the estimate of the kinship coefficient ϕ̂R, using parametric and non-parametric
bootstrap. The coverage probabilities are computed from 200 simulations. For
each simulation a 95% percentile bootstrap confidence interval is constructed
from B = 1000 bootstrap estimates. The kinship coefficient is estimated through
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Fig. 6: The estimate δ̂ from 1000 bootstrap estimates, as a function of the number of
markers, as described in Section 4.2. Each marker has 10 alleles with random allele frequen-
cies. Blue and red lines show parametric and non-parametric bootstrap, respectively.

estimation of the IBD coefficients. The analysis is performed for the same coefficients
as in Figure 5, i.e., UN, Q, H, PO and S. The corresponding kinship coefficients
are ϕR = 0 for UN, ϕR = 0.125 for Q and H and ϕR = 0.25 for PO and S. The 23
STR markers described previously were used.

The two bootstrap methods have about the same coverage probabilities. The
realised relatedness corresponding to Q and S have coverage less than 95%, while
the coverage probability for H coincides with the specified coverage of 0.95. The
coverage is about 1 for PO and UN. Importantly, there is a difference in the coverage
probabilities for IBD coefficients that have the same kinship coefficients.

The same analysis is repeated, but a wrong set of random allele frequencies
are used in the estimation and bootstrapping. Table 3 shows the results. The
mean and bias is about the same for the two methods, however, the coverage
probabilities differ between the methods. The estimated coverages are in both
cases quite far from the target values. Non-parametric bootstrap shows lower
coverage than the parametric when the allele frequencies are misspecified. Each
non-parametric bootstrap estimate is computed with the original genotype data,
but with the wrong allele frequencies. In the parametric situation, the original
estimate is computed with the wrong allele frequencies. The parametric bootstrap
estimate is then computed with simulated genotypes and the allele frequencies used
to simulate them. Furthermore, it is worth noticing that the coverage probabilities
for UN is close to zero for misspecified allele frequencies. The differences in coverage
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Tab. 2: Mean, estimated bias and coverage probabilities for ϕR, for the realised relatedness
described in the caption of Figure 5, for parametric and non-parametric bootstrap. The
simulations are explained in Section 4.3.

Rel Boot ϕR Mean Bias CovProb

UN Param 0.000 0.0328 0.0328 0.98
UN Nonparam 0.000 0.0271 0.0271 0.98
Q Param 0.125 0.1303 0.0053 0.90
Q Nonparam 0.125 0.1299 0.0049 0.92
H Param 0.125 0.1350 0.0100 0.95
H Nonparam 0.125 0.1337 0.0087 0.95
PO Param 0.250 0.2648 0.0148 1.00
PO Nonparam 0.250 0.2620 0.0120 1.00
S Param 0.250 0.2500 0.0000 0.92
S Nonparam 0.250 0.2501 0.0001 0.93

probabilities between the bootstrap methods in this case is based on one misspecified
model. Further studies are needed before more firm conclusions can be drawn.

4.4 Jacquard coefficients with confidence intervals

In this example, we shift our attention to the Jacquard coefficients. We start with
a data set from the ancient Egypt. The work of Hawass et al. [18] resulted in DNA
profiles from several mummies, including the remains of Tutankhamun and his
presumed grandfather Amenhotep III. The pedigree in Figure 7 shows how the two
mummies are assumed to be related. Tutankhamun’s parents were siblings, leaving
him with a quite high degree of inbreeding. The Jacquard coefficients describing
this pedigree relationship is ΔΔΔ = (0, 0, 0, 0, 0.125, 0.125, 0.125, 0.5, 0.125).

The DNA profiles are genotyped for 8 STR loci. Estimation of the Jacquard
coefficients with only 8 markers, results in quite high uncertainty. The left panel
of Figure 7 shows the ML estimate of ΔΔΔR, with 95% marginal confidence in-
tervals constructed with parametric bootstrap (blue) and non-parametric boot-
strap (red). The black dots denote the point estimate for each coefficient, Δ̂ΔΔR =

(0, 0, 0, 0, 0, 0.160, 0.030, 0.809, 0). Parametric bootstrap creates in general larger
intervals than non-parametic bootstrap. The coefficients Δ4 and Δ6 correspond
to the Jacquard states J4 and J6 in Figure 2. These states indicate IBD alleles
within each individual, meaning that an individual is inbred. The first of them,
Δ4 is estimated to 0, with a marginal confidence interval of zero width, indicating
that one of the individuals are not inbred. The other, Δ6, is estimated to 0.160,
indicating that the other individual is inbred. The value 0 is contained in the
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Tab. 3: Mean, bias and coverage probabilities for ϕR, for the realised relatedness described
in caption of Figure 5, for parametric and non-parametric bootstrap with misspecified allele
frequencies. The simulations are explained in Section 4.3

Rel Boot ϕR Mean Bias CovProb

UN Param 0.000 0.1178 0.1178 0.08
UN Nonparam 0.000 0.1167 0.1167 0.04
Q Param 0.125 0.1903 0.0653 0.62
Q Nonparam 0.125 0.1901 0.0651 0.59
H Param 0.125 0.2030 0.0780 0.42
H Nonparam 0.125 0.2023 0.0773 0.38
PO Param 0.250 0.2861 0.0361 0.76
PO Nonparam 0.250 0.2856 0.0356 0.66
S Param 0.250 0.2948 0.0448 0.76
S Nonparam 0.250 0.2949 0.0449 0.72

confidence interval. Furthermore, it is worth to notice that parametric bootstrap
gives rise to confidence intervals for the coefficients Δ1, Δ2 and Δ3, unlike for the
non-parametric bootstrap.

Next, we use simulated data and look at how the CIs change with the number of
markers, for the two different bootstrap methods. Two DNA profiles are simulated
conditionally on ΔΔΔR = (0, 0, 0, 0, 0.125, 0.125, 0.125, 0.5, 0.125), are shown by the
black squares in Figure 8. One simulation is performed for a set of 10 markers,
one for 20 markers and one for 50 markers. Each marker has 10 alleles with allele
frequencies sampled at random between 0 and 1. From each of these simulations,
parametric and non-parametric bootstrap are performed. Figure 8 shows marginal
CIs for 10, 20 and 50 markers, indicated with the color red, green and blue,
respectively. The left and right panel of the figure show results for parametric and
non-parametric bootstrap, respectively. The colored circles show the estimate Δ̂ΔΔR

for each of the three simulated sets of DNA profiles.
As expected, the width of the confidence intervals decreases as the number

of loci increases. Parametric and non-parametric bootstrap give about the same
confidence intervals, except for the coefficients estimated to 0. In general, parametric
bootstrap creates intervals for these coefficients, while the non-parametric version
does not. This coincides with the results shown in Figure 7.
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AmenhotepIII

Tutankhamun

Fig. 7: Estimate of ΔΔΔR between Amenhotep III and Tutankhamun, genotyped at 8 loci,
with 95% marginal CI for each coefficient, from 1000 bootstrap estimates, as described in
Section 4.4. Black dots show the point estimate ̂ΔΔΔ.

Fig. 8: The Figure shows 95% marginal CIs from 1000 parametric (left) and non-parametric
(right) bootstrap estimates, as described in Section 4.4. The realised relatedness is ΔΔΔR =

(0, 0, 0, 0, 0.125, 0.125, 0.125, 0.5, 0.125), corresponding to the black squares. The colored
dots denote the estimate ̂ΔΔΔR for the different number of markers.
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5 Discussion

The work in this paper discusses the use of bootstrap methods to assess the
uncertainty in the maximum likelihood estimate of the kinship coefficient, IBD
coefficients and Jacquard coefficients. We estimate the realised relatedness between
pairs of individuals, i.e., the proportion of the genomes of two individuals in the
different IBD states. A pair of individuals may fail to prove a certain kinship if their
realised relatedness differs substantially from the pedigree counterpart. The realised
relatedness is not subjected to the same constraints in relatedness coefficients as the
pedigree relationship. Thus, the likelihood of the realised relatedness is maximized
in a bigger parameter space than previously done in the literature [5, 7, 6].

Which bootstrap procedure to apply leads to a discussion on how to define the
distribution of the data. Two definitions seem reasonable to consider:

i The genotype at each possible locus along the genome is fixed. The loci
considered in the estimation are random. The population, for which ΔΔΔR is a
property, is the two genomes we consider.

ii The loci used in the estimation are fixed, but the genotypes observed at each
locus are random. All pairs of individuals with the same ΔΔΔR are the population.

In definition i), loci considered in the estimation are drawn randomly. One set of
loci, with corresponding genotypes, gives one estimate, while another set of loci
will give another estimate. This is then the variation we want to capture. This
is in several aspects equivalent to survey sampling. A problem with definition i)
is how to define the sample space of the data. Is it the set of all unlinked STR
markers along the genome? The size of this set is small, maybe limited to the loci
for which the DNA profiles are genotyped, and if so, it is not possible to obtain
another estimate and there is no variation. Furthermore, definition i) does not
comply with the likelihood function used in the ML estimation. By this, we mean
that the probability of each joint genotype along the genome do not sum to one. If
the joint genotypes along the genomes were the only possible genotypes to observe,
they should sum to one.

By definition ii), the loci to consider are fixed. The sample space at a locus is
the set of all joint genotypes possible to observe. For instance, for a marker with two
alleles a and b, all possible joint genotypes for this locus, not considering ordered
pairs, is (aa, aa), (bb, bb), (aa, bb), (aa, ab), (bb, ab) and (ab, ab). The distribution (5)
sums to one over all ordered pairs of joint genotypes at the locus. Then, conditioned
on Δ̂ΔΔR, one set of DNA profiles, genotyped for M loci is more, or less, probably to
observe than another profile.
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Of the two definitions above, the second one, definition ii), seems to be the
proper way to define the data and their probability distribution, when we use
(3) for the ML estimation. The source of the variation in the estimate of ΔΔΔ is
the possibility to observe different genotypes at a locus. We therefore argue that
parametric bootstrap captures this source of variation, while non-parametric does
not.

Even though we state that, from a theoretical point of view, parametric
bootstrap is the one to prefer, the results in Figure 5 and 6 show that the mean
deviation of the bootstrap estimate from the point κ̂κκR is about the same for the two
bootstrap methods. For the corner points κκκR = (0, 1, 0) and κκκR = (1, 0, 0) the mean
deviation is slightly higher for the parametric bootstrap procedure, indicating higher
variance of the bootstrap estimate and/or more bias in the bootstrap estimate. The
same analysis as for Figure 6 was also performed for markers with 10 equifrequent
alleles and markers with 9 equifrequent alleles and one allele with low frequency.
The mean deviation showed the same behaviour. In addition, a modified parametric
bootstrap was tested. The DNA profile for one individual was kept fixed, while
genotypes for the other individual were parametrically sampled, conditioned on
the genotypes of the first individual. This gave about the same mean deviation
as the ordinary parametric bootstrap. Further investigation is needed to conclude
regarding the use of this modified parametric bootstrap method. It is not possible
to determine the bootstrap procedure that gives the best approximation of the
true variance of the estimate κ̂κκR, as the true variance is unknown. In principle,
it would be possible to perform a simulation study to estimate the true variance.
However, it is not obvious how such a study could be implemented.

The importance of correctly specified allele frequencies should be noted. In-
correct allele frequencies lead to a misspecified likelihood model. Table 3 shows
coverage probabilities for the kinship coefficient when allele frequencies are mis-
specified. The coverage probabilities for both bootstrap procedures are affected,
but the non-parametric method seems to be more severely affected.

The marginal confidence intervals for the Jacquard coefficients shown in Figure 7
and 8 show an interesting difference between the parametric and non-parametric
bootstrap. In general, parametric bootstrap gives rise to confidence intervals for
the coefficients that have estimate zero, unlike for the non-parametric bootstrap. If
this is a feature of the particular example presented in Section 4.4 is not known,
but it is a topic worth investigating further, as the results clearly differ between
the bootstrap methods.

The assumption of HWE for the likelihood, is not unique for the work in
this paper. Discussions of this topic is given in the literature [7, 19, 20]. However,
deviation from HWE can be adjusted for in the genotype frequencies of Table 4.
The bootstrap methods were affected differently by misspecified allele frequencies,
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and it is therefore reasonable to speculate that the methods are affected differently
if the population is out of HWE.

Standard forensic kits with say 23 markers may suffice for LR based testing of
close relationships. However, more data is typically needed for estimation. Figure 4
shows a confidence region for the IBD coefficients, for a set of 32 STR markers. The
region occupies quite a big area of the IBD triangle, indicating a large uncertainty
in the parameter estimate. The independence assumption for the likelihood (3) may
be violated when the number of markers is extended beyond 50. An interesting
topic for further work is to investigate the effect of ignoring linkage on both the
point estimate of the ML estimator and the corresponding confidence region.

The main challenge of the work in this paper is that we do not know the true
distribution of the ML estimate, hence, we are not able to conclude which of the
bootstrap methods that is more correct. However, we think it is reasonable to regard
parametric bootstrap as the appropriate method for assessing the uncertainty of
estimates of the relatedness coefficients.
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A Table of genotype probabilities

Tab. 4: The conditional probability P (g | Ji) of a pair of genotypes g = (gA, gB), given
a Jacquard state Ji. The symbols a, b, c and d represent different alleles, with population
frequencies pa, pb, pc and pd respectively.

g J1 J2 J3 J4 J5 J6 J7 J8 J9

(aa, aa) pa p2a p2a p3a p2a p3a p2a p3a p4a
(aa, bb) 0 papb 0 pap2b 0 p2apb 0 0 p2ap

2
b

(aa, ab) 0 0 papb 2p2apb 0 0 0 p2apb 2p3apb
(aa, bc) 0 0 0 2papbpc 0 0 0 0 2p2apbpc
(ab, aa) 0 0 0 0 papb 2p2apb 0 p2apb 2p3apb
(bc, aa) 0 0 0 0 0 2papbpc 0 0 2p2apbpc

(ab, ab) 0 0 0 0 0 0 2papb papb(pa + pb) 4p2ap
2
b

(ab, ac) 0 0 0 0 0 0 0 papbpc 4p2apbpc

(ab, cd) 0 0 0 0 0 0 0 0 4papbpcpd
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