
Philosophiae Doctor (PhD)
Thesis 2020:59

Mahdieh Tourani

Leveraging non-invasive 
monitoring of carnivores using 
hierarchical models

Utvikling av ikke-invasiv overvåking av rovdyr 
ved hjelp av hierarkiske modeller 

Norwegian University of Life Sciences 
Faculty of Environmental Sciences  
and Natural Resource Management





Leveraging non-invasive monitoring of carnivores
using hierarchical models

Utvikling av ikke-invasiv overvåking av rovdyr ved hjelp av
hierarkiske modeller

Philosophiae Doctor (PhD) Thesis

Mahdieh Tourani

Norwegian University of Life Sciences
Faculty of Environmental Sciences and Natural Resource

Management

Ås, 2020

Thesis number: 2020:59
ISSN: 1894-6402

ISBN: 978-82-575-1726-7





To Guillaume
for the remarkable impact he had on my choices

and to fellow ecologists whom I was thinking of during my PhD:
Amirhossein Khaleghi

Taher Ghadirian
Houman Jowkar

Sam Radjabi





PhD supervisors

Richard Bischof
Faculty of Environmental Sciences and Natural Resource Management
Norwegian University of Life Sciences
P.O. Box 5003, 1432 Ås
Norway

Olivier Gimenez
CEFE, CNRS, University Montpellier
University Paul Valéry Montpellier 3, EPHE, IRD, Montpellier
France

Muhammad Ali Nawaz
Department of Animal Sciences
Quaid-i-Azam University, 4400 Islamabad
Pakistan

Adjudication committee

Beth Gardner
School of Environmental and Forest Sciences
University of Washington
Seattle, WA
USA

Erlend B. Nilsen
Norwegian Institute for Nature Research
P.O. Box 5685, Torgard, NO-74 Trondheim
Norway

Leif Egil Loe
Faculty of Environmental Sciences and Natural Resource Management
Norwegian University of Life Sciences
P.O. Box 5003, 1432 Ås
Norway





Acknowledgements

If people are asked to picture an ecologist, chances are that many will think of
Jane Goodall or George Schaller; determined field workers wearing cargo pants,
taking the adventures of searching for any signs of a living being. Yet, the past few
decades has seen ecologists who embark on a different journey. They may still wear
cargo pants, but the essential equipment is a computer full of code and statistical
models, to venture through a jungle of tables filled with row upon row of data.
Belonging to the latter group, my degree project was never possible without the
use of computers, open source software, good instinct of those who collect data
in long-term databases, and dedicated people who write books and tutorials for
others to use. I would like to name Marc Kéry, Andy Royle and Michael Schaub
for their invaluable books that changed my view of ecology.

Richard, I would like to thank you for all I have learned from you, for your
involvement throughout my PhD project and for letting your network be my
network. If it was not for your training and trust, I would have not dared to teach
master-level courses and supervising master students at NMBU. You did not give
me a fish but taught me to fish.

Ehsan, I mention you the second here as a colleague; You have heard all my
half-cooked ideas, read all I have written, stayed awake the nights I was writing my
thesis, and kept the company during the weekends I was at office. I am grateful we
managed to keep our education path almost identical, and I am excited about our
collaboration on many research projects to come.

Pierre, I am grateful to you for your contribution in several of my PhD chapters,
and for being a thoughtful colleague. I believe every lab needs a member with your
attitude and I hope we can continue working together.

Cyril, I have benefited from your developments indirectly, and you have contributed
to some of my PhD chapters. Thanks to you, and to all collaborators of the projects
RovQuant and WildMap: Henrik Brøseth, Joe Chipperfield, Andy Royle, Daniel
Turek, Perry de Valpine, Jonas Kinberg, Soumen Dey, and Olivier Gimenez who
influenced the quality of my research. Use of empirical data in chapter one was
facilitated by John Odden and I am thankful for that. The names and contributions
of many other individuals are given in the Acknowledgements section of each of
the four articles that comprise this thesis.

Olivier, I developed a few ideas to work with you during my PhD, which un-
fortunately all failed due to different reasons including the COVID-19 pandemic

i



that cancelled my visit to Montpellier. I believe I have benefited from your ideas
indirectly and I hope I can work with you more closely in the future. Thank you
for making yourself available for providing feedback on my Synopsis during the last
few weeks of my thesis submission. Muhammad Ali, thanks for discussions related
to the Himalayan brown bear study.

Andrés Ordiz and Gabriel Pigeon were my “opponents” during the PhD transition
process, and Ryan Burner, Gabriel Pigeon and Pierre Dupont read an earlier draft
of my Synopsis – I am grateful for their thorough reviews and helpful comments.

I would like to thank MINA, all staff, researchers, PhD students during the past
three years and the Ecology Group for organising social events and for returning
smiles, in particular my office neighbours Jon Swenson and Svein Dale. During
the production of this document, I received support from Grethe Delbeck, Ole
Wiggo Røstad, and Jan Vermaat. Thanks to Henrik Brøseth, Monica Tronrud,
Neri Thorsen, and Katrine Eldegard for discussing the Norwegian sections.

Bischof family, thank you for your generosity and welcoming smiles in many
occasions. We spent many events together, even I crashed your summer vacation in
2017, and thank you Vilma for being my first person to go for advice as an expat
in Norway.

The PhD position came about because of a research prize from the Norwegian
University of Life Sciences (Universitetet for miljø- og biovitenskap) awarded to
Richard Bischof for his performance in research, and I am honored to have been
entrusted with the resulting fellowship. I have been privileged to access free higher
education all way long, and been supported by family, mentors and friends to
follow my dreams in academia. I dream of a world of open science and free higher
education for all students.

ii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract (in Norwegian) . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract (in Persian) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. Why Ecological modelling? . . . . . . . . . . . . . . . . . . . 1

2. Modelling framework . . . . . . . . . . . . . . . . . . . . . . 1

3. Observation process . . . . . . . . . . . . . . . . . . . . . . . 2

4. Ecological process . . . . . . . . . . . . . . . . . . . . . . . . 6

5. Probabilistic theory of hierarchical models . . . . . . . . . . 9

6. Parameter estimation . . . . . . . . . . . . . . . . . . . . . . 10

7. Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . 11

8. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 11

9. Literature cited . . . . . . . . . . . . . . . . . . . . . . . . . 13

Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

iii





Abstract

The development of non-invasive approaches for monitoring wildlife populations
made it feasible to obtain ecological parameters across landscapes and populations,
rather than a few locations or individuals. The two most popular and widespread
non-invasive monitoring methods are camera trapping and genetic sampling. The
technical development associated with data collection has been impressive, whilst
analytical capabilities have lagged behind. Only recently are we getting close to
exploiting the potentials of non-invasively obtained data. The objective of my
thesis is to apply modern hierarchical analytical models to several sets of carnivore
monitoring data to address a series of conceptually and methodologically connected
problems, faced by applied ecologists.

The thesis consists of four articles. Two of these include simulations, and all four
articles involve model fitting and case studies. The latter target a range of species
including wolverine and mesocarnivores in Scandinavia and the Himalayan brown
bear.

Article I quantifies detectability of mesocarnivores by camera traps and sheds light
on the behavioural responses of focal species to detection devices and to olfactory
lures as an important aspect of detectability. Article II incorporates multiple data
sources with varying levels of information in a data-sparse situation and introduces
a multiple observation process model in the spatial capture-recapture framework to
estimate population parameters. This model is applied to multi-method monitoring
data of a Himalayan brown bear population in Pakistan. The focus in Article III is
heterogeneity in the environment and it uncovers sex-specific patterns in wolverine
home range size across the species’ range in Norway using solely non-invasively
collected DNA data and spatial capture-recapture models. Article IV presents
and evaluates an extension of the open-population spatial capture-recapture model
to improve inferences on population parameters and showcases its application on
wolverine data in central Norway.

Hierarchical modelling offers ecologists an intuitive multi-level approach to dis-
entangle observation and ecological processes. All chapters of this thesis include
hierarchical models that account for imperfect detection. Depending on the research
question, I use these models to estimate time-to-detection of species, population
abundance and density, survival, variation in home range size and inter-annual
movement. The monitoring methods used during this thesis are often applied to
studies of rare or elusive species and data sparsity is another important challenge
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addressed in this thesis. Bayesian inference Using Gibbs Sampling (BUGS) lan-
guage facilitates the construction of flexible models that make the incorporation of
multiple types of data into one comprehensive analysis comparatively straightfor-
ward. The articles included in this thesis showcase how hierarchical models help us
use non-invasively collected data to yield answers to a range of questions in applied
ecology. Tackling the associated challenges increases our ability to draw inferences
that more closely describe the complexity of real-world ecological systems.
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Sammendrag

Utviklingen av ikke-invasive metoder for å overvåke dyrepopulasjoner har gjort
det mulig å estimere økologiske parametere på tvers av landskap og populasjoner,
snarere enn noen få steder eller individer. De to mest populære og utbredte ikke-
invasive overvåkingsmetodene er viltkameraer og genetisk prøvetaking. Den tekniske
utviklingen knyttet til datainnsamling har vært imponerende, mens analytiske evner
har hengt etter. Først nylig har vi kommet i nærheten av å utnytte potensialet til
ikke-invasivt innsamlede data. Målet med avhandlingen min er å bruke moderne
hierarkiske analytiske modeller på flere sett med overvåkningsdata av rovdyr for
å adressere en serie konseptuelt og metodisk koblede problemer, som anvendte
økologer møter.

Oppgaven består av fire artikler. To av disse inkluderer simuleringer, og alle de fire
artiklene involverer modelltilpassing og case-studier på en rekke arter, inkludert
jerv og mesokarnivorer i Skandinavia og Himalaya brunbjørn.

Artikkel I kvantifiserer deteksjon av mesokarnivorer ved viltkameraer og kaster lys
over adferdsresponsene til fokale arter på ulike deteksjonsinnretninger og luktstoff
som et viktig aspekt av deteksjon. Artikkel II inkorporerer flere datakilder med
varierende informasjonsnivå i en data-mager situasjon og introduserer en multippel
observasjonsprosessmodell i den romlige fangst-gjenfangstrammen for å estimere
populasjonsparametere. Denne modellen brukes til en multimetodisk overvåknings-
data av en Himalaya brunbjørn i Pakistan. Fokuset i Artikkel III er heterogenitet
i miljøet, og det avdekker kjønnsspesifikke mønstre i jervens revirstørrelse innenfor
artens utbredelse i Norge ved utelukkende å bruke ikke-invasivt innsamlet DNA-
data og romlige fangst-gjenfangstmodeller. Artikkel IV presenterer og evaluerer
en utvidelse av den romlige fangst-gjenfangstmodellen med inn- og utvandring for å
forbedre tolkningen til populasjonsparametere og viser hvordan den brukes på jerv-
data i Midt-Norge. Hierarkisk modellering gir økologer en intuitiv tilnærming på
flere nivåer for å skille observasjons prosesser og økologiske prosesser. Alle kapitler
i denne oppgaven inkluderer hierarkiske modeller som korrigerer for mangelfull
deteksjon. Avhengig av forskningsspørsmålene bruker jeg disse modellene for å
estimere tidden det tar til en deteksjon av artene, populasjonsstørrelse og tetthet,
overlevelse, samt variasjon i revirstørrelse og bevegelse mellom år. Overvåkingsme-
todene som ble brukt i løpet av denne oppgaven, blir ofte brukt på studier av
sjeldne eller sky arter, og begrensede data er en annen viktig utfordring i oppgaven.
Bayesisk tolkning ved å bruke Gibbs Sampling (BUGS) -språk fasiliterer konstruere
fleksible modeller som inkluderer flere typer data i en omfattende analyse. Artiklene
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inkludert i denne oppgaven viser hvordan hierarkiske modeller hjelper oss till å
bruke ikke-invasivt innsamlet data for å besvare en rekke spørsmål innen økologi.
Å takle de tilhørende utfordringene øker vår evne til å trekke slutninger som bedre
beskriver kompleksiteten i virkelige økologiske systemer.
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Synopsis





1. Why Ecological modelling?
Key questions in ecology are often associated with substantial variability. This
variability arises in part from measurement error (i.e. observation variability),
because our observations of the world’s phenomena are imperfect. For example, if
we wish to estimate survival in a population of bears, we could use information
about mortalities that are reported by hunters or dead individuals found by the
public. However, bears may die without being discovered, and some individuals are
presumed dead, even though they are alive but no longer detected (MacKenzie et
al. 2009). Even if we manage to generate an unbiased estimate of average survival,
realised survival still varies from one individual bear to another due to process
variability. Process variability may be affected by measured and unmeasured
factors, such as sex, age, or environmental conditions (Murray and Sandercock
2020). Measurement variability can be minimised by careful observations and
process variability can, at least in theory, be reduced by studying a large population
in manipulative control under laboratory settings. In field studies, however, these
variabilities may remain large. Ecologists working with observational data, rather
than designed experiments, increasingly acknowledge that the latter can help
inform about the former, and experiments allow addressing questions that are not
possible with observational studies (Bell 2017). However, experiments provide only
one source of data for learning about complex processes. To address ecological
questions characterized by complexity and uncertainty, we build models to simplify
and ultimately understand the problems.

2. Modelling framework
While measurement variability often gets in the way of making direct inferences
from the data, process variability is usually fundamental to the object of inference,
since it is an attribute of the dynamics of the ecological system (Kéry and Schmidt
2008, Kellner and Swihart 2014). When surveying a population, not detecting a
species may mean that it is not present at the site and hence could not be detected,
or that we failed to detect it despite the species being present. Observations are the
results of both observation and ecological processes. Hierarchical modelling offers
ecologists an intuitive approach to disentangle these processes and their associated
variability.

Most ecological models assume that there is some variability due to a combination
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of unknown factors and estimate the extent of that variability from the variability
observed in the field. To characterise random variability in estimating population
size, variances have been used for a long time (den Boer 1968, Andrewartha and
Birch 1984). Likewise, variance-mean relationships have been used to model the
processes underlying these variabilities (Taylor 1961, Gaston and McArdle 1993).
More sophisticated models of variability make explicit assumptions about the
underlying causes of variability and can provide not only more information about
the ecological processes at work, but can also better exploit collected data (Purves
et al. 2013). The advantages of the hierarchical approach lie in the convenience
of model parameterization, ease of interpretation, and in facilitation of model
fitting (Bolker 2009). Moreover, the uncertainty is properly propagated into model
inference by recognizing the uncertainty of model unknowns (Cressie et al. 2009).
In ecology, understanding ecological processes is the aim, but understanding what
affects our capacity to observe those ecological processes is equally important. A
typical hierarchical model consists of data generated from one or more observation
processes that are conditional on one or more ecological processes. Hierarchical
modelling fosters and formalizes the link between observation and ecological process
models.

3. Observation process
Non-invasive data collection technologies have improved our ability to collect data
on rare or elusive species under natural conditions (see Fig. 1). One of the
advantages emphasized by researchers is that non-invasive methods do not require
capturing and handling, hence the physical integrity of the subjects is not influenced
by the study (Zemanova 2020). Non-invasive methods are particularly useful in the
study of wild populations, where avoidance of or habituation to human presence
could be detrimental (Bezerra et al. 2014). Methods that impact study subjects
are not only a concern from an animal welfare perspective (Jewell 2013), but can
also impact the reliability of study results through the observer effect (Cahill et
al. 2001). In addition, non-invasive methods make it more feasible to cover the
entire landscape and detect a larger proportion of the study population. These
survey methods are particularly useful to study species for which direct observation
is often infeasible, either because the species actively avoid human and inhabit
remote areas, or because they naturally occur in low densities (Box 1).

With the opportunities offered by non-invasive data collection methods, came new
challenges. Observations vary due to intrinsic (differences between individuals and
species), environmental (visibility) and survey-specific factors. Ignoring this vari–
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Box 1. Data collection methods used in this thesis

Camera traps are used worldwide as a cost-efficient tool for monitoring
terrestrial mammals (Burton et al. 2015, Wearn and Glover-Kapfer 2019).
Most modern camera traps are digital cameras with passive infrared motion
detectors. When a moving object with a surface temperature different from
the environment passes by, the sensor is triggered and the camera takes
photos or records videos (Welbourne et al. 2016, Apps and McNutt 2018).
Camera traps have been used for monitoring many species and to collect
data on many different aspects, including recording presence or absence of
species, behaviour, body condition and reproductive status (Trolle and Kéry
2003, Canu et al. 2017, Carricondo-Sanchez et al. 2017, Monterrubio-Rico et
al. 2018, van Ginkel et al. 2019).

Data collection methods used in this thesis. From left to right: camera
trapping (©R. Bischof), non-invasive genetic sampling (©E. Moqanaki), and
dead-recovery (©R. Bischof).

Non-invasive genetic sampling (NGS) is another promising data col-
lection method for studying wildlife species. Advancements in forensics
generated new methods that can be applied to improve data collection
and analysis of non-invasive genetic samples in wildlife research (Waits and
Paetkau 2005, Beja-Pereira et al. 2009). By extracting genetic material from
DNA sources left behind by animals, such as faeces, hair, urine, and saliva,
we can record presence of species, individuals and identify sex. Non-invasive
DNA has been used for sampling many species in studies on a wide range
of subjects, including diet, connectivity, and population size and dynamics
(Bischof et al. 2017, Monterroso et al. 2019, Lamb et al. 2019).

Dead-recoveries are additional sources of information that may arise from
opportunistic recoveries, hunting surveys and citizen science, through designed
protocols or from separate studies (Catchpole et al. 1998, Schaub and Pradel
2004, Kendall et al. 2006). Incorporating dead-recoveries in the analysis of
ecological data has a two-fold advantage; involving the public in ecological
research and gaining extra information. Studies on a range of species have
included dead-recovery data (Kendall et al. 2006, Taylor et al. 2010, Proffitt
et al. 2015, Hostetter et al. 2018), which provide invaluable information with
little to no additional cost of sampling.
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–ability can lead to bias in inferences about the ecological process. Accommodating
imperfect detection as an important component of observation process is now the
common thread in sampling wild populations (Kéry and Royle 2016) and is not
limited to mobile organisms, but can also play a role in the study of sedentary
organisms, such as plants (Kéry et al. 2006).

Aside from accounting for imperfect detection to avoid parameter bias, researchers
often design studies favouring higher detection probabilities to increase sample size
and thus parameter precision. Data sparsity is typically associated with studies of
rare or elusive species. Non-invasively collected DNA is usually of low quality, which
might make individual identification particularly challenging. Similarly, during
camera trapping surveys, false-absences result from missed detections (no photo
captured), late triggers (partly photo-captured animal), or blank images especially
for small and fast-moving species (Glen et al. 2013). Non-invasive monitoring can
be time-consuming because of the time taken to detect the presence of focal species
and to reduce this cost surveys are typically designed to maximize detectability. For
example, efforts to maximize detectability in camera trapping include increasing
number of camera traps per site (Pease 2016, O’Connor et al. 2017, Evans et al.
2019), non-random camera trap placements (Cusack et al. 2015, Kolowski and
Forrester 2017), and application of attractants (Bischof et al. 2014, Garvey et
al. 2017, McLean et al. 2017, Moriarty et al. 2018). In occupancy and spatial
capture-recapture models built in this thesis, detectability (of species or individual)
is being estimated through repeated observations in space or time, as part of the
observation process.

In Article I, I quantify mechanisms that affect detectability of focal species, and
test the effect of olfactory lures on detectability of a mesocarnivore community.
Observation variability is usually a nuisance to be dealt with, rather than the pri-
mary focus of ecological models. A practical motivation to account for detectability
is that it provides a measure of sampling efficacy. For example, by modelling the
time to detection of species by camera traps, one can decide on survey duration,
based on study objectives.

Nowadays, many species inventories combine multiple survey methods, such as
non-invasive DNA sampling, camera trapping, sign surveys, or physical mark-
recapture to maximize the amount of data (Sollmann et al. 2013a,b, Blanc et
al. 2014, Clare et al. 2017, Murphy et al. 2018). One way to better exploit
the available information is integrated modelling, the joint analysis of multiple
datasets traditionally analysed separately (Miller et al. 2019). Practical benefits
of integrated modelling include improved parameter precision, reduced bias, the
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ability to estimate additional parameters, and greater generality of inferences
(Besbeas et al. 2002, Abadi et al. 2010, Schaub and Abadi 2011, Pacifici et al.
2017). Two articles in this thesis highlight the benefits of data-integration to
improve parameter precision and reduce bias (Article II), but also to estimate
additional parameters (Article IV). Specifically, in the SCR framework I discuss
in Article IV, individuals leaving the observation area become unavailable to
sampling. These individuals appear to the model as dead, hence biasing estimates
of survival probability. This is especially true for studies of hunted populations
with few recaptures (Hewitt et al. 2010). Integrating multiple data sources can
provide vital information to increase the amount of data, and estimate demographic
parameters with greater precision. Knowing individual fates by incorporating
dead-recovery data helps reduce the uncertainty for the overall population and
opens the door to address broader hypotheses about spatial ecology.

4. Ecological process
Ecology is inherently spatial. Spatial heterogeneity in the environment shapes life
history traits across individuals, scaling up to populations through coevolutionary
processes (Levin 1992). At the same time, populations and their impacts are
manifested across the space they occupy. Much of the pressing problems faced
by wildlife conservation and management revolve around species distribution and
abundance, where these and related measures (e.g. vital rates) vary across time
and space and can be associated with heterogeneity in the environment (Scheiner
and Willig 2008). As a result, quantifying and describing ecological patterns in
space, not only time, is pivotal for comprehending ecological systems.

Making inferences about spatial variation in demographic processes advances our
understanding of natural phenomena in a changing world. However, the ability
to study populations at biologically meaningful extents has been hampered by
available methods (Chandler and Clark 2014). Both the interpretation and the use
of information required to address applied challenges are scale dependent. The study
of population dynamics benefits from fine-scale, spatio-temporal data to capture
individual patterns and analytical methods to make inferences at the population
level (Dunning et al. 1995, Royle et al. 2018). Novel sampling methods, such as
non-invasive DNA sampling and camera trapping, have substantially increased the
number of studies that collect data with a grain and extent suitable for addressing
long-standing questions related to variation in demographic parameters (Fig. 2).

In ecological modelling in general, we are interested in making inferences about
ecological processes (Fig. 3), given a set of observations. The process model is the–
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Figure 3: Ecological insights (right) gained in spatial capture-recapture studies
through modelling different population parameters (left) based on a review of journal
articles published between 2004 and 2020. Focal parameters include the spatial
scale parameter of the detection function (Sigma, σ), dispersal sigma (dSigma),
density (D); probability of survival (S), recruitment (R), detection (p), and growth
rate (G); and effects of spatial or individual covariates on σ (bSigma), detection
probability (bp), dispersal sigma (bdSigma), and density (bD). Width of bands
represents number of published articles reporting each of focal parameters as the
focus of the study.

–heart of most hierarchical models in ecology as it describes the dynamics of
ecological system of interest. How many individuals are in the population? How
are these individuals distributed in space? How do females and males use the
space differently? Adopting probabilistic theory in hierarchical models allows
inferences based on unobserved or partially observed variables. For example,
the ecological process common to the spatial capture-recapture models usually
consists of two major components: a spatial model describing the distribution of
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individuals in space at a detection occasion and its movement between occasions,
and a demographic model describing the true states of individuals. Individuals
may be uniformly distributed across the state-space (Article II) or, in case of
heterogeneous environment, distribution of individuals can be described through
a non-homogeneous point process (Articles III-IV). An example demographic
process describes the true states of individuals (alive or dead) and population
abundance. In open-population capture recapture, this demographic process model
may also describe survival process (probability of survival between occasions) and
recruitment process as explained in Article IV.

5. Probabilistic theory of hierarchical models
A hierarchical model consists of two or more conditionally related probability
models, where the probability of outcomes of one latent response depends on the
outcomes of another latent or measured response (Kéry and Royle 2016). Basic
probability rules are therefore fundamental for modelling variation in ecological
processes through hierarchical models (Bolker 2008). For example, the probability
of detecting individual A is conditional on individual A being alive. The true
states (e.g. alive vs. dead) of individuals depend on observation outcomes and are
partially observed random variables, i.e. probability distributions (e.g. binomial,
Poisson) govern their possible values.

The simplest form of hierarchical models is a mixed-effect model, which deals
with observations belonging to different clusters, where each cluster has its own
properties, such as different response mean and different sensitivity to explanatory
variables. For example in Article I, I measure minimum distance of a visitor
species to camera traps. Visitors of each camera trap may have responses more
similar to each other, than visitors of other camera traps because of the location of
the camera trap. Without clustering in the data, a non-hierarchical model would
consist of a probability distribution over outcomes, and independent draws from
that distribution (i.e. observations). In a mixed-effect model, the distribution
over outcomes is jointly determined by one probability distribution shared among
clusters and another probability distribution shared among observations within
each cluster. Both cluster-level and observation-level variations can be functions of
covariates; for example in Article I, I test the effect of olfactory lure treatments
on distance of visitors to the camera’s focal point.
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6. Parameter estimation
In the example above, the probability distribution parameters that govern between-
or within-cluster variability are unknown, hence so are the shared parameters of
probability distribution over outcomes. To estimate the parameters of interest, one
can marginalise over the cluster-specific variability by introducing prior distributions
over parameters of interest and computing their posterior distributions through
Bayes’ rule (Cressie et al. 2009). In the Bayesian approach, one assumes that
the experimental outcome is the truth and the parameter values have probability
distributions. One needs to define prior knowledge about the probability of different
parameter values. To use the example of bear survival mentioned earlier, one
specifies a parameter, the probability of survival, and asks questions about the
best estimate of the probability distribution (i.e. the posterior) given the prior
knowledge of the distribution and the observed data.

For computing the posterior, Markov chain Monte Carlo (MCMC) methods are
efficient tools (Gelfand and Smith 1990) that I use throughout this thesis to compute
the posterior distributions of different parameters. MCMCs are simulation-based
methods for drawing samples from probability distributions. After a sufficient
number of realizations (i.e. burn-in), generated realizations of the chain comprise a
random sample from the posterior distribution. To summarise inferences on the
unknowns, the sampled values from the posterior distribution are used to calculate
common distributional summary statistics, such as means and variances. The
uncertainty or variability in the marginal posterior distribution is conventionally
characterised by the 2.5th and 97.5th percentile of the posterior samples (95% credible
intervals) for each unknown. Although hierarchical models can be implemented
using non-Bayesian approaches, the Bayesian paradigm enables exact inference and
proper uncertainty assessment within the given specification (Cressie et al. 2009).
Bayesian inference Using Gibbs Sampling (BUGS) language has made it possible
for non-statisticians to implement MCMC methods for estimation and inference in
many hierarchical models. BUGS has facilitated model specification and it allows
users to focus on the statistical nature of the model, rather than implementation
details and inference procedures (Kéry and Royle 2016). Dialects of BUGS are
freely available through several software packages, including JAGS (Plummer 2003)
and NIMBLE (de Valpine et al. 2017) that I used in different articles of this thesis.
As part of the analysis in Article I, I use an R package in which MCMC sampling
is implemented with Stan (Carpenter et al. 2017).
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7. Thesis summary
In this thesis, I use hierarchical models implemented in a Bayesian framework
to explore a series of ecological and methodological questions. I focus mainly on
spatial capture-recapture and occupancy models and expand upon their standard
model formulations to quantify observation and process variability based on data
at hand and the ecological questions in mind. Observation variability is the focus
of Article I, in which I quantify camera trapping survey efficacy in a hierarchical
framework using concepts of occupancy (MacKenzie et al. 2017), time-to-event
analysis, and mixed-effect models (Kéry and Royle 2016). Articles II, III and IV
focus on process variability and concern ecological insights gained by combining
spatial capture-recapture with non-invasively collected data. The focus in Article
II is estimating density and abundance. Article III describes variation in home
range size and Article IV is concerned with the estimation of density, survival,
and inter-annual movement. The analyses throughout this thesis are based on
data collected using two of the most common non-invasive survey methods for
carnivore monitoring, i.e. DNA-sampling and camera trapping (Box 1). In Article
I, I analyse camera trap data, whereas in Article III, I use DNA sampling, and
Article II combines both sampling methods. Article IV uses a combination of
DNA samples from non-invasive searches and dead recoveries (Fig. 4).

This thesis is about combining hierarchical models with non-invasively collected
data to answer ecological questions in wild populations of carnivores at different
spatial scales. Pursuing this goal led to topics from variation in detectability of
different species (Article I), to estimating population density under data-sparse
situations (Article II), to the cutting edge of modelling space-use and movement
with spatial capture-recapture (Articles III-IV).

8. Concluding remarks
Hierarchical modelling has the capacity to cope with high-dimensional complex
problems typically facing those seeking answers to ecological questions. The articles
in this thesis exemplify the application, but also further develop such models.
Throughout the articles, I combine non-invasive survey methods and hierarchical
models, and I believe that advancements in these two technologies go hand in hand.

Many of the enduring elements of contemporary ecological theory, wildlife conser-
vation and management are centred around species distributions and abundance
(Scheiner and Willig 2008). Estimation of these variables is impacted by sources of
variability, including imperfect detection, heterogeneity in the environment and
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Figure 4: A schematic representation of hierarchical models built in this thesis.
The observation process provides information about the ecological processes at both
individual and population levels. The ecological process pertains to individual and
population level hierarchy and is further classified as Existential, Developmental,
and Spatial. Adopted from McClintock et al. (2020).

movement of individuals. Analytical methods that explicitly model this variability
in both observation and ecological processes are now the basis for estimating the
abundances and distributions of species (Kéry and Royle 2016). In Article I, I fo-
cus on detectability as a crucial component in ecological modelling. By quantifying
species-specific characteristics of detectability, researchers can gain new insights
that help optimise sampling design and account for some of the inherent variability
in the data. Although the impact of non-invasive data collection methods on
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physical integrity of the study system is generally minimal, I show here that the
focal species may alter their behaviour in response to presence of detection devices
or attractants.

Spatial capture-recapture (SCR) models have emerged as a particularly efficient and
popular tool for studying spatial ecological processes from non-invasively collected
data. These models were initially developed to exploit the spatial information
contained in repeated detections of individuals at different locations to provide
spatially-explicit estimates of abundance, which I use in Article II. However,
implicit in the SCR-specific observation model is the assumption that the probability
of detecting an individual in space is a function of distance to its activity centre
(Royle et al. 2018). Spatial capture-recapture can also yield information about
other spatial processes, such as individual space-use and movement (Articles
III-IV). This is a prolific area of research and developments are ongoing to further
expand the use of this modelling framework (Royle et al. 2018).

Data sparsity hampers our ability to make reliable inferences about population
parameters, especially when studying rare or elusive species. Flexibility in model
specification in BUGS is a great advantage for customising the classic model for-
mulations when facing ecological problems (Articles II and IV). Data integration
in a hierarchical framework allows incorporation of multiple sources of information.
However, one should assess the gains against model complexity. Use of hierarchical
models and the concept of imperfect detection is not to add yet another level of
complexity to our ecological studies, i.e. statistical machismo (Welsh et al. 2013,
Guillera-Arroita et al. 2014, Gimenez et al. 2014); rather it is an opportunity to
incorporate our knowledge of reality into models of ecological systems.
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Abstract. Camera trapping, paired with analytical methods for estimating species
occurrence, population size or density, can yield information with direct conse-
quences for wildlife management and conservation. Detectability, the ability to
detect a species or individual if it is present, affects the reliability and efficiency of
camera trap surveys and, in turn, varies across species, space, and time. Greater
detectability means greater sample size, and a common approach to boost de-
tectability of wildlife by camera traps involves the application of olfactory lures.
Using a camera-trap study on sympatric mesocarnivores (European badger Meles
meles, red fox Vulpes vulpes, pine marten Martes martes, and domestic cat Felis
catus), we quantified three elements of detectability: i. the time until first detection
(“sooner”, conditional on being present), ii. the proximity to a focal point in front
of the camera (“closer”, conditional on being detected), and iii. the duration of
exposure to the camera (“longer”, conditional on being detected). A hierarchical
analytical approach and a quasi-experimental setup allowed us to test for and
quantify the species-specific effect of olfactory lures on these aspects of detectability.
Depending on species, average median time to first detection ranged from 4 to
28 days, distance to the focal point from 0.3 to 0.8 body lengths, and median
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time to departure from 2 to 6 seconds. Credible intervals overlapped substantially
between most species in all three measures and variation between observations was
extensive. We detected effects of lures on time to detection for cats (castoreum),
distance to focal point for badgers (striped skunk Mephitis mephitis scent) and
martens (castoreum-, fox- and skunk-based lures), and the duration of exposure
for foxes (fox- and skunk-based lures). We discuss how a multifaceted perspective
on detectability in camera trap studies, linked with species biology, can give inves-
tigators a more structured approach to selecting and testing measures intended to
boost detection probability.

Keywords: camera trap, detection, Bayesian hierarchical model, time to event,
survival analysis, proportional hazards, mixed effect model

Introduction
Camera trapping is used worldwide as a non-invasive and cost-efficient tool for
monitoring terrestrial mammals (Burton et al., 2015). The goals vary between
studies, but chief among them are estimates of species distribution and relative or
absolute abundance, all of which are useful in guiding wildlife management and
conservation (Ahumada, Hurtado & Lizcano, 2013; Rovero et al., 2013).

Photographic detections (e.g. number of visits or photos during a survey) continue
to be used as proxies for certain focal parameters, such as species diversity or
abundance, but there is a growing recognition for the need to cope with imperfect
detection (Burton et al., 2015; Sollmann, 2018). The inability to detect every
species or individual present in the study area (i.e. false-negatives), together with
heterogeneous detection probability, has direct consequences for the reliability
of inferences drawn from camera trap and other field surveys (Archaux, Henry
& Gimenez, 2012; Guillera-Arroita et al., 2014). Analytical approaches such as
capture-recapture and occupancy models account for imperfect detection when
estimating focal parameters (MacKenzie et al., 2017; Sollmann, 2018; Hofmeester
et al., 2019).

Despite the availability of hierarchical methods that estimate and control for
imperfect and variable detection, investigators are keenly interested in maximizing
detection probability. Increased detection probability results in larger sample sizes,
thereby boosting precision (Gerber, Karpanty & Kelly, 2012) and in some cases
accuracy of parameter estimates (Guillera-Arroita et al., 2014). Increased detection
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probability can also reduce the cost of surveys, for example by allowing shorter
sampling periods in cases where a single detection of an individual or species at a
given site is sufficient, such as occupancy studies (Hamel et al., 2013; Bischof et al.,
2014b; Kays et al., 2020).

The biology of study species is an important determinant of detectability (Fig. 1).
The probability of encounter with a camera trap is directly affected by the density
of a species and its use of the landscape (Neilson et al., 2018). Behavioural charac-
teristics, such as exploratory behaviour and diel activity patterns also determine if
and when an animal enters the viewshed of a camera (Rowcliffe et al., 2011). Speed
of movement, size and appearance of a species influence whether the camera is
triggered, and if so, whether a sufficiently clear image is captured to allow detection
and identification. For example, rarity, shyness, furtiveness, and small size are all
characteristics that make species challenging camera trapping subjects (Fig. 1).

Investigators can address these challenges and take steps to boost detection proba-
bility. Cameras are often placed at microhabitat sites that are more likely to be
visited by the focal species (or community), based on habitat selection and use of
landscape features during travel (O’Connor et al., 2017). Many studies employ
baits (Moriarty et al., 2018) or visual (McLean, Goldingay & Westcott, 2017),
acoustic (Read et al., 2015), and olfactory lures (Bischof et al., 2014a; Garvey et
al., 2017; Ferreras, Diaz-Ruiz & Monterroso, 2018), with the goal of attracting
animals to the site and keeping it there long enough for photographic capture.
Furthermore, camera design has improved substantially during the past decade,
with features such as silent shutters and infrared (IR) or stealth IR mitigating the
risk of spooking shy species (Glen et al., 2013; Rovero et al., 2013). These measures,
like the biological characteristics that they implicitly target, affect different aspects
of the process of photographic capture, which are either directly or indirectly related
to detectability (Fig. 1).

We conducted a quasi-experimental camera trapping study of the mesocarnivore
guild in southeast Norway and asked three questions: 1) How soon is a given
species detected at a camera trap?, 2) How close do individuals approach a target
within the cameras field of view?, and 3) How long do individuals remain within
the camera’s field of view? We used hierarchical models to quantify ‘how soon’,
‘how close’, and ‘how long’, thereby disentangling these three important aspects
of detectability. Furthermore, we evaluated how these metrics are influenced by
the study species and by using a widespread measure for boosting detectability:
olfactory lures.
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Figure 1: Conceptual diagram showing different aspects of detectability during
camera trap surveys and the modulating effect of biological characteristics. In
addition to direct impacts on detectability, a longer visit and a closer image of focal
species increases the chance of identifying the visitor hence increases detectability.

Material and methods

Study area and camera trapping

The study area (2,400 km2) is situated in south-eastern Norway (59.36-59.81oN,
10.60-11.60oE) where camera traps were placed to monitor the Eurasian lynx (Lynx
lynx) as part of the SCANDLYNX project (http://viltkamera.nina.no/). The
landscape varies from coastline, lakes, and agricultural fields to valleys and wooded
hills, between 0 and 400 meters above sea level (Kartverket, 2017). Boreal forests
dominate the area, and the climate is milder than in other areas of similar latitude,
primarily due to warm winds and oceanic currents (Dannevig & Harstveit, 2013).
The temperature varies throughout the year, with a mean temperature between
–3 and –5oC in January and up to between 16 and 17oC in July (Dannevig, 2009).
Average annual precipitation rate is 700–1000 mm (Moen, 1999), and the duration
of snow cover (when snow covers minimum 50% of the ground) ranges between 50
and 125 days per year (Moen, 1999).
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We deployed 30 motion-triggered digital Reconyx cameras (five different models:
HC500 HyperFire Semi-Covert IR, HC600 HyperFire High Output Covert IR,
PC800 HyperFire Professional Semi-Covert IR, PC900 HyperFire Professional
Covert IR, and PC850 HyperFire Professional White Flash LED) from 15 September
to 20 December 2017, specifically with the goal to photo-capture lynx. Therefore,
cameras were installed in steep terrain, on ledges or at the base of (and facing) cliffs.
Placement was often close to wildlife trails, with one camera trap per location and
a minimum distance of 2.3 km between neighbouring camera trap sites. Cameras
were aimed perpendicular to the wildlife trail at locations where a wildlife trail was
present. Each camera was mounted on a tree between 0.2 and 1 m above the ground,
depending on terrain. Notwithstanding occasional failures (empty batteries, etc.),
all cameras were operating for 24 hours per day every day during the study period.
Cameras were set to take three photos per trigger event with up to two photos
per second. The no-delay function was used to enable the cameras to continue
taking photos while being triggered. In addition to motion-triggered capture, the
time-laps mode was used to take one photo per day to allow identification of time
periods during which cameras were non-functional.

Lure treatment

At each camera trap location, a scent station was installed at 2 to 6 m from
the camera. The area between the scent station and the camera was cleared by
removing tall grass and branches. The scent station consisted of one scent lure
stick (untreated Norway spruce Pica abies; 40 x 4.7 x 2.2 cm), hammered 20 cm
into the ground (tapered end), leaving 20 cm exposed above the ground (Fig. 2).
As a lure receptacle, a 3-cm deep and 1-cm wide hole angled 45 degrees downwards
was drilled into each lure stick on the narrow side 2.5 cm from the top of the stick.
The lure sticks were placed with the drilled hole facing the wildlife trail if the trail
was present in front of the camera and facing the camera where wildlife trails were
absent. The lure sticks were treated with a scent lure, applied with one cotton swab
(with paper core) cut in half and soaked in the lure, containing ∼0.5 mL of lure
(or control), and placed in the drilled hole of the lure stick. The five treatments
were (i) skunk-based scent lure (essence of striped skunk Mephitis mephitis anal
scent glands), (ii) fox-based scent lure (ground red fox Vulpes vulpes scent glands),
(iii) castor-based scent lure (castoreum; essence of anal sacs from American beaver
Castor canadensis), (iv) synthetic fermented egg (SFE), and (v) distilled water as a
control. All four scent lures are commercially available products and were obtained
from F&T Fur Harvester’s Trading Post, Alpena, MI, USA.
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Figure 2: Example camera trap photos of the four study species in southeast
Norway; clockwise from the top left: European badger (Meles meles), red fox
(Vulpes vulpes), domestic cat (Felis catus), and pine marten (Martes martes). We
measured distance as the number of body lengths between the lure stick and the part
of the animal closest to the lure stick in each photo (indicated by arrows).

As the lure sticks were novel objects in the environment, they may influence animal
behaviour even without scent lures; we thus used distilled water instead of lures on
scent poles as the control treatment. Each scent station was randomly assigned to
one lure (or water) at a time, which was replaced with a different treatment and a
fresh scent stick every 14 days (± 3 days) until all 5 treatments had been used at
each site. After use, the lure sticks were disposed outside the study area. Clean
plastic gloves were used in all handling of cameras, lure sticks, and lures to prevent
cross contamination between lure treatments.

Analysis

We only included photos of European badger (Meles meles), red fox, pine marten
(Martes martes), and domestic cat (Felis catus) in the analysis, as these were the
most common free-ranging mesocarnivores in the study area. Photos of a given
species that were taken within a five-minute interval were classified as belonging
to the same visit. We performed three Bayesian analyses as explained below
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and assessed model convergence by inspecting trace plots and by using the R-hat
statistic, where models with R-hat ≤1.1 are considered converged (Brooks & Gelman
1998). The number of Markov chain Monte Carlo (MCMC) samples/iterations was
based on convergence requirements identified in preliminary analyses. Parameter
estimates were provided as the mean and 95% credible interval (CI) of their
respective posterior distribution.

Sooner - time to first detection

We fitted separate occupancy models for each species in a Bayesian framework
following (Bornand et al., 2014). We estimated the effect of lure treatments on the
time (in days since lure treatment application) until the first photographic capture
of the focal species at each camera, conditional on occupancy of the site by the
focal species.

The occupancy state zi of a given site i is the result of a Bernoulli trial where ψ is
the probability of occurrence:

zi ∼ Bernoulli(ψ) (1)

We adopted an exponential distribution and modelled the time to detection as a
censored random variable stratified by lure treatment (Poisson rate λ for a given
lure l) and a constant hazard in continuous time. Detection probability p until
time t is a function of the detection rate λ and the survey time t:

pl = 1 − exp(−λlt) (2)

We defined a censoring indicator variable d, where d = 1 indicated that the time-
to-detection observation at site i was censored (hence, the species had not been
detected before the end of the survey period T ) for a given lure and d = 0, otherwise.
There were two ways in which an observation could become censored (d = 1) at a
given site i, either because the species was absent at that site (zi = 0) or because
the species was present (zi = 1) but was not detected by the end of the observation
period (following a given lure treatment).

We fitted species-specific models using the R2jags package in R (version 3.5.2, R
Development Core Team, 2017; Su & Yajima, 2015) and JAGS (Plummer, 2003).
We drew 200,000 MCMC samples from three chains, thinned by three and we
discarded the initial 50,000 samples as burn-in. The model definition is provided
in the electronic Supporting Information Appendix S1.
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Closer - distance to the focal point

To obtain a relative measure of an individual’s proximity to the lure stick, we
measured distance in units of body lengths of the animal visible in the photo
(Fig. 2). When an event resulted in several photos, we measured distance as the
minimum distance over all photos of the event. Body length has been used as a
measuring unit in other studies in behavioural ecology (Macdonald et al., 2004).
We measured the body length from the base of the ear to the base of the tail. We
recorded distance as the number of body lengths (with 1⁄2 body length resolution)
between the lure stick and the part of the animal closest to the lure stick (Figs.
2-3). Contact between the animal and the lure was recorded as zero body lengths.
We fitted species-specific Bayesian generalised linear mixed models using brms R
package (Burkner, 2018), with an identity link (Gaussian family), to quantify the
effect of lure treatment on log of distance of the focal species to the camera (+0.01
body lengths to deal with zeros). We included camera station as a random effect
on the intercept to account for non-independence between observations associated
with the same camera trap. Individual animals may be detected during multiple
visits at one or multiple camera trap; this source of non-independence could not
be accounted for here, due to the inability to distinguish individuals. We also
fitted one model testing differences between species (regardless of lure treatment)
with the specifications described above. We drew 2,000 MCMC samples from four
chains, and we discarded the initial 1,000 samples as burn-in.

Longer - duration of exposure

Apparent time spent at camera stations was defined as the time difference (in
seconds) between the first and last photograph showing the species during a visit.
The time an animal spent at scent lures has been used to evaluate attraction
and avoidance in both captive (Saunders & Harris, 2000) and wild carnivores
(Andersen, Johnson & Jones, 2016), suggesting that longer visits at a scent station
could indicate attraction, while shorter visits could indicate avoidance. We fitted
species-specific Cox proportional hazard models using the spBayesSurv package
in R (Zhou, Hanson & Zhang, 2018) to quantify the effect of lure treatments on
duration of exposure for the focal species. We used treatment as a categorical
covariate (5 levels) and compared effect of the 4 lure treatments to water. In
addition, we included a random effect of camera trap (station) in our model. We
drew 20,000 MCMC samples from four chains, and we discarded the initial 5,000
samples as burn-in.
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Figure 3: The workflow of our study and potential impact of behavioural response
to reduce false absences in camera trapping. Boxes on the right show posterior
time to first detection (days), distance from camera’s focal point (body length) and
duration of visits (seconds) for the focal species: European badger (Meles meles),
red fox (Vulpes vulpes), domestic cat (Felis catus), and pine marten (Martes
martes). Time to detection (top-right) is conditional on a site being occupied.
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Results
Of 1876 trap nights (operational cameras), 336 were associated with the control
treatment (water), 357 with SFE, 369 with castor-based lures, 360 with fox-based
lures, and 420 with skunk-based lures. Focal species were recorded in 1279 (68.2%)
camera trap photos (520 badger, 122 cat, 560 fox and 199 marten). We recorded
40 camera station visits by cats, 60 by badger, 108 visits by fox, and 32 by marten
across all treatments. Red foxes were photo-captured at 27 of the 30 camera trap
locations, badgers at 14, domestic cats at 10, and pine martens at 12 camera trap
locations. Based on R-hat values, convergence was reached by all Bayesian models
used for inferences.

Sooner - time to first detection

Median time to first detection, i.e. the time by which 50% of occupied sites had
made their first detection of the focal species were 4 days with 95% Credible Interval
(CI) of 2.2 to 41.4 for martens, 28 days for cats (95% CI = 4.1 to 108), 7.3 days
(95% CI = 3.3 to 49) for badgers and 8 days (95% CI = 5 to 18) for foxes (Fig.
3). These estimates assume an exponential hazard function. In addition, they are
conditional on the site being occupied and thus accounting for imperfect detection.
The only species for which we detected a significant effect of lure on time to first
detection was the domestic cat. Exponential hazard rate (λ) of domestic cat was
higher at stations treated with castor-based lure (mean λ = 1.5, 95% CI = 0.3 to
3.6) compared to control treatment water (mean λ = 0.2, 95% CI = 0.03 to 0.5).
This translates into a 4.3-day reduction (95% CI = 1 to 27 days) in the median
time to first detection (Fig. 4).

Closer - distance to the focal point

The shortest distance from the focal point within the cameras viewshed (expressed
in body lengths of the individual in the image; Figs. 2-3) varied substantially
between observations and their posteriors overlapped between species: 0.84 median
body lengths for cats (95% CI = 0.3 to 2.1), 0.75 median body lengths for fox (95%
CI = 0.43 to 1.4), 0.3 median body lengths for badger (95% CI = 0.13 to 0.55), and
0.4 median body lengths for marten (95% CI = 0.2 to 1). Martens kept a longer
distance from the lure stick when the scent station was treated by fox-based lure
(mean regression coefficient β = 4, 95% CI = 1.9 to 6.3), skunk-based lure (mean β
= 3.2, 95% CI = 0.8 to 5.6) or castor-based lure (mean β = 4, 95% CI =0.7 to 7.4)
compared with the control treatment (water). Conversely, badgers moved closer to

10



Figure 4: The effect of scent lure treatment (castoreum, fox gland, synthesized
fermented egg [SFE], skunk gland) on i) time to first photo-capture of the study
species (λ: exponential hazard rate), ii) distance of focal species to the lure stick
(linear regression β coefficient of each lure treatment on log of distance), and iii)
duration of visit (proportional hazard β coefficient of each lure treatment effect
on time to departure; higher coefficients mean shorter durations). Each violin
shows posterior distribution (with 95% credible interval) of coefficients of one lure
treatment (colour coded) effect on one species and the median is shown by a white
dot (larger dots for results that are significantly different from 0). Violins for the
control (water) are only shown in the “time to first detection” analysis; violins in
the other two plots are coefficients, compared with the control.
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lure sticks when they were treated with skunk-based lure (mean β = –2, 95% CI =
–3.5 to –0.5) compared to the control treatment (Fig. 4, Appendix S2 Table S1-S4).

Longer - duration of exposure

Median time to departure (i.e. the time by which half of the documented visits
by the focal species had ended) was 6 sec for badgers (95% CI = 3 to 16 sec), 5
sec for martens (95% CI = 3 to 14), 3 sec for foxes (95% CI = 0 to 4), and 2 sec
for cats (95% CI = 0 to 4; Fig. 3). Foxes had the longest visits at scent stations
that were treated with fox-based lure (mean hazard coefficient = –0.8, 95% CI =
–1.5 to –0.2) or skunk-based lures (mean hazard coefficient = –0.8, 95% CI = –1.4
to –0.2) compared to the control (water). We detected no significant difference in
duration of visits between control and lure treatments for the other species (Fig. 4,
Appendix S3 Table S1-S4).

Discussion
Our study yielded quantitative information about three different aspects of de-
tectability during camera trapping (Figs. 1 and 3): 1) the time until first detection,
2) the proximity of the subject to a focal point in the viewshed of the camera,
and 3) the duration of exposure to the camera. Variation in these measures was
substantial, and to some extent explained by species and lure treatment (Fig. 4).

Sooner - time to detection

Time to detection is directly related to the probability of detection (Garrard et
al., 2008). Factors that influence the propensity for and frequency of visits (e.g.
density, movement patterns, curiosity) affect the time until the initial detection
or the interval between consecutive detection events. We found that time to
detection varied substantially between observations in our study but detected only
one significant effect: free-ranging domestic cats appeared to visit sites with the
castoreum-based lure sooner than other sites (Fig. 4). An affinity of felines to
castoreum lures has been reported previously (McDaniel et al., 2000). However,
given the spectrum of scents used in this study and previous reports from similar
work (Bischof et al., 2014b), a lack of additional effects on time to detection was
surprising. Our study was conducted late autumn to early winter which might have
influenced the effective sampling distance by cold weather. Alternatively, we used
a comparatively small amount of lure (∼0.5 ml) which could explain the paucity of
effects.
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Investigators have multiple options for manipulating the time to detection. They can
try to reduce it, as we attempted here, by using olfactory or other attractants which
may draw animals from a wider area or increase the propensity for approaching
the camera by exploiting the interest in food, potential mates, or curiosity in
general. Although the effect was not pronounced in our study, based on findings
from other studies, lures can be an effective tool for increasing detectability and
thus decreasing time to detection (Bischof et al., 2014b; Ferreras et al., 2018; Mills
et al., 2019). Other measures are aimed at reducing the risk of avoidance behaviour
by preventing contamination of the site with human scent, hiding or camouflaging
cameras, using illumination outside the visible spectrum of the target species, and
minimizing sounds generated by the camera. Most important is perhaps is the
selection of sites (O’Connor et al., 2017); placing cameras at locations the target
species’ range and in preferred microhabitat increases exposure to individuals in
the population and thus reduces time to detection (Fig. 1).

Regardless of the biological characteristics that influence time to detection and
the measures taken to reduce it, it has already been recognized as an intuitive
and useful measure of detectability (Garrard et al., 2008; Bischof et al., 2014b;
Halstead, Kleeman & Rose, 2018). Specifically, time to event analysis has been used
previously in wildlife camera trapping studies to quantify the effect of lures and other
covariates on time to detection (Bischof et al., 2014b). Among previous studies that
employed time to detection, we can make a coarse distinction based on accounting
for imperfect detection (Garrard et al., 2008; Bischof et al., 2014b; Bornand et al.,
2014). Accounting for imperfect detection, which includes the present study, has
the distinct advantage that we estimate time to detection conditional on the site
being occupied, rather than apparent time to detection conditional on the detection
having been made. Time to detection without accounting for imperfect detection
is liable to underestimate time to detection, as it ignores sites without detections
(Bischof et al., 2014b). Alternatively, one may estimate time to detection using
right-censoring of sites without detections, which leads to overestimation of time
to detection.

Here we included an exponential hazard model for time to detection besides a
binomial component to account for detection conditional on presence (Garrard et
al., 2008; Bornand et al., 2014). This allowed us to account for non-detections that
were due to true absences, while analysing the effect of lure treatment on the time
to detection. The hazard rate parameter (λ) estimated by the model translates
directly into detection probability (Equation 2) but offers a different perspective
on detectability (Garrard et al., 2008).
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Regardless of the type of time-to-detection model used, we recommend that it
is made part of a hierarchical approach that accounts for imperfect detection.
When it comes to measures intended to reduce time to detection, investigators
should consider not only the strength of the effect, but also potential unintended
consequences these measures may have for the interpretation of survey results.
For example, lures may change the size of the area sampled, thereby affecting
assumptions of the analytical methods (Larrucea et al., 2007; Rowcliffe et al., 2008)
or they could cause changes in the study population (e.g. territory maintenance,
energy expenditure). Furthermore, many camera trap studies target multiple species
and lures that attract one, may repel another (Rocha, Ramalho & Magnusson,
2016; Mills et al., 2019).

Closer - distance to the focal point

Once an individual has been attracted to a camera trap site, detection will depend
on whether the individual enters the camera’s field of view in a way that a) triggers
the camera and b) results in a photo (or video) with enough detail to make an
identification. Distance of a visitor to the camera trap is one of the most important
covariates of a successful trigger (Randler & Kalb, 2018). Since most camera traps
in use today operate on a passive infrared sensor that detects heat of a moving
object, the probability of missing a visit increases with distance from the sensor.

Our analysis showed species-specific differences in proximity to the focal location at
camera trap stations, modulated by lure type. When lure sticks were treated with
the control (distilled water), pine martens approached the sticks more closely than
the other three species (Appendix S2 Table S1-S4). This pattern reversed, when
lures were applied, with marten exhibiting avoidance behaviour towards gland-based
lures (castoreum, fox, and skunk). Certain species could display aversion towards
lures; e.g. odours from predators or potential competitors can act as deterrent
to subordinate species, hence their detectability could decrease when using lures
(Rocha et al., 2016). Red foxes represent an interspecific threat to the smaller
marten, which may explain apparent avoidance behaviour (Lindström, Brainerd &
Overskaug, 1995; Monterroso et al., 2020). The similar response to skunk-scented
sticks is more difficult to explain, as striped skunks are not native to Europe and
do not occur in our study area.

By contrast, badgers approached lure sticks treated with skunk anal scent gland
significantly more closely than the control. Similar communication systems in closely
related species (Hughes, Price & Banks, 2010) may facilitate bidirectional olfactory
communications within species assemblage (Nielsen et al., 2015). Although striped
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skunk does not occur in our study area, both skunk and badger are mustelids,
which may explain interest by badgers. Alternatively, skunk-based lure, a novel
stimulus, may elicit curiosity (Harrington, Harrington & Macdonald, 2009). Other
studies have reported little effect of scent lures from sympatric predators on badger
attraction (Monterroso et al., 2011; Suárez-Tangil & Rodríguez, 2017), possibly
indicating a greater role of the novelty and curiosity aspects.

Detection probability decreases or becomes biased as the chance of misidentification
(i.e. false-positive) increases with the number of related and similar-looking species
co-occurring in the same area (Rowcliff & Carbone 2008). Similarly, animals
that are hesitant to fully enter the camera’s viewshed or keep their distance are
less likely to trigger the camera or yield photos that allow identification, which
translates into lowered detection probability. These challenges are further amplified
for small-bodied (Tobler et al., 2008) and furtive species (Glen et al., 2013). The
choice of camera (focal length, shutter speed or frame rate, image resolution, choice
of still vs. video, etc.), camera placement (e.g. relative to a path), installation
(height, aim), and the application of attractants give investigators some control
over the position of target animals within the camera’s viewshed. Attractants may
in addition help keep fast-moving species still enough to minimize motion blur.

As our results show, lures may not only facilitate increased proximity but could
also prompt avoidance behaviour, manifested as increased distance from the focal
point. As mentioned earlier, this could be especially relevant in studies targeting
multiple species, where finding a lure or bait that attracts some or all, but does
not repel any target species may be challenging if not impossible (Rocha et al.,
2016). Furthermore, leaving DNA at the camera’s focal point (e.g. scats or hair
samples), where it can be detected and used as an additional source of information
can aid individual identification (see also next section).

Longer - duration of exposure

In many cases, the time spent in the camera’s viewshed is directly related to the
number of images or the number or length of video recordings. More abundant visual
documentation translates into a higher probability of making an identification and
ultimately greater detection probability. We found that red foxes spent significantly
more time getting their picture taken at stations treated with skunk and red fox scent
gland lures than at stations with the control (Fig. 4). Fox reaction to conspecifics
and skunk can be attributed to information gathering (e.g. communication with
conspecifics and competitors) or novelty investigation behaviour.

We detected no significant response to SFE by foxes or any other species in our
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study. SFE contains some of the components of carrion scent (Bullard, 1982), and
has been reported as effective for attracting canids such as red fox (Saunders &
Harris, 2000; Hunt, Dall & Lapidge, 2007), kit fox V. macrotis, and coyote Canis
latrans (Roughton, 1982; Bullard, Turkowski & Kilburn, 1983), as well as dingo
C. lupus dingo and feral dog C. l. familiaris (Hunt et al., 2007). The lack of a
response to SFE in our study may be due to the very small amount of lure used at
scent stations (∼0.5 ml), compared with other studies, i.e. 2-10 ml (Monterroso et
al., 2011; Stratman & Apker, 2014; Suárez-Tangil & Rodríguez, 2017). In addition,
our study was conducted during the autumn, whereas others reported that red fox
spent more time with SFE during winter and spring than summer and autumn
(Saunders & Harris, 2000).

There is another potentially important and unaccounted-for aspect that could
have influenced behaviour during our study: the mutual influence between species
visiting the camera trap. Carnivores, intentionally or unintentionally, leave scent at
camera trap stations which is liable to be picked up during subsequent visits to the
same station by conspecifics and other species. For example, a lure that attracts
species A and prompts it to leave a scent mark, may attract or repel species B.
This is also one of the reasons (aside from the inability to distinguish individuals)
we refer to our study as quasi-experimental, as mutual interactions were neither
controlled for during the study nor accounted for during the analysis but may have
contributed to the observed patterns.

Investigators may be especially interested in measures to increase the duration of
visits to camera traps when working with fast-moving species or species that are
difficult to identify due to their morphology (similarity with conspecifics, lack of
unique markings, etc.). Particularly capture-recapture methods that require indi-
vidual identification and rely on unique markings such as pelt patterns, may benefit
from boosting the number of images taken and thus the chance of identification
(Garrote et al., 2012; Gerber et al., 2012; Dorning & Harris, 2019). For species
without visible markings, longer visits may increase the probability and amount of
DNA left behind, such as in hair (Burki et al., 2010), faeces and urine (Wikenros
et al., 2017), and glandular secretion in case of marking (Clapham et al., 2014).

While lengthening exposure time to the camera will increase detection probability,
sample size (visual documentation), and detail, it may also artificially increase
encounters between individuals of the same or different species, thus impacting
the study system. In addition, it may constitute a manipulation of time budgets.
These and other potential impacts should be considered when measures are taken
to keep animals in front of the camera for an extended time.
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Conclusions
An important conclusion regarding measures to boost detection probability in
camera trapping studies is that one measure does not fit all. Biological differences
– e.g. distribution, density, behaviour, morphology – mean different challenges to
detectability (Fig. 1) requiring different measures to overcome them. Disentangling
and quantifying components of detectability, as we did here, offers investigators a
framework for organizing study and species-specific impediments to detection and
come up with strategies to cope with them.

In addition to biological considerations, the impediments and choice of measure for
overcoming them will depend on the goals of a given camera-trapping study. Studies
that require individual identification, such as capture-recapture for abundance
estimation, may place high importance on “closer” and “longer” in order to make
reliable individual assignments (Guthlin, Storch & Kuchenhoff, 2014). Similarly,
studies focusing on assessments of behaviour (Caravaggi et al., 2017; van Ginkel,
Smit & Kuijper, 2019), and body condition (Carricondo-Sanchez et al., 2017) that
want to distinguish reproductive status (Trolle & Kéry, 2003; Canu et al., 2017)
and sex (Monterrubio-Rico et al., 2018) will be interested in boosting the quantity
and level of detail of information obtained during a given visit to a camera trap.
Conversely, studies on presence-absence or species assemblages (Kays et al., 2020)
will initially be focused on maximizing the probability of a visit to the camera trap
station, especially when rare species are involved (“sooner”).

Finally, measures taken to boost different aspects of detectability may have other,
unintended effects. Camera trapping is generally hailed as a non-invasive ecological
survey method (Burton et al., 2015), but see Meek et al., 2016). The use of lures
and baits, as discussed above, could have unintentional consequences for movement
and activity patterns, as well as intra and interspecific communication (Neilson et
al., 2018). Such changes not only make camera trapping intrusive but could also
impact the assumptions of the approach used for drawing inferences (e.g. the size
of the site in occupancy analysis). In addition, a measure that improves detection
of one species or demographic group, may have the opposite effect for another
species or group. We recommend that investigators take a comprehensive look at
both the biological and study-specific impediments to detectability and strategies
taken to overcome them.
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Supporting Information. Tourani, M., Brøste, E.N., Bakken, S., Odden, J. &
Bischof, R. Sooner, closer, or longer: detectability of mesocarnivores at camera
traps. Journal of Zoology.

Appendix S1: Time to first detection

R code with the JAGS (Plummer, 2003) model definition for the occupancy model
with detection modeled as a time-to-detection process following Bornand et al.
(2014):

1



sink("ttdocc.txt")
cat("

model{

###--- ECOLOGICAL PROCESS ---###
# True state model for the partially observed true state
# True occupancy z at site i

psi ~ dunif(0,1)

for(i in 1:M){ ##--loop over sites
z[i] ~ dbern(psi)
}

###--- OBSERVATION PROCESS ---###
for(l in 1:5){ ##--loop over lure types

lambda[l] ~ dgamma(0.001,0.001)
}

for(i in 1:M){
##--Exponential time to detection
y[i] ~ dexp(lambda[lure[i]])
}#M:site

for(i in 1:M){
d[i] ~ dbern(theta[i])##--model for censoring indicator
theta[i] <- z[i] * step(y[i]-Tmax) + (1-z[i])
}#M:site

}#model
",fill=TRUE)

sink()

2
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Figure S1: Time-to-event plots for European badger (Meles meles). The four
plots contrast the four lure treatments against water (control). Survival probability
refers to probability of no detection. The median time to first detection (days) is
visualized with dashed lines.
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Figure S2: Time-to-event plots for domestic cat (Felis catus). The four plots
contrast the four lure treatments against water (control). Survival probability
refers to probability of no detection. The median time to first detection (days) is
visualized with dashed lines.
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Figure S3: Time-to-event plots for red fox (Vulpes vulpes). The four plots contrast
the four lure treatments against water (control). Survival probability refers to
probability of no detection. The median time to first detection (days) is visualized
with dashed lines.
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Figure S4: Time-to-event plots for pine marten (Martes martes). The four plots
contrast the four lure treatments against water (control). Survival probability
refers to probability of no detection. The median time to first detection (days) is
visualized with dashed lines.
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Supporting Information. Tourani, M., Brøste, E.N., Bakken, S., Odden, J. &
Bischof, R. Sooner, closer, or longer: detectability of mesocarnivores at camera
traps. Journal of Zoology.

Appendix 2: Distance to the focal point

Table S1: The summary output of species-specific mixed model for the effect of
lure treatments on the log of distance of European badger (Meles meles) to the
lure stick (camera’s focal point). Estimates show β coefficients. The 95% credible
interval (CI) for the effects that did not overlap zero are shown in bold.

Predictors log(Distance)
Estimates CI (95%)

Intercept 0.03 –1.35 - 1.44
Lure.Type: SFE 0.14 –2.18 - 2.57
Lure.Type: Castor –1.34 –3.21 - 0.70
Lure.Type: Fox –1.46 –3.69 - 0.93
Lure.Type: Skunk –2.04 –3.47 - –0.58
Random Effects
σ2 0.77
τ00 5.33
ICC 0.13
NCamera.ID 14
Observations 60
Marginal R2/Conditional R2 0.195 / 0.331

Table S2: The summary output of species-specific mixed model for the effect of
lure treatments on the log of distance of domestic cat (Felis catus) to the lure stick
(camera’s focal point). Estimates show β coefficients.

Predictors log(Distance)
Estimates CI (95%)

Intercept 0.11 –3.01 - 2.85
Lure.Type: SFE –0.32 –3.21 - 2.57
Lure.Type: Castor –0.05 –2.99 - 2.85
Lure.Type: Fox –0.34 –3.30 - 2.54
Lure.Type: Skunk –1.55 –4.27 - 1.18
Random Effects
σ2 1.59
τ00 1.99
ICC 0.45
NCamera.ID 10
Observations 40
Marginal R2/Conditional R2 0.159 / 0.621
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Table S3: The summary output of species-specific mixed model for the effect of
lure treatments on the log of distance of red fox (Vulpes vulpes) to the lure stick
(camera’s focal point). Estimates show β coefficients.

Predictors log(Distance)
Estimates CI (95%)

Intercept –0.34 –1.25 - 0.56
Lure.Type: SFE 0.40 –0.69 - 1.48
Lure.Type: Castor 0.24 –1.11 - 1.55
Lure.Type: Fox 0.07 –1.09 - 1.28
Lure.Type: Skunk –0.32 –1.38 - 0.75
Random Effects
σ2 1.00
τ00 3.20
ICC 0.24
NCamera.ID 27
Observations 108
Marginal R2/Conditional R2 0.044 / 0.288

Table S4: The summary output of species-specific mixed model for the effect
of lure treatments on the log of distance of pine marten (Martes martes) to the
lure stick (camera’s focal point). Estimates show β coefficients. The 95% credible
interval (CI) for the effects that did not overlap zero are shown in bold.

Predictors log(Distance)
Estimates CI (95%)

Intercept –4.38 –6.28 - –2.41
Lure.Type: SFE 2.33 –0.19 - 4.77
Lure.Type: Castor 3.99 0.64 - 7.43
Lure.Type: Fox 4.02 1.71 - 6.32
Lure.Type: Skunk 3.15 0.67 - 5.50
Random Effects
σ2 0.53
τ00 5.69
ICC 0.09
NCamera.ID 12
Observations 32
Marginal R2/Conditional R2 0.402 / 0.473
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Supporting Information. Tourani, M., Brøste, E.N., Bakken, S., Odden, J. &
Bischof, R. Sooner, closer, or longer: detectability of mesocarnivores at camera
traps. Journal of Zoology.

Appendix 3: Duration of exposure

Table S1: The summary output of species-specific model of proportional hazard
for the effect of lure treatments on the duration of European badger (Meles meles)
stay in front of camera. Estimates show coefficients, CI: Credible Interval.

Predictors Duration
Estimates (mean) CI (95%)

Lure.Type: SFE –0.03 –1.5 - 1.2
Lure.Type: Castor –0.43 –1.52 - 0.52
Lure.Type: Fox –0.3 –1.73 - 0.98
Lure.Type: Skunk –0.26 –0.99 - 0.5
Random Effects Variance
Mean 0.5
Standard deviation 0.54
95% CI 0.13
Observations 60
NCamera.ID 14
Log pseudo marginal likelihood –220.41

Table S2: The summary output of species-specific model of proportional hazard
for the effect of lure treatments on the duration of domestic cat (Felis catus) stay
in front of camera. Estimates show coefficients, CI: Credible Interval.

Predictors Duration
Estimates (mean) CI (95%)

Lure.Type: SFE 0.52 –1.1 - 2.7
Lure.Type: Castor 0.87 –0.83 - 2.9
Lure.Type: Fox 0.13 –1.66 - 2.2
Lure.Type: Skunk –0.08 –1.8 - 2
Random Effects Variance
Mean 0.16
Standard deviation 0.43
95% CI 0.0008 - 1.1
Observations 40
NCamera.ID 10
Log pseudo marginal likelihood –102.578
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Table S3: The summary output of species-specific model of proportional hazard
for the effect of lure treatments on the duration of red fox (Vulpes vulpes) stay in
front of camera. Estimates show coefficients, CI: Credible Interval. The 95% CI
for the effects that did not overlap zero are shown in bold.

Predictors Duration
Estimates (mean) CI (95%)

Lure.Type: SFE –0.24 –0.86 - 0.4
Lure.Type: Castor 0.09 -0.7 - 0.8
Lure.Type: Fox –0.84 –1.5 - –0.2
Lure.Type: Skunk –0.77 –1.4 - –0.2
Random Effects Variance
Mean 0.11
Standard deviation 0.12
95% CI 0.0008 - 0.43
Observations 108
NCamera.ID 27
Log pseudo marginal likelihood –300.06

Table S4: The summary output of species-specific model of proportional hazard
for the effect of lure treatments on the duration of pine marten (Martes martes)
stay in front of camera. Estimates show coefficients, CI: Credible Interval.

Predictors Duration
Estimates (mean) CI (95%)

Lure.Type: SFE –0.41 –2 - 1.4
Lure.Type: Castor 0.65 –1.4 - 2.5
Lure.Type: Fox 0.58 –0.8 - 2.2
Lure.Type: Skunk 0.61 –0.7 - 2.1
Random Effects Variance
Mean 0.4
Standard deviation 0.8
95% CI 0.0009 – 2.7
Observations 32
NCamera.ID 12
Log pseudo marginal likelihood –104.26
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Abstract. Population monitoring data may originate from multiple methods and are often
sparse and fraught with incomplete information due to practical and economic constraints.
Models that can integrate multiple survey methods and are able to cope with incomplete data
may help investigators exploit available information more thoroughly. Here, we developed an
integrated spatial capture–recapture (SCR) model to incorporate multiple data sources with
imperfect individual identification. We contrast inferences drawn from this model with alter-
nate models incorporating only subsets of the data available. Using extensive simulations and
an empirical example of multi-method brown bear (Ursus arctos) monitoring data from north-
ern Pakistan, we quantified the benefits of including multiple sources of information in SCR
models in terms of parameter precision and bias. Our multiple observation processes SCR
model (MOP) yielded a more complete picture of the underlying processes, reduced bias, and
led to more precise parameter estimates. Our results suggest that the greatest gains from inte-
grated SCR models can be expected in situations where detection probability is low, a large
proportion of detections is not attributable to individuals, and the degree of overlap between
individual home ranges is low.

Key words: camera trap; data integration; large carnivore; multiple observation process; noninvasive
monitoring; simulation; spatial capture–recapture.

INTRODUCTION

Wildlife monitoring is an integral part of applied ecol-
ogy, providing valuable information about populations
in order to assess their status and inform recovery or
control. One of the primary challenges in wildlife moni-
toring arises from the failure to detect all individuals in
a population. For decades, capture–recapture (CR)
methods were used to deal with this challenge by esti-
mating detection probability and accounting for it dur-
ing the estimation of ecological parameters such as
abundance and vital rates (Lukacs and Burnham 2005).
A comparatively recent development, spatial capture–re-
capture (SCR; Efford 2004, Royle et al. 2018) addition-
ally uses the information in the spatial configuration of

individual detections to directly estimate density when
data are available only for a subset of the population.
Sparse data sets are common in SCR studies, because

this framework is particularly popular for inventory and
monitoring of rare or elusive species, to estimate density
with data obtained noninvasively over large areas (e.g.,
Sollmann et al. 2013b). This poses a challenge, because
SCR models, like non-spatial CR models (Gerber et al.
2014), are known to return biased and imprecise esti-
mates when fit to sparse data (Marques et al. 2011, Soll-
mann et al. 2012). Moreover, noninvasive monitoring
methods often yield detections that are not attributable
to specific individuals (e.g., incomplete genotype infor-
mation in genetic capture–recapture studies or camera
trap data with inconclusive individual designation). Dis-
carding these unidentified detections further reduces the
amount of data used for estimation (Augustine et al.
2019).
Nowadays, many species inventories combine multiple

survey methods, such as noninvasive DNA sampling,
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camera trapping, sign surveys, or physical mark–recap-
ture to maximize the amount of data (Blanc et al. 2014,
Clare et al. 2017, Burgar et al. 2018, Murphy et al.
2018). One way to better exploit the available informa-
tion is integrated modeling, the joint analysis of multiple
data sets traditionally analyzed separately (Besbeas et al.
2002). This trend has also found its way into the SCR
framework (Gopalaswamy et al. 2012, Sollmann et al.
2013b). The idea of integrated modeling is to combine
into one analysis different data sets that contain (poten-
tially partial) information about the same underlying
ecological processes of interest. The different data sets
do not necessarily originate from different survey meth-
ods (e.g., individual detections from DNA-sampling and
camera trapping; Sollmann et al. 2013b) but they can
also represent different data types collected using the
same survey method. For example, this is the case of
spatial mark–resight models (SMR) that combine detec-
tions of the marked, identified, and unmarked, always
unidentified, parts of a population collected using cam-
era traps (Rich et al. 2014). Traditionally, unidentified
detections are discarded further reducing available data
for analysis. Recently, generalized SMR proposed to
deal with this situation (Whittington et al. 2018). How-
ever, these models still rely on the assumption that
marked individuals are always recognized as marked if
detected (Royle et al. 2013). This assumption is violated
when the marking status is not observable with certainty.
For example, in case of tag loss an individual may be
misclassified as unmarked when it belongs to the marked
part of the population. Poor quality pictures in camera
trapping are another example for uncertain mark status
for a detection usually leading to that detection being
discarded.
Here we describe an integrated SCR model that com-

bines data sets originating from different survey types,
each with potentially varying degree of completeness in
terms of the proportion of individually identified detec-
tions. In addition, this model relaxes the assumption
that marked individuals are always recognized as
marked. We then ask to what extent the integrated anal-
ysis of multiple sources of information boosts our ability
to draw inferences from monitoring data by comparing
the precision and bias of parameter estimates from four
models using different subsets of the available data.

Model 1: classic SCR, uses only identified detections
from a single survey method.

Model 2: integrates identified and unidentified
detections from a single survey method.

Model 3: integrates identified detections from one
survey method and unidentified detections from a
second independent survey method.

Model 4: the multiple observation processes (MOP)
SCR model that combines all data sets.

Finally, we showcase our modeling approach by
applying it to a sparse multi-method survey data set on

brown bear (Ursus arctos) from the western Himalayas
in Pakistan.

METHODS

Model specification

We developed an integrated Bayesian SCR model
composed of two hierarchical levels. The first one
describes the underlying ecological process of interest
(i.e., density) and the second one describes the associated
observation processes (Fig. 1).

Ecological process.—The ecological process describes
population density, which arises from the distribution of
individuals in space. Following a homogeneous point
process (Royle et al. 2018), the positions of individual
activity centers si are uniformly distributed across the
habitat S, the spatial extent within which individual
activity centers can be placed:

si �Uniform Sð Þ (1)

To account for the fact that some individuals in the
population may never be detected, we used a data-aug-
mentation approach (Royle et al. 2007). For all M indi-
viduals (M much larger than the unknown true
population size), we modeled inclusion in the population
through a latent state variable zi, governed by the inclu-
sion probability Ψ:

zi �Bernoulli Wð Þ (2)

Population size N is then the sum of individuals
included in the population:

N ¼
XM

i¼1

zi (3)

Observation processes.—In SCR, the classic observation
model describes the probability of detecting individual i
at discrete locations (i.e., detectors) conditional on its si
location. In our integrated model, we considered K dif-
ferent survey types deployed simultaneously correspond-
ing to K independent sets of detectors, each composed
of Jk detectors. Considering the commonly used half-
normal detection function (Borchers and Efford 2008),
we expressed probability pkij of detecting individual i at
the jth detector of the detector set k as:

pkij ¼ pk0 � e�
dk
ijð Þ2
2r2 � zi; (4)

where dk
ij is the distance between the individual’s activity

center si and detector jk; pk0 is the magnitude parameter
for survey type k; and r is the scale parameter. While
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the baseline detection probability is specific to each sur-
vey type, the scale parameter is shared as we assume it
arises from the ecological process (e.g., space use). Alter-
natively, r could be survey type-specific if it is linked
with the detection process rather than animal space use
(e.g., acoustic methods; Efford et al. 2009), as long as
each survey type contributes detections of identified
individuals at multiple detectors.
In many situations, detections cannot be linked to an

individual with certainty, yet the spatial information of
unidentified detections can be used in an integrated SCR
framework by modeling the probability of obtaining
unidentified detections conditional on the latent activity
centers of individuals in the population. Individual
detections might not be independent (e.g., temporal cor-
relation of fecal samples), which results in violation of
Poisson assumptions (Royle et al. 2013). This is the case
of our bear study where the sampling process did not
allow us to consider the number of detections as real

counts. We therefore considered binary detector-level
detections, instead of counts of unidentified detections,
and expressed the probability to collect at least one
unidentified detection at detector j from survey type k as:

_pkJ ¼ 1�
YM
i¼1

1� pkij � 1� ak
� �� �

; (5)

where ak is the probability that any sample from survey
type k be identified. Following this formulation, the K
matrices of individually identified detections ykij for the
M individuals at Jk detectors are the outcome of a Ber-
noulli process with probability of detection pkij :

ykij �Bernoulli pkij � ak
� �

(6)

Detections without individual ID are compiled as K
vectors of zeros and ones of length Jk, where _ykj

FIG. 1. Hierarchical structure of the four spatial capture–recapture (SCR) models integrating different combinations of data.
The top box shows the distribution of latent individual activity centers, with associated detection probability indicated as gradual
shading. Lower boxes show detections of those individuals at detectors (gray points). Survey type 1 yields detections both with (red
plus signs, left panel) and without individual identity (lines connecting detections to individual activity centers, middle panel). Sur-
vey type 2 yields detections without individual identity indicated by blue crosses.
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represents the presence/absence of at least one unidenti-
fied detection at detector jk:

_ykJ �Bernoulli _pkJ
� �

(7)

Under this formulation, identified and unidentified
components of a given survey type k share parameters
pk0 and ak, while r and N (or density; zi: individual inclu-
sion) are shared by all observation processes. When all
observation models are combined in a joint likelihood in
the MOP model, both identified and unidentified detec-
tions from multiple survey types inform about the same
ecological parameters (r and N), thus potentially
improving inferences.

Simulation study

We used simulations to quantify and compare the
performance of models with different levels of data
integration. Specifically, we were interested in the con-
sequences of data integration on the precision and bias
of two key parameters, N and r, under different scenar-
ios of population size, individual home range overlap,
proportion of identified detections, and overall
detectability.
Although SCR studies often use multiple occasions,

this is not necessary (Efford et al. 2009) and we simu-
lated a population surveyed with k = 2 survey types dur-
ing a single occasion. Method 1 yields both identified
and unidentified detections with variable levels of identi-
fication (a = 0.25, 0.50, and 0.75). This is, for example,
the case in most DNA-based studies where some DNA
samples fail to produce definite identification. We con-
sidered that method 2 could only generate unidentified
detections (a = 0), as would be the case in a camera-trap
study of a species without unique external markings. In
a square habitat of 50 9 50 arbitrary distance units with-
out a surrounding unsampled buffer area, we randomly
drew either 30 or 50 individuals’ si positions, following
Eq. 1. Although many SCR studies incorporate an
unsampled buffer into their state space, not doing so
allowed us to use the same state-space for all scenarios,
instead of dealing with variable buffer sizes for each r
scenario, which would have made comparisons between
simulations difficult (forcing either variable densities or
variable population sizes). We defined two independent
detector grids, placed 1.0 and 1.2 distance units apart,
leading to J1 = 2,500 and J2 = 1,764 detectors, respec-
tively. We then simulated individual detections for three
levels of r (1, 2, or 3 distance units) to generate
increasing levels of overlap between individual home
ranges (Efford and Hunter 2018). To avoid any con-
founding effect of higher detectability associated with
higher r, we parameterized our simulations using a con-
stant effective sampling area A0 (Borchers and Efford
2008). This allowed us to calculate a different value of p0
for each r while keeping the overall individual
detectability constant

p0 ¼ 1� exp� A0=2pr2� �
(8)

Detection parameters were chosen so that approxi-
mately 65% or 85% of the population was detected by
the two survey types combined, corresponding to levels
of detections of approximately 50% or 70% detected by
survey method 1, and 30% or 50% by method 2, respec-
tively. We generated individual detection histories y1ij and
y2ij (Eq. 6), using the detection probabilities defined in
Eq. 4. As survey type 1 yields both identified and
unidentified detections, we randomly retained individual
detection histories with three levels of identification
probability (a = 0.25, 0.50, and 0.75). For example, con-
sidering high detections, if 85% of the population was
detected, given the identification probability of 0.75, we
only detected and identified 64% of the population in
the best-case scenario, and only 21% in the worst-case
scenario (low detection: 65%, a = 0.25). We then created
the unidentified data set _y1J by aggregating unidentified
detections into one vector of length J1 composed of one
when at least one detection was collected, and zero if no
detection occurred at detector j.
We generated 50 data sets for each set of parameters

before fitting all four models (Appendix S1) to each. We
fitted all models to the simulated data using NIMBLE
(version 0.6-9, de Valpine et al. 2017) and R (version
3.5.2, R Development Core Team 2018). We drew from
three chains, 15,000 MCMC samples each, and the ini-
tial 5,000 samples were discarded as burn-in. We
assessed convergence using the potential scale reduction
value for all parameters and by inspecting the mixing of
the chains using trace-plots (Brooks and Gelman 1998).
We performed a frequentist validation of our Bayesian
model and evaluated its performance by checking the
relative bias (RB) of the mode of the posterior distribu-
tion, the coefficient of variation (CV) and the coverage
of the 95% credible intervals of N and r (Walter and
Moore 2005).

Himalayan brown bear in northern Pakistan

The development of the MOP SCR model was origi-
nally motivated by our intent to estimate abundance of
Himalayan brown bears in northern Pakistan’s Deosai
National Park. The bear population of Deosai was mon-
itored across an area of 2,262 km2 through both nonin-
vasive DNA-sampling (survey type 1; consisting of both
identified and unidentified observations) and camera
trapping (survey type 2; only unidentified observations)
from 23 September to 9 November 2012. This data set is
a good example of the different challenges faced by sur-
veys of rare and elusive species, due to remoteness, high
elevation, and imposing logistic challenges. To highlight
the benefits of data integration for a case study, we fitted
the same four models to the bear data and compared
estimates of parameters N and r (see Appendix S2 for a
detailed description of the data collection and analysis).
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RESULTS

Simulations

Of the 7,200 simulation runs, 6,478 converged: 1,487
for model 1, 1,561 model 2, 1,686 model 3 and 1,744
model 4. We considered only these runs in all further
analyses (Appendix S3: Table S1). Coverage for both N
and r was nominal in all models (Appendix S3:
Table S2). In all simulation scenarios, data integration
led to conspicuous improvements in precision and
reduced bias in estimates of parameters N and r
(Fig. 2). Gains in precision from data integration
increased with decreasing overall detection probability,
decreasing proportion of identified detections, and
decreasing overlap between individual home ranges. In
the situation where data were the most sparse (and gains
greatest), i.e., when detectability, identification probabil-
ity and overlap were low (a = 0.25 and r = 1), we
obtained an 80% CV reduction for N with model 4 (CV
(N) = 0.25), compared to model 1 (CV(N) = 1.2). By
comparison, the reduction in CV was only 20% (CV
(N)Model 4 = 0.24 and CV(N) Model 1 = 0.29), when
detection was high, a = 0.75, and r = 3. The pattern
was similar for r with up to a 90% CV reduction (CV
(r)Model 4 = 0.2 and CV(r) Model 1 = 1.6) at low
detectability, identification probability and overlap to
only 30% (CV(r)Model 4 = 0.16 and CV(r) Model

1 = 0.24) at high detectability, identification probability
and overlap.
Similarly, data integration led to a reduction in bias in

all scenarios. This effect was greater with decreasing over-
all detectability, decreasing identification probability, and
decreasing overlap between individual home ranges
(Fig. 2). For example, the mean relative bias in N obtained
with model 4 was 90% smaller (RB(N)Model 4 = �0.03)
than that of model 1 (RB(N)Model 1 = �0.4) when
detectability was low, a = 0.25, and r = 1. By comparison,
when detectability was high, a = 0.75, and r = 3, the
reduction in RB was only 20% (RB(N)Model 4 = �0.04 and
RB(N)Model 1 = �0.05). Again, the pattern was similar for
r: 80% reduction in RB (RB(r)Model 4 = �0.09 and RB
(r)Model 1 = �0.6) versus 20% (RB(r)Model 4 = �0.07 and
RB(r)Model 1 = �0.09) at low and high detectability, iden-
tification probability and overlap, respectively.

Empirical example: Himalayan brown bear in northern
Pakistan

The identified part of the data contained 22 DNA
samples from 14 individual bears collected at 19 differ-
ent locations. Of these, only four individuals were
detected more than once (one detected four times; two
detected three times, and one detected two times). Our
data set included an additional 21 bear DNA samples
lacking individual identification. The camera trap data
contributed an additional eight camera trap locations
where bears were detected at least once. Using the MOP
model (model 4), we estimated the mode of brown bear

density at 22 bear/1,000 km2 (95% CI = 14–30) and the
spatial scale parameter r at 3.2 km (95% CI = 2.1–5).
The point estimates produced by the four models were
similar (Fig. 3, Table S2). However, data integration in
the model 4 led to pronounced improvements in the pre-
cision of bear population size (up to 30% reduction in
standard deviation [SD]) and space-use parameter esti-
mates (up to 40% reduction in SD), compared to model
1 (Appendix S2).

DISCUSSION

In both simulations and empirical analyses, data inte-
gration led to more reliable estimates, i.e., increased pre-
cision and reduced bias. We used a frequentist validation
of our Bayesian modeling approach, and our simulation
study confirmed that the MOP model reliably and pre-
cisely estimated density and space-use when using addi-
tional information from unidentified observations and
multiple survey types. This has direct implications for
inferences in real-life, where the integration of auxiliary
data, if available, can mitigate the problems associated
with data sparsity. We were also able to identify under
which conditions the benefits of integration were most
substantial.

1.. Low detectability; the lower the proportion of indi-
viduals detected, the higher the relative importance
of any additional information. When very few indi-
viduals are detected, even a single unidentified detec-
tion far away from all other detections contains
valuable information as it most likely originated
from a previously undetected individual.

2.. Minimal home range overlap; the certainty with
which the integrated model associates an unidentified
detection to a given individual (and therefore the pre-
cision of N) increases as the overlap between individ-
ual home ranges decreases (Efford and Hunter 2018).
When individual detections are well segregated, an
unidentified sample will be assigned with a high level
of certainty to the closest individual, or, if no individ-
uals were detected in proximity, to a new individual.
This should prove particularly useful for territorial
species or low-density populations where individual
detections minimally overlap, i.e., many of the species
commonly studied using SCR models (e.g., Gopalas-
wamy et al. 2012, Sollmann et al. 2013b).

3.. High proportion of unidentified detections; SCR
models that ignore unidentified detections risk
ignoring a substantial source of information.
Although less informative, unidentified detections
can still inform about the spatial configuration of
individuals, i.e., density, thus reducing the bias and
uncertainty around both the scale parameter and
population size. This is particularly pronounced
under simulated scenarios where only a small per-
centage of the detections can be assigned to individu-
als. Conversely, when overall detection and
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identification is high, the gains from integration of
additional data from unidentified detections are
minimal. In such cases, the benefits of data integra-
tion are likely outweighed by its cost, namely
increased model complexity and computation time.

Despite employing both camera trapping and nonin-
vasive DNA sampling, monitoring data of brown bears
in our study area remained sparse. Furthermore, only
50% of DNA samples were attributable to individuals
and none of the camera trap photos. Integration (includ-
ing DNA samples without individual identity and cam-
era trap photos), led to improvements in the precision of
bear population size and space-use parameter estimates,
compared to solely using identified DNA samples. Fur-
thermore, data integration increased the spatial coverage
of detectors and detections, which boosted the spatial
detail and extent of the model-derived realized density
surface (Appendix S2: Fig. S1).
The MOP model is an SCR model that integrates any

number of additional survey methods that produce

spatially explicit observation data, regardless of whether
these methods yield individually identifiable observa-
tions or not. Unmarked SCR models that use only
unidentified detections are known to have identifiability
issues unless an informative prior is used (e.g., Chandler
and Royle 2013, Ramsey et al. 2015) or additional data
contribute information about individual space-use (e.g.,
telemetry data in Sollmann et al. 2013a). Informative
priors can also be used in the MOP model, but even
without them, the space-use parameter becomes directly
estimable by integrating a proportion of data with identi-
fied detections. The MOP model can also allocate undes-
ignated detections to marked or unmarked individuals.
This is particularly important when survey method
yields observations within which mark status is indepen-
dent of identification status (e.g., noninvasive DNA
sampling).
The observation model of the MOP could also be re-

formulated as a Poisson counting process (Borchers and
Fewster 2016). In this situation, estimates are likely to be
even more precise due to increased information in count

FIG. 2. Violin plots show coefficient of variation (CV) and relative bias (RB) of population size (N) and spatial scale parameter
of the detection function (r), under the low detectability scenario for different levels of home-ranges overlap (higher r = higher
overlap) and identification (a). Points indicate medians.

Article e03030; page 6 MAHDIEH TOURANI ETAL. Ecology, Vol. 101, No. 7

St
a
ti
st
ic
a
l R

ep
or

ts



data compared to binary data. Here, we used a Bernoulli
observation model because the data collection procedure
did not allow us to consider multiple samples collected
at the same location as independent. This is also true of
many studies that use hair-snares to collect DNA sam-
ples without a way to designate samples to separate visits
of an individual at a given detector. Each observation
process in our model can be re-formulated to
include partial/uncertain identification (Augustine et al.
2019) upon availability of such data.
Of the models tested here, the MOP model makes the

best use of noninvasive monitoring data. By informing
model parameters that are shared between observation
processes, it may help fitting SCR models that otherwise
would have failed to converge and return reliable esti-
mates. The assumption of a shared r between detection
processes always holds for identified and unidentified
detections coming from the same data collection scheme.

In cases of survey type-specific r, the link between
detection processes is broken and the CR data can only
be integrated with unidentified detections as in integra-
tion of CR and occupancy (Blanc et al. 2014).
Although it is often assumed that reducing sample size

will lead to decreased precision without introducing bias,
this is clearly not the case when using sparse data, as we
have shown here, where negative bias in parameter esti-
mates was typical when true population size was small.
By discarding detections with uncertain individual iden-
tity, investigators may inadvertently risk obtaining
biased estimates. In addition, our observation of nega-
tive bias in estimates of N in all models when the r esti-
mate was biased upwards should be investigated
rigorously. This pattern could be associated with identifi-
ability issues (Lele et al. 2010, Ponciano et al. 2012) and
further research on this topic for SCR models is greatly
needed.
The MOP model can also be adjusted to accommo-

date other extensions of the SCR framework, such as
covariates on focal parameters (Borchers and Fewster
2016), non-Euclidean distances (Royle et al. 2018), or it
can be re-formulated as an open population SCR model
to incorporate population dynamics (Bischof et al.
2016). Finally, we emphasize that, while the incorpora-
tion of multiple observation processes can help mitigate
the challenges brought on by data sparsity, this does not
diminish the necessity for appropriate survey design, lest
investigators are to draw erroneous inferences.
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Appendix S1: Model definitions in NIMBLE

Model 1 is the basic SCR using identified detections e.g., DNA samples with
individual genotypes. Model 2 integrates identified and unidentified detections of
the same detector type. Model 3 integrates identified detections of one detector type,
with unidentified detections of the second detector type and model 4 integrates all
available data including identified detections of one detector type with unidentified
detections of two survey methods. An example R script is available: https://
zenodo.org/badge/latestdoi/192947256 to go through the model fitting process
on simulated data sets.

1



Model_1 <- nimbleCode({

## AC LOCATIONS
for (i in 1:M) {

sxy[i, 1] ~ dunif(0, x.max) ##equation(1)
sxy[i, 2] ~ dunif(0, y.max)

}

## INDIVIDUAL INCLUSION
psi ~ dunif(0, 1)
for (i in 1:M) {

z[i] ~ dbern(psi) ##equation(2)
}

N <- sum(z[1:M]) ##equation(3)

sigma ~ dunif(0, 100)
p0_1 ~ dunif(0, 1)

## IDENTIFIED DETECTIONS, SURVEY TYPE 1
for (i in 1:M) {

d_squared_1[i, 1:J_1] <-
(sxy[i, 1] - detector.xy_1[1:J_1,1])^2
+ (sxy[i, 2] - detector.xy_1[1:J_1,2])^2

p_1[i, 1:J_1] <-
p0_1 * exp(-d_squared_1[i,1:J_1])/(2*sigma*sigma)) ##equation(4)
##p_1 in model 1 and 3 is equivalent to
##p_1*alpha in model 2 and 4

y_1[i, 1:J_1] ~ dbern_vector(p_1[i, 1:J_1], z[i]) ##equation(6)
}#i

})

2



Model_2 <- nimbleCode({

## AC LOCATIONS
for (i in 1:M) {

sxy[i, 1] ~ dunif(0, x.max) ## equation(1)
sxy[i, 2] ~ dunif(0, y.max)

}

## INDIVIDUAL INCLUSION
psi ~ dunif(0, 1)
for (i in 1:M) {

z[i] ~ dbern(psi) ## equation(2)
}

N <- sum(z[1:M]) ## equation(3)
sigma ~ dunif(0, 100)
p0_1 ~ dunif(0, 1)
alpha_1 ~ dunif(0, 1)

## SURVEY TYPE 1: IDENTIFIED + UNIDENTIFIED
for (i in 1:M) {

d_squared_1[i, 1:J_1] <-
(sxy[i, 1] - detector.xy_1[1:J_1,1])^2
+ (sxy[i, 2] - detector.xy_1[1:J_1,2])^2

p_1[i, 1:J_1] <-
p0_1 * exp(-d_squared_1[i,1:J_1])/(2*sigma*sigma))## equation(4)
##p_1 in model 1 and 3 is equivalent to
##p_1*alpha in model 2 and 4

## equation(6)
y_1[i, 1:J_1] ~ dbern_vector(p_1[i, 1:J_1] * alpha_1, z[i])

punid_1[i, 1:J_1] <-
p_1[i, 1:J_1] * (1 - alpha_1) * z[i]

}

for (j in 1:J_1) {
pdot_1[j] <-
1 - prod((1 - punid_1[1:M, j])) ## equation(5)

}
ydot_1[1:J_1] ~ dbern_vector(pdot_1[1:J_1], 1)## equation(7)

})

3



Model_3 <- nimbleCode({

## INDIVIDUAL INCLUSION
## AC LOCATIONS
for (i in 1:M) {

sxy[i, 1] ~ dunif(0, x.max) ## equation(1)
sxy[i, 2] ~ dunif(0, y.max)

}

psi ~ dunif(0, 1)
for (i in 1:M) {

z[i] ~ dbern(psi) ## equation(2)
}

N <- sum(z[1:M]) ## equation(3)

sigma ~ dunif(0, 100)
p0_1 ~ dunif(0, 1)
p0_2 ~ dunif(0, 1)

## IDENTIFIED DETECTIONS, SURVEY TYPE 1
for (i in 1:M) {

d_squared_1[i, 1:J_1] <- (sxy[i, 1] - detector.xy_1[1:J_1,1])^2
+ (sxy[i, 2] - detector.xy_1[1:J_1,2])^2

p_1[i, 1:J_1] <- ## equation(4)
p0_1 * exp(-d_squared_1[i,1:J_1])/(2*sigma*sigma))
##p_1 in model 1 and 3 is equivalent to
##p_1*alpha in model 2 and 4

y_1[i, 1:J_1] ~ dbern_vector(p_1[i, 1:J_1], z[i]) ## equation(6)
}

## UNIDENTIFIED DETECTIONS, SURVEY TYPE 2
for (i in 1:M) {

d_squared_2[i, 1:J_2] <-
(sxy[i, 1] - detector.xy_2[1:J_2,1])^2 + (sxy[i, 2]
- detector.xy_2[1:J_2,2])^2

p_2[i, 1:J_2] <- ## equation(4)
p0_2 * exp(-d_squared_2[i,1:J_2])/(2*sigma*sigma)) * z[i]

}
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for (j in 1:J_2) {
pdot_2[j] <- 1 - prod((1 - p_2[1:M, j])) ## equation(5)

}
ydot_2[1:J_2] ~ dbern_vector(pdot_2[1:J_2], 1)## equation(7)

})

5



Model_4 <- nimbleCode({

## AC LOCATIONS
for (i in 1:M) { ## equation(1)

sxy[i, 1] ~ dunif(0, x.max)
sxy[i, 2] ~ dunif(0, y.max)

}

## INDIVIDUAL INCLUSION
psi ~ dunif(0, 1)
for (i in 1:M) {

z[i] ~ dbern(psi) ## equation(2)
}

N <- sum(z[1:M]) ## equation(3)

sigma ~ dunif(0, 100)
p0_1 ~ dunif(0, 1)
p0_2 ~ dunif(0, 1)
alpha_1 ~ dunif(0, 1)

## SURVEY TYPE 1: IDENTIFIED + UNIDENTIFIED DETECTIONS
for (i in 1:M) {

d_squared_1[i, 1:J_1] <- (sxy[i, 1] - detector.xy_1[1:J_1,1])^2
+ (sxy[i, 2] - detector.xy_1[1:J_1,2])^2

p_1[i, 1:J_1] <- ## equation(4)
p0_1 * exp(-d_squared_1[i,1:J_1])/(2*sigma*sigma))
##p_1 in model 1 and 3 is equivalent to
##p_1*alpha in model 2 and 4

y_1[i, 1:J_1] ~
dbern_vector(p_1[i, 1:J_1] * alpha_1 , z[i]) ## equation(6)

punid_1[i, 1:J_1] <-
p_1[i, 1:J_1] * (1 - alpha_1) * z[i]

}
for (j in 1:J_1) {

pdot_1[j] <-
1 - prod((1 - punid_1[1:M, j])) ## equation(5)

}
ydot_1[1:J_1] ~
dbern_vector(pdot_1[1:J_1], 1) ## equation(7)

## SUVERY TYPE 2: UNIDENTIFIED DETECTIONS
for (i in 1:M) {

6



d_squared_2[i, 1:J_2] <- (sxy[i, 1] - detector.xy_2[1:J_2,1])^2
+ (sxy[i, 2] - detector.xy_2[1:J_2,2])^2

p_2[i, 1:J_2] <-
p0_2 * exp(-d_squared_2[i, 1:J_2]/
(2*sigma*sigma)) * z[i] ## equation(4)

}
for (j in 1:J_2) {
pdot_2[j] <- 1 - prod((1 - p_2[1:M, j])) ## equation(5)

}
ydot_2[1:J_2] ~ dbern_vector(pdot_2[1:J_2], 1)## equation(7)

})
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Appendix 2: Empirical example - Himalayan brown bear in
northern Pakistan

Study system

Himalayan brown bear (Ursus arctos isabellinus) has experienced a shrink of its
historical range during the past decades (McLellan et al. 2016). Extant populations
persist in small and isolated patches, of which the population in Deosai National
Park is likely the largest and the only stable one in the western Himalayas (Bellemain
et al. 2007, Nawaz et al. 2008). Our 2,262-km2 study area is an alpine plateau,
located between the Himalayan and Karakoram Mountains in northern Pakistan.
Details about the study area has been provided elsewhere (Bellemain et al. 2007,
Nawaz et al. 2014).

Data collection

Between 23 September and 9 November 2012, non-invasive surveys were conducted
by dividing the national park into survey blocks based on watershed boundaries.
Search transects followed mainly along trails in each block to collect and store
fresh bear feces in 95% ethanol as described in Bellemain et al. (2007). Spatial
locations of all fecal samples were recorded by handheld GPS. Camera trapping
was conducted simultaneously at 116 stations along the same trails. The procedure
is described in detail in Bischof et al. (2014).

DNA analysis

Eleven newly developed tetranucleotide microsatellite loci were used for individual
identification (UA03, UA06, UA17, UA25, UA51, UA57, UA63, UA64, UA65,
UA67, UA68, De Barba et al. 2017, product size ≤117bp) and a sex marker ZFX/Y
(Pagès et al. 2009, product size 104bp). Details on lab procedure and error checking
is described in De Barba et al. (2017).

Data processing

We overlaid a grid over the sampling area with 2 km spacing between detectors of
DNA samples, and considered the centers of grid cells that intersected a search
trail as detectors of DNA samples (337 detectors). We then assigned DNA samples
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to the nearest detector. We created two detection histories based on this data: (1)
detections of individually identified bears by DNA samples, and (2) bear DNA
samples without individual ID.

In addition we created a third vector of detection histories composed of detections
of any bears at the different camera trap locations (Efford et al. 2009, Borchers
and Fewster 2016). Since individual detections might not be independent (e.g.
temporal correlation of fecal samples), we avoided accumulating detections of an
individual at a given detector in the identified DNA samples data set, but also
detections of any bears at detector locations in the unidentified data set, hence
detection histories consist of zeros and ones.

We fitted the same four models to the bear data by drawing 30,000 MCMC samples
from 3 chains and discarded the initial 5,000 samples from each chain as burn-in.
We checked R-hat and mixing of the chains in trace-plots to assess convergence.
We compared the precision in estimates of N and σ using standard deviation.
Since the true value is unknown, we compared the mode estimates from the four
models to evaluate the model performances, and visualized the realized density
maps estimated by the four models. To do so, we discretized the habitat and
counted the number of individual activity centers falling within each cell for each
iteration of the MCMC sampling, thus obtaining a posterior distribution of density
for each habitat cell.

The dataset available for model 1 consisted of 22 DNA samples from 14 individual
bears, detected at 19 different locations, with 4 individuals captured more than
once. When considering DNA samples lacking individual ID, 21 additional bear
detections were available for incorporation in models (2) and (4). Of these 21
detections, 5 were collected at locations where an identified individual was also
detected and 16 were collected at “new” locations. Including the camera trap
data led to an additional 8 locations where a bear was detected at least once for
incorporation in models (3) and (4) (out of 116 camera trap locations).

Results

All 4 models converged and yielded estimates of the parameters of interest. Using
the MOP model, we estimated brown bear density at 22 bear/1000 km2 (CI = 14,
30) and the spatial scale parameter σ = 3.2 km (CI = 2.1, 5), which translates into
193 km2 mean home range size for brown bears.

Integrating unidentified detections in all three models yielded more precise N
estimates (SD Model 4 = 18.1, Model 3 = 20.6, Model 2 = 20.2), compared to
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the model 1 (SD = 25.1). This corresponds to increases in precision of 28%, 18%
and 20% respectively. The gain is also pronounced in estimation of parameter σ
(Model 4 SD = 0.1, Model 3 = 0.1, Model 2 = 1.1, Model 1 = 1.1). Results are
summarized in Table S1.

The maps of realized density from the four models (Fig. S1) provide information
about heterogeneity in density across space, and can be useful to direct management
efforts. Moreover, the addition of detections from camera trapping allowed to
identify a hotspot of bear density in the northern part of the study area, which
would have been missed otherwise (Fig. S1).

Table S1: Parameter estimates (Param) from the four models for brown bear in
Deosai National Park. Population size (N), spatial scale parameter (σ; in km),
probability of detection by the two survey methods (PDNA and PCAM). Numbers in
parentheses indicates 95% CI boundaries of the mode.

Param Model 1 Model 2 Model 3 Model 4
N 43 (26 - 124) 36 (23 - 102) 47 (30 - 108) 42 (26 - 97)
σ 2.8 (2.0 - 6.2) 2.9 (2.0 - 6.2) 2.5 (1.9 - 4.4) 2.9 (2.1 - 5.0)
PDNA .03 (.01 - 0.1) .07 (.03 - 0.2) .04 (.02 - 0.1) .09 (.04 - .2)
PCAM - - .06 (.02 - .2) .06 (.02 - .17)
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Figure S1: The upper plot shows the location of Deosai National Park in Pakistan
(red square). Plots on the left hand side show maps of estimated density for brown
bears in the study area by the four models. Plots on the right show non-invasive
monitoring data of brown bears in the study area. Grey dots indicate the location of
detectors (light: DNA sampling, dark: camera trapping), yellow, brown and green
crosses indicate the locations of identified DNA samples, unidentified DNA samples
and unidentified camera trap picture respectively.
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Appendix 3: Simulation results

Table S1: Number of converged simulation runs under simulated scenarios of
detections, individual home range overlap (represented by the scale parameter σ of
the detection function) and population size.

Model σ Detectability Pop. size #Converged %Converged
mod1 1 Low 30 113 75
mod2 1 Low 30 134 89
mod3 1 Low 30 143 95
mod4 1 Low 30 149 99
mod1 1 High 30 132 88
mod2 1 High 30 146 97
mod3 1 High 30 149 99
mod4 1 High 30 150 100
mod1 2 Low 30 111 74
mod2 2 Low 30 110 73
mod3 2 Low 30 130 86
mod4 2 Low 30 140 93
mod1 2 High 30 133 89
mod2 2 High 30 141 94
mod3 2 High 30 150 100
mod4 2 High 30 149 99
mod1 3 Low 30 88 59
mod2 3 Low 30 89 59
mod3 3 Low 30 115 76
mod4 3 Low 30 127 85
mod1 3 High 30 130 86
mod2 3 High 30 134 89
mod3 3 High 30 146 97
mod4 3 High 30 149 99
mod1 1 Low 50 130 86
mod2 1 Low 50 141 94
mod3 1 Low 50 146 97
mod4 1 Low 50 150 100
mod1 1 High 50 147 98
mod2 1 High 50 147 98
mod3 1 High 50 150 100
mod4 1 High 50 150 100
mod1 2 Low 50 110 73
mod2 2 Low 50 114 76
mod3 2 Low 50 139 93
mod4 2 Low 50 144 96
mod1 2 High 50 141 94
mod2 2 High 50 146 97
mod3 2 High 50 150 100
mod4 2 High 50 150 100
mod1 3 Low 50 114 76
mod2 3 Low 50 120 80
mod3 3 Low 50 119 79
mod4 3 Low 50 137 91
mod1 3 High 50 138 92
mod2 3 High 50 139 93
mod3 3 High 50 149 99
mod4 3 High 50 149 99
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Table S2: Coverage properties of the 95% credible interval of N and σ across the
parameter set. Three levels of overlap are calculated based on density and the scale
parameter σ of the detection function, following Efford et al. (2016).

Sim. set Model σ Overlap Pop. size N Coverage σ Coverage
1 mod1 1 0.14 30 0.9836735 0.9551020
2 mod2 1 0.14 30 0.9928571 0.9571429
3 mod3 1 0.14 30 0.9520548 0.9349315
4 mod4 1 0.14 30 0.9431438 0.9431438
5 mod1 2 0.23 30 0.9918033 0.8032787
6 mod2 2 0.23 30 0.9800797 0.9561753
7 mod3 2 0.23 30 0.9535714 0.9035714
8 mod4 2 0.23 30 0.9619377 0.9377163
9 mod1 3 0.33 30 0.9724771 0.7385321
10 mod2 3 0.33 30 0.9730942 0.8878924
11 mod3 3 0.33 30 0.9463602 0.8237548
12 mod4 3 0.33 30 0.9601449 0.9202899
13 mod1 1 0.11 50 0.9927798 0.9314079
14 mod2 1 0.11 50 0.9895833 0.9479167
15 mod3 1 0.11 50 0.9527027 0.9155405
16 mod4 1 0.11 50 0.9633333 0.9600000
17 mod1 2 0.28 50 0.9840637 0.8286853
18 mod2 2 0.28 50 0.9807692 0.9307692
19 mod3 2 0.28 50 0.9377163 0.8823529
20 mod4 2 0.28 50 0.9591837 0.9285714
21 mod1 3 0.42 50 0.9801587 0.8015873
22 mod2 3 0.42 50 0.9845560 0.9382239
23 mod3 3 0.42 50 0.9701493 0.9067164
24 mod4 3 0.42 50 0.9755245 0.9230769
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Figure S1: Coefficient of variation (CV) and relative bias (RB) of population
size (N) and spatial scale parameter of the detection function (σ), under the high
detectability scenario for different levels of home-ranges overlap (higher σ = higher
overlap) and identification (α). The results are shown for both true population sizes
of 30 and 50 combined.

References
Efford M., D. K. Dawson, Y. V. Jhala, and Q. Qureshi. 2016. Density-dependent

home-range size revealed by spatially explicit capture–recapture. Ecography 39(7):
676-688.

15





Article III





Non-invasive genetic sampling reveals
landscape-level patterns in wolverine

home range size

Mahdieh Tourani1,*, Pierre Dupont1, Cyril Milleret1, Henrik
Brøseth2, and Richard Bischof1

1. Faculty of Environmental Sciences and Natural Resource Management,
Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway

2. Department of Terrestrial Ecology, Norwegian Institute for Nature Research,
PB 5685 Torgarden, NO-7485 Trondheim, Norway

∗ Email: mahdieh.tourani@gmail.com

Abstract. Of perennial interest in ecology is the study of the home range, the area
within which an individual does its routine foraging, mating and parenting while
avoiding risks. Identifying large-scale correlates of home range size has usually
been performed using a patchwork of telemetry studies. Animal welfare, as well
as logistic and economic considerations limit the scale at which telemetry studies
can be implemented, both in terms of spatial extent and the proportion of the
population tracked. Non-invasive monitoring methods, such as genetic sampling,
offer opportunities to obtain information about animal space-use at the scale
of populations and landscapes. In this study, we analyse non-invasive genetic
monitoring data of wolverine (Gulo gulo) in Norway using spatial capture-recapture
models. We fit sex-specific models and quantify the population-level effects of
latitude and elevation on home range size variation at an unprecedented spatial
extent (∼266,000 km2). Male wolverines had on average larger home ranges than
females. Our results revealed an interaction between latitude and elevation leading
to larger home ranges in both regions of high latitude and low elevation or low
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latitude but high elevation. Our model also predicted that this effect was more
pronounced for females, leading to larger variation in home range sizes amongst
females than males. The biological (population) and spatial (landscape) scale at
which non-invasive monitoring allows investigators to operate, could in many cases
compensate for the reduced spatiotemporal detail (observations per individual)
when compared with contemporary GPS-based telemetry.

Keywords: Home range, Non-invasive monitoring, Space-use, Spatial capture-
recapture, Wolverine

Introduction
Home range, the area within which an individual does its routine foraging, mating
and parenting while avoiding risks (Burt 1943, Börger et al. 2008, Powell and
Mitchell 2012), is a fundamental concept in wildlife ecology. It conditions the
extent to which individuals of the same species interact with each other, and with
their environment (Giuggioli and Kenkre 2014), thus affecting population density
and directing conservation or management actions (Doherty and Driscoll 2018,
Kennerley et al. 2019).

Telemetry studies yield the crux of our knowledge about the size, configuration,
and dynamics of home ranges, and insights have received a drastic boost since the
advent of GPS-telemetry (Fuller and Fuller 2012). The latter can provide detailed,
fine-grained data on instrumented individuals (Kie et al. 2010). However, although
the combined number of animals ever tagged is staggering, resource limitations
force most investigations to instrument only a small proportion of animals in
any given population or species (Hebblewhite and Haydon 2010). Furthermore,
instrumentation relies on physical capture, which can raise concerns about animal
welfare (Arnemo et al. 2006, Lindsjö et al. 2019), and make it difficult to obtain a
random sample of the population (Hebblewhite and Haydon 2010). Typically, small
sample sizes and questionable representativeness pose a challenge to scaling up
inferences to populations, landscapes and thus identifying and explaining general
patterns (Hebblewhite and Haydon 2010, Morales et al. 2010, Owen-Smith et al.
2010). To circumvent this issue, meta-analyses or reviews based on a patchwork of
studies using different monitoring methods, grains, locations and temporal extents
have generally been used to yield more fundamental and general insights (Börger
et al. 2006, van Beest et al. 2011, Morellet et al. 2013, Ofstad et al. 2016). Such
meta-analyses are still limited by the different challenges listed above and our
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understanding of animal space-use would greatly benefit from methods that can
yield data for population-level exploration.

Non-invasive population monitoring methods are increasingly used in conjunction
with hierarchical models to draw population-level inferences about various aspects
of populations. Camera trapping, sign surveys, and non-invasive genetic sampling
(NGS) have been increasingly employed to collect data over large spatial extents
at comparatively low costs (Beja-Pereira et al. 2009, Rodgers and Janečka 2013,
Burton et al. 2015). The data are then used to answer questions about population
abundance and dynamics (Gardner et al. 2010), spatial processes such as dispersal
(Ergon and Gardner 2014, Schaub and Royle 2014) or landscape connectivity
(Sutherland et al. 2015, Bischof et al. 2017) among others.

Spatial capture-recapture (SCR) models have emerged as a particularly efficient
and popular tool for studying spatial ecological processes using non-invasively
collected data (Royle et al. 2018). These models were originally developed to
exploit the spatial information contained in repeated detections of individuals at
different locations to estimate density and abundance (Efford 2004, Borchers and
Efford 2008). However, the SCR-specific observation model explicitly links the
probability to detect an individual in space to the distance to its activity centre. In
other words, SCR implicitly assumes a model of animal movement around a centre
of activity (e.g. home range centre) and can yield information about individual
space-use (Efford et al. 2016).

Here, we use non-invasive genetic sampling data in combination with SCR to
estimate home range size and its determinants at an unprecedented spatial extent
for an elusive large carnivore, the wolverine (Gulo gulo). Using the national
monitoring data from the entire wolverine range in Norway, we obtain estimates
of home range size and corresponding estimates of the magnitude of the effect
of extrinsic and intrinsic determinants thereof. Finally, we discuss the novelty
and limitations of our results in light of previous telemetry studies that have
reported home range size estimates for wolverines from spatially, temporally and
demographically disjoint samples from different continents and populations.

Methods

Data

The Scandinavian large carnivore monitoring database (Rovbase 3.0, http://
rovbase.se/ or http://rovbase.no/) compiles long-term monitoring data, in-
cluding NGS data on brown bear Ursus arctos, wolf Canis lupus and wolverine
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across Norway and Sweden. Wolverine NGS data used in this study were collected
throughout the Norwegian range of the species by field staff between February and
May 2015 (Figs 1-2). Observers conducted structured search-encounter sampling
on snow and GPS-recorded the search-tracks and location of samples. A total trail
length of 98,779 km was searched during this sampling effort. Genetic analysis
was performed on all collected samples. DNA was extracted, and individuals
identified using microsatellite genotyping (for a complete description of the genetic
analysis see Flagstad et al. (2004) and Bischof et al. (2016b)). As a result, the
data consisted of individual identity, sex and location associated with non-invasive
wolverine detections.

Figure 1: DNA samples of female wolverines (red circles) collected in Norway
(winter 2015). The black dots and grey background outline detectors and the spatial
extent included in the analysis (buffer = 13 km), respectively. Only samples included
in the analysis are shown. Histogram shows number of detections per individual.
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Figure 2: DNA samples of male wolverines (red circles) collected in Norway
(winter 2015). The black dots and grey background outline detectors and the spatial
extent included in the analysis (buffer = 25 km), respectively. Only samples included
in the analysis are shown. Histogram shows number of detections per individual.

Analysis

We built an SCR model in a Bayesian framework (Royle et al. 2009) with two
hierarchical levels distinguishing the observation process from the ecological process
(see Appendix S1 for model script).

i) Ecological process. In SCR models, the location of individuals is defined by
their centre of activity or home range centre (si). Abundance is then defined as the
number of individual activity centres within the region of interest or habitat. Here,
we defined the habitat as the area searched for wolverine DNA samples surrounded
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by a sex-specific buffer (25 km for males and 13 km for females; Figs 1-2) to account
for the possibility to detect individuals that had their activity centre outside of
the searched area (Efford 2004). Based on preliminary analysis, we decided to
use different buffer sizes for females and males since the choice of buffer depends
on space-use (Efford 2011). After removing contiguous non-land and urban areas,
the habitat polygon was 251,875 km2 for females and 266,655 km2 for males. We
subdivided that region into 262,319 and 331,187 1 x 1 km grid cells for females
and males, respectively, to define the available habitat used in the analysis (Figs.
1-2). To account for potential variation in wolverine density across the habitat, we
modelled the distribution of activity centres as an inhomogeneous Poisson point
process (Illian et al. 2008) whose intensity surface was related to the observed
wolverine den counts in each habitat grid cell h:

log(Ih) = βdens.DenCountsh (1)

Where Ih is the point process intensity in habitat grid cell h and βdens is the effect
of the number of dens in a given habitat cell on the probability that an individual
has its activity centre located in this same cell. We constructed the den counts
covariate by applying a smoothing kernel to locations of known dens for wolverines
(Fig. 3), which was a multi-year aggregate of yearly counts conducted by authorities
in Norway between 2013 and 2018 (May et al. 2012).

To account for the fact that some individuals in the population may never be
detected, we used a data-augmentation approach (Royle et al. 2007). We derived
estimates of population size N by summing the number of individuals included in
the population, where M is an arbitrary value, larger than the true population size.

N = ΣM
i=1zi (2)

We modelled individual inclusion in the population through a latent state variable
zi, governed by the inclusion parameter Ψ for all individuals i in 1:M as:

zi ∼ Bernoulli(Ψ) (3)

ii) Observation process. The SCR observation component models how indi-
vidual detection probability varies over a set of detectors. Detectors can stand for
fixed devices, such as camera traps, hair snares and physical traps, or they can
be search transects (Efford et al. 2009, Royle et al. 2011). Here, we generated
detector locations by discretizing the search area into 6,975 grid cells of size 4
x 4 km for females and 1,783 cells of size 10 x 10 km for males (Figs 1-2). We
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differentiated between the female and male setup based on preliminary analysis to
make sure several detectors were available within home ranges of both female and
male wolverines. To retain as much information from the collected NGS data as
possible, we used the partially aggregated binomial model (Milleret et al. 2018) and
further divided each detector grid cell into 16 sub-cells (or less if some sub-cells did
not overlap the suitable habitat). We then generated individual spatial detection
histories by retrieving the frequency of sub-cells with at least one NGS sample
from the focal individual for each detector main grid cell.

The SCR detection process is closely linked with the home-range concept as the
probability of detecting an individual at a given detector is modelled as a decreasing
function of the distance between this individual’s centre of activity and the detector
considered (Fig. 4). Implicit in this model of detection probability in space is the
idea that an individual’s detection pattern reflects its underlying space-use pattern
across its home range. Hence, it becomes possible to use the SCR framework to
study individual space-use and home ranges. The most common detection function
used in SCR models is the half-normal (Royle et al. 2014; Fig. 4), which implies
an isotropic normal home-range shape:

pij = p0.e
−d2

ij/2σ2 (4)

Where pij is the detection probability of individual i at detector j, p0 is the baseline
detection probability, dij is the distance between the individual’s activity centre
and detector j and σ is the scale parameter which dictates how fast the detection
probability decays with distance (i.e. related to home range size; Fig. 4). It is then
possible to calculate the 95% kernel home range size based on σ:

HR0.95 = π(σ
√

5.99)2 (5)

The value 5.99 comes from the 95% quantile value of a Chi-square distribution
with 2 degrees of freedom (Royle et al. 2014). To study the variation in wolverine
home range sizes across Norway, we considered effects of elevation and latitude
(Fig. 3) and their interaction on σ in a log-linear model:

log(σi) = σ0 +βelev.Elevationsi
+βlat.Latitudesi

+βint.Elevationsi
.Latitudesi

(6)

We created elevation and latitude covariates using Shuttle Radar Topographic
Mission (SRTM) maps downloaded at 1 x 1-km resolution. All spatial covariates
were resampled, smoothed using a smoothing kernel as depicted in Fig. 3, and
standardised before being used in the analyses.
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Figure 3: Spatial covariates included to model variation in wolverine home range
size (scale parameter of detection function, σ; elevation and latitude), placement of
activity centres (den counts per habitat pixel as derived by applying smoothing kernel
to location of known dens for wolverines), and detection probability (p; lengths of
search tracks) in Norway.
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The novelty of this model is that the latent location of an individual’s activity
centre si is used to extract the value of the corresponding spatial covariates (Fig.
3) thus producing a spatially explicit model of wolverine home range sizes across
the entire habitat used in the analysis.

We considered a negative covariance structure between p0 and σ, so that their
reciprocal variation results in a constant effective sampling area A0 (Borchers and
Efford 2008, Efford and Mowat 2014).

p0i = 1− exp(−(A0/2πσ2
i )) (7)

This formulation implies a negative covariance between p0 and σ, whereby the
expected number of detections does not change for varying levels of σ.

In addition, we included the length of search tracks (Fig. 3) within each detector
grid cell as a logit linear covariate on p0 to account for the variation in detectability
related to the variation in search intensity. P0ij

is the baseline detection probability
for a given individual i and detector j.

logit(P0ij
) = p0i

+ βtracks.T racksj (8)

iii) Model fitting. We fitted separate models for males and females to
minimize computational challenges associated with the analysis of such large
datasets, with large spatial extent and at high resolution. In addition, we used a
local evaluation approach (Milleret et al. 2019) to enable the fitting of our SCR
models at the country scale. This method reduces the number of calculations
performed by the Markov chain Monte Carlo (MCMC) algorithm by removing
unnecessary evaluations of the likelihood whenever the distance between a detector
and a predicted individual home range centre is larger than an arbitrary distance
threshold (37 km for females and 30 km for males). The distance threshold is
decided based on maximum distance of individual detections in the data

We fitted the two models using NIMBLE version 0.6-9 (de Valpine et al. 2017)
and R (version 3.5.2, R Development Core Team 2018). We ran four chains of
15,500 iterations each and discarded the first 1,000 samples as burn-in, leading to
a total of 58,000 MCMC samples per model to draw inferences from. We assessed
convergence by looking at the potential scale reduction value for all parameters
and mixing of the chains using trace-plots (Brooks and Gelman 1998).
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Figure 4: Half-normal detection function describing the decrease in detection
probability (p) with increasing distance (d) between the activity centre location (si)
and detector location (xj). σ is the spatial scale parameter of the detection function.

Results

The data consisted of 325 detections of 103 males and 317 detections of 128 female
wolverines across Norway (mean number of detections per individual = 2 for females
and 3 for males). The Norwegian wolverine population size was estimated at 523
(322 females, 95% Credible intervals = 270 to 382 and 201 males, 95% CI = 170
to 236) for the winter of 2015 (Table 1). Wolverine abundance in Norway was
positively associated with the number of dens reported both for females (♀βdens =
0.4, 95% CI = 0.2 to 0.6) and for males (♂βdens = 0.4, 95% CI = 0.25 to 0.65).
The baseline detection probability was positively associated with the length of GPS
tracks recorded (♀βtracks = 0.4, 95% CI = 0.3 to 0.5, ♂βdens = 0.36, 95% CI = 0.24
to 0.48).

The average scale parameter of the detection function σ0 differed between males
and females, with male σ0 being twice as large as that of females (♀σ0 = 4.1, 95%
CI = 3.4 to 4.8 and ♂σ0 = 7.8, 95% CI = 6.5 to 9.5). These σ0 values translate to
average home range sizes of 316 km2 (95% CI = 218 to 434) and 1,145 km2 (95%
CI = 795 to 1,699) for females and males, respectively.
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We detected an interaction between the effects of latitude and elevation. At average
elevation, latitude had a positive effect on σ0 and thus home range size for both
females and males (♀βLatitude = 0.4, 95% CI = 0.2 to 0.6, ♂βLatitude = 0.2, 95% CI
= 0.1 to 0.4). At below-average elevation the positive effect of latitude on home
range size becomes more pronounced (Fig. 5, Table 1). This pattern reversed at
above-average elevation; home range size decreases with latitude for sites at high
elevation (Fig. 5, Table 1). The pattern is qualitatively similar, although less
pronounced for males.

Table 1: Posterior estimates of model parameters from spatial capture-recapture
models for female and male wolverines. N : abundance; A0: effective sampling area;
Ψ: the inclusion parameter; and β coefficients show effects of elevation (βelev),
latitude (βlat), and their interaction (βint) on the scale parameter (σ), effect of
length of search tracks (βtracks) on detection probability, and effect of known den
counts of wolverine (βdens) on placement of individual activity centres. The 95%
credible interval (CI) for the effects that did not overlap zero are shown in bold.

Parameters Female Male
mean 95%CI mean 95%CI

N 322 270 - 382 201 170 - 236
A0 3.0 2.5 - 3.7 21.2 17.3 - 25.8
βelev 0.04 –0.1 - 0.2 0.2 –0.02 - 0.3
βint –0.6 –0.7 - –0.5 –0.1 –0.3 - 0
βdens 0.4 0.2 - 0.6 0.5 0.3 - 0.7
βlat 0.4 0.2 - 0.6 0.2 0.05 - 0.4
βtracks 0.3 0.3 - 0.5 0.4 0.3 - 0.5
Ψ 0.5 0.4 - 0.6 0.4 0.3 - 0.5
σ0 4.1 3.4 - 4.9 7.8 6.5 - 9.5

Discussion

Using solely NGS data, we were able to quantify the variation in wolverine home
range size and revealed patterns related to sex, latitude and elevation across the
entire species’ range in Norway. Our results confirmed that on average, male
wolverines had substantially larger home ranges than females. Under average
conditions of latitude and elevation, home range size was estimated at 301 km2

for females and 1,116 km2 for males. This sex-difference in home range size is
consistent with previous studies on wolverines (Hedmark et al. 2007), and carnivores
in general. In solitary carnivores, males are not involved in parental care, hence
their reproductive success is mostly defined by their access to mates, rather than
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Figure 5: Sex-specific predictions of home range size for wolverines in Norway
(February-May 2015) based on the posterior estimates of parameters σ (the scale
parameter of half-normal detection function) and interaction effect of latitude and
elevation in the spatial capture-recapture analysis. Note the substantial variation in
female home range (a) compared to males (b). Inferences for extreme combination
of elevation and latitude should proceed with caution, as indicated by unrealistically
high values of home range size (especially for females). These are likely a result of
low sample size for these predictor combinations and overly simplistic assumption
of linearity of effects.

food acquisition (Aronsson and Persson 2018, Graw et al. 2019). Males generally
have larger home ranges that overlap with one or more of females (Landa et al.
1998, Persson et al. 2010, Inman et al. 2012, Bischof et al. 2016b).

Although larger home range sizes have been reported in North America (Copeland
1996: female 384 km2, male 1582 km2; Dawson et al. 2010: female 428 km2, male
2,563 km2), the absolute values of home range sizes estimated in our study are
larger than previously reported in Scandinavia (Landa et al. 1998: female 274 km2,
male 663 km2; Persson et al. 2010: female 170 km2, male 669 km2; Mattisson et al.
2011: female 195 km2 and male 733 km2) and other North American studies (e.g.
Inman et al. 2012: female 303 km2; male 797 km2). There are several potential
explanations for the discrepancy between our estimates and smaller home ranges
estimated elsewhere. First, the DNA-based data accessible for this study did
not allow us to distinguish between age classes and our estimates are based on
the overall population. Sub-adult wolverines have larger home ranges compared
to resident adults (Inman et al. 2012). Second, we assumed a bivariate normal
distribution in the detection probability model that results in circular home ranges.
This assumption might be an over-simplification of movement of individuals in
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structured landscapes (Sutherland et al. 2015).

Population parameters estimated in this study (i.e. N and σ) are different from
the ones reported by Bischof et al. (2019b). First, because of the type of data
used; the present study only includes faecal DNA from structured searches, whereas
Bischof et al. (2019b) incorporated dead recoveries and opportunistic samples. In
addition, the spatial extent of the two studies varies, as we limited the models to
one country, and reported estimates for total spatial extent including the buffer
area, but Bischof et al. (2019b) provide estimates for the transboundary population
in Norway and Sweden. Second, because of the model type; Bischof et al. (2019b)
used an open-population SCR, with covariates on detection probability but no
covariate on the scale parameter, whereas the present study is a model of closed-
population SCR with den counts covariate on population size and covariates on
sigma (see Table 1).

Using the latent location of individual activity centres, we extracted the values of
the spatial covariates and were able to describe the spatial variation in wolverine
home range size with latitude and elevation at the population level. At this scale,
observed patterns in home range size result from processes occurring over relatively
long ecological time periods, over generations (e.g. density) or geological time (e.g.
climate). Both latitude and elevation can be considered as proxies for climate and
as such, were expected to influence home-range size. Climate can be an indirect
determinant of home range size through its influence on primary productivity, and
seasonality (Nilsen et al. 2005, Saïd et al. 2009). For example, red foxes (Vulpes
vulpes) residing in the northern boreal vegetation zone have home ranges four times
larger than foxes in the more productive landscape of the south of Scandinavia
(Walton et al. 2017). Wolf home range sizes increase with latitude, elevation
and lower prey density (Mattisson et al. 2013) or independent of prey density
(Jedrzejewski et al. 2007).

Consistent with this, we detected a positive effect of latitude on home range
size in our study, at least for wolverines occupying sites at average and below-
average elevation (Fig. 5). However, with increasing elevation the effect of latitude
diminished and eventually reversed. We were able to detect this interaction
between elevation and latitude due to the immense spatial extent and population-
level inferences made possible by the combination of NGS and SCR. Similarly, the
landscape and population-level analysis revealed that home range size variation
across the landscape was greater for females than males. This lower variability in
male home range size may be indicative of lower flexibility.

Home range size may be affected by several additional factors not accounted for
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in this study. Chief among these is density. Several studies have revealed density
dependence in home range size (e.g. Dahle and Swenson 2003, Saïd et al. 2009,
Efford et al. 2016), with territorial exclusion, competition or facilitation as drivers.
Wolverines are known to exhibit intrasex territoriality (Bischof et al. 2016b) and
higher densities can thus be expected to lead to smaller home range sizes. The
combination of NGS and SCR offers an opportunity to further explore and quantify
density-dependent effects on home range size at the landscape and population
level. Other possible confounders include age, reproductive status and landscape
structure, such as roads and terrain.

Logistic and economic constraints, as well as concerns for animal welfare, cause
an inherent trade-off between the level of detail and the scope of studies on
animal space-use. Telemetry is challenging and the cost per individual is high
(Hebblewhite and Haydon 2010). This limits the total sample size in terms of
number of instrumented individuals. However, once an animal is tagged or collared,
the number of observations obtained per individual, and consequently the level
of detail, can be substantial (Bischof et al. 2019a). By contrast, non-invasive
sampling combined with SCR, yielded inferences based on a large proportion of the
population across the entire national range. This large scope comes at the price of
obtaining only a limited number of observations per individual.

While numerous telemetry studies have focused on parts of populations, there is a
dearth of empirical studies that have yielded population or species-level information
about animal space use. To fill this gap, general large-scale inferences are sometimes
drawn by scaling-up from local studies or combining the results from multiple
studies. However, scaling-up can be risky (Hebblewhite and Haydon 2010, Morales
et al. 2010, Owen-Smith et al. 2010) especially for telemetry studies, which typically
suffer not only from sample size limitations but also from being a non-representative
sample of the population, at least in carnivores. Without a truly random sample of
instrumented animals across the entire population, population-level inferences are
questionable, yet needed for management and conservation of populations. The
extent to which meta-analyses yield generalizable and large-scale results is further
influenced by the similarity of approaches used and temporal consistency in the
constituent studies and remains subject to biases inherent to them.

Combining NGS with SCR, we were not only able to collect observations across
the wolverine population’s entire range within Norway, but also accounted for
imperfect detection. As such, the approach has practical potential to yield truly
population-level inferences. Ultimately, investigators must weigh the benefits of
greater detail vs scope based on their research objectives. Modern survey methods
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and advances in hierarchical modelling have helped broaden the options available
for making that choice. There are several developments that could further enhance
the utility of non-invasive SCR for quantifying wildlife space-use and its drivers.
The SCR framework can be integrated with resource selection, as already shown by
Linden et al. (2018). Similarly, non-Euclidean distance SCR models (Sutherland et
al. 2015) take the influence of landscape characteristics on home range configuration
into account and can model non-circular home ranges. Both developments would
also allow investigators to quantify inter and intra-species interactions in terms of
home range size or configuration. One particularly promising extension of SCR,
open-population SCR, allows for the simultaneous analysis of multiple sampling
seasons by incorporating a population dynamic component (Bischof et al. 2016a).
Open-population SCR can not only estimate vital rates and changes in abundance
over time but also home range dynamics, such as shifts in position and changes
in size (Ergon and Gardner 2014). These developments would not eliminate the
need for tracking animals directly but could provide further non-invasive and
population-level access to inferences about movement and habitat use that have so
far been the domain of telemetry applications.
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Appendix S1: Model definition in NIMBLE

nimModel <- nimbleCode({
##---------- SPATIAL PROCESS ----------##
I[1:n.cells] <- exp(betaDENS * DEN[1:n.cells]) ##equation 1
betaDENS ~ dnorm(0,0.0001)

for(i in 1:M){
sxy[i,1:2] ~ dbinomPPSingle(lowerHabCoords[1:n.cells,1:2],

upperHabCoords[1:n.cells,1:2],
I[1:n.cells],
1, n.cells) }#i

##---------- DEMOGRAPHIC PROCESS ----------##
psi ~ dunif(0,1) ##equation 3
for(i in 1:M){

z[i] ~ dbern(psi) }#i

N <- sum(z[1:M]) ##equation 2

##---------- OBSERVATION PROCESS ----------##
a0 ~ dgamma(0.01,0.01)
sigma0 ~ dgamma(0.01,0.01)
betaTRACKS ~ dnorm(0,0.0001)
betaELEV ~ dnorm(0,0.0001)
betaLAT ~ dnorm(0,0.0001)
betaINT ~ dnorm(0,0.0001)

for(i in 1:M){
sigma[i] <- exp(log(sigma0) ##equation 6

+ betaELEV * ELEVATION[sxy[i,2],sxy[i,1]]
+ betaLAT * LATITUDE[sxy[i,2],sxy[i,1]]
+ betaINT * ELEVATION[sxy[i,2],sxy[i,1]]

*LATITUDE[sxy[i,2],sxy[i,1]])

##equations 7,4,8
p[i, 1:J] <- calculateDetProb_a0( sxy = sxy[i, 1:2]

, detector.xy =
detector.xy[1:J, 1:2]

, aZero = a0
, sigma = sigma[i]
, maxDist = maxDist)

y[i,1:J] ~ dbin_vector(p[i,1:J], z[i], trials[1:J])
}#i

})
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Abstract. Integrating dead recoveries into capture-recapture models can improve
inference on demographic parameters. But dead recovery data do not only inform
on individual fates; they may also contain information about individual locations.
Open-population spatial capture-recapture (OPSCR) has the potential to fully
exploit such data. Here, we present an open-population spatial capture-recapture-
recovery model integrating the spatial information associated with dead recoveries.
We investigate the conditions under which this extension of the OPSCR model
improves inference with simulations and illustrate the approach with the analysis
of a wolverine (Gulo gulo) dataset collected in Norway. Our results highlight how
leveraging the demographic and spatial information contained in dead recovery
data in a spatial capture-recapture framework can greatly improve population
parameter estimation with little to no additional cost of sampling. Not only can it
enable analyses when data are sparse, it also markedly improves the precision of
both demographic and spatial parameters and may help overcome some limitations
of the study design.

Keywords: Integrated modelling; Mortality; Population Dynamics; Known Fate;
Spatial Capture-Recapture; Capture-Recapture-Recovery
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Introduction
Ecologists often struggle to obtain reliable estimates of population parameters.
Imperfect detection poses the main challenge as it is close to impossible to detect
all members and their fates in wild populations (Gimenez et al. 2008). Thus,
observations usually pertain to a subset of the population only and statistical
analyses are required to draw inferences about the entire population.

Historically, some of the first data used by demographers were census data, i.e.
numbers of animals harvested by hunters (Elton 1924). These dead-recovery (or
ring-recovery) models have long been used to study survival in natural populations
but their scope remains limited by the type of data itself (Anderson et al. 1985).
By contrast, capture-recapture (CR) data contain multiple live detections of the
same individuals, which allow discriminating an individual that was not detected
because it was missed, from an individual that could not be detected because it
was dead or not present in the population. The CR framework also enables more
complex models with survival and detection probabilities varying among years, sites,
sex and age classes (Lebreton et al. 1992). Live detections and dead-recoveries
can be combined in so-called capture-recapture-recovery models (Lebreton et al.
1995). The integration of known deaths further helps discriminating between a true
absence and a missed individual, thus improving the precision of survival, detection
probabilities, and ultimately population size estimates (Catchpole et al. 1998).

Spatial capture-recapture (SCR) models extend classical CR analysis by accounting
for heterogeneity in detection probability among individuals arising from their
distribution in space relative to trap locations (Royle and Young 2008, Borchers
and Efford 2008). SCR also uses multiple detections of the same individuals, but
at different locations, to infer the position of their activity centers (AC) and model
individual detection probability in the landscape as a function of the distance
to these ACs. As a consequence, and contrary to classical CR, SCR explicitly
links population size to a given geographic area (i.e. density). One promising
extension of SCR is the incorporation of several years (or seasons) of data, to
build open-population spatial capture-recapture (OPSCR) models (Gardner et al.
2018). Just like open-population CR models, OPSCR models generate estimates
of demographic parameters such as survival and recruitment, but they also model
individual movements between years, thus providing a more complete picture of
the spatiotemporal dynamics of the population under study (Ergon and Gardner
2014, Schaub and Royle 2014, Bischof et al. 2016, Gardner et al. 2018). It stands
to reason that, like CR models, OPSCR would benefit from the integration of dead
recovery data. Moreover, dead recovery data are often accompanied by the recovery
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location and leveraging this information should further constrain the places an
individual could have been, thus reducing uncertainty about the distribution and
movements of individuals.

We present an Open-Population Spatial Capture-Recapture-Recovery model (OPSC-
2R), that integrates spatial dead-recovery data, and test it with simulations against
an OPSCR model without dead-recovery data and an OPSCR including dead-
recovery data without spatial information (OPSCR+DR). Specifically, we test the
predictions that gains from dead recovery integration will be higher when i) overall
detectability is low, ii) population size (and thus sample size) is low, and iii) a large
proportion of the population is recovered dead. We then demonstrate use of the
OPSC2R model with a case study on long-term non-invasive genetic monitoring of
wolverines (Gulo gulo) in Norway (Flagstad et al. 2004, Brøseth et al. 2010).

Material & Methods

1. Open-population spatial capture-recapture-recovery

The OPSC2R model consists of four sub-models: i) a demographic model describing
when individuals are recruited into the population and when they die, ii) a spatial
model describing the distribution of individual ACs at each detection occasion,
as well as their movement between occasions (i.e. years), iii) a detection model,
describing when and where individuals are detected alive, and iv) a recovery model,
describing when and where dead individuals are recovered.

The demographic model. To describe the recruitment and survival processes,
we opted for a multi-state formulation (Lebreton and Pradel 2002) and considered
four states described by the random categorical variable Z. The state of individual
i at time t, zit, can take the value 1 if the individual is “available”, i.e. before it is
recruited into the population; 2 if the individual is alive and present in the habitat
considered (S); 3 if it died between t− 1 and t and was recovered, and 4 if it was
already dead at t− 1 or if it died between t− 1 and t but was not recovered. At the
first occasion, individuals can only be designated as “available” or “alive” so that zi1
follows a categorical distribution with the probability vector describing probabilities
to be in each of the four states considered: zi1 ∼ Categorical(1 – ψ,ψ,0,0), where
ψ is the probability to be alive at t = 1. Individual states at all subsequent
occasions follow a Markov process as they depend on the previous individual state
zit−1. If zit−1 = 1, individual i can either stay in state 1 or be recruited into the
population (transition to state 2): zit ∼ Categorical(1–γt−1,γt−1,0,0), where γt−1 is
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the probability to be recruited into the population between t− 1 and t from the
pool of individuals available at t−1. If zit−1 = 2, individual i can either survive and
stay in state 2, die and be recovered (transition to state 3), or die without being
recovered (transition to state 4), so that zit ∼ Categorical(0,φ,(1–φ)r,(1–φ)(1–r))
where φ is the survival probability and r the recovery probability. If zit−1 = 3 or 4,
the only possibility is a transition to 4, the absorbent dead state.

The spatial model. Individual locations at each time step are described by the
distribution of their ACs in the available habitat S. At the first occasion, ACs are
assumed to follow a uniform distribution:

si1 ∼ Uniform(S) (1)

where si1 is the vector of x- and y-coordinates for the AC of individual i at time
1. In subsequent years, we modelled between-year movements using a Gaussian
random-walk (Gardner et al. 2018), whereby the AC location of individual i at
time t, sit, follows a bivariate normal distribution (defined over S) centered on the
previous location sit−1, with standard deviation τ :

sit ∼ Normal(sit−1, τ) (2)

The detection model. This sub-model describes how the detection probability
of an individual varies in space depending on its AC location relative to the set
of J possible detection locations (i.e. detectors). Here, we used the half-normal
detection model (Royle et al. 2013) which assumes that pijt, the probability of
detecting individual i at detector j at occasion t, decreases with the distance dijt
between detector j and the individual AC location:

pijt = p0.e
−
d2
ijt

2σ2 (3)

where p0 is the baseline detection probability and σ is the scale parameter of the
half-normal detection function. The detection data is then modelled as:

y.aliveijt ∼ Bernoulli(pijt.I(zit = 2)) (4)

where I(zit = 2) is an indicator function used to condition the detection process on
the individual being alive and thus available for detection.

The recovery model. The spatially explicit recovery model estimates the proba-
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bility to recover a dead individual at a given location conditional on its AC location.
This process resembles the “single-catch traps” situation (Borchers and Efford 2008)
whereby the probability to recover an individual at a specific location is:

µijt = ṗijt
ΣJ
k=1ṗikt

where ṗikt = e−
d2
ijt

2σ2 (5)

It follows that the ID of the detector where individual i was recovered at time t
(y.deadit), is categorically distributed with probability vector Kit = (µi1t, ..., µiJt):

y.deadit ∼ Categorical(Kit) (6)

Note that the number and configuration of detectors for dead recoveries and live
detections may differ. Dead recovery detectors may refer to specific locations if
recovery is limited to certain sites or to gridded discrete locations across the entire
habitat S if no spatial restriction applies to where individuals can be recovered
(Milleret et al. 2018).

Data augmentation. We used a data augmentation approach (Royle and
Dorazio 2012) and derived estimates of population size at each time step by
summing the number of individuals alive Nt = ΣM

i=1I(zit = 2) where M is the
augmented population size (M >> Nt).

2. Alternative models

We compared the OPSC2R model with two reduced models; i) a traditional
OPSCR ignoring dead-recovery data, and ii) an OPSCR integrating non-spatial
dead-recovery data (OPSCR+DR). In the OPSCR, the demographic sub-model
reduces to three states only (corresponding to states 1, 2 and 4) as dead recoveries
are not considered and the r parameter is absent from the model. Then, if zit−1 = 2,
individual i can only survive and stay in state 2 or die without being recovered, so
that zit ∼ Categorical(0, φ, 1− φ). The recovery model is completely absent from
the OPSCR model, whereas in the OPSCR+DR, dead recovery data are reduced
to binary detections, i.e. y.deadit = 1 if individual i was recovered at time t and 0
otherwise and y.deadit ∼ Bernoulli(I(zit = 3)). See Appendix S1 for the different
model scripts.
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3. Simulations

To evaluate how the different models performed, we created a habitat grid of 35x35
distance units (du) in which we centered a regular square grid of 400 detectors,
with one every 1.5 du. We simulated populations over a 5-year period by sampling
survival, reproduction and recovery events for either 40 (small population) or 120
(large population) individuals present at the first occasion (t = 1). We simulated
data for five different recovery probabilities (0, 0.25, 0.5, 0.75, and 1), whilst the
other demographic parameters were chosen to generate a stable population (survival
Φ = 0.6; per-capita recruitment rate ρ = 0.4). Individual ACs were uniformly
distributed in space at the first occasion (equation 1). Subsequent AC locations
were generated using equation 2 with a standard deviation τ = 3 du. Finally, the
detection and dead recovery data were generated conditional on the individual
states and locations using equations 3 to 6 with a scale parameter σ = 1.2 du. We
used either a low (p0 = 0.1) or high (p0 = 0.5) baseline detection probability leading
to approximately 25% and 75% of the population detected each year, respectively.
We repeated the simulation process 100 times for each combination of parameters,
for a total of 2000 simulated datasets. We evaluated the performance of the models
based on accuracy and precision of the Bayesian estimator of the model parameters.
As a measure of accuracy, we used relative bias RB = θ̂−θ

θ
, where θ̂ is the posterior

mean and θ is the true value of the parameter. As a measure of precision, we used
the coefficient of variation CV = sd(θ)

θ̂
(Walther and Moore 2005). R scripts for

data simulation and model fitting are provided in Appendix S1.

4. Wolverine case study

For a real-life illustration of the benefits of integrating dead recovery data in
SCR, we applied the OPSCR and OPSC2R models to a subset of the long-term
non-invasive genetic dataset collected as part of the national monitoring program
of wolverines in Norway (Flagstad et al. 2004, Brøseth et al. 2010). We used seven
years of data collected during winters 2012/2013 to 2018/2019 in eastern Norway
(Hedmark, Oppland and parts of Sør-Trøndelag counties), composed of 1011 alive
detections and 70 dead recoveries from 232 individually identified female wolverines
and 1635 alive detections and 80 dead recoveries from 250 individually identified
male wolverines (Appendix S3: Fig. S1). More details about the data and models
can be found in Appendix S3.
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5. Model fitting

We fitted all models using Markov chain Monte Carlo (MCMC) simulations with
NIMBLE (de Valpine et al. 2017) in R version 3.5.2 (R core team, 2017). To reduce
computation time, we implemented the LESS approach (Milleret et al. 2019a) and
built custom NIMBLE distributions (Appendix S1). We ran three chains of 40,000
iterations including an initial burn-in phase of 10,000 iterations for simulations,
and four chains of 20,000 iterations including an initial burn-in phase of 5,000
iterations for the models fitted to wolverine data. We only retained models that
reached convergence, i.e. all R-hat values were ≤1.1 and visual inspections of trace
plots from a subset of the simulations showed good mixing of the chains (Brooks
and Gelman 1998).

Results
Convergence. The number of models that reached convergence in the simulation
study increased with the recovery and baseline detection probabilities and, to a
lesser extent, with population size (Appendix S2: Fig. S1). The OPSC2R reached
convergence consistently more often than the OPSCR and OPSCR+DR (in that
order). Convergence failure was almost always due to high R-hat values of the
movement parameter (R-hat > 1.1). This was most apparent in the small population
– low detectability scenario where only 18% of the OPSCR runs reached convergence,
compared with 33% (r = 0.25) to 52% (r = 1) for the OPSCR+DR, and 43% (r =
0.25) to 84% (r = 1) for the OPSC2R (Fig. 1b).

Bias. All parameter estimates returned by the three models were virtually
unbiased (RB < 1%) except for the small population – low detectability scenario.
In this situation, the lack of data led to an average positive bias of up to 58% for
the baseline detection probability parameter with all three models with the small
population – low detectability scenario (Appendix S2: Fig. S10a).

Precision. On average, the coefficients of variation of the population size es-
timates were 33% lower for both the OPSCR+DR and OPSC2R compared to
the OPSCR (Appendix S2: Fig. S2-S6). Despite similar relative gains amongst
scenarios, the absolute gain in CV was much higher for the small population –
low detectability scenario. For example, the average CV of the population size
estimates was as high as 22% of the estimated population size with the OPSCR
compared with 14% for the two other models (r = 1; Fig. 2a), whereas it decreased
from 4.3% to 2.9% in the large population – high detectability scenario (Fig. 2b).
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Figure 1: a) Coefficient of variation of the movement parameter CV(τ), b)
proportion of converged simulations, and c) relative bias of the movement parameter
RB(τ) with increasing proportion of dead individuals recovered (r) for the OPSCR
model without dead recoveries (OPSCR), the model integrating non-spatial dead
recovery (OPSCR +DR), and the model integrating spatial dead recovery (OPSC2R)
for the small population – low detectability scenario (N = 40; p0 = 0.1). Violins
present the distribution of values over 100 repeated simulations. White dots represent
median values and colored areas the 95% credible intervals.

Movement. The main difference between the OPSC2R and the OPSCR+DR
relates to the movement parameter τ . Whilst relative bias and coefficient of variation
of all other parameters were similar between the OPSC2R and OPSCR+DR,
explicitly modelling the spatial aspect of the dead recovery process led to a significant
improvement in the precision of τ . CV(τ) steadily decreased with increasing
proportion of dead recoveries to reach an average value of 0.12 for the OPSC2R
compared with approximately 0.22 for the OPSCR and OPSCR+DR (Fig. 1a).

Wolverine case study. Yearly population size estimates did not significantly
differ between models with (OPSC2R) and without (OPSCR) dead recoveries (Fig.
3a, b). Associated coefficients of variation displayed a similar temporal trend for
both models, but CVs from the OP2SCR were always lower than those from the
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OPSCR model (with the exception of the final year). CVs for the survival estimates
were also slightly lower for the OPSC2R compared with the OPSCR (Appendix S3:
Tables S1 and S2). The OPSC2R mean estimates of the movement parameter were
12% and 30% larger than the OPSCR estimates for males and females respectively
(Fig. 3c). The associated coefficients of variation were slightly smaller with the
OPSC2R (Fig. 3d). Other parameters did not significantly differ between the two
models (Appendix S3: Tables S2 and S3).

Figure 2: Coefficient of variation (CV) and relative bias (RB) of population size
estimates for the third capture occasion (see Fig. S2-S6 for other occasions) with
increasing proportion of dead individuals recovered (r) for the OPSCR model without
dead recoveries (OPSCR), the model integrating non-spatial dead recovery (OPSCR
+DR), and the model integrating spatial dead recovery (OPSC2R). Presented are the
results for, (a, c) the small population – low detectability scenario (N = 40; p0 = 0.1)
and, (b, d) the large population – high detectability scenario (N = 120; p0 = 0.5).
Violins present the distribution of values over 100 repeated simulations. White dots
represent median values and colored areas the 95% credible intervals.
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Figure 3: a) Female and b) male posterior distributions of population size estimates
(N) and associated coefficients of variation (CV) for the wolverine population in
eastern Norway (Appendix 3, Fig S1) estimated using a model integrating spatial
dead recovery information (OPSC2R) and a traditional OPSCR model. c) posterior
distribution and d) coefficients of variation of the movement parameter (τ) for
female and male wolverines. White dots represent the posterior means.
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Discussion
Our results show that combining spatial live detections and spatial dead recoveries
into an open-population spatial capture-recapture-recovery model can greatly
improve population estimates and mitigate detrimental effects of data sparsity. In
both our simulations and empirical analysis, models incorporating dead recoveries
led to more precise estimates of the main demographic parameters, without causing
additional bias. The benefits of integration of dead recoveries in terms of increased
precision were most substantial for small populations with low detectability and
high recovery probabilities.

Incorporating dead recoveries, regardless of whether the associated spatial informa-
tion is taken into account, increased the precision of both survival and recruitment
estimates, and consequently population size. This is consistent with previous CR
studies where integration of known-fate data led to greater precision of survival
estimates (Catchpole et al. 1998). We additionally show that when more individuals
are recovered, the uncertainty about individual states at each occasion declines,
thus reducing the uncertainty of demographic parameters. Modelling the dead
recovery process in a spatially explicit fashion significantly improves convergence
and precision of movement parameter estimates, which has proved difficult to study
(Fujiwara et al. 2006, Schaub and Royle 2014). In the small population – low de-
tectability scenario, the standard deviation of the bivariate normal distribution (i.e.
the movement parameter) was twice as precise when 50% of the dead individuals
were recovered with the OPSC2R compared with the OPSCR and OPSCR+DR
models (Fig. 1a). Convergence of the movement parameter in OPSCR is known to
be slow and occasionally unattainable due to a lack of repeated recaptures across
successive years and consequently little available information on shifts of individual
ACs between years (Milleret et al. 2019b). The spatial information associated with
dead recovery data informs individual trajectories when live recaptures are sparse,
in some cases making model fitting possible in the first place.

In the wolverine study, precision gains were not as large as in the simulation study,
despite detectability levels of live individuals in the range of values tested in the
simulation study (53 ± 6% of the population detected alive each year for males and
39 ± 4% for females). This might be explained by the fact that yearly wolverine
recovery rates (between 8 and 20% of the population for males and between 7
and 18% for females; Appendix S3: Tables S1 and S2) are at the lower end of the
gradient we tested in the simulation study. Nonetheless, the pattern in parameter
precision generally followed the simulation results, albeit less conspicuous, with
slightly lower coefficients of variation for most parameters with the OPSC2R model
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compared to the OPSCR model. Interestingly, the largest gain in population size
precision was for the year 2014 where the recovery rate was highest for both sexes
(Fig. 3; Appendix S3: Tables S1 and S2). Contrary to the simulation results, we
observed an increase in the movement parameter estimate for both male and female
wolverines with the OPSC2R compared to the OPSCR. This may be explained by
the inclusion of dead recoveries of all individuals that were detected alive at least
once, even if the recovery occurred outside the detector grid area (inside the buffer,
see Appendix S3: Fig. S1). In OPSCR studies, the definition of the habitat and
especially the buffer around the detector area is crucial; it must be large enough
to allow for multi-year movements of individuals outside the detector area. In
other words, it must be large enough so as not to truncate the movement distance
distribution, otherwise survival and movement estimates are negatively biased
(Ergon and Gardner 2014, Gardner et al. 2018). Furthermore, if the area covered
by detectors is too small relative to the distance travelled by some individuals in
the population, the range of “observed” AC movements within the study area will
be skewed towards short distances irrespective of the buffer specification, leading
to under-estimation of movement and survival parameters (Dupont 2017). This is
most likely the case in the wolverine example where long-distance movements are
missed by the OPSCR. By incorporating dead recoveries outside the detector area,
the OPSC2R may overcome this limitation of the non-invasive genetic dataset and
provide more realistic values of the movement distribution.

In capture-recapture studies, high recapture probabilities are pivotal to estimate
population parameters with satisfactory precision, but the effort required to collect
adequate data is often a critical limitation (Williams et al. 2002). Dead recovery
data, on the other hand, are readily available for a wide array of taxa studied with
CR methods. Leveraging the demographic and spatial information contained in such
data in an open population spatial capture-recapture framework can greatly improve
population parameter estimation with little to no additional cost of sampling. Not
only can it enable analyses when data are sparse, it can also improve the precision
of the parameter estimates and help overcome limitations of the study design.
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Appendix 1: Open-Population Spatial Capture-Recapture
models – R and Nimble scripts

R simulation and NIMBLE analysis script can be found here or go to:
https://github.com/PierreDupont/SpatialDeadRecovery/blob/master/
Simulations_SpatialDeadRecovery.R

Data, R and NIMBLE scripts for the wolverine analysis can be found here or go
to: https://github.com/PierreDupont/SpatialDeadRecovery/blob/master/
Wolverines_SpatialDeadRecovery.R
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Appendix 2: Supplementary information for the simulation
study

Table S1: Parameter values used in the simulation study.

Simulation parameters Simulated values
Demographic Survival Φ = 0.6

Per capita recruitment ρ = 0.4
Initial population size N1 ∈ [40, 120]

Movement Movement scale parameter τ = 3

Detection Baseline detection probability p0 ∈ [0.1, 0.5]
Detection scale parameter σ = 1.2
Recovery probability r ∈ [0, 0.25, 0.5, 0.75, 1]
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Figure S1: Proportion of simulation runs that reached convergence (R-hat < 1.1
and good mixing of the MCMC chains) with increasing proportion of dead individuals
recovered (r) for a traditional OPSCR model (OPSCR), a model integrating non-
spatial dead recovery (OPSCR+DR), and a model integrating spatial dead recovery
information (OPSC2R) for the different simulation scenarios; a) low detectability
(p0 = 0.1) and small population size (N = 40), b) high detectability (p0 = 0.5) and
small population size, c) low detectability and large population size (N = 120), d)
high detectability and large population size.
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Appendix 3: Supplementary information for the wolverine
study

For the wolverine case study, we used data available in the Scandinavian large
carnivore database Rovbase 3.0 (http://rovbase.se/or http://rovbase.no/).
This database is used jointly by Norway and Sweden to record detailed information
associated with large carnivore monitoring, including, but not limited to, non-
invasive genetic sampling (NGS) data, dead recoveries, GPS search tracks and
carnivore observations. Here, we restricted our analysis to the NGS and GPS tracks
collected during winters 2012/13 to 2018/19 (December to June) in the Norwegian
counties of Hedmark, Oppland and parts of Sør-Trøndelag (Fig. S12; Flagstad et
al. 2004, Brøseth et al. 2010, Gervasi et al. 2015). If available, we also used dead
recovery data for all individuals ever detected in the aforementioned study area,
which led us to consider a 60 km surrounding buffer leading to a habitat area of
145,533 km2 (Fig. S12). The dataset was composed of 1,011 alive detections and 70
dead recoveries from 232 individually identified female wolverines and 1,635 alive
detections and 80 dead recoveries from 250 individually identified male wolverines.

To account for the specificity of the wolverine monitoring, the models fitted to the
wolverine data extended on those used in the simulation study in four places: i) the
definition of the detectors, ii) the definition of the baseline detection probability, iii)
the definition of the mortality parameters in the OPSC2R, and iv) the definition
of the spatial model for ACs distribution and movement.

Detectors. As is common practice in SCR studies using NGS search encounter
data, we defined detectors as the center of grid cells overlaid over the entire study
area, i.e. the area considered to have been searched for NGS samples. We used a
grid cell resolution of 10x10 km, further subdivided into 25 sub-cells of 2x2 km for
use in the partially aggregated binomial observation model (Milleret et al. 2018)
leading to a total of 707 detector grid cells where DNA samples could be detected.
We considered a buffer of 60 km around this study area to define the habitat S, i.e.
the spatial extent where individual ACs can be located. Because the process by
which dead recoveries are recorded is mostly independent from the DNA searches
and can take place even where non-invasive DNA samples are collected, we defined
a second set of detectors with a resolution of 10×10 km covering the entirety of
the habitat S, leading to 1468 detectors for dead recoveries (Fig. S12).
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Figure S12: Distribution of individual detections (non-invasive DNA sample; red
crosses) and dead recoveries (blue crosses) used in the wolverine case study collected
during monitoring periods 2012/13 to 2018/19. The area considered as searched for
NGS is represented by the red polygon in the map in the upper left corner. Detector
locations (separated by 10 km) considered in the analysis for live detections are
represented by small red dots. Potential dead recovery locations are represented
by all small dots (red and blue) and extend into the buffer area surrounding the
detector grid
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Baseline detection probability. To account for the spatial and temporal
variation in search effort and individual detectability, we used a set of covariates to
model the individual, year and detector-specific detection probability (Bischof et
al. 2019). These covariates included:

• the length of GPS search tracks logged by searchers within each detector grid
cell in each monitoring period (tracks).

• the average distance to the nearest primary and secondary roads. This
variable represents accessibility, which we predict to facilitate detectability (roads).

• the average percentage of snow cover (snow) in each detector grid cell (MODIS
at 0.1 degrees resolution, www.neo.sci.gsfc.nasa.gov, accessed 2019-10-11). As
NGS during winter relies heavily on the presence of snow, we predicted that greater
snow cover increases detectability.

• the county identity. This was incorporated to control for differences in
monitoring regimes between jurisdictions (Hedmark, Oppland and Sør-Trondelag).

• Previous detection could be expected to positively influence the probability
of being detected at subsequent occasions. To account for this potential “trap-
happiness” (Williams et al. 2002), we used an indicator of whether an individual
was detected or not during the previous monitoring season as a linear predictor of
the baseline detection probability (trap-response).

• Year. We estimated different baseline detection probabilities for each annual
monitoring period to control for temporal variation in search effort.

Mortality parameters. As all dead recoveries in the analysis came from legally
killed animals (e.g. legal hunting, management kills, defense of life and property)
that must be reported to the management authorities (Fylkesmannen or SNO in
Norway and Länsstyrelserna or the police in Sweden), we were able to reformulate
the demographic model to distinguish between two mortality probabilities. An
individual alive at time t − 1(zit−1 = 2) can either survive and stay in state
2, die from legal culling with probability h and be reported with probability
1 (transition to state 3), or die from all other causes (including natural deaths)
without being recovered (transition to state 4), so that zit ∼ Categorical(0,Φ, h, w).
This formulation is equivalent to the one used in the simulation study in that
h = (1−Φ)r and w = (1−Φ)(1−r), where r is the recovery probability conditional
on being dead.

Spatial model. To account for the fact that wolverine density is most likely
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inhomogeneous in space, we used an inhomogeneous point process (Illian et al. 2008)
to model both the distribution of ACs during the first occasion and AC movements.
Under this specification, a spatial intensity function describes movement as a series
of isotropic Gaussian random walks (see also Gardner et al. 2018) weighted by
the spatial covariate considered. We constructed a spatial covariate for density by
applying a smoothing kernel to the locations of known dens for wolverines and
estimated Bdens the effect of the number of dens in a given habitat cell on the
probability that an individual has its AC located in this same cell.

We fitted separate sex-specific models because male and female wolverines are
expected to have different vital rates and space-use patterns and fitted the OPSCR
and OPSC2R models using Markov chain Monte Carlo (MCMC) simulations with
NIMBLE (de Valpine et al. 2017) in R version 3.5.2 (R core team, 2017). To
reduce computation time, we implemented the LESS approach (Milleret et al.
2019), i.e. we reduced the number of calculations to be performed by removing
unnecessary evaluation of the likelihood whenever the distance between a detector
and an individual activity center location was larger than a distance threshold
(120 km) and built custom NIMBLE distributions (see Appendix S1). We ran four
chains of 20,000 iterations including an initial burn-in phase of 5,000 iterations
and considered models to have reached convergence if all R-hat value were ≤ 1.1
and visual inspections of trace plots revealed good mixing of the chains (Brooks
and Gelman 1998). Mean parameter estimates for both models and sexes, with the
associated 95% credible intervals, coefficients of variation and R-hat are provided
in tables S2 and S3.
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