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Abstract

Genomic selection is a promising breeding methodology that could increase selection

accuracy and intensity and reduce generation interval. As the cost of genotyping

decreases, it will be important to optimize training populations for costly phenotypic

experiments for many complex traits. The aim of this research was to evaluate differ-

ent optimization strategies, by using historical data from the Norwegian oat breeding

programme at Graminor. In this paper, we focus on the optimization criteria: genetic

diversity, phenotypic variance and genetic similarity between the training and testing

populations. The four training population strategies—prediction core, diversity core,

phenotypic selection and random selection—were applied to an oat candidate popu-

lation of 1124 lines. An independent testing population was used to calculate the

mean prediction abilities for the traits days to heading and plant height. Moreover,

the strategies were tested in three independent wheat populations. The results

showed that prediction core was the most promising strategy to select training

populations with high genetic similarity to the testing set, high genetic diversity,

and high phenotypic variance, which resulted in higher prediction ability across

population sizes and traits.
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1 | INTRODUCTION

The genetic gains per year of conventional breeding have been esti-

mated to be 1% (Li et al., 2018). With the introduction of new molecu-

lar DNA-based technologies, breeders can increase selection accuracy

and intensity and reduce the generation interval. This increased

breeding efficiency (Heffner et al., 2010; Bhat et al., 2016; Xu et al.,

2020) is key to increasing food production in the future. A

promising marker-based breeding technique is genomic selection (GS;

Meuwissen et al., 2001, Crossa et al., 2017, Wang et al., 2018), which

uses whole-genome DNA markers and phenotypic information of a

training population to predict the marker effects of a specific trait

using statistical models. The marker effects are used to predict the

breeding values of non-phenotyped individuals called testing popula-

tion. GS has become a more available breeding methodology in recent

years. As genotyping costs continue to decrease, cost of phenotyping

will become the limiting factor of GS (Bhat et al., 2016).

Although GS in plant breeding was considered challenging

(Desta & Ortiz, 2014), it has been successfully implemented in cereal

crops, for example, wheat and barley (Ankamah-Yeboah et al., 2020;
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Larkin et al., 2019), and has great potential for improved selection for

yield and disease resistance in oats (Haikka, Knürr, et al., 2020;

Haikka, Manninen, et al., 2020; Mellers et al., 2020). Genomics-

resources and marker systems were for a long time limited in oats due

to the complexity of the oat genome and reduced research invest-

ments compared with other major crops (Latta et al., 2019). However,

the development of the 6K-SNP chip (Tinker et al., 2014) made GS

more available for implementation in oat breeding and has already

been implemented in Nordic breeding programmes (Ceplitis, 2014).

The composition of the training population highly affects the pre-

diction ability, which is crucial for successful implementation of GS

(Akdemir & Isidro-Sánchez, 2019; Berro et al., 2019; Crossa

et al., 2016). The main criteria for training population optimization are

(i) population size, (ii) genetic diversity, (iii) phenotypic diversity (Isidro

et al., 2015), (iv) genetic relationship between the training and testing

population (Crossa et al., 2014), and (v) degree of population structure

(Werner et al., 2020). Some of these criteria could be more important

than others for different traits, populations, and species (Crossa

et al., 2010). Optimizing the training population is especially useful

when phenotyping costs are high in traits with low heritability and in

cases of high genotype by environment interaction. High heritability is

also related to high prediction ability but is not something we try to

optimize in this study.

By using the criteria mentioned above we have evaluated three

different strategies for training population optimization. The first

strategy preserves the genetic diversity and population structure from

a larger population in smaller training populations (Crossa et al., 2016;

Franco et al., 2005). The second strategy uses the genetic relationship

between the training and testing population to identify individuals

that have the lowest mean prediction error variance (PEV; Rincent

et al., 2012, Isidro et al., 2015). The third strategy is based on selecting

training populations with high phenotypic variation for a specific trait.

The goal of this study was to use historical data and breeding

lines from the Norwegian oat breeding programme at Graminor, to

develop an optimal training population for further research. The strat-

egies mentioned above were applied to a large candidate population,

with an independent breeding population as testing population. The

main hypothesis is that an optimization strategy will give higher pre-

diction abilities than a random selection. The optimization criteria

genetic diversity, phenotypic diversity, and genetic similarity between

training and testing population were analysed in all strategies. A

wheat dataset from CIMMYT was used to validate the strategies in a

completely independent breeding germplasm. The outcome of this

study could contribute to the implementation of GS in commercial

plant breeding programmes.

2 | MATERIALS AND METHODS

2.1 | Germplasm

Oat lines in this study were provided by Graminor plant breeding

company and are listed in Table S1. Summary of the number of lines,

SNP-markers, environments, and heritability is given in Table 1.

Table 2 shows the number of lines tested in each location and year,

and Table S8 shows the percentage of overlapping lines between

the environments. All lines have been evaluated for the traits days

to heading (DTH) and plant height (PH) by Graminor and the Norwe-

gian University of Life Sciences from yield trials that were a random-

ized complete block design with plot size of 1.5 m � 5 m, and

irrigated disease trials that were an alpha lattice design (Patterson &

Williams, 1976) with plot size of 1.5 m � 1.25 m. Spatial variation

was analysed by using nearest neighbour for yield trials (Cover &

Hart, 1967) and alpha lattice for the disease trials. Plant height was

collected by measuring the height of the plant from the ground to

the top of the head 2–3 weeks after heading. Days to heading were

recorded as the number of days from sowing until the date when

50% of the heads have emerged more than 50% from the flag leaf.

The training population candidates consisted of 65% F9 and 16%

F10–F12 breeding lines from Graminor, and 19% are a collection of

diverse material from Europe, North America and Australia. The test-

ing population consisted of 257 Graminor F9 breeding lines from

2019. The F9 lines were tested for at least one year at three locations,

the F10–F13 lines were tested for at least two years at four locations,

and the diverse materials were tested for at least two locations in

2016 and one in 2017.

2.2 | Phenotypic data

The phenotypic data used in the genomic prediction models come

from a two-stage analysis. The first stage is the calculated adjusted

mean values from field designs to account for the effect of replicate

and block. The second stage is to use adjusted mean values in mixed

linear models to account for the environmental effects of year, loca-

tions and experiment within the same environment. The following

models were used in stage two:

y¼b0þb1xgþb2xlþb3xyþb4xlyþe ð1Þ

TABLE 1 Summary description of oat germplasm, genotypic data
and phenotypic data used in this study

Training

population

Testing

population

Population size 1124 257

Number of SNP markers 3022 3022

Locations 4 4

Years 5 1

Heritability of plant height .71 .82

Heritability of days to

heading

.62 .90

Note: The number of years and locations refers to the phenotypic trials of

the training population candidates, which were used to calculate the

heritability of the traits.
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y¼b0þb1xgþb2xlþb3xt xlð Þþe ð2Þ

y¼b0þb1xgþb2xlþe ð3Þ

In the equations (Equations 1–3) y is the response phenotype, b0 the

intercept, b1-b4 are coefficients, xg the fixed effect of genotype, xl the

random effect of location, xy the random effect of year, xt the random

effect of trial, xly the interaction between year and location, xt (xl) the

effect of experiment nested in location, and e the error term.

Equation (1) was used on plant height in the training population,

Equation (2) on days to heading in both training and testing popula-

tion, and Equation (3) on plant height in the testing population.

Plant height and days to heading were normalized with different

models because data collected from the irrigated disease trials

differed for days to heading compared with the other trials in the

same year and location, so the factor of experiment was added to

the model. The factor of experiment also contains the effect of year

as the same experiments are only tested for one year. For plant

height, it was sufficient to use year and location as factor. Material

with phenotypic values two standard deviations from the mean

were excluded as the distribution became skewed.

2.3 | Heritability

The broad sense heritability (h2) was calculated as

h2 ¼VG=VP ð4Þ

where VG is the variance of genotype and VP is the variance of pheno-

type. VP is equal to the VG + Ve, where Ve is the variance of error. VG

was estimated using the xg term using the following mixed

linear model:

y¼b0þb1xgþb2xlþb3xt xlð Þþe ð5Þ

where y is the response phenotype, b0 is the intercept, b1–b3 are

coefficients, xg is the random effect of genotype, xl is the fixed effect

of location, xt (xl) is the fixed effect of trial nested in location, and e is

the error using the Minitab software (Minitab, 2010). This calculation

accounts for the fixed effect of environment, leaving only the effect

of genotype and error in Equation (4).

2.4 | Genotyping

All lines were genotyped with a customized, unpublished 20 k SNP

chip. The genetic data were analysed and filtered with a 10% missing

values threshold and 5% MAF based on the training population

candidates, resulting in 3022 polymorphic markers. The missing

marker data were imputed with the ‘impute’ function and ‘means’
method with the package ‘e1071’ in the R statistical software

(Meyer et al., 2021).

2.5 | Experimental design

Each optimization strategy was repeated 20 times for each population

size of 100, 200, 300, 400 and 500. Average prediction ability was

calculated as the average correlation between predicted and observed

breeding values of the testing population. Bayesian ridge regression

(BRR) was used to compute the marker effects, and the ‘BGLR’ func-
tion of the ‘BGLR’ package in the R software (Pérez & de los

Campos, 2014) was used to calculate the genomic estimated breeding

values of the testing population. The number of iterations were set to

30,000 and the burnin to 15,000.

2.6 | Training population optimization strategies

This study aimed to optimize known training population criteria. Each

strategy was compared with a random selection. The correlation

between the optimization criteria and the prediction abilities were

calculated and tested for significance with ANOVA.

2.6.1 | Phenotypic selection

Phenotypic selection aims to maximize phenotypic variation in the

training populations and is abbreviated to PheSe for the rest of the

paper. Based on the MLM output data (Figure 1), equal proportions

of lines with the most extreme highest and lowest adjusted breeding

values were selected for the PheSe populations. This was done once

for each population size and not replicated 20 times like the other

strategies. A similar approach was proposed by Zhao et al. (2012) in

a slightly different premise. They argue that a fraction of the training

TABLE 2 Number of lines tested in each year and location for the training population candidates

Year Bjørke (60.80�N, 11.20�E) Staur (60.73�N, 11.10�E) Rød (59.34�N, 10.89�E) Vollebekk (59.66�N, 10.75�E)

2014 304 304 304 34

2015 136 153 136 93

2016 174 344 174 289

2017 407 440 407 260

2018 337 356 337 357

2019 257 257 257 257

SØRENSEN ET AL. 43

 14390523, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pbr.13061 by N

ofim
a, W

iley O
nline L

ibrary on [08/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



population should consist of inferior material to increase prediction

accuracy (Zhao et al., 2012).

2.6.2 | Prediction core

The prediction core strategy aims to optimize the genetic relationship

between the training and testing population by minimizing the PEV of

the testing population, while also maintaining high diversity in the

training population, which is done by calculating an optimization

criterion called coefficient of determination (CD; Laloë, 1993). In the

rest of the paper prediction core is abbreviated to PreCo. The strategy

was published in 2012 by Rincent et al. (2012) and made into an R

package by Akdemir (2018).

PreCo populations were selected by performing principal compo-

nent analyses (PCA) on the genetic markers of the training and testing

populations (Akdemir et al., 2015). The first 100 principal components

(PCs) were used as input for a selection algorithm using the function

‘GenAlgForSubsetSelection’ in the R package ‘STPGA’, which starts

off with a random sample, calculates the CD values and replaces one

genotype at the time until it finds one that increases or gives the same

the CD value. This process is repeated until no further increase in CD

values is achieved (Akdemir, 2018). CDMEAN2 was used as selection

criterion. The arguments of the function were set to npop = 300,

nelite = 20, niterations = 5000, and minitbefstop = 1000. ‘Npop’
refers to the number of crosses in the testing population, and ‘nelite’
refers to the number of parents used. We chose higher parameters

than required in order to give the algorithm more power and better

solutions. The ‘niterations’ argument is the maximum number of

iterations the selections algorithm use to find the optimal solution,

whereas the ‘minitbefstop’ argument is the number of equal solution

required for the algorithm to stop before the maximum is reached.

2.6.3 | Diversity core

The diversity core strategy aim to preserve the genetic diversity and

population structure from the total candidate population in smaller

populations (Crossa et al., 2016; Franco et al., 2005). Hereafter,

diversity core is abbreviated to DivCo.

DivCo populations were selected by performing a structure

analysis with the software STRUCTURE (Hubisz et al., 2009), and the

structure harvester (Earl & vonHoldt, 2012) to determine the optimal

number of clusters. A dendrogram was created with the ‘hclust’
function which performs a hierarchical clustering of a distance matrix

based on the genetic markers. The Ward.D2 method was used in the

F IGURE 1 Phenotypic distribution of the training population candidates and testing population for days to heading and plant height after
applying the models in Equations (1)–(3) [Color figure can be viewed at wileyonlinelibrary.com]

44 SØRENSEN ET AL.
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clustering to ensure that the within-group distance is low, and the

between-group distance is high (Ward, 1963). The dendrogram was

separated into the optimal number of clusters from the structure

analysis with the ‘rect.hclust’ function in R, which isolates the clusters

with the highest genetic distance to each other (Figure 2a). Figure 2b

shows the four clusters in the PCA.

The mean distance (MD) of each cluster was summed up, and the

number of genotypes selected from each cluster were proportional to

sum of MD from all clusters. A stratified random sampling was done

1000 times in each cluster, and the subsamples with the highest

average mean distance were selected for the DivCo populations.

2.6.4 | Random selection

Random selection was included as a control to represent random

unoptimized training populations and is abbreviated to RanSe for the

rest of the paper. Populations were selected by using the ‘sample_n’
function from the ‘dplyr’ package in the R software (Wickham

et al., 2021), which randomly selects a given number of random

rows from a dataframe.

2.7 | Statistical analysis

ANOVA was used to identify significant effects of optimization

strategy on prediction ability, and the equation is stated as:

y¼b0þb1x1þb2x2þb3x12þe ð6Þ

where y is the response prediction ability, b0 the intercept, b1–b3 are

coefficients, x1 the fixed effect of optimization strategy, x2 the fixed

effect of population size, x12 the interaction between population size

and optimization strategy, and e the error term.

A Tukey pairwise comparison test was used for each pair of strat-

egies to identify if they were significantly different from each other.

Bootstrapping was also used to calculate the significant

differences between the strategies within each defined population

size. Bootstrapping was used because the PheSe strategy was not

replicated. The sample closest to the mean prediction ability in each

strategy and population size was compared with each other. The

bootstrapping was conducted by removing a random set of lines from

the testing population and calculating the prediction ability of the

remaining lines in the testing population for both training populations.

The procedure was done using the R package ‘GRousellet/bootcorci’
(Rousselet et al., 2019) and the function ‘twocorci.ov’ by removing a

random set of lines from the testing population, and calculating the

prediction ability for the remaining lines. The bootstrapping was done

with a significance level of α = .05 and 2000 iterations.

2.8 | Optimization criteria

The genetic diversity was calculated as the mean expected heterozy-

gosity by using the R package ‘diveRsity’ and the function ‘Divbasic’
in the R software which calculates the frequencies of the alleles of

each marker using the formula (2)*p*q, where p and q is the frequen-

cies of the different alleles. Then then mean 2pq is calculated for all

markers (Keenan et al., 2013).

F IGURE 2 (a) Dendrogram of the training population candidates separated into four clusters. The height of the dendrogram is given as the
total sum of squares between individuals and each cluster (b) principal component analysis of the training population candidates separated into
four clusters [Color figure can be viewed at wileyonlinelibrary.com]
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The genetic similarity between the training and testing popula-

tions was calculated as the proportion of shared alleles per pair of

populations based on the allele frequencies, summed and averaged

across all loci. The calculations were done by using the R package

‘PopGenReport’ and the function ‘pairwise.propShared’ in the R

software (Adamack & Gruber, 2014).

The Phenotypic variance was calculated by using the ‘var’
function of the ‘base’ R software.

2.9 | Wheat (Triticum aestivum) validation sets

Four different datasets were provided by CIMMYT to validate the

results of this study and is described in Table 3. The largest were

chosen as the training population candidates, whereas the rest were

used as testing populations.

3 | RESULTS

3.1 | Prediction ability

For plant height (Figure 3a), RanSe and DivCo showed similar predic-

tion abilities of .26 using population sizes 300–500, whereas the pre-

diction abilities of PheSe and PreCo were higher at .33 and .35,

respectively. PreCo performed significantly better than DivCo in size

300 and 400, whereas PheSe performed significantly better than

DivCo at size 400 and RanSe at 400 and 500 (Table 4). PreCo per-

formed approximately .025 points better than PheSe in size 200–500,

but this difference was not significant. The prediction ability of all

TABLE 3 Summary description of wheat germplasm, genotypic
data and phenotypic data used in this study (Montesinos-L�opez
et al., 2019)

Training population

candidates

980 lines

Testing population 1 766 lines

Testing population 2 775 lines

Testing population 3 964 lines

Number of SNP markers 9285

Locations 6 per year for each population

Years 4, 1 year per population

Traits Plant height, days to heading and grain

yield

F IGURE 3 Average prediction abilities for (a) plant height (PH) and (b) days to heading (DTH in oats for the different optimization strategies
prediction core (PreCo), diversity core (DivCo), phenotypic selection (PheSe) and random selection (RanSe) across different training population
sizes [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Significant p-values values from bootstrapping tests for
plant height for the optimization strategies prediction core (PreCo),
diversity core (DivCo), phenotypic selection (PheSe) and random
selection (RanSe)

Optimization strategies Population size p < .05

DivCo vs. PreCo 300 .036

DivCo vs. PreCo 400 .018

DivCo vs. PheSe 400 .019

RanSe vs. PheSe 400 .038

RanSe vs. PheSe 500 .046

Note: Days to heading had no significant differences in bootstrapping.

46 SØRENSEN ET AL.
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lines plateaued at size 300, with a slight decrease in larger populations

for PreCo and PheCo as the prediction ability of the total candidate

population was .33 (data not shown).

For days to heading (Figure 3b), all strategies performed similarly

for population sizes 100–300 but differed more for population sizes

400 and 500, where the PreCo showed the highest prediction ability

followed by PheSe, DivCo and RanSe. However, none of these differ-

ences were significant in a bootstrapping test. Prediction ability

increased linearly with population size with a maximum of .44 for

PreCo at size 500. Using all lines in the candidate population resulted

in a prediction ability of .49 (data not shown).

3.2 | ANOVA

The ANOVA results (Table 5) showed that population size contributed

to about 62% of the variation in prediction ability for days to heading

and 20% for plant height. Optimization strategy contributed to less

than 2% of the variation for days to heading, and 21% for plant height.

Both factors were significant for both traits, whereas the interaction

term was not significant. The PreCo populations yielded significantly

higher prediction ability than RanSe for days to heading, and signifi-

cantly better than DivCo and RanSe for plant height (Table 6). No

other significant differences were detected using the Tukey test.

3.3 | Genetic diversity, similarity and phenotypic
variance

The optimizations criteria (Figures 4 and 5) showed that the RanSe

populations had the lowest phenotypic and genetic diversity, and

intermediate genetic similarities. DivCo populations had high genetic

diversity, low genetic similarity, and intermediate phenotypic diversity.

PreCo populations had the highest genetic diversity, high genetic simi-

larity, and high phenotypic diversity. PheSe populations had very high

phenotypic diversity for both traits, intermediate genetic diversity for

days to heading and low for plant height, and the highest genetic

similarity for plant height and the lowest for days to heading.

There was a significant positive correlation between prediction

ability and genetic similarity for both traits, with r values of .48 for

plant height and .4 for days to heading. There was also a significant

positive correlation between prediction ability and genetic and

phenotypic diversity for plant height, but with a low r of .25 for both

criteria. Population size had a high significant positive correlation with

prediction ability with r values of .77 for days to heading and .36

for plant height.

3.4 | Wheat validation results

Population size had a significant large effect on the variation in predic-

tion ability for all three testing populations in all traits (Table 7). Selec-

tion strategy showed a significant contribution in two out of the three

TABLE 5 ANOVA for oats with
prediction ability as response variable
and population size (size), optimization
strategy (strategy) and the interaction
term Size*Strategy as factors for days to
heading and plant height

Source df Contribution Adj SS Adj MS F-value p-value

Days to heading

Size 4 61.51% 0.187 0.047 28.95 <.001

Strategy 3 1.65% 0.022 0.007 4.45 .004

Size*Strategy 12 1.56% 0.020 0.002 1.05 .404

Error 285 35.27% 0.461 0.002

Plant height

Size 4 20.33% 0.074 0.019 5.25 <.001

Strategy 3 21.43% 0.392 0.131 37 <.001

Size*strategy 12 3.23% 0.059 0.005 1.4 .167

Error 285 55.01% 1.007 0.004

TABLE 6 Results from the pairwise comparisons of the prediction
abilities of the four optimization strategies prediction core (PreCo),
diversity core (DivCo), phenotypic selection (PheSe) and random
selection (RanSe) for the traits days to heading and plant height

Strategies compared Difference in means p-values

Days to heading

PheSe DivCo 0.007 .980

PreCo DivCo 0.009 .384

RanSe DivCo �0.012 .177

PreCo PheSe 0.002 1.000

RanSe PheSe �0.019 .740

RanSe PreCo �0.020** .002

Plant height

PheSe DivCo 0.068 .062

PreCo DivCo 0.080** <.001

RanSe DivCo 0.010 .673

PreCo PheSe 0.013 .968

RanSe PheSe �0.058 .140

RanSe PreCo �0.071** <.001

*p < .05.**p < .01.
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populations for days to heading, and one out of the three populations

for plant height and grain yield. In all cases of with non-significant

contribution of selection strategy for prediction ability of days to

heading and plant height, the Size � Strategy interaction term

was significant. For grain yield prediction, the error term was always

non-significant.

DivCo were the best strategy in terms of prediction ability in

three of four significant pairwise comparisons in testing population

1 (Table S5), PreCo were best in three of four comparisons in popula-

tion 2 (Table S6), and PheSe were best in three of five comparisons in

population 3 (Table S7). Full ANOVA tables are available in Tables S2–

S4 along with plots of the mean prediction ability for the optimization

strategies (Figure S1).

4 | DISCUSSION

Our study compared three training population optimization strategies

(prediction core, diversity core and phenotypic selection) to random

selection. The training population criteria optimized were genetic

diversity, phenotypic variance and genetic similarity. The four strate-

gies were validated for their prediction ability, that is, their ability to

predict the phenotypes of a given testing population, and analysed for

their genetic diversity, genetic similarity between the training and

testing population, and phenotypic diversity.

The broad sense heritability was high for the traits days to

heading (.62) and plant height (.71) which is expected for these

traits. Studies have shown that smaller training populations are

needed for traits with high heritability (Kaler et al., 2022; Zhang

et al., 2017), and others have shown that high prediction ability can

be achieved for plant height and days to heading with small training

populations (Baertschi et al., 2021; Haikka, Knürr, et al., 2020). A

study done on unbalanced agronomic traits showed that the stan-

dard broad sense heritability calculation overestimates the heritabil-

ity (Schmidt et al., 2019), which is also likely true for the dataset of

this research. This can explain the relatively low prediction abilities

in this study. But the overestimation does not likely affect the

ranking of the strategies as an adjustment of the heritability as

suggested by Schmidt et al. (2019) would shrink the heritability for

both traits equally. There are also large G � E effects on unbalanced

data, which could also have contributed to the low prediction

abilities. The observation that the maximum prediction ability was

reached at population size 300 for plant height, whereas it was not

yet reached at size 500 for days to heading is likely an effect of the

difference in heritability between the two traits.

The main factors effecting the prediction abilities were population

size and genetic similarity, which has been highlighted as important

training population criteria in several studies (Liu et al., 2018;

Lorenz & Nice, 2017; Zhang et al., 2017). Genetic and phenotypic

diversity were however less important since increasing these criteria

alone would decrease the genetic similarity as the testing population

has low genetic diversity. Other studies also found that genetic

diversity is more important when population structure is present

(Berro et al., 2019; Isidro et al., 2015). One study on diversity core

and prediction core found that they gave similar prediction abilities

(Crossa et al., 2016), which is different from what this study con-

cludes. But in their study, the authors used diverse landrace popula-

tions with a much higher degree of genetic diversity and population

structure. These populations are better suited for the diversity core

strategy than the more narrow breeding population used in this study.

F IGURE 4 (a) Mean genetic diversity and (b) mean genetic similarity for the optimization strategies diversity core (DivCo), prediction core
(PreCo), phenotypic selection (PheSe) for plant height (PH) and days to heading (DTH) and random selection (RanSe) in population size 100–500
[Color figure can be viewed at wileyonlinelibrary.com]
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Another study (Akdemir et al., 2015) showed that the prediction core

consistently gave better prediction abilities than random selection

across population sizes and different traits, which is similar to the

results as presented in this paper.

4.1 | Diversity core

The diversity core strategy worked as intended. It produced training

populations with similar genetic diversity as the total candidate popu-

lation and selected relatively equal number of lines from all four clus-

ters. DivCo populations performed very similar to RanSe in both traits

and all population sizes (Figure 3). DivCo populations showed lower

genetic similarity than RanSe (Figure 4b), which along with the fact

that it showed intermediate genetic and phenotypic diversity

(Figures 4a and 5a,b) explains the low prediction abilities. The DivCo

strategy is not optimal for our data because of the lack of population

structure and genetic diversity in the testing population. Further

research on this strategy in populations with more diversity and popu-

lation structure would be useful to properly evaluate it. However,

when exotic material is introduced into a breeding programme DivCo

could be more useful. As the DivCo strategy does not depend on a

specific testing population it is reasonable to think that it would give

more stable prediction abilities.

F IGURE 5 Mean phenotypic diversity of the optimization strategies diversity core (DivCo), prediction core (PreCo), phenotypic selection
(PheSe) and random selection (RanSe) in population size 100–500 for the traits (a) plant height (PH) without PheSe, (b) days to heading (DTH)
without PheSe, (c) plant height with PheSe and (d) days to heading with PheSe [Color figure can be viewed at wileyonlinelibrary.com]
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4.2 | Prediction core

The PreCo strategy worked as intended and produced training popu-

lations highly related to the testing population (Figure 4b). The PreCo

populations also showed high genetic diversity (Figure 4a) and rela-

tively high phenotypic variance (Figure 5a,b). This is likely because CD

values in addition to minimizing PEV also maintains high genetic dis-

tance between individuals in the training population. The combination

of high values for the three optimization criteria, and especially the

genetic similarity likely explains why PreCo gave the highest predic-

tion abilities. For the sake of this study, it would have been useful to

also include populations only selected based on the PEV values. This

would likely have decreased the genetic and phenotypic diversity. The

PreCo strategy with the CD criteria works well when you know the

genotypes you want to predict. However, further research is needed

into the PreCo strategy to see whether these prediction abilities are

stable across different testing populations. If the testing population is

a good representation of the genetic diversity of the breeding

programme, then the training population should work for the next

breeding cycles as well.

4.3 | Phenotypic selection

The PheSe strategy selected training populations with very high phe-

notypic variance (Figure 5c,d). The days to heading populations

showed similar genetic diversity as DivCo, but also the lowest genetic

similarity (Figure 4). The plant height populations showed low genetic

diversity but the highest genetic similarity. Both PheSe populations

gave relatively high prediction abilities, indicating that phenotypic var-

iance is an important criterion to optimize, despite their low genetic

diversity in the plant height populations, and low genetic similarity in

the days to heading populations. This can be either due to overfitting

of the marker effects or increased diversity for the relevant markers.

Our study suggests that PheSe is a good strategy for selecting training

populations when no genotype data is available, and that the inclusion

of material with low breeding value is important to increase prediction

accuracy. In our study we maximized this by selecting 50% lines with

low breeding values, whereas Zhao et al. concludes that 30% is

enough to ensure high accuracy without underfitting of marker

effects (Zhao et al., 2012).

4.4 | Wheat validation

The wheat validation sets were inconclusive in determining which

strategy works best, as they rank differently in the different testing

populations for different traits. We can see that DivCo worked best

in population 1, PreCo in population 2 and PheSe in population

3. We did not do any further analysis into the optimization

criteria of the wheat datasets. Further research can show why the

optimization strategies worked differently for the different testing

populations. A likely reason could be that the phenotypic data for

the three populations were collected from different years, which

increases the G � E effect. It is shown that the correlation between

environments can vary a lot for the same trait (Cooper &

DeLacy, 1994), which could explain the low prediction abilities in

the validation sets.

TABLE 7 p-values and contribution
percentage from ANOVA with prediction
ability as response variable population
size (size), optimization strategy (strategy)
and the interaction term Size*Strategy as
factors

Source

Days to heading Plant height Grain yield

Contribution p-value Contribution p-value Contribution p-value

Validation set 1

Size 12.86% <.001 36.65% <.001 29.77% <.001

Strategy 1.57% .034 5.61% <.001 .44% .395

Size*Strategy 20.60% <.001 13.70% <.001 2.85% .151

Error 64.98% 44.04% 66.95%

Validation set 2

Size 19.55% <.001 45.35% <.001 25.18% <.001

Strategy .23% .648 .14% .666 20.05% <.001

Size*Strategy 4.23% .049 4.75% .001 .74% .864

Error 75.99% 49.76% 54.03%

Validation set 3

Size 28.50% <.001 50.9 5% <.001 9.99% <.001

Strategy 8.20% <.001 .22% .502 1.17% .143

Size*Strategy 1.34% .628 2.70% .037 3.76% .132

Error 61.96% 46.12% 85.09%

Note: The traits analysed were days to heading, plant height and grain yield. The wheat data used for

training and testing populations are described in Section 2.7.
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4.5 | Conclusion

Of the three strategies analysed, prediction core had the highest

average prediction ability in most population sizes for both traits and

produced training populations with high genetic diversity, high genetic

similarity to the testing population and high phenotypic variance

compared with random selection. Genetic similarity along with

population size were the most important criteria to optimize in the

training populations. More research is needed to evaluate how well

the prediction core strategy works over several breeding cycles, but

our research points to prediction core as the best strategy to optimize

training populations in cereals.
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