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Abstract: Technological innovations and advanced multidisciplinary research increase the demand 
for multisensor data fusion in Earth observations. Such fusion has great potential, especially in the 
remote sensing field. One sensor is often insufficient in analyzing urban environments to obtain 
comprehensive results. Inspired by the capabilities of hyperspectral and Light Detection and Rang-
ing (LiDAR) data in multisensor data fusion at the feature level, we present a novel approach to the 
multitemporal analysis of urban land cover in a case study in Høvik, Norway. Our generic workflow 
is based on bitemporal datasets; however, it is designed to include datasets from other years. Our 
framework extracts representative endmembers in an unsupervised way, retrieves abundance maps 
fed into segmentation algorithms, and detects the main urban land cover classes by implementing 
2D ResU-Net for segmentation without parameter regularizations and with effective optimization. 
Such segmentation optimization is based on updating initial features and providing them for a sec-
ond iteration of segmentation. We compared segmentation optimization models with and without 
data augmentation, achieving up to 11% better accuracy after segmentation optimization. In addi-
tion, a stable spectral library is automatically generated for each land cover class, allowing local 
database extension. The main product of the multitemporal analysis is a map update, effectively 
detecting detailed changes in land cover classes. 

Keywords: multisensor data fusion; feature-level fusion; hyperspectral imaging lidar;  
urban environment; urban remote sensing 
 

1. Introduction 
Urban surface types are a mix of complex materials and surfaces, such as low, mid-

dle, and high vegetation, non-vegetated pervious surfaces, and partially and fully imper-
vious surfaces, including asphalt, concrete, and various roofing systems [1]. These mate-
rials and surfaces undergo natural and anthropogenic processes, constantly increasing 
urban heterogeneity [2]. This diversity of urban land cover is additionally characterized 
by high-frequent changes and complex transitions [3,4] due to the growing urban popu-
lation contributing to a concomitant increase in environmental problems [5]. In order to 
effectively monitor the highly dynamic urban environment, appropriate technologies and 
methods are needed to cope with such change analysis within the urban environment. 

Active and passive remote sensing has been widely used in urban land cover map-
ping and monitoring in recent decades [6–9]. Hyperspectral (HS) data at the airborne scale 
have gained particular attention, identifying materials effectively based on their physical 
and chemical properties [10,11]. HS imaging has increasingly become a valuable tool for 
multitemporal analysis, such as change detection in urban areas. 

Multitemporal analysis of HS data compares materials, material conditions, stability, 
degradation, pollution, alteration, and anthropological and atmospheric changes. HS-
based change detection uses rich spectral information distinguishing materials and fine 
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spectral changes [12]. The high amount of spectral features enables effective real-time 
detection of changing areas. However, the information about the changes is often 
contained in different bands simultaneously, complicating the HS analysis. In airborne-
based HS data, the spatial resolution is significantly higher than in satellite-based images. 
This results in high spectral complexity of objects of similar materials showing similar 
spectral responses [13]. Any change detection technique must deal with high 
dimensionality, computational cost, and limited data, including ground truth data [14]. 

One of the limitations in high-resolution airborne-based HS change detection is pixel-
based classification. Such a classification requires assumptions that neighbor pixels are 
independent of each other and that radiometric properties of multitemporal images are 
identical. However, these assumptions are not valid in the urban environment due to the 
heterogeneity of the urban surfaces, different atmospheric conditions during data 
acquisition, and sensor geometry [15]. Due to the potentially miscellaneous spectral 
behavior of urban surfaces and adjacent pixel dependency, semantic meaning and spatial 
context analysis are critical. Such spatial-context information is included when extracting 
textures, calculating morphological filters [16–19], using adaptive pixel neighborhood 
[20], applying contextual Support Vector Machines [21], Markov Random Fields (MRF) 
[22,23], Convolutional Neural Networks (CNN) combined with MRF [24], 3D CNN 
extracting spectral and spatial information simultaneously [25]. However, another 
possibility to compensate for this problem and to complement multitemporal HS analysis 
is multisensor data fusion with LiDAR (HL-Fusion) [8,26–30]. 

The use of LiDAR in multitemporal analysis focuses mainly on structural and 
textural changes, e.g., canopy gaps [31] and single-tree levels in forestry applications 
[32,33], and mining subsidence [34]. Applications of LiDAR data have been mainly limited 
to analysis based on data acquisition from a single time (single-data analysis). This is 
mainly due to the lack of a multitemporal database and technical limitations such as 
widely varying intensity values and the irregular distribution of cloud points between 
multitemporal data. 

Airborne campaigns are being launched increasingly in which data from different 
sensors are acquired simultaneously, such as RGB cameras, LiDAR scanners, and 
multispectral and HS sensors [35–41]. This opens up the possibility to fuse data from 
different sensors at different levels ranging from raw data fusion, feature-level fusion, or 
application-level fusion [42]. Of particular interest in HL-Fusion is the ability to operate 
in a common feature vector using the potential of each sensor and performing the fusion 
on the feature level. The analysis based on feature-level HL-Fusion enables a complete 
spectral-local analysis and diversifies the results and products obtained from the fusion 
of these two sensors [43]. In addition, the analysis based on multitemporal HS and LiDAR 
data allows the detection and evaluation of complex changes in the urban environment 
[44]. Man et al. [45] proposed a method for urban land cover classification by extracting 
normalized Digital Surface Model (nDSM) and backscattered intensity features from 
LiDAR. The authors first applied Principal Component Analysis (PCA) to an HS dataset, 
using the first PC to generate texture features based on the grey level co-occurrence matrix 
(GLCM) [46,47] and additionally retrieved the Normalized Difference Vegetation Index 
(NDVI) [48]. All extracted features were fed into pixel-based supervised classification 
algorithms, including SVM and Maximum Likelihood Classification (MLC). Hasani et al. 
[49] generated a hybrid feature space including spectral and structural features from HS 
and LiDAR data and an optimized classification system applying cuckoo search. 
Khodadadzadeh et al. [50] proposed a feature-level fusion method integrating multiple 
types of HS and LiDAR-based features without model parameter regularization. Kuras et 
al. [35] extracted endmembers from an HS dataset in an unsupervised way by applying 
N-FINDR [51] and retrieving raster-based LiDAR features for segmentation purposes. 

Simultaneous feature-level fusion of multitemporal data is among the analyses that 
not only require an understanding of the physical functions of each sensor but are also 
very complex compared to analyses relying on single sensors or lower dimensional data. 
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Deep learning has proven to be a critical basis and remarkable breakthrough for handling 
such issues in image processing in recent years [52]. Continuous improvements and inno-
vations in deep learning models show that no single generic and transferable classification 
model can correctly analyze the selected target of interest. Very often, the selection of deep 
learning algorithms depends on the complexity of the classification task, the type of data, 
their dimensionality, training data availability, and the final classification purpose. 

For high-dimensional HS and LiDAR data, the algorithm for multiclass classification 
of urban land cover should include a wide range of information. Such fundamental infor-
mation is the spectral context using multidimensional convolutional operations. Also im-
portant is the location of the class and the occurrence environment.  

Inspired by HL-Fusion and deep learning for multitemporal analysis, we present: (1) 
a novel land cover multitemporal analysis based on fused HS and LiDAR data at the fea-
ture level that integrates abundance representation from HS and LiDAR datasets applying 
2D ResU-Net (2D Residual U-Net) [53,54]; (2) we automatically generate spectral libraries 
as a by-product for a local database expansion creating a spectral library for each defined 
class based on endmember extraction and forced class assignment based on a synthetic 
mixture including intraclass variability. Initially generated spectral library is used for seg-
mentation optimization and can further be used when adding new datasets to the analysis 
and helps diversify and enlarge the database integrating new classes; (3) we propose a 
generic method for stable updating of local maps using a case study bitemporal HL-Fu-
sion dataset. 

The article is structured as follows. Section 2 describes the dataset used in our study. 
Section 3 introduces the framework of our proposed method for multitemporal analysis 
of HL-Fusion data. Section 4 presents the results of segmentation optimization, spectral 
library generation, and the change detection approach. The results are further discussed 
in Section 5. Finally, Section 6 points out concluding remarks on our method and 
suggestions for future directions in this research field. 

2. Dataset 
The company Terratec AS collected airborne-based HS and LiDAR data on 24th Au-

gust 2019 (Figure 1b) and 26th June 2021 (Figure 1c) over Bærum municipality near Oslo, 
Norway. In both flight campaigns, HS and LiDAR sensors were mounted together on the 
aircraft platform, which flew at an altitude of 1100 m at noon, ensuring the best possible 
weather conditions, i.e., the highest sun angle. Our study area is located in Høvik with a 
coordinate extent of 588060, 6641500; 588878, 6641735 WGS 84 / UTM zone 32N (Figure 
1a). The datasets contained bitemporal cloud-free airborne-based HS images and LiDAR 
scans. The HS data were acquired using two HySpex sensors: VNIR-1800 (0.4–1.0 µm) and 
SWIR-384 (1–2.5 µm) with 0.3 and 0.7 m spatial resolution, respectively. The HS data were 
preprocessed by conducting georeferencing and orthorectification using the PARGE soft-
ware (Parametric Geocoding and Orthorectification for Airborne Optical Scanner Data) 
[55]. The geocoded radiance data were converted to reflectance, conducting atmospheric 
correction using ATCOR-4 (Atmospheric and Topographic Correction for airborne im-
agery). Absorption features associated with H2O and OH close to bands at 1.4 µm and 1.9 
µm and noisy bands (0.96–0.98 µm and 2.39–2.5 µm) were excluded from further analyses 
applying the Minimum Noise Fraction (MNF) transform [56]. The final hyperspectral data 
cube had 365 bands. The SWIR data were adapted to the spatial resolution of VNIR of 0.3 
m, applying Gram–Schmidt Spectral Sharpening [57]. 

The LiDAR data were acquired using Riegl VQ-1560i, with five pulses per m2, an 
intensity at 1.064 µm, a pulse repetition rate of 1000 kHz, a strip width of 1255 m, a field 
of view of 59° and 84% of lateral laser overlap. From the LiDAR-based point cloud (Figure 
1e), noise and outliers were removed. Five different raster-based features were extracted 
based on other studies [8], including intensity from the first return, height derivatives such 
as slope, normalized Digital Surface Model (nDSM), multiple returns, and point density. 
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All features were coregistered, aligned to the spatial resolution of 0.3 m of the HS VNIR 
scene, and fused into a single data matrix, the basis for the segmentation. 

 
Figure 1. Our study area representing (a) the location of the area of interest, (b) the HS scene from 
2019, (c) the HS scene from 2021, (d) the ground truth data, and (e) the LiDAR point cloud. 

2.1. Ground Truth 
The ground truth consists of a local database in Norway (FKB database) that includes 

polygons of artificial objects such as buildings, railways, and roads manually updated 
from 2011 to 2019. The FKB database used for this study was created using manual vec-
torization based on aerial photogrammetry. For this reason, inaccuracies regarding object 
edges or polygon offsets should be expected, which have been reviewed and corrected for 
our study. Ground truth data were unavailable for low and high vegetation due to high 
dynamic and seasonal differences. Therefore, these classes were extracted semi-automat-
ically, calculating the Normalised Difference Vegetation Index (NDVI) for the HS scene 
[48] and distinguished high and low vegetation based on raster-based LiDAR features, 
relying on the method from Kuras et al. [35] (Figure 1d). The main features for differenti-
ating high and low vegetation were selected prior to analysis based on knowledge and 
experience. Low vegetation was selected using laser ground points, where multiple re-
turns and higher point density characterize high vegetation in contrast to low vegetation. 
In our study, high vegetation also includes shrubs, thuyas, and similar. 

These ground truth data were used for the dataset from 2019. For the dataset from 
2021, we used segmentation results from 2019 as reference data. 

2.2. Data Simulation 
In order to diversify the analysis and prove the proposed method's stability and 

correctness, we created simulated changes, adding a building in place of low and high 
vegetation. Our study area represents low dynamics of change over a short period. 
Therefore, such data simulation adds a significant change to the dataset. We assumed that 
the manual addition of a building in this location is feasible and typical for 
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urban/suburban areas where vegetation is removed to build new residential 
neighborhoods. This building was not annotated in the ground truth in training. 

3. Proposed Method 
The following section describes an approach for multitemporal HL-Fusion at the fea-

ture level (Figure 2). Figure 2 represents a bitemporal problem with the possibility of add-
ing new datasets to the approach. The analysis begins with unsupervised endmember ex-
traction separately for the HS reflectance image (Figure 2, box 1.1) and five LiDAR fea-
tures, such as nDSM, slope, intensity, multiple returns, and density (Figure 2, box 1.2) for 
the first time point (Figure 2, Dataset 2019). The number of endmembers created from HS 
data depends on the amount of each endmember in the scene and has been limited to all 
endmembers above 0.1 %. From the created endmembers, abundance maps are generated 
for HS (Figure 2, box 2.1) and LiDAR data (Figure 2, box 2.2), unmixing all endmembers 
spectrally and retrieving the percentage of each endmember per pixel in the scene. These 
abundance maps and the FKB ground truth data are fed into a segmentation algorithm 
(Figure 2, box 3). Then, analogous to the first dataset, the second time point (Figure 2, 
Dataset 2021) is analyzed, starting from endmember extraction to generation of abun-
dance maps for HS (Figure 2, box 4.1 and 5.1) and LiDAR data (Figure 2, box 4.2 and 5.2). 
Then, the segmentation result from 2019, considered as the ground truth, is added to the 
segmentation for 2021 (Figure 2, box 6) along with retrieved abundance maps. From the 
segmentation results–segmentation maps from 2019 and 2021, segments are extracted for 
each defined class, calculating segment intersections and differences of datasets 2019 and 
2021 (Figure 2, box 7). The most representative endmembers are extracted from each in-
tersection and difference segments for the classes, such as low and high vegetation, build-
ing, road, and railway. In case endmembers from the difference group belong to one of 
the five predefined classes, synthetic mixing is applied (Figure 2, box 8). Then, spectral 
unmixing is carried out (Figure 2, box 9) to effectively and automatically align endmem-
bers (Figure 2, box 10) from the existing difference group to the corresponding class and 
to update initial endmembers extracted before the first segmentation. From the updated 
endmembers, abundance maps are generated and summed for each defined class (Figure 
2, box 11). The successful alignment is considered a basis for the automatic generation of 
a stable local spectral library with intraclass variability. The difference endmembers that 
cannot be aligned to any defined class were individually used for abundance map re-
trieval (Figure 2, box 12). All retrieved abundance maps are fed into the next iteration as 
optimized segmentation without parameter regularizations for 2019 (Figure 2, box 13) and 
2021 datasets (Figure 2, box 15). The final step of the multitemporal analysis is change 
detection (Figure 2, box 14), where the original map to be updated (FKB ground truth) is 
compared with the segmentation results from the 2019 dataset, creating an updated map, 
which also shows the changes that have occurred in each of the five predefined classes. 
Analogously, the change detection (Figure 2, box 16) can be applied to dataset 2021, com-
paring the final map from dataset 2019 to the segmentation results from dataset 2021 and 
generating an updated map. 
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Figure 2. Schematic workflow for multitemporal HL-Fusion at the feature level. According to 
flowchart guidelines, parallelograms represent data input/output, rectangles—process, and 
rhombi—decision. 
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3.1. Endmember Extraction and Abundance Maps 
In our study, we implemented the state-of-the-art iterative endmember extraction 

(EA) algorithm N-FINDR [51] for HS and LiDAR data, respectively (Figure 2, box 1.1, 1.2). 
We generated normalized abundance maps based on the extracted endmembers (Figure 
2, box 2.1, 2.2) by applying the non-negativity-constrained least squares algorithm [58]. 
For HS EA, the preprocessed reflectance image was used to retrieve the most representa-
tive endmembers. For EA of LiDAR data, we built a LiDAR feature space where the five 
most relevant raster-based features have been extracted, including slope, the intensity 
from the first return, multiple returns, normalized digital surface model (nDSM), and 
point density. All the features were normalized separately before EA due to significant 
differences in the value scale. 

The initially extracted endmembers for LiDAR data were used to generate abundance 
maps for each endmember, analogously to HS data. 

3.2. Semantic Segmentation 
The final input to semantic segmentation algorithms consists of abundance maps 

from HS and LiDAR data. We considered the 2D ResU-Net model architectures in this 
study [35,53,54], comparing the segmentation process with and without training data aug-
mentation for 2019 (Figure 2, box 3) and 2021 (Figure 2, box 6) datasets without model 
parameter regularizations. The original U-Net consists of an encoder part with multiple 
blocks of convolutions and max pools for feature extraction and a corresponding decoder 
with transposed convolutions for upscaling after each convolution block [59]. Skip con-
nections between corresponding convolution blocks in the encoder and decoder are used 
for improved class location and signal propagation. The Residual U-Net extends the orig-
inal U-Net with local skip connections in the convolution blocks, further enhancing signal 
pathways and granularity of predictions. In the ResU-Net model, we implemented 2D 
convolutional operations, which are sufficient and not time-consuming in this type of land 
cover analysis [35].  

The 2D ResU-Net models were implemented in Python using the module Tensorflow 
with GPU functionalities [60]. 

3.2.1. Implementation Details 
For the segmentation, the study dataset was divided into 64 × 64 pixel patches, of 

which 70% is training, and 30% is the test dataset. A total of 20% of the training data is 
used for validation. Training, validation, and testing were selected, considering all classes 
equally in training, validation, and testing. In addition, data augmentation was applied to 
training data by applying a 50% overlap of each patch (Figure 3), of which no patch in the 
training dataset was part of the test dataset. 

 
Figure 3. Schematic illustration of data augmentation created for training dataset for 64 × 64 pixel 
patches with 50% overlap. Image patches in the test dataset have an overlap of 0%. 



Remote Sens. 2023, 15, 632 8 of 22 
 

 

3.2.2. Evaluation Metrics 
For segmentation purposes, we used standard metrics for measuring accuracy, ap-

plying F-Measure (F1 score) [61] and Matthews Correlation Coefficient (MCC). The F1 
score is commonly used to accurately evaluate the boundaries in the predicted pixels [62]. 
The F1 score was applied for the overall algorithm performance assessment. The metrics 
take into account precision (p) and recall (r) in the predictions and are defined as follows: 

𝑝𝑝 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
, (1) 

𝑟𝑟 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
, (2) 

and 

𝐹𝐹1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
2 ∗ 𝑝𝑝 ∗ 𝑟𝑟
𝑝𝑝 + 𝑟𝑟

 (3) 

where true positives are defined as TP, false positives as FP, and false negatives as FN. 
The MCC is used for the accuracy evaluation of each class individually, suitable for data 
with imbalanced classes with the following formula: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
(𝑇𝑇𝑇𝑇 ∗ 𝑇𝑇𝐹𝐹) − (𝐹𝐹𝑇𝑇 ∗ 𝐹𝐹𝐹𝐹)

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹)
, (4) 

where true negatives are defined as TN. The MCC scales from -1 to 1, where -1 means that 
all predictions are incorrect and where 1, in contrast, predicted all results right [63]. 

3.2.3. Multitemporal Analysis—Intersection and Differences 
Given that the semantic segmentation is conducted for all available datasets X at time 

X1, …, Xn for classes C1, …, Ci, each estimated segment of a single class from C1, …, Ci is 
handled individually (Figure 2, box 7). 

For each class C1, …, Ci, common areas occurring in all datasets from different times 
X1, …, Xn are grouped into «intersection». It means that a pixel classified as class C1 (e.g., 
high vegetation) in all datasets X1, …, Xn (e.g., 2019 and 2021) is assigned to the intersection 
group. For each intersection of a class C1, …, Ci, we extracted representative endmembers 
from all datasets X1, …, Xn. 

In contrast to an intersection, «difference» means that a pixel in dataset X1 was as-
signed to another class C than in dataset(s) X2, …, Xn. For each such difference of each class 
C1, …, Ci, we found representative endmembers and collected them in one difference 
group. Figure 4 represents two datasets, X1 and X2, where some trees (green color) corre-
spond to the intersection group, and one house and one tree from dataset X1 (blue color) 

were not found in dataset X2 and therefore corresponded to the difference group. 



Remote Sens. 2023, 15, 632 9 of 22 
 

 

 
Figure 4. The clustering principle of intersections (green) and differences (blue) for two datasets, X1 
and X2. 

3.3. Synthetic Mixing for Spectral Library Generation 
We assume some endmembers from the difference group can be assigned to any de-

fined classes C1, …, Ci. Therefore, we synthetically mixed all intersection endmembers 
EMi0, …, EMin with all difference endmembers EMd0, …, EMdm, and initial endmembers 
generated for the first segmentation in proportion 50:50 percent (Figure 2, box 8). After 
the synthetic mixing, we unmixed the new synthetic matrix spectrally (Figure 2, box 9, 
Figure 5). 

 
Figure 5. Spectral unmixing example based on synthetic mixing result. 
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The intuition behind the spectral unmixing in this study is to align difference and 
initial endmembers to any of the defined classes C1, … Ci, comparing all difference and 
initial endmembers to all intersection endmembers (Figure 2, box 10). Figure 5 presents a 
spectral unmixing example, where each class C1, …, Ci consists of ten intersection 
endmembers (Table 1). 

Table 1. Intersection endmember defined classes. 

Defined Class Intersection EM 
road EMi0-EMi9 

building EMi10-EMi19 
low vegetation EMi20-EMi29 
high vegetation EMi30-EMi39 

railway EMi40-EMi49 

Given that the intersection endmember EMi0 belongs to the road class, we are search-
ing for difference and initial endmembers with a similar unmixing value to EMi0. In this 
example, two difference endmembers, EMd5 and EMd65, are similar to EMi0 and were 
aligned automatically to the road class as the EMi0. For the updated intersection endmem-
bers, abundance maps have been retrieved and summed up for each class separately (Fig-
ure 2, box 11). Such optimized intersection endmembers are the basis for a stable local 
spectral library. 

The difference endmembers that were not aligned automatically to any defined clas-
ses were used to retrieve abundance maps for the second segmentation iteration (Figure 
2, box 12). However, to avoid noise and endmembers that are not substantial, we calcu-
lated the average of each difference endmember occurring in our study area and limited 
the amount of the endmembers contributing with a value above 0.1%. The updated inter-
section abundance maps, difference abundance maps, and LiDAR features extracted for 
the first segmentation were merged and fed as input for the second segmentation iteration 
for the 2019 (Figure 2, box 13) and 2021 (Figure 2, box 15) datasets. 

3.4. Change Detection 
In order to update the local map that served as the ground truth (FKB) for segmen-

tation for the 2019 dataset, we subtracted each segment separately from the 2019 dataset 
from the FKB reference data highlighting land cover changes (Figure 2, box 14). The re-
sulting update map indicates the changes in objects/surfaces added or removed in 2019. 
This procedure was analogously repeated for change detection (Figure 2, box 16) for re-
trieving an updated map for the 2019 to 2021 dataset. (Figure 4, box 18). Since there were 
no significant changes in the defined classes in artificial objects such as buildings and rail-
ways from 2019 to 2021, we simulated a change and added a random building in place of 
low/high vegetation in the dataset from 2021. 

4. Experimental Results 
This section provides results for the initial (first iteration) and optimized the second 

iteration (after the abundance map update) segmentation task for 2D ResU-Net with and 
without data augmentation for 2019 and 2021 datasets. The results of the spectral library 
generated from the best segmentation results of 2019 and 2021 are presented. Then, the 
results of the change simulation are shown, as well as the results of the change detection 
for each of the defined classes taking into account the changes from the FKB reference 
data for 2019 and from 2019 to 2021.  

4.1. Segmentation Results 
Figure 6 shows the HS scenes from the datasets from 2019 (a) and 2021 (c) with cor-

responding ground truths for 2019 (c) and 2021 (d). 
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Figure 6. (a) HS scene from a dataset from 2019, (b) corresponding ground truth data, (c) HS scene 
from a dataset from 2021, and (d) corresponding ground truth data. 

Table 2 presents the segmentation results for 2019 and 2021 of the ResU-Net without 
data augmentation for initial segmentation (segmentation I) and optimized segmentation 
(segmentation II). The results are based on MCC for each class and the F1 score metric for 
overall segmentation. Corresponding segmentation maps are shown in Figure 7. 

Table 2. Segmentation results without data augmentation for the dataset from 2019 and 2021 for the 
ResU-Net model based on MCC calculated for each class (the range scales from −1 to 1) and overall 
F1 score (the range scales from 0 to 1). 

Color Dataset 2019 2021 
 Segmentation I II I II 
 Low vegetation 0.79 0.81 0.7 0.81 
 High vegetation 0.92 0.92 0.76 0.91 
 Building 0.88 0.94 0.92 0.98 
 Road 0.78 0.89 0.82 0.91 
 Railway 0.85 1 0.99 0.98 
 F1 0.818 0.831 0.752 0.776 

 
Figure 7. Segmentation results without data augmentation for the dataset from 2019 and 2021 for 
the ResU-Net showing (a) the first segmentation iteration for the dataset from 2019, (b) the first 
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segmentation iteration for the dataset from 2021, (c) the second segmentation iteration for the da-
taset from 2019, and (d) the second segmentation iteration for the dataset from 2021. 

Similarly, the results for segmentation with data augmentation are reported in Table 
3 and Figure 8 for the 2019 and 2021 datasets. The results from Table 2 and 3 show that, 
regardless of the data augmentation process, the accuracy based on MCC increases for 
both individual classes and the overall F1 score after the second iteration of the segmen-
tation. Comparing the results of segmentation without and with data augmentation, the 
segmentation with data augmentation achieves higher results in both initial (I) and opti-
mized (II) segmentation.  

Table 3. Segmentation results with data augmentation for the dataset from 2019 and 2021 for the 
ResU-Net model based on MCC calculated for each class (the range scales from −1 to 1) and overall 
F1 score (the range scales from 0 to 1). 

Color Dataset 2019 2021 
 Segmentation I II I II 
 Low vegetation 0.72 0.75 0.8 0.81 
 High vegetation 0.94 0.97 0.95 0.97 
 Building 0.97 0.99 0.99 0.99 
 Road 0.92 0.95 0.99 0.99 
 Railway 1 1 1 1 
 F1 0.814 0.843 0.886 0.892 

 
Figure 8. Segmentation results with data augmentation for the dataset from 2019 and 2021 for the 
ResU-Net showing (a) the first segmentation iteration for the dataset from 2019, (b) the first seg-
mentation iteration for the dataset from 2021, (c) the second segmentation iteration for the dataset 
from 2019, and (d) the second segmentation iteration for the dataset from 2021. 
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4.2. Spectral Library 
The spectral library was generated based on the results of the initial (I) segmentation 

of 2019 and 2021 and then updated after the results of the optimized (II) segmentation. 
The spectral library, shown in Figure 9, demonstrated the final spectra for each class, in-
cluding low and high vegetation, buildings, roads, and railways. Each spectrum covers 
the 0.4−2.35 µm spectral range. Noisy bands from the preprocessing are not included ei-
ther in the analysis or in the built spectral library. Each class contains the most representa-
tive spectra within its definition, i.e., the building class consists of different roof materials 
depending on their complexity and heterogeneity in the selected study of interest. We 
have selected red, black, and brown tiles and metal roofing. 

 



Remote Sens. 2023, 15, 632 14 of 22 
 

 

 
Figure 9. Spectral library of low and high vegetation, building (red, brown, and black roof tiles), 
road (yellow and white markings and asphalt), and railway generated after alignment after the II 
segmentation iteration. The bold black line in each plot represents the average image spectrum of 
each class. 

4.3. Change Detection 
Figure 10 demonstrates the change detection results for the changes from the FKB 

reference data to 2019 for buildings and roads. The railway class has not experienced 
changes. 

 
Figure 10. Change detection results for buildings and roads from FKB reference data to 2019 repre-
senting (a) buildings from the reference image (FKB), and (b) from 2019, (c) change detection for 
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buildings, (d) roads from the FKB, and (e) from 2019, and (f) change detection for roads. Red color 
highlights changed pixels in the updated map. 

Figure 11 depicts the change detection results from 2019 to 2021 for roads, low and high vegetation. 

 

 
Figure 11. Change detection results for roads, low and high vegetation from 2019 to 2021 represent-
ing (a) buildings from 2019, and (b) from 2021, (c) change detection for buildings, (d) low vegetation 
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from 2019, and (e) from 2021, (f) change detection for ow vegetation, (g) high vegetation from 2019, 
and (h) from 2021, and (i) change detection for high vegetation. Red color highlights changed pixels 
in the updated map. The green color represents pixels available only in the 2019 map (a map to be 
updated). 

Table 4 presents the MCC accuracy results for segmentation on a dataset where a 
building was added in the 2021 dataset. Figure 12 highlights the simulated building addi-
tion with the building found in the segmentation process.  

Table 4. The segmentation results of a simulated dataset from 2021. 

Color Dataset 2021 
 Low vegetation 0.79 
 High vegetation 0.92 
 Building 0.97 
 Road 0.99 
 Railway 1 
 F1 0.859 

 
Figure 12. Simulated change in the dataset from 2021. The red dashed rectangle represents an added 
building in place of low/high vegetation. 

5. Discussion 
5.1. Segmentation Process 

In the segmentation of high-dimensional data, dimension reduction is crucial [64]. 
Unsupervised endmember extraction and retrieval of abundance maps provide a stable 
and reliable method for obtaining the most representative features of a scene that are not 
calculated based on statistics. Based on the segmentation results from 2019 and 2021, it 
has to be noted that only in single classes, such as railway in 2021, the second iteration of 
segmentation after optimization deteriorated accuracy from 99 to 98%. Comparing all 
classes in general, low and high vegetation achieved significantly lower accuracy than the 
buildings, roads, and railways. This is because ground truth data for these classes were 
created semi-automatically, which is insufficiently accurate. In addition, in many places 
in our study area, vegetation partially covers some objects, such as roads and buildings, 
depending on the season in which the data acquisition campaign was carried out. For this 
reason, some road pixels were not found in the segmentation. The main aspect is that HS 
data do not penetrate the surface, and some extracted features from LiDAR, such as in-
tensity, include information from the surface only, i.e., from the first laser return. Figure 
13 shows an example of high vegetation covering a road.  
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Figure 13. An example of vegetation covering the road marked with a white dashed rectangle. 

In the I segmentation (Figure 13a), vegetation was identified on the road, degrading 
the road accuracy results. In the II segmentation, vegetation covering the road was reclas-
sified to the unknown class. When a classification of new objects or surfaces is required, 
one of the new classes in this study of interest could be "vegetation on the road" [65]. Such 
information about vegetation covering main roads can be an indicator for municipalities 
to remove and secure high vegetation that threatens vehicular traffic and is a typical high-
light of urban complexity. 

In addition to the improved accuracy of the results in the second iteration of segmen-
tation, after segmentation optimization, in most objects, the edges have been sharpened, 
and the geometry in the 2D plane is approximated to reality. This is especially noticeable 
in objects not marked in ground truth data but present in the analyzed dataset, such as 
building detection in Figure 14. 

 
Figure 14. Improvement of the shape of an object on example building detection marked with a 
dashed white rectangle. 

A frequent challenge in multiclass segmentation using 2D convolutional operations 
is patch edge effects. These effects relate to the generation of "contours" of each 64 × 64 
pixel patch in the classification results, meaning that contextual information from neigh-
boring pixels is not included at the pixel patch edges (Figure 7a). This unintentional effect 
has been reported in previous studies, where Kuras et al. [35] implemented 3D instead of 
2D convolutional operations in the model, mitigating edge effects in the final segmenta-
tion map. However, in this study, 3D convolutions require increased computation time, 
especially when applying data augmentation. Initial experiments on 3D convolutional op-
erations have been carried out, achieving similar results using much larger computational 
resources. Therefore, 2D convolutions are sufficient for this purpose, providing solid re-
sults [35]. 
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In our study, the second iteration of the segmentation eliminates patch edge effects, 
thereby improving accuracy results (Figure 7c,d). On the other hand, data augmentation 
through a patch overlap of 50% in the training dataset not only levels edge effects in the I 
segmentation already (Figure 8a,c) but also allows for more stable learning of the algo-
rithm of localization patterns helping in object identification. 

Another important aspect worth discussing is achieving 100% accuracy in some clas-
ses. This is a sign of overfitting, which can be compensated for by reducing the complexity 
of the segmentation model. The splitting of training may have caused overfitting, and test 
data was carried out patch-wise rather than strictly object-wise, causing the same ob-
ject/surface to occur both in training and test data. Also, the weight of each class may have 
been disproportionate, with the rest getting more focus in the segmentation. However, to 
prevent overfitting issues, the early stopping function was used to save training time and 
stop training when the model achieved the best performance. 

5.2. Spectral Library 
Since the defined classes in the segmentation in the urban environment are complex 

and heterogeneous, the automatically created spectral library for each class contains spec-
tra belonging to different materials and surfaces within that class. One example is the road 
class which consists of not only the primary road material—asphalt or concrete, but also 
road surface markings which, due to the spatial resolution of 0.3 m, are mixed with the 
asphalt or the vehicle on the street. Figure 9 shows that some spectra, especially in low 
and high vegetation, experience saturation caused by technical problems in data acquisi-
tion or atmospheric correction. Errors and artifacts in the spectral library can also be 
caused by the level adjustment between VNIR and SWIR sensors and the fact that these 
two cameras do not point to the same spot from the airplane, which is particularly prob-
lematic when dealing with a dynamic environment where, for example, vehicles are con-
stantly moving. With the insertion of new datasets into the analysis, i.e., temporal or spa-
tial, new material/spectra may appear that do not belong to the five classes defined in this 
approach. In case a new class arises, it can be easily added to the collection in the spectral 
library and defined the class manually if applicable considering available spectral libraries 
[66,67]. Such a spectral library can be used for plausibility checking and refining the clas-
sification. Overlap between classes, such as vegetation on the house roof, indicates over-
growth of trees, meadow, or moos roof. Depending on the application and purpose, this 
complexity can be explored, defined, and controlled using the spectral library. 

5.3. Change Detection 
Change detection for all defined classes is shown in Figure 10 and 11. The most sig-

nificant changes could be experienced when the updated map represented 2019. In 2019, 
several new buildings were detected and updated. Sometimes in building maps, we notice 
detected changes with already known buildings. This is because boats and cars on the 
properties were assigned to the building class. In the case of road change detection, as 
roads were defined, property entrances or alleys were not marked in the original reference 
data. In addition, the algorithm also detected changes when ground truth was prepared 
manually, and the object from the airborne-based image perspective slightly shifted or 
changed object edges. However, erroneous labeling can result in lowered accuracy values. 
It is, therefore, crucial that labeling of ground truths is only performed where one is en-
tirely confident of the correctness. 

Furthermore, it is crucial to point out that our novel framework has effectively iden-
tified actual or simulated objects and when ground truth data are not aligned with the 
current position, as is the case with local map updates. 

Our framework allows the addition of new time point datasets, thanks to which the 
focus of the analysis can be on high-frequent and low-frequent changes or mobile and 
static object recognition in an urban scene. Moreover, adding another dataset allows for 
building a stable spectral library and features that can be transferred to other study areas. 
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Objects and surfaces not identified during segmentation can be manually added, allowing 
for dynamic class extension of urban land cover. 

However, it is important to mention that the scene chosen for this study was slightly 
distant from the city center. This project will likely prove more complicated if a more com-
plex and heterogeneous scene is selected. 

6. Conclusions 
This study presents a novel approach to feature-level-based multisensor data fusion 

of HS and LiDAR data proposing a method for an effective segmentation optimization 
based on the unsupervised endmember extraction and abundance map retrieval of HS 
and LiDAR data without parameter regularizations. Objects and materials that have not 
been identified can be added manually, with the possibility of dynamic expansion and 
various land cover classes. All the models achieved increased segmentation results after 
segmentation optimization, regardless of applying data augmentation. The ResU-Net 
with implemented data augmentation outperformed compared to models without data 
augmentation, helping the model learn contextual information about the object. In addi-
tion, a local spectral library has been generated automatically as a by-product that can be 
used to expand the local urban database and serve as a basis for further updates of this 
region. Based on the segmentation and generated spectral library, we created a change 
map of each defined class, creating a local map update.  

7. Future Work 
Our novel approach serves as a promising basis for developing a change detection 

framework based on unsupervised segmentation for multitemporal data from multiple 
sensors. Such unsupervised segmentation would limit issues related to the preparation of 
the ground truth data, which are not always available and updated for the algorithm to 
learn correctly segment complex objects and surfaces. The proposed framework of change 
detection applying fused HS and LiDAR data at the feature level can be expanded with 
more datasets of the study area, allowing segmentation and spectral signatures of indi-
vidual objects or surfaces to be more stable and reliable in defining new objects in more 
complex urban scenes.  
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