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Abstract
The activity generated by an ensemble of neurons is affected by various noise sources.
It is a well-recognised challenge to understand the effects of noise on the stability of
such networks. We demonstrate that the patterns of activity generated by networks
of grid cells emerge from the instability of homogeneous activity for small levels of
noise. This is carried out by analysing the robustness of network activity patterns with
respect to noise in an upscaled noisy grid cell model in the form of a system of partial
differential equations. Inhomogeneous network patterns are numerically understood
as branches bifurcating from unstable homogeneous states for small noise levels. We
show that there is a phase transition occurring as the level of noise decreases. Our
numerical study also indicates the presence of hysteresis phenomena close to the
precise critical noise value.
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1 Introduction

By now it is well established that grid cells, and the characteristic hexagonal firing
patterns they create in physical space, play an important role in the navigational system
of mammalian brains (McNaughton et al. 2017). Since grid cells were discovered in
Hafting et al. (2005), there has been extensive activity in order to understand their pre-
cise behaviour, see (Rowland et al. 2016; McNaughton et al. 2017) and the references
therein. The main challenges ten years after the discovery of grid cells, such as how
grid cells are organised and how they are connected to other cell types in the brain,
were highlighted in Rowland et al. (2016). In particular, as the brain is inherently
noisy (Rolls and Deco 2010), the lack of understanding of the effect of noise on grid
cells was emphasised as a challenge. The recent results in Gardner et al. (2022) has
provided insight into the organisation of grid cells by showing that the activity of the
network (called a module in Gardner et al. 2022) is arranged on a torus. The question
regarding the effects of noise on grid cells, however, remains open.

In accordance with previous experimental studies and general belief in the field, the
results in Gardner et al. (2022) provided further evidence in favour of describing the
grid cell network by continuous attractor network dynamics through a system of neural
field models (Ermentrout and Terman 2010). The first attractor network models for
grid cells were presented inMcNaughton et al. (2006), Burak and Fiete (2009), Couey
et al. (2013), whichwere based on the classical papersWilson andCowan (1972, 1973)
and Amari (1977), see also Pinto et al. (1996). In Burak and Fiete (2009), Couey et al.
(2013), the grid cells are assumed to have orientation preferences in four different
directions. The hexagonal grid cell patterns are then generated by a system of 4N 2

neural field ordinary differential equations

τ
β
i

dsβ
i

dt
+ sβ

i = �

⎛
⎝∑

β ′

∑
j

Wβ ′
i j s

β ′
j + Bβ

i (t)

⎞
⎠ , (1.1)

with β = 1, . . . , 4. Here sβ
i ≥ 0 represents the activity level of neuron i with orienta-

tion preference β, and τ
β
i is its relaxation time. The right-hand side of (1.1) represents

the firing rate of the neuron, see Bressloff (2012). The function � is a given activation
function, often of the form of a ReLU or sigmoid function. The firing rate of neuron
i depends on an external input Bβ

i (t) and the response of the network. It is assumed
that the neurons are arranged on a square, which we will denote � and call the neural
sheet, according to the strength of their pairwise connection. The position of neuron
i is denoted by xi . The strength of the connectivity between neuron i of type β and j

of type β ′ is Wβ ′
i j = W (xi − x j − rβ ′

), where W (x), x ∈ �, is assumed to be even
in each coordinate, in �. The connectivity is shifted in the direction of the orientation
preference of neuron j of type β ′ with rβ ′

which is given by shifts of equal length in
the four cardinal directions: north, south, east and west. It has been commonly con-
sidered, and, as mentioned, recently shown in Gardner et al. (2022), that the network
of neurons creates a torus connectivity. This is realised in the model by assuming that
W is extended periodically outside �.
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By modelling the movement of a rat traversing physical space through the input
Bβ
i (t), (1.1) can recreate the hexagonal patterns in physical space produced by the

firing of a single grid cell as observed in experiments (Couey et al. 2013). In this
model, the patterns in physical space are a consequence of the patterns generated on
the neural sheet�. However, (1.1) being a deterministic model, it does not offer much
insight into the effects of noise.

Works on understanding noisy neural fields have in general been lacking (Bressloff
2012, Sect. 6) until recently (Touboul 2012; Kilpatrick and Ermentrout 2013; Kil-
patrick 2014; MacLaurin and Bressloff 2020; Touboul et al. 2012; Bressloff 2019;
Byrne et al. 2019). In Burak and Fiete (2012) fundamental limits on how informa-
tion dissipates in networks of noisy neurons were derived. The author in Kilpatrick
(2014) presents a study of two coupled noisy neural field models with a focus on
the consequences of the coupling on the neural activity waves, while Kilpatrick and
Ermentrout (2013) and MacLaurin and Bressloff (2020) investigate the effect of noise
on stationary bumps in one-dimensional spatially extended networks.

Taking a different perspective than Burak and Fiete (2012); Kilpatrick and Ermen-
trout (2013); Kilpatrick (2014) and MacLaurin and Bressloff (2020), by adding noise
to the common model of a grid cell network (1.1), the main goal of this work is to
analyse the robustness of the hexagonal patterns in the activity level (Ermentrout and
Cowan 1979) observed in (1.1) with respect to noise strength.We show that the station-
ary spatial patterns of the activity level emerge from the instability of homogeneous
brain activity as the noise level diminishes. By upscaling the model (1.1) with noise
to a system of Fokker–Planck-like partial differential equations, our analysis gives an
estimate on the noise strength above which there is no coherent activity pattern. We
also numerically explore the different branches of inhomogeneous stationary patterns
bifurcating from the homogeneous state depending on the noise for several activation
functions � indicating the presence of hysteresis phenomena.

Instabilities of homogeneous steady states of noisy neural fields were also investi-
gated by Byrne et al. (2019) utilising a partial differential equation (PDE) description.
However, the PDEs were of a very different form than the ones presented in this
manuscript. A Fokker–Planck-like system describing a network of noisy neurons can
be found in Bressloff (2019), where neural variability in a coupled ring network was
studied.

It is classical to analyse the behavioural change of neural fields without noise in
the form of ordinary differential equations (ODEs) by standard bifurcation analysis
(Murray 2002; Bressloff 2012;Veltz et al. 2015;Kilpatrick and Poll 2017; Schmidt and
Avitabile 2020). Finding noise-driven bifurcations is more challenging, and one has to
rely onother technical tools unless the coupling of the network has a particular structure
where closed ODEs for the mean and the variance are available (Touboul et al. 2012;
Touboul 2012). The system (1.1) with noise has, in addition, a nonlinear coupling,
and the activity levels must remain nonnegative due to their physical interpretation,
leading to technical additional constraints on the stochastic processes involved. In the
following we deal with these challenges by analysing a system of Fokker–Planck-
like partial differential equations with boundary conditions describing the space-time
evolution of the law of the stochastic processes with respect to the noise level.
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2 The PDE system: derivation, main goal, and numerical experiment

For the sake of the reader, we start by discussing the simplest classical case of no
spatial connectivity, see Hopfield (1984); Bressloff (2012) and the references therein.
Let us consider the classical neural field stochastic dynamical system for a network
of M coupled neurons given by

τdsk + skdt = �

(
W0

M

∑
k′

sk′ + B(t)

)
dt + √

2σdWk . (2.1)

Here, the neurons are considered indistinguishable and all-to-all coupled with equal
strengths given by W0 ∈ R whose sign depends on the type of neurons considered:
inhibitory or excitatory. We also consider that the relaxation time for all neurons is the
same and equal to τ . B(t) is the external input for this neural network and σ > 0 is
the strength of the noise Wk . We have considered independent Brownian motion for
each neuron in the network. Classical stochastic analysis implies that we can derive a
Fokker–Planck equation for the evolution of the probability density of neurons with
activity level s at time t in the large population limit M → ∞, i.e., the law of the
limiting stochastic process follows the PDE

τ
∂ f

∂t
= ∂

∂s

([
s − �

(
W0〈 f 〉 + B(t)

)]
f
) + σ

∂2 f

∂s2
, (2.2)

where f = f (t, s) denotes the probability to observe the activity s at time t , and 〈 f 〉
denotes the mean value of the activity level s

〈 f 〉 =
∫ ∞

0
s f (s) ds.

Notice that the noise can drive the activity level to be negative in (2.1), which is clearly
not desirable from themodelling viewpoint. In order to avoid this, it is commonpractise
to consider the Fokker–Planck equation (2.2) on s ∈ [0,∞) with no-flux boundary
conditions

(
�
(
W0〈 f 〉 + B(t)

)
f − σ

∂

∂s
f
)∣∣∣∣

s=0
= 0. (2.3)

This ensures that particles cannot escape from non-negative values of the activity level
variable s at the PDE level while keeping an evolution of a probability density, see
Carrillo et al. (2011), Carrillo et al. (2013) for instance.

Remark 2.1 (Microscopic Model) Reflective boundary conditions for stochastic pro-
cesses have been incorporated at the stochastic differential equation (SDE) level in
order to avoid particles to escape a fixed domain (Sznitman 1984; Lions and Sznitman
1984; Faugeras and Inglis 2015). One can produce a microscopic stochastic process
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by adding an additional process counting when particles touch the boundary of the
domain. The law of the rigorous mean-field limit, M → ∞, of the following system

τdsk + skdt = �

(
W0

M

∑
k′

sk′ + B(t)

)
dt + √

2σ dWk − dlk, (2.4)

lk(t) = −|lk |(t), |lk |(t) =
∫ t

0
1{sk (ζ )=0}d|lk |(ζ ), (2.5)

k = 1, . . . , M , follows the evolution of (2.2)–(2.3) under suitable smoothness assump-
tions on �, see Lions and Sznitman (1984), Sznitman (1991).

The next step in the modelling is to reinterpret M as the number of neurons in each
of the cortical columns of a neural sheet of N columns. Given space points x1, . . . , xN
in the region � of the neural cortex, the interaction among NM neurons stacked in
N columns at locations xi with M neurons each, where sβ

ik represents the activity
level with orientation β of the kth neuron at location xi is given for i = 1, . . . , N and
k = 1, . . . , M by

τdsβ
ik + sβ

ikdt = �

⎛
⎝ 1

4NM

4∑
β ′=1

N∑
j=1

M∑
m=1

Wβ ′
(xi − x j )s

β ′
jm + Bβ(t)

⎞
⎠ dt

+ √
2σdWβ

ik − d	
β
ik, (2.6a)

	
β
ik(t) = − ∣∣	β

ik

∣∣(t), ∣∣	β
ik

∣∣(t) =
∫ t

0
1{sβik (r)=0}d

∣∣	β
ik

∣∣(r) for β = 1, 2, 3, 4.

(2.6b)

Here, we consider the same periodic setting, imposed through the periodicity of the
interactions Wβ for β = 1, . . . , 4, as in Burak and Fiete (2009), Couey et al. (2013).
Moreover, the neurons are inhibitory (Couey et al. 2013) and the activity in the network
is modulated by a time dependent external input as in (1.1). We are dealing with a
population network of neurons structured by their orientation preference β = 1, . . . , 4
corresponding to the four cardinal points (north, west, south, east). The network
population includes the localised in space cross inhibition of neurons with differ-
ent orientations modulated by the shape function Wβ , where Wβ(x) = W (x − rβ).
Following the approach outlined above in the case of one population, we can formally
write a Fokker–Planck type equation, in the limit N , M → ∞, for the evolution of
the probability density f β(t, x, s) of finding neurons of type β at position x on the
neural sheet � with activity level s ≥ 0 at time t ≥ 0. We refer to Cai et al. (2006) for
a similar approach in conductance-voltage models. The system of equations reads

τ
∂ f β

∂t
= − ∂

∂s

([
�β(x) − s

]
f β

)
+ σ

∂2 f β

∂s2
, (2.7)
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where �β(x) is given by

�

⎛
⎝1

4

∑
β ′

∫
�

Wβ ′
(x − y)〈 f β ′ 〉(t, y)dy + Bβ(t)

⎞
⎠ ,

with

〈 f β〉(t, x) =
∫ ∞

0
s f β(t, x, s) ds, β = 1, . . . , 4,

periodic boundary conditions in x, and the no-flux boundary conditions at s = 0 given
by

(
�β(x) f β − σ

∂

∂s
f β

)∣∣∣∣
s=0

= 0, β = 1, . . . , 4, (2.8)

for each position x in the square sheet �. To realise the torus connectivity, we assume
thatW is periodicwith respect to� and even in each coordinate on�. The function� is
typically a smooth approximation of the ReLU activation function (x)+ = max{0, x}
or a sigmoid function. The initial probability density of the system (2.7) is denoted by
f β
0 .

Remark 2.2 The system of Fokker–Planck equations (2.7)–(2.8) can be rigorously
derived from the microscopic stochastic processes (2.6) under suitable assumptions.
The rigorous proof of thismean-field limit for the spatially extended system (2.7)–(2.8)
has recently been obtained in Carrillo et al. (2021) by a generalisation of the coupling
method of Sznitman (1991). This rigorous passage to the limit is a very interesting area
of mathematical research on its own with a multitude of different models and limiting
systems derived under different assumptions on the ingredients of the network. For
instance, we refer to the worksMoynot and Samuelides (2002), Faugeras et al. (2009),
Faugeras and Inglis (2015), Touboul (2012), Touboul et al. (2012), and Cabana and
Touboul (2018) in which the authors deal with spatially extended systems of neural
networks modelled by their voltage with random connectivity interactions using large
deviation principles (Arous and Guionnet 1995; Guionnet 1997).

To summarise, the main goal of this work is to focus on the biological information
carried by the system of PDEs (2.7)–(2.8). More precisely, we study how noise affects
the dynamics of (2.7)–(2.8) under the following assumptions:

(A1) The grid cells are arranged on a torus, realised by setting the neural sheet � =
[−0.5, 0.5]2 and extending W periodically outside �.

(A2) The inhibitory (Couey et al. 2013) connectivity function W ≤ 0 is at least in
L2(�), and is an even function in each coordinate on �. Furthermore, we define
W0 = ∫

�
W (x)dx. In the numerical experiments W satisfies W (x) = W (|x|) in

addition.
(A3) The modulation function � is in C1 (unless otherwise stated).
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(A4) There are four orientation preferences, β = 1 (north), 2 (west), 3 (south), and 4
(east), where the shifts are of equal size z in each direction, i.e., rβ = zeβ , where
eβ is the unit vector in direction β.

It is well-known that grid cell firing is strongly connected to mammals’ navigation,
but unknown exactly how the grid cell network communicates with other networks
in the brain. We will therefore simply assume in the numerical experiments that the
external input Bβ(t) in (2.7)–(2.8) depends on the velocity at time t , v(t), of a moving
animal in the following manner (Burak and Fiete 2009; Couey et al. 2013):

Bβ(t) = B + αv(t) cos(θ(t) − θβ), (2.9)

where B > 0 is a constant external excitatory input, assumed to be the same for
different β, α the velocity modulation, θ(t) the orientation of the animal at time t
according to the reference frame, and θβ the orientation preference of the neurons
of type β (θ1 = π

2 , θ2 = π, θ3 = 3
2π, θ4 = 2π ). This particular form of the input,

together with the right set of parameters in (1.1), has been shown to enable single
cells of the ODE system (1.1) to create hexagonal firing patterns in physical space,
see Burak and Fiete (2009), Couey et al. (2013).

2.1 Numerical reproduction of the hexagonal patterns

Wenumerically demonstrate that thePDEsystem (2.7)–(2.8)with (2.9) is able to repro-
duce the characteristic single-cell hexagonal firing pattern as discovered by Hafting
et al. (2005) for rats and see how this pattern depends on the noise strength σ > 0. For
this, we use a numerical scheme that has been extensively utilised for Fokker–Planck
like equations (Carrillo et al. 2015). For more details on the numerical approach and
its validation, see Appendix 1. Before connecting the grid cell system (2.7)–(2.8) with
the movement of a rat, we initialise the activity on the neuronal sheet � by running
the simulation with α = 0 until f β has numerically stabilised into stationary patterns
equal to the ones in the top and middle rows of Fig. 1, modulo translations.

Thenweconnectwith the ratsmovement by settingα = 0.3 in (2.9) as inCouey et al.
(2013). The velocity v(t) and orientation θ(t) used in the numerical experiment are
calculated using timestamped position data from the physical experiments in Hafting
et al. (2005) where rats moved around in a circular enclosure with a radius of 80 cm.
The shape of the enclosure can be seen in the plots in the bottom row of Fig. 1. The
path of the rat after moving around for t = 5 minutes, generated with the position
data, is visualised in grey.

The red coloured areas in each plot in the bottom row in Fig. 1 make up the firing
field of a grid cell in the network. The firing field consists of smaller red circular areas,
which again are made up by even smaller red dots. Each dot marks a firing of the grid
cell placed at position (0, 0) on the neuronal sheet � as the velocity and orientation
data is fed into the numerical method of (2.7)–(2.8) through (2.9). For simplicity, we
have assumed in the numerical experiment that a neuron at a particular position x ∈ �

fires as soon as the firing rate � in (2.7)–(2.8) satisfies �(x) > 0.
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Fig. 1 Network patterns and single-cell responses after t = 5min for increasing noise strengthσ (left to right
σ = 0.001, 0.005, 0.015, 0.02) with the modulation function used in Couey et al. (2013):�(x) = (x)+ and
(2.9) with I = 3 and α = 0.3. Top row: the probability density f β(x, y, s = 0.5) for one β, (x, y) ∈ �,
middle row: f β(x, y, s = 0), and bottom row: single-cell firing pattern in a circular enclosure traversed by
a rat (units in cm) created by the cell at position (0, 0) on the neural sheet � (green dot in top and middle
plots)

Now, from left to right in the bottom row of Fig. 1, we see the pattern of the firing
fields—the patterns created by the red dots over the path of the rat in the enclosure in
physical space—for the grid cell at (0, 0) for increasing noise strength.

The top and middle rows in the figure display snapshots of the probability density
f β at s = 0.5 and s = 0, respectively. As t increases, these patterns are translated in
accordance with the movement of the rat.

As can be observed in the bottom row, the red fields generated with the PDE
system (2.7)–(2.8) form hexagonal patterns similar to the ones observed in physical
experiments. However, the distance between the activity bumps and the area they
cover decreases as the noise strength increases. The second main observation is that
by increasing the noise the firing becomes less and less localised. The numerical
experiments support the existence of a critical value of the noise, σc > 0, at which a
single cell could fire no matter where the rat is on its path.

The question we will address in the following is how stable the patterns observed
in Fig. 1 are with respect to the noise strength σ .
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3 Stability of the neural field system

In this section,we start by studying the spatially homogeneous solutions.Wewould like
to understand the pattern formation in the neural field system (2.7)–(2.8) as a byproduct
of the instability of these homogeneous solutions. We assume that solutions to (2.7)
are sufficiently smooth and decay fast enough as s → ∞. We further assume from
now on that Bβ = B is constant, i.e., α = 0 in (2.9), in order to study the emergence
of stationary network patterns of the system. Note that setting Bβ to different constant
values depending on β could yield non-stationary network patterns: a rat running with
constant speed in one direction would give v(t) = const > 0 and θ(t) = const in
(2.9), which results in different constant values of Bβ . This would, with the right set
of parameter values, consequently translate the network patterns in time. To avoid this
technicality, we let B be identical for the four different direction preferences.

Homogeneous solutions f β(t, x, s) = f (t, s) for β = 1, . . . , 4 to (2.7) satisfy

τ
∂ f

∂t
= ∂

∂s

([
s − �

(
W0〈 f 〉 + B

)]
f
) + σ

∂2 f

∂s2
, (3.1)

with no-flux boundary conditions (2.8) at s = 0, i.e.,

(
�β

(
W0〈 f 〉 + B

)
f β − σ

∂

∂s
f β

)∣∣∣∣
s=0

= 0, β = 1, . . . , 4, (3.2)

and

W0 =
∫

�

W (x)dx.

In order to find stationary spatially homogeneous states f∞ we first assume that their
mean 〈 f∞〉 is given. Denote by �0 = �

(
W0〈 f∞〉 + B

)
the corresponding firing rate

for simplicity. Thus, by integrating (3.1) and using the boundary condition (3.2), the
stationary spatially homogeneous states f∞(s) are given by

f∞(s) = 1

Z
exp

(
− (s − �0)

2

2σ

)
, (3.3)

with the mass normalisation factor Z such that
∫ ∞
0 f∞(s)ds = 1, i.e.,

Z =
√

πσ

2

(
1 + erf

(
�0√
2σ

))
, (3.4)

where the error function has been defined as

erf(x) = 2√
π

∫ x

0
exp(−y2) dy.
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However, note that (3.3) is an implicit equation as �0 depends on the mean 〈 f∞〉. To
show the existence of stationary solutions, we need to solve the consistency equation
for the mean 〈 f∞〉 given by

〈 f∞〉 = �0 + σ
1

Z
exp

(
−�2

0

2σ

)
. (3.5)

We prove next that the stationary state exists and is unique by leveraging on (3.5)
under suitable conditions on the firing rate function �.

Proposition 3.1 Let σ > 0, W0 ≤ 0, and 0 ≤ �(x) ≤ �(B) for any x ≤ B. Assume
(A3), and that � satisfies �′(W0m + B) > 1

W0
for all m ≥ 0, then (3.1) has a unique

stationary solution f∞ defined by (3.3)–(3.5).

Proof Define for m ≥ 0 and σ > 0 the function

G(m, σ ) = �(W0m + B) + σ
1

Z
exp

(
−�2(W0m + B)

2σ

)
− m.

First, notice that G(m, σ ) satisfies G(0, σ ) > 0 and

G(m, σ ) ≤ �(W0m + B) +
√

σ

2π
− m ≤ �(B) +

√
σ

2π
− m < 0

for m > �(B) +
√

σ
2π . We now compute

∂G

∂m
(m, σ ) = −1 + �′(W0m + B)W0 g

(
�(W0m + B)√

2σ

)

with

g(η) =
(
1 − 2√

π

exp(−η2)

1 + erf(η)

[
1√
π

exp(−η2)

1 + erf(η)
+ η

])
.

It is not difficult to check that the supremum of g(η) over η ∈ [0,∞) is given by

α = sup
η≥0

(
1 − 2√

π

exp(−η2)

1 + erf(η)

[
1√
π

exp(−η2)

1 + erf(η)
+ η

])
= 1 .

Our assumptions on � and W0 ≤ 0 imply that ∂G
∂m (m, σ ) < 0, and then we obtain the

desired unique zero of G defining our stationary state f∞ through (3.3)–(3.5). ��
Remark 3.2 Notice that the previous proposition can also be applied for functions �

admitting negative values as exp(−η2)
1+erf(η)

behaves like −√
πη in the limit η → −∞, such
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Fig. 2 Stabilisation in time of the homogeneous problem. Left: numerical steady state f (blue) versus
the fixed point steady state f∞ (red) obtained from (3.3)–(3.5) as functions of s. Right: the L1-error and
difference in mean between f and f∞ plotted as functions of time t . Parameters: �ε with ε = 0.01.
W0 = −20.6711. σ = 0.03. The interval [0, 3] is split into 512 grid points. Initial data: at random grid
points s j , j = 1, . . . , 51, f0(s j ) = 512/153 and zero elsewhere. Average of the slopes over 100 runs: 0.78

(difference in mean) and 0.57 (L1-difference)

that one can show

0 ≤
(
1 − 2√

π

exp(−η2)

1 + erf(η)

[
1√
π

exp(−η2)

1 + erf(η)
+ η

])
≤ 1

for any η ∈ R. For instance, the theorem is valid for the ε-approximation of �(x) =
(x)+ defined by

�ε(x) = 0.5x

(
1 + x√

x2 + ε

)
(3.6)

for ε small enough such that �′
ε(x) ≥ 1

W0
. The smooth approximation �̃ε(x) =

0.5(x + √
x2 + ε) of �(x) = (x)+ can also be used as �̃ε(x) trivially satisfies the

hypotheses of Proposition 3.1 since �̃ε(x) > 0, and it is strictly increasing.

We have numerically analysed the stability of the stationary solutions obtained
in the previous result among spatially homogeneous solutions of (3.1). In Fig. 2a,
we illustrate that the computed stationary state and the numerical solution to the
evolution problem after time t = 150ms are indistinguishable for the firing rate �ε

with ε = 0.01. In Fig. 2b, we observe the convergence in time towards the stationary
state by computing the difference in L1 and the difference in average between the
stationary solution and the evolution problem. We conclude that the stationary state
and the corresponding numerical solution to the evolution problem (3.1) are identical
to machine precision after t = 150ms, and that the convergence in time is exponential
with the rates computed by averaging over 100 runs.

Next, we focus on the linear stability of the spatially homogeneous solution as a
solution of the nonlinear system (2.7)–(2.8). For comparison,wefirst find the condition
for linear spatial stability in the case of zero noise (σ = 0) following the classical
approach as in Murray (2002). Let Ŵ (k) be the two-dimensional Fourier transform
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of W restricted to �,

Ŵ (k) =
∫

�

W (x) exp(−ik · x)dx,

with k = (
2πk1 2πk2

), k1, k2 ∈ Z. As an example, if W (x) is the characteristic of
a ball with radius r fully contained in �, then

Ŵ (k) = 2π
J1(r |k|)

|k| ,

where J1(x) is a Bessel function. Now let �′
0 = �′(W0〈 f∞〉 + B) with f∞ given by

(3.3), and define

F(k) = 1

4
�′

0Ŵ (k)
∑
β

exp
( − ik · rβ

)
. (3.7)

Remark 3.3 Given the assumptions on W in (A1) and (A2), the function F(k) is real-
valued when the shifts rβ , β = 1, 2, 3, 4, satisfy the assumptions in (A4). With shifts
of equal size z, one can check that

∑
β

exp
( − ik · rβ

) = 2 cos(2πk1z) + 2 cos(2πk2z)

with k = (
2πk1 2πk2

) using Euler’s formula.

The following lemma presents a linear stability condition for the system (2.7) without
noise.

Remark 3.4 The proof of the mean field limit in Carrillo et al. (2021) relies on σ > 0.
The mean field limit in the case σ = 0 is easier to obtain and leads to a pure Vlasov
equation. This is a very classical result in the smooth setting and is derived via estimates
in transport distances, see Hauray and Jabin (2015), Cañizo et al. (2011), Jabin (2014),
Hauray and Jabin (2007), Golse (2016) and the references therein.

Lemma 3.5 Assume (A1)–(A4). Let F(k) be as in (3.7). Then the mean of the zero
noise, i.e., σ = 0, spatially homogeneous, stationary solution of (2.7)–(2.8) is linearly
asymptotically stable if F(k) < 1.

Proof By taking the mean of (2.7)–(2.8) with σ = 0, we find that the mean at position
x ∈ �, sβ(t, x) = 〈 f β〉|σ=0(t, x), evolves according to (dropping the t dependence
for ease of notation)

τ
d

dt
sβ(x) = �

⎛
⎝1

4

∑
β ′

∫
�

Wβ ′
(x − y)sβ ′

(y)dy + B

⎞
⎠ − sβ(x). (3.8)
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We linearise (3.8) around the mean stationary, spatially homogeneous solution s∞,
defined through s∞ = �

(
W0s∞ + B

)
, and get

τ
d

dt
hβ(x) = �′

0

4

∑
β ′

∫
�

Wβ ′
(x − y)hβ ′

(y)dy − hβ(x),

where hβ = sβ − s∞ and �′
0 = �′(W0s∞ + B). Applying the ansatz hβ(x, t) ∝

exp(λt + ik · x) to the equation, we find that each mode k has the characteristic
polynomial

pk(λ) =
(

λ + 1

τ

)3
⎛
⎝�′

0Ŵ (k)

4τ

∑
β

exp
( − ik · rβ

) − 1

τ
− λ

⎞
⎠ .

We see that three of the eigenvalues are stable as long as τ > 0. The fourth eigenvalue
is

λ = �′
0Ŵ (k)

4τ

∑
β

exp
( − ik · rβ

) − 1

τ
= 1

τ
(F(k) − 1) ,

which determines whether the linear system is stable or not. The eigenvalue is negative
if F(k) < 1. ��

We now turn to the case with noise, σ > 0. Let hβ = f β − f∞, where f∞ is
defined through (3.3)–(3.5). Notice that for the perturbations to be admissible, we
need to ensure that

∫ ∞
0 f βds = 1, and consequently

∫ ∞

0
hβds = 0.

In principle one needs f β ≥ 0 for it to be a probability density. However, we will
prove below that linear stability holds without any assumption on the sign of f β .

After linearising (2.7) around the spatially homogeneous state f∞, we get

τhβ
t = − ∂s f∞

�′
0

4

∑
β ′

∫
�

Wβ ′
(x − y)〈hβ ′ 〉dy − ∂s

[
(�0 − s)hβ

] + σ∂ssh
β,

(3.9)(
f∞

�′
0

4

∑
β ′

∫
�

Wβ ′
(x − y)〈hβ ′ 〉dy + �0h

β − σ∂sh
β

)∣∣∣∣
s=0
= 0,
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with β = 1, . . . , 4. By a change of variables hβ = f∞vβ , where f∞ is the stationary
state satisfying

−∂s
([�0 − s] f∞

) + σ∂ss f∞ = 0,(
�0 f∞ − σ∂s f∞

)∣∣
s=0= 0,

we get

τv
β
t = − (�0 − s)

σ

�′
0

4

∑
β ′

∫
�

Wβ ′
(x − y)〈 f∞vβ ′ 〉dy + (�0 − s)vβ

s + σvβ
ss,

(3.10)(
�′

0

4

∑
β ′

∫
�

Wβ ′
(x − y)〈 f∞vβ ′ 〉dy − σvβ

s

)∣∣∣∣
s=0
= 0,

with β = 1, . . . , 4. We now restrict the set of perturbations in L2(� × [0,∞)) to the
ones of the form

hβ(x, s, t) = f∞(s)
∑
k

exp(ik · x)uβ
k(s, t), (3.11)

where uβ
k(s, t) is sufficiently smooth. We can then reduce (3.10) to one Fourier mode.

Dropping the subscript k we set vβ(x, s, t) = exp(ik · x)uβ(s, t), where uβ may be
complex-valued, and U = ∑

β exp(−ik · rβ)uβ , such that (3.10) turns into

τuβ
t = − (�0 − s)

σ

�′
0

4
Ŵ (k)〈 f∞U 〉 + (�0 − s)uβ

s + σuβ
ss,

(
�′

0

4
Ŵ (k)〈 f∞U 〉 − σuβ

s

) ∣∣∣∣
s=0
= 0,

(3.12)

for β = 1, . . . , 4. An equation for the time evolution of U can also derived, namely

τUt = − (�0 − s)

σ
F(k)〈 f∞U 〉 + (�0 − s)Us + σUss, (3.13)

where F(k) is defined in (3.7). Denote

M∞ = M∞(σ ) =
∫ ∞

0

(
s − 〈 f∞〉)2 f∞ds, (3.14)

where the dependence on σ enters through f∞ defined by (3.3)–(3.5). We remark that
we cannot obtain closed ODE equations for the moments of the distribution in the
activity variable s, and thus a similar analysis as in Touboul (2012); Touboul et al.
(2012) is not possible here. Building on (3.12), we can prove the following result.
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Theorem 3.6 Assume (A1)–(A4). Let� satisfy the assumptions in Proposition 3.1 and
let F(k) be as in (3.7) and satisfy the condition in Remark 3.3. Then the spatially
homogeneous steady solution f∞ to (2.7)–(2.8) is linearly asymptotically stable in
L2

(
� × [0,∞)

)
for admissible perturbations of the form (3.11) as long as

F(k) <
σ

M∞
for all k. (3.15)

Remark 3.7 Using the relations (3.3)–(3.5), one can check after some tedious compu-
tations that M∞(σ ) satisfies M∞(0) = 0 and M ′∞(0) = 1 assuming �0 > 0. Thus,

σ
M∞ → 1 as σ → 0, yielding the condition in Lemma 3.5 in the zero noise limit.

Proof (Proof of Theorem 3.6) The proof is split into three parts. First, we obtain
an upper bound for the time derivative of

∫ ∞
0 f∞|U |2ds (Part I). Recall that U =∑

β exp(−ik · rβ)uβ . To obtain a time decaying estimate from the bound, we need
to separate the linear part of U from the nonlinear (Part II). Finally, we establish the
stability of U , and consequently uβ , which then yields the asymptotic stability of f∞
(Part III).

Part I: Note that

∫ ∞

0
f∞Uds =

∑
β

exp(−ik · rβ)

∫ ∞

0
hβds = 0, (3.16)

such that

∫ ∞

0
∂s f∞Uds = 1

σ

∫ ∞

0
(�0 − s) f∞Uds = − 1

σ
〈 f∞U 〉. (3.17)

We multiply (3.13) with Ū (the complex conjugate of U ), and integrate over [0,∞)

with respect to f∞:

τ

2

d

dt

∫ ∞

0
f∞|U |2ds = −F(k)

∫ ∞

0

�0 − s

σ
f∞Ūds 〈 f∞U 〉

+
∫ ∞

0
(�0 − s) f∞UsŪds + σ

∫ ∞

0
f∞UssŪds. (3.18)

After applying (3.17) to the first term on the right-hand side and integrating the last
term by parts, we find thatU satisfies (where�(z) denotes the real part of the complex
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number z)

τ

2

d

dt

∫ ∞

0
f∞|U |2ds = σ F(k)

∣∣∣∣
∫ ∞

0
∂s f∞Uds

∣∣∣∣
2

− σ�( f∞Ū∂sU )|s=0

− σ

∫ ∞

0
f∞|Us |2ds

= σ(F(k) − 1)

∣∣∣∣
∫ ∞

0
∂s f∞Uds

∣∣∣∣
2

− σ�( f∞Ū∂sU )|s=0

+ σ

∣∣∣∣
∫ ∞

0
∂s f∞Uds

∣∣∣∣
2

− σ

∫ ∞

0
f∞|Us |2ds.

Using the boundary condition on the second term above and by again utilizing the
equivalence (3.17), we get

τ

2

d

dt

∫ ∞

0
f∞|U |2ds = σ(F(k) − 1)

∣∣∣∣
∫
R+

∂s f∞Uds

∣∣∣∣
2

+ σ F(k)�
((

f∞Ū
)|s=0

∫ ∞

0
∂s f∞Uds

)

+ σ

∣∣∣∣
∫ ∞

0
∂s f∞Uds

∣∣∣∣
2

− σ

∫ ∞

0
f∞|Us |2ds

= 1

σ
(F(k) − 1) |〈 f∞U 〉|2 − F(k)� ((

f∞Ū
)|s=0〈 f∞U 〉)

+ σ

∣∣∣∣
∫ ∞

0
∂s f∞Uds

∣∣∣∣
2

− σ

∫ ∞

0
f∞|Us |2ds.

Performing an integration by parts on the second to last integral and then yet again
using (3.17),

∣∣∣∣
∫ ∞

0
∂s f∞Uds

∣∣∣∣
2

=
∣∣∣∣
(
f∞U

)|s=0 +
∫ ∞

0
f∞Usds

∣∣∣∣
2

= (
f 2∞|U |2)|s=0 + 2�

((
f∞Ū

)|s=0

∫ ∞

0
f∞Usds

)

+
∣∣∣∣
∫ ∞

0
f∞Usds

∣∣∣∣
2

= −(
f 2∞|U |2)|s=0 + 2

σ
� ((

f∞Ū
)|s=0〈 f∞U 〉)

+
∣∣∣∣
∫ ∞

0
f∞Usds

∣∣∣∣
2

,
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we arrive at

τ

2

d

dt

∫ ∞

0
f∞|U |2ds

= 1

σ
(F(k) − 1) |〈 f∞U 〉|2 + (2 − F(k))� ((

f∞Ū
)|s=0〈 f∞U 〉) − σ

(
f 2∞|U |2)|s=0

+ σ

∣∣∣∣
∫ ∞

0
f∞Usds

∣∣∣∣
2

− σ

∫ ∞

0
f∞|Us |2ds.

From (3.12) and the definition of U , it can be shown that 〈 f∞U 〉 follows

τ

2

d

dt
|〈 f∞U 〉|2 = (

F(k) − 1
)|〈 f∞U 〉|2 + σ� ((

f∞Ū
)|s=0〈 f∞U 〉) ,

with F(k) as in (3.7). We add the two equalities,

ατ

2

d

dt

∫ ∞

0
f∞|U |2ds + βτ

2σ

d

dt
|〈 f∞U 〉|2

= α + β

σ

(
F(k) − 1

)|〈 f∞U 〉|2

+ (α(2 − F(k)) + β) � ((
f∞Ū

)|s=0〈 f∞U 〉) − ασ
(
f 2∞|U |2)|s=0

+ ασ

∣∣∣∣
∫ ∞

0
f∞Usds

∣∣∣∣
2

− ασ

∫ ∞

0
f∞|Us |2ds.

By setting α = 1 and β = −F(k), we get

τ

2

d

dt

(∫ ∞
0

f∞|U |2ds − F(k)

σ
|〈 f∞U 〉|2

)
= −

∣∣∣∣(F(k) − 1)
1√
σ

〈 f∞U 〉 + √
σ
(
f∞U

)∣∣
s=0

∣∣∣∣
2

(3.19)

+ σ

∣∣∣∣
∫ ∞
0

f∞Usds

∣∣∣∣
2

− σ

∫ ∞
0

f∞|Us |2ds.

In the above derivation we have used that

2(1 − F(k))� ((
f∞Ū

)|s=0〈 f∞U 〉) = (1 − F(k))
((

f∞Ū
)|s=0〈 f∞U 〉 + (

f∞U
)|s=0〈 f∞Ū 〉) .

By applying theCauchy–Schwarz inequality to
∣∣∫ ∞

0 f∞Usds
∣∣2 with u1 = f 1/2∞ , u2 =

f 1/2∞ Us , we see that the right-hand side of (3.19) is non-positive. However, it is not
straightforward to determine whether the right-hand side is strictly negative or if there
is a Grönwall type decay estimate to be obtained from this expression. In particular,
the Cauchy–Schwarz inequality with the chosen functions u1 = f 1/2∞ , u2 = f 1/2∞ Us
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is an equality,

∣∣∣∣
∫ ∞

0
f∞Usds

∣∣∣∣
2

=
( ∫ ∞

0
f∞ds

)( ∫ ∞

0
f∞|Us |2ds

)
=

∫ ∞

0
f∞|Us |2ds,

whenever u2 = c(t)u1 for any function c(t), which here means that U = c(t)(s −
〈 f∞〉) when we make sure that the requirement

∫ ∞
0 U f∞ds = 0 holds.

Part II: To separate the linear part from the nonlinear part, we split U into U =
V + c(t)(s − 〈 f∞〉). We have that

∫ ∞
0 V f∞ds = 0. Next, we choose c(t) such that

V and s − 〈 f∞〉 are orthogonal with respect to the measure f∞ds, i.e.,
∫ ∞
0 V (s −

〈 f∞〉) f∞ds = 0. For this we choose

c(t) = 〈 f∞U 〉
(∫ ∞

0
s2 f∞(s)ds − 〈 f∞〉2

)−1

= 〈 f∞U 〉
M∞

, (3.20)

where M∞ is defined in (3.14). We can summarise this as

∫ ∞

0
f∞|U |2ds =

∫ ∞

0
f∞|V |2ds + M∞|c(t)|2,

〈 f∞U 〉 = M∞c(t),

( f∞U )|s=0 = f∞(0)(V (0) − c(t)〈 f∞〉),

such that (3.19) becomes

τ

2

d

dt

(∫ ∞

0
f∞|V |2ds +

(
1 − M∞

F(k)

σ

)
M∞|c(t)|2

)

= −
∣∣∣∣(F(k) − 1)

1√
σ
M∞c(t) + √

σ f∞(V − c(t)〈 f∞〉)∣∣s=0

∣∣∣∣
2

+ σ

∣∣∣∣
∫ ∞

0
f∞Vsds

∣∣∣∣
2

− σ

∫ ∞

0
f∞|Vs |2ds.

(3.21)

From the orthogonality
∫ ∞
0 V (s − 〈 f∞〉) f∞ds = 0, we get

( f∞V )
∣∣
s=0 = −

∫ ∞

0
∂s( f∞V )ds = −

∫ ∞

0
∂s f∞Vds −

∫ ∞

0
f∞Vsds

=
∫ ∞

0

s − �0

σ
f∞Vds −

∫ ∞

0
f∞Vsds = −

∫ ∞

0
f∞Vsds.
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Inserting this into the first square in (3.21) and then expanding the square, (3.21)
turns into

τ

2

d

dt

(∫ ∞

0
f∞|V |2ds +

(
1 − M∞

F(k)

σ

)
M∞|c(t)|2

)

= −R2|c(t)|2 + 2
√

σ R �
(
c(t)

∫ ∞

0
Vs f∞ds

)
− σ

∫ ∞

0
f∞|Vs |2ds

=
∫ ∞

0

(
−R2|c(t)|2 + 2

√
σ R � (c(t)Vs) − σ |Vs |2

)
f∞ds

= −
∫ ∞

0

∣∣Rc(t) − √
σVs

∣∣2 f∞ds,

with R = (F(k) − 1)M∞√
σ

− √
σ f∞(0)〈 f∞〉. We now apply the Poincaré inequality

with respect to themeasure f∞(s)ds (Muckenhoupt 1972; Roustant et al. 2017), given
by

C
∫ ∞

0

∣∣∣∣G −
∫ ∞

0
G f∞ds

∣∣∣∣
2

f∞ds ≤
∫ ∞

0
|Gs |2 f∞ds.

Let Gs = Rc(t) − √
σVs . Then G = Rc(t)(s − 〈 f∞〉) − √

σV and
∫ ∞
0 G f∞ds = 0,

such that

τ

2

d

dt

(∫ ∞

0
f∞|V |2ds +

(
1 − M∞

F(k)

σ

)
M∞|c(t)|2

)

≤ −C
∫ ∞

0

∣∣Rc(t)(s − 〈 f∞〉) − √
σV

∣∣2 f∞ds

= −CR2M∞|c(t)|2 − Cσ

∫ ∞

0
|V |2 f∞ds. (3.22)

In the above calculation, we have used the orthogonality of V and c(t)(s−〈 f∞〉)with
respect to f∞ds.

Part III: Defining

Q(t) :=
∫ ∞

0
f∞|V |2ds, D(t) := M∞H |c(t)|2, H := 1 − M∞

F(k)

σ
,

the inequality (3.22) reads

d

dt
(Q(t) + D(t)) ≤ −2

τ
C
R2

H
D(t) − 2

τ
CσQ(t)

≤ −2

τ
C min

{
R2

H
, σ

}
(Q(t) + D(t)) ,

due to (3.15). Note that also due to (3.15), D(t) ≥ 0. It can be checked after some
tedious computations using the explicit expression of f∞ in (3.3)–(3.5) that R < 0
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when � ≥ 0. This leads to the exponential decay by an application of Grönwall’s
inequality

Q(t) + D(t) ≤ (Q(0) + D(0)) exp

(
−2

τ
C min

{
R2

H
, σ

}
t

)
. (3.23)

Thus, we can conclude that U is asymptotically stable. What remains to show is that
the same holds for uβ . We multiply (3.12) with ūβ and integrate over [0,∞),

τ

2

d

dt

∫ ∞

0
f∞|uβ |2ds = −�′

0

4
Ŵ (k)

∫ ∞

0

�0 − s

σ
f∞ūβds 〈 f∞U 〉

+
∫ ∞

0
(�0 − s) f∞uβ

s ū
βds + σ

∫ ∞

0
f∞uβ

ss ū
βds.

As done forU , we integrate the last term by parts and use the boundary condition such
that

τ

2

d

dt

∫ ∞

0
f∞|uβ |2ds =

− �′
0

4
Ŵ (k)

(∫ ∞

0
∂s f∞ūβds + ūβ f∞|s=0

)
〈 f∞U 〉 − σ

∫ ∞

0
f∞|uβ

s |2ds

= �′
0

4
Ŵ (k)

(∫ ∞

0
f∞ūβ

s ds

)
〈 f∞U 〉 − σ

∫ ∞

0
f∞|uβ

s |2ds

≤ |�′
0|
4

|Ŵ (k)|
(

1

2α
|〈 f∞U 〉|2 + α

2

∣∣∣∣
∫ ∞

0
f∞ūβ

s ds

∣∣∣∣
2
)

− σ

∫ ∞

0
f∞|uβ

s |2ds,

where α is to be determined. We apply the Cauchy–Schwarz inequality to the middle
term and rearrange,

d

dt

∫ ∞

0
f∞|uβ |2ds ≤ |�′

0|
4τα

|Ŵ (k)|
︸ ︷︷ ︸

=:C1

|〈 f∞U 〉|2

−
(

−α
|�′

0|
4τ

|Ŵ (k)| + 2

τ
σ

)

︸ ︷︷ ︸
=:C2

∫ ∞

0
f∞|uβ

s |2ds.
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We now choose α > 0 such that C2 > 0, and then apply Poincaré’s inequality to the
integral,

d

dt

∫ ∞

0
f∞|uβ |2ds ≤ C1|〈 f∞U 〉|2 − C2

∫ ∞

0
f∞|uβ |2ds

≤ C̃1 exp (−C3t) − C̃2

∫ ∞

0
f∞|uβ |2ds,

where the exponential decay (3.23) is applied in the last step. This leads to

∫ ∞

0
f∞|uβ |2(t)ds ≤ C̃1

C̃2 − C3

(
exp(−C3t) − exp(−C̃2t)

)

+
∫ ∞

0
f∞|uβ |2(0)ds exp(−C̃2t).

One can avoid C̃2 = C3 by choosing α appropriately.
The asymptotic stability of f∞ in L2

(
�×[0,∞)

)
for the set of perturbations given

by (3.11) now follows by an application of Parseval’s identity with respect to x to

∫ ∞

0

∫
�

|hβ |2dxds ≤ 1
Z

∫ ∞

0

∫
�

|hβ |2dx 1

f∞(s)
ds,

the identity (3.11), and the estimate above. Notice that f∞(s) ≤ 1
Z from (3.4). ��

Remark 3.8 In principle, the linear stability analysis is valid only for smooth �. How-
ever, the stability condition (3.15) of the linearised problem does only depend on �′
such that the result holds for the linearised systemwith�(x) = (x)+. Notice that con-
dition (3.15) is continuous with respect to the regularisation parameter ε in Remark
3.2 for which the linearisation is valid.

We also remark that the value of R in the proof above remains strictly negative as
long as ε is small enough despite the fact that �ε may give negative values.

4 Bifurcation diagrams and phase transitions

With our linear stability analysis at hand, we will now investigate how the stationary
patterns of the nonlinear PDE system (2.7)–(2.8) change as we vary the noise param-
eter σ . We do this by numerically computing bifurcation branches from the spatially
homogeneous solution f∞ for various choices of the modulation function �. The
numerical procedure is described in more detail in Sect. 4.2.

4.1 Instability of the linearised system

First, to connect the linear stability analysis in Sect. 3 with the patterns we observe
for the full system (2.7)–(2.8), we start by investigating the dominant Fourier modes
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Fig. 3 Plots of the linear stability condition on M∞
σ F(k) for �(x) = �ε(x), ε = 0.01, with W (|x|) =

−0.005·1282 (1 + tanh(10 − 50|x|)). Left: M∞
σ F(k) at theminimal value of the noise σ for linear stability

(3.15). Right: Associated contour plot highlighting the Fourier modes k = 2π
(
k1 k2

) with black dots at
(k1, k2)

Fig. 4 Linear combinations of cos(k · x) are plotted against x horizontally and y vertically. The Fourier
modes k are chosen to be the points with the largest values of F(k) in Fig. 3b with W (|x|) =
−0.005 · 1282 (1 + tanh(10 − 50|x|)). From left to right: k = 2π(4, 0), k = 2π(4, 0), 2π(0, 4) and
k = 2π(4, 1), 2π(1, 4), 2π(3, −3)

k of the perturbations hβ(x, s, t) = f∞(s)
∑

k exp(ik · x)uβ

k(s, t), where uβ

k satis-
fies (3.12). The stability condition (3.15) of Theorem 3.6 is visualised by plotting
the function M∞

σ
F(k) for the case �(x) = �ε(x), ε = 0.01 (cf. (3.6)), with

W (|x|) = −0.005·1282 (1 + tanh(10 − 50|x|)), against themodesk in Fig. 3. The fig-
ure illustrates that the maximum points over the lattice k = (

2πk1 2πk2
), k1, k2 ∈ Z

for this particular W are among {(4, 0), (4, 1), (3, 3), (1, 4), (0, 4)} and their reflec-
tions by symmetries with respect to the origin, k1 = 0, and k2 = 0. Note that the
modulation function � of the firing rate has no effect on the maximum points of
F(k) since it enters through as an amplification factor in (3.7). As a consequence,
we may expect that the patterns leading the instability of the homogeneous in space
stationary state f∞ are driven by a combination of these Fourier modes. Examples of
possible patterns generated as a sum of cosines depending on the dominant modes,
i.e., the maximum points of F(k) over the lattice k = (

2πk1 2πk2
), k1, k2 ∈ Z, are

depicted in Fig. 4. Notice that the rightmost plot displays a hexagonal pattern similar
to the ones generated by the nonlinear PDE system (2.7)–(2.8) in the top and middle
row of Fig. 1. See a similar strategy to this for a related problem in Murray (2002,
Ch. 12).
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4.2 Bifurcations and phase transitions of the nonlinear PDE system

We now continue with our examination of the stability of the spatial patterns, gen-
erated by the full system (2.7)–(2.8), with respect to σ . In Fig. 5, we numerically
compute bifurcation branches from the spatially homogeneous solution f∞ for differ-
ent modulation functions � with W (|x|) = −0.005 · 1282 (1 + tanh(10 − 50|x|)) for
the nonlinear problem (2.7)–(2.8). This is done by using a continuation based method
on σ over an accurate numerical solver for the evolution in time of Fokker–Planck like
equations developed in Carrillo et al. (2015); further details are given in Appendix 1.
The continuation method starts either at the largest or the smallest noise value σ of the
interval under consideration and it solves for the evolution in time of (2.7)–(2.8) up to
stabilisation to a steady value. This allows for recursive computation of the stationary
states for smaller or larger values of the noise by taking as initial data the already
computed steady state. With this procedure we ensure, up to numerical accuracy, that
we compute the stable stationary states, either by sweeping the noise values from
left-to-right (l2r) or from right-to-left (r2l).

Each subplot in Fig. 5 shows themaximumandminimumover spacex of the average
activity rate 〈 f 〉(x) = ∑

β〈 f β〉(x) of the computed steady states for each noise value
σ .We show both the spatial maximum andminimumof 〈 f 〉(x) to illustrate the fact that
the computed stationary states are not spatially homogeneous, in other words, that they
lead to spatial patterns. We also plot the spatially homogeneous branch numerically
solving the implicit expression (3.5) as reference. The red dots indicate the stability
threshold in σ for the condition F(k) < 1, as in Lemma 3.5, to hold.

In Fig. 5a, we observe the bifurcation branches for the sigmoid function �(x) =
1/(1+ exp(−15x)). All of them show a sharp discontinuity at different noise values.
We restrict the discussion to the lines representing the spatial maximum.We first focus
on the full line (l2r) and the dashed line (r2l) that connect two bifurcation branches
at different noise values corresponding to a hexagonal-like pattern similar to Fig. 6a.
This clearly indicates that there is a discontinuous phase transition near the noise value
indicated by the arrow. The fact that the l2r and r2l curves do not coincide further
indicates that there is a hysteresis phenomenon. This conclusion is supported by the
fact that the blue dot, theminimumnoise value for linear stability (3.15), is to the left of
both branches. This allows the possibility of branches of dynamically unstable steady
states bending backwards in noise at the phase transition point. Unstable branches are
not computable with our numerical approach. Finally, we find a second bifurcation
branch given by the dotted line (l2r-s) in Fig. 5c corresponding to a stripe-like pattern
similar to Fig. 6b. This branch was found by imposing a particular symmetry on the
initial data, i.e., enforcing a horizontal band with activity level one.

In Fig. 5b–d, we show analogous computations for the case of the modulation
function given by �(x) = (x)+ and its regularisations �(x) = �ε(x) with ε = 0.1
and ε = 0.01. Similarly to Fig. 5a, we observe a discontinuous phase transition for
the full line (l2r) and the dashed line (r2l), and the linear stability blue dot is also to
the left of the phase transition point as above. We remark that the blue and the red
dots may lie outside the noise intervals in Fig. 5b–d, but they follow the same order.
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Fig. 5 Bifurcation plots of 〈 f 〉 with respect to σ , where W (|x|) = −0.005 · 1282 (1 + tanh(10 − 50|x|))
for different modulation functions�. The red dots show the stability threshold F(k) = 1 for no noise while
the blue dots correspond to the stability threshold (3.15) with noise, where η = σc

M∞(σc)
, and σc is the

threshold value for linear stability. Top row:�(x) = 1
1+exp(−15x) (left)=(a) ,� = �ε, ε = 0.1 (right)=(b),

bottom row: � = �ε, ε = 0.01 (left)=(c), and �(x) = (x)+ (right)=(d)

Similar conclusions as above lead to hysteresis phenomena and the possible existence
of unstable branches not obtainable with our present numerical approach.

The case of ε = 0.1 in Fig. 5b resembles the behaviour observed for the sigmoid
function in Fig. 5a. The hexagonal-like patterns are the preferred stable configurations
both for generic initial data, full line (l2r), and starting with small perturbations of the
homogeneous stationary state, dashed line (r2l). Again stripe-like patterns are obtained
by choosing specific initial data. Similar branches and the numerical observation that
the hexagonal-like pattern is the most stable configuration has already been reported
for a neural field model without noise (Veltz et al. 2015).

This behaviour changes in Fig. 5c, d. The hexagonal-like patterns are still the
preferred stable configurations for generic initial data, full line (l2r). However, starting
with small perturbations of the homogeneous stationary state, dashed line (r2l), we
connect to the stripe-like bifurcation branch, dotted line (l2r).

The bifurcation branches and their dynamics gets richer as the regularisation param-
eter gets smaller.We observe that for ε = 0.01 in Fig. 5c, there is an additional branch,
dark red line (l2r-e), leading to eye-like patterns as in Fig. 6c. This branch jumps to
the stripe-like pattern for larger noise values. It is difficult to extract information on
the range of noise values σ ∈ [0.025, 0.0265] since the branch, dark red line (l2r),
does not show a sharp transition point while the dashed line (r2l) does. However,
this becomes much clearer in the limiting case of the positive part in Fig. 5d. We
observe two sharper discontinuous transition points in the stripe-like branch, lead-
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Fig. 6 Stationary patterns of f β(s = 0) at σ = 0.022 for �(x) = �ε(x), ε = 0.01 with W (|x|) =
−0.005 · 1282 (1 + tanh(10 − 50|x|)): hexagonal-like (a), stripe-like (b), eye-like (c). Left to right: black,
dotted, and red line in Fig. 5c

ing to an intermediate pure-stripe branch, σ ∈ [0.025, 0.028], before jumping to the
homogeneous state, see the dashed line (r2l) and the dotted line (l2r).

5 Concluding remarks

The first conclusion of our analysis is that the mean-field limit of the grid cell model
(1.1) with constant external input introduced by Burak and Fiete (2009), Couey et al.
(2013), and Burak and Fiete (2012), presents phase transitions driven by the noise
strength as demonstrated in Figs. 5 and 6. This behaviour resembles the phenomena
appearing in the classical Kuramoto model (Kuramoto 1981; Sakaguchi et al. 1988;
Acebrón et al. 2005; Carrillo et al. 2019, 2020) for synchronisation and other neural
field models Touboul et al. (2012) in the computational neuroscience literature.

It is shown that the homogeneous in space stationary state is linearly unstable for
small noise strength, similarly to basic ring and neural field models (MacLaurin and
Bressloff 2020; Kilpatrick and Ermentrout 2013; Byrne et al. 2019). We numerically
analysed the bifurcation diagram of stationary patterns showing the appearance of
different branches identified by their symmetries, see Figs. 5 and 6. Our numerical
experiments with random initial data demonstrate that the stationary hexagonal-like
pattern in space of the activity level of neurons in Fig. 6a, leading to the solid black
bifurcation branches in Fig. 5, has the largest basin of attraction.Moreover, the numeri-
cal simulations indicate that there is a sharp transition in themean activity level together
with a hysteresis phenomenon suggesting a discontinuous phase transition. Whether
more stationary network patterns exist is another interesting topic.

The crucial implication of this phase transition on the rats’ navigation path is that
the larger the noise the less localised are the spatial firing fields of each neuron. This
can be observed in the bottom row of Fig. 1 which shows that the firing field (coloured
in red) gets denser as the noise increases. Moreover, there is a sharp value of the
noise after which there is no localisation at all, leading the rats to not being able to
orientate themselves in physical space. In other words, the point of transition from
a homogeneous pattern (all neurons have the same mean activity level) to a non-
homogeneous pattern (neurons at different locations in the network have different
mean activity levels) gives an upper bound for the noise strength for which single grid

123



   42 Page 26 of 30 J. A. Carrillo et al.

cells no longer can fire in a hexagonal pattern in physical space when connected with
the rats movements through (2.9).

With a hexagonal network activity configuration as in Fig. 6a, a single neuron can
create hexagonal neural field patterns in physical space as in the third row of Fig. 1.
Exactly how the firing fields in physical space of a single neuron are affected by initial
network activity patterns as the ones in Fig. 6b–c remains to be investigated.

From the methodological viewpoint, we remark that as the bifurcation branches are
computed using a numerical approximation of the PDE (2.7)–(2.8), they can differ
slightly from the actual branches of the PDE itself. To study bifurcations and phase
transitions of the nonlinear PDE analytically will require sophisticated mathematical
tools, and they will be investigated elsewhere.

From the computational neuroscience viewpoint, we expect that noise driven phase
transitions will also naturally appear in related attractor dynamic models as the ones
in Burak and Fiete (2012), Agamon and Burak (2020). Instability of homogeneous
stationary network patterns should also play an important role therein. Additional
investigations of more realistic models of coupled place and grid cells are needed.
This will allow to connect with experiments and further contribute to the challenge of
how noise affects network dynamics in Rowland et al. (2016, Future Issue 3).
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Appendix: Numerical approach

This section contains details on the numerical approach. We re-write the system (2.7)
as

τ
∂ f β

∂t
= ∂

∂s

(
f β ∂

∂s

[
1

2

(
�
(
W , f , Bβ

) − s
)2 + σ log f β

])
,

and discretise the system using the first-order (in time t and in s) version of the finite
volume numerical method in Carrillo et al. (2015) at every x ∈ � on the spatial mesh.

In all figures in this paper, the time scale is set to τ = 10ms, and the computations
are run on a 64×64×64 (x, s)-grid for each neuron type β. The activity s is calculated
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Fig. 7 Grid refinement for σ = 0.015, B = 3, W (|x|) = −0.005 · 1282(1 + 1 tanh(50(0.2 − |x|))), and
�(x) = 1/(1 + exp(−15x)), at t = 50ms

on the interval [0, 1.3] and x ∈ [−0.5, 0.5]2. We impose no-flux boundary conditions
in s and periodic in x. We carefully checked that the support of the distribution in
s is essentially inside the interval [0, 1.3] for all times such that imposing no-flux
boundary condition on the right end is a good approximation for s ∈ [0,∞). The
initial distribution is prescribed by randomly setting the activity at one percent of the
grid points {xn}n , denoted {xni }i , in the four sheets to 1, i.e.,

f β
0 (xn, s) =

∑
i

δxni ,1(x, s) +
∑

n /∈{ni }i
δxn ,0(s),

withβ = 1, . . . , 4,where the positionsxni are chosen randomly. The spatial preference
is set by shifting the connectivity matrix determined byW one cell to the north, south,
west, or east, respectively.

All figures in Sect. 3 are computedwith B = 3. The value of each bifurcation branch
in Fig. 5 is, for each σ , found by a continuation method in σ running the simulation
for a minimum time of 2000ms. The calculation of the branch value is stopped when
either the numerical time derivative satisfies the numerical equivalent of

d

dt

∥∥∥∥
∑
β

f β

∥∥∥∥
L1(�×[0,∞))

≤ 10−8,
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Table 1 L1 and L2 (in x) errors
and order of convergence (OOC)
of the mean for n = 32, 64, 128

n L1 L2 OOC L1 OOC L2

32 0.1033 0.1993 − −
64 0.0565 0.1085 0.87 0.88

128 0.0098 0.0175 2.53 2.64

or the maximum time of 6000ms is reached. The respective noise intervals are divided
into at least 100 points.

A.1 Grid refinement of the numerical method

To briefly check the robustness of the numerical method described in the manuscript,
we performed a standard grid refinement analysis within a computationally feasible
computational range from n = 64 to n = 256 cells in x and s. For n = 256, the initial
data f β,0

� (x)|s=1 is randomly set to 1/256 at 1% of the locations x , and f β,0
� (x)|s=0 is

set to 1/256 on the complement. The rest is set to zero. On the coarser grids, we have
used piecewise averages of this initial data. In Fig. 7, the solutions on a grid consisting
of n3 cubes, with n = 32, 64, 128, and 256, are plotted. The corresponding L1 and
L2 errors can be found in the table below. The coarser solutions (n = 32, 64, 128)
are compared to the one computed on the grid consisting of 2563 cubes (Table 1). It
can be observed from the table and the figure that the numerical method used is stable
when refining the grid.
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