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“Isn't	 it	 splendid	 to	 think	 of	 all	 the	 things	 there	 are	 to	 find	 out	
about?	 It	 just	 makes	 me	 feel	 glad	 to	 be	 alive—it's	 such	 an	
interesting	world.	It	wouldn't	be	half	so	interesting	if	we	know	all	
about	 everything,	 would	 it?	 There'd	 be	 no	 scope	 for	 imagination	
then,	would	there?”	

—Lucy	Maude	Montgomery,	Anne	of	Green	Gables,	1908	
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Abstract 

This	 design-based	 research	 study	 presents	 results	 based	 on	 observations	 and	
analysis	of	student–student	and	student–teacher	interactions	in	a	Norwegian	upper	
secondary	school.	The	aim	of	this	study	was	to	examine	student	interactions	during	
collaborative	mathematical	 reasoning	 tasks	 about	 functions	 to	 identify	 insights	 to	
support	 collaborative	 problem-solving	 competency.	 The	 study	 also	 sought	 to	
investigate	 teacher	 actions	 in	 productive	 interactions	 and	how	 students’	 potential	
learning	 outcomes	 are	 affected	 by	 interactions.	 Analysis	 of	 student–student	
interactions	 and	 related	 teacher	 interactions	 revealed	 strategies	 for	 facilitating	
productive	 problem	 solving	 among	 student	 dyads.	 The	 productive	 interaction	
pattern—a	 bi-directional	 interaction—presents	 inherent	 learning	 opportunities.	
This	study	adds	to	the	field	of	mathematics	education	by	suggesting	an	extension	of	
the	 concept	of	 collaborative	problem-solving	 competency	 (CPS)	by	 connecting	 the	
competencies	of	collaboration,	reasoning,	and	problem	solving	 in	a	new	model	 for	
facilitating	 productive	 interaction	 in	 mathematics	 classrooms.	 The	 suggested	
competency	 model	 has	 potential	 as	 an	 analytical	 tool	 for	 teacher	 educators	 and	
researchers	 to	 utilize	 in	 classroom	 studies	 focusing	 on	 interactional	 patterns	 in	
students’	mathematical	problem	solving.	
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Sammendrag 

Denne	 design-baserte	 forskningsstudien	 presenterer	 resultater	 basert	 på	
observasjoner	 og	 analyser	 av	 elev–elev	 og	 elev–lærer	 interaksjoner	 fra	 en	 norsk	
videregående	skole.	Målet	med	denne	studien	var	å	undersøke	elevinteraksjoner	når	
de	 samarbeidet	 og	 resonnerte	 matematisk	 om	 funksjoner	 for	 å	 identifisere	 og	 gi	
innsikt	 omkring	 samarbeidskompetanse	 i	 problemløsing.	 Forskningsprosjektet	
undersøkte	 lærerhandlinger	 tilknyttet	 elevinteraksjoner	 og	 hvordan	 elevenes	
potensielle	 læringsutbytte	 påvirkes	 av	 interaksjonen.	 Analyse	 av	 elev–elev	
interaksjoner	og	relaterte	lærerinteraksjoner	avdekket	strategier	for	å	legge	til	rette	
for	 produktiv	 problemløsing	 blant	 elevparene.	 Det	 produktive	
interaksjonsmønsteret—en	 toveisinteraksjon—gir	 iboende	 læringsmuligheter.	
Dette	 forskningsprosjektet	 bidrar	 til	 matematikkdidaktikkfeltet	 ved	 å	 foreslå	 en	
utvidelse	 av	 konseptet	 «problemløsing	 ved	 samarbeid»	 gjennom	 å	 koble	
kompetansene	 samarbeid,	 resonnement	 og	 problemløsing	 til	 en	 ny	 modell	 for	
produktive	 interaksjoner	 i	 matematikklasserommet.	 Den	 foreslåtte	
kompetansemodellen	har	et	potensial	som	et	analytisk	verktøy	for	lærerutdannere	
og	 forskere	 i	 klasseromsstudier	 med	 fokus	 på	 interaksjonsmønstre	 i	 elevenes	
matematiske	problemløsing.	
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1. Introduction 

This	 design-based	 research	 project	 focused	 on	 productive	 student–student	
interactions	 in	 student-centered	 classrooms,	 related	 teacher	 actions,	 and	
assessments	 of	 these	 interactions.	 A	 student	 interaction	 can	 be	 defined	 as	 “a	
complex	social	phenomenon	which	is	composed	of	non-verbal	and	social	properties	
in	 addition	 to	 its	 verbal	 characteristics”	 (Kumpulainen	&	Mutanen,	 1999,	 p.	 455).	
There	 are	 inherent	 learning	 opportunities	 involved	 in	 sharing	 ideas	 and	
experiencing	 mathematics	 as	 meaningful	 to	 oneself	 and	 together	 with	 peers	
(Krummheuer,	 2007;	 Sidenvall,	 2019).	 If	 given	 the	 opportunity,	 students	 can	
construct	their	own	solution	procedures	to	mathematical	tasks	and	problems,	which	
is	important	to	their	mathematical	understanding	(cf.,	Lithner,	2017;	Mueller	et	al.,	
2012;	 Stockero	 et	 al.,	 2019).	 In	 such	 situations,	 they	 may	 propose	 ideas	 and	
answers,	 defend	 and	 justify	 their	 ideas,	 and	 become	 producers	 of	 mathematics	
(Schoenfeld,	2013).	Thus,	how	well	students	 interact	 in	pairs	or	 in	small	groups	 is	
central	 to	 their	 progress	 in	 becoming	 a	 producer	 of	 mathematics	 rather	 than	 an	
imitator	who	reproduces	mathematics	without	understanding	the	conceptual	parts	
(Lithner,	2017).	

Student-centered	 environments	 that	 focus	 on	 collaborative	 interactions	 have	
been	 central	 to	 mathematics	 education	 reforms	 and	 in	 research	 on	 classroom	
practices	 for	 decades	 (Mueller	 et	 al.,	 2012;	 NCTM,	 2014;	Webb,	 1982).	 However,	
there	 is	 still	 a	 need	 for	 knowledge	 on	 how	 to	 facilitate	 productive	 student	
interactions	 (Langer-Osuna	 et	 al.,	 2020),	 further	 exploration	 of	 the	 processes	 in	
students’	collaborations	(Seidouvy	&	Schindler,	2019;	van	de	Pol	et	al.,	2018;	Varhol	
et	 al.,	 2020),	 and	 specifically	 on	 students’	 interactions	 when	 reasoning	
mathematically	 (Erath	 et	 al.,	 2021).	 Therefore,	 investigating	 of	 students’	
participation	and	their	participation	patterns	with	their	inherent	interaction	aspects	
could	provide	further	insights	into	quality	student	interactions	and	the	dynamics	of	
the	processes	involved.	These	insights	may	subsequently	strengthen	the	knowledge	
of	 instructional	design	for	teachers,	 the	design	of	 tasks,	and	curricula	(Erath	et	al.,	
2021).	

Collaborative	problem-solving	competency	(CPS)	involves	learning	mathematics	
together	in	a	problem-solving	setting	and	is,	therefore,	a	key	competency	connected	
to	the	project’s	focus.	CPS	can	be	defined	as	a	“coordinated	attempt	between	two	or	
more	people	to	share	their	skills	and	knowledge	for	the	purpose	of	constructing	and	
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maintaining	 a	 unified	 solution	 to	 a	 problem”	 (c.f.,	 OECD,	 2017,	 Roschelle	 and	
Teasley,	1995,	as	cited	in	Sun	et	al.,	2020,	p.	2).	In	recent	years,	CPS	has	become	an	
important	 domain-independent	 skill	 for	 students	 to	 succeed	 in	 group-based	
activities	(Sun	et	al.,	2020).	Moreover,	CPS	is	recognized	as	a	so-called	21st-century	
skill;	 that	 is,	 a	 skill	 that	 is	 key	 to	 successfully	 connecting	 and	 working	 together	
globally	and	locally	in	schools,	workplaces,	and	communities	(Child	&	Shaw,	2016).	
Mathematical	 competency	 can	 be	 defined	 as	 “a	 clearly	 recognizable	 and	 distinct,	
major	 constituent	 of	 mathematical	 competence”	 (Niss,	 2003,	 p.	 7).	 Competency-
related	 activities	 involve	 interpreting,	 doing	 and	 using,	 and	 judging	 mathematics	
(Boesen	 et	 al.,	 2014).	 Thus,	 mathematical	 competencies	 can	 be	 understood	 as	
specific	ways	of	understanding	and	doing	mathematics	 involving	 the	utilization	of	
different	 skills.	 CPS	 can	 be	 developed	 in	 classroom	 settings	when	 students	 get	 to	
attend	to	others’	ideas	and	actions,	merging	different	thoughts	and	knowledge	into	a	
unified	solution	(Cobb,	1995;	Graesser	et	al.,	2018;	Mueller,	2009).	To	do	this,	one	
must	evaluate	others’	input,	possibly	negotiate	different	points	of	view,	and	come	to	
an	agreement.	Such	actions	require	knowledge	about	the	domain,	the	ability	to	work	
effectively	 in	and	with	diverse	groups,	and	 the	sharing	of	responsibility	 (Lai	et	al.,	
2017).	 Therefore,	 CPS	 is	 recognized	 as	 a	 skill	 that	 may	 enhance	 collaborative	
learning	in	schools	and	further	contribute	to	personal	success	in	workplaces	(Lai	et	
al.,	2017;	Sun	et	al.,	2020).	

A	 recent	 review	of	 research	 literature	on	CPS	 focuses	 specifically	on	 the	CPS	
concept,	 rather	 than	 related	 terms,	 such	 as	 “teamwork,”	 “cooperation,”	 and	
“problem-solving”	 (Sun	 et	 al.,	 2020).	 The	 work	 of	 Roschelle	 and	 Teasley	 (1995),	
Nelson	(1999),	the	Assessment	of	Teaching	of	Twenty-first	Century	Skills	(ATC21S)	
(Griffin	 et	 al.,	 2012),	 and	 the	 PISA	 framework	 for	 summative	 assessment	 of	 CPS	
skills	(OECD,	2017)	are	considered	influential	 frameworks	that	emphasize	the	CPS	
concept	 (Sun	 et	 al.,	 2020).	 A	 unifying	 feature	 of	 the	 four	 frameworks	 is	 the	
underlying	 constructs	 of	 CPS	 skills:	 establishing	 shared	 knowledge,	 resolving	
divergence	 and	 misunderstanding,	 monitoring	 progress	 and	 results,	 and	
maintaining	a	functional	team	(Sun	et	al.,	2020).	

In	 this	 research	 project,	 three	 related	 interaction	 aspects	 are	 emphasized:	
mathematical	 reasoning,	 collaborative	processes,	 and	 exercised	 agency.	Moreover,	
the	four	foundational	constructs	of	CPS	skills	serve	as	a	foundation	in	this	research	
project	as	well.	By	identifying	the	interplay	of	interactional	components	tied	to	the	
CPS	 construct,	 another	 approach	 is	 suggested	 for	 understanding	 students’	 CPS	
competency	 and	 related	 learning	 outcomes.	 This	 approach	 emphasizes	 students’	
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interaction	patterns	and	related	teacher	actions.	The	three	interactional	aspects	and	
teacher	actions	are	presented	below.		

Mathematical	reasoning	 is	defined	as	“the	 line	of	thought	adopted	to	produce	
assertions	 and	 reach	 conclusions	 in	 task	 solving”	 (Lithner,	 2017,	 p.	 939).	 When	
suggesting	an	idea,	one	can	collectively	or	individually	create	“lines	of	thought,”	such	
as	 building	 upon	 an	 argument,	 justifying	 an	 idea,	 or	 explaining	why	 something	 is	
true	or	not.	The	definition	of	mathematical	reasoning	is	connected	to	an	empirically	
developed	framework	known	as	creative	mathematically	founded	reasoning1	(CMR),	
which	 defines	 different	 paths	 of	 reasoning	 in	 order	 to	 reach	 a	 conclusion	 in	 task	
solving	 (Lithner,	 2008,	 2015,	 2017).	 Collaborative	 process	 is	 defined	 as	 “a	
coordinated,	 synchronous	 activity	 that	 is	 the	 result	 of	 a	 continued	 attempt	 to	
construct	 and	 maintain	 a	 shared	 conception	 of	 a	 problem”	 (Roschelle	 &	 Teasley,	
1995,	 p.	 70).	 This	 definition	 views	 students’	 collaboration	 through	 different	
activities	that	produce	unified	solutions.	Furthermore,	Roschelle	and	Teasley	(1995)	
suggest	 that	 the	 co-construction	 of	 a	 shared	 understanding	 happens	 through	
processes	of	building,	monitoring,	and	repairing	meaning	or	a	strategy	for	solving	a	
problem.	 These	 processes	 are	 characterized	 by	 an	 interplay	 of	 ideas,	 which	 are	
interwoven	into	shared	actions	and	shared	explanations	(Martin	&	Towers,	2015).	
The	project	views	students’	exercised	agency	as	“the	way	in	which	he	or	she	acts,	or	
refrains	from	acting,	and	the	way	in	which	her	or	his	action	contributes	to	the	joint	
action	of	the	group	in	which	he	or	she	is	participating”	(Gresalfi	et	al.,	2009,	p.	53).	

Facilitating	 reasoning	 and	 argumentation	 in	 mathematics	 classrooms	 is	
challenging,	and	there	is	a	need	for	a	better	understanding	of	how	to	facilitate	these	
aspects	 (e.g.,	 Ayalon	 &	 Hershkowitz,	 2018;	 Maher	 et	 al.,	 2018;	 van	 de	 Pol	 et	 al.,	
2018).	 Teachers	 require	 knowledge	 about	 students’	 interactions	 and	 how	 to	
encourage	 students	 to	 share	 their	 thinking	 with	 one	 another,	 which	may	 include	
their	reasoning	processes	(Lithner,	2008)	and	how	they	act	or	refrain	from	acting	in	
the	mathematical	 conversations–their	 agency	 (Gresalfi	 et	 al.,	 2009;	Mueller	 et	 al.,	
2012).	Drageset	(2014)	developed	a	detailed	 framework	of	 teacher	actions	 for	 the	
purpose	 of	 studying	 in-depth	 specific	 teacher	 actions	 and	 how	 they	 influence	

	
	
	
	
1	 In	 line	 with	 the	 work	 of	 Lithner	 and	 colleagues	 (2008,	 2017)	 on	 creative,	
mathematically	 founded	 reasoning,	 the	 present	 project	 uses	 the	 wording	 “creative	
reasoning”	or	the	acronym	“CMR”	for	linguistically	simplicity.	
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students’	 interactional	 patterns	 in	 situations	 of	 collaboration,	 reasoning,	 and	
exercised	 agency	 (though	 this	 was	 not	 specifically	 connected	 to	 the	 interactional	
patterns	focus	on	in	this	project).	This	redirecting,	progressing,	and	focusing	actions	
framework	 (Drageset,	 2014)	 made	 it	 possible	 for	 me,	 as	 the	 researcher,	 to	
investigate	 teacher	 actions	 related	 to	 student	 interactions.	 The	 three	 interaction	
aspects	and	teacher	actions	are	further	elaborated	on	in	chapter	2.	

The	 first	 three	 constructs	 of	 the	 CPS	 competency	 (establishing	 shared	
knowledge,	 resolving	 divergence	 and	misunderstanding,	monitoring	 progress	 and	
results)	 are	 similar	 to	 the	 three	 collaborative	 processes	 in	 this	 project—building,	
monitoring,	 and	 repairing—for	 establishing	 and	 maintaining	 a	 shared	
understanding	(Roschelle	&	Teasley,	1995).	The	last	area,	maintaining	a	functional	
team,	concerns	processes	of	upholding	the	collaborative	dynamics.	These	processes	
could	 be	 informed	 by	 the	 collaborative	 processes	 or	 an	 interplay	 of	 different	
interactional	 aspects,	 such	 as	 students’	 exercised	 agency	 and	 collaborative	
processes.	 Therefore,	 an	 in-depth	 study	 of	 interwoven	 interactional	 aspects	
facilitating	 quality	 student	 interaction	 may	 extend	 the	 CPS	 competency.	 By	
extending	 means	 emphasizing	 how	 details	 of	 student	 interactions	 and	 related	
teacher	 actions	 provides	 a	 foundation	 to	 operationalize	 productive	 interactions	
through	 insights	 of	 interaction	 patterns	 and	 inherent	 learning	 opportunities.	
Consequently,	 aspects	 of	 productive	 interactions	 may	 be	 more	 recognizable	 to	
students,	teachers,	teacher	educators,	and	researchers.	This	may	prove	a	useful	tool	
for	each	party.	For	instance,	students	can	recognize	their	interaction	as	productive	
and	 learn	 through	 and	 of	 the	 competency,	 and	 a	 teacher	 can	 recognize	
characteristics	 of	 students’	 interaction	 patterns	 and	 further	 support	 and	 guide	
productive	interactions.	

Aim 
This	 research	 project	 comprises	 three	 studies:	 two	 case	 studies	 (Article	 1	 and	
Article	2)	and	one	conceptual	contribution	(Article	3).	The	aim	of	the	doctoral	thesis	
is	 to	 tie	 the	 three	 studies	 together	 and	 build	 on	 previous	 research	 to	 extend	 the	
knowledge	 on	 productive	 student	 interactions	 related	 to	 collaborative	 problem-
solving	 competency.	 Considering	 competency	 aspects	 in	 productive	 student	
interaction	 patterns	 might	 improve	 the	 learning	 of	 and	 learning	 through	 a	
competency.	 Learning	 of	 a	 competency	 is	 the	 learning	 goal	 of	 specific	 skills	
comprising	a	competency;	in	comparison,	learning	through	involves	using	the	skills	
of	a	competency	as	a	means	of	learning	(Sidenvall,	2019).	
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The	theoretical	points	that	are	made	in	synthesizing	the	findings	and	building	
on	related	research	literature	are	guided	by	the	following	research	question:	

How	can	a	design-based	research	process	 focusing	on	aspects	of	 students’	
interactions	and	related	teacher	actions	contribute	to	design	principles	that	
support	productive	student	interactions	in	mathematics?	

The	aims	of	the	three	articles	were	as	follows:	
• 	Article	1:	To	investigate	the	patterns	of	interplay	between	creative	reasoning,	

collaboration,	 and	 exercised	 agency	 in	 a	 mathematical	 problem-solving	
session	involving	more	or	less	productive	student	interactions.	

• 	Article	 2:	 To	 explore	 interactional	 conditions	 in	 light	 of	 the	 role	 of	 teacher	
actions	 with	 their	 limitations	 and	 opportunities	 to	 influence	 the	
productivity	of	students’	interactional	patterns	in	the	collaborative	problem	
solving	of	linear	functions.	

• 	Article	 3:	 To	 explore	 how	 the	 interactional	 aspects	were	 connected	 through	
students’	ways	of	participation	and	how	their	participation	in	dyads	serves	
as	 an	 indicator	 for	 assessing	 their	 interaction	 as	 productive	 or	
unproductive.	This	resulted	in	an	analytical	model	that	was	informed	by	the	
results	of	Article	1	and	Article	2	and	a	further	data	analysis.	

The	 context	 of	 the	 study	 was	 a	 Norwegian	 upper	 secondary	 school.	 The	
participants	 included	 three	 teachers	 and	 their	mathematics	 classes.	 The	 students	
were	 15–16	 years	 old	 and	 enrolled	 in	 their	 first	 year	 of	 a	 chosen	 theoretical	
mathematics	 program.	 During	 the	 research	 period,	 the	 teachers	 and	 I	 planned	
lessons	together	that	 focused	on	functions.	The	function	concept	 is	 integrated	 into	
many	 areas	 of	 school	 mathematics	 and	 has	 a	 central	 role	 in	 organizing	 and	
connecting	 many	 mathematical	 ideas	 (Michelsen,	 2006).	 Thus,	 it	 is	 important	 to	
connect	 different	 function	 representations,	 to	 prevent	 a	 fragmented	 view	 on	
functions	(Best	&	Bikner-Ahsbahs,	2017).	With	its	diverse	representations	and	with	
the	 need	 of	 algebraic	 knowledge	 (Leinhardt	 et	 al.,	 1990;	 Lepak	 et	 al.,	 2018),	 it	 is	
often	an	area	of	difficulty	for	many	students.	There	is	substantial	research	on	how	to	
develop	 a	 rich	 understanding	 of	 the	 function	 concept,	 but	 less	 attention	 has	 been	
paid	 to	 how	 teachers	 should	 design	 instruction	 and	 curricula	 to	 help	 students	
overcome	 difficulties	 with	 the	 function	 concept	 (Dubinsky	 &	 Wilson,	 2013).	 To	
summarize	the	motivation	for	choosing	functions	as	the	area	of	study	while	studying	
students’	interactions:	the	function	topic	was	suitable	to	the	students’	curriculum,	it	
engaged	 the	 teachers,	and	 it	 reflected	a	 topic	 that	was	difficult	 for	 the	students	 to	
understand	yet	important	for	connecting	many	mathematical	ideas.	
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2. Theoretical foundations 

How	 students	 participate	 when	 working	 collaboratively	 influences	 their	
productivity,	 their	 progression,	 and	 their	 learning	 opportunities.	 For	 instance,	
encouraging	 a	 peer	 to	 make	 suggestions,	 listening	 to	 a	 peer,	 justifying	 an	 idea,	
exploring	different	ideas,	and	sometimes	just	being	nice	to	a	peer	could	make	all	the	
difference	 to	 a	 group’s	 dynamics	 and	 progress.	 However,	 in	 a	 collaborative	
mathematical	situation,	some	interactional	aspects	are	more	prominent	than	others.	
For	 students	 to	 learn	 mathematics	 together,	 it	 is	 crucial	 that	 they	 reason	
mathematically	together.	Creating	a	reasoning	sequence	anchored	in	mathematical	
properties,	 which	 is	 not	 solved	 by	 familiar	 imitative	 reasoning,	 ensures	 that	 a	
student	 1)	 must	 be	 responsible	 for	 the	 reasoning,	 2)	 must	 verify	 a	 suggested	
solution	 or	 strategy	 choice,	 and	 3)	 must	 explain	 why	 the	 mathematical	 concepts	
used	 are	 relevant,	 thus	 involving	 mathematical	 properties	 (Lithner,	 2015).	
Therefore,	when	students	are	engaged	 in	“the	explicit	act	of	 justifying	choices	and	
conclusions	 by	 mathematical	 arguments”	 (Boesen	 et	 al.,	 2014,	 p.	 75),	 they	 are	
presented	with	learning	opportunities	related	to	the	involved	mathematics	(Lithner,	
2017).	

When	 engaging	 in	 collaborative	 mathematical	 reasoning,	 students	 can	
establish	 a	 shared	 understanding	 of	 a	mathematical	 problem.	Martin	 and	 Towers	
(2015)	describe	a	shared	understanding	as	a	collective	mathematical	understanding	
consisting	 of	 an	 “ever-changing	 interactive	 process,	where	 shared	understandings	
exist	and	emerge	in	the	discourse	of	a	group	working	together”	(p.	6).	Coming	to	a	
unified	understanding	 involves	a	 shared	 learning	process	 in	which	 students	 share	
ideas	 through	 verbal	 expressions	 of	 suggestions,	 explanations,	 and	 disagreement.	
Thus,	collaborative	processes	(Roschelle	&	Teasley,	1995)	are	a	central	interaction	
aspect	of	collaborative	mathematical	reasoning.	

Although	students	might	collaborate	well,	they	sometimes	withdraw	from	the	
conversation	but	eventually	continue	 their	mutual	work	where	 they	 left	off.	Other	
times,	 they	might	consistently	work	toward	a	unified	solution.	Thus,	students	may	
participate	 in	 different	 roles,	 which	 can	 quickly	 change	 during	 problem	 solving	
(Child	 &	 Shaw,	 2019).	 Therefore,	 a	 third	 central	 aspect	 of	 productive	 student	
interactions	is	the	consideration	of	students’	exercised	agency	(Mueller	et	al.,	2012)	
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in	collaborative	reasoning	situations.	Students’	agency	is	situational	and	can	be	seen	
in	 how	 students	 participate	 and	 act	 in	 a	 group	 (Gresalfi	 et	 al.,	 2009).	 Thus,	 an	
individual’s	 method	 of	 participation	 is	 not	 a	 fixed	 pattern	 of	 actions	 but	 is	
dependent	on	the	collaborative	processes	and	mathematical	reasoning	involved	in	a	
group	 or	 a	 community	 (Gresalfi	 et	 al.,	 2009;	 Langer-Osuna,	 2018;	 Mueller	 et	 al.,	
2012).	

2.1 Characteristics of the three interactional frameworks 
The	frameworks	related	to	the	three	interactional	aspects	defined	in	chapter	1	and	
further	elaborated	on	below	have	different	theoretical	underpinnings.	Although	four	
central	 frameworks	 were	 used	 in	 this	 project,	 three	 of	 them	were	 used	 to	 study	
student–student	 interactions.	 Therefore,	 teacher	 actions	 are	 not	 included	 in	 the	
discussion	below	but	are	elaborated	on	in	section	2.3.	

This	research	project	adopted	collaborative	processes	based	on	Rochelle	and	
Teasley’s	(1995)	definition	of	collaboration.	The	goal	of	the	processes	is	for	students	
to	 make	 mutual	 utterances	 and	 engage	 actively	 in	 suggesting,	 questioning,	 and	
listening.	 Thus,	 coordination	 (Baker,	 2015;	 Sarmiento	 &	 Stahl,	 2008)	 and	 turn-
taking	(Sidnell,	2010)	are	important	aspects	of	developing	a	shared	understanding	
through	 reasoning	 (Barron,	 2000).	 Collaborative	 work	 may	 begin	 or	 progress	
through	 the	 suggestion	 of	 ideas	 for	 how	 to	 solve	 a	 problem	or	 the	 exploration	 of	
ideas,	 which	 indicates	 the	 process	 of	 building	 a	 shared	 conception	 of	 a	 problem	
(Roschelle	&	Teasley,	1995).	This	is	an	inquiry	process	involving	the	introduction	of	
new	 ideas	 (Alrø	&	Skovsmose,	2004;	Child	&	Shaw,	2019).	 If	 students	 continue	 to	
build,	 they	 may	 “zoom	 in”	 on	 an	 idea	 (Alrø	 &	 Skovsmose,	 2004)	 to	 further	
investigate	a	proposal.	Students	may	also	address	givens	and	constraints	about	the	
proposal	 (Sun	 et	 al.,	 2020).	When	 explaining	 and	 exploring	 the	 details	 of	 an	 idea,	
actions	such	as	drawing	 figures,	 calculating,	or	using	digital	 software	 facilitate	 the	
building	 of	 a	 shared	 understanding.	 Thus,	 building	 a	 shared	 understanding	 is	
important	in	initiating	the	process	of	collaboration,	as	well	as	continuing	or	finishing	
a	problem-solving	process.		

If	 a	 suggested	 idea	 is	 not	making	 sense,	 a	 peer	 can	 ask	 questions	 about	 the	
suggestion,	 which	 can	 then	 be	 explained.	 Having	 different	 perspectives,	 asking	
questions,	 and	 providing	 explanations	 are	 important	 parts	 of	 monitoring	 the	
collaborative	 work	 (Roschelle	 &	 Teasley,	 1995).	 In	 monitoring	 the	 collaborative	
problem-solving	process,	students	can	experience	their	ideas	being	built	upon.	Thus,	
a	 peer	 is	 able	 to	 influence	 the	 thoughts	 and	 actions	 of	 the	 group.	 Such	 social	
interdependence	 is	 positive	 and	 implies	 a	 degree	 of	 synchronicity	 (Child	&	 Shaw,	
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2019).	If	students	believe	they	can	succeed	by	themselves	only	if	others	fail	and	not	
together	 as	 a	 group,	 their	 interdependence	 is	 negative	 (Child	 &	 Shaw,	 2019).	
Experiencing	a	negative	 interdependency	might	 lead	to	asynchronous	activity	(not	
working	together	at	the	same	time)	or	no	activity	at	all.	Thus,	acknowledging	others’	
contributions	support	the	problem-solving	progress	(Sun	et	al.,	2020).	

Sometimes,	students	experience	divergences	in	their	understanding	or	opinion	
of	 which	 strategies	 to	 use,	 which	 indicate	 conflicting	 ideas	 or	 a	 lack	 of	
understanding	 of	 one	 another.	 Experiencing	 divergences	 in	 opinions	 means	 that	
students	 need	 to	 repair	 their	 shared	 understanding	 (Roschelle	 &	 Teasley,	 1995).	
Resolving	conflicting	ideas	can	involve	reformulating	ideas,	such	as	paraphrasing	or	
repeating	 utterances	 in	 one’s	 own	 words	 (Alrø	 &	 Skovsmose,	 2004).	 Clarifying	
misunderstandings	 provides	 learning	 opportunities	 by	making	 thoughts	 easier	 to	
understand	 (Sun	 et	 al.,	 2020).	 Thus,	 this	 presents	 opportunities	 to	 justify	
mathematical	arguments.	The	utilized	framework	on	collaborative	processes	views	
learning	 as	 a	 social	 activity,	 and	 the	 theory	 is	 grounded	 in	 socio-cognitivism	
(Roschelle	&	Teasley,	1995).	

Students’	 mathematical	 discussions	 can	 be	 viewed	 through	 the	 CMR	
framework	 (Lithner,	 2017).	Mathematical	 reasoning	 is	 an	 important	 interactional	
aspect	 of	 learning	 mathematics	 through	 the	 processes	 of	 argumentation	
(Krummheuer,	 2007;	 Yackel,	 2001).	 Argumentation	 is	 a	 method	 of	 reasoning	 in	
which	one	justifies	thoughts	and	ideas,	aiming	to	convince	oneself	or	someone	else	
that	 the	 reasoning	 is	 appropriate	 and	 correct	 (Bergqvist	 et	 al.,	 2007).	 Thus,	
mathematical	reasoning	can	be	seen	as	a	thinking	process	that	produces	claims	and	
conclusions	 that	 may	 involve	 more	 or	 less	 correct	 assumptions	 (Lithner,	 2015).	
Moreover,	 students’	 mathematical	 reasoning	 may	 provide	 opportunities	 for	
students	to	learn	“how	to	find	solution	methods	by	themselves	or	how	to	engage	in	
other	mathematical	processes”	(Lithner,	2017,	p.	937).	This	contrasts	with	students’	
use	of	task-solution	templates	without	considering	conceptual	parts,	which	can	lead	
to	rote	learning.	Although	rote	learning	can	“free	up	cognitive	resources	to	be	used	
for	more	advanced	problem	solving,”	there	is	“little	or	no	transfer”	from	imitation	of	
solution	templates	to	developing	central	mathematical	competencies	(Lithner,	2017,	
pp.	937-938).	In	the	research	project,	students’	mathematical	reasoning	was	viewed	
as	 an	 interactional	 accomplishment	 in	which	 participants	 accepted	 and	 suggested	
arguments	 individually	 and	 collectively;	 this	 did	 not	 consider	 whether	 the	
arguments	were	formal	or	 logically	correct	(Lithner,	2017;	Yackel,	2001).	Through	
the	 CMR	 framework	 and	 related	 principles	 to	 facilitate	 CMR,	 students’	 creative	
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reasoning	 might	 enhance	 task	 fluency	 and	 mathematical	 understanding	 (Lithner,	
2017),	and	thus	students	might	be	prevented	from	engaging	in	mainly	rote	learning.	

The	CMR	framework	identifies	two	main	types	of	reasoning:	creative	reasoning	
and	 imitative	 reasoning	 (Lithner,	 2008).	 Three	 criteria	 must	 be	 fulfilled	 to	 call	 a	
reasoning	 sequence	 “creative”	 (Lithner,	 2017):	 it	must	 be	 creative,	 plausible,	 and	
anchored.	 Creativity	 refers	 to	 creating	 a	 reasoning	 sequence	 not	 experienced	
previously	or	re-creating	a	forgotten	one.	Plausibility	involves	arguments	supporting	
the	strategy	choice	or	strategy	implementation	that	explain	why	the	conclusions	are	
true	 or	 plausible.	 Anchoring	 means	 that	 arguments	 are	 anchored	 in	 the	 intrinsic	
mathematical	 properties	 of	 the	 components	 of	 the	 reasoning.	 Arguments	 are	
considered	to	be	intrinsic	if	they	are	based	on	mathematical	concepts	or	relations;	
they	 are	 considered	 superficial	 if	 based	 on	 appearance	 and	 not	 on	 underlying	
mathematics.	

Imitative	 reasoning	 is	 recognized	 as	 memorized	 reasoning	 or	 algorithmic	
reasoning.	 An	 example	 of	 memorized	 reasoning	 is	 remembering	 that	 each	 of	 the	
angles	 of	 an	 equilateral	 triangle	measure	60°.	 Algorithmic	 reasoning	 is	 when	 the	
students	use	a	given	or	recalled	algorithm	to	solve	a	task.	The	strength	of	using	an	
algorithm	 in	 school	mathematics	 is	 the	 speed	 and	 the	 high	 reliability	 it	 provides	
when	solving	a	 task	 (Lithner,	2015).	However,	 if	 the	algorithm	 is	used	without	 its	
conceptual	 component,	 such	 as	 consideration	 of	 its	 meaning,	 it	 may	 lead	 to	 rote	
learning	 (Lithner,	 2017).	 The	CMR	 framework	 concerns	 individuals’	mathematical	
reasoning	and	is	grounded	in	social	constructivism	(Lithner,	2017).	

Participating	 in	 a	 dyad	 or	 in	 a	 group	 means	 that	 a	 student	 can	 engage	 in	
mathematical	 problem	 solving,	 which	 is	 important	 to	 developing	 a	 mathematical	
voice	 and	becoming	 recognized	 as	 a	producer	of	mathematics	 (Schoenfeld,	 2013).	
Moreover,	a	sense	of	agency	can	be	produced	through	progress	in	problem	solving	
while	 engaged	 in	 a	meaningful	 task	 (Schoenfeld	 et	 al.,	 2019).	 Thus,	 attempting	 to	
collaborate	 with	 peers	 can	 influence	 students’	 experience	 of	 having	 agency	 in	 a	
problem-solving	 situation.	When	 students	 interact	 during	 a	mathematical	 activity,	
the	 interaction	 functions	 as	 an	 opportunity	 to	 communicate	 ideas	 and	 position	
students	 in	 relation	 to	 one	 another	 (Langer-Osuna,	 2018).	 This	 reflects	 a	
“distribution	 of	 authority”	 and	 can	 fundamentally	 affect	 the	 possibilities	 of	
collaborative	 mathematical	 reasoning	 (Langer-Osuna,	 2018).	 In	 line	 with	 this	
perspective,	Mueller	et	al.	(2012)	present	a	framework	for	students’	argumentation	
connected	to	exercised	agency	in	different	discursive	practices	when	collaboratively	
solving	 mathematics	 problems.	 Students	 can	 exercise	 shared	 agency	 when	 co-
constructing	 arguments	 (Mueller	 et	 al.,	 2012).	 In	 those	 situations,	 students	
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simultaneously	 build	 arguments	 from	 the	 ground	 up,	 and	 “without	 one	 of	 the	
participants,	the	argument	would	not	exist”	(Mueller	et	al.,	2012,	p.	378).	Moreover,	
students	 may	 exercise	 individual	 forms	 of	 agency,	 called	 primary	 agency	 or	
secondary	 agency.	 A	 student	 is	 a	 primary	 agent	 in	 situations	 in	 which	 he	 or	 she	
produces	the	final	argument	based	on	corrections	from	a	peer	or	by	making	sense	of	
a	peer’s	faulty	or	flawed	idea.	A	secondary	agent	provides	input	that	influences	the	
original	argument.	These	 forms	of	 input	 include	corrections,	extensions,	or	 flawed	
arguments,	 which	 are	 then	 further	 formed	 into	 a	 final	 argument	 by	 the	 primary	
agent	 (Mueller	 et	 al.,	 2012).	 Both	 a	 primary	 agent	 and	 a	 secondary	 agent	 can	 be	
responsible	for	the	original	idea.	

In	this	project,	agency	is	defined	as	a	student’s	participation	through	acting	or	
resisting	acting	in	a	mathematics	conversation	(Gresalfi	et	al.,	2009)	in	which	agency	
is	exercised	individually	or	shared	through	attempted	collaboration.	The	theoretical	
concepts	used	to	analyze	exercised	agency	(Gresalfi	et	al.,	2009;	Mueller	et	al.,	2012;	
Pickering,	1995)	originate	from	work	in	the	sociocultural	tradition.	

2.2 Compatibility and connecting the three interactional 
frameworks 

The	 theoretical	 foundations	 of	 the	 three	 frameworks	 are	 anchored	 in	 different	
perspectives:	 cognitivism,	 constructivism,	 and	 socioculturalism.	 Thus,	 there	 are	
different	perspectives	of	how	students’	knowledge	acquisition	works	and	whether	
the	 knowledge	 is	 “already	 there”	 and,	 to	 some	 extent,	 shaped	 by	 the	 student	
(cognitivism),	constructed	internally	by	the	student	(constructivism),	or	shaped	by	
the	 student’s	 social	 interactions	 (socioculturalism)	 (Cobb,	 1994;	 Lerman,	 1996).	
However,	 the	 social	 aspect	 of	 the	 frameworks	 does	 connect	 them	 through	 the	
perspective	 that	 it	 is	 in	 a	 social	 context	 of	 interaction	 that	 a	 student’s	 learning	
develops.	 The	 compatibility	 and	 connection	 between	 the	 three	 frameworks	 are	
elaborated	on	below.	

Research	 on	 collaborative	 problem	 solving	 can	 have	 different	 focuses	 and	
approaches.	One	approach	in	classroom	studies	is,	for	instance,	to	examine	students’	
conversations	or	 learning	outcomes.	Another	approach	is	 to	 look	at	 the	conditions	
for	 organizing	 collaboration,	 such	 as	 the	 types	 of	 questions	 used	 in	 group	
discussions,	 the	 designated	 roles	 of	 the	 participants,	 and	 the	 variety	 of	 problem	
types	to	be	solved.	These	different	focuses	are	commonly	divided	into	a	focus	on	the	
collaborative	 process	 or	 a	 focus	 on	 the	 collaborative	 outcome	 (Dillenbourg	 et	 al.,	
1996;	 Lai	 et	 al.,	 2017;	 Seidouvy	 &	 Schindler,	 2019).	 This	 division	 is	 found	 in	
educational	 studies	 (Child	 &	 Shaw,	 2019),	 as	 well	 as	 in	 studies	 of	 mathematics	
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education	 studies	 (Mueller	 et	 al.,	 2012).	When	 research	 is	 focused	 on	 the	 use	 of	
language	and	interaction	in	collaborative	processes,	such	as	in	this	research	project,	
the	underpinning	theories	are	mainly	cognitive	theories	and	sociocultural	 theories	
(Seidouvy	 &	 Schindler,	 2019).	 If	 the	 focus	 is	 on	 the	 collaborative	 outcome,	 the	
theories	represented	are	primarily	cognitive	theories	(Seidouvy	&	Schindler,	2019).	

When	 referring	 to	 outcomes,	 one	 can	 talk	 about	 students’	 learning	 observed	
during	pre-	and	post-tests	(Child	&	Shaw,	2019)	or	students’	solution	procedures	in	
solving	a	mathematical	 task.	The	outcome	of	 students’	 individual	 reasoning	or	 co-
constructed	 reasoning	 is	 another	 focus	of	 this	project.	 To	 summarize:	 the	process	
view	comprises	social	aspects,	such	as	students’	interactions	in	collaborative	work,	
and	the	outcome	view	concerns	individuals’	learning.		

A	theoretical	framework	for	research	on	collaborative	problem	solving	should	
view	 the	 intertwined	 nature	 of	 social	 and	 individual	 aspects	 to	 prevent	 a	 social-
individual	 dichotomy	 (Noorloos	 et	 al.,	 2017).	 To	 overcome	 the	 tension	 between	
theories	on	social	versus	 individual,	Noorloos	et	al.	 (2017)	 suggest	using	a	 theory	
that	“can	describe	the	learning	activity	of	the	student	simultaneously	and	essentially	
in	 both	 cognitive	 and	 social	 terms”	 (p.	 441).	 In	 this	 project’s	 research	 studies	 the	
three	interactional	frameworks	comprised	the	coding	framework	(Appendix	A).	The	
frameworks	 were	 utilized	 for	 studying	 the	 interplay	 of	 the	 interactional	 aspects,	
which	is	a	multi-faceted	phenomenon.	Such	a	phenomenon	“…cannot	be	described,	
understood	 or	 explained	 by	 one	monolithic	 theory	 alone,	 a	 variety	 of	 theories	 is	
necessary	to	do	justice	to	the	complexity	of	the	field”	(Bikner-Ahsbahs	&	Prediger,	
2010,	p.	484).	Thus,	a	fruitful	starting	point	for	operating	with	different	theories	and	
theoretical	approaches	is	to	connect	them	for	further	development	in	mathematics	
education	 (Bikner-Ahsbahs	 &	 Prediger,	 2010).	 This	 supports	 the	 suggested	
approach	to	Noorloos	et	al.	(2017)	above.		

Connecting	theories	may	contribute	to	“gaining	a	more	applicable	network	of	
theories	 to	 improve	 teaching	 and	 learning	 in	 mathematics	 education”	 (Bikner-
Ahsbahs	&	 Prediger,	 2010,	 p.	 491).	 A	 fundamental	 criterion	 for	 compatibility	 is	 a	
consistency	 between	 frameworks,	 according	 to	 Jungwirth	 (2010).	 Meaning	 that	
there	 is	a	shared	ground	where	concepts	 from	the	 theories	are	not	conflicting	but	
provide	 a	 starting	 point	 for	 data	 analysis	 and	 theory	 development.	 Regarding	 the	
theoretical	underpinnings	of	the	chosen	frameworks:	the	CMR	framework	concerns	
individuals’	 mathematical	 reasoning	 and	 is	 grounded	 in	 social	 constructivism;	
collaborative	processes	view	learning	as	a	social	activity,	and	the	theory	is	grounded	
in	socio-cognitivism	and	exercised	agency,	which	originates	 from	the	sociocultural	
tradition.	 Although	 these	 three	 frameworks	 are	 differing	 in	 their	 theoretical	
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underpinnings,	 they	are	 logically	compatible	when	focusing	on	describing	 learning	
activities	in	cognitive	and	social	terms	(Noorloos	et	al.,	2017).	Thus,	it	is	possible	to	
connect	 the	 frameworks	 for	 the	 purpose	 of	 studying	 both	 individual	 aspects	 of	
interactions,	 such	as	a	student’s	contribution	 through	suggestion	or	disagreement,	
as	well	as	a	group’s	outcome	in	their	shared	solution	procedure.	

2.3 Teacher actions 
Asking	 students	 to	 work	 collaboratively	 on	 mathematical	 tasks	 is	 not	 enough	 to	
provoke	agency	(Mueller	et	al.,	2012).	Students	are	afforded	agency	when	teachers	
attempt	 to	 make	 every	 student	 in	 a	 group	 or	 dyad	 accountable	 for	 their	
mathematical	 ideas	 (Langer-Osuna,	 2018).	 Thus,	 shared	 authority	 is	 distributed	
between	 students	 and	 teachers	 (Langer-Osuna	 et	 al.,	 2020).	 Teachers	 can	 share	
authority,	 allowing	 students	 to	 exercise	 their	 own	 agency,	 by	 offering	 students	
opportunities	 to	address	mathematics	problems	and	holding	students	accountable	
for	their	strategies,	solutions,	and	ideas	(Bell	&	Pape,	2012;	Hamm	&	Perry,	2002,	as	
cited	 in	 Langer-Osuna,	 2018).	 When	 students	 are	 mutually	 engaged	 in	 problem	
solving,	 they	 take	 turns	 suggesting,	 explaining,	 and	 resolving	 misunderstandings,	
thereby	exercising	 shared	agency	while	 co-constructing	arguments	 (Mueller	 et	 al.,	
2012).	

Classroom	situations	where	students	are	afforded	agency	have	the	potential	to	
foster	conceptual	agency	(Cobb	et	al.,	2009),	meaning	students	have	the	opportunity	
to	 construct	 their	 own	meaning	 and	methods	 (Mueller	 et	 al.,	 2012).	 Moreover,	 if	
students	choose	problem	solving	paths	and	connect	mathematical	ideas,	a	teacher	is	
more	 likely	 to	 support	 students’	 mathematical	 learning	 through	 shared	 agency	
(Cobb	 et	 al.,	 2009).	 Thus,	 students	 are	 held	 accountable	 for	 the	 co-constructed	
mathematical	arguments	in	their	reasoning.	However,	students	often	do	not	justify	a	
reasoning	sequence	because	they	feel	it	is	not	necessary	to	convince	anyone	since	a	
textbook	or	a	teacher	should	be	responsible	for	that	(Bergqvist	&	Lithner,	2012).	

In	 classroom	 situations	where	 teachers	 exercise	 authority,	 students	 are	 only	
permitted	to	exercise	disciplinary	agency	(Mueller	et	al.,	2012).	Disciplinary	agency	
is	 a	 concept	 posed	 by	 Pickering	 (1995),	 a	 complementary	 concept	 to	 conceptual	
agency	described	as	“utilizing	established	procedures”	(Mueller	et	al.,	2012,	p.	374).	
Consequently,	in	teacher–student	interactions	with	disciplinary	agency,	a	teacher	is	
responsible	 for	 determining	 the	 validity	 of	 student	 responses	 (Cobb	 et	 al.,	 2009;	
Lithner,	2015).	Therefore,	it	is	important	that	teacher	actions	facilitate	students’	co-
constructed	 arguments	 in	 a	 shared	 agency	 and	 that	 teachers	 are	 knowledgeable	
about	which	actions	to	take	(Maher	et	al.,	2018).	
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The	framework	for	teacher	actions,	called	redirecting,	progressing,	and	focusing	
actions,	 is	both	empirically	and	theoretically	grounded	(Drageset,	2014).	The	three	
main	 categories	 (redirecting,	 progressing,	 and	 focusing)	 elucidate	 tools	 and	
techniques	 teachers	 use	 to	 make	 students’	 thoughts	 and	 strategies	 visible,	 help	
students	progress	 in	their	problem	solving,	and	redirect	students	 in	an	alternative	
direction	(Drageset,	2014).	The	teacher	interactions	may	facilitate	different	types	of	
student	responses	(Drageset,	2015,	2019).	The	main	teacher-action	categories	entail	
13	 subcategories	 (Appendix	 B)	 built	 on	 concepts	 drawn	 from	 theories	 about	
mathematical	 discourse	 grounded	 in	 perspectives	 on	 student-centered	 versus	
teacher-centered	classrooms.	

If	 the	 teacher	 actions	 components	 are	 detailed,	 they	 can	 provide	 greater	
insight	into	how	different	teacher	actions	influence	students’	interactions.	Different	
teacher	 actions	 influence	 students’	 interactions	 when	 they	 collaborate,	 discuss,	
reason	mathematically,	and	take	ownership	of	a	problem.	Although	teacher	actions	
influence	 students’	 collaborative	work,	 they	 are	 also	 shaped	 through	 interactions	
with	students	and	by	 their	methods	of	participation	(Staples,	2007).	This	complex	
relation	 needs	 to	 be	 addressed	 by	 a	 fine-grained	 analytical	 model	 to	 provide	
detailed	 insights	 into	 teachers’	 role	 in	 promoting	 students’	 collaborative	
interactions.	 It	 is	 possible	 to	 investigate	 this	 using	 the	 framework	 provided	 by	
Drageset	(2014)	since	it	separates	teachers’	actions	from	students’	talk	and	actions.	
Paying	 attention	 to	 students’	 specific	 interactional	 aspects,	 as	 emphasized	 above,	
and	specific	teacher	actions	provides	opportunities	to	explore	how	teacher	actions	
are	related	to	students’	interactional	patterns. 

Two	overarching	categories,	funneling	and	focusing	(Wood,	1998),	organize	the	
areas	 of	 teacher	 actions	 in	Drageset’s	 (2014)	 framework.	 If	 a	 teacher	 is	 funneling	
students’	 thinking,	 it	 means	 that	 “the	 student’s	 thinking	 is	 focused	 on	 trying	 to	
figure	 out	 the	 response	 the	 teacher	 wants	 instead	 of	 thinking	 mathematically	
himself”	 (Wood,	 1998,	 p.	 172).	 Thus,	 mainly	 the	 teacher	 is	 doing	 the	 intellectual	
work.	 Redirecting	 and	 progressing	 actions	 are	 primarily	 categories	 of	 funneling	
actions	 in	which	the	teacher	 is	 the	 intellectual	authority.	Drageset	(2014)	explains	
redirecting	 actions	 as	 corrections	 exhibited	 implicitly	 or	 explicitly	 (Alrø	 &	
Skovsmose,	 2002).	 Moreover,	 redirecting	 actions	 are	 categorized	 as	 a	 teacher’s	
attempt	 to	 challenge	 the	 students	 (Drageset,	 2014),	 which	 means	 “questioning	
already	established	knowledge”	(Alrø	&	Skovsmose,	2004,	p.	55).	An	alternative	to	
funneling	 is	what	Wood	(1998)	calls	 focusing,	where	 the	 intellectual	 responsibility	
falls	 on	 the	 students.	 Hence,	 a	 teacher’s	 focusing	 actions	 promoting	 productive	
interactions,	as	previously	reviewed,	concern	facilitating	reasoning	(Ayalon	&	Even,	
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2016;	Lithner,	2017;	Maher	et	al.,	2018),	collaboration	(Howe	et	al.,	2007;	Staples,	
2007;	 van	 de	 Pol	 et	 al.,	 2018),	 and	 agency	 (Langer-Osuna,	 2018;	 Mueller	 et	 al.,	
2012).	

Thus,	Drageset’s	 (2014)	 three	main	categories—redirecting,	progressing,	and	
focusing—	provided	a	useful	approach	to	investigate	opportunities	and	limitations	
of	teacher	actions	for	the	productivity	of	students’	interactional	patterns.	Using	this	
framework,	 with	 its	 13	 subcategories	 (see	 Appendix	 B),	 interpreted	 in	 light	 of	
theories	 on	 teacher	 actions	 for	 the	 emphasized	 interactional	 aspects,	 allowed	 for	
greater	exploration	of	teachers’	guidance	of	student	interactions.	
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3. Methodology  

The	 project	 term	 comprised	 the	 iterative	 design	 steps	 from	 beginning	 to	 end	
through	 collaboration	 with	 the	 teachers,	 classroom	 interventions,	 analysis,	 and	
redesign.	Each	study	represented	part	of	the	overall	project.	The	studies	are	called	
Study	1,	Study	2,	and	Study	3	(see	4.	Summary	of	studies).	

3.1 Design-based research project 
The	 research	 project	 was	 a	 classroom	 study	 of	 student	 interactions	 during	
collaborative	 problem	 solving	 of	 function	 problems	 and	 their	 teachers’	 actions	
related	 to	 promoting	 mathematical	 reasoning	 and	 collaborative	 problem	 solving.	
DBR	 aims	 to	 “improve	 educational	 practices	 through	 iterative	 analysis,	 design,	
development,	 and	 implementation,	based	on	collaboration	among	researchers	and	
practitioners	 in	 real-world	 settings,	 and	 leading	 to	 contextually	 sensitive	 design	
principles	and	theories”	(Wang	&	Hannafin,	2005,	pp.	6-7).	The	key	elements	of	the	
DBR	methodology	guided	the	project	in	the	following	way:	1)	the	basis	of	the	project	
was	a	collaboration	with	teachers	for	a	classroom	study	in	a	naturalistic	setting;	2)	
the	processes	 involved	 iterative	 cycles	of	planning,	observing,	 and	 reflecting	upon	
lessons;	 3)	 the	 outcome	 of	 the	 project	 grew	 out	 of	 the	 iterative	 processes	 of	
analyzing	 student–student	 and	 teacher–student	 interactions	 and	 translating	
findings	 into	 design	 principles	 for	 classroom	 observations	 of	 students’	 creative,	
collaborative	problem	solving	(see	chapter	5).	The	three	areas	of	DBR	are	addressed	
in	greater	detail	in	the	following	paragraphs.	

A	 collaboration	 between	 teachers	 and	 researchers	 is	 a	 useful	 partnership	
when	 conducting	 research	 in	 the	 complexity	 of	 a	 regular	 classroom	 (Anderson	&	
Shattuck,	2012).	The	researcher–teacher	interaction	provides	contextual	sensitivity	
to	the	research	process	and	findings	(Bungum	&	Sanne,	2021).	A	teacher	possesses	
knowledge	of	school	politics,	 the	classroom	culture,	and	his	or	her	students.	Thus,	
teacher	 involvement	and	role	are	therefore	important	in	accounting	for	contextual	
factors	in	design	procedures	or	principles	that	are	likely	to	be	relevant	in	a	similar	
setting	 (Wang	 &	 Hannafin,	 2005).	 A	 researcher	 contributes	 their	 theoretical	
knowledge	 of	 the	 object	 of	 study	 and	 frames	 for	 how	 to	 conduct	 the	 study.	 Thus,	
teachers	 and	 researchers	 often	 have	 different	 roles	 in	 a	 research	 study.	 The	
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researcher	 must	 attend	 to	 balancing	 the	 theoretical	 and	 practical	 aspects	 and	
involving	teachers	and	students	in	the	process	(Wang	&	Hannafin,	2005).	Moreover,	
the	 role	 of	 the	 researcher	 is	 to	 be	 a	 facilitator	 and	 to	 adapt	 to	 the	 participants'	
perspectives,	 beliefs,	 and	 strategies.	 However,	 the	 researcher	 does	 not	 adopt	 the	
participants'	values	nor	impose	their	own	but	considers	others’	input	while	aligning	
and	extending	the	design	process	(Wang	&	Hannafin,	2005).	Iversen	and	Jonsdottir	
(2018)	suggest	that	a	study’s	research	design	should	be	flexible	in	terms	of	teacher	
inclusion	and	 in	which	phases	they	are	 included.	Therefore,	with	the	practical	and	
theoretical	perspectives	being	the	researcher’s	responsibility,	it	is	useful	to	consider	
how	 and	 when	 to	 involve	 teachers	 in	 the	 different	 aspects	 of	 the	 DBR	 process.	
However,	 such	 decisions	 should	 be	 intentional	 to	 avoid	 limiting	 the	 value	 of	 the	
research	outcomes	by	exhibiting	a	possible	lack	of	contextual	sensitivity	(Bungum	&	
Sanne,	2021).	

The	DBR	process	often	starts	with	an	educational	challenge	the	researcher	
seeks	 to	 explore	 (see	 step	 1	 in	 Fig.	 1,	 illustrating	 the	 DBR	 process).	 The	 process	
proceeds	 to	 testing	 possible	 solution	 designs	 through	 a	 tool,	 curricular,	 or	
pedagogical	approach	to	intervene	with	the	identified	challenge	(Vakil	et	al.,	2016).	
The	initial	design,	suggested	in	step	2,	then	evolves	over	time	in	an	iterative	cycle	of	
analysis,	design,	implementation,	and	redesign	in	step	3	(Wang	&	Hannafin,	2005).	
This	 may	 result	 in	 design	 principles	 and	 theorization	 after	 reflections	 and	
discussions	 between	 researchers	 and	 teachers	 in	 Step	 4	 (Anderson	 &	 Shattuck,	
2012).	 The	 identified	 challenge	 in	 the	 present	 research	 project	 started	 by	
emphasizing	 that	 teaching	 and	 learning	 mathematics	 often	 involve	 imitating	
solution	methods	 from	 a	 textbook,	 a	 teacher,	 or	 a	 peer,	 resulting	 in	 rote	 learning	
(Lithner,	 2017).	 Students’	 engagement	 in	 mathematical	 reasoning,	 CMR	 (Lithner,	
2008),	presented	a	potential	solution	to	this	problem.	At	the	time	this	project	was	
conducted,	 limited	 research	 on	 students’	 CMR	 had	 been	 studied	 in	 a	 naturalistic	

	

Fig.	1.	The	iterative	DBR	process	(based	on	Amiel	and	Reeves	(2008,	p.	34))	
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setting	 (Lithner,	 2017).	 Thus,	 the	 starting	 point	 of	 the	 project	 was	 to	 explore	
students’	 CMR	 related	 to	 other	 aspects	 of	 mathematical	 engagement	 for	 learning	
and	understanding.	

DBR	 involves	 collaboration	 and	 context-specific	 iterative	 cycles	 and	 is	
theory	driven	through	a	“dual	commitment	to	theory	refinement	and	local	 impact”	
(Ryu,	2020,	p.	234),	visualized	as	step	4.	Central	in	theory	refinement	is	the	process	
of	generating	design	principles	to	achieve	practice	goals	(Euler,	2017)	(see	Fig.	2	for	
a	visualization	of	the	process).	The	process	begins	with	theory-based	assumptions,	
which	form	principles	to	be	tested	and	further	developed.	The	design	principles	are	
theoretically	anchored	and	further	developed	in	light	of	iterative	analysis	processes.	
Thus,	 design	 principles	 function	 as	 a	 bridge	 between	 scientific	 knowledge	
production,	in	this	case,	the	different	interactional	aspects	and	teacher	actions,	and	a	
defined	practice	goal	(Euler,	2017).	The	practice	goal	in	the	present	project	was	for	
students	 to	 become	 competent	 mathematical	 producers	 through	 collaborative	
creative	reasoning.	

Theory	 generation	 from	 DBR	 studies	 is	 locally	 relevant	 to	 the	 specific	
context.	However,	design	principles	generated	are	also	relevant	outside	a	particular	
classroom	study	if	properly	anchored	in	theoretical	claims	that	go	beyond	the	local	
context	 (Barab	&	Squire,	2004).	The	design	principles	are	prescriptive	 statements	
that	 should	be	 formulated	 as	 explicitly	 as	possible	 to	 achieve	 given	practice	 goals	
(Euler,	2017).	However,	the	design	principles	should	not	only	describe	the	activities	
but	also	“transcend	the	immediate	problem	setting	and	context	to	guide	designers	in	
both	 evolving	 relevant	 theory	 and	 generating	 new	 findings”	 (Wang	 &	 Hannafin,	
2005,	p.	11).	

This	methodological	 perspective	 provided	 the	 structure	 of	 the	 process	 of	
investigating	student–student	interactions	and	student–teacher	interactions,	which	
resulted	in	design	principles	that	are	context-sensitive	and	possibly	relevant	beyond	
the	given	classroom	context	(see	chapter	5).	

	
Fig.	2	A	simplified	example	of	design	principles	as	a	bridge	between	the	theoretical	foundation	and	
a	defined	practice	goal.	
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3.2 Participants and data collection 
The	 data	 collection	 took	 place	 in	 a	 Norwegian	 upper	 secondary	 school	 in	 2017,	
where	 three	 teachers	 and	 their	 mathematics	 classes	 participated	 for	 five	
consecutive	 months	 (August–December).	 The	 participating	 teachers	 and	 students	
were	 informed	 of	 the	 research	 purpose	 and	 gave	 written	 informed	 consent	
according	 to	 the	 ethical	 requirements	 of	 the	 Norwegian	 Research	 Council	 (The	
Research	Council	of	Norway,	2018).	There	were	69	students	in	total	enrolled	in	the	
first	year	of	a	chosen	theoretical	mathematics	program.	Students	were	15–16	years	
old.	

In	 2017,	 when	 the	 research	 project	 was	 conducted,	 Norwegian	 students	
were	showing	weak	performances	in	the	most	basic	areas	of	mathematics:	numbers	
in	 primary	 school	 (age	 6–12)	 and	 algebra	 in	 later	 school	 years	 (Grønmo	 &	 Hole,	
2017).	At	the	time,	the	concepts	of	variables	and	functions	were	first	introduced	to	
Norwegian	students	in	grade	8–10	(age	13–15)	mathematics.2	It	is	now	included	in	
earlier	 years	 and	 explicitly	 as	 a	 competence	 after	 grade	 6	 in	 the	 new	 national	
curriculum:	 “use	variables,	 loops,	 conditions	 and	 functions	 in	 programming	
to	explore	geometric	 figures	 and	 patterns”	 (Utdanningsdirektoratet,	 2019).	
However,	 the	 students	 in	 the	 project	 had	 recently	 transitioned	 from	 grade	 10	 to	
grade	 11	 and	 had	 had	 no	 recent	 teaching	 on	 linear	 functions,	 except	 for	 those	 in	
lower	 secondary	 school.	 Learning	 about	 functions	 is	 important	 for	 connecting	
different	mathematical	ideas	(Michelsen,	2006).	Functions	are	also	a	useful	tool	not	
only	in	school	mathematics	but	also	in	daily	life	for	understanding	models	of	change	
and	 development	 present	 in	 various	 subjects	 and	 in	 media.	 Thus,	 the	 topic	 of	
functions	was	of	interest	to	the	teachers,	suitable	for	the	students’	curriculum,	and	
could	 be	 considered	 an	 important	mathematical	 area	 (Dubinsky	&	Wilson,	 2013),	
yet	 one	 that	 is	 challenging	 for	 students	 to	 understand	 (Best	 &	 Bikner-Ahsbahs,	
2017).	

The	 three	 teachers	 with	 the	 pseudonymized	 names,	 Jacob,	 Lucas,	 and	
Sophie,	had	all	worked	for	several	years	at	the	same	upper	secondary	school.	All	the	
students	were	organized	 in	dyads,	 in	which	 they	worked	and	sat	 in	 the	classroom	
for	the	entire	project	period,	including	times	when	the	researcher	was	not	present.	

	
	
	
	
2	http://timssandpirls.bc.edu/timss2015/encyclopedia/countries/norway/the-mathematics-
curriculum-in-primary-and-lower-secondary-grades/	(retrieved	29.08.2018)	
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In	each	of	the	three	classes,	two	of	the	student	dyads	were	followed	closely	in	some	
of	 the	 problem-solving	 situations	 (see	 section	 3.2.2).	 The	 student	 dyads	 were	 as	
follows:	 Emma	 and	Hannah,	 and	 Sarah	 and	 Ella	 (teacher	 Jacob);	 Philip	 and	Noah,	
and	Leah	and	Isaac	(teacher	Lucas);	Olivia	and	Oscar,	and	William	and	Maja	(teacher	
Sophie).	 All	 student	 pairs	worked	 on	 the	 same	 tasks	 in	 the	 classroom	 during	 the	
project	 period.3.2.1	 Conversations	 with	 the	 teachers	 and	 implementation	 in	 the	
classrooms.	

3.2.1 Conversations with the teachers and implementation in the 
classrooms 

At	the	beginning	of	the	project	design	process,	the	teachers	and	I	held	our	first	of	12	
planned	 conversations	 (see	 Fig.	 3).	 In	 the	 first	meeting,	 I	 presented	 the	 research	
projects,	their	focus,	and	ideas	for	implementation.	We	also	discussed	practicalities	
for	 our	 future	 conversations,	 consent	 forms,	 and	 how	 to	 execute	 the	 video	
recordings.	 We	 agreed	 that	 I	 would	 make	 a	 draft	 outline	 for	 lesson	 planning	
sessions,	 informational	 sessions	 with	 the	 classes,	 and	 classroom	 observation	
sessions	with	and	without	cameras.	Based	on	the	draft,	the	teachers	suggested	dates	
and	times.	The	appointments	were	 flexible.	There	were	12	meetings	during	which	
we	 planned	 lessons	 together	 and	 evaluated	 planned	 function	 problems	 and	 the	
teachers’	 engagement.	We	 ended	with	 individual	 conversations	 by	 addressing	 the	
project	 process	 and	 the	 teachers’	 experiences	with	 it.	 I	 visited	 the	 classrooms	 24	
times	in	total:	six	times	to	video	record	the	entire	classrooms,	nine	times	to	record	
specific	 student	 dyads	 during	 problem	 solving,	 three	 times	 for	 informational	
sessions	with	 the	classes,	 three	 times	to	observe	the	classes	without	cameras,	and	
three	 times	 to	 attend	 their	 mathematical	 test	 and	 observing	 (see	 Fig.	 3	 for	 an	
overview	of	the	timeline).	

All	 the	 talks	 were	 audio	 recorded.	 In	 the	 orientation	 session	 about	 the	
project,	I	posed	some	questions	to	focus	the	teachers’	thoughts	on	student-centered	
classrooms.	For	instance:	What	are	your	experiences	with	engaging	students	to	talk	
about	 mathematics?	 What	 would	 you	 say	 are	 good	 guidelines	 for	 promoting	
collaborative	work	and	mathematical	talk?	After	the	teachers	shared	their	thoughts,	
I	asked	if	they	had	any	questions	about	the	project	and	their	expectations	regarding	
their	participation.	



20	
	

	



21	
	

	

I	deliberately	used	the	word	“mathematical	talk”	in	the	conversation	due	to	
a	previous	conversation	with	Lucas.	I	had	wanted	to	hear	his	opinions	on	the	CMR	
framework	(Lithner,	2008)	and	his	reflections	on	students’	mathematical	reasoning.	
From	the	conversation,	we	agreed	on	addressing	 the	 issue	as	 “mathematical	 talk,”	
since	he	found	the	CMR	framework	difficult	to	discuss.	“Mathematical	talk”	implied	
that	students	being	observed	were	discussing	a	given	task,	a	mathematical	concept,	
or	properties	of	a	solution	procedure.	

In	subsequent	conversations,	we	continued	to	discuss	questions	similar	 to	
the	 initial	 questions	 mentioned	 above.	 At	 the	 same	 time,	 I	 started	 observing	 the	
mathematics	classrooms.	My	observations	of	student	 interactions,	 teacher–student	
interactions,	 and	 whole	 classroom	 talks	 and	 instructions,	 combined	 with	 the	
teachers’	 thoughts	 conveyed	 in	 our	 conversations,	 inspired	 me	 to	 formulate	
conversational	 questions	 related	 to	 the	 practice	 of	 how	 to	 promote	mathematical	
discussions	in	classrooms.	The	questions	focused	on	the	mathematical	problems	the	
students	were	going	to	discuss	in	their	classrooms	as	they	related	to	teacher	actions	
in	 those	 situations.	 The	 five	 practices	 of	 initiating	 mathematical	 discussions,	
suggested	by	Stein	et	al.	 (2008),	 informed	 the	 formulation	of	 the	questions.	These	
practices	were	used	to	guide	the	questions	because	in	observing	the	teachers,	I	had	
noticed	 that,	 in	 advance	 of	 their	 lessons,	 they	 rarely	 reflected	 on	 the	 students’	
answers,	how	students	were	proceeding	in	their	problem	solving,	or	how	students’	
solutions	or	ideas	could	be	connected	to	a	whole	classroom	summary.	I	prepared	the	
following	 questions:	 How	 do	 you	 think	 students	 are	 going	 to	 solve	 this	 problem?	
How	many	ways	of	solving	the	problem	can	we	come	up	with?	When	students	are	
going	 to	work	 together	on	a	problem,	how	can	you	 support	 them	 in	 the	best	way	
possible?	What	kinds	of	mathematical	concepts	do	you	think	the	students	are	going	
to	use?	How	can	you	facilitate	an	expedient	summary	of	students’	solutions?	

I	 experienced	 this	 particular	 conversation	 as	 worthwhile	 because	 the	
teachers	actively	engaged	in	discussing	mathematical	concepts	and	expressed	how	
they	 would	 define	 and	 explain	 them	 to	 their	 students,	 how	 students	 often	
interpreted	 them,	 and	 why	 students	 often	 struggled	 with	 the	 variable	 concept.	
Consequently,	 in	 the	 following	 lessons,	 the	 teachers	 attempted	 to	 ask	 open-ended	
questions	 with	 minimum	 guiding	 intervention.	 Moreover,	 the	 teacher–students	
interaction	 was	 organized	 after	 four	 principles	 of	 orchestrating	 mathematical	
discussions	 (Stein	 et	 al.,	 2008):	 first,	 having	 the	 students	 discuss	 the	 problem	 in	
pairs;	second,	allowing	them	to	develop	their	own	solutions;	and	third	and	 fourth,	
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teachers’	 attempts	 to	 connect	 the	 students’	 solutions	 and	 strategies	 in	 a	 plenary	
conversation	with	the	class.	

In	 the	 project	 design	 process,	 the	 three	 teachers	 and	 I	 planned	 and	
evaluated	 lessons	 to	 introduce	 the	 function	 concept.	 Both	 prior	 to	 and	 after	 the	
planned	lessons,	we	discussed	how	to	assist	and	interact	with	the	students	in	order	
to	 promote	 mathematical	 reasoning	 and	 collaborative	 work.	 Moreover,	 I	
emphasized	 the	 importance	 of	 a	 teacher’s	 role	 in	 the	 classroom	 in	 encouraging	
pairwise	 and	 collective	 mathematical	 discussions.	 The	 role	 of	 the	 teacher	 and	
students’	difficulty	understanding	functions	were	central	conversation	topics	in	the	
iterative	cycle	of	reflection	between	the	teachers.	In	these	reflective	conversations,	
the	 teachers	 reflected	 upon	 their	 role	 as	 initiators	 of	 fruitful	 collaborations	 who	
could	refrain	from	guiding	students	through	a	solution	method	and	instead	let	their	
students	take	responsibility	 for	the	solution	method.	They	expressed	that	this	was	
challenging.	

I	 observed	 the	 mathematics	 classrooms	 both	 with	 and	 without	 video	
cameras,	as	seen	in	Pic.	1.	In	the	last	conversation,	after	two	video-recorded	lessons	
of	 students’	 problem	 solving,	 I	 showed	 the	 teachers	 some	 clips	 of	 the	 teachers’	
interactions	 with	 student	 pairs	 and	 plenary	 discussions.	 The	 video	 clips	
demonstrated	 a	 great	 variation	 in	 the	 student	 interactions	 and	 teacher	 actions	
related	to	the	student	pairs’	attempts	to	solve	the	function	problem	collaboratively.	
Moreover,	 the	 principles	 suggested	 by	 Stein	 et	 al.	 (2008),	 which	 had	 guided	 the	
questions	 in	 previous	 conversations,	 were	 also	 presented	 to	 the	 teachers	 and	
discussed.	These	principles	made	sense	to	the	teachers,	and	they	expressed	a	desire	
to	use	the	principles	in	their	lessons.	

The	four	principles	(Stein	et	al.,	2008)	informed	the	different	focuses	used	
in	watching	the	video	clips	together.	The	first	focus	was	a	mathematical	discussion	
related	to	five	chosen	video	clips,	where	we	discussed	the	following	question:	What	
do	 you	 think	 is	 an	 important	 contribution	 to	 maintain	 or	 initiate	 a	 conversation	
between	 students?	 The	 second	 focus	 was	 a	 whole	 classroom	 mathematical	
discussion	related	to	three	clips,	where	we	discussed	the	following	questions:	When	
you	feel	your	plenary	discussion	is	going	well,	what	do	you	think	characterizes	it?	If	
you	 think	 something	 should	 have	 been	 done	 differently,	 what	 could	 that	 be	 and	
why?	



23	
	

In	 the	 conversations	with	 the	 three	 teachers,	 we	 planned,	 reflected	 upon	
lessons,	adjusted	plans,	and	developed	tasks	and	mathematical	problems	to	discuss	
(see	 section	 3.3).	 The	 twelfth	 and	 final	 conversation	 was	 conducted	 individually	
with	each	of	the	teachers.	They	were	each	invited	to	reflect	on	the	project,	including	
their	experiences	of	the	process	of	facilitating	students’	mathematical	talk,	pairwise	
collaborations,	and	 teacher	actions	 for	 such	situations.	They	had	not	been	used	 to	
organizing	their	classroom	for	this	extensive	focus	on	students’	collaborative	work	
and	 mathematical	 reasoning.	 They	 found	 it	 difficult	 at	 times	 to	 pose	 “good”	 and	
open-ended	 questions	 to	 the	 dyads	 but	 enjoyed	 seeing	 their	 students	 engaged	 in	
mathematical	conversations	and,	 therefore,	expressed	that	 they	would	continue	to	
facilitate	 more	 classroom	 situations	 involving	 collaborative	 mathematics	
discussions.	Their	 overall	 feedback	on	 the	project	was	 a	unified	 expression	of	 the	
usefulness	and	value	for	them	to	discuss	mathematical	concepts	and	the	challenges	
related	to	teaching	and	learning	mathematics	with	a	structured	focus	guiding	their	
conversations.	

3.2.2 Formation of student pairs 
From	the	69	students	in	the	three	classes	studied,	33	pairs	were	formed.	Two	pairs	
did	 not	 consent	 to	 be	 video	 recorded,	 and	 two	 groups	 had	 three	 participants,	
resulting	 in	 31	 groups	 that	 agreed	 to	 be	 video	 recorded.	 The	 student	 pairs	 were	
organized	 according	 to	 the	 following	 criteria:	 1)	 reasoning	 competence,	 2)	
understanding	 of	 functions,	 and	 3)	 likeliness	 to	 engage	 in	 “math-talk”	 with	 one	
another.	The	two	first	criteria	were	based	on	the	students’	scores	on	a	mathematics	

	
Pic.	1.	A	plenary	discussion.	
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test.	 The	 last	 criterion	 was	 based	 on	 conversations	 with	 the	 teachers	 in	
consideration	 of	 criteria	 1	 and	2.	 The	written	 test	 had	 three	main	 tasks.	All	 tasks	
entailed	the	translation	of	one	function	representation	onto	another,	which	required	
the	 students	 to	 justify	 their	 solution	 or	 solution	 strategy	 choice.	 Thus,	 the	 test	
provided	insights	into	students’	mathematical	reasoning,	specifically	focusing	on	the	
use	 of	 variables,	 which	 is	 important	 for	 understanding	 functions	 (Best	 &	 Bikner-
Ahsbahs,	 2017).	 Students’	 translation	 between	 function	 representations	 and	 their	
use	 of	 variables,	 including	 reasoning	 competence,	 was	 categorized	 according	 to	
descriptions	of	the	different	levels	of	function	understanding,	based	on	Gjone	(1997)	
and	Leinhardt	et	al.	(1990).	Students	were	organized	according	to	the	levels	of	their	
test	 results	 as	 low-achievers,	 average	 achievers,	 or	 average-high	 achievers.	 Since	
creating	 homogenous	 pairs	 was	 likely	 to	 increase	 their	 collaborative	 activity	
(Dillenbourg,	 1999),	 student	 dyads	 were	 organized	 within	 the	 same	 level.	 For	
instance,	a	student	categorized	as	an	average	achiever	was	paired	with	a	student	of	
the	same	 level.	 Students’	 test	 results	were	discussed	with	 their	 teachers’	 thoughts	
on	 their	 performance	 on	 previous	 mathematical	 tests.	 However,	 the	 teachers’	
opinions	on	the	pair	constructions	focused	mainly	on	social	aspects,	primarily	how	
likely	 it	 was	 for	 student	 pairs	 to	 be	 comfortable	 talking	 and	 discussing	with	 one	
another.	

Due	 to	 the	practicality	of	 the	 time	allotted	 to	analyze	 the	classroom	video	
recordings	 before	 conversations	 with	 the	 teachers	 and	 the	 limited	 time	 of	 the	
research	 project	 overall,	 two	 pairs	 in	 each	 of	 the	 three	 classrooms	were	 set	 as	 a	
condition.	 For	 an	 in-depth	 analysis	 of	 the	 interactional	 aspects	 of	 students’	
collaborative	 problem	 solving,	 six	 pairs	 were	 chosen.	 The	 six	 pairs	 were	 chosen	
based	on	 the	 three	criteria	above.	Two	aspects	particularly	 stood	out:	1)	 students	
should	 express	 a	 high	 level	 of	 reasoning	 competence,	 which	 means	 that	 they	

	
Pic.	2	A	student	pair	collaborating	on	one	laptop.	

	



25	
	

attempt	to	explain	their	thinking	and	anchor	it	in	mathematics;	and	2)	the	likeliness	
of	the	student	pairs	to	be	verbal	and	share	thoughts	with	one	another.	These	aspects	
were	discussed	with	their	teachers	when	making	the	pairs.	

The	 student	 pairs	 sat	 side-by-side	 behind	 two	 desks	 (see	 Pic.	 2).	 They	
sometimes	collaborated	by	using	a	 shared	 laptop	or	having	a	 laptop	each,	making	
suggestions	 through	 pen	 and	 paper,	 or	 simply	 discussing	 verbally	 without	 any	
physical	 tools.	 All	 student	 pairs	 were	 video	 recorded	 from	 a	 whole	 classroom	
perspective,	 but	 only	 six	 pairs	 were	 recorded	 for	 in-depth	 observations.	 A	 video	
camera	 was	 placed	 beside	 each	 of	 the	 six	 pairs,	 capturing	 their	 upper	 body.	 The	
students’	 laptop	 screens	 faced	 toward	 them	and	were	 therefore	not	 visible	 to	 the	
camera	 (see	 Pic.	 2).	 All	 student	 pairs	worked	 on	 the	 same	 tasks	 in	 the	 classroom	
during	 the	 time	 of	 the	 study.	 Furthermore,	 students	were	 kept	 in	 the	 same	 pairs	
during	the	five-month	project	period.	

Two	out	of	six	student	pairs	did	not	engage	in	sharing	their	thoughts	with	
one	 another,	 and	 therefore	 their	 conversations	 were	 not	 productive	 in	 terms	 of	
collaborative	problem	solving	and	mathematical	reasoning.	The	other	four	student	
pairs	 interacted	 with	 one	 another	 through	 collaborative	 processes	 with	
mathematical	 reasoning.	 Thus,	 the	 final	 sample	 consisted	 of	 four	 student	 pairs,	
totaling	 eight	 students,	 who	 helped	 to	 shed	 light	 on	 how	 different	 collaborative	
interactions	are	 intertwined	 in	students’	building	of	a	shared	understanding	when	
attempting	to	solve	linear	function	problems	together.	

3.3 The linear function problems 

3.3.1 Linear functions in school mathematics 
The	function	concept	can	be	referred	to	in	different	ways.	It	is	a	dynamic	mechanism	
that	performs	transformation	through	input	and	output,	 it	reflects	the	relationship	
between	 two	 variables,	 and	 it	 can	 also	 function	 as	 the	 rule	 of	 correspondence	
between	 two	 sets	 (Malik,	 1980).	 Thus,	 the	 function	 concept	may	 be	 explained	 in	
various	ways	according	to	different	representations.	

Students	 struggle	 to	understand	what	 is	 similar	 and	different	 about	 these	
various	representations	and	how	they	are	connected	(Akkoç	&	Tall,	2005;	Clement,	
2001;	 Dubinsky	 &	 Wilson,	 2013;	 Leinhardt	 et	 al.,	 1990;	 Thompson,	 1994).	 If	
students	view	the	representations	only	as	separate	entities,	their	view	of	functions	
becomes	 fragmented	 (Best	 &	 Bikner-Ahsbahs,	 2017).	 To	 overcome	 fragmented	
views	 and	 to	 become	 flexible	 in	 their	 understanding	 and	 usage	 of	 the	 function	
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concept	 and	 its	 representations,	 students	need	underlying	algebraic	knowledge	of	
variables	(Leinhardt	et	al.,	1990;	Lepak	et	al.,	2018).	

Variables	 in	school	mathematics	are	often	seen	as	 letters	 to	operate	on	 in	
the	derivation	of	an	expression,	for	example.	Variables	have	different	meanings	for	
different	 uses	 (Usiskin,	 1988),	 such	 as	 in	 a	 formula	 (e.g.,	𝐷	 = 	𝑆	 ∙ 	𝑇),	 where	 the	
variables	 are	 quantities	 reflect	 distance,	 speed,	 and	 time;	 or	 in	 an	 equation	 (e.g.,	
36	 = 	6𝑥),	 where	 the	 goal	 is	 to	 find	 the	 unknown	 value	 𝑥.	 Yet	 another	 example	
could	be	the	function	𝑦	 = 	𝑚𝑥	 + 	𝑏.	The	algebraic	expression	of	a	linear	function	is	
a	pattern	of	variables	and	a	formula,	which	can	be	challenging	for	students	(Usiskin,	
1988).	

In	order	to	substitute	numbers	for	slope	number	and	y-intercept	(constant),	
students	must	understand	several	elements	in	the	algebraic	function	representation.	
First,	even	though	𝑦	and	𝑥	are	often	used	as	unknowns,	not	all	variables	require	you	
to	search	for	unknowns.	Second,	it	is	important	to	understand	which	of	the	letters,	
𝑚,	𝑥,	or	𝑐,	is	the	argument.	Third,	𝑦	and	𝑥	can	be	used	as	unknowns	when	finding	𝑚	
by	using	one	pair	of	numbers	but	return	to	not	being	unknowns	when	finding	𝑏.	

Many	 students	 struggle	 to	 map	 the	 construct	 of	 one	 representation	 onto	
another	representation	(Adu-Gyamfi	et	al.,	2012).	Being	able	to	see	the	function	as	a	
representation	of	an	algebraic	expression	transformed,	for	instance,	into	a	graph,	is	
a	 manner	 of	 translation	 (Leinhardt	 et	 al.,	 1990).	 Therefore,	 considering	 different	
aspects	 of	 variables,	 distinguishing	 between	 different	 types	 of	 functions	 (Best	 &	
Bikner-Ahsbahs,	 2017),	 and	 connecting	 function	 representation	 by	 translation	
(Akkoç	 &	 Tall,	 2005)	 are	 all	 important	 pathways	 to	 learning	 about	 the	 function	
concept.	Further,	students’	exploration	of	function	problems	together	can	contribute	
to	 the	 development	 and	 demonstration	 of	 their	 knowledge	 about	 functions,	
connections	between	quantities,	and	different	representations	of	these	relationships	
(Lepak	et	al.,	2018).	

3.3.2 Three function problems 
The	 planned	 function	 problems	 were	 designed	 to	 emphasize	 mathematical	
reasoning	and	non-routine	solving	of	tasks,	where	the	problem-solving	struggle	was	
intended	 to	 be	more	 like	 a	 challenge	 rather	 than	 an	 obstacle	 (Hiebert	 &	 Grouws,	
2007;	 Lithner,	 2017;	 Stein	 et	 al.,	 2008).	 This	 is	what	Hiebert	 and	 Grouws	 (2007)	
identify	as	a	productive	struggle.	A	productive	struggle	is	a	problem-solving	process	
beneficial	 for	 students	 when	 learning	 new	 concepts	 (Granberg,	 2016).	 When	
students	are	presented	with	new	concepts,	mathematical	 ideas,	or	problems	 to	be	
solved,	 it	 should	 be	 a	 task	 that	 is	 simultaneously	 “within	 reach”	 and	 challenging,	
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meaning	that	there	is	something	new	to	figure	out	(Hiebert	&	Grouws,	2007).	During	
the	project,	three	main	function	problems	were	given	to	the	students.	However,	only	
two	(see	Fig.	4	and	Fig.	6)	of	the	three	problems	were	presented	in	the	case	studies	
because	they	facilitated	the	richest	conversations.	 In	these	conversations,	students	
more	often	anchored	 their	 arguments	 in	mathematical	properties	 (Lithner,	2017),	
such	as	the	slope	number	being	a	varying	parameter.	Students	also	more	frequently	
engaged	in	all	of	the	collaborative	processes	of	building,	monitoring,	and	repairing	
their	 shared	 understanding	 (Roschelle	&	Teasley,	 1995).	 The	 second	 problem	did	
not	 present	 a	 productive	 struggle	 for	 the	 students	 and	 thus	 presented	 limited	
opportunities	 to	 study	 the	 interplay	 of	 interactional	 aspects	 in	 students’	 problem	
solving.	

Another	design	aspect	of	the	function	problems	was	the	use	of	the	dynamic	
software	program	GeoGebra.	This	was	presented	 to	 the	 students	 as	 a	 tool	 to	help	
them	in	their	explorations	of	 ideas.	To	facilitate	a	collaborative	setting	while	using	
GeoGebra,	students	worked	in	dyads	on	one	laptop	and	were	encouraged	to	employ	
GeoGebra	in	their	problem	solving.	

GeoGebra	 provides	 tools	 to	 create,	 manipulate,	 and	 control	mathematical	
content,	which	 allows	 students	 to	 investigate	mathematical	 relations	 (Granberg	&	
Olsson,	 2015;	Hall	&	 Chamblee,	 2013).	 Thus,	 linear	 function	 problems	 present	 an	
opportunity	 to	 investigate	 varying	 parameters	 of	 the	 slope	 number	 and	 the	
constant.	 Changing	 an	 algebraic	 expression	 may	 cause	 GeoGebra	 to	 change	 the	
related	graphical	representation	dynamically	(Preiner,	2008).	Students	thus	receive	
rapid	 feedback	 on	 performed	 actions,	 inputs,	 and	 changes	 in	 GeoGebra.	However,	
GeoGebra	does	not	interpret	the	generated	information.	Therefore,	students	have	to	
make	 sense	 of	 dynamic	 changes	 between	 different	 linear	 representations.	 Olsson	
(2018)	found	that	students	who	successfully	solved	a	task	with	GeoGebra	used	the	
given	feedback	extensively	and	engaged	in	reasoning.	

During	the	project	period,	students	were	presented	with	several	“math-talk	
tasks”	 during	 their	 regular	 lessons.	 However,	 to	 allow	 for	 a	 detailed	 study	 of	
students’	 interactional	 patterns,	 three	 linear	 function	 problems	 were	 given	
particular	 attention.	 Students	 received	 suggestions	 or	 explicit	 directions	 to	 use	
GeoGebra	as	a	tool	in	their	problem	solving.	The	three	function	problems	that	were	
video	recorded	are	presented	below.	They	are	ordered	according	to	the	timeline	of	
the	study.	
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The	 first	presented	problem	(Fig.	4)	had	previously	and	successfully	been	
tested	for	a	similar	purpose	at	another	school	(Olsson,	2018).	The	focus	of	the	first	
function	problem	was	translation	between	algebraic	and	graphical	representations,	
and	 it	 emphasized	 the	 importance	 of	 variables	 for	 understanding	 the	 function	
concept.	In	order	to	formulate	a	rule	for	a	pair	of	perpendicular	lines,	students	had	
to	engage	in	a	generalization	process	in	which	they	used	patterns	identified	in	their	
findings	 to	 determine	 the	 general	 relationship	 between	 two	 linear	 functions.	 The	
first	 function	 problem	 generated	 the	 most	 fruitful	 conversations,	 including	 the	
sharing	of	ideas,	negotiations	for	how	to	progress,	and	actions	for	testing	ideas	out	
in	GeoGebra.	

The	second	problem	(Fig.	5)	was	designed	by	the	teachers	to	be	a	function	
problem	that	promoted	CMR	(Lithner,	2017)	and	a	productive	struggle	(Hiebert	&	
Grouws,	 2007).	 The	 tasks	 invited	 students	 to	 explore	 properties	 with	 quadratic	
functions	through	algebraic,	graphical,	and	possibly	table	representations.	Students	
engaged	 in	 solving	 the	 tasks,	 but	 there	 was	 little	 discussion	 or	 sharing	 of	 ideas.	
Students	 primarily	 guessed	 and	 checked	 their	 answers	with	 the	 use	 of	 GeoGebra.	
Thus,	 this	 problem	 was	 not	 used	 in	 the	 case	 studies	 exploring	 the	 interplay	 of	
different	interactional	aspects.	However,	the	absence	of	mathematical	reasoning	and	
collaborative	 processes	 used	 in	 this	 problem	 highlights	 the	 importance	 of	 task	
design	for	promoting	CMR.	

	
Fig.	4.	The	first	function	problem	(reformulated	from	Olsson	(2018))	
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In	 a	 follow-up	 conversation	 with	 the	 teachers	 about	 the	 second	 function	
problem,	they	highlighted	a	few	issues	which	were	problematized	and	reflected	on.	
First,	 the	students	did	not	have	terminology	for	a,	b,	and	c	 (see	Fig.	5),	which	may	
have	made	 it	 difficult	 to	 discuss	 the	 task.	 In	 the	 first	 function	 problem,	 students	
knew	the	mathematical	concepts	𝑚	and	𝑐,	which	may	have	made	it	easier	to	discuss	
a	 “tangible	 concept,”	 as	 suggested	 by	 Lucas.	 Second,	 students	 did	 not	 see	 that	
“graphs	 and	 equations	 are	 two	 sides	 of	 a	 coin,”	 as	 Jacob	 explained	 it.	 Thus,	 they	
found	 it	hard	 to	 translate	between	 the	algebraic	and	graphical	 representation	and	
see	 the	 connection.	 Third,	 students	 had	 not	 yet	 connected	 function	 values	 and	
coordinates.	 This	 last	 issue	 initiated	 a	 conversation	 on	 variables	 in	 which	 Lucas	

Task	1	
The	graph	of	the	function	𝑓(𝑥) = 𝑎𝑥! + 𝑏𝑥 + 4		has	the	roots	𝑥	 = −1	and	𝑥 = 4.		
Decide	a	and	b	graphically	with	help	of	GeoGebra.	
Task	2	
The	graph	of	the	function	𝑔(𝑥) = 𝑎𝑥! + 𝑏𝑥 + 1		goes	through	the	point	(−1,−2)	and	
(4, −7).	
Decide	a	and	b	graphically	with	help	of	GeoGebra.	
Decide	a	and	b	by	calculations.	
Task	3	
The	graph	of	the	function	ℎ(𝑥) = 𝑎𝑥! + 𝑏𝑥 + 𝑐	is	shown	under:	

	
Decide	a,	b	and	c	by	calculations.	
Fig.	5.	The	second	function	problem.	
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highlighted	that	this	was	a	difficult	concept	for	students	to	understand.	The	teachers	
reported	 that	 these	 issues	 provided	 insights	 into	 students’	 difficulties	 with	 the	
function	 concept,	 which	 were	 valuable	 to	 their	 future	 planning	 and	 reflecting	 on	
students’	thinking.	

The	 third	 function	 problem	 (Fig.	 6)	 had	 previously	 and	 successfully	 been	
tested	 for	 a	 similar	 purpose	 at	 another	 school	 (Granberg	 &	 Olsson,	 2015).	 This	
function	 problem	 was	 a	 continuation	 of	 the	 first	 function	 problem.	 In	 the	 last	
problem	students	were	given,	 students	had	 to	 find	 (or	 remember)	 the	 connection	
between	perpendicular	lines	and	then	form	a	square	by	finding	a	constant	number	
to	the	different	linear	functions.	Thus,	this	task	invited	students	to	connect	algebraic	
representation	and	graphical	representation.	

The	video	recordings	of	the	first	two	problems	were	executed	successfully.	
However,	one	teacher	did	not	have	time	for	the	final	round	of	video	observations	of	
the	third	function	problem	due	to	a	test,	and	I	experienced	technical	problems	with	
the	 video	 recording	memory	 cards.	 Consequentially,	 there	was	minimal	 recording	
resulting	in	 less	data	on	the	third	function	problem	compared	to	recordings	of	the	
other	two	function	problems.	

3.4 Data analysis  
The	focus	areas	of	student	interactions	were	collaborative	processes,	mathematical	
reasoning,	and	exercised	agency	connected	to	teacher	actions	when	solving	function	
problems.	 These	 foci	 were	 developed	 through	 conversations	 with	 the	 teachers,	
combined	with	literature	on	students’	collaborative	work,	difficulties	with	functions,	
and	 mathematical	 reasoning,	 and	 review	 and	 analysis	 of	 the	 classroom	 video	
recordings.	

	
Fig.	6.	The	third	function	problem	based	on	Granberg	and	Olsson	(2015)	
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The	 data	 analysis	 was	 an	 iterative	 process	 that	 started	 with	 preliminary	
findings	 seen	 in	 a	 particular	 student	 pair,	 Philip	 and	 Noah,	 whose	 method	 of	
interaction	was	particularly	strong	compared	to	the	other	pairs.	The	two	following	
sections	 explain	 the	 data	 analysis	 procedure	 used	 to	 analyze	 the	 student–student	
interactions	and	teacher–student	interactions.	

3.4.1 Data analysis of students’ creative collaborative interactions 
The	 video	 recordings	 of	 students’	 problem	 solving	 showed	 students’	 dialogue,	
gestures,	 and	 computer	 interactions.	 These	 were	 approached	 using	 a	 deductive	
analytical	strategy	(Yin,	2014)	in	which	video	excerpts	were	identified	and	selected	
for	 further	 systematic	 sampling	 in	 light	 of	 the	 research	 questions	 (Derry	 et	 al.,	
2010).	 With	 a	 strong	 orienting	 theoretical	 foundation	 and	 research	 aim	 (i.e.,	
studying	student	 interactional	patterns	and	related	teacher	actions),	 the	deductive	
approach	 was	 useful	 in	 choosing	 suitable	 video	 excerpts	 to	 analyze.	 Appendix	 A	
presents	 the	 coding	 framework	 used	 to	 analyze	 the	 three	 interactional	 aspects:	
CMR,	collaborative	processes,	and	exercised	agency.	

The	 video	 recordings	 were	 viewed	 multiple	 times.	 The	 first	 step	 of	 the	
analysis	was	 denoting	 sequences	 in	which	 students	 often	made	 justifications	 and	
explanations	 anchored	 in	mathematical	 properties	 as	 creative	 reasoning	 (Lithner,	
2017).	 These	 sequences	were	 considered	 “critical	 events”	 to	 be	 further	 examined	
(Powell	 et	 al.,	 2003)	 due	 to	 the	 inherent	 learning	 opportunities	 presented	 by	
reasoning	creatively	about	functions	(e.g.,	Granberg	&	Olsson,	2015;	Lithner,	2017;	
Olsson,	2018).	Students’	reasoning	was	coded	after	Lithner’s	(2017)	 framework	of	
creative	and	imitative	reasoning.	

To	 categorize	 students’	 CMR,	 three	 criteria	 in	 the	 framework	 had	 to	 be	
fulfilled	(Lithner,	2017).	First,	creativity:	the	students	created	a	reasoning	sequence	
not	experienced	previously	or	re-creating	a	 forgotten	one.	Second,	plausibility:	 the	
students	 presented	 arguments	 that	 supported	 the	 strategy	 choice	 or	 strategy	
implementation	 that	 explained	why	 the	 conclusions	were	 true	or	plausible.	Third,	
anchoring:	 the	 students’	 arguments	 were	 anchored	 in	 the	 intrinsic	 mathematical	
properties	of	the	components	of	the	reasoning.	Arguments	were	considered	intrinsic	
if	they	were	based	on	mathematical	concepts	or	relations	and	superficial	if	based	on	
appearance	and	not	on	underlying	mathematics.	

Students’	 CMR	 sequences	 were	 further	 transcribed,	 and	 each	 turn-taking	
utterance	was	written	down.	The	second	step	of	 the	analysis	was	coding	students’	
utterances	and	actions	with	respect	to	collaborative	processes	(Roschelle	&	Teasley,	
1995).	 Development	 of	 a	 shared	 understanding	 started	 with	 the	 collaborative	
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process	 of	 building:	 suggesting,	 accepting,	 and	 agreeing	 upon	 an	 idea	 to	 solve	 a	
problem.	 The	 collaborative	 process	 of	 monitoring	 was	 categorized	 as	 asking	
questions	 or	 explaining	 an	 idea	 when	 observing	 and	 trying	 to	 understand	 each	
other’s	 interpretations	 of	 a	 problem.	 If	 the	 suggestions	 or	 explanations	 conflicted	
with	 a	 peer’s	 understanding	 of	 the	 shared	 understanding,	 a	 state	 of	 collaborative	
repairing	was	categorized	as	negotiating	and	correcting	conflicting	 interpretations	
using	justifications	and	counter-suggestions.	

The	 third	 step	 in	 the	 analytical	 process	 was	 to	 provide	 rich	 descriptions	
(Powell	 et	 al.,	 2003)	 of	 the	 pairs’	 collaboration	 and	 reasoning	 within	 their	 CMR	
sequences.	The	descriptions	of	students’	CMR,	collaborative	processes,	and	the	ways	
in	which	they	participated	in	their	dyads	made	it	possible	to	characterize	students’	
agency	 in	 their	 conversations	 as	 primary,	 secondary,	 or	 shared	 (Mueller	 et	 al.,	
2012).	 First,	 a	 description	 of	 how	 the	 students	 interacted	 when	 engaged	 in	
reasoning,	 concerning	 how	 they	 attempted	 to	 engage	 with	 one	 another,	 was	
developed.	If	students	constructed	a	solution	sequence	where	they	connected	ideas	
and	 thoughts	 to	 make	 a	 shared	 understanding	 of	 the	 current	 situation,	 it	 was	
recognized	 as	 shared	 agency.	 If	 students	 engaged	 individually,	 clearly	 having	
different	 roles	 when	 suggesting	 ideas	 or	 explaining	 thoughts,	 their	 agency	 was	
recognized	 as	 primary	 or	 secondary.	 After	 characterizing	 students’	 interactions,	 it	
was	 possible	 to	 describe	 students’	 typical	 roles	 in	 their	 engagement	 connected	 to	
how	they	reasoned	about	 linear	 functions	and	the	ways	they	collaborated	to	solve	
the	given	task.	

3.4.2 Data analysis of teachers’ actions 
After	 several	 rounds	 of	watching	 and	 coding	 students’	 interactions,	 the	 focus	was	
broadened	 to	 include	 how	 teacher	 actions	 promoted	 productive	 student	
interactions.	Thus,	 “critical	 events”	were	 identified	 in	 the	 recordings	based	on	 the	
following	criteria:	1)	the	dyads	had	some	form	of	 interaction,	characterized	by	the	
three	emphasized	aspects	(see	section	3.4.1),	and	2)	teacher	interactions	were	tied	
to	these	sequences.	Four	dyads	fulfilled	these	criteria,	and	each	pair’s	work	with	the	
given	problem	and	the	 interactions	 they	had	with	 the	 teacher	 in	 the	process	were	
transcribed	and	coded.	The	teachers’	interactions	with	the	dyads	were	coded	using	
the	coding	scheme	presented	in	Table	2	(see	Appendix	B).	These	codes	were	based	
on	 Drageset’s	 (2014,	 2019)	 framework	 for	 redirecting,	 progressing,	 and	 focusing	
teacher	 actions	 but	 were	 slightly	 revised	 through	 an	 iterative	 coding	 procedure	
between	 the	 data	 set	 and	 the	 theoretical	 framework.	 Table	 2	 shows	which	 codes	
were	based	on	the	original	framework	and	which	ones	were	added	or	revised.	The	
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following	 paragraphs	 outline	 Drageset’s	 framework,	 starting	 with	 the	 funneling	
actions	of	redirecting	and	progressing	and	then	the	focusing	actions	(focusing).	

A	 typical	redirecting	 teacher	comment	 is	 to	discard	a	student’s	suggestion	
or	comment;	this	is	referred	to	as	putting	aside	in	the	coding.	With	such	an	action,	a	
teacher	is	not	providing	help	with	a	presumably	pressing	question	or	challenge.	The	
second	redirecting	action,	advising	a	new	strategy,	means	that	a	teacher’s	comment	
suggests	 an	 alternative	 approach	 or	way	 of	 thinking	 to	 solve	 a	 problem.	 The	 last	
redirecting	action	is	correcting	questions,	in	which	a	teacher’s	question	aims	to	move	
a	 student’s	 focus	 to	 another	 approach.	 In	 summary,	 redirecting	 actions	 are	 a	
teacher’s	strategy	for	shifting	attention	to	something	else.	

In	line	with	the	funneling	of	actions,	a	teacher	may	aim	to	move	a	problem-
solving	 process	 forward.	 Drageset	 (2014)	 explains	 four	 actions	 for	 attempting	 to	
guide	students’	progress.	Open	progress	details	reflect	teachers’	open	questions	with	
possibilities	 for	 several	 answers	 concerning	 students’	 progress	 toward	 solving	 a	
problem.	This	action	 includes	questions	on	how	to	do,	how	to	think,	how	to	solve,	
and	how	to	generalize	patterns.	Thus,	an	open	progress	action	aims	to	“[move]	the	
process	forward,	but	without	pointing	out	the	direction”	(Drageset,	2014,	p.	16).	In	
contrast,	closed	progress	details	concern	“how”	(How	many?	How	large?	How	much?	
How	big?	How	should	we	do	 it?)	and	“what”	(What	will	 it	become?	What	shall	we	
write?	 What	 is	 it?	 What	 should	 we	 do?)	 questions.	 Questions	 typically	 request	
details	 needed	 to	 move	 the	 process	 forward,	 connected	 to	 steps	 in	 a	 procedure	
(Lithner,	2008).	These	details	can	be	process	answers	(one	step	at	a	time)	or	details	
about	how	the	process	should	proceed	to	reach	the	answer.	

Another	 aspect	 of	 a	 teacher	 action	 that	 attempts	 to	 move	 the	 process	
forward	 is	 a	 simplification	 of	 the	 task	 at	 hand.	 To	 simplify	 a	 task,	 a	 teacher	may	
change	or	add	 information,	 tell	students	how	to	solve	 it,	or	give	hints	 to	make	the	
task	easier	(Wood,	1998).	Teachers	typically	pull	students	toward	the	solution	(the	
Topaze	 effect,	 cited	 in	 Brousseau,	 2006):	 “It	 often	 seems	 that	 this	 involvement	 is	
meant	to	ensure	the	progress	of	the	class	and	sometimes	these	comments	appear	to	
come	as	a	consequence	of	a	halted	progress.	Many	of	 the	simplification	comments	
could	also	be	characterized	as	hints”	(Drageset,	2014,	p.	15).	

The	last	progress	action	is	demonstration.	A	teacher	typically	demonstrates	
how	 to	 solve	 the	 problem	 or	 shows	 students	 every	 step	 in	 a	 procedure.	 It	 is	
primarily	a	monologue	given	by	a	teacher	that	is	occasionally	broken	if	students	ask	
questions	or	if	the	teacher	asks	students	whether	they	understand	or	agree.	

Further,	 Drageset	 (2014)	 divides	 focusing	 teacher	 actions	 (Wood,	 1998)	
into	two	categories:	request	for	student’s	input	and	pointing	out.	A	teacher	may	ask	
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for	a	student’s	input	by	asking	them	to	enlighten	details,	provide	 justification,	apply	
to	 similar	problems,	 or	request	assessment	 from	other	 students.	These	 concepts	are	
related	 to	 what	 Franke	 et	 al.	 (2007)	 expressed	 as	 access	 to	 student	 thinking.	 If	
teachers	 ask	 students	 to	 enlighten	 details,	 they	 want	 them	 to	 explain	 what	
something	 means	 or	 how	 something	 happens.	 Typically,	 details	 are	 brought	 into	
focus.	If	a	teacher	asks	a	student	to	provide	justification	(Cengiz	et	al.,	2011),	it	is	a	
request	for	a	more	thorough	explanation,	often	to	validate	why	the	answer	found,	or	
the	method	used,	is	right.	

Another	approach	 focusing	on	 students’	 thinking	 is	when	a	 teacher	points	
out	 something.	 Subcategories	 include	 recapping	 and	 noticing.	 The	 purpose	 of	
recapping	 is	 to	 merge	 information	 to	 clarify	 important	 elements	 in	 a	 student’s	
explanations.	Moreover,	a	teacher	can	repeat	a	student’s	answer	with	the	purpose	of	
confirming	 or	 ending	 dialogue	 or	 sometimes	 adding	 information	 to	 an	 answer.	 A	
noticing	action	(Cengiz	et	al.,	2011)	is	when	a	teacher	highlights	particular	aspects,	
concepts,	or	details	he	wants	to	make	a	student	aware	of.	Other	aspects	of	noticing	
include	reminding	students	of	new	or	previous	information	and	adding	information.	

3.5 The quality of the research project 
Data	 in	 qualitative	 research	 is	 context-dependent,	 and	 interpretations	 are	
subjective,	although	theoretically	anchored.	Presmeg	and	Kilpatrick	(2019)	say	that	
criteria	 for	 judging	 the	 quality	 of	 mathematics	 education	 research,	 which	 were	
formulated	 in	 the	 early	 era	 of	 the	 field	 (e.g.,	 Hart	 1993,	 Lester	 &	 Cooney,	 1994,	
Kilpatrick	&	Sierpinska,	1993),	comprising	timeless	elements	for	scientific	endeavor.	
However,	 there	 are	 many	 different	 terms	 and	 strategies	 used	 by	 researchers	 to	
evaluate	 the	“accuracy”	of	 the	chosen	data,	utilized	methods,	and	 interpretation	of	
the	 data	 (Cresswell,	 2007).	 A	 validation	 strategy	 suggested	 by	 Sierpinska	 (1993)	
comprises	 eight	 strategies:	 relevance,	 validity,	 objectivity,	 originality,	 rigor	 and	
precision,	predictability,	reproducibility,	and	relatedness.	Other	identified	elements,	
which	 are	 similar	 to	 these,	 include	 worthwhileness,	 goodness	 of	 fit;	 competence,	
openness,	 and	 credibility	 (of	 the	 researcher);	 and	 lucidity,	 conciseness,	 and	
originality	(called	intangible	qualities)	(Presmeg	&	Kilpatrick,	2019).	

The	quality	of	the	present	research	project	can	be	evaluated	by	considering	
several	of	the	above-mentioned	terms.	First,	a	study	must	have	“value”	for	informing	
and	improving	educational	practices	(Howe	&	Eisenhart,	1990).	Hence,	a	“so	what?”	
question	should	be	asked	about	a	research	project’s	aim	and	findings.	In	this	way,	a	
research	 project’s	 relevance	 or	 worthwhileness	 can	 be	 made	 clear	 (Presmeg	 &	
Kilpatrick,	 2019;	 Sierpinska,	 1993).	 There	 is	 a	 need	 for	 knowledge	 on	 how	 to	



35	
	

facilitate	 productive	 student	 interactions	 (Langer-Osuna	 et	 al.,	 2020)	 in	
collaborative	mathematical	reasoning	(Erath	et	al.,	2021).	A	particular	focus	that	has	
been	previously	highlighted	as	requiring	 further	exploration	 is	students’	dynamics	
in	mathematical	collaborations	(Seidouvy	&	Schindler,	2019;	van	de	Pol	et	al.,	2018;	
Varhol	et	al.,	2020).	The	three	studies	contained	in	this	project	emphasize	that	the	
following	 interactional	 aspects	 comprise	 important	 processes	 for	 collaborative	
mathematical	 problem	 solving:	 1)	 CMR	 facilitates	 in-depth	 learning	 in	 contrast	 to	
rote	 learning;	 2)	 engagement	 in	 different	 collaborative	 processes	 means	 that	
students	get	to	suggest,	explain,	and	defend	mathematical	 ideas,	according	to	their	
methods	 of	 participation	 (their	 exercised	 agency).	 The	 interwovenness	 of	 these	
aspects	 emphasize	 the	 complexity	 of	 student	 interactions.	 A	 mathematical	
competency	comprises	connections	of	skills,	knowledge	about	the	competency,	and	
the	 ability	 to	 use	 the	 skills	 (Gresalfi	 et	 al.,	 2009;	 Niss,	 2003;	 Sun	 et	 al.,	 2020).	
Therefore,	mathematical	competency	 is	suitable	and	useful	 to	encompass,	explore,	
and	the	complexities	with	productive	student	interactions.	

The	 present	 research	 project	 was	 design-based	 and	 focused	 on	 students’	
interactions,	 teacher–student	 interactions,	 and	 students’	 potential	 learning	
outcomes	when	 interacting.	The	process	of	 the	project	 comprised	 iterative	design	
steps	of	analysis	and	interpretation,	collaboration	with	the	teachers,	and	classroom	
interventions.	The	outcome	of	the	iterative	processes	of	analyzing	student–student	
and	teacher–student	interactions	were	design	principles	for	classroom	observations	
of	 students’	 creative,	 collaborative	 problem	 solving	 (see	 chapter	 5).	 Design	
principles	 in	 DBR	 can	 be	 tools	 or	 conceptual	 models	 which	 guide	 and	 inform	
practices	and	research	(Wang	&	Hannafin,	2005).	The	suggested	design	principles	in	
this	 research	 project	 may	 impact	 our	 understanding	 of	 productive	 student	
interactions	 in	 mathematical	 problem	 solving	 and	 potentially	 influence	 teaching	
practices	through	awareness	of	indicators	for	productive	mathematical	interactions.	
Thus,	 this	 research	 project	 is	 anchored	 in	 cognitively	 relevance,	 as	 it	 deepens	 our	
understanding	of	a	learning	and	teaching	phenomenon,	and	pragmatically	relevance,	
as	it	may	impact	teaching	practices	(Sierpinska,	1993).	

Second,	another	quality	criterion	is	the	validity	of	the	research	project.	The	
validity	 often	 refers	 to	 the	 “thing”	 that	 is	 to	 be	 investigated,	 whereas	 validation	
refers	 to	 the	 investigation	 of	 a	 process	 (Newton	&	 Shaw,	 2014).	 Another	 suitable	
term	 for	 validation	 of	 the	 research	 project	 is	goodness	 of	 fit,	which	 concerns	 “the	
suitability	 of	 choices	 regarding	 theory,	 the	 broad	 umbrella	 of	 methodology,	 and	
specific	methods	of	data	collection	and	analysis	within	this	methodology”	(Presmeg	
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&	Kilpatrick,	2019,	p.	350).	The	suitability	of	the	theoretical	choices	was	addressed	
above	and	in	section	2.2.	

In	summary,	three	frameworks	were	chosen	to	study	student	 interactions.	
The	 reasons	 for	 selecting	 these	 particular	 frameworks	 included	 the	 research	
questions	 and	 aims,	 interpretations	 of	 the	 video	 data,	 and	 the	 comprehensive	
iterative	processes	of	the	project.	Regarding	these	areas,	choices	were	made	based	
on	what	I	observed	in	the	video	recordings	and	my	conversations	with	the	teachers.	
Thus,	subjectivity	needs	to	be	considered	in	this	qualitative	research.	If	I	had	chosen	
different	 frameworks	to	study	student	 interactions	and	teacher	actions,	something	
else	might	have	been	observed	 in	 the	 first	 iterative	process,	 and	 thus,	 the	project	
could	 have	 taken	 other	 iteration	 paths.	 Moreover,	 including	 other	 interactional	
aspects	could	have	strengthened	the	 findings	 further,	or	 it	could	have	emphasized	
other	 interactional	 aspects,	 resulting	 in	 other	 design	 principles.	 This	 does	 not	
suggest	 contradictory	 design	 principles	 but	 principles	 concerning	 something	 else.	
Connecting	the	frameworks	to	gain	insights	and	produce	new	knowledge	reflects	a	
research	project’s	originality	because	when	 “we	 say	 something	 in	 different	words	
we	 no	 longer	 say	 exactly	 the	 same	 thing:	 a	 new	 focus	may	 be	 brought	 in,	 a	 new	
aspect	 shown”	 (Sierpinska,	 1993,	 p.	 63).	 Thus	 the	 intangible	 qualities,	 lucidity,	
conciseness,	 and	 originality	 (Presmeg	 &	 Kilpatrick,	 2019)	 concern	 issues	 for	 a	
project’s	 validation.	 These	 qualities	 concern	 the	 trustworthiness	 of	 literature,	
chosen	data,	and	the	building	of	logical	arguments	(Presmeg	&	Kilpatrick,	2019).		

Throughout	this	doctoral	thesis,	I	have	strived	to	provide	a	logical	rationale	
for	 the	 importance	of	 the	 chosen	 focus	of	 this	 study,	making	a	 clear	and	coherent	
theoretical	 foundation,	 and	 being	 transparent	 about	 methodological	 choices,	
including	 the	 research	 context.	 One	 choice	 was	 to	 make	 rich	 descriptions	 of	 the	
recorded	 video	 observations	 (Cresswell,	 2007;	 Derry	 et	 al.,	 2010)	 and	 to	 provide	
relatively	 comprehensive	 transcripts	 in	 the	 published	 articles	 and	 submitted	
manuscript,	thus,	enabling	readers	to	evaluate	the	soundness	of	the	findings	and	the	
conclusions,	 and	 evaluation	 of	 the	 applicability	 to	 similar	 settings.	 These	 efforts	
were	intended	to	make	the	research	process	and	outcome	as	clear	as	possible	to	a	
reader,	 thereby	contributing	 to	 the	 trustworthiness	and	credibility	of	 the	research	
project.	 This	 doctoral	 thesis	 also	 contains	 two	 published,	 peer-reviewed	 articles	
with	 the	 same	 theoretical	 foundation	 and	 data.	 Thus,	 peer	 assessment	 and	 the	
revision	processes	contributed	to	strengthening	and	validating	the	trustworthiness	
of	the	posed	research	questions,	literature,	methodology,	and	findings.	

The	last	aspect	that	reflects	the	project’s	quality	is	the	role	of	the	researcher.	
In	discussing	 the	researcher,	Sierpinska	(1993,	p.	58)	says,	 “absolute	objectivity	 is	
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impossible	to	achieve,	but	we	must	make	an	attempt	to	avoid	blind	subjectivity.”	My	
interest	 in	mathematical	 reasoning	 in	 collaborative	work	has	been	a	driving	 force	
during	the	research	process.	Thus,	 it	has	been	important	not	to	overinterpret	data	
for	 instances	 concerning	 my	 interest.	 My	 supervisor	 has	 held	 me	 accountable	
through	 many	 conversations	 and	 written	 rationales	 over	 the	 years.	 In	 our	
conversations,	 I	 have	willingly	 shared	my	 past	 experiences	 as	 a	 teacher	 in	 upper	
secondary	 school,	 my	 experience	 with	 mathematics,	 and	 how	 I	 experienced	
mathematics	 by	 engaging	 in	mutual	work	with	 peers,	 thus,	 expressing	my	 beliefs	
and	values.	Therefore,	having	a	 co-researcher,	or	as	 in	 this	 case,	 a	 supervisor,	has	
contributed	 to	 keeping	 me	 honest,	 responsible,	 and	 trustworthy.	 Moreover,	 the	
handling	 of	 the	 video	 data	 through	 the	 selection	 of	 CMR	 sequences	 and	 the	
transcript	 analysis	 served	as	 an	 iterative	process	between	my	 supervisor	 and	me.	
We	started	with	 rich	descriptions	of	 the	 instances	of	CMR	 in	 the	different	 student	
dyads.	The	descriptions	were	discussed.	Furthermore,	 I	 transcribed	and	coded	the	
CMR	sequences.	My	supervisor	coded	a	few	of	the	CMR	sequences.	We	sat	together,	
compared	our	codes,	and	discussed.	We	attended	to	the	instances	that	were	similar,	
as	well	as	the	instances	that	were	differing.	Both	of	us	explained	our	coding,	which	
was	 another	 instance	 that	 held	 me	 accountable	 to	 how	 I	 justified	 the	 codes	 and	
connected	 it	 to	 research	 literature.	 This	 process	 contributed	 to	 form	 the	 coding	
framework	 further.	 Thereafter,	 we	 had	 frequent	 conversations	 about	 my	
interpretations	 of	 the	 coded	 transcripts.	 Thus,	 the	 close	 relationship	 with	 my	
supervisor	held	me	accountable	and	contributed	to	intercoder	reliability	(Cresswell,	
2007),	which	further	contributed	to	the	trustworthiness	of	the	research	process.		

During	the	project	process,	I	also	have	to	build	trust	with	the	three	teachers	
and	 their	 students.	 Mutual	 respect	 and	 trust	 are	 important	 for	 working	 well	
together	 (Bungum	 &	 Sanne,	 2021),	 as	 emphasized	 in	 section	 3.1.	 The	 teachers	
provided	thoughts	about	their	own	and	each	other’s	interactions	with	students	after	
watching	selected	video	recordings.	Moreover,	they	expressed	their	expectations	of	
their	teaching,	reflected	upon	lessons,	and	looked	ahead	to	the	coming	situations	of	
student	problem	solving.	Cresswell	(2007)	emphasizes	that	a	project’s	participants	
should	be	asked	to	give	feedback	on	data,	analyses,	interpretations,	and	conclusions.	
The	 participants’	 task	 is	 thus	 to	 judge	 the	 accuracy	 and	 credibility	 of	 the	 report.	
Such	an	approach	to	support	the	process	and	results	could	have	been	utilized	in	this	
research	 project	 but	 was	 not.	 Working	 with	 the	 data	 and	 the	 process	 of	
interpretation	took	longer	than	anticipated.	I	felt	I	could	not	return	to	ask	for	more	
of	 the	 teachers’	 time.	 In	 retrospect,	 feedback	 from	 the	 teachers	 should,	 therefore,	
have	been	a	deliberate	part	of	the	original	project	plan.	
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3.6 Ethical considerations 
The	participants	were	informed	of	the	research	purpose	and	gave	written	informed	
consent	 (see	Appendix	C)	 according	 to	 the	ethical	 requirements	of	 the	Norwegian	
Research	 Council	 (The	 Research	 Council	 of	 Norway,	 2018).	 Video	 recordings	 of	
classroom	 situations	 and	 audio	 recordings	 of	 conversations	 with	 the	 teachers	
allowed	me	 to	 revisit	 the	material	 as	needed.	Another	advantage	of	 this	 approach	
was	the	replay	flexibility,	such	as	playing	clips	slower	to	accurately	observe	gestures	
and	conversations	or	playing	them	faster	to	scan	for	particular	moments.	Thus,	the	
video	and	audio	recordings	provided	a	richness	of	detail	about	the	individuals	and	
groups,	which	also	introduced	a	variety	of	ethical	issues.	A	written	informed	consent	
“does	 not	 necessarily	 protect	 consenters	 against	 a	 number	 of	 problematic	
situations”	 (Powell	 et	 al.,	 2003,	 p.	 409).	 A	 problematic	 situation,	 in	 this	 instance,	
might	involve	video	sharing.	Some	researchers	give	other	researchers	access	to	their	
data	 to	 provide	 them	 with	 the	 opportunity	 to	 form	 their	 own	 judgment	 of	 the	
analysis	and	results.	This	approach	can	strengthen	study	validity,	but	making	data	
more	publicly	available	raises	ethical	concerns	about	how	others	might	reuse	data.	
Data	could	be	used	out	of	context	and	in	unanticipated	ways.	To	address	this	issue,	
Derry	et	al.	(2010)	suggest	that	the	video	and	audio	data	be	made	available	to	other	
qualified	 researchers	 “with	 the	 provision	 that	 they	 agree	 to	 abide	 by	 legal	 and	
ethical	guidelines	governing	use,	reuse,	and	attribution”	(p.	32).	Derry	et	al.	(2010)	
further	share	ideas	on	how	to	assist	researchers	in	sharing	and	reusing	video	data.	

However,	researchers	also	commonly	provide	readers	with	transcripts	and	
sufficient	 contextual	 information.	 This	was	 also	 the	 case	 for	 the	 present	 research	
project.	The	National	Committees	for	Research	Ethics	in	Norway	(NESH,	2006)	says,	
“Personally	 identifiable	 information	 (e.g.,	 lists	 of	 names,	 field	 notes,	 interview	
material)	 shall	 be	 stored	 responsibly	 for	 a	 limited	 period	 of	 time,	 and	 then	 be	
deleted	once	it	has	served	its	original	purpose”	(p.	19).	Data	in	this	research	project	
was	stored	safely	and	legally,	accordingly	to	the	guidelines	of	the	Norwegian	Centre	
for	Research	Data.	Only	my	supervisor	and	I	have	access	to	the	data.	Students	and	
teachers	could	withdraw	at	any	time	from	the	project	without	further	explanation.	
Data	will	be	deleted	 in	2027.	Furthermore,	 to	protect	 the	participants'	privacy,	all	
names	have	been	pseudonymized.	

Another	 ethical	 consideration	 was	 my	 role	 as	 a	 researcher.	 Although	
emphasizing	 a	 study	 in	 a	 naturalistic	 setting,	 my	 presence,	 thoughts,	 and	
suggestions,	along	with	cameras	and	microphones,	 influenced	the	participants	and	
their	 dynamics.	 This	 aspect,	 of	 affecting	 the	 teachers’	 response	 and	 thoughts,	was	
something	I	was	particularly	aware	of	before,	during,	and	after	the	project.	I	wanted	
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the	teachers	to	be	engaged	and	share	their	opinions	about	teaching	and	learning	of	
mathematics.	 However,	 I	 was	 particularly	 concerned	 with	 my	 enthusiasm	 and	
whether	it	potentially	could	prevent	them	for	answering	honest,	in	fear	of	letting	me	
down.	In	the	conversations	it	was	important	for	me	to	build	trust	with	the	teachers,	
so	 that	 they	 would	 openly	 share	 their	 thoughts.	 Thus,	 my	 approach	 was	 to	 be	
genuine,	 to	 build	 trust,	 and	 balancing	 the	 questioning	 approach	 with	 enough	
openness	 and	 yet	 sufficiently	 directness.	 As	 elaborated	 in	 the	 previous	 chapter,	
internal	biases	have	an	impact	on	what	we	see	in	a	situation,	and	conclusions	that	
might	 come	 from	 listening	 in	 a	 conversation.	 However,	my	 experience	 is	 that	 the	
teachers	were	sincere	in	their	response	about	the	different	issues	we	discussed	and	
planned,	as	well	as	their	engagements	in	their	classrooms.	The	issues	concerning	the	
interaction	with	the	teachers,	can	apply	to	interacting	with	the	students.	In	my	role	
as	a	qualitative	researcher	my	cultural	attributes	might	have	affected	the	video	data.	
The	students	may	have	acted	differently	because	a	 researcher	was	studying	 them.	
Moreover,	 their	 awareness	 of	 that	 the	 teachers	 could	watch	 the	 video	 recordings	
and	possibly	 form	another	opinion	about	 their	mathematical	 understanding	 could	
potentially	have	affected	their	interactions.		

To	 summarize,	 the	 ethical	 measures	 taken	 included	 obtaining	 written	
informed	consent,	ensuring	responsible	storage	for	a	limited	period,	using	fictional	
names	ensure	participant	confidentiality,	and	awareness	of	my	role	as	a	qualitative	
researcher.		
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4. Summary of studies 

The	present	research	project	comprises	two	case	studies	of	student	interactions	in	
mathematical	 conversations	 about	 linear	 function	 problems	 (Fig.	 4	 and	 6,	 section	
3.3.2)	and	one	conceptual	contribution	with	an	analytical	model	departing	from	the	
case	studies.	Each	case	is	an	instrumental	case	study	that	provides	in-depth	insights:	
the	first,	on	interactional	aspects	of	collaborating	student	pairs,	and	the	second,	on	
student	interactions	and	related	teacher	actions.	The	following	sections	describe	the	
three	studies,	 including	their	research	questions,	aims,	main	findings,	and	how	the	
study	 informed	 the	 design	 principles	 for	 classroom	 observations	 of	 students’	
creative	collaborative	problem	solving	(see	chapter	5).	

4.1 Study 1: Students’ agency, creative reasoning, and 
collaboration in mathematical problem solving 

In	a	preliminary	analysis	conducted	in	advance	of	Study	1,	one	of	six	student	pairs,	
Noah	 and	Philip,	 stood	 out	 in	 comparison	 to	 the	 other	 pairs	 because	 of	 how	well	
they	 collaborated	 and	 reasoned	mathematically,	 despite	 a	 lack	 of	 encouragement	
from	 their	 teacher.	 Noah	 and	 Philip	 engaged	 in	 all	 aspects	 of	 the	 collaborative	
processes,	 discussed,	 and	 negotiated	 to	 agree	 upon	 a	 unifying	 solution.	 Their	
engagement	 in	 collaboration	 and	 mathematical	 reasoning	 supported	 previous	
research	 on	 how	 these	 interactional	 aspects	 are	 interwoven	 (Granberg	 &	 Olsson,	
2015).	This	observation	 led	to	Study	1,	an	 instrumental	case	study	of	 four	student	
pairs,	with	the	following	research	question:	

What	 are	 the	 patterns	 of	 interaction	 for	 creating	 a	 shared	 understanding	
through	 the	 interplay	 between	 students’	 creative	 reasoning,	 collaboration,	
and	exercised	agency	in	a	mathematical	problem-solving	session?	

The	 aim	 of	 Study	 1	was	 to	 investigate	 aspects	 of	 the	 dyads’	 interactional	
patterns	to	gain	further	insights	into	why	some	dyads	were	more	or	less	productive	
while	 attempting	 and	 wanting	 to	 collaborate	 on	 a	 mathematical	 problem	 (Fig.	 4,	
section	3.3.2).	Three	aspects	were	used	as	lenses	to	analyze	the	dyads’	interactions:	
collaborative	 processes,	 mathematical	 reasoning,	 and	 exercised	 agency.	 The	 four	
student	pairs	 frequently	engaged	 in	different	 collaborative	processes	 (Roschelle	&	
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Teasley,	1995)	and	exhibited	building,	monitoring,	and	repairing	while	using	CMR	
(Lithner,	 2017).	 Students’	 exercised	 agency	 (Gresalfi	 et	 al.,	 2009;	 Mueller	 et	 al.,	
2012)	was	characterized	as	shared	agency	or	as	 individual	agency	(either	primary	
or	secondary	agency)	(Mueller	et	al.,	2012).	Connecting	students’	exercised	agency	
to	 the	 interplay	 of	 collaborative	 processes	 and	 CMR	 revealed	 different	 roles	 in	
students’	interaction	patterns.	

The	main	outcome	of	Study	1	was	the	identification	of	interaction	patterns	
characterized	 as	 one-directional	 interaction	 and	 as	 bi-directional	 interaction.	 The	
two	 interaction	 patterns	 provided	 insights	 into	 students’	 opportunities	 and	
limitations	connected	to	 their	role	 in	 the	 interaction	pattern	 for	constructing	their	
own	solution	procedures,	which	is	important	for	their	mathematical	understanding	
(cf.,	 Lithner,	 2017;	 Mueller	 et	 al.,	 2012;	 Stockero	 et	 al.,	 2019).	 In	 one-directional	
interactions,	 students	 engaged	 with	 different	 agencies	 either	 as	 a	 primary	 agent,	
leading	conversations,	making	suggestions	and	explanations	sometimes	anchored	in	
mathematical	 properties,	 or	 as	 a	 secondary	 agent,	 listening	 and	 attempting	 to	
understand	 ideas	 expressed	 by	 a	 peer.	 Secondary	 agents	 rarely	 reasoned	
mathematically.	 Both	 students	 attempted	 to	 collaborate	 but	 rarely	 or	 never	
disagreed.	 The	 interactional	 pattern	 in	 bi-directional	 interactions	 highlighted	 a	
mutual	 attempt	 to	 collaborate	where	both	 students	were	 the	driving	 forces	of	 the	
problem-solving	process.	Students	acted	in	similar	roles	when	both	were	exercising	
a	 shared	 agency,	 building	 the	 final	 argument	 together	 by	 suggesting,	 accepting,	
listening,	 and	 negotiating	 mathematical	 properties.	 A	 critical	 variable	 for	 such	 a	
successful	 interaction	 was	 the	 collaborative	 process	 of	 repairing	 their	 shared	
understanding	 and	 reasoning	 anchored	 in	 the	 mathematical	 properties	 of	 linear	
functions.	

Thus,	 Study	 1	 provided	 insights	 into	 students’	 interactional	 patterns	
through	 three	 frameworks	 focusing	 on	 students’	 creative	 reasoning,	 collaborative	
processes,	 and	 exercised	 agency.	 The	 three	 frameworks	 together	 made	 up	 the	
analytical	 design	 for	 studying	 student	 interactions.	 The	 pragmatic	 use	 of	 the	
analytical	design	in	a	naturalistic	classroom	setting	allowed	for	observations	of	two	
distinct	 methods	 of	 interacting	 and	 their	 characteristics.	 This	 became	 a	 starting	
point	for	developing	the	design	principles	for	understanding	and	assessing	students’	
competency	 for	 productive	 interaction	 patterns	 focusing	 on	 the	 three	 interaction	
aspects	involved.	



42	
	

4.2 Study 2: The role of teacher actions for students’ 
productive interaction solving a linear function problem 

Eight	students,	the	same	dyads	as	in	Study	1,	and	their	three	teachers	constituted	
the	case	participants	in	Study	2,	which	sought	to	explore	how	teachers	can	facilitate	
productive	student	interactions	in	mathematics	learning.	The	research	question	
guiding	the	second	case	study	was	as	follows:	

What	are	the	opportunities	and	limitations	of	teacher	actions	for	the	
productivity	of	students’	interactional	patterns?	

The	second	study	aimed	to	identify	the	characteristics	of	teacher	actions	in	
teacher–student	 communication	 connected	 to	 student	 interactions,	 focusing	 on	
collaborative	processes,	mathematical	 reasoning,	 and	 the	 students’	 agency	 related	
to	 linear	 functions.	 Teacher	 actions	 were	 described	 as	 suggested	 by	 Drageset	
(2014).	This	fine-grained	framework	was	used	to	better	understand	teacher	actions	
in	teacher–student	conversations,	to	provide	detailed	insights	into	how	teachers	can	
facilitate	 students’	 reasoning	 and	 argumentation,	 and	 to	 highlight	 their	
collaboration	and	agency	in	those	situations.	

The	 findings	 of	 Study	 2	 revealed	 that	 students	 who	 established	 an	
interactional	 pattern,	 such	 as	 a	 shared	 agency	 in	 a	 bi-directional	 interaction	 or	 a	
primary/secondary	agency	 in	a	one-directional	 interaction,	maintain	and	progress	
in	the	same	interactional	pattern	before,	during,	and	after	a	teacher	interaction.	This	
observation	 was	 found	 in	 the	 student–teacher	 interaction	 patterns	 of	 two	 pairs.	
Jacob	and	Lucas	used	progressing	actions,	which	resulted	in	less	reasoning	anchored	
in	 mathematical	 properties	 and	 more	 guessing	 and	 checking	 answers	 using	
GeoGebra	(Hannah	and	Emma,	and	Leah	and	Isaac).	Both	student	pairs	maintained	
their	 interactional	 pattern	 as	 respectively	 bi-directional	 and	 one-directional	 after	
the	 teacher	 interaction.	Lucas’s	redirecting	and	progressing	actions	 could	have	had	
an	 impact	 on	 students’	 continued	 creative	 reasoning,	 where	 students	 maintained	
their	 bi-directional	 interaction	 after	 the	 teacher	 interaction	 (Philip	 and	 Noah).	
Sophie	 used	 focusing	 actions,	 which	 possibly	 impacted	 the	 continued	 creative	
reasoning	 of	 the	primary	 agent	 (Oscar),	which	was	 observed	 and	 acted	 on	by	 the	
secondary	 agent	 (Olivia),	 where	 students	 continued	 their	 one-directional	
interaction	after	 the	teacher	 interaction.	The	three	teachers	used	 funneling	actions	
and	focusing	actions	(Drageset,	2014;	Wood,	1998),	resulting	in	different	reasoning	
by	 the	students	 in	situations	where	 their	 interaction	patterns	seemingly	remained	
the	 same.	 The	 study	 highlights	 the	 importance	 of	 further	 research	 into	 teacher	
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awareness	 to	 facilitate	 collaborative	 situations	 of	 bi-directional	 interactions	
connected	to	students’	shared	understanding	of	mathematical	ideas	and	concepts.	

The	 second	 study	 contributes	 to	 the	 analytical	 design	 of	 the	 present	
research	 project	 by	 including	 the	 teacher	 interaction	 aspect.	 Hence,	 the	 second	
iteration	of	the	analytical	design	contributes	insights	into	the	role	of	the	teacher	for	
design	 principles	 related	 to	 students’	 competency	 for	 productive	 interaction	
patterns.		In	the	study,	a	teacher’s	actions	and	the	consequences	of	those	actions,	as	
well	 as	 his	 or	 her	 potential	 actions,	were	 discussed.	 Based	 on	 the	 events	 and	 the	
discussed	potential	of	various	teacher	actions	in	Study	2,	a	teacher	should	be	aware	
of	 1)	 the	 ways	 in	 which	 students	 are	 interacting:	 one-directionally	 or	 bi-
directionally;	 2)	 students’	 engagement	 in	 plausible	 and	 anchored	 mathematical	
arguments;	and	3)	conversations	characterized	by	turn-taking.	A	teacher	should	act	
by	1)	asking	both	students	to	share	their	thoughts	and	2)	encouraging	students	to	
share	 ideas	 with	 one	 another	 to	 promote	 the	 building	 of	 shared	 agency	 in	 a	 bi-
directional	 interaction.	 These	 proposed	 elements	 are	 suggested	 in	 Study	 2.	
However,	 particular	 teacher	 actions	 that	 contribute	 to	 supporting,	 inhibiting,	 or	
facilitating	productive	bi-directional	student	 interactions	are	suggested	 for	 further	
research.	Particularly	important	are	the	types	of	teacher	actions	that	interplay	with	
students’	agency	and	might	facilitate	a	change	in	student	interaction	patterns.	

4.3 Study 3: An analytical model for analyzing interactional 
patterns in creative collaborative mathematical 
reasoning 

The	aim	of	the	third	study	was	to	develop	a	tool	for	assessing	students’	interaction	
patterns	which	was	built	on	how	the	interactional	aspects	were	connected	through	
students’	 way	 of	 participating	 (Study	 1	 and	 2).	 The	 third	 study	 proposed	 an	
analytical	model	 called	 the	 Creative	 Collaborative	Mathematical	 Reasoning	model	
(CCMR	model)	(see	Appendix	C).	The	CCMR	model	was	anchored	in	relevant	theory	
and	 related	 frameworks,	which	were	utilized	 in	 classroom	 situations	 on	 students’	
attempted	 collaborative-learning.	 The	 theoretical	 points	 were	 exemplified	 by	
glimpses	of	the	same	four	student	dyads	as	 in	the	previous	studies.	However,	only	
new	excerpts	of	their	conversations	about	the	first	and	last	function	problem	(Figs.	
4	and	6)	were	used	in	Study	3.	

Results	 of	 the	 conceptual	 contribution	 highlighted	 how	 the	 two	 different	
interaction	 patterns,	 one-directional	 and	 bi-directional,	 may	 suggest	 learning	
opportunities	 related	 to	 the	 roles	 in	 the	 interaction	 patterns.	 Regarding	 a	 one-
directional	 interaction,	 students	 are	 likely	 to	 experience	 different	 learning	
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opportunities	 due	 to	 their	 participating	 roles	 and	 the	 opportunities	 presented	
through	 creative	 reasoning.	 Since	 the	 primary	 agent	 is	 more	 likely	 to	 make	
arguments	based	on	mathematical	properties	than	the	secondary	agent,	 it	 is	 likely	
that	 that	 student	 is	 presented	 with	 more	 individual	 learning	 opportunities.	 In	
contrast,	students	may	engage	in	a	bi-directional	interaction,	where	both	engage	in	
turn-taking	and	making	plausible	arguments,	which	could	strongly	suggest	a	quality	
interaction	with	 creative	 reasoning	 that	 is	 important	 for	 learning	opportunities	 in	
mathematics.	

Therefore,	the	quality	of	student	interactions	is	related	to	their	productivity	
and	the	learning	opportunities	involved.	Thus,	the	CCMR	model	presents	a	possible	
tool	 for	 teachers,	 mathematics	 educators,	 and	 researchers	 to	 analyze	 student	
interactions	 to	 better	 understand	 students’	 methods	 of	 participation	 and	 foster	
quality	interactions	that	promote	mathematical	learning.	

In	the	third	study,	and	also	the	third	iterative	step	of	the	analytical	design,	
the	 CCMR	 model	 highlights	 to	 two	 aspects	 that	 inform	 design	 principles	 for	
students’	 creative	 collaborative	 problem	 solving	 (see	 chapter	 5):	 1)	 a	 process	
focused	on	student	interaction	patterns,	and	2)	the	outcome	of	a	CCMR	interaction.	
Together,	 these	aspects	emphasize	 that	 the	processes	and	outcome	of	 interactions	
depend	 on	 interaction	 patterns.	 If	 acting	 bi-directionally,	 certain	 qualities	 of	 the	
interaction	 may	 lead	 to	 learning	 through	 and	 of	 CCMR.	 When	 participating	 one-
directionally,	 it	 is	 more	 likely	 that	 only	 the	 primary	 agent	 gets	 to	 learn	 through	
CCMR	but	not	necessarily	of	CCMR	because	of	the	missing	quality	interaction	with	a	
peer.		
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5. The CCMR competency design 
principles 

From	 the	 iterative	 processes	 of	 analyzing	 student–student	 and	 teacher–student	
interactions	 as	 three	 analytical	 steps	 outlined	 above,	 an	 overarching	 focus	 grew	
forth:	 organizing	 students’	 quality	 interactions	 as	 competency	 seen	 through	 the	
interactional	 facets	 of	 mathematical	 reasoning,	 collaborative	 processes,	 and	
exercised	 agency.	 Thus,	 this	 project’s	 research	 process	 contributed	 to	 developing	
design	principles	to	achieve	learning	of	and	learning	through	Creative	Collaborative	
Mathematical	Reasoning	competency	(CCMR	competency,	Fig.	7	below).		

The	CCMR	 competency	model	 is	 built	 on	 the	model	 developed	 in	 Study	3	
(Appendix	 D)	 and	 informed	 by	 the	 two	 other	 studies.	 Both	 models	 share	 the	
characteristics	of	a	bi-directional	interaction	found	in	students’	collaborative	actions	
and	co-reasoning	when	exercising	shared	agency.	The	competency	model	 includes	
suggestions	for	teacher	actions	related	to	a	bi-directional	interaction.	Furthermore,	
it	 emphasizes	 the	 connection	 between	 quality	 student	 interactions	 and	 learning	
outcomes	 related	 to	 not	 only	 the	 inherent	 learning	 opportunities	 of	 different	
mathematical	products	(e.g.,	 fractions,	functions,	numerical	computations)	but	also	
the	competency	itself.	These	aspects	exceed	the	analytical	CCMR	model.	

The	CCMR	competency	model	presents	design	principles	 for	bi-directional	
interactions	and	learning	outcomes	(see	Fig.	7	below).	Related	to	Figure	2	(section	
3.1),	 theory	 and	 empirical	 data	 formed	 the	 design	 principles	 for	 a	 bi-directional	
interaction	and	related	teacher	role.	These	further	influence	the	achievement	of	the	
practice	goals	of	learning	of	and	through	the	CCMR	competency,	which	is	seen	as	the	
learning	outcome.	Thus,	the	design	principles	comprise	the	characteristics	of	quality	
student	 interactions,	which	 represent	 the	 first	 step	 in	a	process.	 In	 the	process	of	
establishing	 and	maintaining	 a	 bi-directional	 interaction,	 students	work	 toward	 a	
practice	goal,	which	is	the	second	step	in	the	figure.	The	practice	goal	(Euler,	2017)	
is	the	outcome	of	students’	engagement	with	the	design	principles.	Here	the	practice	
goal	 is	 for	 students	 to	 become	 competent	 mathematical	 producers	 through	
reasoning	 creatively	 together.	 A	 practice	 goal	 or	 learning	 outcome	 give	 the	
impression	of	a	final	product,	however,	the	arrow	(step	two)	indicates	a	process	of	
continuous	 development	 for	 one’s	 learning.	 The	 learning	 outcome	 is	 two-sided:	
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learning	of	mathematical	products,	such	as	the	linear	function	concept,	and	learning	
the	 competency	 of	 creative	 collaborative	 problem	 solving.	 Thus,	 the	 design	
principles	 for	a	bi-directional	 interaction	 function	as	a	bridge	between	 theory	and	
empirical	 data,	 and	 the	 learning	 outcomes.	 Moreover,	 the	 design	 principles	
contribute	 to	 theory	 refinement	 and	 local	 impact	 (Ryu,	 2020).	 These	 aspects	 are	
further	discussed	 in	 the	 following	sections	on	bi-directional	 interactions	 (5.1)	and	
learning	outcomes	(5.2).	

5.1 Bi-directional interaction 
After	 several	 rounds	 of	 analyzing	 students’	 interactions,	 a	 pattern	 emerged	 of	 bi-	
and	one-directional	 interaction.	Study	1	revealed	different	roles	that	students	take	
on	related	to	their	exercised	agency	when	attempting	to	collaborate.	Moreover,	the	
two	 interaction	 patterns	 provided	 insights	 into	 students’	 opportunities	 and	
limitations	related	to	their	role	in	the	interaction	pattern	in	constructing	their	own	
solution	procedures,	which	 is	 important	 to	 their	mathematical	 understanding	 (cf.,	
Lithner,	2017;	Mueller	et	al.,	2012;	Stockero	et	al.,	2019).	After	another	iteration	of	
analyzing	 and	 interpreting	 data	 in	 Study	 2,	 the	 interaction	 pattern	 was	 further	
refined	in	Study	3	into	a	model	for	analyzing	students’	methods	of	participation	to	
identify	quality	interactions	that	promote	mathematics	learning.	Together,	the	three	

	
Fig.	7.		Design	principles	of	the	CCMR	competency	model	
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studies	 contributed	 three	 design	 principles	 for	 collaborative	 problem	 solving	 in	
which	students	engage	bi-directionally	with	shared	agency:	

• Making	collaborative	actions	through	suggestions,	counter-suggestions,	

repairing	misunderstandings,	and	explaining	ideas.	

• Co-reasoning	 through	 co-constructing	 arguments	 and	 using	

justification	with	plausible	and	anchored	mathematical	arguments	(and	

sometimes	superficial	arguments).	

• Sharing	of	authority	in	talk	and	in	actions.	

The	design	principles	 involve	 intertwined	 interactional	aspects.	Therefore,	
if	focusing	on	one	principle,	it	is	likely	that	another	principle	will	be	“activated.”	For	
instance,	 if	 a	 student	 suggests	 an	 idea	 anchored	 in	 mathematical	 properties	 and	
further	built	on	by	a	peer,	this	includes	the	first	and	second	principles.	

The	 first	 design	 principle	 emphasizes	 central	 collaborative	 aspects	
promoting	 mutuality	 and	 coordination	 in	 student	 interactions	 (Baker,	 2015;	
Sarmiento	&	Stahl,	2008).	Studies	1	and	3	emphasized	that	synchronicity,	mutuality,	
and	 coordination	 are	 important	 to	 students’	 progress	 in	 the	 problem-solving	
process	and	key	 to	 strengthening	 the	 interaction.	This	 is	 likely	 to	promote	shared	
understanding.	 Moreover,	 a	 willingness	 to	 enter	 situations	 of	 conflicting	 ideas	
(Dillenbourg,	1999)	connected	to	 frequent	engagement	 in	repairing	processes	was	
emphasized	 in	 Studies	 1	 and	 2	 as	 an	 important	 indication	 of	 a	 productive	
interaction.	

The	 second	 design	 principle	 concerning	 CMR	 involves	 students	
collaboratively	 constructing	 a	 mathematical	 meaning	 to	 a	 problem.	 Study	 1	
emphasized	 that	 when	 students	 dealt	 with	 conflicting	 interpretations	 through	
processes	of	repairing,	their	work	was	more	frequently	anchored	in	reasoning	based	
on	 the	mathematical	properties	of	 linear	 functions	compared	 to	 the	work	of	other	
pairs.	 Study	 2	 further	 stresses	 the	 importance	 of	 both	 students	 in	 a	 dyad	 being	
encouraged	 to	 justify	 arguments	 and	 attempt	 to	 pose	 different	 claims	 and	
counterarguments.	Thus,	a	teacher	or	students	themselves	could	be	encouraged	to	
notice	when	they	are	using	mathematical	concepts	(either	intrinsic	or	superficial)	to	
justify	suggestions	or	ideas,	facilitating	a	bi-directional	interaction.	

The	third	design	principle	of	students’	authority	 is	 for	both	students	to	be	
responsible	for	making	suggestions,	explanations,	and	disagreeing	through	talk	and	
actions.	 Students’	 methods	 of	 collaboration	 can	 contribute	 to	 students’	 agency	 in	
mathematics	(Schoenfeld	et	al.,	2019).	Study	3	emphasized	that	both	students	 in	a	
dyad	 should	 act	 as	 the	 mathematical	 authority;	 otherwise,	 the	 collaborative	
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interaction	 would	 rarely	 be	 productive.	 Moreover,	 Study	 3	 illuminated	 the	
interconnectedness	 of	 the	 dyads’	 collaborative	 processes	 (first	 principle)	 and	 co-
reasoning	 (second	 principle)	 for	 productive	 interactions	 contributing	 to	 a	 shared	
agency.	

The	 design	 principles	 in	 the	 CCMR	 competency	 comprise	 competency	
activities	 (specific	ways	 to	 understand	 and	 do	mathematics)	 (Boesen	 et	 al.,	 2014;	
Niss,	 2003).	 The	 first	 and	 second	 principles	 concern	 aspects	 of	 doing	 and	 using	
mathematics,	 seen	 in	 making	 suggestions	 and	 explanations	 and	 in	 creating	
reasoning	 sequences	 together.	 The	 analytical	 aspects	 are	 found	 in	 all	 three	
principles	when	judging	mathematics	and	interpreting	the	social	situation	of	sharing	
agency.	 It	 is	 essential	 to	 students’	 progress	 in	 their	 CCMR	 competency	 that	 they	
judge	 their	 solution	 procedure	 and	 ideas,	 which	 might	 require	 them	 to	 resolve	
misunderstandings,	 follow	 a	 chain	 of	 reasoning,	 and	 evaluate	 the	 premises,	
arguments,	 and	 evaluation	 of	 a	 relation:	 “Is	my	peer	 having	 opportunities	 to	 talk,	
listen	and	make	arguments,	and	 if	not,	what	can	 I	do	 to	make	space	 for	my	peer’s	
contribution?”	

A	teacher	may	promote	students’	shared	agency	by	sharing	authority	in	the	
classroom	(Langer-Osuna	et	al.,	2020;	Mueller	et	al.,	2012).	Therefore,	the	role	of	the	
teacher	 is	 important,	even	if	students	are	struggling	on	their	own.	Teacher	actions	
that	 promote	 shared	 authority	 give	 students	 opportunities	 to	 talk	 about	
mathematical	 problems	 and	 let	 students	 know	 that	 they	 are	 expected	 to	 suggest	
ideas,	 solutions,	 and	 strategies	 for	 the	 problem-solving	 process	 (Langer-Osuna,	
2018).	Whether	or	not	a	teacher	is	successful	in	sharing	authority	over	the	problem	
solving	 with	 his	 students,	 he	 requires	 knowledge	 about	 student	 interactions	 and	
how	 to	 best	 interact	with	 student	 dyads.	 This	 knowledge	may	 enable	 teachers	 to	
promote	 students’	 awareness	 of	 their	 interactions	 and	 emphasize	 productive	
interaction	 aspects	 for	 students	 to	 aspire	 to.	 The	 second	 study	 contributes	 to	 an	
understanding	 of	 the	 role	 of	 the	 teacher	 related	 to	 student	 dyad	 interaction	
patterns,	highlighting	the	following	aspects:	

• An	 awareness	 of	 interaction	 patterns	 as	 bi-directional	 or	 one-

directional,	and	teachers’	related	roles	in	these	patterns.	

• Attention	to	both	students’	thoughts	and	ideas	and	encouraging	sharing	

thoughts	with	one	another.	

The	 first	 design	 principle,	 a	 teacher’s	 awareness	 of	 dyads’	 interaction	
patterns,	 is	 important	 in	 evaluating	whether	 both	 students	 are	 engaging	with	 the	
mathematics	involved,	are	in	conversation	with	one	another,	and	are	in	a	position	to	
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benefit	 from	 learning	 opportunities	 through	 CMR	 to	 develop	 a	 shared	
understanding.	Study	2	addressed	opportunities	and	 limitations	of	 teacher	actions	
related	 to	student	 interaction	patterns.	Teacher	actions,	analyzed	using	Drageset’s	
(2014)	framework,	influenced	student	reasoning,	but	students’	interaction	patterns	
remained	 the	 same	 throughout	 the	 entire	problem	 solving	 session.	Teachers	used	
both	 funneling	 and	 focusing	 actions	 (Drageset,	 2014;	 Wood,	 1998).	 However,	
teachers’	 questions	 and	 actions	 did	 not	 appear	 to	 influence	 students’	 roles	 and	
dynamics.	Therefore,	a	perception	of	the	students’	interaction	patterns	as	bi-	or	one-
directional	 could	 be	 a	 fruitful	 starting	 point	 for	 a	 teacher's	 response	 to	 promote	
quality	interactions.	

This	 leads	 to	 the	 second	design	principle:	 attention	 to	 students’	 thoughts,	
ideas,	and	actions.	Study	3	emphasized	that	if	a	teacher	only	responds	to	a	primary	
agent	or	 to	only	one	of	 the	students	 in	a	shared	agency,	only	one	student	 is	being	
held	 accountable.	 Consequentially,	 students’	 mutuality	 is	 not	 strengthened,	 and	
teacher	authority	is	likely	being	distributed	to	one	participant	of	a	dyad.	An	aspect	
to	 consider	 is	 teacher	 involvement	 in	 classroom	 norms.	 Yackel	 and	 Cobb	 (1996)	
differentiate	 between	 a	 social	 norm	 as	 an	 expected	 explanation	 of	 a	 given	 task,	
whereas	a	sociomathematical	norm	is	an	acceptable	mathematical	explanation.	Both	
aspects	 are	 important	 for	 individual	 and	 collective	 learning,	 and	 students’	
engagement	in	both	can	influence	their	pattern	of	interaction.	Teacher	involvement	
has	the	potential	to	provide	students	with	the	necessary	resources	for	social	norms	
and	 sociomathematical	 norms.	A	 study	 found	 that	 important	 teacher	 guidance	 for	
collaborative	inquiry	involves	supporting	student	contributions	with	a	well-defined	
structure	for	mathematical	work	(Staples,	2007).	In	consideration	of	the	role	of	the	
teacher	through	social	norms,	sociomathematical	norms,	and	support	for	students’	
contributions,	 the	 last	 design	 principle	 emphasizes	 awareness	 of	 both	 students’	
contributions,	 which	 should	 illuminate	 their	 roles	 in	 their	 interaction	 pattern,	 as	
suggested	in	the	first	design	principle.	

5.2 Learning outcome 
Considering	 for	 whom	 and	 how	 an	 interaction	 is	 productive	 in	 collaborative	
problem-solving	 illuminates	 how	 aspects	 of	 CCMR	 competency	 can	 both	 promote	
learning	of	CCMR	competency	and	learning	through	CCMR	competency.	If	the	focus	
is	on	the	learning	of	CCMR	competency,	as	seen	in	Study	1,	Study	2,	and	Study	3,	and	
related	 literature,	 the	 emphasis	 is	 on	 the	 CCMR	 skills	 in	 students’	 bi-directional	
interactions,	 where	 both	 students	 are	 engaged	 in	 a	 mathematical	 conversation,	
justifying	 arguments,	 challenging	 or	 adding	 to	 suggested	 ideas,	 and	 testing	 ideas.	
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These	 activities	 are	 found	 in	 students’	 interaction	 processes	 and	 are	 intertwined	
facets	of	collaborative	processes,	mathematical	reasoning,	and	shared	agency	with	a	
mutual	 distributed	 authority.	 The	 previous	 section	 elaborated	 on	 principles	
facilitating	 students’	 bi-directional	 interactions,	 expressed	 through	 multi-faceted	
processes	 of	 interactional	 aspects.	 In	 this	 section,	 the	 skills	 are	 “extracted”	 from	
students’	bi-directional	interactions	to	emphasize	the	learning	of	CCMR	competency.	
Thus,	the	design	principles	differ	in	the	nature	of	their	components.	The	suggested	
design	principles	for	the	practice	goal	of	 learning	of	CCMR	competency	are	seen	in	
the	following	student	actions:	

• Justifying	arguments	

• Challenging	or	adding	to	suggested	ideas	

• Testing	ideas	

• Mutual	distributed	authority	

Central	 for	 learning	 of	 the	 competency	 is	 a	 focus	 on	 the	 interactional	
accomplishment	 of	 collaborative	 mathematical	 reasoning	 (Krummheuer,	 2007;	
Lithner,	 2017;	 Yackel,	 2001),	 including	 verbal	 and	 non-verbal	 activity	 in	 student	
interactions	(Kumpulainen	&	Mutanen,	1999).	The	four	suggested	design	principles	
are	based	on	the	principles	of	bi-directional	interactions.	The	first	three	principles—
justifying	arguments,	challenging	or	adding	to	suggested	ideas,	and	testing	ideas—
are	 straightforward	 skills	 that	 students	 and	 teachers	 or	 teacher	 educators	 can	
understand	and	recognize.	For	instance,	if	students	are	reflecting	on	or	monitoring	
their	own	 interactions,	 they	have	explicit	 and	prescriptive	 statements	 to	utilize	 to	
achieve	 the	 practice	 goal	 of	 learning	 the	 CCMR	 competency.	 Utilizing	 prescriptive	
statements	in	a	monitoring	situation	could	potentially	emphasize	student	awareness	
of	 the	 skills	 they	are	 learning.	Likewise,	 an	observing	 teacher	or	 teacher	educator	
could	 assess	 a	 student	 dyad’s	 development	 of	 the	 CCMR	 competency	 skills	 by	
considering	 the	 students’	 interactions	 in	 light	 of	 these	 principles.	 The	 design	
principles	 could,	 therefore,	 function	 as	 a	 tool	 to	 be	 utilized	 by	 participants	 or	
observers.		

The	 fourth	 principle,	 mutual	 distributed	 authority,	 concerns	 a	 shared	
responsibility	of	the	above-mentioned	principles.	Such	as	both	being	responsible	for	
making	suggestions,	justifying	arguments,	posing	counter	suggestions	if	disagreeing,	
and	questioning	explanations	or	actions.	The	fourth	principle	differs	from	the	three	
other	 principles	 in	 its	 level	 of	 applicability	 as	 an	 indicator	 to	 evaluate	 the	
interaction,	 particularly	 for	 students	 or	 teachers	 to	 recognize	 in	 a	 situation.	
However,	 if	 noticing	 the	 other	 three	 principles,	 students	 are	 probably	 already	
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having	 mutual	 authority	 in	 the	 situation.	 Nevertheless,	 the	 fourth	 principle	 is	 an	
important	social	skill	to	develop	for	promoting	shared	agency.	

These	 design	 principles	 may	 also	 be	 used	 as	 indicators	 by	 teachers	 or	
teacher	 educators	 to	 assess	 an	 interaction	 as	 potentially	 productive	 for	 learning	
through	 CCMR	 competency.	 It	 is	 likely	 that	 students	 who	 work	 together,	 both	
mutually	 reasoning	 creatively	 and	 anchoring	 their	 suggestions	 in	 mathematical	
properties	(Lithner,	2017)	and	exercise	agency	(Gresalfi	et	al.,	2009),	are	presented	
with	more	 learning	 opportunities	 (Schoenfeld	 et	 al.,	 2019)	 compared	 to	 students	
who	are	not	 invested	 in	 the	same	way	 in	an	 interaction.	The	three	studies	did	not	
examine	students’	learning	outcomes	but	focused	on	the	possibilities	of	interaction	
patterns	 for	 establishing,	maintaining,	 and	 resolving	 conflicts	 to	 develop	 a	 shared	
understanding	of	a	mathematical	problem.	Consequently,	the	learning	outcomes	are	
based	on	assumptions	anchored	in	relevant	 literature	connected	to	the	interaction	
patterns:	 bi-directional	 interaction	 and	 one-directional	 interaction.	 The	 suggested	
design	principle	for	learning	through	CCMR	competency	is	seen	in	students’	shared	
understanding	 of	 knowledge	 elements	 (Barron,	 2000;	 Roschelle	 &	 Teasley,	 1995)	
and	solution	procedures:	

• Both	 students	 can	 explain	 the	 properties	 of	 the	 task	 and	 the	 relevant	

concepts	involved	and	can	provide	reasons	to	support	the	solutions	or	

reasons	to	refute	a	potential	solution.	

The	 emphasis	 of	 the	 last	design	principle	 is	 again	on	 the	mutuality	 in	 the	
dyad:	 both	 students	 must	 be	 engaged	 in	 the	 above-mentioned	 skills	 of	 CCMR	
competency.	CPS	is	defined	as	a	“coordinated	attempt	between	two	or	more	people	
to	share	their	skills	and	knowledge	for	the	purpose	of	constructing	and	maintaining	
a	unified	solution	 to	a	problem”	(c.f.,	OECD,	2017,	Roschelle	and	Teasley,	1995,	as	
cited	 in	 Sun	 et	 al.,	 2020,	 p.	 2).	 The	 suggested	 design	 principle	 is	 in	 line	with	 this	
definition	 but	 transcends	 the	 general	 notion	 with	more	 specific	 prescriptions	 for	
quality	 interactions.	 Thus,	 the	 prescriptions	 can	 be	 used	 to	 evaluate	 students’	
learning	via	the	competency	when	recognizing	the	CCMR	competency	skills	existing	
and	emerging	through	the	interplay	of	co-reasoning	with	relevant	concepts.	

In	 summary,	 the	 practice	 goals	 involve	 learning	 of	 and	 through	 CCMR	
competency,	 where	 the	 premise	 is	 students’	 bi-directional	 interaction	 patterns.	
When	 learning	 mathematics	 through	 collaborative	 problem	 solving,	 one	 must	
engage	 in	 the	 skills	 of	 collaboration,	 reasoning,	 and	 sharing	 of	 agency,	 allowing	
these	 skills	 to	 be	 simultaneously	 developed.	 Thus,	 competency	 development	
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achieved	through	quality	interactions	may	result	in	increased	knowledge	about	the	
mathematics	involved	and	about	the	competency	itself.	
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6. Concluding thoughts 

This	project	sought	to	answer	the	following	research	question:		
How can a design-based research process focusing on aspects of students’ 
interactions and related teacher actions contribute to design principles that 
support productive student interactions in mathematics? 

Connecting	 and	 utilizing	 theories	 and	 frameworks	 as	 analytical	 lenses	 has	 the	
potential	 to	 lead	 to	 theory	 development	 (Amiel	&	Reeves,	 2008;	 Juuti	&	 Lavonen,	
2006).	However,	 the	 aim	 of	 this	 thesis	was	 not	 to	 reconcile	 different	 frameworks	
and	theories	into	one	coherent	theory	of	mathematics	education.	The	connection	of	
framework	 is	 instead	 pragmatic:	 refinement	 of	 theory	 and	 practice	 forming	
principles	 to	 inform	 and	 improve	 practice	 (Wang	 &	 Hannafin,	 2005).	 Thus,	 the	
connection	 of	 frameworks	 may	 provide	 insights	 into	 productive	 collaborative	
student	 interactions	 in	 mathematical	 problem	 solving	 through	 the	 educational	
innovation	of	design	principles.	Moreover,	 the	 focus	of	 the	research	results	 is	also	
pragmatic	 and	 concerned	with	 organizing	 new	 insights	 for	 supporting,	 assessing,	
and	understanding	students’	collaborative	problem-solving	competency.	The	results	
of	this	project	present	design	principles	for	CCMR	competency	that	expand	the	CPS	
competency	concept	by	connecting	interaction	aspects	and	promoting	a	productive	
interaction	pattern.	Moreover,	 the	CCMR	competency	model	differs	 from	the	other	
CPS	 frameworks,	 as	 presented	 by	 Sun	 et	 al.	 (2020),	 by	 identifying	 specific	
components	of	interactions	tied	to	the	foundational	CPS	constructs.		

Implementing	results	from	educational	research	is	a	well-known	challenge	
(Juuti	 et	 al.,	 2016).	 One	 way	 to	 meet	 this	 challenge	 is	 to	 develop	 educational	
innovations,	 such	 as	 the	 CCMR	 competency	 model,	 in	 which	 design	 principles	
provide	several	useful	applications.	“Useful”	here	refers	to	the	idea	of	a	practical	and	
straightforward	 way	 of	 utilizing	 design	 principles	 in	 teaching-learning	 situations	
and	 research	 purposes.	 First,	 DBR	 offers	 new	 educational	 knowledge	 to	 support	
teachers	 in	 their	 teaching	 (Juuti	 et	 al.,	 2016).	 The	 CCMR	 model	 is	 also	 useful	 to	
teachers,	helping	 them	to	recognize	productive	 interactions	 that	 foster	 learning	 in	
mathematics	 and	 inherent	 competency	 skills.	 Teachers	 should	 look	 for	 design	
principles	for	a	bi-directional	interaction	in	“Students	exercise	shared	agency”	(Fig.	
7).	 Teachers	 may	 additionally	 look	 for	 the	 desired	 skills	 in	 “Learning	 of	 CCMR	
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competency.”	In	this	way,	a	teacher	can	become	aware	of	interaction	patterns.	They	
should	 pay	 attention	 to	 students’	 methods	 of	 participation,	 which	 are	 the	
emphasized	design	principles	of	“Teacher	actions”	in	the	CCMR	competency	model.	

The	second	potential	use	case	is	 in	students’	reflections	and	monitoring	of	
their	 collaborative	 work.	 By	 recognizing	 design	 principles	 in	 “Learning	 of	 CCMR	
competency”	 (i.e.,	 justifying	 arguments,	 challenging	or	 adding	 to	 suggested	 ideas),	
students	 may	 develop	 an	 awareness	 of	 how	 productive	 interactions	 promote	
learning	 of	 competency	 skills	 and	 a	 deeper	 understanding	 of	 the	 mathematics	
involved.	A	teacher	should	therefore	foster	students'	awareness	of	the	opportunities	
afforded	by	the	CCMR	model.	

The	 third	 group	 for	 whom	 this	 model	 may	 be	 useful	 is	 researchers	 in	
mathematics	education.	The	model	may	be	used	to	analyze	classroom	situations	that	
facilitate	 student	 interactions	 with	 a	 focus	 on	 collaboration	 and	 mathematical	
reasoning.	 Moreover,	 utilizing	 the	 design	 principles	 for	 analytical	 purposes	 could	
lead	to	new	theory	development	of	design	principles,	as	well	as	other	interactional	
aspects	 to	 consider	 in	 students’	 quality	 interactions	 in	 collaborative	mathematics	
learning.	

The	project’s	strength	(simultaneously	a	limitation,	elaborated	on	below)	is	
a	small	sample	size	of	students	and	their	teachers,	whose	interactions	were	studied	
closely.	The	DBR	study	design	also	meant	that	participants	could	be	studied	in	the	
naturalistic	environment	of	the	classrooms	(Anderson	&	Shattuck,	2012),	where	the	
theoretical	 foundation	 is	 anchored	 in	 relevant	 theory	 (Euler,	 2017),	 and	 with	
teachers	involved	in	specific	phases	(Iversen	&	Jonsdottir,	2018),	which	was	found	
to	 be	 meaningful	 and	 useful	 to	 them	 and	 myself.	 In	 the	 researcher–teacher	
interactions,	 the	 conversations	 focused	 on	 planning	 lessons	 relevant	 for	 progress	
and	 in	 line	 with	 the	 curriculum,	 as	 well	 as	 practicing	 emphasizing	 mathematical	
reasoning	and	collaborative	work	 in	 the	classroom.	The	 teachers	were	engaged	 in	
the	 planning	 and	 implementation.	 We	 planned	 the	 three	 highlighted	 function	
problems	through	discussions	of	students	would	respond.	We	reflected	on	students’	
engagement	 afterwards,	 as	 well	 as	 the	 role	 of	 the	 teachers	 in	 the	 situations.	 In	
section	3,	 the	second	 function	problem	(Fig.	5)	 is	presented.	The	teachers	 thought	
the	 task	was	promising,	but	 it	 facilitated	minimal	mathematical	reasoning,	noticed	
by	the	teachers	and	I.	Thus,	a	possible	agenda	for	further	research	is	a	focus	on	task	
design	principles	for	the	CCMR	competency	model	developed	through	a	partnership	
between	researchers	and	teachers.	

	The	 iterative	 processes	 led	 to	 contextually	 sensitive	 design	 principles	
(Wang	 &	 Hannafin,	 2005)	 in	 the	 suggested	 CCMR	 competency	 model	 (Fig.	 7).	
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Moreover,	 the	 argumentation	 for	 the	 generated	 design	 principles	 is	 properly	
anchored	 in	 a	 theoretical	 foundation	 regarding	 the	 interactional	 aspects	 of	
mathematics	 education.	 Thus,	 it	 is	 likely	 that	 the	 design	 principles	 developed	 are	
relevant	outside	the	local	context	of	classroom	studies	(Barab	&	Squire,	2004).	

Like	all	studies,	this	project	has	limitations.	Six	pairs	out	of	33	student	pairs	
and	 three	 teachers	 were	 chosen	 for	 in-depth	 studies	 in	 two	 problem-solving	
sessions.	Thus,	one	limitation	is	that	the	CCMR	competency	model	was	built	using	a	
small	 sample	 size.	 Although	 the	 iterative	 processes	 were	 anchored	 in	 relevant	
theory	and	the	contextual	sensitivity	was	considered,	more	student	dyads	should	be	
studied	to	bolster	support	for	the	CCMR	competency	model.	To	further	evaluate	and	
strengthen	 the	 model,	 a	 broader	 specter	 of	 mathematical	 problems	 in	 different	
areas	of	mathematics	and	for	different	age	groups	could	also	be	adopted.	This	could	
potentially	 reveal	 nuances	 in	 the	 interactional	 patterns	 identified	 in	 students’	
attempts	to	collaborate	and	reason	mathematically.	

Another	 issue	 is	 the	 selection	 of	 the	 six	 pairs.	 These	 participants	 were	
chosen	because	of	their	high	level	of	reasoning	competency,	which	meant	that	they	
attempted	to	explain	their	thinking	and	anchored	it	 in	mathematics.	Moreover,	the	
teachers	contributed	insights	regarding	the	likelihood	of	student	pairs	being	verbal	
and	 sharing	 their	 thoughts	 with	 one	 another.	 Since	 the	 students	 had	 recently	
transitioned	from	lower	secondary	school	and	the	teachers	did	yet	not	know	them,	
the	 teachers	 and	 I	 hoped	 the	 dyads	 would	 provide	 valuable	 insights	 into	 the	
interplay	of	the	chosen	interactional	aspects.	However,	Lithner	(2017)	emphasizes	
that	 the	CMR	 framework	 is	appropriate	 for	every	student,	 regardless	of	 reasoning	
skills.	Thus,	another	potential	research	agenda	could	be	to	study	student	pairs	with	
different	 levels	 of	 reasoning	 competency.	 For	 instance,	 a	 study	 of	 students	 who	
demonstrate	 low	 reasoning	 competency	 could	 look	 at	 what	 interaction	 pattern	
between	 the	 students	 is	 observed	 during	 mathematical	 problem	 solving.	 Such	 a	
study	 would	 be	 a	 worthwhile	 exploration	 of	 the	 CCMR	 competency	 model’s	
applicability.	 Additionally,	 a	 student	 pair	 exhibiting	 a	 one-directional	 interaction	
that	 does	 not	 change	 after	 teacher	 intervention	 should	 possibly	 be	 assigned	 new	
peers.	 Thus,	 another	 issue	 to	 consider	 is	 the	 flexibility	 of	 the	 dyad	 formation	 to	
support	potential	bi-directional	interactions.	

The	design	principles	concerning	the	role	of	the	teacher	related	to	student	
dyads’	 interaction	 patterns	 could	 be	 developed	 further.	 Future	 research	 could	
further	 investigate	 teacher–student	 interactions,	 focusing	 on	 teacher	 actions	 and	
emphasizing	 students’	 roles	 and	 exercised	 agencies	 in	 interactional	 patterns	 to	
improve	the	CCMR	competency	model	with	nuanced	teacher	action	principles.	
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The	DBR	process	also	requires	further	study.	Future	research	could	involve	
additional	collaborative	phases	with	the	teachers	during	some	stages	of	the	analysis.	
For	 instance,	 teachers	 could	 be	 involved	 in	 interpreting	 students’	 CMR	 sequences	
connected	 to	 teacher	 interactions.	A	 teacher’s	beliefs	and	 identity,	or	orientations,	
related	to	the	CCMR	competency	could	provide	insights	that	inform	their	knowledge	
of	how	to	support	productive	student	 interactions.	This	could	 thus	strengthen	 the	
design	principles	for	teacher	actions.	



57	
	

7. References 

Adu-Gyamfi,	K.,	Stiff,	L.	V.,	&	Bossé,	M.	J.	(2012).	Lost	in	translation:	Examining	
translation	errors	associated	with	mathematical	representations.	School	
Science	and	Mathematics,	112(3),	159–170.	
https://doi.org/10.1111/j.1949-8594.2011.00129.x		

Akkoç,	H.,	&	Tall,	D.	(2005).	A	mismatch	between	curriculum	design	and	student	
learning:	The	case	of	the	function	concept.	Proceedings	of	the	sixth	British	
Congress	of	Mathematics	Education,	Warwick,	United	Kingdom.	
http://www.bsrlm.org.uk/IPs/ip25-1/.	

Alrø,	H.,	&	Skovsmose,	O.	(2002).	Dialogue	and	learning	in	mathematics	education:	
Intention,	reflection,	critique	(Vol.	29).	Kluwer	Academic	Publishers.	
https://doi.org/10.1007/0-306-48016-6		

Alrø,	H.,	&	Skovsmose,	O.	(2004).	Dialogic	learning	in	collaborative	investigation.	
Nordisk	Matematikkdidaktikk,	9(2),	39–62.		

Amiel,	T.,	&	Reeves,	T.	C.	(2008).	Design-based	research	and	educational	technology:	
Rethinking	technology	and	the	research	agenda.	Educational	Technology	&	
Society,	11(4),	29–40.		

Anderson,	T.,	&	Shattuck,	J.	(2012).	Design-based	research:	A	decade	of	progress	in	
education	research?	Educational	Researcher,	41(1),	16–25.	
https://doi.org/10.3102/0013189X11428813		

Ayalon,	M.,	&	Even,	R.	(2016).	Factors	shaping	students'	opportunities	to	engage	in	
argumentative	activity.	International	Journal	of	Science	and	Mathematics	
Education,	14(3),	575–601.	https://doi.org/10.1007/s10763-014-9584-3		

Ayalon,	M.,	&	Hershkowitz,	R.	(2018).	Mathematics	teachers'	attention	to	potential	
classroom	situations	of	argumentation.	The	Journal	of	Mathematical	
Behavior,	49,	163–173.	https://doi.org/10.1016/j.jmathb.2017.11.010		

Baker,	M.	J.	(2015).	Collaboration	in	collaborative	learning.	Interaction	Studies,	
16(3),	451–473.	https://doi.org/10.1075/is.16.3.05bak		

Barab,	S.,	&	Squire,	K.	(2004).	Design-based	research:	Putting	a	stake	in	the	ground.	
The	Journal	of	the	Learning	Sciences,	13(1),	1–14.	
https://doi.org/10.1207/s15327809jls1301_1		

Barron,	B.	(2000).	Achieving	coordination	in	collaborative	problem-solving	groups.	
Journal	of	the	Learning	Sciences,	9(4),	403–436.	
https://doi.org/10.1207/S15327809JLS0904_2		



58	
	

Bergqvist,	T.,	&	Lithner,	J.	(2012).	Mathematical	reasoning	in	teachers’	
presentations.	The	Journal	of	Mathematical	Behavior,	31(2),	252–269.	
https://doi.org/10.1016/j.jmathb.2011.12.002		

Bergqvist,	T.,	Lithner,	J.,	&	Sumpter,	L.	(2007).	Upper	secondary	students'	task	
reasoning.	International	Journal	of	Mathematical	Education	in	Science	and	
Technology,	39(1),	1–12.	https://doi.org/10.1080/00207390701464675		

Best,	M.,	&	Bikner-Ahsbahs,	A.	(2017).	The	function	concept	at	the	transition	to	
upper	secondary	school	level:	Tasks	for	a	situation	of	change.	ZDM	
Mathematics	Education,	49(6),	865–880.	https://doi.org/10.1007/s11858-
017-0880-6		

Bikner-Ahsbahs,	A.,	&	Prediger,	S.	(2010).	Networking	of	theories—an	approach	for	
exploiting	the	diversity	of	theoretical	approaches.	In	B.	Sriraman	&	L.	
English	(Eds.),	Theories	of	Mathematics	Education	(pp.	483–506).	Springer.	
https://doi.org/10.1007/978-3-642-00742-2_46		

Boesen,	J.,	Helenius,	O.,	Bergqvist,	E.,	Bergqvist,	T.,	Lithner,	J.,	Palm,	T.,	&	Palmberg,	B.	
(2014).	Developing	mathematical	competence:	From	the	intended	to	the	
enacted	curriculum.	The	Journal	of	Mathematical	Behavior,	33,	72–87.	
https://doi.org/10.1016/j.jmathb.2013.10.001		

Brousseau,	G.	(2006).	Theory	of	didactical	situations	in	mathematics:	Didactique	des	
mathématiques,	1970–1990	(Vol.	19).	Springer	Science	&	Business	Media.		

Bungum,	B.,	&	Sanne,	A.	(2021).	Conditions	for	the	active	involvement	of	teachers	in	
a	design-based	research	project.	Designs	for	Learning,	13(1),	44–54.	
https://doi.org/10.16993/dfl.169		

Cengiz,	N.,	Kline,	K.,	&	Grant,	T.	J.	(2011).	Extending	students’	mathematical	thinking	
during	whole-group	discussions.	Journal	of	Mathematics	Teacher	Education,	
14(5),	355–374.	https://doi.org/10.1007/s10857-011-9179-7		

Child,	S.,	&	Shaw,	S.	(2016).	Collaboration	in	the	21st	century:	Implications	for	
assessment.	Research	Matters:	A	Cambridge	Assessment	publication,	22,	17–
22.		

Child,	S.,	&	Shaw,	S.	(2019).	Towards	an	operational	framework	for	establishing	and	
assessing	collaborative	interactions.	Research	Papers	in	Education,	34(3),	
276–297.	https://doi.org/10.1080/02671522.2018.1424928		

Clement,	L.	L.	(2001).	What	do	students	really	know	about	functions?	The	
Mathematics	Teacher,	94(9),	745–748.		

Cobb,	P.	(1994).	Where	is	the	mind?	Constructivist	and	sociocultural	perspectives	on	
mathematical	development.	Educational	researcher,	23(7),	13–20.	
https://doi.org/10.3102/0013189X023007013		



59	
	

Cobb,	P.	(1995).	Mathematical	learning	and	small-group	interaction:	Four	case	
studies.	In	P.	Cobb	&	H.	Bauersfeld	(Eds.),	The	emergence	of	mathematical	
meaning:	Interaction	in	classroom	cultures.	(pp.	25-129).	Lawrence	Erlbaum	
Associates,	Inc.		

Cobb,	P.,	Gresalfi,	M.,	&	Hodge,	L.	L.	(2009).	An	interpretive	scheme	for	analyzing	the	
identities	that	students	develop	in	mathematics	classrooms.	Journal	for	
Research	in	Mathematics	Education,	40(1),	40–68.	
https://doi.org/10.5951/jresematheduc.40.1.0040		

Cresswell,	J.	W.	(2007).	Qualitative	inquiry	and	research	design:	Choosing	among	five	
approaches	(2	ed.).	Sage	Publications.		

Derry,	S.	J.,	Pea,	R.	D.,	Barron,	B.,	Engle,	R.	A.,	Erickson,	F.,	Goldman,	R.,	.	.	.	Sherin,	M.	
G.	(2010).	Conducting	video	research	in	the	learning	sciences:	Guidance	on	
selection,	analysis,	technology,	and	ethics.	Journal	of	the	Learning	Sciences,	
19(1),	3–53.	https://doi.org/10.1080/10508400903452884		

Dillenbourg,	P.	(1999).	What	do	you	mean	by	collaborative	learning?	In	P.	
Dillenbourg	(Ed.),	Collaborative-learning:	Cognitive	and	computational	
approaches	(pp.	1–19).	Oxford.	https://telearn.archives-ouvertes.fr/hal-
00190240		

Dillenbourg,	P.,	Baker,	M.	J.,	Blaye,	A.,	&	O'Malley,	C.	(1996).	The	evolution	of	
research	on	collaborative	learning.	In	E.	Spada	&	P.	Reiman	(Eds.),	Learning	
in	humans	and	machine:	Towards	an	interdisciplinary	learning	science	(pp.	
189–211).	Elsevier.	https://telearn.archives-ouvertes.fr/hal-00190626		

Drageset,	O.	G.	(2014).	Redirecting,	progressing,	and	focusing	actions—a	framework	
for	describing	how	teachers	use	students’	comments	to	work	with	
mathematics.	Educational	Studies	in	Mathematics,	85(2),	281–304.	
https://doi.org/10.1007/s10649-013-9515-1		

Drageset,	O.	G.	(2015).	Different	types	of	student	comments	in	the	mathematics	
classroom.	The	Journal	of	Mathematical	Behavior,	38,	29–40.	
https://doi.org/10.1016/j.jmathb.2015.01.003		

Drageset,	O.	G.	(2019,	February).	How	teachers	use	interactions	to	craft	different	
types	of	student	participation	during	whole-class	mathematical	work	
[Conference	Paper].	Eleventh	Congress	of	the	European	Society	for	
Research	in	Mathematics	Education,	Utrecht,	Netherlands.	
https://hal.archives-ouvertes.fr/hal-02430060	

Dubinsky,	E.,	&	Wilson,	R.	T.	(2013).	High	school	students’	understanding	of	the	
function	concept.	The	Journal	of	Mathematical	Behavior,	32(1),	83–101.	
https://doi.org/10.1016/j.jmathb.2012.12.001		



60	
	

Erath,	K.,	Ingram,	J.,	Moschkovich,	J.,	&	Prediger,	S.	(2021).	Designing	and	enacting	
instruction	that	enhances	language	for	mathematics	learning:	a	review	of	
the	state	of	development	and	research.	ZDM	Mathematics	Education,	53,	
245–262.	https://doi.org/10.1007/s11858-020-01213-2		

Euler,	D.	(2017).	Design	principles	as	bridge	between	scientific	knowledge	
production	and	practice	design.	EDeR.	Educational	Design	Research,	1(1).	
https://doi.org/10.15460/eder.1.1.1024		

Franke,	M.	L.,	Kazemi,	E.,	&	Battey,	D.	(2007).	Mathematics	teaching	and	classroom	
practice.	In	F.	K.	Lester	Jr.	(Ed.),	Second	handbook	of	research	on	
mathematics	teaching	and	learning	(pp.	225–256).	Information	Age	
Publishing.		

Gjone,	G.	(1997).	Veiledning	til	funksjoner:	E,	G	og	I.	Nasjonalt	læremiddelsenter.		
Graesser,	A.	C.,	Foltz,	P.	W.,	Rosen,	Y.,	Shaffer,	D.	W.,	Forsyth,	C.,	&	Germany,	M.-L.	

(2018).	Challenges	of	assessing	collaborative	problem	solving.	In	E.	Care,	P.	
Griffin,	&	M.	Wilson	(Eds.),	Assessment	and	teaching	of	21st	century	skills	
(pp.	75–91).	Springer.		

Granberg,	C.	(2016).	Discovering	and	addressing	errors	during	mathematics	
problem-solving—A	productive	struggle?	The	Journal	of	Mathematical	
Behavior,	42,	33–48.	
https://doi.org/https://doi.org/10.1016/j.jmathb.2016.02.002		

Granberg,	C.,	&	Olsson,	J.	(2015).	ICT-supported	problem	solving	and	collaborative	
creative	reasoning:	Exploring	linear	functions	using	dynamic	mathematics	
software.	The	Journal	of	Mathematical	Behavior,	37,	48–62.	
https://doi.org/10.1016/j.jmathb.2014.11.001		

Gresalfi,	M.,	Martin,	T.,	Hand,	V.,	&	Greeno,	J.	(2009).	Constructing	competence:	An	
analysis	of	student	participation	in	the	activity	systems	of	mathematics	
classrooms.	Educational	Studies	in	Mathematics,	70(1),	49–70.	
https://doi.org/10.1007/s10649-008-9141-5		

Griffin,	P.,	Care,	E.,	&	McGaw,	B.	(2012).	The	changing	role	of	education	and	schools.	
In	P.	Griffin,	B.	McGaw,	&	E.	Care	(Eds.),	Assessment	and	teaching	of	21st	
century	skills	(pp.	1–15).	Springer	Netherlands.	
https://doi.org/10.1007/978-94-007-2324-5_1		

Grønmo,	L.	S.,	&	Hole,	A.	(2017).	Prioritering	og	progresjon	i	skolematematikken:	En	
nøkkel	til	å	lykkes	i	realfag.	Analyser	av	TIMMS	Advanced	og	andre	
internasjonale	studier.		

Hall,	J.,	&	Chamblee,	G.	(2013).	Teaching	algebra	and	geometry	with	GeoGebra:	
Preparing	pre-service	teachers	for	middle	grades/secondary	mathematics	
classrooms.	Computers	in	the	Schools,	30(1–2),	12–29.	
https://doi.org/https://doi.org/10.1080/07380569.2013.764276		



61	
	

Hiebert,	J.,	&	Grouws,	D.	A.	(2007).	The	effects	of	classroom	mathematics	teaching	on	
students’	learning.	In	F.	K.	Lester	Jr.	(Ed.),	Second	handbook	of	research	on	
mathematics	teaching	and	learning	(pp.	371–404).	Information	Age	
Publishing.		

Howe,	C.,	Tolmie,	A.,	Thurston,	A.,	Topping,	K.,	Christie,	D.,	Livingston,	K.,	.	.	.	
Donaldson,	C.	(2007).	Group	work	in	elementary	science:	Towards	
organisational	principles	for	supporting	pupil	learning.	Learning	and	
Instruction,	17(5),	549–563.	
https://doi.org/10.1016/j.learninstruc.2007.09.004		

Howe,	K.,	&	Eisenhart,	M.	(1990).	Standards	for	qualitative	(and	quantitative)	
research:	A	prolegomenon.	Educational	researcher,	19(4),	2–9.		

Iversen,	E.,	&	Jonsdottir,	G.	(2018).	A	bit	more	than	a	fly	on	the	wall:	Roles	and	
responsibilities	in	design-based	research.	10(1),	18–28.	
https://doi.org/10.16993/dfl.79		

Jungwirth,	H.	(2010).	On	networking	strategies	and	theories’	compatibility:	Learning	
from	an	effective	combination	of	theories	in	a	research	project.	In	B.	
Sriraman	&	L.	English	(Eds.),	Theories	of	mathematics	education:	Seeking	
new	frontiers	(pp.	519–535).	Springer,	Berlin,	Heidelberg.	
https://doi.org/10.1007/978-3-642-00742-2_49		

Juuti,	K.,	&	Lavonen,	J.	(2006).	Design-based	research	in	science	education:	One	step	
towards	methodology.	Nordic	Studies	in	Science	Education,	2(2),	54–68.	
https://doi.org/10.5617/nordina.424		

Juuti,	K.,	Lavonen,	J.,	&	Meisalo,	V.	(2016).	Pragmatic	design-based	research	–	
Designing	as	a	shared	activity	of	teachers	and	researchers.	In	D.	Psillos	&	P.	
Kariotoglou	(Eds.),	Iterative	design	of	teaching-learning	sequences:	
Introducing	the	science	of	materials	in	European	schools	(pp.	35–46).	
Springer,	Dordrecht.	https://doi.org/10.1007/978-94-007-7808-5_3		

Krummheuer,	G.	(2007).	Argumentation	and	participation	in	the	primary	
mathematics	classroom:	Two	episodes	and	related	theoretical	abductions.	
The	Journal	of	Mathematical	Behavior,	26(1),	60–82.	
https://doi.org/10.1016/j.jmathb.2007.02.001		

Kumpulainen,	K.,	&	Mutanen,	M.	(1999).	The	situated	dynamics	of	peer	group	
interaction:	an	introduction	to	an	analytic	framework.	Learning	and	
Instruction,	9(5),	449–473.	
https://doi.org/https://doi.org/10.1016/S0959-4752(98)00038-3		

Lai,	E.,	DiCerbo,	K.,	&	Foltz,	P.	(2017).	Skills	for	today:	What	we	know	about	teaching	
and	assessing	collaboration.	Pearson.		

Langer-Osuna,	J.	(2018).	Exploring	the	central	role	of	student	authority	relations	in	
collaborative	mathematics.	ZDM	Mathematics	Education,	50(6),	1077–1087.	
https://doi.org/10.1007/s11858-018-0965-x		



62	
	

Langer-Osuna,	J.,	Munson,	J.,	Gargroetzi,	E.,	Williams,	I.,	&	Chavez,	R.	(2020).	“So	
what	are	we	working	on?”:	How	student	authority	relations	shift	during	
collaborative	mathematics	activity.	Educational	Studies	in	Mathematics,	104,	
333–349.	https://doi.org/10.1007/s10649-020-09962-3		

Leinhardt,	G.,	Zaslavsky,	O.,	&	Stein,	M.	K.	(1990).	Functions,	graphs,	and	graphing:	
Tasks,	learning,	and	teaching.	Review	of	Educational	Research,	60(1),	1–64.	
https://doi.org/10.3102/00346543060001001		

Lepak,	J.	R.,	Wernet,	J.	L.	W.,	&	Ayieko,	R.	A.	(2018).	Capturing	and	characterizing	
students’	strategic	algebraic	reasoning	through	cognitively	demanding	
tasks	with	focus	on	representations.	The	Journal	of	Mathematical	Behavior,	
50,	57–73.	https://doi.org/10.1016/j.jmathb.2018.01.003		

Lerman,	S.	(1996).	Socio-cultural	approaches	to	mathematics	teaching	and	learning.	
Educational	Studies	in	Mathematics,	31,	1–9.		

Lithner,	J.	(2008).	A	research	framework	for	creative	and	imitative	reasoning.	
Educational	Studies	in	Mathematics,	67(3),	255–276.	
https://doi.org/10.1007/s10649-007-9104-2		

Lithner,	J.	(2015).	Learning	mathematics	by	creative	or	imitative	reasoning.	In	S.	Cho	
(Ed.),	Selected	regular	lectures	from	the	12th	international	congress	on	
mathematical	education	(pp.	487–506).	Springer.	
https://doi.org/10.1007/978-3-319-17187-6_28		

Lithner,	J.	(2017).	Principles	for	designing	mathematical	tasks	that	enhance	
imitative	and	creative	reasoning.	ZDM	Mathematics	Education,	49(6),	937–
949.	https://doi.org/10.1007/s11858-017-0867-3		

Maher,	C.	A.,	Sigley,	R.,	Sullivan,	P.,	&	Wilkinson,	L.	C.	(2018).	An	international	
perspective	on	knowledge	in	teaching	mathematics.	The	Journal	of	
Mathematical	Behavior,	51,	71–79.	
http://www.sciencedirect.com/science/article/pii/S0732312318300798		

Malik,	M.	A.	(1980).	Historical	and	pedagogical	aspects	of	the	definition	of	function.	
International	Journal	of	Mathematical	Education	in	Science	and	Technology,	
11(4),	489–492.	https://doi.org/10.1080/0020739800110404		

Martin,	L.,	&	Towers,	J.	(2015).	Growing	mathematical	understanding	through	
collective	image	making,	collective	image	having,	and	collective	property	
noticing.	Educational	Studies	in	Mathematics,	88(1),	3–18.	
https://doi.org/10.1007/s10649-014-9552-4		

Michelsen,	C.	(2006).	Functions:	a	modelling	tool	in	mathematics	and	science.	ZDM	
Mathematics	Education,	38(3),	269–280.	
https://doi.org/10.1007/bf02652810		



63	
	

Mueller,	M.,	Yankelewitz,	D.,	&	Maher,	C.	(2012).	A	framework	for	analyzing	the	
collaborative	construction	of	arguments	and	its	interplay	with	agency.	
Educational	Studies	in	Mathematics,	80(3),	369–387.	
https://doi.org/10.1007/s10649-011-9354-x		

Mueller,	M.	F.	(2009).	The	co-construction	of	arguments	by	middle-school	students.	
The	Journal	of	Mathematical	Behavior,	28(2),	138–149.	
https://doi.org/https://doi.org/10.1016/j.jmathb.2009.06.003		

NCTM.	(2014).	Principles	to	actions:	Ensuring	mathematical	success	for	all.	NCTM.		
Nelson,	L.	M.	(1999).	Collaborative	problem	solving.	In	C.	M.	Reigeluth	(Ed.),	

Instructional	design	theories	models:	A	new	paradigm	of	instructional	theory	
(Vol.	2,	pp.	241–267).	Routledge.		

Newton,	P.	E.,	&	Shaw,	S.	D.	(2014).	Validity	in	educational	&	psycological	assessment.	
In	M.	Lagrange	(Ed.)	(1	ed.).	Sage	Publications.		

Niss,	M.	(2003).	Mathematical	competencies	and	the	learning	of	mathematics:	the	
Danish	KOM	project.	Mediterranean	Conference	on	Mathematics	Education,	
Athens,	Greece.		

Noorloos,	R.,	Taylor,	S.	D.,	Bakker,	A.,	&	Derry,	J.	(2017).	Inferentialism	as	an	
alternative	to	socioconstructivism	in	mathematics	education.	Mathematics	
Education	Research	Journal,	29(4),	437-453.	
https://doi.org/10.1007/s13394-017-0189-3		

OECD.	(2017).	PISA	2015	assessment	and	analytical	framework:	Science,	reading,	
mathematic,	financial	literacy	and	collaborative	problem	solving,	revised	
edition.	OECD	Publishing.	https://doi.org/10.1787/9789264281820-en		

Olsson,	J.	(2018).	The	contribution	of	reasoning	to	the	utilization	of	feedback	from	
software	when	solving	mathematical	problems.	International	Journal	of	
Science	and	Mathematics	Education,	16(4),	715–735.	
https://doi.org/10.1007/s10763-016-9795-x		

Pickering,	A.	(1995).	The	Mangle	of	Practice:	Time,	Agency,	and	Science	(1	ed.).	
University	of	Chicago	Press.		

Powell,	A.,	Francisco,	J.,	&	Maher,	C.	(2003).	An	analytical	model	for	studying	the	
development	of	learners’	mathematical	ideas	and	reasoning	using	
videotape	data.	The	Journal	of	Mathematical	Behavior,	22(4),	405–435.	
https://doi.org/10.1016/j.jmathb.2003.09.002		

Preiner,	J.	(2008).	Introducing	dynamic	mathematics	software	to	mathematics	
teachers:	the	case	of	GeoGebra.	[Doctoral	dissertation,	University	of	
Salzburg].	
http://www.pucrs.br/ciencias/viali/tic_literatura/teses/Preiner_Judith.pdf	



64	
	

Presmeg,	N.,	&	Kilpatrick,	J.	(2019).	Pleasures,	power,	and	pitfalls	of	writing	up	
mathematics	education	research.	In	G.	Kaiser	and	N.	Presmeg	(Eds.).	
Compendium	for	early	career	researchers	in	mathematics	education	(347–
358).	Springer.	https://doi.org/10.1007/978-3-030-15636-7_16	

Roschelle,	J.,	&	Teasley,	S.	D.	(1995).	The	Construction	of	Shared	Knowledge	in	
Collaborative	Problem	Solving.	In	C.	O'Malley	(Ed.),	Computer	supported	
collaborative	learning	(Vol.	128,	pp.	69–97).	Springer.	
https://doi.org/10.1007/978-3-642-85098-1_5		

Ryu,	S.	(2020).	The	role	of	mixed	methods	in	conducting	design-based	research.	
Educational	Psychologist,	55(4),	232–243.	
https://doi.org/10.1080/00461520.2020.1794871		

Sarmiento,	J.	W.,	&	Stahl,	G.	(2008).	Extending	the	joint	problem	space:	Time	and	
sequences	as	essential	features	of	knowledge	building.	In	Kanselaar,	G.,	
Jonker,	V.,	Kirschner,	P.	A.,	&	Prins,	F.	J.	(Eds.),	International	perspectives	in	
the	learning	sciences:	Creating	a	learning	world.	Proceedings	of	the	Eighth	
International	Conference	for	the	Learning	Sciences	–	ICLS	2008	(Vol.	2,	pp.	
295–302).	International	Society	of	the	Learning	Sciences.		

Schoenfeld,	A.	(2013).	Classroom	observations	in	theory	and	practice.	ZDM	
Mathematics	Education,	45(4),	607–621.	https://doi.org/10.1007/s11858-
012-0483-1		

Schoenfeld,	A.,	Dosalmas,	A.,	Fink,	H.,	Sayavedra,	A.,	Tran,	K.,	Weltman,	A.,	.	.	.	Zuniga-
Ruiz,	S.	(2019).	Teaching	for	robust	understanding	with	lesson	study.	In	R.	
Huang,	A.	Takahashi,	&	J.	P.	Ponte	(Eds.),	Theory	and	practices	of	lesson	study	
in	mathematics:	An	international	perspective	(pp.	135–159).	Springer.	
https://doi.org/10.1007/978-3-030-04031-4_7		

Seidouvy,	A.,	&	Schindler,	M.	(2019).	An	inferentialist	account	of	students’	
collaboration	in	mathematics	education.	Mathematics	Education	Research	
Journal,	32,	411–431.	https://doi.org/10.1007/s13394-019-00267-0		

Sidenvall,	J.	(2019).	Literature	review	of	mathematics	teaching	design	for	problem	
solving	and	reasoning.	Nordic	Studies	in	Mathematics	Education,	24(1),	51–
74.	http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-156533		

Sidnell,	J.	(2010).	Conversation	Analysis:	An	Introduction.	Wiley-Blackwell.		
Sierpinska,	A.	(1993).	Criteria	for	scientific	quality	and	relevance	in	the	didactics	of	

mathematics.	In	G.	Nissen	&	M.	Blomhøj	(Eds.),	Criteria	for	scientific	quality	
and	relevance	in	the	didactics	of	mathematics	(1	ed.,	pp.	35-75).	Danish	
Research	Council	for	the	Humanities.		

Staples,	M.	(2007).	Supporting	whole-class	collaborative	inquiry	in	a	secondary	
mathematics	classroom.	Cognition	and	Instruction,	25(2-3),	161–217.	
https://doi.org/10.1080/07370000701301125		



65	
	

Stein,	M.	K.,	Engle,	R.	A.,	Smith,	M.	S.,	&	Hughes,	E.	K.	(2008).	Orchestrating	
productive	mathematical	discussions:	Five	practices	for	helping	teachers	
move	beyond	show	and	tell.	Mathematical	Thinking	and	Learning,	10(4),	
313–340.	https://doi.org/10.1080/10986060802229675		

Stockero,	S.	L.,	Leatham,	K.	R.,	Ochieng,	M.	A.,	Van	Zoest,	L.	R.,	&	Peterson,	B.	E.	
(2019).	Teachers’	orientations	toward	using	student	mathematical	thinking	
as	a	resource	during	whole-class	discussion.	Journal	of	Mathematics	Teacher	
Education,	1–31.	https://doi.org/10.1007/s10857-018-09421-0		

Sun,	C.,	Shute,	V.	J.,	Stewart,	A.,	Yonehiro,	J.,	Duran,	N.,	&	D'Mello,	S.	(2020).	Towards	
a	generalized	competency	model	of	collaborative	problem	solving.	
Computers	&	Education,	143,	103672.	
https://doi.org/https://doi.org/10.1016/j.compedu.2019.103672		

The	Research	Council	of	Norway.	(2018).	Norwegian	roadmap	for	research	
infrastructure	2018.	Retrieved	24.01	2019	from	
https://www.forskningsradet.no/prognett-
infrastruktur/Documents/1224697900435	

Thompson,	P.	W.	(1994).	Students,	functions,	and	the	undergraduate	curriculum.	
Research	in	Collegiate	Mathematics	Education,	1,	21–44.	
https://doi.org/10.1090/cbmath/004/02		

Usiskin,	Z.	(1988).	Conceptions	of	school	algebra	and	uses	of	variables.	In	B.	Moses	
(Ed.),	Algebraic	thinking,	grades	K–12	(pp.	7–13).	National	council	of	
teachers	of	mathematics.	

Utdanningsdirektoratet.	(2019).	Curriculum	for	mathematics	year	1–10.	
https://www.udir.no/lk20/MAT01-05	

Vakil,	S.,	McKinney	de	Royston,	M.,	Suad	Nasir,	N.	i.,	&	Kirshner,	B.	(2016).	
Rethinking	race	and	power	in	design-based	research:	Reflections	from	the	
field.	Cognition	and	Instruction,	34(3),	194–209.		

van	de	Pol,	J.,	Mercer,	N.,	&	Volman,	M.	(2018).	Scaffolding	student	understanding	in	
small-group	work.	Journal	of	the	Learning	Sciences,	28(2),	1–34.	
https://doi.org/10.1080/10508406.2018.1522258		

Varhol,	A.,	Drageset,	O.	G.,	&	Hansen,	M.	N.	(2020).	Discovering	key	interactions.	How	
student	interactions	relate	to	progress	in	mathematical	generalization.	
Mathematics	Education	Research	Journal.	https://doi.org/10.1007/s13394-
020-00308-z		

Wang,	F.,	&	Hannafin,	M.	J.	(2005).	Design-based	research	and	technology-enhanced	
learning	environments.	Educational	Technology	Research	and	Development,	
53(4),	5–23.		

Webb,	N.	M.	J.	(1982).	Student	interaction	and	learning	in	small	groups.	Review	of	
Educational	Research,	52,	421–445.	
https://doi.org/10.3102/00346543052003421		



66	
	

Wood,	T.	(1998).	Alternative	patterns	of	communication	in	mathematics	classes:	
Funneling	or	focusing.	In	H.	Steinbring,	M.	G.	B.	Bussi,	&	A.	Sierpinska	(Eds.),	
Language	and	communication	in	the	mathematics	classroom	(pp.	167–178).	
National	council	of	teachers	of	mathematics.		

Yackel,	E.	(2001).	Explanation,	justification	and	argumentation	in	mathematics	
classrooms.	In	M.	van	den	Heuvel-Panhuizen	(Ed.),	Proceedings	of	the	25th	
International	Conference	for	the	Psychology	of	Mathematics	Education	(Vol.	
1,	pp.	9–24).		

Yackel,	E.,	&	Cobb,	P.	(1996).	Sociomathematical	norms,	argumentation,	and	
autonomy	in	mathematics.	Journal	for	Research	in	Mathematics	Education,	
27(4),	458–477.	https://doi.org/10.2307/749877		

Yin,	R.	K.	(2014).	Case	study	research:	Design	and	methods	(5th	ed.).	Sage	
Publications.		

	
	
	
	



67	
	

Appendix A 
Coding framework of the three interactional 
components 

	
	
The	 headings	 in	 the	 table	 reflect	 the	 interactional	 categories.	 The	 bullet	 points	
describe	the	emphasized	interactional	aspects	within	each	category	and	were	used	
as	codes	in	the	analysis.	The	table	is	organized	according	to	the	way	in	which	it	was	
utilized	to	code	student	pairs’	collaborative	problem	solving:	first	for	CMR,	then	for	
collaborative	processes,	and	finally	for	exercised	agency.	
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Appendix B 
Codes for teachers’ actions in conversations 
with student pairs 
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Appendix C 
Written informed consent from students and 
teachers 

Samtykke	om	deltakelse	i	forskningsprosjekt	tilknyttet	matematikkfaget	1T	
	
Dette	 brevet	 er	 en	 forespørsel	 til	 deg	 som	elev	 i	matematikkfaget	 1T,	 om	ditt	 samtykke	 til	
deltakelse	 i	 et	 forskningsprosjekt	 tilknyttet	 funksjonslære	 i	 1T.	 Prosjektet	 skal	 undersøke	
hvordan	elever	kan	øve	 sine	matematiske	 resonnementer	gjennom	å	 forklare,	begrunne	og	
diskutere	 framgangsmåter	 og	 tanker,	 muntlig	 og	 digitalt.	 Dette	 er	 viktige	 matematiske	
kompetanser.	
		
Først	gjennomføres	en	matematikktest,	som	på	et	senere	tidspunkt	legger	noe	av	grunnlaget	
for	 å	 sette	 sammen	 grupper.	 Jeg	 ønsker	 å	 observere	 og	 gjøre	 videopptak	 av	 enkelte	
gruppesamtaler.	 Jeg	 er	 interessert	 i	 hvordan	 gruppedynamikken	 og	 lærerens	 interaksjon	
bidrar	 til	 å	 øve	 kompetansene	 nevnt	 over.	 Jeg	 er	 ikke	 interesserte	 i	 å	 studere	 den	 enkelte	
students	prestasjoner	og	hvorvidt	man	«svarer	riktig	eller	galt»	på	oppgavene.	Hensikten	er	å	
lage	en	arena	for	å	øve	sentrale	matematiske	kompetanser	som	har	en	tendens	til	å	 få	 liten	
oppmerksomhet	både	 i	grunnskole,	videregående	skole	og	 i	høyere	utdanning.	Det	er	nå	et	
økt	internasjonalt	fokus	på	hvorfor	og	hvordan	denne	type	kompetanse	kan	øves.	
	
All	informasjon	som	blir	samlet	inn	vil	bli	lagret	på	hjemmeområdet	på	PC-en.	Kun	jeg	og	min	
veileder	har	innsyn	i	det	datamaterialet	som	er	samlet	inn,	og	du	kan	be	om	at	det	skal	slettes	
om	du	måtte	ønske	det.	Det	er	 frivillig	å	delta	 i	 forskningsstudien	og	du	kan	når	 som	helst	
trekke	deg	fra	studien	uten	å	begrunne	dette	nærmere.	I	min	rolle	som	forsker	innebærer	det	
at	jeg	er	underlagt	strenge	etiske	regler	for	hvordan	datamaterialet	kan	brukes.	Materialet	vil	
bli	 behandlet	 konfidensielt,	 og	 vil	 kun	 benyttes	 til	 forskningsformål.	 Prosjektet	 skal	 etter	
planen	avsluttes	august	2027.	Ved	prosjektslutt	slettes	videoopptakene.		
	
Jeg	håper	du	 vil	 gi	meg	den	nødvendige	 tillatelse	 ved	 å	undertegne	og	 returnere	 svararket	
(side	2).	Ønsker	du	å	ta	del	i	prosjektet	uten	å	komme	med	i	synsvinkelen	fra	et	filmkamera,	
legges	det	til	rette	for	det	i	undervisningssituasjonen.	Ta	kontakt	for	nærmere	spørsmål	(se	
kontaktinformasjon	under).	
	
Vennlig	hilsen	
Ellen	Kristine	S.	Hansen	
ellen.hansen@nmbu.no		
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Samtykkeerklæring	fra	elevene	
Leveres	innen	fredag	01.september	
Jeg	 har	 lest	 informasjonen	 om	 forskningsprosjektet	 tilknyttet	matematikkundervisningen	 i	
1T.	 Jeg	 er	 kjent	 med	 at	 den	 frivillige	 deltakelsen	 i	 forskningsprosjektet	 innebærer	
dokumentasjon	ved	en	matematikktest	og	ved	hjelp	av	videoopptak.	
	
Vennligst	kryss	av:	

q Jeg	samtykker	til	å	delta	på	alt	

q Jeg	samtykker	til	delta,	men	ikke	til	å	ta	matematikktesten	

q Jeg	samtykker	til	å	delta	i	undervisningen,	men	ikke	å	bli	filmet	

q Nei,	jeg	samtykker	ikke	

	
Underskrift:	_________________________________________	
	
Sted:	___________________________________	Dato:		 	 	 	 	
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Samtykke	om	deltakelse	i	forskningsprosjekt	tilknyttet	matematikkfaget	1T	
	
Dette	brevet	er	en	forespørsel	 til	deg	som	lærer	 i	matematikkfaget	1T,	om	ditt	samtykke	til	
deltakelse	 i	 et	 forskningsprosjekt	 tilknyttet	 funksjonslære	 i	 1T.	 Prosjektet	 skal	 undersøke	
hvordan	elever	kan	øve	 sine	matematiske	 resonnementer	gjennom	å	 forklare,	begrunne	og	
diskutere	 framgangsmåter	 og	 tanker,	 muntlig	 og	 digitalt.	 Dette	 er	 viktige	 matematiske	
kompetanser.	
		
Jeg	 ønsker	 å	 observere	 og	 gjøre	 videopptak	 av	 enkelte	 gruppesamtaler.	 Jeg	 er	 interessert	 i	
hvordan	 gruppedynamikken	 og	 lærerens	 interaksjon	 bidrar	 til	 å	 øve	 kompetansene	 nevnt	
over.	Jeg	er	 ikke	 interesserte	i	å	studere	den	enkelte	students	prestasjoner	og	hvorvidt	man	
«svarer	 riktig	 eller	 galt»	 på	 oppgavene.	 Hensikten	 er	 å	 lage	 en	 arena	 for	 å	 øve	 sentrale	
matematiske	 kompetanser	 som	 har	 en	 tendens	 til	 å	 få	 liten	 oppmerksomhet	 både	 i	
grunnskole,	videregående	skole	og	i	høyere	utdanning.	Det	er	nå	et	økt	 internasjonalt	 fokus	
på	hvorfor	og	hvordan	denne	type	kompetanse	kan	øves.	
	
All	informasjon	som	blir	samlet	inn	vil	bli	lagret	på	hjemmeområdet	på	PC-en.	Kun	jeg	og	min	
veileder	har	innsyn	i	det	datamaterialet	som	er	samlet	inn,	og	du	kan	be	om	at	det	skal	slettes	
om	du	måtte	ønske	det.	Det	er	 frivillig	å	delta	 i	 forskningsstudien	og	du	kan	når	 som	helst	
trekke	deg	fra	studien	uten	å	begrunne	dette	nærmere.	I	min	rolle	som	forsker	innebærer	det	
at	jeg	er	underlagt	strenge	etiske	regler	for	hvordan	datamaterialet	kan	brukes.	Materialet	vil	
bli	 behandlet	 konfidensielt,	 og	 vil	 kun	 benyttes	 til	 forskningsformål.	 Prosjektet	 skal	 etter	
planen	avsluttes	august	2027.	Ved	prosjektslutt	slettes	video-	og	lydopptakene.	
	
Jeg	håper	du	 vil	 gi	meg	den	nødvendige	 tillatelse	 ved	 å	undertegne	og	 returnere	 svararket	
(side	2).		
Ta	kontakt	for	nærmere	spørsmål	(se	kontaktinformasjon	under).	
	
Vennlig	hilsen	
Ellen	Kristine	S.	Hansen	
ellen.hansen@nmbu.no		
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Samtykkeerklæring	fra	læreren	
Leveres	omgående.	
Jeg	 har	 lest	 informasjonen	 om	 forskningsprosjektet	 tilknyttet	matematikkundervisningen	 i	
1T.	 Jeg	 er	 kjent	 med	 at	 den	 frivillige	 deltakelsen	 i	 forskningsprosjektet	 innebærer	
dokumentasjon	ved	hjelp	av	videoopptak	og	lydopptak.	
	
Vennligst	kryss	av:	

Jeg	kan	delta	i	forskningsprosjektet	

q Ja,	jeg	samtykker	

q Nei,	jeg	samtykker	ikke	

	
	
Underskrift:	_________________________________________	
	
Sted:	___________________________________	Dato:		 	 	 	 	 	
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Appendix D 
Analytical CCMR model for evaluating 
collaborative interaction patterns 
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Abstract
This paper aims to give detailed insights of interactional aspects of students’ agency, 
reasoning, and collaboration, in their attempt to solve a linear function problem 
together. Four student pairs from a Norwegian upper secondary school suggested 
and explained ideas, tested it out, and evaluated their solution methods. The student–
student interactions were studied by characterizing students’ individual mathemati-
cal reasoning, collaborative processes, and exercised agency. In the analysis, two 
interaction patterns emerged from the roles in how a student engaged or refrained 
from engaging in the collaborative work. Students’ engagement reveals aspects of 
how collaborative processes and mathematical reasoning co-exist with their agen-
cies, through two ways of interacting: bi-directional interaction and one-directional 
interaction. Four student pairs illuminate how different roles in their collabora-
tion are connected to shared agency or individual agency for merging knowledge 
together in shared understanding. In one-directional interactions, students engaged 
with different agencies as a primary agent, leading the conversation, making sug-
gestions and explanations sometimes anchored in mathematical properties, or, as a 
secondary agent, listening and attempting to understand ideas are expressed by a 
peer. A secondary agent rarely reasoned mathematically. Both students attempted to 
collaborate, but rarely or never disagreed. The interactional pattern in bi-directional 
interactions highlights a mutual attempt to collaborate where both students were 
the driving forces of the problem-solving process. Students acted with similar roles 
where both were exercising a shared agency, building the final argument together by 
suggesting, accepting, listening, and negotiating mathematical properties. A critical 
variable for such a successful interaction was the collaborative process of repair-
ing their shared understanding and reasoning anchored in mathematical properties 
of linear functions.
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Introduction

Students’ mathematical communication, reasoning, and problem-solving are highlighted 
in the research literature as important aspects for fostering students’ learning of mathemat-
ics (Pijls & Dekker, 2011; Seidouvy & Schindler, 2019; Sidenvall, 2019). Therefore, pro-
moting students’ mathematical communication such as making reasoning meaningful to 
oneself and peers, listening to one another, and solving mathematics together (Mueller 
et al., 2012) are central issues for progress in their mathematical understanding. Students’ 
collaboration and reasoning are key interactional aspects in math-talk and small group 
work. It is a well-researched area but still highlighted as a topic where more knowledge 
is needed, because when students are given the opportunity they can construct their own 
solution procedures, important for their mathematical understanding (cf., Lithner, 2017; 
Mueller et al., 2012; Stockero et al., 2019).

Collaboration in classrooms has often been studied as an outcome or as a 
process (Dillenbourg et al., 1996). A research approach on the outcome is often 
seen as an individual’s activity with focus on learning (Child & Shaw, 2018; 
Dillenbourg et al., 1996), whereas a research approach on collaborative processes 
emphasize the whole group and in particular the participant interaction (Seidouvy 
and Schindler, 2019). With the latter view on collaboration, this study defines col-
laboration as “a coordinated, synchronous activity that is the result of a continued 
attempt to construct and maintain a shared conception of a problem” (Roschelle 
& Teasley, 1995, p. 70). With this focus, the study views productive collaboration 
enacted when students build and maintain a shared conception of a mathematical 
problem, which is their shared understanding of the problem at hand (Roschelle 
& Teasley, 1995). Moreover, for students to pool their knowledge together for 
a shared understanding, the study sees the processes of building by introducing 
and accepting knowledge, monitoring ongoing activity, and repairing conflicting 
interpretations, as central activities for such interaction.

Opportunities for studying situations of collaborative processes are in this 
study viewed through a problem-solving session, emphasizing active engagement 
in a learning process (Lithner, 2017). An active learning process is not common 
in so-called easier learning processes where solution procedures are imitated but 
rather found in students’ problem solving when they attempt to construct their 
own solution procedures through reasoning (Lithner, 2017). Mathematical rea-
soning is a central interactional aspect of learning mathematics where arguments 
are important for the learning process and not only as an outcome of learning 
mathematics (Yackel, 2001). Therefore, this study views mathematical argumen-
tation and reasoning as an interactional accomplishment and what students “take 
as acceptable, individually and collectively, and not whether an argument might 
be considered mathematically valid” (Yackel, 2001, p. 6). In line with this view, 
including all students at any competence level in mathematics, is Lithner’s frame-
work of mathematical reasoning (Lithner, 2008, 2017). From this framework, a 
student’s reasoning is explained as “the line of thought adopted to produce asser-
tions and reach conclusions in task solving” (Lithner, 2017, p. 939).
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In situations of mathematical communication, a student may become a producer 
of mathematics through their own and joint processes of grappling and exploring 
mathematics, sometimes hitting the wrong trail, and sometimes making sense of 
solutions, rather than being a reproducer (Freudenthal, 1991; Schoenfeld, 2013). 
Schoenfeld (2013) says: “A major issue is, when if ever do students get to develop a 
mathematical voice? That is, when do they get to propose ideas and answers, defend 
them, and become recognized as producers of mathematics themselves?” (p. 613). If 
these situations of mathematical communication include mathematical talk between 
students, they are in a student–student interaction. How well students interact in 
pairs and small groups is important for students’ progress in becoming a mathemati-
cal producer, rather than an imitator who reproduces mathematics without under-
standing the conceptual parts (Lithner, 2017). Varhol et al. (2020) researched stu-
dent interactions and found that some specific types of interactions were important 
for making mathematical progress in algebraic generalization. That study, and other 
studies on students’ group work or pairwise collaboration, contends that quality stu-
dent interactions and the dynamics of the processes in students’ collaborations need 
to be further explored (Seidouvy & Schindler, 2019; van de Pol et al., 2018; Varhol 
et al., 2020).

Students engage with one another and take on different roles while interacting. 
Sometimes a student leads the conversation, other times he or she might listen or 
withdraw from the conversation. Thus, roles in collaborative work can “change from 
moment to moment” (Child & Shaw, 2018, p. 1). Hence, another central interactional 
aspect in group work, when considering students’ actions and engagement in reason-
ing and collaboration, is students’ exercised agency (Mueller et al., 2012). This study 
see agency as Gresalfi et al. (2009) define it; “the way in which he or she acts, or 
refrains from acting, and the way in which her or his action contributes to the joint 
action of the group in which he or she is participating” (p. 53).

The field needs a better understanding of peer interaction patterns in collabora-
tive mathematical activity. Little is known about the dynamics of students’ collabo-
rative interaction in mathematics classroom, and few studies have taken the process 
view of collaboration (Seidouvy & Schindler, 2019). This study focuses on three 
particular aspects of students’ interactions: collaborative processes, mathematical 
reasoning, and exercised agency. To investigate conditions for fruitful collabora-
tion, Kuhn (2015) states that “it is essential to understand the underlying mecha-
nisms” (p. 47). Studying interactional aspects separately and seen in interplay in 
students’ interaction patterns may therefore give a better understanding of underly-
ing processes of collaboration, which can furthermore enable collaborative aspects 
to become teachable. Research on collaboration (Child & Shaw, 2018; Kuhn, 2015) 
and reasoning (Lithner, 2017) argues that learning is enacted in both instances and 
that there is a need for insights of the underlying processes causing this learning 
opportunity. Therefore, unpacking students’ social interactions found in the inter-
play of specific interactional aspects can make collaboration and reasoning more 
manageable for teachers and students, and consequentially promote productive 
quality interactions for learning opportunities in mathematics classrooms.

The aim of this study is to give detailed insights of interactional aspects with 
upper secondary students’ roles in their collaboration and reasoning, when 
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attempting to solve a linear function task together. With this aim, the research 
question is What are the patterns of interaction for creating a shared understand-
ing through the interplay between students’ creative reasoning, collaboration, and 
exercised agency in a mathematical problem-solving session?

Theory

Mathematical reasoning

Mathematical reasoning can be defined as “the explicit act of justifying choices 
and conclusions by mathematical arguments” (Boesen et al., 2014, p. 75). In line 
with this statement is the framework Creative mathematically founded reasoning1 
(CMR, Lithner, 2008), which identifies two major types of reasoning: creative rea- 
soning and imitative reasoning. The latter reasoning type is seen in students’ use of 
remembered facts and memorized algorithms without considering their meaning. 
Such path of reasoning has its strength in quickly solving tasks in school math-
ematics. However, without the conceptual part it may lead to rote learning (Lithner, 
2017). Creative reasoning, on the other hand, has the strength of promoting deeper  
understanding of mathematical procedures and concepts (Lithner, 2008). If engaged  
with creative reasoning, students are considering mathematical properties with the  
task they are solving or discussing, which makes it likely to develop an understand-
ing (Lithner, 2017). Creative reasoning is characterized by three aspects: creativity, 
plausibility, and anchoring. These three aspects are interconnected in reasoning as 
follows: A student may create a new idea or recreate a forgotten one (creativity) 
using arguments which are meaningful and logical to the student who is employ-
ing them (plausibility) and that are based on mathematical properties (anchoring). 
Creativity is therefore a student’s attempt to create or recreate a reasoning sequence  
that, to some extent, is new to them. A student’s reasoning, expressed as arguments, 
is creative when supported by plausible arguments. Plausible arguments are expla-
nations of strategy choices, implementations of the strategies, and explanation of 
why a strategy or solution will work or not (Olsson, 2018). The arguments are crea- 
tive when explanations and suggestions are mathematically anchored justifications 
(Granberg and Olsson, 2015). Lithner (2008) explains the difference in mathemati-
cal property as superficial or intrinsic: “In deciding if 9/15 or 2/3 is larger, the size  
of the numbers (9, 15, 2 and 3) is a surface property that is insufficient to consider 
while the quotient captures the intrinsic property” (p. 261). Central CMR-
components are presented in Table 1. 

1  In line with Lithner (2008, 2017) and his colleagues studying creative mathematically founded reason-
ing, this study uses the wording creative reasoning or acronym CMR for linguistically simplicity.
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Collaboration

When students work together and attempt to do thinking together, their “emergent 
interplay of ideas” (Martin & Towers, 2015) promotes a shared understanding of 
the problem. A shared understanding is students’ collaborative outcome from engag-
ing in collaborative processes where two or more students work together to solve a 
problem and attempt to produce a joint outcome (Roschelle and Teasley, 1995). In 
line with a view on students’ merging of ideas into a shared conception for solv-
ing a mathematical problem, Roschelle and Teasley (1995) define collaboration as 
a “coordinated, synchronous activity that is the result of a continued attempt to con-
struct and maintain a shared conception of a problem” (p. 70).

The way students engage in collaborative processes relates to how well collabora-
tion is maintained and fostered (Child & Shaw, 2016), and collaborative processes 
are important to study in students’ interactions for the dynamics of joint mathemati-
cal problem solving. Students’ attempts to create and uphold a shared understand-
ing, through coordination of language and actions (e.g., Baker, 2015; Roschelle & 
Teasley, 1995; Sarmiento & Stahl, 2008), entail what Roschelle & Teasley (1995) 
call collaborative processes of building, monitoring, and repairing. The collabora-
tive process building means to suggest ideas to initiate collaboration or it could be 
a continuation or ending of collaborative work (Alrø & Skovsmose, 2004; Child & 
Shaw, 2018; Roschelle & Teasley, 1995). For instance, if a peer accepts the sug-
gested idea, such as a problem-solving strategy or implementation of an algorithm, 
a student contributes to build a shared understanding. A student could also read out 
loud and point at the problem to be solved. Sometimes, a peer listens to a suggestion 
or asks questions about an idea, which is important for monitoring a groups’ shared 
understanding (Roschelle & Teasley, 1995). A question about an idea might result 
 in a monitoring action, such as an explanation. If an explanation does not make 
sense or a suggested idea seems wrong to a peer, then students might experience a 
discrepancy between viewpoints (Dillenbourg, 1999). But if students try to restore 
their shared understanding about the problem, they are in the collaborative process 
of repairing (Roschelle & Teasley, 1995). Therefore, important actions for repair-
ing a shared understanding are negotiations and corrections of conflicting interpre-
tations, such as paraphrasing or repeating an utterance in one’s own words (Alrø & 
Skovsmose, 2004).

Through these processes, coordination is seen as mutual exchange of utterances 
and taken actions, e.g., hand gestures, inputs to a dynamic software program, and 

Table 1   Overview of central elements of creative reasoning

Creative mathematically founded reasoning (CMR)

Creativity Plausibility Anchoring

New idea
Recreating a forgotten idea

Explanation of strategy choice
Explanation of strategy implementation
Explanation of why something is true

Ideas connected to mathematical 
properties and concepts

Intrinsic: mathematical concepts and 
properties



	 E. K. S. Hansen 

1 3

explanations and justification of mathematical ideas. Students need to engage in a 
mutual exchange of ideas and actions to access each other’s thinking. In conversations, 
students can take turns suggesting, questioning, and negotiate ideas. Therefore, a cen-
tral interactional practice in conversations is turn-takings (Roschelle & Teasley, 1995; 
Sidnell, 2010). Turn-takings may therefore promote students’ co-construction of a 
shared understanding through processes where students build, monitor, and repair the 
meaning or a strategy for solving a problem (Roschelle & Teasley, 1995).

Trying to fix the differences in opinions (repairing), understanding an explana-
tion (monitoring), or introducing ideas and suggestions as well as accepting them 
(building) are important social interactions co-existing with students’ mathematical 
reasoning (Granberg & Olsson, 2015). Components of the collaborative processes 
are presented in Table 2.

Agency

A student can participate in group work by contributing with ideas or by listening 
to peers. The participation may include actively seeking to solve the task at hand, 
by making their own attempts, which involves guesses, trials and wrong paths, 
and investigations that may lead to evaluating their own mathematical production 
(Freudenthal, 1991). However, another student or the same student, in a different 
situation or in a different group, could refrain from making suggestions and actions, 
or active listening. A student may, for various reasons, resist to attend to a collabo-
rating peer. Therefore, the nature of a student’s exercised agency will vary within 
different interactions and situations (Gresalfi et al., 2009).

There are several possible perspectives to study when focusing on students’ exer-
cised agency in mathematics. Carlsen, Erfjord, Hundeland, and Monaghan (2016) 
point to how different cultures, people, and artifacts shape students’ actions and 
decisions, and thus, their exercised agency. Gresalfi et al. (2009) are concerned with 
students’ engagement in classroom activities. This focus concerns students’ act of 
complying or refraining (Sengupta-Irving, 2016), as well as about the given oppor-
tunities to act, either from a peer or from a teacher (Langer-Osuna, 2018). The latter 
aspect concerns distribution of agency (Gresalfi et al., 2009). A teacher may distrib-
ute agency through his or her authority to the given group (Engle & Conant, 2002), 
or there could be a social conflict between group members, consequentially inhibit-
ing students’ talk and activities (Langer-Osuna, 2018).

Table 2   Overview of central elements of collaborative processes

Collaborative processes for building and maintaining a shared understanding

Building Monitoring Repairing

Accepting ideas
Making suggestions
Stating a problem
Pointing out mathematical 

properties

Asking questions
Explaining an idea
Observing and responding to one 

another’s interpretations and ideas

Negotiations
Correcting conflicting interpreta-

tions
Counter-suggestions
Reformulations
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The mentioned aspects of teacher authority, social conflicts, or different cultures 
and artifacts are relevant for studying students’ collaboration and mathematical rea-
soning. However, to focus the agency aspect on student—student interaction, this 
study views students’ exercised agency as their engagement in participation for mak-
ing mathematical arguments or refraining from making mathematical arguments 
(Gresalfi et al., 2009).

To investigate students’ argumentation when collaboratively solving mathemati-
cal problems, a framework on how students’ agency is expressed in discursive prac-
tices (Mueller et al., 2012) is adopted. This framework is based on the definition on 
agency from Gresalfi et  al. (2009) and suggests that students may exercise differ-
ent agencies, such as shared agency, primary agency, or secondary agency (Mueller 
et al., 2012). See Table 3 for an overview of central elements of agency.

A shared agency is students’ co-construction of arguments, where all participants 
contribute with their ideas. Therefore, ideas, suggestions, and actions are all impor-
tant elements to building an argument from the ground, and only existing because of 
all the participants’ contributions (Mueller et al., 2012). Contrasting shared agency 
is students’ individual agency, where students are either a primary agent or a sec-
ondary agent. A student may act with primary agency when he or she makes the 
final argument based on correction from a peer or assimilates a peer’s argument, or 
by making sense of a peer’s faulty or flawed idea. A secondary agent makes inputs 
influencing the original argument. These inputs are either corrections or extended or 
flawed arguments, formed by the primary agent to a final argument (Mueller et al., 
2012).

Methods

The study is characterized as an instrumental case study (Stake, 2003)—an in-depth 
study of the particular case of four student pairs, to advance the understanding of 
an interplay between students’ creative reasoning, collaborative processes, and exer-
cised agency.

Data collection and participants

This article reports on four pairs of students, age 15–16, who collaboratively 
worked on a function task (Fig. 1). The students were enrolled in their first year of a 

Table 3   Overview of central elements of agency

Agency

Shared agency Primary agent Secondary agent

Co-construction of arguments Makes the final argument
Assimilates another student’s argu-

ment
Makes sense of a peer’s faulty or 

flawed argument

Makes input for the main argument
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theoretical mathematics program. Data was collected in a Norwegian upper second-
ary school in 2017, where three mathematics classes (69 students altogether) and 
their three teachers participated.

In the design process of the larger study, which this case is a part of, the three teach-
ers and the researcher (author) planned and evaluated lessons together emphasizing col-
laborative work and math-talk. Both prior to and after the planned lessons, the teachers 
and researcher discussed how to assist and interact with the students in order to promote 
mathematical reasoning and collaborative work. Students worked together in the same 
pairs over five consecutive months in their regular classroom setting. Based on the 
teacher–researcher conversations, the teachers attempted to ask open-ended questions 
with minimum guiding intervention, aiming to provide students with opportunities to 
make connections between function representations for understanding the function 
concept together. The three teachers were considered ordinary and engaged teachers, 
but not particularly used to organize classrooms for collaborative interactions. Hence, 
they were previous to the study not particularly aware of their teacher approach to sup-
port student pairs or whole classroom discussion for collaborative inquiries. This was a 
deliberate choice for the study, which this case study is a part of.

The students were organized into 33 pairs based on the following criteria: (1) rea-
soning competence; (2) understanding of functions; and (3) likeliness to engage in 
math-talk with one another. The two first criteria were based on the students’ scores 
on a mathematics test. The last criterion was based on conversations with the teach-
ers when considering point 1 and 2.

Due to practicality of observing students through video recordings, two pairs in 
each of the three classrooms were set as a condition. For an in-depth analysis of 
interactional aspects in students’ collaboration, six pairs were chosen. The six pairs 
were chosen based on the three criteria above, where two aspects particularly stood 
out: (1) students should express a high level of reasoning competence, which meant 
that they attempted to explain their thinking and anchored it in mathematics and 
(2) the likeliness of student pairs to be verbal and share thoughts with one another. 
These aspects were discussed with their teachers when making the pairs.

Two out of six student pairs did not exercise turn-takings, a criterion considered 
important for creating a shared understanding of the problem. These two pairs did 
not have successful conversations, since they were not engaged in sharing thoughts 
with one another. The four other student pairs exercised interactions with reasoning, 
collaborative processes, and different agencies. From the analysis (“Data analysis”), 
two distinct ways of interacting were seen, two pairs within each interaction pattern. 

Fig. 1   The function task (reformulated from Olsson (2018))
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In this article, four student pairs will illuminate the two typical interaction-patterns. 
These pairs’ interactions are presented in “Results.”

The linear function problem

During the time of the study, three main tasks were given. The presented task (Fig. 1) 
facilitated the richest conversations. In these conversations, students more often 
anchored their arguments in mathematical properties (Lithner, 2017), such as the slope 
number being a varying parameter, and students more frequently engaged in all of the 
collaborative processes of building, monitoring, and repairing of their shared under-
standing (Roschelle & Teasley, 1995).

The function tasks that were planned emphasized mathematical reasoning and non-
routine solving of tasks, where the struggle ought to be more like a challenge to solve, 
rather than an obstacle (Hiebert & Grouws, 2007; Lithner, 2017; Stein et al., 2008). In 
order to facilitate a challenge easy to discuss, however not too difficult, tasks without a 
known procedure for the students to follow were emphasized. Therefore, students were 
likely not to withdraw from mathematical conversations due to differences in their 
level of competence in mathematics. The task presented in Fig. 1 had previously and 
successfully been tested for similar purpose at another school (Olsson, 2018).

An aim with this task was also to facilitate opportunities for the students to connect 
different function representations to construct their own solutions to the linear 
function problem. In connecting different function representations, such as graphical 
and algebraic representations, students can build a more comprehensive function 
concept (Best & Bikner-Ahsbahs, 2017), rather than view functions as “topics” to 
 be learned in isolation of the others” (Thompson, 1994, p. 24). The function concept  
is regarded in school mathematics as difficult for students to learn, but very impor-
tant to understand, since it has a central role in organizing and connecting many 
mathematical ideas (Michelsen, 2006).

When students solved the function tasks, they were encouraged to use the dynamic 
software program GeoGebra, which may promote active investigation of different function  
representations (Olsson, 2019; Preiner, 2008). The strength of the program, to easily adjust  
representations in the algebraic field or the graphical field, gave students rapid feedback 
on well-justified suggestions or simple guesses. Students’ engagement with GeoGebra 
for solving a function task may contribute to students’ mathematical reasoning (Granberg 
& Olsson, 2015) and, thus, their way of interacting. However, GeoGebra does not interpret  
the meaning. Students need to make their own meanings of their findings, which is impor- 
tant for students in producing their own mathematics. In this case study, the unit of analy-
sis is the student–student interaction, unlike Olsson (2018) where GeoGebra additionally 
was included in the unit of analysis.

Data analysis

Video recordings of the eight students’ talk and actions were viewed multiple times, 
and the first step of analysis comprised denoting longer sequences where students 
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often made justifications and explanations anchored in mathematical properties as 
sequences of creative reasoning (CMR) (Lithner, 2017). These sequences were thus 
coded as CMR-sequences (creating a solution with plausible arguments anchored in 
mathematics) and further transcribed.

Then, a second analytical step comprised the coding of each student’s utterance in 
the CMR-sequences with respect to collaborative processes (Roschelle & Teasley, 
1995). How a CMR sequence was coded for collaborative processes (see Table 2 for 
details) and for aspects of creative reasoning (see Table 1 for details) is exemplified 
in “Bi-directional interaction.”

The third step in the analytical process was to provide a thick description (Powell et al., 
2003) of the four pairs’ collaboration and reasoning within their CMR sequences. This 
step enabled a description of students’ participation in the collaborating dyads, which 
made it possible to characterize students’ agency in their conversations as primary, sec-
ondary, or shared (Mueller et al., 2012). First, a description was made on the students’ 
interactions when engaged in reasoning, concerning how they attempted to engage with 
each other. If students constructed a solution sequence where they connected ideas and 
thoughts making a shared understanding of the current situation, it was recognized as 
shared agency. If students engaged individually, clearly having different roles when sug-
gesting ideas or explaining thoughts, their agency was recognized as primary or second-
ary. After characterizing students’ interactions, it was possible to describe students’ typi-
cal roles in their engagement connected to how they reasoned about linear functions and 
the ways they collaborated to solve the given task.

Tables 1, 2, and 3 present an overview of characterization of codes for CMR, collabo-
rative processes, and agency, respectively. The headings in the tables are the interactional 
categories, and the bullet points describe the interactional aspects within each category 
and were used as codes in the analysis. Excerpts in “Results” outline typical interactions 
found between the student pairs in their CMR sequences. The excerpts are chosen because 
of their clear interaction patterns.

Results

Studying students’ interactional aspects of reasoning, collaborative processes, and agen-
cies contributed to rich descriptions of students’ participation, which further grew into two 
distinct ways of interacting in the conversation, here named bi-directional interaction and  
one-directional interaction. Characteristics for the bi-directional interaction were students 
who engaged with similar roles; mutually attempting to understand each other’s ideas; 
making suggestions, listening, and negotiating mathematical properties; and mutually 
driving the problem solving process forward. Such interaction was found in the student 
pairs: Philip and Noah, and Emma and Hannah. Characteristics for the one-directional 
interaction were students who engaged with different roles and one student who led the 
conversation by being the primary reasoner and suggestion-maker for solving the prob-
lem, which a peer attempted to understand and occasionally contributed with input to the 
final outcome of a reasoning sequence. Such interaction was found in the student pairs: 
Olivia and Oscar, and Leah and Isaac. In the following excerpts, interactional aspects of 



1 3

Students’ agency, creative reasoning, and collaboration…

reasoning, collaborative processes, and exercised agency are italicized followed by a num-
ber from the students’ utterances in the conversations.

Bi‑directional interaction

Philip and Noah had found instances for when two linear functions were perpendicular 
onto each other. In the challenge that followed, they attempted to make a rule explain-
ing when the functions were perpendicular to each other.

Excerpt 1

1 Noah I don’t know how we should write it [the rule], because…
2 Philip Okay. It’s slope number. What is it called? It’s m… (writ-

ing on the laptop)
3 Noah Yes
4 Philip Divided by 1, right. Then we’ll have…
5 Noah No. One divided by m is right

Noah stated a problem for formulating the rule, thus initiating a new focus in a pro-
cess characterized as building (1). Philip responded by monitoring their problem 
when he asked what the slope number was called, which was answered by himself 
(2). In Philip’s turn, he also built their shared understanding by suggesting a focus 
anchored in the slope number (2). Noah continued to build when he accepted the 
initiation of formulating the rule (3). Again, Philip continued to build when he sug-
gested it was m divided by 1 (4). This was not logical to Noah, and he disagreed with  
Philip’s suggestion of the rule. Noah made a counter-suggestion: 1 divided by m (5). 
Thus, Noah’s countersuggestion can be seen as a repairing of their shared under-
standing. Together, Noah and Philip created a new reasoning sequence for making a 
rule based on the generalized slope number m.

To specify the coding procedure for this excerpt: The sequence was characterized 
as CMR (Lithner, 2017), because in the conversation students’ reasoning was new to 
them when they created an expression for the rule. Their explanation involved a con-
nection between the perpendicular functions which was anchored in the mathemati-
cal property of the slope number m . Their solution made sense to the student pair. 
Thus, it was plausible to them. Concerning their collaborative processes (Roschelle 
& Teasley, 1995); students were, for instance, building a shared understanding when 
suggesting a focus of the rule anchored in the slope number, and repairing when 
making a countersuggestion to the rule.

In the further unfolding problem-solving path, the student pair continued in a 
turn-taking conversation.
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Excerpt 2

6 Philip Yeah, but is it a rule?
7 Noah Yes
8 Philip How we should say something, in a way
9 Noah A rule. Oh yeah. The slope number on one line is something in connection to the other line. 

I don’t know how to formulate, explain it. (Pause)
You have the slope number for one [line] and slope number for the other one. To figure out 

the second one, I use that formula (pointing at the formula they have written down). So …
10 Philip No, right. We need to figure out something better to say than the first and the second. Maybe 

like a and b, or something
11 Noah Yes. I can try (writing on the laptop). Slope number for line b is −m∕1 . Wait. −1 divided by 

the slope number for line a. We say that. At line a
12 Philip Yeah, but slope number (pointing at the screen). We can use m, as mx + c . Instead of “slope 

number.” To add some subject content, concepts, with numbers and letters

Philip and Noah agreed upon the rule −1∕m . However, Philip was initially not 
sure whether it was a proper mathematical rule (6, 8). Noah explained his take on 
the meaning of a mathematical rule and attempted an explanation of the rule they 
had found (9). Noah was building their shared understanding by anchoring his 
reasoning on how two linear function’s slope numbers were connected (9). Together 
both contributed to generalize their findings (10, 11) into a rule constructed from 
observations of pairs of perpendicular lines, which they emphasized as “subject 
content, concepts, with numbers and letters” (12). Their attempt to create a rule was 
co-constructed through their turn-taking conversation.

Thus, Noah and Philip were both actively participating in solving the problem by 
making suggestions, observing suggested strategies, taking initiatives, and making 
counter-suggestions. The students’ line of thought in the excerpts is collaboratively 
built, and their reasoning is co-constructed and does not exist without the peer’s 
input. Hence, Noah and Philip exercised shared agency creating arguments together 
through collaborative processes and CMR.

Emma and Hannah began their problem solving by testing different linear func-
tions to be perpendicular to the line y = 4x + 2 . Their dialogue was focused on var-
ying parameters (slope number and constant), and an anticipation where the lines 
would appear in the coordinate system. Excerpt 3 shows Emma and Hannah’s con-
tinuing conversation and struggle about the connection between linear functions for 
being perpendicular.
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Excerpt 3

13 Hannah y equals. I have Caps Lock on. Eh, what should we try?
14 Emma x. 1 divided by 4…. plus 2
15 Hannah No, it’s not the same. I thought, if it were the same 

[the rule could be] that we only put minus sign in the 
front. But that doesn’t work

16 Emma I don’t know what we have been doing
17 Hannah Wait. If we take 4 divided by minus… (writing on a 

paper). No
We have. What we actually have been doing… We put 

number 4 as the denominator in the fraction, in a 
way. But I don’t know

Emma and Hannah struggled to make sense of their own suggestions (15, 16, 17). 
Hannah initiated a new sequence of guess and check, thus collaboratively build-
ing (13). Emma responded with further building when suggesting a new linear 
function: y = 1∕4x + 2 (14). Her suggestion conflicted with Hanna’s expectation 
of perpendicularity of two linear functions (15). She thought that the pair of slope 
numbers should have been 4 and −4 . Hannah’s correction, at least for herself, was 
about the conflicting interpretation of the connection between the linear functions 
(15). Thus, Hannah observed that what she had previously thought did not make 
sense, which is characterized as repairing their progress (15). Emma observed that 
their input did not result in a desired outcome, and she monitored their problem 
situation (16). Hannah continued monitoring by attempting a further explanation 
of the algebraic representation, stating indirectly that the slope number of one line 
was found as a denominator in the slope number of a perpendicular function (17). 
She vaguely suggested that it ought to be a negative slope number but rejected her 
own suggestion (17).

Emma and Hannah struggled actively together attempting to find a pair of perpendicu-
lar lines. Both students addressed the slope numbers of the perpendicular pair of linear 
functions, and their reasoning sequence was anchored in the mathematical property of the 
slope number, mainly referred to in the algebraic expressions. The students attempted in 
a joint effort to solve the linear problem with co-constructed reasoning. Therefore, their 
participation in the interaction, seen in the excerpt and before and after, is characterized as 
a shared agency.

The two pairs, Philip and Noah, and Emma and Hannah, typically attempted to 
make sense of each other’s ideas and thoughts. Similar for both pairs were a joint 
effort and engagement in different aspects of working together: making sugges-
tions, listening to one another, and expressing disagreement with actions or sug-
gestions made by each other or oneself. Although the two collaborating pairs often 
were engaged in similar ways, Philip and Noah stood out when it came to working 
together through reasoning and engagement in all the collaborative processes. This 
pair more often entered processes of repairing of their shared understanding of the 
function problem, compared to Emma and Hanna.
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One‑directional interaction

Olivia and Oscar were not engaged in a mutual exchange of ideas and actions for 
solving the function problem. In the following conversation Olivia and Oscar began 
their problem solving.

Excerpt 4

1 Oscar Okay. y = x + 1 (Olivia begins to use the laptop). And then you can take −x + 1 . It should be 
perpendicular

2 Olivia Now?
3 Oscar Yeah. There. It’s perpendicular. Um. Rule. Um. You put… They have the same value, but 

minus in front. I don’t know. Constant x has the same value, wait…
4 Olivia It’s not the same value, or?
5 Oscar No. When they have the same constant, but one is positive and one is negative, I don’t know. 

It’s kind of a rule. Wait. We should have a rule (looking at the given task). Yes, this works. 
Right?

6 Olivia Yes, it’s not a formula, so it’s okay
7 Oscar But if the slope values are the same, because the constant can be different. It’ll only go higher 

or lower on the first line-thing (pointing at the laptop screen). The straight line, as it was 
called

Oscar was the driving force for solving the problem. He made suggestions, such as 
y equals x + 1 and −x + 1 , and stated problems “They have same value, but minus 
in front… Constant x has the same value” (1, 3). Oscar attempted an explanation 
about the observation of the linear functions, justified in the “constant x,” which 
was plausible to him and anchored in mathematical property of the slope number (3, 
5). Olivia accepted Oscar’s explanations and suggestions, by putting her own words 
to Oscar’s ideas: “Yes, it is not a formula, so it’s okay” (6) and later she said “Yes, 
the constant can be different, and it doesn’t have to be the same.” Thus, the students 
were suggesting and accepting, in the process of building.

Oscar and Olivia demonstrated the process of monitoring when Olivia asked if 
her input looked correct (2), and when she questioned the meaning of the numbers 
having same value (4). Oscar monitored when he attempted an explanation trying to 
say that the slope numbers should be the same numbers only with different signs (5). 
In his last statement, he differentiated between the slope number and the constant 
(7). Thus, Oscar expressed more details to their rule: the perpendicular lines had to 
have the same slope numbers with opposite signs and the constant could be arbitrary 
numbers.

From their interaction and way of participating, Oscar and Olivia had different 
roles in the building and monitoring process, which characterized their interactions 
throughout their problem-solving path. They did not have instances of repairing. 
Oscar exercised agency when suggesting and explaining his ideas. Thus, he was the 
initiator and primary agent of reasoning in the conversation. Olivia accepted Oscar’s 
explanation of the rule, which she distinguished from a formula (6). Oscar further 
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explained his thoughts, after Olivia’s acknowledgement of his suggestions (7). 
Olivia was a secondary agent who contributed with trying to understand how Oscar 
was thinking and what she should do to execute his ideas into action in GeoGe-
bra. Their student–student interaction did not demonstrate a mutual and synchronous 
way of making and maintaining a shared understanding of the problem. Nor did they 
exercise a shared agency for solving the problem.

Leah and Isaac found a set of linear functions making a perpendicular pair: 
y = x + 3 and y = −x + 3 . They expressed a relation between the two linear 
functions: two opposite slope numbers, which they further referred to as either 
−x and x , or −1 and +1 . They agreed upon this relation as the rule and Leah ini-
tiated testing of their rule for other linear functions.

Excerpt 5

8 Isaac Okay. Then we create a line. We choose the line y equals, we choose 2x + 3 . 
Okay. It’s probably a bad number. Okay, and then for every x there is 2 . Then 
the negative version of this should be y = −2x , and then it should intersect… 
(writes on the laptop) But it isn’t going to… It’s always minus… The line 
should always be −x . Like that (writes on the laptop)

9 Leah Always?
10 Isaac Yes, because if I use −2x , it doesn’t work. y = −x and it should intersect…
11 Leah 3
12 Isaac Are you sure?
13 Leah Yes. Try (Isaac writes on the laptop)
14 Isaac Hmm. No. 4
15 Leah Oh. It’s… (Leah uses the laptop). It’s because this is f***ed
16 Isaac Okay, but wait. It doesn’t work for every number. Okay, we’ll figure it out
17 Leah I think it’s wrong to say it’s always −x . Try minus… What did you use here? 2?
18 Isaac This is 2x + 3

19 Leah Then you should try −2x.

Isaac contended for their new pair of linear functions that always one of the slope 
numbers had to be −x (8). Leah questioned his statement (9), which Isaac replied 
to by pointing out the different variables −2x and −x (10), which is likely his 
way of anchoring the reasoning in the mathematical property of the slope num-
bers being −2 and −1 . They further attempted to evaluate their input in GeoGebra 
(11–15). Towards the end of the turn-taking sequence, Isaac interpreted their 
observations with guessing and checking with GeoGebra and said that it did not  
work for every case (16). Leah repeated his observation and specified that a per-
pendicular line not always was −x (17), meaning that for a pair of linear functions 
one line did not have to have a slope number equal to −1 . She continued build-
ing by suggesting −2x for a perpendicular line (19), which Isaac previously had 
observed would not result in a perpendicular line (10).
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In Leah and Isaac’s conversation, there were mainly collaborative processes 
characterized as building by making suggestions for pairwise linear functions (8, 
10, 13, 18, 19), which was monitored by observations, evaluations, and questions 
(9, 12, 14, 16). They did not engage in processes of repairing. Both students con-
tributed to the problem-solving process; however, it was primarily Isaac that sug-
gested and made arguments connected to mathematical properties anchored in the  
algebraic representation of the slope number. Isaac acted as the primary agent 
leading the conversation and making the final arguments. Leah, on the other hand, 
either built by accepting Isaac’s ideas or monitored by questioning, repeating, and  
observing how Isaac’s ideas and utterances played out in GeoGebra. Therefore, 
she exercised secondary agency.

In the interaction of the two pairs, Olivia and Oscar, and Leah and Isaac, only 
one student attempted to make sense of the collaborating peer’s suggestions. Sim-
ilar for both pairs were a mutual attempt to solve the function problem where 
they exercised different roles in the problem-solving session. Moreover, it was 
Oscar and Isaac who led the conversations, whereas Olivia and Leah attempted 
to understand their peers’ thoughts and actions. The student pair Olivia and Oscar 
stood out compared to Leah and Isaac in the way that their roles in the inter-
action were more clearly divided in primary and secondary agency, particularly 
how Oscar made the reasoning sequences which Olivia tried to understand. The 
interplay in the interaction patterns found in their attempt of collaboration is in a 
clear contrast to, particularly, Philip and Noah’s well-functioning collaboration.

Discussion

The study’s research question is What are the patterns of interaction for creating a 
shared understanding through the interplay between students’ creative reasoning, 
collaboration, and exercised agency in a mathematical problem-solving session?

The case study has analyzed videos of students’ attempt to collaborate and engage 
in mathematical talk to solve a linear function problem. The findings reveal an inter-
play between exercised agency, reasoning, and collaborative processes, affecting how 
student–student interactions are expressed. Based on the students’ roles in pairwise 
collaboration, considering interactional aspects, a pattern for their interaction evolved 
in the analysis process into bi-directional interaction and one-directional interaction.

If students exercise mutual attempts to understand one another (e.g., Mueller 
et al., 2012; Roschelle & Teasley, 1995), using arguments logically, and anchored 
in mathematical properties of the reasoning sequence (Lithner, 2017), where both  
are the driving force of the problem-solving process, they are in a bi-directional 
interaction. Philip and Noah, and Hannah and Emma revealed such an interac-
tional pattern. Students typically negotiated mathematical properties (Lithner, 
2017) to make a pair of perpendicular lines, and they often represented functions 
dynamically. Students’ active investigations of mathematics using GeoGebra 
is seen as support for students’ reasoning and activity (e.g., Granberg & Olsson, 
2015; Olsson, 2019; Preiner, 2008), and observed in the two student pairs’ 
engagement. Students expressed functions algebraically and graphically, thus, 
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actively engaged with GeoGebra’s feedback. Therefore, functions were not oper-
ated on as separate topics to be learned (Thompson, 1994), important for a deeper 
understanding of the function concept (Best & Bikner-Ahsbahs, 2017).

Both student-pairs participated in turn-taking conversations (Sidnell, 2010) 
building on suggested and explained ideas (Alrø & Skovsmose, 2004). Students 
exercised coordination and synchronicity in their interaction which characterizes 
“true” collaboration, where it is likely to achieve a shared understanding (Baker, 
2015; Roschelle & Teasley, 1995; Sarmiento & Stahl, 2008).

Philip and Noah’s interaction, viewed holistically, showed an interaction pat-
tern where both students engaged in collaborative processes of building, monitor-
ing, and repairing. When Philip and Noah engaged in a repairing process, they 
more often anchored their reasoning in mathematical properties of linear func-
tions, compared to the other pairs. Moreover, Philip and Noah willingly shared 
ideas and entered situations with conflicting ideas (Dillenbourg, 1999), such as 
the formulation of the rule using the connection between an algebraic expression 
and a graphical representation of the function concept. In the mutual and syn-
chronous interaction, Philip and Noah co-constructed reasoning sequences and 
participated with shared agency. Therefore, their agency co-existed with collabo-
rative processes and creative reasoning important for shared understanding.

When students exercise different roles in the problem-solving process where 
the final outcome is expressed repeatedly by one of the students (Mueller et al., 
2012), they are in a one-directional interaction. In such an interaction, this study 
suggests that, a primary agent utters creative reasoning, and a secondary agent 
listens or tries to understand a peer’s argumentation. Thus, a student with a sec-
ondary agency rarely or never engages in creative reasoning. Moreover, their 
collaborative processes are characterized by building and monitoring instances, 
missing the important repairing instances valuable for a possible evolving of stu-
dents’ understanding.

Such a pattern was demonstrated in the student pairs Olivia and Oscar, and Leah 
and Isaac. In both pairs, one student led the process of solving the task. The co-
working student often attempted to understand suggestions or explanations made 
by the primary agent. Thus, students engaged with different agencies. Here, Oscar 
and Isaac participated as the primary agents, and Olivia and Leah as the secondary 
agents. The secondary agents exercised their agency through expressed ideas and 
questions about the primary agents’ ideas. Their input was either assimilated into 
the final outcome (Mueller et al., 2012) of the reasoning, or considered by the peer 
who refined the input or neglected it. Concerning collaborative processes for making 
a shared understanding (Roschelle & Teasley, 1995): Olivia and Oscar or Isaac and 
Leah did not experience conflicting ideas. Even though they attempted to collabo-
rate, they did not seem to have a shared understanding, and they rarely experienced 
discrepancies in their ideas, which they would have to repair.

Oscar expressed more details to the solution strategies, and anchored ideas in 
mathematics (Lithner, 2017) concerning aspects of the rule for making two linear 
functions perpendicular than the other primary agent Isaac, who often led the con-
versation and made suggestions for solving the problem. Both Olivia and Leah tried 
to understand how their peers were thinking. Consequentially, their student–student 
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interaction was not a mutual and synchronous way of creating a shared understand-
ing of the function problem.

Students who engage in a bi-directional or one-directional manner may change 
roles in a problem solving process (Child & Shaw, 2016). A student might assimi-
late a peer’s input to construct a final argument, which is in this study recognized as 
a primary agent (Mueller et al., 2012) in a one-directional interaction and as shared 
agency (Mueller et al., 2012) in a bi-directional interaction. Therefore, characteris-
tics of “assimilating a peer’s construct into a final argument” do not indicate what 
kind of agency a student has exercised. Therefore, to categorize the interactional 
aspect agency, it is important to study the collaborating pair’s turn-takings and 
other interactional aspects at play, such as collaborative processes and mathematical 
reasoning.

Concluding thoughts

This study illuminates two interactional patterns from four student pairs: Noah and 
Philip, Hannah and Emma, Oscar and Olivia, and Leah and Isaac. The limitation of 
the small sample is acknowledged; however, rich descriptions and the detailed analy-
sis have provided important insights in students’ interactions when collaborating and 
reasoning about functions. More student pairs’ interactions should be studied, and 
their engagement in a broader specter of mathematical problems, to further reveal 
nuances to interactional patterns found in students’ attempt to collaborate and reason 
mathematically. Researching several instances of students’ interactions in different 
settings may contribute to more nuances in how students, of different age, learning 
different mathematical topics, in different environments, develop their own mathe-
matical voice (Schoenfeld, 2013; Sengupta-Irving, 2016).

If students interact in a dynamic way, as described above, where both partici- 
pate in equal roles and show authority over mathematical ideas during the problem-
solving process, they might construct a shared understanding from merging an inter-
play of ideas. Such dynamic structure of pairwise collaboration reveals important 
components in students’ mathematical communication (Sidenvall, 2019), to better 
understand underlying mechanisms for fruitful collaboration (Child & Shaw, 2018; 
Kuhn, 2015; Seidouvy & Schindler, 2019). These identified conditions are both 
being promoters in a problem-solving process, both making reasoning anchored 
in mathematical properties, and both being engaged in different collaborative pro-
cesses. Such an interactional pattern in a bi-directional interaction promotes learn-
ing of mathematics through quality interactions (Pijls and Dekker, 2011; Varhol 
et al., 2020).

The contrast to such a dynamic interplay is a monotonic one-directional inter-
play, where only one student evolves his or her individual problem space. In such 
instances of one-directional interaction, teacher involvement should be suggested for 
supporting both students to build (accept and suggest) and monitor (explain and ask 
question) emphasizing plausible and mathematically founded argumentation.

Reasons for the two patterns of interactions that occurred might have several 
explanations. One reason might be students’ individual experiences and personalities. 
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Comparing the student pairs in the study, the student pair Philip and Noah stood 
out and demonstrated a productive interaction, as described above and in results. It 
is likely that their individual personalities were a good match. Thus, affective pat-
terns or individual personalities come into play and influence students’ conversations 
(Cobb et al., 2009). Other influencing aspects are students’ background and disposi-
tion for learning, self-confidence and past success in mathematics, and beliefs about 
their roles and roles of others (Mueller et al., 2012).

A second reason is the given task. Although the given task presents an opportu- 
nity for  creative reasoning (Granberg and Olsson, 2015), it does not automatically initiate  
a productive engagement in the other interactional aspects of this study. To promote 
interactional aspects such as collaboration and agency, a mathematical problem 
might entail other features than explicitly discussing the slope number and constant 
in a linear function found in an algebraic and graphical expression. If an individual 
student has experienced constraints with mathematics, it might prevent them for 
further engaging in a productive social interaction with a peer. Therefore, it might 
be worthwhile considering a relatable or meaningful context for students to reason 
about, and for translating between function representations.

A third reason to consider is classroom norms and teacher involvement in stu-
dents’ interactions. Regarding the first aspect, classroom norms, Yackel and Cobb 
(1996) differentiate between a social norm as an expected explanation to a given 
task, whereas a sociomathematical norm is an acceptable mathematical explana-
tion. Both aspects are important for individual and collective learning, and students’ 
engagement in both would influence their pattern of interaction. The second aspect, 
teacher involvement, has the potential to provide students with necessary resources 
for social norms and sociomathematical norms. A study found that important teacher 
guidance for collaborative inquiry happens through supporting student contributions 
with well-defined structure for mathematical work (Staples, 2007).

An agenda for further research on the three mentioned reasons for the two interac-
tional patterns could be studies of different tasks promoting CMR, collaborative pro-
cesses, and exercising of shared agency. Another future study could focus on teacher 
guidance: opportunities and limitations with teacher actions for students’ productive 
interactional pattern. A third study could include interviews with students focus-
ing on individual variables, such as beliefs about one-self as a mathematics learner, 
self-confidence, and the role of the collaborating peer. A broader understanding of 
these influential aspects might give a more complete understanding of the underly-
ing mechanisms for productive interactions through the interplay of collaborative 
processes, mathematical reasoning, and exercising of agency.

If a teacher observes such an interaction pattern, the teacher could facilitate a 
change of roles: a secondary agent attempts to suggest strategies and explain out-
comes or connection anchored in mathematical properties. A teacher’s awareness 
of interactional patterns concerning collaboration processes, reasoning, and agency, 
has the potential to contribute to students’ fruitful interactional dynamic. Moreo-
ver, such teacher actions has the potential to model important aspects to facilitate 
students’ synchronicity and coordination pooling knowledge together to construct 
their own mathematical knowledge for understanding mathematical ideas (Stockero 
et  al., 2019). Therefore, further research on teacher’s actions facilitating dynamic 
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interactions between the peers, where students are exercising shared agency, might 
provide additional insights to foster students’ learning of mathematics through qual-
ity interactions.
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 Many studies in mathematics education have emphasized the importance of attending to students’ interactions, 
particularly, their mathematical reasoning when collaborating on solving problems. However, the question of how 

teachers can facilitate students’ productive interactions for learning mathematics, is still a challenging one. This 

case study aims to provide detailed insights into opportunities and limitations related to teachers’ actions for the 

productivity of students’ interactional patterns solving a linear function problem together. Four student-pairs in 

the first year of upper secondary school (11th grade) serve as a background on students’ interactional patterns, 
which in this study focused on three interactional aspects: collaborative processes, mathematical reasoning, and 

exercised agency. The student-pairs’ three teachers provide insights on teacher actions observed as different 

funneling and focusing actions, which elucidated opportunities and limitations in several situations influencing 

the productivity of students’ interactional patterns. The study used purposive sampling in selecting the particular 

school and three teachers, which were chosen based on acquaintances and willingness to participate in the study. 
The students’ interaction when solving the mathematical problem and the teachers’ interaction with the pairs 

were video recorded and observed by the researchers. The analysis method was a deductive analytical strategy, 

where specific events of interactions were identified, based on the three interactional aspects combined with 

teacher actions. Coding schemes on students’ interactions were used, as well as on teacher actions. The findings 

indicate that teachers’ actions and questions influenced students’ interactions, but mainly their reasoning, and 
particularly the primary agent’s reasoning. Moreover, students who were engaged in interactional patterns called 

bi-directional and one-directional did not change their ways of interacting after a teacher interaction. Thus, the 

teachers’ actions did not impact students’ collaborative processes and agencies in the same way as their 

reasoning. This study adds to the field of mathematics education by illuminating the importance of teachers being 

aware of students’ roles when they work together, for facilitating a productive interaction for both students in 
dyads. The study highlights the importance of further research on teacher actions and teacher awareness for 

facilitating collaborative situations of bi-directional interactions for students’ shared understanding of 

mathematical concepts and ideas. 

Keywords: agency, collaboration, interactional pattern, reasoning, teacher actions 
 

INTRODUCTION 

A classroom environment focusing on students’ interactions and problem-solving is important for building mathematical 

understanding (e.g., Hufferd-Ackles et al., 2004; Mueller et al., 2012; NCTM, 2014; Stockero et al., 2019). A vast amount of research 

highlights the importance of students’ construction of their own mathematical knowledge for better understanding important 

mathematical ideas (e.g., Lithner, 2017; Mueller et al., 2012; Schoenfeld, 2013; Stockero et al., 2019). We argue that there are, at 

least, three central interactional elements important for making students’ interactions productive for learning and understanding 

mathematics. These aspects are collaborative processes, mathematical reasoning, and exercised agency. This article uses the term 

interactional patterns to describe the intertwinement of these three aspects, and builds on findings from Hansen (2021), which 

studied students’ interactional patterns with the same students as presented here. She found that whether students’ interactions 

are productive or unproductive is connected to how students participate: choosing to engage or refrain from engaging through 

different types of agencies, including different ways of interacting in those roles. One implication of the study (Hansen, 2021) was 

the need for a better understanding of teacher actions in light of the findings. This is the aim of the present article, to increase our 

knowledge on ways teachers act to promote students’ productive interactions through guidance and monitoring of mathematical 

reasoning, collaboration, and distribution of agency. 
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To promote opportunities for learning, the expected role of the teacher is no longer to be a “dispenser of knowledge”, but to 

promote a learning environment where students actively engage in problem-solving and construction of their own understandings 

(Stein et al., 2008). Therefore, classroom activities should provide opportunities for sharing different thoughts, allowing students 

to respond to, negotiate, and build on each other’s ideas (Norqvist et al., 2019). When students attempt to work together, teachers 

periodically check in on students’ work or students ask for guidance. In those situations, teachers can engage with students’ 

interactions, such as their mathematical justifications and suggestions, or with their lack of ideas that halts the progress in their 

problem-solving.  

The literature provides many approaches to studying teachers’ ways of acting to encourage students to engage with 

mathematics (e.g., Alrø & Skovsmose, 2004; Boaler & Brodie, 2004; Stein et al., 2008). Some approaches emphasize entire practices 

(Wood, 1998), whole-classroom discussions (Stein et al., 2008), small-group discussions (Webb, 2009), or teachers’ questions more 

specifically (Boaler & Brodie, 2004). Altogether, there exists a diversity of models with the purpose of gaining insights into teachers’ 

actions for facilitating mathematics discussions with both the whole classroom, smaller groups, and individual students. Several 

studies have developed analytical tools to categorize teaching practices. For instance, studies of teacher support in whole-

classroom discussions (Staples, 2007; Stein et al., 2008), communicative features in teacher-student dialogues (Alrø & Skovsmose, 

2004), or teacher actions in teacher-student interactions (Drageset, 2014).  

Our case study involves three Norwegian mathematics teachers’ interactions with dyads of first-year upper secondary 

students solving a linear function problem in their classrooms. Students discussed and used a dynamic software program, 

GeoGebra, in their problem-solving. Despite the growing knowledge about teacher actions for encouraging students to engage 

with mathematics, less is known about the connections between teacher actions and the three interactional aspects emphasized 

here: reasoning, collaboration, and agency. This article contributes to this area by studying in depth specific teacher actions and 

how those influence students’ interactional patterns in situations where student pairs attempt to collaborate and reason 

mathematically, and students’ interactions shape the teacher-student interaction. 

Applying a fine-grained model to understand teacher actions in a teacher-student conversation, can give detailed insights to 

how teachers can facilitate students’ reasoning and argumentation, as well as their collaboration and agency in those situations. 

In this study we have described teacher actions as suggested by Drageset (2014), outlined in the theoretical framework section. 

This article aims to give details of teachers’ actions in teacher-student communication connected to students’ interactions, 

focusing on collaborative processes, mathematical reasoning, and the students’ agency related to linear functions. With this aim, 

and within the frame of this case, we ask the following research question: What are the opportunities and limitations of teacher 

actions for the productivity of students’ interactional patterns? 

Students’ Interactional Patterns 

Discussing mathematical ideas with a peer or with a teacher provides opportunities to defend and explain one’s own ideas as 

well as ask questions regarding another point of view. Thus, sharing ideas and engaging in mathematical thinking may allow 

students to reason mathematically using arguments to justify ideas. Mathematical argumentation can be regarded as a 

prerequisite for learning mathematics and simultaneously as an outcome of students’ math-talk (Krummheuer, 2007). Moreover, 

Krummheuer (2007) highlights students’ arguments in their reasoning as an important interactional aspect that is important as a 

foundation for both learning mathematics and interacting with a peer in creating a mathematical classroom community. We find 

support in the perspective on students’ talk as “interactional accomplishments and not as logical arguments” where the focus is 

on “what the participants take as acceptable, individually and collectively, and not on whether an argument might be considered 

mathematically valid” (Yackel, 2001, p. 6). 

In line with viewing mathematical argumentation as an interactional accomplishment, Lithner (2017) defines mathematical 

reasoning as not being restricted to only formal or logical proof. In Lithner’s (2017) perspective on mathematical reasoning, 

students’ building of arguments and exploration of mathematical connections concerns meaningful sequences of thoughts for 

the individual student. It does not matter whether the reasoning is simple or complex, correct or incorrect, nor the level of 

competence the student exhibits, as long as the student provides evidence to support the idea (Lithner, 2017).  

Therefore, we see mathematical reasoning as “the explicit act of justifying choices and conclusions by mathematical 

arguments” (Boesen et al., 2014, p. 75). The explicit act concerns reasoning as “the line of thought adopted to produce assertions 

and reach conclusions in task solving” (Lithner, 2017, p. 939). The latter statement about reasoning comes from a rather recently 

empirically developed framework of mathematical reasoning (Lithner, 2008, 2017). Students can take different reasoning paths to 

reach conclusions in problem-solving. Two different paths are identified by Lithner (2008) as two major types of reasoning: creative 

reasoning and imitative reasoning. The framework outlining these types of mathematical reasoning is called creative 

mathematically founded reasoning 1  (CMR). For students to exercise creative reasoning, their reasoning ought to fulfill three 

criteria: 

1. Creativity: creating or re-creating a new solution method,  

2. Plausibility: arguments supporting strategy choices and implementation, which explain why the conclusion is true, and  

3. Anchoring: arguments based on mathematical concepts or relationships, which are intrinsic mathematical properties. 

Together, these three aspects describe students’ creation of solution methods called creative reasoning. Imitative reasoning, on 

the other hand, implies students’ copying of procedures or recalling of facts. 

 
1 In line with Lithner (2008, 2017) and his colleagues studying creative mathematically founded reasoning, this study uses the wording creative 

reasoning or acronym CMR for linguistically simplicity. 
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A student group or a pair are frequently in classroom activities encouraged to work together. In literature this is referred to as 

collaboration or cooperation. We use the word collaboration, and this can simply put be two or more students in joint activity 

attempting to solve a problem or produce an agreed upon outcome. There are many definitions of collaboration with slightly 

different wordings and parameters to be fulfilled to identify an interaction as collaborative. Roschelle and Teasley (1995) suggest 

that “collaboration is a coordinated, synchronous activity that is the result of a continued attempt to construct and maintain a 

shared conception of a problem” (p. 70). In line with the same or similar definitions on collaboration used in other studies (e.g., 

Baker, 2015; Lai et al., 2017; OECD, 2013), this study views collaboration as defined by Roschelle and Teasley (1995), with focus on 

the collaborative processes enacted to “construct and maintain a shared conception” of a mathematical problem. Roschelle and 

Teasley (1995) state that students must build a shared conception by introducing and accepting knowledge, monitoring the on-

going activity, and repair conflicting interpretations. We see the building, monitoring and repairing as three collaborative 

processes for collaboratively pooling knowledge together. Kuhn (2015) says that “it is essential to understand the underlying 

mechanisms” of learning when working together (p. 47). Aspects of students’ interactions may therefore give important insights 

on underlying processes causing productive or unproductive collaboration. A productive collaboration involves engaging and 

negotiating with others, where all students are involved in constructing the arguments, and where statements and suggestions 

are challenged, counter-challenged and justified, and decisions are jointly made (Mercer, 2004; Powell, 2006). 

Ways of participation when attempting to collaborate are exercised differently depending on several factors. For instance, 

relations to a collaborating peer and a given topic to solve may impact the likeliness of a fruitful conversation. Therefore, studying 

students’ participation, seen as exercised agency (Gresalfi et al., 2009), in collaborative processes involving mathematical 

reasoning is another central social aspect of peer interactions. Hansen (2021) discusses students’ roles in pairwise collaboration. 

She found that students were in a bi-directional interaction when mutually attempting to understand one another and when both 

were driving forces of the problem-solving process. Typical for a pair in a bi-directional interaction was a mutual effort where 

students co-constructed reasoning sequences with such shared agency (Hansen, 2021). Students showed mutuality in all aspects 

of their interaction: both chose to engage and thus participated with shared agency, they were equally driving the problem-solving 

process, thus both made plausible and anchored mathematical arguments, and engaged in turn-taking conversations in all stages 

of collaborative processes. In contrast, if students exercised different roles in a problem-solving process where the final outcome 

was expressed repeatedly by one of the students, they were in a one-directional interaction. In their interaction, both students 

were engaged, but they expressed agency differently. For instance, the co-working student’s role was often to understand 

suggestions or explanations made by the primary agent. Moreover, questions were expressed by the student who exercised 

secondary agency and such input was either assimilated into the final outcome of the reasoning by the primary agent, or it was 

considered and refined or neglected by the primary agent. Consequentially, the primary agent was the main producer of plausible 

and anchored mathematical reasoning, whereas the secondary agent observed, questioned, or accepted the primary agent’s 

ideas. Cobb (1995) says that a relevant distinction for learning opportunities involve students’ explanations noticed as univocal 

and multivocal, which respectively relates to the concepts of one- and two-directional interaction. When the two interaction types 

are compared, Cobb (1995) emphasizes that univocal interactions rarely give rise to learning opportunities for either student, 

whereas multivocal interactions usually are more productive. Thus, learning opportunities are found in productive interactions 

such as two-directional interactions (Cobb, 1995; Hansen, 2021): depending on concepts that are “taken as shared” for a basis for 

the mathematical conversation where both students are equally involved. This aligns well with findings from Mercer (2004) and 

Powell (2006), who speak of exploratory talk and negatory discourse, respectively, as the interaction forms most productive for 

mathematical learning. 

THEORETICAL FRAMEWORK 

Considering the interactional aspect of reasoning connected to teacher actions, Maher et al. (2018) present an extensive list of 

research on teachers’ attendance to students’ development of mathematical reasoning for productive classrooms. They contend 

that “one of the most well-established research findings is that teachers’ knowledge of students’ reasoning is an essential 

component for student learning” (p. 3). However, the review does not reveal details of what teachers do when attending to 

students’ reasoning. Nor any outline of teacher actions for promoting students’ reasoning through teacher-student interaction. 

Likewise, Ayalon and Even (2016) point to a variety of roles a teacher has in promoting student argumentation, and highlight the 

importance of prompts, encouragements, and explaining for promoting students’ argumentation. The existing advice on teacher 

guidance promoting students’ engagement in CMR is to let students attempt their own construction of their own solutions. To 

support students’ attempt, whether they fail or they to some degree succeed, the suggested teacher actions is general as well: 

diagnose students’ difficulties with the particular task, and provide adapted feedback, but not a solution method (Lithner, 2017). 

Although there exists extensive research on the importance of students’ mathematical reasoning, there is still a challenge to 

promote teachers’ awareness of how classroom situations can facilitate mathematical reasoning (Maher et al., 2018). While it 

requires knowledge of student reasoning and validation of the quality (Maher et al., 2018), it is important for teachers and teacher 

educators to know how to act to promote mathematical reasoning. 

Further, a teacher’s role for students’ collaborative work is similar to the role they have for students’ reasoning since these 

aspects are tightly interwoven (Granberg & Olsson, 2015). Teachers’ guidance for collaborative work is shaped by students’ 

mathematical ideas and contributions, and their ways of participating (Staples, 2007). However, to successfully engage students 

in collaborative learning, Staples (2007) suggests that “this kind of teaching requires a deep understanding of mathematics, 

students’ thinking, curricular materials, as well as how students reason and potentially develop proficiency with a mathematical 

domain and its practices” (p. 212). She outlines teachers’ roles and specific teacher strategies to organize a whole-class 
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collaborative inquiry in a model of three main components: supporting students in making contributions; establishing and 

monitoring a common ground; and guiding the mathematics. The findings emphasize that eliciting, scaffolding, and creating 

contributions, are important teacher actions in this setting.  

In Howe et al.’s (2007) study on the role of the teacher for students’ collaborative outcome, they highlight a teacher’s optimal 

intervention through guidance and monitoring, and task design. Both aspects should facilitate proposal and explanation of ideas, 

and teachers are suggested to be relatively non-directive. Findings of another study, van de Pol et al. (2018), show that students 

in small groups using teacher support are likely to formulate answers that are more accurate. Moreover, useful teacher support 

was characterized as being more extensive initially and reducing over time. This is explained as support “provided at the right time 

when students need support, which can make further processing of new information easier for the students” (van de Pol et al., 

2018, p. 4). Untimely support hindered students’ abilities to make sense of teachers’ feedback, but the use of teacher support 

proved beneficial to students’ learning (van de Pol et al., 2018). Thus, van de Pol et al. (2018) stress the importance of teachers’ 

awareness of how to use support for students in their problem-solving and for processes in group work. 

The above-mentioned research contributes to our knowledge on teachers’ role in students’ collaborative work important for 

whole-classroom inquiry (Staples, 2007), and for students’ collaborative outcome (Howe et al., 2007). However, more knowledge 

is needed on students’ collaborative processes (our focus) in mathematics classroom (Seidouvy & Schindler, 2019), and there is a 

need for detailed insights on teacher’s role for promoting students’ collaborative processes in small-group interactions.  

Facilitating reasoning and argumentation in mathematics classrooms is challenging, and there is a need for better 

understanding how to facilitate these aspects (e.g., Ayalon & Hershkowitz, 2018; Maher et al., 2018; van de Pol et al., 2018). How 

students share their thinking with one another, such as their reasoning processes (Lithner, 2008), and how they act or refrain from 

acting in the conversation–their agency (Gresalfi et al., 2009; Mueller et al., 2012), are such central aspects of the participants’ 

interaction.  

For students to exercise agency (the third interactional aspect in this study) it is not enough to ask students to work 

collaboratively on mathematical tasks for agency to automatically occur (Mueller et al., 2012). Students are afforded the agency 

to “author mathematical ideas” in cases where teachers distribute shared authority between students and teacher (Langer-Osuna 

et al., 2020). Teacher actions for sharing authority, so that students can exercise agency, is to offer students opportunities to 

address mathematics problems, and holding students accountable to their strategies, solutions, and ideas (Bell & Pape, 2012; 

Hamm & Perry, 2002 as referred to in Langer-Osuna, 2018). Classroom situations where students are afforded shared agency has 

the potential for conceptual agency (Cobb et al., 2009), which means students’ opportunities for constructing their own meaning 

and methods (Mueller et al., 2012). Moreover, if students choose problem solving paths and connect mathematical ideas, a teacher 

is more likely to support students’ mathematical learning through shared agency (Cobb et al., 2009). Classroom situations where 

teachers exercise authority, students are only afforded to exercise disciplinary agency (Mueller et al., 2012). Disciplinary agency is 

a concept posed by Pickering (1995), a complementary concept to conceptual agency, and explained as “…utilizing established 

procedures” (Mueller et al., 2012, p. 374). Consequentially, in teacher-student interactions with disciplinary agency, a teacher is 

responsible for determining the validity of student responses (Cobb et al., 2009). 

A detailed framework of teacher actions for the purpose of studying in depth specific teacher actions and how those influence 

students’ interactional patterns in situations of collaboration, reasoning, and exercised agency, however, not linked specifically 

to the interactional patterns in focus here, was developed by Drageset (2014). The framework, called redirecting, progressing, and 

focusing actions, is both empirically and theoretically built (Drageset, 2014). The three main categories, redirecting, progressing, 

and focusing, elucidate tools and techniques teachers use to make students’ thoughts and strategies visible, help students 

progress in their problem-solving, or redirect students in an alternative direction (Drageset, 2014). The teacher interactions may 

facilitate different types of student responses (Drageset, 2015, 2019). The main teacher-action categories entail 13 sub-categories 

built on concepts from theories about mathematical discourse grounded in perspectives on student-centered versus teacher-

centered classrooms.  

In teacher-student interactions each utterance and every turn of speech and action depend upon the previous turn. Taking 

turns is a social practice and an important structure of a conversation (Sidnell, 2010). However, Drageset (2019) says that “looking 

at single comments, or turns, yield a very limited scope” (p. 2). Therefore, it is important to look at the interplay of turns of speech 

and actions together in conversation sequences. If the teacher actions components are detailed it can provide better 

understanding on how different turns of teacher actions influence students’ interactions. Thus, different teacher actions influence 

students’ interactions when they collaborate, discuss, reason mathematically, and take ownership of a problem. Although teacher 

actions influence students’ collaborative work, teachers’ actions are also shaped from interacting with students and from their 

ways of participating (Staples, 2007). This complex relation needs to be addressed by a fine-grained analytical model to give 

detailed insights on teacher’s role for promoting students’ collaborative interactions. This is possible to investigate by the 

framework of Drageset (2014), since it separates teacher’s actions from student’s talk and actions. Giving attention to specific 

students’ interactional aspects, as emphasized above, and specific teacher actions provide opportunities to explore how teacher 

actions are related to students’ interactional patterns.  

Two overarching categories, funneling and focusing (Wood, 1998), organize the areas of teacher actions in the framework by 

Drageset (2014). If a teacher is funneling students’ thinking, it means that “the student’s thinking is focused on trying to figure out 

the response the teacher wants instead of thinking mathematically himself” (Wood, 1998, p. 172). Thus, mainly the teacher is doing 

the intellectual work. Redirecting and progressing actions are primarily categories of funneling actions where the teacher is the 

intellectual authority. Drageset (2014) explains redirecting actions as corrections exhibited implicitly or explicitly (Alrø & 

Skovsmose, 2002). Moreover, redirecting actions are categorized as a teacher’s attempt to challenge the students (Drageset, 2014), 

which means “questioning already established knowledge” (Alrø & Skovsmose, 2004, p. 55).  
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Alternatively, to funneling is what Wood (1998) calls focusing, where the intellectual responsibility is with the students, hence 

to a larger degree than funneling actions are teacher actions for promoting productive interactions as reviewed in the first part of 

this section, zooming in on reasoning (Ayalon & Even, 2016; Lithner, 2017; Maher et al., 2018), collaboration (Howe et al., 2007; 

Staples, 2007; van de Pol et al., 2018), and agency (Langer-Osuna, 2018; Mueller et al., 2012).  

Thus, we see the three main categories from Drageset (2014), redirecting, progressing, and focusing, as a useful tool to 

investigate opportunities and limitations of teacher actions for the productivity of students’ interactional patterns. Using this 

framework, with its 13 subcategories, interpreted in light of theories on teacher actions for the emphasized interactional aspects, 

allows us to dig deeply and in detail into the question of how teacher’s guidance for students’ collaborative work and reasoning is 

shaped by students’ mathematical ideas and social contributions to the conversations. 

METHODS 

This study seeks, through an instrumental case study (Stake, 2003), to generate more knowledge concerning the role of teacher 

actions in students’ interactional patterns. The article aims at developing more inclusive theories on the issue at hand (Layder, 

1998), based on the details and nuances from the particular case, which is explained in detail through the coding procedures. 

Participants and Data Collection 

The data was collected in 2017 at an upper secondary school in the eastern part of Norway. In this study, students had recently 

transitioned from lower secondary school (10th grade) to upper secondary school (11th grade). Children start grade 1 at the age of 

six and upper secondary starts at grade 11. The larger study, which this case study is a part of, followed three first-year theoretical 

mathematics classes (69 students in total, from 15-16 years old) and their three teachers over a time span of five months. Whole-

class discussions were studied, as well as the collaboration and dialogue between pairs of students (six pairs in particular; two 

pairs in each class). In both instances, the role of the teacher in the interactions was emphasized. This article focuses on the 

dialogue between four of the six student-pairs—Emma and Hannah, Philip and Noah, Olivia, and Oscar, and Leah and Isaac—and 

their teachers. The teachers—Jacob, Lucas, and Sophie—were all engaged in the study, and contributed to the planning and 

evaluation of their teaching in light of the study’s aim (Amiel & Reeves, 2008). The teachers were encouraged to help their students 

think together and to hold back on their guiding, and both prior to and after the planned lessons, the teachers and researcher 

discussed how to assist and interact with the students in order to encourage mathematical reasoning and collaborative work.  

The study used purposive sampling (Bryman, 2016) in the selection of the particular school and the three teachers. The 

teachers and the school were chosen based on acquaintances and willingness to participate in the study. The six dyads for the in-

depth study were chosen based on conversations with the teachers, and two aspects were particularly emphasized: (1) a high level 

of reasoning competence based on a test combined with average-to-high score levels for functional understanding and (2) the 

likeliness of a student-pair to be verbal and share thoughts with one another. Thus, the objects of study were students who 

willingly talked about mathematics with one another, were likely to reason about functions, and already had some knowledge 

about functions. The student pairs had previously to this session been presented with relevant concepts for talking about linear 

functions, such as the slope number and constant. From preceding school years, the students should have become familiar with 

the coordinate system and straight lines, but the topic of linear function was new to them. 

The students’ collaboration and the teachers’ interactions with the pairs were video recorded and observed by the researchers. 

The teachers encouraged students to talk with one another, attempting justification of their thoughts and ideas, and use of 

relevant mathematical concepts. A microphone was placed on a desk in front of the students and connected to a video camera 

recording their talk and gestures. The laptop screen is not video recorded, but the recordings show when students used it to draw, 

write or point to the screen. Students’ solving of the linear function problem lasted for approximately 45 minutes in each of the 

three classrooms. 

The Linear Function Problem 

A productive struggle with important mathematical ideas is central for effective mathematical problem-solving (Lithner, 2017). 

Lithner (2017) points out that “the focus is on the particular type of struggle when students construct task solutions instead of 

imitating them” (p. 938, italics added for emphasis by authors). The particular type of struggle should emphasize mathematical 

reasoning and non-routine solving of tasks, where the struggle should be more like a challenge to solve, rather than an obstacle 

(e.g., Hiebert & Grouws, 2007; Lithner, 2017; Stein et al., 2008). We see an obstacle as a too-difficult problem, which may be a 

stumbling block for students, whereas a challenge entails a better-adjusted problem for students to solve. Therefore, a 

fundamental aspect of a teaching design is choosing suitable tasks for facilitating a mathematical discourse to potentially 

strengthen the teacher-student and student-student interactions. 

When designing a problem in this study, we wanted students to be presented with a challenge to connect function 

representations in order to not view linear function representations as “‘topics’ to be learned in isolation of the others” 

(Thompson, 1994, p. 24). Moreover, the linear function problem ought to facilitate an opportunity to discuss and share their own 

ideas, strategies, and knowledge about functions.  

A function can be referred to in different ways: as a dynamic mechanism that performs transformation through an input and 

output, as the relationship between two variables, and as a rule of correspondence between two sets (Malik, 1980). Functions can 

appear as a graph, a verbal description, a table, or an algebraic expression. Students need to connect fragments of function 

representations in order to build a comprehensive understanding of the function concept (Best & Bikner-Ahsbahs, 2017). This is 
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particularly important in upper secondary school, as the function concept has a central role in organizing and connecting many 

important mathematical ideas (Michelsen, 2006). An important aspect of understanding the function concept is students’ 

underlying algebraic knowledge of variables (Leinhardt et al., 1990; Lepak et al., 2018). For instance, students are more often 

familiar with letters as unknowns than with variables. When working with linear functions, such as y=mx+b, it is important to 

interpret the algebraic expression as a “kind of relationship between the letters, as their value changes in a systematic manner” 

(Küchemann, 1978, p. 26).  

Exploring linear functions’ parameters 𝑚  and 𝑏  through focusing on translations between different representations (e.g., 

algebraic, graphical, tables) (Akkoç & Tall, 2005; Leinhardt et al., 1990) can be fruitful for in-depth learning. In this article, the 

function problem in Figure 1 was discussed by the student pairs and contains a focus on translation between algebraic and 

graphical representation as well as the importance of variables for understanding the function concept. Attempting to formulate 

a rule for a pair of perpendicular lines supports a generalization process where students make use of their findings via patterns for 

making a general relationship between two linear functions—hence, the rule. 

Students worked in dyads on one laptop and were encouraged to use the dynamic software program GeoGebra as a tool in 

their problem-solving. GeoGebra provides tools to create, manipulate, and control mathematical content for students to 

investigate mathematical relations (Granberg & Olsson, 2015; Hall & Chamblee, 2013). Thus, the given linear function problem 

presents an opportunity to investigate varying parameters of the slope number and the constant. Changing an algebraic 

expression may cause GeoGebra to dynamically change the related graphical representation (Preiner, 2008). Thus, students get 

rapid feedback on performed actions, inputs, and changes in GeoGebra. However, GeoGebra does not interpret the generated 

information. Therefore, students would have to make sense of dynamic changes between different linear representations. Olsson 

(2018) found that students successfully solving a task with GeoGebra used given feedback extensively and engaged in reasoning. 

Data Analysis 

A deductive analytical strategy was used (Yin, 2014), which involved “identifying or creating a suitable video corpus and 

systematically sampling from it to examine specific research questions” (Derry et al., 2010, p. 10). The videos were watched several 

times before critical events (Powell et al., 2003) were identified. Events were seen as critical if (1) the dyads had some form of 

interaction, characterized by the three emphasized aspects and (2) there were teacher interactions tied to these sequences. Four 

dyads fulfilled these criteria, and each pair’s work with the given problem, as well as the interactions they had with the teacher in 

the process, was transcribed and coded. The teachers’ interactions with the dyads were coded using the coding scheme presented 

in Table 1. These codes were based on Drageset’s (2014, 2019) framework for redirecting, progressing, and focusing teacher 

actions, but were slightly revised through an iterative coding procedure between the data set and the theoretically based 

framework. Table 1 shows which codes are based on the original framework and which ones are added or revised. The following 

paragraphs outlines Drageset’s (2014, 2019) framework starting with the funneling actions, redirecting and progressing, which is 

followed by focusing actions, called focusing, and ending with Table 1–an overview of the teacher action framework. 

A typical redirecting teacher comment is to discard a student’s suggestion or comment, called put aside in the coding. With 

such an action, a teacher is not providing help with a presumably pressing question or challenge. The second redirecting action, 

advising a new strategy, means that a teacher’s comment is suggesting an alternative approach or way of thinking to solve a 

problem. The last redirecting action is correcting questions, where a teacher’s question aims to move a student’s focus over to 

another approach. In summary, redirecting actions are a teacher’s strategy for shifting attention to something else.  

In line with the funneling manner of actions, a teacher may aim to move a problem-solving process forward. Drageset (2014) 

explains four actions for attempting to guide students’ progress. Open progress details are teachers’ open questions with 

possibilities for several answers concerning the progress for solving a problem. This action includes questions on how to do, how 

to think, how to solve, and how to generalize patterns. Thus, an open progress action is aiming at “moving the process forward, 

but without pointing out the direction” (Drageset, 2014, p. 16). Closed progress details, on the other hand, concern how (many, 

large, much, big, how to do it) and what (it becomes, shall we write, is, to do). Questions typically request details needed to move 

the process forward, connected to steps in a procedure (Lithner, 2008). These details can be process answers (one step at a time) 

or details about how the process should go on to reach the answer. Another aspect of teacher action attempting to move the 

process forward is a simplification of the task at hand. To simplify a task, a teacher may change or add information, tell students 

how to solve it, or give hints to make a task easier (Wood, 1998). A teacher would typically pull a student toward the solution (the 

Topaze effect, cited in Brousseau, 2006): “It often seems that this involvement is meant to ensure the progress of the class and 

sometimes these comments appear to come as a consequence of a halted progress. Many of the simplification comments could 

also be characterized as hints” (Drageset, 2014, p. 15). The last progress action is demonstration. A teacher typically demonstrates 

how to solve the problem or shows students every step in a procedure. It is primarily a monologue given by a teacher that is 

occasionally broken if students ask questions or if the teacher asks students whether they understand or agree.  

 

Figure 1. The function task (reformulated from Olsson, 2018). 
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Further, Drageset (2014) divides focusing teacher actions (Wood, 1998) in two categories: request for student’s input and 

pointing out. A teacher may ask for a student’s input through enlighten details, justification, applying to similar problems, or 

requesting assessment from other students. These concepts are related to what Franke et al. (2007) express as access to student 

thinking. If teachers enlighten details, it is a request for students to explain what something means or how something happens. 

Typically, details are brought into focus. If a teacher asks for a student’s justification (Cengiz et al., 2011), it is a request for a more 

thorough explanation, often to validate why the answer found, or the method used, is right. 

Another approach focusing on students’ thinking is when a teacher is pointing out something. Sub-categories of pointing out 

are recap and notice. The purpose of the recap is to merge information to clarify important elements in a student’s explanations. 

Also, a teacher can repeat a student’s answer with the purpose of confirming or ending dialogue, or sometimes adding information 

to an answer. A noticing action (Cengiz et al., 2011) is when a teacher highlights particular aspects, concepts, or details he wants 

to make a student aware of. Other aspects of noticing are reminding students of new or previous information and adding 

information.  

All teacher utterances in the interactions between the four student-pairs and their teacher were coded, and from every 

interaction, narratives were written about the students’ situation before a teacher interacted with the students, as well as a 

characterization of the teacher-student interaction. After the teacher left the conversation, written narratives described how the 

students interacted in the moments that followed. Excerpts presented in the results section represent typical teacher actions for 

the given teacher-student interactions, combined with the typical way students interacted with each other and their teacher. 

Students’ Interactions Prior to Teacher Interaction 

As outlined in the introduction, four student-pairs gave insights into collaborative interactions concerning their reasoning and 

processes for creating and maintaining collaboration connected to their agency (Hansen, 2021). Two pairs demonstrated bi-

directional interactions, whereas the other two pairs interacted in a one-directional manner when solving the function problem 

(Figure 1). This section characterizes the interactions found in the four student-pairs without the teacher present in their 

conversation, based on Hansen (2021). Results section follows the student-pairs’ conversations with their teacher presented with 

a brief summary of the course of events before and after the conversations with their teacher.  

In the bi-directional interactions, there were mutual attempts to solve the linear function problem in both student-pairs. The 

student-pairs, Emma and Hannah, Philip and Noah, engaged in CMR, which was observed particularly through the plausibility and 

the anchoring of their arguments (Lithner, 2017). The students made arguments about the linear function that were acceptable 

Table 1. Codes for teachers’ actions in conversations with student-pairs 

Teachers’ actions 

Focusing–Giving attention to students’ thoughts and input 

Requests for students’ input 

Enlighten detail 

• Student explanation 

• Focus on details 

• Gathering information** 

Justification* 
• Explaining why 

• Justifying method and/or answer 

Apply to similar problems* • Asking to use knowledge on similar problems 

Request assessment from other students* • Asking other students to evaluate answer/solution 

Pointing out 

Recap* 
• Repeating an answer 

• Adding to an answer 

Notice 

• Highlighting details in a dialogue 

• Reminding students of new or previous information 

• Explanation focus* on a student’s question 

Progressing–Taking action to move the process forward 

Open progress details 
• Open questions with several answers 

• Encourage testing of strategy** 

Closed progress details 

• Closed questions with one answer 

• Request for details 

• Request about procedure/steps 

Simplification 

• Adding information 

• Hints 

• Telling students what to do 

• Explanation progress** 

Demonstration 

• Showing a procedure 

• Doing several steps of a procedure 

• Evaluation of solution/strategy ** 

Redirecting–Bringing attention to something else 

Put aside 
• Discarding a student’s suggestion/comment 

• Interrupting** 

Advising a new strategy • Suggesting another approach 

Correcting questions • Question changing approach 

Note. *Not used in the analysis; **Added actions as a result of the analysis process 
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and plausible not only to themselves, but to each other. Therefore, the arguments used in creating a shared understanding were 

an interactional accomplishment (Yackel, 2001). The students who were in a bi-directional interaction mutually justified choices 

(e.g., choosing different slope numbers or constant) and conclusions (e.g., connecting their general algebraic expression of the 

rule and the graphical explanation of the rule) by using mathematical arguments (Boesen et al., 2014). Through their turn-taking 

conversations (Sidnell, 2010), the four students were prompted by their interaction to anchor explanations in mathematical 

properties when ideas or thoughts were not consistent with a peer or feedback from GeoGebra. These situations were seen in the 

collaborative processes of monitoring and repairing, which are central to maintain a shared conception of the problem. 

Like the two pairs engaged in bi-directional interaction, there were many mutual attempts to solve the linear function problem 

also among the student-pairs interacting in a one-directional manner. Olivia and Oscar, and Leah and Isaac, were also engaged in 

CMR (Lithner, 2017), although in a different way than Emma and Hanna, and Philip and Noah. In contrast to collectively co-

constructing reasoning sequences, the students interacting one-directionally had a primary agent expressing the final outcome 

of a reasoning sequence. As seen in Hansen (2021), Isaac and Oscar were the primary agents, whereas Leah and Olivia were the 

secondary agents. One similarity between the two student-pairs was that both primary agents, Isaac and Oscar, made suggestions 

for solving the function problem, whereas Olivia and Leah, secondary agents, asked their peer about details concerning ideas and 

inputs. Also, both pairs focused on the slope numbers of linear functions related to the perpendicularity, focusing on how the 

parameter m was changing in a systematic manner (Küchemann, 1978), which is important underlying algebraic knowledge of 

variables that is important for building a comprehensive function concept (Lepak et al., 2018). Both pairs used GeoGebra, where 

they easily manipulated and adjusted different function representations, and they extensively used and attempted to make sense 

of its feedback. 

RESULTS 

This section provides the results from each of the four student pairs’ interaction with their teacher. The excerpts presented 

within each subsection are typical teacher actions for the given teacher-student interactions, combined with the typical way 

students interacted with each other. 

Jacob in Interaction with Hannah and Emma–Progressing Actions 

Prior to the interaction with the teacher, Hannah and Emma had made a shared attempt to understand the meaning of 

perpendicular lines by exploring the connection between the algebraic and the graphical expression of the linear functions. Right 

after their turn-taking conversation, Jacob initiated a teacher-student interaction by getting in contact with the student-pair and 

asking the student-pair what they had tried out so far in the problem-solving process. 

Excerpt 1 

(14) Emma When you say perpendicular, right, should it be 90 degrees? 

(15) Jacob Yes. Because when you measure an angle, any angle, then you should’ve... 90 degrees, there, yes (pointing 

to the screen). 

(16) Hannah 90 degrees. 

(17) Emma Umm? For any?  

(18) Hannah If you measure here, or here, or here, or here (using the laptop). 

(19) Emma Oh, like that. 

(20) Jacob So, you tried some different things. 

(21) Hannah Yes. 

(22) Jacob What’ve you done so far? 

(23) Emma Well, I misunderstood at first. I thought it was a type of task like this (using her pencil to illustrate two 

crossing lines and pointing to a previous task on the piece of paper in front of her).  

(24) Jacob Like, this line here, and this one, aren’t those perpendicular? Because here you see... (pointing at the drawn 

lines on the paper). 

(25) Emma Is it just to take... since we got +4... is it just to take -4x (both students look down at their own papers with 

graphs in a coordinate system)? 

(26) Jacob Yes, can you see what’ll happen if you take -4x? 

(27) Emma Didn’t we do that earlier? 
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(28) Hannah Yes, that might be right. 

During the conversation, Jacob seemingly tried to make sense of the students’ questions, suggestions, and input. With his 

actions, our interpretation is that he aimed to move the process forward; thus, it was a progressing conversation. For instance, he 

began an explanation of perpendicularity (15), which was interrupted by another student asking for bathroom permission. 

Consequentially, Hannah and Emma engaged in a dialogue where Hannah attempted to explain the meaning of perpendicularity 

(16-19). Furthermore, Emma suggested testing two linear functions with slope numbers 4 and -4 (25). Jacob encouraged testing 

of the suggested strategy (26). After his question, a short student dialogue followed where they concluded that they had already 

tested the suggested lines. Jacob stated that their previous attempt did not work and asked an open progress detail question, 

“What’s wrong with the line in a way?” Emma replied that it was not 90 degrees. Jacob’s response was initiating another 

progressing conversation. 

Excerpt 2 

(29) Jacob Yes. What would you’ve to do with the formula? 

(30) Hannah It can’t be 4x, or it must be less of each. 

(31) Jacob Yes. What is the number doing? The number in front of x. 

(32) Emma Slope number. 

(33) Jacob Yes, so here it’s the... So, if we try something, what would you change it to, to come closer to the solution? 

(34) Emma 2 or something? -2. 

(35) Jacob Yes (Hannah writes on the laptop). 

(36) Emma Closer at least. 

(37) Jacob Yes. You should try to make it even smaller. 

(38) Emma -2x, then? Because now we’re on minus... it’s not 90 degrees now either. 

(39) Hannah No. Wasn’t it what we... Now it goes back. Maybe it’s a fraction, then? 

Jacob responded with closed progress details, hence moving the progress forward by pointing out that something should be 

changed; more specifically, the algebraic representation (29). When Hannah replied that it should be less than 4x (30), Jacob 

guided the conversation’s focus to the slope number (31-39). Thus, Jacob used the students’ responses to channel a focus on the 

slope number in the algebraic expression connected to the graphical representation.  

When Jacob encouraged them to test a smaller slope number (37), Hannah and Emma continued their dialogue, which Jacob 

quickly interrupted after Hannah’s question (39). Such instances happened several times in the conversation above (e.g., 20, 33). 

In those situations, Jacob guided the student-pair on what seemed to be his chosen solution path. When Jacob interfered, he often 

made progressing actions, such as open progress details, closed progress details, evaluation of solution/strategy, and encouraging 

of testing strategy. In Excerpt 1 and Excerpt 2, Jacob is moving the process forward by channeling the focus to the slope number, 

which initiate progress for guessing and checking different linear functions in GeoGebra. This consequentially results in less 

student reasoning and justification for their actions, less collaborative repairing, but a continued shared agency. 

After the teacher-student interaction, Hannah and Emma tested for different slope numbers: 1/2, 1/3, and then 1/4. Their 

inputs resulted in the perpendicular pair of lines: y=4x+2 and y=-1/4x+2. Hannah and Emma progressed to the third task of 

formulating a rule for when two linear functions were perpendicular. They tested their rule, but it gave them the wrong result, and 

they concluded that they should ask for guidance. However, Hannah and Emma did not finish their work, as they did not get any 

further support in their problem-solving. 

Lucas in Interaction with Philip and Noah–Redirecting Actions 

Philip and Noah had prior to the conversation with the teacher jointly reflected and agreed upon a shared understanding of 

an expression of the rule for making linear functions perpendicular to one another. Their teacher, Lucas, was passing by Noah and 

Philip when Noah signaled a need for teacher support by raising his hand. 

Excerpt 3 

(13) Noah Umm... This...  

(14) Lucas You don’t have to test the rule on me (interrupting). 

(15) Noah I just... 

(16) Lucas You must test the rule (interrupting). Can you use it for different instances? 
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(17) Noah But, does the rule look okay? For the second one to be perpendicular with the first...  

(18) Lucas To be picky, this does not look like a rule (interrupting). 

(19) (Noah laughs quietly, but Philip looks serious).  

(20) Lucas Could you read out loud what you have written down here, Philip, inside the frame? 

(21) Philip -1 divided by a is the slope number to the perpendicular line (after reading their rule, both students looked 

at Lucas). 

Noah was barely able to say one word (13) before being interrupted by their teacher, Lucas: “You don’t have to test the rule on 

me” (14). His response is characterized as redirecting, and being of an unsupportive character. Noah further attempted to explain 

their rule, but was cut off a second time (15). Noah tried to ask for teacher feedback on their formula, so he asked, “But, does the 

rule look okay?” Then he hurried on to continue his explanation of the rule (17), but was interrupted a third time (18). Lucas asked 

whether they could use the rule (16) and for more precisely formulated mathematics (18). Thus, his teacher actions were 

categorized as redirecting and progressing.  

Both students seemed to think they had found a valid expression for the formula, but they were not given the opportunity to 

share their findings and questions with their teacher, from whom they seemed to want confirmation and/or guidance. In this 

situation, Lucas did not show interest in the students’ thoughts, reasoning, or collaboration. Lucas’s tone was harsh, and his 

interaction cannot be described as welcoming. The student-pair did not seem to be intimidated. However, Philip looked a little 

disappointed (19).  

After the teacher-student interaction, Noah and Philip made an explanation for their rule for perpendicular lines. Noah uttered 

that the slope number had to be -1 divided by the slope number from line a. Philip challenged Noah to write the rule like a formula. 

They discussed different options and agreed to call the two lines for 1 and 2 in order to make it a “bit more professional 

mathematics language,” as they put it. They developed their formula to 𝑎2 =
−1

𝑎1
, where a2 was the slope number of the second 

line and a1 was the slope number of the original line. Philip and Noah had just found this way of writing it when Lucas came by a 

second time and observed for 10 seconds before they noticed him. When they saw him, Noah began explaining the formula by 

writing it down on the paper. Lucas responded by saying, “I leave this to you,” then he left the conversation. 

In Excerpt 3, Lucas noticed students’ findings, which they had written down on a paper. With redirecting teacher action Lucas 

did not ask for students’ explanations for their findings, but prompted a better mathematical expression of the rule. In the 

continuing student-student interaction Philip and Noah responded by adjusting their findings into a more precise expressed 

formula. They continued to anchor their suggestions in mathematical properties through collaborative processes and with shared 

agency. 

Sophie in Interaction with Oscar and Olivia–Focusing Actions 

Oscar had prior to the conversation with the teacher suggested a rule for making a pair of perpendicular lines, justified in linear 

functions with slope numbers with opposite signs. Olivia supported his input and explanation. Olivia and Oscar tested, in line with 

their formulated rule, another pair of linear functions with slope numbers 2 and -2. Oscar observed the input in GeoGebra and said 

that “this is absolutely not perpendicular. Then we need a new rule.” Olivia gently asked, while crossing two fingers, indicating 

perpendicular lines, “Perpendicular... It’s 90 degrees?” Oscar did not notice her question and suggested another line, and that they 

should try -0.5x. Olivia asked again if perpendicular meant 90 degrees. He said yes and evaluated Olivia’s input of the new linear 

function with the slope number -0.5, which he thought looked “very perpendicular.” They used GeoGebra to check if it was 

perpendicular, which the tool confirmed.  

Their teacher, Sophie, approached the student-pair and asked if they had any success in making perpendicular functions. Both 

students answered, and Olivia said that they had made two pairs.  

Excerpt 4 

(8) Sophie You tried something here (pointing at the laptop screen). When you tried that, what did you think? 

(9) Oscar No. But, first, at least I thought that 2x and therefore -2x would become perpendicular. That didn’t work. It 

became too steep... or too gentle (makes a hand movement). 

(10) Sophie Why did you think... How did you find that 2x, and therefore -2x, would make a perpendicular line? 

(11) Oscar Umm, because we tried with only x, and then it worked. But it didn’t with 2x. So... Hmm, I don’t know. 

(12) Sophie Yes. You might consider making another pair of lines perpendicular to one another... to look for any 

relationship. Because now, you have two, right, these two are perpendicular to one another, and these two 

are perpendicular to one another. So, try to make another pair being perpendicular to one another. 

Sophie initiated a conversation with Olivia and Oscar by gathering information on what progress they had made and how they 

had started their problem-solving process. Sophie continued to request the students’ thoughts and input when pointing out 
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performed actions in GeoGebra (8). Oscar replied with what he had thought would make a perpendicular pair of linear functions 

and why. He evaluated the graphical representation and concluded it was either too steep or too gentle (9). Again, Sophie 

requested the students’ thoughts and brought details into focus (10). Thus, Sophie enlightened details (8, 10) emphasizing the 

students’ reasoning. Oscar explained why they tested 2 and -2 and justified his answer by connecting it to the first linear pair with 

slope numbers 1 and -1. Sophie ended the conversation by encouraging the student-pair to find several pairs of perpendicular 

lines (12). Her teacher actions addressed details already highlighted by Oscar. Thus, Sophie brought the students’ ideas to the 

center of attention, which is characterized as noticing, a focusing action (12). In Excerpt 4, Sophie continued the conversation with 

attention to the students’ thoughts and attempted to promote students’ reasoning by focusing on their findings when addressing 

details already highlighted by Oscar. After the teacher-student interaction, Olivia and Oscar continued their same interactional 

pattern: Oscar continued making suggestions, which Olivia translated into actions on the laptop. 

Lucas in Interaction with Leah and Isaac–Progressing Actions 

Prior to the conversation with Lucas, Leah and Isaac had found a perpendicular pair of linear functions and agreed upon the 

relationship entailing a slope number with the same number, only with different signs: -1 and 1. In the following teacher-student 

conversation, Leah initiated the conversation, asking their teacher, Lucas, if -1 and 1 were opposite numbers. 

Excerpt 5 

(10) Lucas I don’t know if it [opposite numbers] is a concept. 

(11) Isaac But we want to formulate that the slope number for this line (pointing to the laptop screen) is x, and this is 

-x. 

(12) Leah Is the negative number of... umm. 

(13) Lucas Yes, rather that. 

(14) Isaac Is the same slope number, only negative. 

(15) Leah Is the negative number of the slope line... err (frustrated). Yeah, but this slope line (pointing), no, this line 

has the slope number. And this line (pointing) has the negative of the slope number. 

(16) Lucas Yes, that’s better than saying opposite numbers. But how can you be sure that they’re perpendicular to 

each other? Can you make sure about that in GeoGebra? Maybe do that first. 

Lucas’s initial response, “I don’t know if it is a concept” (10), partially answered the student-pair’s question, but more 

importantly, Isaac and Leah continued to explain what they meant by opposite numbers and what they attempted to find (11-15). 

Leah and Isaac engaged in a dialogue discussing the relationship between the linear functions. This presented an opportunity to 

address mathematical properties, such as slope number, constant, algebraic expression, graphical representation, and coordinate 

system. However, Lucas was progress-oriented and did not use the students’ reasoning. Nevertheless, Lucas provided positive 

feedback on their use of concepts and said that their formulations were better than “opposite numbers” (13, 16). Then he asked 

them to use GeoGebra to prove the functions’ perpendicularity (16). Lucas acted to move the process forward by asking for open 

progress details: “But how can you be sure that they’re perpendicular to each other?” Such a question may have several possible 

answers and be aiming for progress. In the same line, Lucas also said, “Can you make sure about it in GeoGebra? Maybe do that 

first.” Thus, he simplified the question by adding a step for the procedure of investigating perpendicularity between the linear 

functions.  

Further into the unfolding situation, Isaac and Leah attempted to use GeoGebra to investigate the linear pair’s 

perpendicularity. However, they did not succeed at first. Lucas responded and said that  

“I think we can say that [they’re perpendicular] about the two lines upon each other. However, I think we have a small 

challenge... (pointing to the laptop screen). If you add a couple of points on every line, then you can make line segments 

between them. That might be hard work.”  

Lucas simplified by suggesting making another input using GeoGebra to examine the perpendicularity before he left the 

conversation. Lucas used Isaac and Leah’s reasoning to guide them in their problem-solving process of the function problem. He 

particularly evaluated their input in GeoGebra. Moreover, Lucas focused on simplifying Isaac and Leah’s reasoning path by giving 

hints for validating their findings, probably to pull them in the direction of investigating the connection between the slope 

numbers.  

Isaac and Leah were engaged the entire time during the teacher-student conversation. When Lucas left the conversation, they 

kept their dialogue going. Isaac and Leah managed to use GeoGebra to confirm that the linear functions were perpendicular to 

each other. In the situation that followed, Isaac said he wanted to make a formulation for their findings, and Leah said they should 

test for other pairs of lines before attempting to formulate a rule. However, Isaac suggested a rule anyway, and observed that his 

assumption was not going to work for every number; hence, it would not work for every slope number. For a couple of minutes, 

Isaac was testing different linear functions in GeoGebra, and Leah observed his actions. Then, Isaac tested two linear functions 

with the slope numbers 2 and -0.5. However, they did not evaluate their result, and started testing several other linear functions.  
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In Excerpt 5, Lucas acted with progressing actions aiming for an evolving problem-solving process. His actions focused on (1) 

students’ use of the concept slope number and (2) simplifying students’ strategies by adding steps to the solution method. 

Consequentially Leah and Isaac used GeoGebra to confirm that the linear functions were perpendicular to each other. In the 

further unfolding events Isaac and Leah wanted to pursue different solution paths. Isaac acted with primary agency and neglected 

Leah’s suggestion, which seemed to exclude Leah from making her thoughts visible. Therefore, Leah is placed in a position as a 

secondary agent where she observed, evaluated, and seemingly attempted to understand Isaac. 

DISCUSSION 

Initially we asked: What are the opportunities and limitations of teacher actions for the productivity of students’ interactional 

patterns? In the study, three teachers interacted with the four student-pairs. Sophie, who interacted with Olivia and Oscar, 

primarily focused on the students’ thoughts and reasoning for their suggested ideas and actions. Thus, her teacher actions were 

categorized as focusing actions (Wood, 1998). Sophie did enlighten details (Drageset, 2014) through her gathering of information 

and request for the students’ explanations. Sophie requested a response from both students in a pair when asking about their 

performed actions in GeoGebra or when specifically asking about details brought into the conversation by the students. Sophie 

contributed to making details in the students’ mathematical reasoning explicit, thus interacting with powerful teacher moves 

(Franke et al., 2007) for promoting a learning environment where students actively engage in problem-solving and construction of 

their own understandings (Stein et al., 2008). In the teacher-student interaction with Olivia and Oscar, Sophie mainly interacted 

with the primary agent, Oscar. Consequentially, it is likely that it was Sophie’s focusing actions that facilitated reasoning from the 

primary agent, which was translated by the secondary agent into actions in GeoGebra. 

Opportunities and limitations in Sophie’s actions in teacher-student interactions are related to the category of focusing 

teacher actions (Drageset, 2014). Sophie’s attention to the students’ thoughts and input is a foundational aspect of supporting 

students in learning mathematics through their own attempts to make sense of mathematics and explore mathematical ideas 

(Norqvist et al., 2019), such as the linear function concept. Sophie provided timely support (van de Pol et al., 2018) when the 

student-pairs needed feedback in their problem-solving process. However, she primarily interacted with the primary agent and 

missed the opportunity to support both students in mathematical reasoning and the development of collaborative processes. In 

the interactions with Olivia and Oscar, Sophie had the opportunity to engage in other aspects of focusing actions, such as 

assessment from other students, where she could have promoted a collaborative interaction. If Olivia were presented with an 

opportunity to evaluate an answer or an idea, she could have refused to answer or attempted to contribute to the dialogue. For 

the latter outcome, it would be crucial for Sophie to both provide timely support, probably more extensive in the beginning and 

reducing over time, as suggested by van de Pol et al. (2018). However, Howe et al. (2007) say that a teacher should be relatively 

non-directive with the guidance, therefore Sophie could start with requesting Olivia to share details of what they had found, which 

is closed progress details. From initiating a student’s talk, Sophie could further have progressed with focusing action where Olivia 

would have had the opportunity to explaining why and justifying an idea, thus, engaging in collaborative processes of building and 

monitoring and encouraged to use CMR. Moreover, it could facilitate for a change in the pair’s agency dynamics, where potentially 

Olivia could feel encouraged to participate with shared agency. 

 Sophie was present and engaged in interacting with the students, but she did not encourage the students to explain to each 

other, which is emphasized as important for developing students’ exploration and autonomy (Hufferd-Ackles et al., 2004) and 

crucial for constructing and maintaining a shared conception (Roschelle & Teasley, 1995). Olivia and Oscar remained in a one-

directional interaction throughout the problem-solving process, which can have an impact on their learning potential. There were 

probably more learning opportunities for Oscar who frequently used CMR, compared to Olivia, who did not. However, that does 

not mean that Olivia did not learn the mathematics involved, or other skills, such as using GeoGebra as a useful tool or other social 

aspects of interacting with a peer. It indicates that students with secondary agency is not engaged with anchoring their arguments 

in mathematical properties, which potentially can lead to learning of the mathematics involved. However, Sophie’s request for 

the students’ input and thoughts could have been a fruitful start for encouraging students to interact with each other, and it would 

have been interesting to observe Sophie interacting with other student-pairs with different group dynamics than Oscar and 

Olivia’s. Since a teacher’s guidance is shaped by students’ mathematical ideas and contributions (Staples, 2007), it is probably the 

case for who and how a teacher reacts and respond to a group’s dynamics, such as Sophie’s main interaction with the primary 

agent Oscar. 

Lucas was acting with progressing actions (Drageset, 2014) when interacting with Leah and Isaac. The conversation began 

when Leah asked Lucas about “opposite numbers,” indicating slope numbers with different signs, to which Lucas answered, but 

he refrained from elaborating on the answer. Consequentially it possibly made an opening for Leah and Isaac to engage in a math-

talk, which became a short discussion about the relationship between the linear functions. It is likely that Lucas entered the 

conversation at the right time, and he had the opportunity to support the students’ learning in a timely manner (van de Pol et al., 

2018), but as the conversation progressed, Lucas missed the opportunity to focus his actions on the students’ reasoning. He moved 

the problem-solving process forward with progressing actions (Drageset, 2014): open progress details about validating the linear 

function’s pair perpendicularity, and simplification by adding steps in a procedure (Lithner, 2008) for solving a sub-question in 

GeoGebra. A main focus on progressing action limits the students’ opportunities to produce mathematics (Schoenfeld, 2013) 

through building their own theory sequences of arguments (Lithner, 2017). Lucas commented on and evaluated the students’ 

inputs in GeoGebra; therefore, he missed an opportunity to support the students’ own interpretations of GeoGebra’s feedback, 

which is important in order for students to construct shared reasoning pathways (Olsson, 2018).  
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Similar to Olivia and Oscar, Leah and Isaac interacted in a one-directional way. During the conversation with Lucas, both Leah 

and Isaac were asked questions and explained their interpretation of “opposite numbers.” Thus, both the secondary and primary 

agent were engaged, unlike in the interaction between Sophie, Olivia, and Oscar, where Oscar mainly responded to Sophie’s 

teacher actions. Despite the differences seen in the teacher-student interactions concerning the one-directional pattern, we 

observed that neither of the teachers’ approaches changed the students’ interactional dynamics concerning their agency in the 

conversations that followed. We propose that there are more opportunities for learning, in general, for the primary agents if a 

teacher mainly acts toward them. Consequentially, such actions strengthen the one-directional relationship between the 

students, and the primary agent is given more authority in the development of the collaborative processes and ownership of the 

reasoning process. 

In the teacher-student interaction between Lucas, Philip, and Noah, we observed redirecting and progressing teacher actions 

(Drageset, 2014) where Lucas discarded the students’ suggestions and comments about their problem-solving process and 

findings. His teacher action was to put aside the students’ ideas and channel the focus into something else. In this case, Lucas 

aimed his focus on the student responses concerning more precisely formulated mathematics. However, Lucas’s way of acting 

could have been an attempt to challenge (Alrø & Skovsmose, 2004) the students’ perception of the rule for making linear functions 

perpendicular. Philip and Noah mutually engaged in problem-solving, making a shared understanding and having shared agency. 

We believe that their shared agency was a central component of the perseverance of their productive collaborative interaction.  

Although a fruitful result concerning Philip and Noah’s continuation of building their shared understanding was seen, we 

would not expect such an outcome in general, as Lucas’s tone was harsh and his approach could be perceived as intimidating, 

thus probably influencing the students’ willingness to approach the teacher or collaboratively explore mathematical properties 

to solve the linear function problem. It seems that Lucas’s way of interacting with Philip and Noah stood out compared to his 

interactions with Leah and Isaac. Perhaps Lucas saw potential in Noah and Philip’s mathematical thinking, and he wanted to 

challenge them to make their thinking even more explicit.  

Lucas’s way of interacting with Philip and Noah sheds light on how difficult it is, even for teachers as experienced as he, to 

promote a classroom community facilitating collaboration, shared agency, and mathematical reasoning. There is still a need for 

better understanding of how teachers can support students’ reasoning for building mathematical understanding (Ayalon & 

Hershkowitz, 2018; Maher et al., 2018; Stockero et al., 2019), but even more so, there is a need to make experienced and new 

teachers aware of the impacts their own actions have when interacting with student-pairs or groups. 

The teacher-student interaction seen between Jacob, Hannah, and Emma is characterized as progressing conversations 

(Drageset, 2014). Jacob probably aimed at moving the process forward by asking open progress details questions and responding 

with closed progress details, as well as evaluation of solution/strategy and encouraging of testing strategy regarding the students’ 

inputs in GeoGebra. Several times, Hannah and Emma, who were in a bi-directional interaction, attempted reasoning about 

mathematical properties of the problem, but this was interrupted by Jacob. With his funneling actions, he seemed to pull the 

students toward important aspects (the Topaze effect, cited in Brousseau, 2006) of making a pair of perpendicular functions: (1) 

connecting the algebraic expression with the graphical representation and (2) zooming in on the slope number.  

Opportunities for productive interactions with Jacob’s teacher actions were through following a given procedure for what to 

focus on and how to look for a path to further generalize a rule from a pattern between the linear function pairs in GeoGebra; thus, 

they were in line with timely support making new information easier for the students to access (van de Pol et al., 2018). Jacob’s 

support resulted in the students’ testing of different pairs of slope numbers in GeoGebra, moving them closer to discovering a 

pattern to generalize into a rule. At the same time, primarily leading students toward the solution method without asking them to 

justify their answers or explain why (justification action) limits students’ opportunities to think for themselves and discover central 

mathematical properties for connecting pieces of knowledge of functions into a robust function (Best & Bikner-Ahsbahs, 2017).  

In summary, the teachers’ actions influenced students’ interaction, but mainly their reasoning. The specific teacher actions 

influenced in following ways: (1) Sophie’s focusing actions contributed to new suggestions for solving the problem made by the 

primary agent, and implemented into action by the secondary agent, (2) Lucas interacted differently with two pairs; first, with 

progressing actions channeling students’ focus to further investigating the connection between the slope numbers, which the 

primary agent responded to when suggesting a rule, then by guessing and checking in GeoGebra, which was observed by the 

secondary agent. Secondly, with redirecting and progressing actions Lucas channeled students’ focus to more precisely formulated 

mathematics, which resulted in collaboratively built reasoning anchored in mathematical properties of the linear function. 

However, as previously stated, we believe that the productivity of the interaction was a result of students’ shared agency, and not 

because of timely or supportive teacher guidance. In the last teacher-student interaction, (3) Jacob’s progressing action 

contributed to channel students’ focus to the slope number, which resulted in guessing and checking in GeoGebra by both 

students. Moreover, both students were less engaged in anchoring their guesses in intrinsic mathematics. Their conversation 

included less reasoning and less repairing since they did not make any claims about their different suggestions. 

A teacher’s guidance is shaped by students’ contributions (Staples, 2007). The three teachers in this study responded to 

uttered reasoning and actions made in GeoGebra, and their guidance were consequentially shaped by that. Even though the 

teachers wanted to encourage collaborative work and reasoning, uttered in conversations, they primarily responded to the 

mathematical ideas of the conversation, not the social aspect of collaborative processes and exercised agency. Yackel and Cobb 

(1996) argue that students’ reasoning and sense-making cannot be separated from their participation in making a shared 

mathematical understanding of the problem. Moreover, Yackel and Cobb (1996) delineate normative norms from 

sociomathematical norms: where normative norms are “general classroom social norms that apply to any subject matter”, 

whereas sociomathematical norms are “what counts as an acceptable mathematical explanation and justification” (p. 460-461). 

We could view social norms as collaborative processes and agency for a collaborative environment, and the sociomathematical 
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norms as students’ creative mathematical reasoning. We could further argue that teachers’ actions influenced students’ 

sociomathematical norms and not their social norms. Since the students’ reasoning was influenced, but their participation was 

not, consequentially, we highlight the importance of teachers’ awareness, not only of the mathematical content in a conversation, 

but also students’ roles in an interaction, which emphasize the importance of both normative norms and sociomathematical 

norms for students’ productive interactions. 

When assessing students’ collaborative processes, a central focus is the quality of students’ interactions (Child & Shaw, 2018; 

Francisco, 2013), and we propose evaluating students’ way of participating through different agencies, as important for 

understanding opportunities for students’ interactions. As teachers or as teacher-educators an indication of productive 

interaction is to look for (1) turn-takings, where students listen to one another and build arguments depending on actions and 

ideas of each other. We argue that this is an important aspect for recognizing a shared agency (Mueller et al., 2012). Turn-takings 

in students’ dialogue are critical to establish a shared understanding from an interplay of ideas in a conversation (Barron, 2000; 

Martin & Towers, 2015; Sidnell, 2010). Another indication to notice is (2) plausible arguments, where both students make their 

thinking visible through speech and actions, and base their ideas, suggestions, and explanations on mathematical concepts and 

relations. Thus, it is an indication of coordination of language and actions (Sarmiento & Stahl, 2008), as well as CMR (Lithner, 2017) 

important for learning through their own, and as mutual, attempts to construct mathematical knowledge (Maher et al., 2018; 

Norqvist et al., 2019). As observed when a student pair was mutually engaged in plausible arguments, their reasoning was often 

by both students, anchored in mathematics in all instances of collaborative process. This indicate a particularly important aspect 

for driving the problem-solving process forward and was often seen in situations of repairing. 

CONCLUDING THOUGHTS 

Following three teachers’ interactions with four dyads, and building on a previous analysis of the dyads’ interactional patterns 

(Hansen, 2021), we have discussed the importance of teacher actions for students’ opportunities of productive interactions 

through mathematical reasoning, collaboration, and agency. Jacob and Lucas acted with progressing actions which resulted in 

less reasoning anchored in mathematical properties and more guessing and checking in GeoGebra (Hannah and Emma, and Leah 

and Isaac), where both student pairs maintained their interactional pattern as respectively bi-directional and one-directional, 

after the teacher interaction. However, another outcome from Lucas’s progressing actions was seen when he acted with 

redirecting and progressing actions which could have had an impact on the continued creative reasoning where students 

maintained their bi-directional interaction after the teacher interaction (Philip and Noah). Sophie’s teacher action was focusing 

actions which also could have impacted creative reasoning by the primary agent observed and acted on by the secondary agent 

(Olivia and Oscar), where students continued their one-directional interaction after the teacher interaction. Moreover, the 

students who were initially engaged in a bi-directional or a one-directional interaction did not change their ways of interacting 

after interacting with their teacher. Neither the nature of the collaborative process nor the students’ agency seemed to be 

particularly influenced by the teachers’ actions. One explanation for this pattern might be that, to a large extent, the teachers 

approached the primary agent in their interactions with the one-directional dyads, thus mainly initiating a conversation between 

the teacher and the primary agent. On the other hand, we observed that the dyads with a shared agency and productive 

collaboration maintained this interactional pattern in spite of the teachers’ funneling actions.  

Although the teachers wanted to encourage collaborative work and reasoning, their actions were shaped by students’ 

mathematical ideas, not the social aspects of collaborative processes and exercised agency. Furthermore, concerning these 

aspects it is important that teachers notice students’ roles, so that teacher actions potentially can promote reasoning in 

collaborative processes such as monitoring and repairing and co-construction of arguments in shared agencies. These findings 

can probably apply to different collaborative instances with different mathematical problems, or possibly in other subjects. If 

applicable to other contexts, a teacher’s action for more productive student interactions should evaluate a student’s role and aim 

to promote students’ shared agency through turn-takings and making plausible arguments. 

It is important for both students in a pair to engage in the following actions: reasoning where they justify their arguments and 

attempt to pose different claims, where both should be encouraged to make counterarguments or justifications by anchoring the 

suggestions in mathematical properties. Teacher actions facilitating the mentioned students’ actions are important for their 

engagement in the collaborative processes of monitoring and potentially repairing, promoting students to become authors of 

mathematical ideas (Langer-Osuna et al., 2020). With such outcomes of teacher actions, we suggest that teacher authority (Langer-

Osuna, 2018) could potentially afford students’ shared agency through important collaborative processes for progress in problem 

solving processes and construction of their own mathematical knowledge. However, while we propose the importance of what 

could have been done to facilitate such outcome, it is yet to be studied what kind of teacher actions, as suggested by Drageset 

(2014), that would influence a productive interaction seen in students’ exercised agency and collaborative processes. This is an 

issue for further research. We acknowledge a teacher’s challenge in observing students’ interactions. However, when situations 

allow for observation, we think the two mentioned aspects, properties for turn-taking and plausible arguments, as often observed 

in bi-directional interactions (Hansen, 2021), may be an important indication for evaluating opportunities for productive student 

interactions. Which is a step towards a better understanding of how to facilitate mathematical reasoning and argumentation in 

classrooms (Maher et al., 2018; van de Pol et al., 2018). 
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An analytical model for analyzing interactional patterns in 
creative collaborative mathematical reasoning 

Abstract 

Research in mathematics education highlights the importance of students’ mathematical reasoning and 

small-group work for building mathematical understanding. It is important for teachers and teacher 

educators to observe and interpret students’ interactions in these situations to facilitate mathematical 

reasoning in collaborative work. For such purpose, with this conceptual paper we present an analytical 

model of students’ interactions focusing on their mathematical reasoning, collaborative processes, and 

exercised agency. Teachers, mathematics educators, and researchers can utilize the model, called the 

CCMR model—Creative Collaborative Mathematical Reasoning model—when observing student-

pairs engaged in collaborative problem solving. The analytical model is presented with three 

interrelated interaction aspects, presented with construct definitions, interplay of interaction aspects, 

and indicators to evaluate students’ interactions. Furthermore, the theoretical points we are making are 

illustrated with glimpses from students’ interactions when solving a linear function problem in their 

classroom settings. The propositions from utilizing the model suggest that students’ way of 

participating through different agencies (shared, primary, secondary), and particularly their interaction 

pattern seen as one-directional or bi-directional, may be a stronger indication for understanding the 

quality of students’ interaction when engaged in solving a mathematical problem, than evaluating 

whether students are mutually engaged (collaborating) or merely dividing the task between themselves 

(cooperating).  

Keywords: agency, collaboration, reasoning, interactions, analytical model 
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1. Introduction 

Mathematical communication, through problem-solving, collaborative work, and reasoning 

foster students’ learning of mathematics (e.g., Erath et al., 2021; Maher et al., 2018; Mueller et al., 

2012; Seidouvy & Schindler, 2019). However, talking and listening to each other in a mutual 

collaboration, as a contrast to only instructing each other and dividing the workload, is not always an 

easy path to follow. Nevertheless, if given the opportunity, students may experience through reasoning 

and collaborative work in a problem-solving setting that mathematics make sense to one-self and peers, 

which are key issues for deeply understanding mathematics (Mueller et al., 2012; Sidenvall, 2019).  

Thus, students’ interactions are central in the learning of mathematics. A student interaction 

can be defined as “a complex social phenomenon which is composed of non-verbal and social 

properties in addition to its verbal characteristics” (Kumpulainen & Mutanen, 1999, p. 455). Sánchez 

et al. (2013) review six interaction types (based on research of Leikin and Zaslavsky (1997) and 

Kahveci and Imamoglu (2007)), which involve communication with a peer, a teacher, and learning 

material, for instance, a device or computer program. Thus, an example of an interaction type is 

student–learning-material–student: a learning activity involving communication between students 

(Leikin & Zaslavsky, 1997). How students engage when attempting to work together affect aspects of 

their interaction: participation patterns, individual learning opportunities, the nature of the 

mathematical discussion, and the construction of a solution path (Esmonde & Langer-Osuna, 2013, 

Langer-Osuna, 2016, referred to in Langer-Osuna et al., 2020). 

Several studies have focused on different aspects with students’ interactions and emphasize the 

need for more knowledge on how to facilitate for students’ productive interactions (e.g., Langer-Osuna 

et al., 2020; van de Pol et al., 2018). We support the description of ‘productive’ posed by Engle and 

Conant (2002): “students’ engagement is productive to the extent that they make intellectual progress” 

(p. 403). Simply put: students’ effort is getting them somewhere (Engle & Conant, 2002). Related to 

this study’s focus: a mutual productive interaction concerns building a shared understanding of the 

mathematics involved. Having a shared understanding comes from the notion of mutually working 

together (Roschelle & Teasley, 1995) to create a shared solution to a problem or having a shared 

strategy for solving a problem. Explaining shared understanding, they refer to a shared knowledge 

structure they call a Joint Problem Space (JPS), consisting of “… an emergent, socially-negotiated set 

of knowledge elements” (Roschelle & Teasley, 1995, p. 70). Collaboratively making a shared 

understanding involves a shared learning process where students share thoughts and ideas through 

verbal expressions of suggestions, explanations, and disagreement. Martin and Towers (2015) describe 

a shared understanding as a collective mathematical understanding consisting of a “ever-changing 
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interactive process, where shared understandings exist and emerge in the discourse of a group working 

together” (p. 6). Moreover, attempting to create a shared understanding of a problem happens if 

students make their reasoning available for one another. Thus, students’ shared understanding coexists 

with reasoning sequences that are plausible and meaningful to them (Granberg & Olsson, 2015). 

Creating and maintaining a shared understanding is an important aspect of collaborative problem-

solving; thus, it is essential for reasoning together. Consequentially, students’ mathematical talk is 

important for making a productive interaction. A recent review outlines the state of development and 

research on design principles related to mathematical talk for mathematics learning (Erath et al., 2021). 

The review recommends further research on students’ mathematical talk, with particular emphasis on 

their mathematical reasoning in collaboration, with a greater focus on the content and mathematical 

features, and students’ understanding, rather than how long their talking turns are or the number of 

times they speak. Moreover, the complexities of student-student interactions connected to how they 

work with mathematics in classrooms and use mathematical concepts have often been researched 

separately (Erath et al., 2021). By analyzing students’ interactions when reasoning mathematically, 

which combine analysis of several dimensions (Erath et al., 2021), could therefore strengthen the 

knowledge of instructional design for teachers, design of tasks, and curriculums (Erath et al., 2021).  

With an aim of developing a tool for assessing students’ interaction patterns when they 

participate in collaborative creative mathematical reasoning, this article presents an analytical model 

which combines three interactional aspects: mathematical reasoning, collaborative processes, and 

exercised agency. We see assessing as an action where you evaluate, for instance, the collaborative 

work and/or the mathematics involved, and its quality. In this study, the quality of students’ 

interactions is related to the productivity and the learning opportunities involved. 

The presented model allows a study of students’ interactional patterns in their shared learning 

process, which may have an “important role in the analysis of learning-teaching processes” (Sánchez 

et al., 2013, p. 247). Thus, making it possible to connect the need for combining different complex 

aspects seen in students’ interactions towards teaching design principles. 

The analytical model is exemplified by glimpses of students’ interactions solving a linear 

function problem in their classroom settings, which is building on the empirical work from Author 

(2021) and Authors (2022). With this focus we build an analytical model for analyzing interactional 

patterns, called the CCMR model, Creative Collaborative Mathematical Reasoning model. The CCMR 

model illustrates how the interactional aspects are connected through students’ way of participating, 

and how students participate in dyads are an important indicator for assessing their interaction as 

productive or unproductive.  
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The analytical model is an important contribution to the field of mathematics education, because 

of its insights on how interaction aspects are related to students’ participation for more or less 

productive interactions. Moreover, from analyzing students’ interactions it is possible for teachers to 

make assumptions on their learning outcome related to the mathematical topic involved. Thus, the 

model can be a tool for teachers, mathematics educators and researchers, for analyzing student-

interactions to better understand students’ ways of participating for quality interactions promoting 

learning of mathematics. 

The suggested CCMR model is based on theory and utilized frameworks in classroom situations 

of students' attempted collaborative learning, and further elaborated on in the following sections: 2. 

Theoretical background, where three interactional aspects are introduced and motivated, 3. Building 

the analytical model, where the empirical basis is outlined and the building of the CCMR model is 

explained through data analysis and empirical examples, and 4. Concluding thoughts elaborates on 

assessing students’ interactions connected to learning opportunities. 

2. Theoretical background  

This section expounds the three interactional components we argue are crucial when we want 

to assess students’ interactional patterns as they participate in collaborative creative mathematical 

reasoning: mathematical reasoning, processes of collaboration, and exercised agency.  

2.1 Mathematical reasoning 

Mathematical reasoning is an important interactional aspect for learning mathematics (Yackel, 

2001), not only to improve argumentation skills, but the processes of justification and argumentation 

in itself are important aspects for learning mathematics (Krummheuer, 2007). With Yackel’s (2001) 

focus on students’ talk as “what the participants take as acceptable, individually and collectively, and 

not on whether an argument might be considered mathematically valid” (p. 6), this study views 

reasoning as an interactional accomplishment using arguments to justify, support, and explain 

mathematical solutions and suggestions. Thus, argumentation is a part of reasoning where one justify 

thoughts and ideas, aiming for convincing oneself, or someone else, that the reasoning is appropriate 

and correct (Bergqvist et al., 2008) 

In line with this view is a rather recent empirically developed framework of mathematical 

reasoning which includes students at any competence level (Lithner, 2008, 2017). The framework 

defines mathematical reasoning as “the line of thought adopted to produce assertions and reach 

conclusions in task solving” (Lithner, 2017, p. 939).  There are different paths of reasoning in order to 
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reach a conclusion in task-solving, and the framework Creative Mathematically founded Reasoning1 

(CMR, Lithner, 2008), identifies two major types of reasoning: creative reasoning and imitative 

reasoning. Students’ creativity implies the creation of problem solutions through engaging in 

reasoning, whereas copying a procedure or recalling a fact is imitative reasoning. Therefore, how 

students’ support and explain their thoughts is important to the learning outcome. 

Exploring mathematical connections and building an argument, is within the framework, not a 

matter of having to create a formal or logical proof. As long as the sequence of thoughts makes sense 

to the student, whether or not it is simple or complex, correct or incorrect, the student should have 

enough evidence to support the idea and call it creative reasoning (Lithner, 2017). Three criteria must 

be fulfilled in order to call a reasoning sequence creative (Lithner, 2017): 1) Creativity refers to 

creating a reasoning sequence not experienced previously or re-creating a forgotten one, 2) Plausibility 

are arguments supporting the strategy choice or strategy implementation explaining why the 

conclusions are true or plausible, 3) Anchoring means that arguments are anchored in the intrinsic 

mathematical properties of the components of the reasoning. Arguments are considered to be intrinsic 

if they are based on mathematical concepts or relations and superficial if based on an appearance and 

not on underlying mathematics.  

Imitative reasoning, on the other hand, can be memorized reasoning or algorithmic reasoning. 

Memorized reasoning is, for instance, remembering that 1L=1000 c𝑚ଷ(Lithner, 2008). Algorithmic 

reasoning is when the students’ approach is to solve the task using a given or recalled algorithm. The 

strength of using an algorithm in school mathematics is the speed and the high reliability when solving 

a task (Lithner, 2015). However, if the algorithm is used without the conceptual part, such as the 

consideration of its meaning, it may lead to rote learning (Lithner, 2017).   

2.2 Collaborative processes 

Collaborative group work provides opportunities for students to share their thinking, negotiate 

suggestions, and use mathematical reasoning for better understanding of mathematical ideas. When 

students work together on a mathematical problem, they can discuss how to solve it together or decide 

to divide the workload. The latter approach is often named cooperation, whereas the former is, in 

educational research, called collaboration (Baker, 2015). Cooperation can be described as dividing a 

task into subtasks for individual work; a shared product can be accomplished through sharing of 

findings and answers produced individually (Staples, 2007). A student pair successfully engaged in 

collaboration, can occasionally have periods of cooperative work.  

 
1 In line with Lithner (2008, 2017) and his colleagues studying creative mathematically founded reasoning, this study uses 
the wording creative reasoning or acronym CMR for linguistically simplicity. 
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Defining collaboration depends on the research focus: collaboration as means to an end—

organizing for learning outcomes of knowledge or other skills—or collaboration as an end in itself 

(Lai et al., 2017). Research on cooperation and collaboration combined is mainly found in the first 

view on collaboration (Lai et al., 2017), whereas collaboration as an end in itself often have a process 

focus (Seidouvy & Schindler, 2019). Studies with a process focus often investigates verbal and social 

interactions, and students’ attempt of making a shared understanding (Seidouvy & Schindler, 2019).  

Different actions that students take, for instance, suggesting, explaining, listening, evaluating, and 

negotiating a solution method or a strategy to solve a task, can indicate a collaborative process. With 

a focus on students’ processes attempting to learn something together, collaboration has been defined 

as a “coordinated, synchronous activity that is the result of a continued attempt to construct and 

maintain a shared conception of a problem” (Roschelle & Teasley, 1995, p. 70). Thus, a productive 

collaborative interaction, in line with the definition, is found in students’ building and maintaining of 

a shared conception of a mathematical problem (Roschelle & Teasley, 1995). Collaborative processes 

are explained below anchored in the definition of collaboration. 

We have taken the collaborative process focus, i.e., students’ different actions for different 

processes of making and maintaining a shared understanding of a problem, adopting suggested 

processes from Roschelle and Teasley (1995), which are outlined at the end of this subsection. It 

practically means to look for how students respond to one another which can indicate whether students 

have a shared conception from an interplay of ideas. Although collaborative processes and 

collaborative outcomes have been separated research focus (Lai et al., 2017), a primary focus on 

processes does not exclude insights on collaborative outcomes, since the aspects are connected (Child 

& Shaw, 2018). Thus, how students mutually engage in discussing and solving the task at hand, which 

are seen in their actions, influences the learning outcome or a produced artefact. 

Students can explore mathematical ideas together, and if willing and engaged, they may share 

suggestions and thoughts for solution methods. A central aspect of students’ activities to construct and 

maintain a shared conception of a problem is the coordination of language and actions (e.g., Baker, 

2015; Roschelle & Teasley, 1995; Sarmiento & Stahl, 2008). This means a mutual exchange of 

utterances and taken actions for solving a problem, which can be further seen in how students express 

their thinking through body language, uttered words, and hand gestures, via inputs into a dynamic 

software program, or via drawings and writings. Such actions are often expressed through turn-taking, 

which is an important social practice in conversations (Sidnell, 2010). Turn-taking is critical to 

establishing shared understandings of a problem (Barron, 2000). In collaborative problem-solving, a 

shared understanding is important and means that students’ joint understandings “emerge from the 
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interplay of ideas of individuals as these become woven together in shared action” (Martin & Towers, 

2015, pp. 5-6). 

 The way students engage in collaborative processes relates to how well collaboration is 

maintained and furthered (Child & Shaw, 2016). Co-constructing a shared understanding happens 

through processes where students build, monitor, and repair the meaning or a strategy for solving a 

problem (Roschelle & Teasley, 1995). For instance, building a shared conception of a problem means 

introducing new ideas and establishing an inquiry process (Alrø & Skovsmose, 2004; Child & Shaw, 

2018). A suggested idea or an arising thought, such as pointing out a mathematical property or 

sketching a figure as a solution strategy, can be a starting point or continuation of collaborative work. 

If the suggested idea is not making sense, a peer could ask questions about the idea, which ultimately 

could be explained. Having different perspectives, asking questions, and providing explanations are 

important parts of monitoring the collaborative work (Roschelle & Teasley, 1995). Sometimes, 

students experience divergences in understanding or of strategies to use, which means that they have 

conflicting ideas. Experiencing divergences in opinions means that students need to repair their shared 

understanding (Roschelle & Teasley, 1995). Important actions for resolving a period of conflicting 

ideas can include reformulating ideas, such as by paraphrasing or repeating utterances in one’s own 

words (Alrø & Skovsmose, 2004). 

2.3 Agency 

Acting or resisting to in collaborative problem solving, the issue of students’ agency, is yet 

another central interactional aspect in group work (Mueller et al., 2012). Studies of agency focus on 

how people, different cultures, and artefacts shape actions and decisions (Carlsen et al., 2016). For 

instance, if agency in mathematics were expressed by a student, she could say, “I can do mathematics, 

and I’m willing to jump in and give it my best” (Schoenfeld, 2018, p. 503).  

Exhibited agency at play in classrooms has been organized into two categories: conceptual and 

disciplinary agency (Pickering, 1995). Mueller et al. (2012) explain Pickering’s (1995) two concepts: 

“Conceptual agency entails constructing one’s own meanings and methods while disciplinary agency 

involves utilizing established procedures” (p. 374). Thus, disciplinary agency is in line with imitative 

reasoning (Lithner, 2008), where students’ argumentation consists of memorized facts and procedures. 

As emphasized in previous sections, research shows that students who can create their own solution 

methods through collaborative work and reasoning, hence displaying conceptual agency, will better 

understand important mathematical ideas (Maher et al., 2018).  

Students’ agency can be seen in relation to their afforded responsibility and authority in their 

problem-solving (Pickering, 1995). Agency has been referred to as “the way in which he or she acts, 
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or refrains from acting, and the way in which her or his action contributes to the joint action of the 

group in which he or she is participating” (Gresalfi et al., 2009, p. 53). The nature of the agency—an 

individual’s participation in a group or community—will vary between different situations and in 

different interactions (Gresalfi et al., 2009). Given an opportunity to participate and act, this means 

that a student can engage in mathematical problem-solving, which is important for developing a 

mathematical voice and becoming recognized as a producer of mathematics (Schoenfeld, 2013). 

Therefore, group collaboration can contribute to students’ agency in mathematics (Schoenfeld et al., 

2019), and it is an important aspect to consider when studying students’ collaboration and reasoning.  

When studying student pairs’ interactions, we describe their way of participating (Gresalfi et 

al., 2009) connected to conceptual or disciplinary agency as their exercised agency (Pickering, 1995).  

Using this approach may give further insights on how students participate in collaborative processes 

and mathematical reasoning. In line with such approach, Mueller et al. (2012) present a framework for 

students’ argumentation connected to expressed agency in different discursive practices when 

collaboratively solving mathematics problems. Students can exercise shared agency when co-

constructing arguments (Mueller et al., 2012). In those situations, students simultaneously build 

arguments up from the ground, and “without one of the participants, the argument would not exist” 

(Mueller et al., 2012, p. 378). Moreover, students may exercise individual forms of agency, called 

primary agency or secondary agency. A student is a primary agent in situations where he or she makes 

the final argument based on corrections from a peer or by making sense of a peer’s faulty or flawed 

idea. Thus, a secondary agent’s input influences the original argument. These forms of input are 

corrections, extensions, or flawed arguments further formed by the primary agent for a final argument 

(Mueller et al., 2012).  

Therefore, a student can exercise individual or shared agency in a situation when attempting to 

collaborate. We have adopted the way of describing such agency as being connected to acting or 

resisting acting in a mathematics conversation (Gresalfi et al., 2009). 

3. Building the analytical model 

This article contributes to the growing knowledge of students’ interactions in collaborative 

activities by combining the three construct definitions—collaborative processes, mathematical 

reasoning, and exercised agency—into an analytical model (Fig. 1), presented in section 3.3. We view 

the three interactional aspects in interplay, assimilating and combining previously developed concepts 

from literature (Jabareen, 2009; Jaakkola, 2020) with empirical research where three frameworks 

(Table 1 in section 3.2) were utilized (Author, 2021; Authors, 2022). This has further resulted in the 
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presented analytical model (Fig. 1). Section 3.4 explores the analytical model through empirical 

examples. 

3.1 The context 

The empirical examples presented in section 3.4 come from a design-based research study in a 

Norwegian upper secondary school. The participants were 69 students divided on three mathematics 

classes with three teachers. The students were 15-16 years old and enrolled in their first year of a 

theoretical mathematics program. Out of the larger group of students four pairs were chosen for an in-

depth study of their interactions when solving different mathematical problems. This article builds on 

the analysis of these four dyads solving two function problems (Fig. 2 and Fig. 3).  

The students and the teachers participated in the study for five consecutive months. During 

these months, teachers, and researcher (the main author was present) discussed how to facilitate 

students’ collaborative work and mathematical reasoning. The meetings between the teachers and the 

researcher included lesson planning and evaluation of the lessons. Based on the conversations during 

these meetings the teachers attempted to ask open-ended questions, aiming for students to think 

together and engage in math-talk. The three teachers were considered to be engaged and experienced, 

however not previously used to focus on collaborative work and mathematical reasoning this 

extensively and for a longer period of time. Moreover, the teachers explained during the meetings that 

they were not used to being aware of their role and how they supported students in their collaborative 

interactions.  

3.2 Data analysis 

A possible starting point to observe and to assess students’ interaction pattern, is to ask: 1) How 

are students engaged in mathematical reasoning? One can look for students’ suggested ideas or 

counter-suggestions anchored in mathematics 2) How are students responding to each other? One can 

look for suggestions, questions, explanations, and counter-suggestions in the conversation. This can 

indicate whether students have a shared conception from an interplay of ideas. 3) How are students 

participating? A possible approach is to look for student roles when they suggest solution procedures 

to solve a problem. The roles could be where both are leading, or one is repeatedly leading and making 

decisions. Moreover, it is seen in how they are acting or resisting to in collaborative problem solving. 

The three guiding questions are three components of an interaction pattern, which we highlight as 

central components for analyzing students’ attempt of a collaborative interaction focusing on how they 

interact when reasoning mathematically. 
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Indicators of the three construct definitions—mathematical reasoning, collaborative processes, 

and exercised agency—make up the coding framework presented in Table 1. The coding framework 

is anchored in literature, as presented in chapter 2. Theoretical background, and tested empirically 

(Author, 2021; Authors, 2022). 

The three frameworks are organized in Table 1 according to the way it was utilized to code 

four student pairs’ collaborative problem solving of the linear function problem presented in Author, 

2021 and Authors, 2022. First, the coding procedure began with identifying students’ creative 

reasoning in their conversations. These snapshots of a conversation were called CMR-sequences.  

These sequences entailed a student or a student-pairs’ mathematical arguments which were anchored 

in the mathematical properties of linear functions. This was the starting point of the coding procedure, 

because of the learning opportunities when reasoning creatively (e.g., Granberg & Olsson, 2015; 

Lithner, 2017; Olsson, 2018). To categorize students’ reasoning as creative, three criteria in the 

framework must be fulfilled (Lithner, 2017). First, creativity: creating a reasoning sequence not 

Table 1 The coding framework of the three interactional components. 
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experienced previously or re-creating a forgotten one; second, plausibility: arguments supporting the 

strategy choice or strategy implementation explaining why the conclusions are true or plausible; and 

third, anchoring: arguments are anchored in the intrinsic mathematical properties of the components 

of the reasoning. Arguments are considered to be intrinsic if they are based on mathematical concepts 

or relations and superficial if based on an appearance and not on underlying mathematics. 

The second step was to identify students’ collaborative processes (Roschelle & Teasley, 1995). 

This step was important for evaluating how students were responding to each other. Initiation of 

making a shared understanding started with the collaborative process of building: suggesting, 

accepting, and agreeing upon an idea to solve a problem. The collaborative process of monitoring was 

categorized as asking questions or explaining an idea when observing and trying to understand each 

other’s interpretations of a problem. If the suggestions or explanations conflicted with a peer’s 

understanding of the shared understanding, a state of collaborative repairing was categorized as 

negotiating and correcting conflicting interpretations using justifications and counter-suggestions. 

Thus, the students’ dialogue entailed decision-making, negotiations, justifications, suggestions, 

accepting suggestions, and action-taking to solve the linear function problem. It was particularly the 

actions of making suggestions and explaining ideas, and posing counter-suggestions, that indicated 

that students had the opportunities to anchor their arguments in mathematical properties, thus, 

presenting learning opportunities through CMR. 

Coding for exercised agency (Gresalfi et al., 2009; Mueller et al., 2012) was the third step. 

Detailed descriptions were written about the way they interacted, specifically in terms of the 

mathematical content of the conversation regarding linear functions and on the ways students acted or 

resisted from engaging in the mathematical conversations (Gresalfi et al., 2009). The descriptions were 

used to code students’ participating roles for contributing to the solution procedure in the given 

situation. Therefore, this coding step was not employed on every student utterance or turn but seen as 

an overall attribute in each excerpt of the conversations. In situations where students co-constructed 

arguments, their agency was coded as shared agency (Mueller et al., 2012). When students engaged in 

individual acts of agency, it was coded as primary agency or secondary agency (Mueller et al., 2012). 

If a student made the final argument, assimilated another student’s argument, or made sense of a peer’s 

faulty or flawed argument, then the student’s engagement was categorized as being a primary agent in 

the conversation. A secondary agent was being the co-working peer who gave input for the final 

argument in the conversation.  
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3.3 The CCMR model 

The CCMR model (Fig. 1) is based on the analysis procedures and findings of students’ 

interaction patterns from empirical work (Author, 2021; Authors, 2022). Authors (2022) argue that 

whether students’ interactions are productive or unproductive is connected to how students participate: 

choosing to engage or refrain from engaging through different types of agencies (shared, primary, or 

secondary), including different ways of interacting in those roles. Thus, agency shapes actions (Carlsen 

et al., 2016), such as collaborative processes and mathematical reasoning (Author, 2021), which 

altogether can co-construct a shared understanding, or individual understandings, where the outcome 

is a solution procedure to a given problem. Since agency shapes how students collaborate and reason 

mathematically, we highlight through the CCMR-model how students participate in dyads are an 

important indicator for assessing their interaction pattern as productive or unproductive. Moreover, 

Author (2021) discusses students’ roles in pairwise collaboration. She found that students were in a 

bi-directional interaction when mutually attempting to understand one another and when both were 

driving forces of the problem-solving process. Typical for a pair in a bi-directional interaction was a 

mutual effort where students co-constructed reasoning sequences with shared agency (Author, 2021). 

In contrast, if students exercised different roles in a problem-solving process where the final outcome 

was expressed repeatedly by one of the students, they were in a one-directional interaction. In the one-

directional interaction, both students were engaged, but they expressed agency differently. For 

instance, the co-working student’s role was often to understand suggestions or explanations made by 

the primary agent. However, ideas and questions were expressed by the student who exhibited 

secondary agency. Such input was either assimilated into the final outcome of the reasoning by the 

primary agent, or it was considered and refined or neglected by the primary agent.  

An important indicator of bi-directional interactions is that both students are driving forces of 

the problem-solving process. This can be observed when both students are choosing to engage in 

mathematical reasoning, where the dialogue consists of turn-takings and plausible arguments found in 

all stages of collaborative processes. This is particularly prominent when both students need to or 

choose to make suggestions, explain ideas, and make counter-suggestions to make progress in their 

problem solving. Therefore, if both students in a collaborating pair are actively involved in a bi-

directional interaction, they are likely to exercise CMR in multiple instances of collaborative processes 

with co-constructed arguments creating a shared understanding of the problem at hand (Author, 2021). 

Thus, the interplay of the three interaction components, prominent in co-reasoning when suggesting 

or making counter suggestions, is a key to a productive interaction promoting students to become 

producers of mathematics (Schoenfeld, 2013) and for in-depth learning.  
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An important indicator of a one-directional interaction is students’ different roles in 

communicating. Asking: “Who is the driving force in the conversation and how are arguments built?”, 

may help to evaluate whether students are acting one- or bi-directionally. If the answer is that one 

participant repeatedly makes the final argument, it is likely that the student pair is acting one-

directionally. Moreover, a primary agent uses the secondary agent’s monitoring utterances to 

determine the final outcome (Mueller et al., 2012) of their reasoning sequence. Students acting one-

directionally are not mutually engaged in CMR, nor are there turn-taking conversations where both 

students suggest new ideas.  
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3.4 The CCMR-model in practice – empirical examples 

The following four excerpts of students’ interactions are from the same student pairs as 

presented in Authors (2022) and Author (2021). The excerpts are not presented elsewhere, however, 

two of the four excerpts are from the same problem-solving situation presented in Authors (2022) and 

Author (2021). Moreover, two excerpts are from another problem-solving situation the students 

participated in. The students attempted to solve two linear function problems (Fig. 2 and Fig. 3), which 

presented opportunities for the students to connect different function representations to construct their 

own solutions to the problem. The problem-solving situations of the two problems were one month 

apart. Figure 2 was the first problem and Figure 3 the second problem, a continuation of the first 

function problem. In the last problem students must find (or remember) the connection between 

perpendicular lines, and how the constant numbers are related to form a square with four linear 

functions. Thus, both function problems invite connecting algebraic representation and graphical 

representation. In the following sub-sections central theoretical concepts from the data analysis (Table 

1) are written in italics to make the coding procedure more transparent. 

 

3.4.1 Bi-directional interaction – two student-pairs  

Two student-pairs were in bi-directional interactions: Emma and Hannah, and Philip and Noah 

(see Author (2021) and Authors (2022)). 

 
Fig. 2: The first function task (reformulated from Olsson (2018)) 

 

 

Fig. 3: The second function task based on Granberg and Olsson (2015) 
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In function problem 1 Philip and Noah investigated different pairs of linear functions and 

discussed mathematical properties: coordinate system, slope number, and decreasing and increasing 

lines. They had differences in opinions about finding a perpendicular linear function to 𝑦 =  2𝑥 + 5 

and difficulties expressing a rule. During a rapid turn-taking conversation, Philip was questioning 

Noah about why he meant a half of 𝑥 would make a perpendicular line. Philip suggested a 

perpendicular line with the slope number −2. After talking and investigating the slope number, which 

they called 𝑥, they agreed that −0.5𝑥 made a perpendicular line. Regarding the formula, Noah 

suddenly saw a connection between the perpendicular pair of lines, and explained his observation to 

Philip. Philip built on his peer’s observation and said, “There is a slope number, what is it called? It’s 

𝑚.” They agreed that the solution was 1 divided by 𝑚 for making perpendicular lines. After their 

conclusion, Philip said they should test the formula. Yet another discussion occurred when they 

implemented different slope numbers for their rule, which resulted in negotiation of mathematical 

properties leading to a confirmation of the rule. In the following conversation between Noah and 

Philip, they went over the formula again and agreed upon their decision. Excerpt 1 shows that Noah 

and Philip exercised a shared agency when negotiating the properties for making a rule, anchored in 

the connection between the generalized expression of the rule and the graphical representation, while 

engaged in all the collaborative processes (building, monitoring, and repairing). 

Excerpt 1 

1 Noah So, it’s minus... −1 divided by 𝑚, which is... 
2 Philip Which is the rule. 
3 Noah Yes. 
4 Philip Is it the same thing we used here as well? Or on the others (pointing at the paper first 

and then at the screen)? 
5 Noah Yes, minus is always here in front (pointing at the paper). This is... (putting a square 

around their rule on the paper). This works. So, if we have one line, then the other one 
must be that, in a way... 

6 Philip −1/𝑚 (nodding). 
7 Noah It was a bit tricky. 
8 Philip Is there anything else we could try? Is there something else?  
9 Both No (in choir while looking at the laptop screen). 
10 Noah The slope on one line... Or, 1 divided by the slope number from one line, then we will 

have, that must be the other one, right? 
11 Both (Nodding). 
12 Philip Good. 

Noah summarized their findings and continued to build a shared understanding of the rule (1). 

Philip asked to make sure that their written rule on the paper aligned with the graphical view. Thus, 

his monitoring reply was anchored in a connection between the generalized expression of the rule and 
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the graphical representation (4). Noah explained and monitored their shared understanding (5), which 

Philip added to, indicating mutuality in their understanding (6). In the conversation that followed, 

Philip asked if there was anything else to consider when making the rule (8); hence, he engaged in 

further monitoring important to maintain a shared view on the rule.  

A month later, Philip and Noah were presented with the second function problem (Fig. 3). They 

successfully constructed a square with four linear functions. Their focus of the conversation was to 

figure out how the four linear functions were connected when they attempted to adjust the algebraic 

expressions tilting the square and keeping all right angels. They did not recall the first function 

problem, nor did they remember the algebraic expression for a linear function. Their first attempt of a 

linear expression was 𝑎𝑥 + 𝑏𝑥 + 𝑐. In a conversation with the dyad, teacher Lucas pointed out the 

algebraic expression by repeating the formula out loud. Philip replied that  𝑏𝑥 was zero and continued 

saying that 𝑏𝑥 would therefore not be necessary to use. Before the conversation in Excerpt 2, Noah 

and Philip had found pairs of perpendicular lines to be 𝑚𝑥 + 𝑐 and −𝑚𝑥 + 𝑐. Their justification was 

based on one pair of slope numbers: 1 and −1. About this relation Philip meant it was important that 

𝑚 always was a whole number. He did not explain why he thought so, but his opinion followed him 

to the end of the problem-solving session. Noah did not ask him about it, but later he suggested the 

slope number −0,5, which was accepted by Philip. However, it was probably not understood by Philip, 

since he kept his interpretation about the slope number relation. Noah probably observed that 

implementing only whole slope numbers in GeoGebra did not provide perpendicular pairs of lines. 

Thus, their different interpretations kept them engaged in resolving the conflicting understanding and 

probably wanting to understand the mathematical properties of the relation between the linear 

functions. However, Lucas ended the problem-solving session, so they did not get the opportunity to 

make a shared solution of the second function problem.  

Excerpt 2 

1 Noah Then adjust the angel less than... So, if we… 
2 Philip If it is whole numbers, then it is a square, right? 

3 Noah We could try minus too; it should be the same (uses the laptop). Or if we do like this 
(uses the laptop). It must be one. 

4 Philip Must the sides be 90 degrees in a square? 
5 Both (Silent together and looking at the laptop screen) 
6 Philip Or is a rhombus a square? Since four sides have the same length. 
7 Noah I don’t think they have the same length. 
8 Philip They have the same length, don’t they? Here... (uses the laptop) 
9 Noah Wait a moment, if this one… (uses the laptop) 

They are having the same length. I mean that in a square the degrees (probably meant 
the angles) are 90 degrees. 
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10 Philip Yes, it is a square with whole numbers, in a way. 
11 Noah Well… (nods) 

So, 𝑚 adjusts only the angle. 
12 Philip Mhm. Or… Yes, where it lies somehow 

Excerpt 2 shows a shared agency between Philip and Noah while they discuss the properties 

of the linear functions for making a square anchored in the slope number, while engaging in all the 

collaborative processes (building, monitoring, and repairing). Noah initiated a building of a shared 

understanding of how to create linear functions that would angle the square less than 90° (1). Philip 

continued building by making sure that they understood the premises for the next step of the task: that 

a quadrilateral was a square (2, 4, 6). The dyad looked intensely at the laptop screen and judged the 

length of the lines (5-9). The laptop screen is not visible to us, nor was it recorded; thus, we would 

think that they were observing the linear functions they had made in GeoGebra. Noah monitored the 

response from Philip and recalled that a quadrilateral in which all sides are equal, and all angles right 

angles is a square (9). Together Noah and Philip focused on the premises of making a square related 

to the slope numbers of the linear functions. The premises was not creatively constructed but recalled 

from memory, however, the creativity of their co-constructed premise was the emphasizing of 

mathematical properties with a square related to the slope numbers of the linear functions. Moreover, 

their divergencies in interpretations about the relation between slope numbers for a pair of 

perpendicular lines contributed to progress in the dyads’ problem-solving.  

The characteristic of their turn-taking conversations was a co-construction of arguments 

indicating a shared agency in the situations and of the given function problem. In a joint effort and 

synchronicity, Philip and Noah built, monitored, and repaired their shared understanding through 

reasoning and arguments anchored in intrinsic mathematical properties. Therefore, and most prominent 

in Excerpt 1, their reasoning sequences were rarely standing alone as individual thoughts. Moreover, 

individual thoughts and ideas developed into meaningful ideas, suggestions, and investigations that 

were built and pursued to solve the function problem together. Thus, both students engaged with 

shared agency. 

A comparable interaction pattern to Philip and Noah is found in the dyad of Emma and Hannah 

(Excerpt 3 in Author 2021). Emma and Hannah struggled finding a perpendicular linear function to 

𝑦 = 4𝑥 + 2. Emma was building by suggesting, “𝑥. 1 divided by 4…. Plus 2”. Hannah responded by 

saying “No, it’s not the same. I thought, if it were the same [the rule could be] that we only put minus 

sign in the front. But that doesn’t work.” Hannah expected the slope numbers 4 and −4 would make a 

pair of perpendicular linear functions, but she reflected on her previous conflicting interpretations with 

the algebraic and graphical representation. Her actions contributed with the process of repairing their 

problem-solving progress. In the following conversation, Emma and Hannah evaluated and interpreted 



Page 19 of 28 
 

each other’s thoughts, which they responded to using creative reasoning in a turn-taking sequence of 

collaborative processes. They were both engaged in suggesting, listening, interpreting, disagreeing, 

and evaluating. Both students engaged in negotiating the mathematical properties for making a 

perpendicular pair of lines. Hannah and Emma’s willingness to participate and investigate the first 

function problem together illustrates how both can “be in charge” of the problem-solving process. 

Their reasoning sequence cannot be separated into two individual lines of thoughts, as their reasoning 

was co-constructed with input from one another. Therefore, Hannah and Emma had a shared agency 

when negotiating the properties for making a perpendicular pair of lines. 

3.4.2 One-directional interaction – two student-pairs  

Two student-pairs demonstrated one-directional interaction: Olivia and Oscar, and Leah and 

Isaac (see Author (2021) and Authors (2022)). 

In the first function problem Leah and Isaac found a set of linear functions making a 

perpendicular pair: 𝑦 = 𝑥 + 3 and 𝑦 = −𝑥 + 3. Isaac read the task and wondered how to express a 

rule when he suddenly exclaimed, “Slope number!” Leah immediately agreed that the relationship 

between the perpendicular lines was connected to the slope numbers. In the conversation that followed 

in Excerpt 3, Leah and Isaac attempted to express the relationship between the two linear functions by 

anchoring the reasoning in the slope numbers of the two linear functions. Leah and Isaac exercised 

different agencies and different roles in their interaction. Leah acted with secondary agency when her 

reasoning and inputs were mainly assimilated into the final arguments made by Isaac. Isaac had the 

role of the primary agent. Both engaged in all the collaborative processes (building, monitoring, and 

repairing). 

Excerpt 3 

1 Isaac ...it’s 1. 1, right (pointing at the screen)? 

2 Leah No, then it’s −1. +1. 

3 Isaac No, no, no. They have the similar, but one has the negative and one has the positive. 

4 Leah Ahh. 

5 Isaac One goes upwards and one goes downwards. 

6 Leah Yes, I agree. But do both have the same slope number? 

7 Isaac They don’t have the same slope number. 

8 Leah No, no, no... Yes, they have... 

9 Isaac However, they have opposite slope numbers, which are alike. I don’t know how to 
formulate it. 
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Isaac was building toward a solution, pointing to the slope numbers “1. 1” (1). Leah disagreed 

with his observation. In her opinion, it was about “−1 and +1” (2). Both students addressed the slope 

numbers of the perpendicular pair of linear functions, and the reasoning sequence entailed anchoring 

in the mathematical property of the slope number, mainly referred to in the algebraic expressions. Isaac 

continued the conversation with repairing and expressed that the slope numbers had the same numbers, 

only with different signs (3). In (6), Leah accepted his explanation, and further monitored by asking 

about the meaning of “the same slope number”. Isaac elaborated on the relationship, stating that the 

two linear functions did not have the same slope numbers (7), pointing out that they were the same 

numbers, only with different signs (9). Leah and Isaac further observed the similarities and differences 

in the function pair; however, they seemed to struggle to find a way to express their findings.  

Leah and Isaac were engaged in the problem-solving process, and both contributed to the 

conversation. However, Isaac had the role of primary agent in his way of “telling” Leah how he was 

right. Such actions were demonstrated in his building suggestions (1, 7), monitoring explanations (5, 

9), and repairing correction of his idea (3). Leah, on the other hand, built by accepting Isaac’s input 

(6). Moreover, Leah expressed what she observed about the slope numbers, and she asked what Isaac 

thought. Isaac confidently expressed characteristics about the slope numbers. Leah exhibited 

secondary agency, giving input on the reasoning sequence, whereas Isaac showed primary agency, 

affecting the final outcome of their reasoning. Thus, Leah and Isaac were interacting in a one-

directional manner. Although Leah monitored Isaac’s statement about “same slope numbers” and 

disagreed with him, indicating a repairing process, she was never in a situation where a mathematical 

explanation depended on her. Therefore, she mainly engaged in imitated reasoning first expressed by 

her peer, Isaac.  

In the second function problem, Leah and Isaacs engagement was similar to how they 

participated in the first problem a month earlier. During their problem-solving session Isaac was 

determined to express the four linear functions by using the function command in GeoGebra. Towards 

the end of their problem-solving their teacher Lucas explicitly told them that their approach, using the 

function command, would make it too difficult to solve the problem. Lucas suggested they should 

“write 𝑦 equals something”. Isaac suggested four linear lines, which made a tilted square. Thus, he 

solved the last task of the function problem. Right after they ended their problem-solving and started 

a non-mathematical conversation. In Excerpt 4 the dyad had not yet had the conversation with Lucas. 

Leah was willing to test Isaac’s proposal about the command function in GeoGebra to solve the second 

task of the function problem. 

Excerpt 4 
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1 Leah Let’s try the function start value and end value [function command in GeoGebra]. It 
becomes nothing. (Uses the laptop) 

2 Isaac Just write a normal function. 

3 Leah 𝑚𝑥 + 𝑐, right? 

4 Isaac Yes. 

5 Leah But should we use the function-thing? 

6 Isaac Just chose 𝑥 + 1, and chose 𝑥 + 0  

7 Leah 𝑥 + 0. And then start value, end value? (Uses the laptop) 

8 Isaac Yes, you need start something. 

9 Leah 5? 

10 Isaac Just chose −5 to −5. 

11 Leah −5 to −5? 

12 Isaac Yes, eh, no, to 5. 

13 Leah Yes, right. Like this? 

14 Isaac OK. If the slope number was 0. No, if the slope number was 1, there. Then it would 
be parallel with the thing. 

15 Leah Because then it goes one up, right? That’s why the slope number should be 0. 

16 Isaac Yes, OK. Let’s try that. Write 0𝑥 directly then. 

17 Leah 0𝑥 plus…? (Looks at Isaac and waits for response) 

Leah attempted to drive the problem-solving process forward by building on Isaac’s idea of 

using the function command (1). Thus, she accepted his suggestion and willingly tested it out. 

However, Leah repeatedly requested confirmation for further input and progress about the algebraic 

expression of a linear function (3), the GeoGebra command (5), the input into the command (7, 9), and 

of the graphical result (13). Furthermore, Leah evaluated Isaacs input by repeating his suggestion (11), 

thus indicating that it did not make sense to her. Isaac was probably content with the two linear 

functions: 𝑓(𝑥) = 𝑥 + 1 and 𝑓(𝑥) = 𝑥. Then he pointed out mathematical properties of the slope 

numbers, probably for progressing with two new linear functions, to make a tilted square (14). 

However, it might have been an evaluation of their input, since a slope number of value 1 was already 

written, but it could have been a suggestion of another linear function with the same slope number 

with another constant. Nevertheless, Leah monitored Isaac’s observations by addressing the slope 

number’s function and suggested another linear function with slope number 0 (15). Isaac used Leah’s 

suggestion and continued orchestrating the event of actions (16). 
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In the problem-solving processes Leah and Isaac contributed to the conversations. However, 

as seen in Excerpt 4, which reflects the essence of their problem-solving conversation, Isaac had the 

responsibility and Leah requested his feedback and response in proceeding with actions in GeoGebra. 

Moreover, they rarely explained mathematical properties with the function problem, and mainly 

focused on testing out different linear functions by using the command function. Thus, there were little 

to no validation and evaluation of why something was right or not. The dyad participated with the 

same pattern as previously found in Excerpt 3: Isaac exercised the authority and did not share the 

responsibility of solving the problem, thus, he exercised primary agency. Leah, on the other hand, 

contributed to driving the process forward by exercising secondary agency through accepting and 

questioning Isaac’s suggestions. Isaac’s suggestions were sometimes interpreted by Leah and 

translated into actions in GeoGebra. With this function problem, even more prominent than in the first 

function problem, Leah requested input and confirmation from Lucas. Moreover, throughout this 

conversation was Isaac’s condescending tone with Leah. She responded by telling him: “No, you 

cannot say so” or “You must behave. There are cameras”. Although, this study is not reporting on 

affective aspects, it was distinct that the behavior appeared limiting for a fruitful conversation for 

addressing mathematical properties. 

A similar interaction pattern is found in the dyad of Oscar and Olivia (see Excerpt 4, Author 

(2021), but here, Oscar was an even more dominant reasoner in the conversation. Olivia and Oscar 

started their problem-solving path with the first function problem by suggesting two linear functions. 

Oscar suggested a rule and anchored it in the mathematical property of the slope number: “They have 

the same value, but minus in front. I don’t know. Constant 𝑥 has the same value, wait...”. Olivia 

monitored the input by asking: “It’s not the same value, or?”. The dyad engaged with the collaborative 

processes building and monitoring. Oscar justified his reasoning in linear functions with slope numbers 

with opposite signs. Olivia did not attempt to express suggestions or ideas for further exploration of 

the linear function concept. She mainly attempted to understand Oscar’s ideas and his reasoning.  

Moreover, Oscar did not show interest in asking Olivia about her thoughts and ideas for a solution 

method. Therefore, Oscar was the primary agent in leading the conversation where his reasoning was 

anchored in mathematical properties for making suggestions and explanations of a rule. Olivia was 

the secondary agent in her attempt to understand Oscar’s thinking, while accepting and asking for 

further details of his ideas. Hence, the dyad was in a one-directional interaction. 
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4. Concluding discussion  

With an aim of developing a tool for assessing students’ interaction patterns when they 

participate in collaborative creative mathematical reasoning, we have in this article presented an 

analytical model, the CCMR model (Fig. 1). 

By utilizing the coding framework (Table 1), which means to employ categories of 

mathematical reasoning, collaborative processes, and exercised agency to analyze students’ 

interactions when they attempt collaborative problem solving, gave insights to characterize how 

students participate, their roles in the situation, and can possibly indicate whether students are 

presented with learning opportunities while interacting with a peer.  

When characterizing students’ interactions, we observe that it is, as many have argued, the 

mutuality and synchronicity of the collaboration that defines whether students collaborate or merely 

cooperate (Cobb, 1995; Roschelle & Teasley, 1995; Staples, 2007). However, evaluating students’ 

way of participating through different agencies, seen in their interaction patterns, may be a stronger 

indication for understanding the quality of students’ interaction when engaged in solving a 

mathematical problem. If students are acting with shared agency bi-directionally they are more likely 

to attempt to co-construct mathematical knowledge together through creative mathematical reasoning 

(Author, 2021). Particularly turn-takings (Sidnell, 2010) and plausible arguments (Lithner, 2017) are 

important indications for recognizing a shared agency. This would strongly suggest a quality 

interaction where students exercise conceptual agency (Pickering, 1995), and thus, provide an 

opportunity to better understand mathematical ideas.  

In the cases where the student-pairs acted in a one-directional manner, the students did not 

refrain from acting (Author, 2021). But the student pairs did not mutually work together like the student 

pairs who were acting bi-directionally. Schoenfeld et al. (2019) express that students’ ways of 

collaborating can contribute to students’ agency in mathematics. We believe that students’ ways of 

interacting in a one-directional way is connected to the two categories of agencies, as posed by 

Pickering (1995): disciplinary agency and conceptual agency. Disciplinary agency is explained as 

utilizing established procedures (Mueller et al., 2012). In the two student-pairs acting one-

directionally, the primary agent engaged in creative mathematical reasoning, and thus, constructed 

one’s own meanings and methods (Mueller et al., 2012). However, the peer, if attempting mathematical 

reasoning, made mainly superficial arguments, and utilized procedures posed by the primary agent. 

Thus, it was not a mutual effort regarding creative mathematical reasoning. Therefore, it is the primary 

agent in a one-directional interaction who is primarily engaged in conceptual agency, which is similar 

to students with shared agency in a bi-directional interaction.  
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Students in a one-directional interaction are likely to have different learning opportunities, due 

to their participating roles and the opportunities presented through reasoning creatively. Since the 

primary agent more often makes arguments based on mathematical properties compared to a secondary 

agent, it is likely that the student is presented with more individual learning opportunities. However, a 

peer might as well have learning opportunities, but not to the same extent since the reasoning mainly 

is lacking or being superficial. Moreover, if assessing the unit of a one-directional dyad compared to 

a bi-directional dyad, we assume that the learning opportunities presented in the latter dyad exceeds a 

one-directional dyad.  

If we contrast our assumptions about the learning opportunities with Cobb’s (1995) findings, 

we find some similarities and differences we would like to address. Cobb (1995) highlights that 

univocal interactions, which resemblances one-directional interactions, rarely provided learning 

opportunities for either student. For a learning opportunity to take place two central elements for a 

productive group dynamic should be established, he claims: 1) creating a shared basis for mathematical 

communication, and 2) routine engagement when interacting where neither student is an authority 

(Cobb, 1995). In a univocal interaction, that Cobb (1995) describes, one student has the mathematical 

authority and judge a peer’s suggested solutions. Thus, a student with the mathematical authority is 

likely to experience that she must explain her thinking, and a peer is likely to experience that he has to 

make an effort to understand a given explanation. This is not productive for either of them, hence, 

providing an explanation does not in itself give rise to learning opportunities (Cobb, 1995). To create 

learning opportunities through verbal explanations and helping a peer, a student must clarify and 

organize his thinking and then explain his solution procedure in a new way (Webb 1989, referred to in 

Cobb, 1995). Webb’s (1989) explanation resembles the concept CMR—new, plausible, and anchored 

mathematical arguments—and therefore it is a reasonable assumption to say that a one-directional 

interaction is not unproductive for both students, if a primary and a secondary agent are active in some 

specific actions. We contend that the CCMR model contributes to highlight such actions that indicate 

productivity, mostly for the primary agent, but also for the secondary agent. If the primary agent 

participates in cooperative actions, such as suggesting and explaining combined with reasoning 

mathematically by making the argument and anchoring it in mathematical properties, we would say 

that this give rise to individual learning opportunities. And if a peer, the secondary agent, actively 

observes, ask questions, and contributes to the final mathematical argument (even if superficial), we 

believe this will provide learning opportunities, although to a lesser and more shallow extent than the 

secondary agent.  

Furthermore, we agree with Cobb (1995) when he says that when a student is the mathematical 

authority in a group it rarely becomes a productive collaborative interaction. Cobb (1995) further 
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emphasizes that it might be difficult for students to establish a shared understanding where one student 

is more “conceptually advanced”. Thus, it would be more promising with a starting point where 

students think they could work with the peer and that neither student has the mathematical authority 

in the interaction (Cobb, 1995; Langer-Osuna et al., 2020). 

We believe that the CCMR model contributes with new insights to the assessment of students’ 

collaborative interactions through its detailed and nuanced analysis. Hence, we consider the presented 

model as a useful tool for both teachers and teacher educators in planning, observing, and evaluating 

teaching involving student-student interactions. Stein et al. (2008) highlight the importance of 

teachers’ anticipation of-, as well as monitoring of, student responses in orchestrating for productive 

mathematical discussions. We suggest that the CCMR model can give additional and nuanced details 

on the interactional aspects of productive discussions.  

Moreover, we would not argue that a one-directional interaction is a non-quality interaction, 

but there might not be as many opportunities for both students to develop an understanding of 

mathematical ideas. It would therefore be of high importance that a teacher initiates a change in the 

students’ interaction and the roles they take in the given situation, for both students to construct a 

shared solution procedure and/or a shared understanding of mathematical ideas.  

Further, we will argue for the value of using the presented model as an analytical framework 

for future research on interactional patterns. One interesting aspect for further research is related to 

how teachers can support dyads to move or change the interactional pattern they are in. Authors (2022) 

found that students who established an interactional pattern, such as shared agency in a bi-directional 

interaction or primary/secondary agency in a one-directional interaction, maintained and progressed 

in the same interactional pattern before, during, and after a teacher interaction. The teachers involved 

in the study engaged with both funneling and focusing actions, but students remained in their roles 

their entire problem-solving process.  
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