

Master’s Thesis 2022 30 ECTS

Fakultet for realfag og teknologi - REALTEK

Machine learning for detecting

biomarkers of Alzheimer’s disease:

Data-centric approach with dynamic

ensemble selection

Muhammad Muntazir Naqvi
Data Science

Machine learning for detecting biomarkers of Alzheimer’s disease: Data-centric ap-
proach with dynamic ensemble selection
MUHAMMAD MUNTAZIR NAQVI

Master’s Thesis 2022
Supervisor: Associate Prof. Oliver Tomic
Faculty: REALTEK
Norwegian University of Life Sciences
Ås, Norway

i

Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that progresses over time
and results in gradual loss of cognitive abilities. It affects the patient to an extent
that they become unable to perform daily routine tasks, eventually causing death.
Alzheimer’s disease is a significant health issue and it has no cure. Early detection
of AD at preclinical or non-symptomatic stage allows for treatments that can slow
down the progression of the disease. One of the biomarkers of AD that are measur-
able as early as in pre-clinical stage are deposits of amyloid beta peptides between
neurons. In this study, our objective is to use machine learning and build a classi-
fication model to predict the presence of amyloid beta deposits given the patients’
health history, and results of medical and cognitive ability tests. We build on the
work done previously with the same data, and we follow a data-centric approach.
The data is divided into five blocks based on the similarities between features in
each block. We then plan a set of 17 data iterations, with each iteration using
a different combination of five data transformation steps, i.e. (i) standardization,
(ii) data distribution transformation, (iii) feature selection, (iv) oversampling, and
(v) manifold learning. We repeat these iterations on four data blocks and train a
dynamic ensemble selection classifier for each resulting dataset. We use Matthews
Correlation Coefficient (MCC) as the primary performance metric to measure model
performance. We also report five other performance metrics (accuracy, area under
the ROC curve, F1 score, precision, and recall) to provide a comprehensive picture
of model performance. We see that data iterations giving the best performance on
training data mostly include transformation of data to a normal distribution, feature
selection, and oversampling. However, the performance on test data varies greatly
with the type of data (data block) and it is not clear which data iteration gives
the best performance. In addition, the predictive performance is not very satisfac-
tory for nearly all of the models and they suffer from overfitting. We believe that
more research is needed on this data to determine the best performing classification
approach.

Keywords: Alzheimer’s disease, data-centric machine learning, data transformation,
feature selection, oversampling, manifold learning, dynamic ensemble selection

ii

Acknowledgements
This thesis marks the end of two years that I spent as a student at NMBU. Looking
back, there are many people to whom I would like to extend my deepest grati-
tude. My special thanks to Associate Professor Oliver Tomic, my supervisor, whose
has been immensely supportive and encouraging. His teaching in applied machine
learning courses and guidance during this thesis enabled me to complete this work. I
would also like to thank my co-supervisor, Professor Cecilia Marie Futsæther for her
encouragement and guidance. I would be remiss if I did not thank Associate Profes-
sor Kristian Hovde Liland for his teaching in applied machine learning courses. I also
want to thank other teachers during my graduate studies, especially Professor Hans
Ekkehard Plesser, head of Data Science Department at REALTEK; Associate Pro-
fessor Olvar Bergland, School of Economics and Business; and Lars-Gustav Snipen,
Faculty of Chemistry, Biotechnology and Food Science; whose taught courses have
contributed tremendously to my skills in programming and applied statistics.

My deepest thanks to my wife Iffat who has been my wing woman for over 6 years and
counting. Her support and patience during my graduate studies has been invaluable.
Special thanks to my father, Muhammad Abbas Naqvi and my mother, Naseem
Zehra, whose love and prayers have got me through.

Muntazir Naqvi

August 15, 2022

iii

Contents

1 Introduction 1
1.1 Alzheimer’s disease . 1
1.2 Diagnosis of AD and therapeutic strategies 3
1.3 Machine learning for early detection of AD 3
1.4 Our work . 5

2 Theory 6
2.1 Model-centric vs. Data-centric AI . 6
2.2 Data pre-processing . 7
2.3 Outlier detection and manifold learning 9
2.4 Feature selection . 10
2.5 Synthetic Minority Over-sampling Technique 11
2.6 Dynamic ensemble selection . 11
2.7 Performance metric . 11
2.8 Model validation . 12

3 Materials and Methods 14
3.1 Data blocks . 14
3.2 Computational resource . 14
3.3 Data-centric approach . 15
3.4 Workflow . 16

4 Results and Discussion 20
4.1 Data preparation . 20
4.2 Classification model and performance 25

5 Conclusion 27

Bibliography 27

A Appendix I

iv

1
Introduction

1.1 Alzheimer’s disease
The deterioration of brain’s cognitive function due to abnormal changes in the brain
are referred to as dementia. Dementia is an umbrella term encompassing a wide
range of medical conditions that lead to the decline in cognitive abilities. World
Health Organization (WHO) reports that nearly 55 million people around the world
currently have dementia and it is the seventh leading cause of death among all
biological disorders [1]. WHO further states that 60-70% of dementia cases are
because of Alzheimer’s disease.

Alzheimer’s disease (AD) is a neurodegenerative disorder that progresses over
time and results in gradual loss of cognitive abilities. AD is characterized by loss of
memory and decline in thinking and language skills to an extent that the affected
individual becomes unable to perform daily routine tasks or operate independently.
Figure 1.1 shows the physiological changes that happen to the brain during AD.
The treatment options/drugs approved for Alzheimer’s are only effective in symp-
tomatic treatment and improvement in quality of life [2] but cannot cure the disease.
Alzheimer’s disease consists of essentially four stages viz. pre-clinical, mild, moder-

Figure 1.1: Physiology of a) normal brain vs. b) brain affected by Alzheimer’s
disease.1

1

ate, and severe. In pre-clinical stage, the disease begins to develop years (even more
than a decade) before producing any clinical symptoms. Changes in the brain start
to happen that make healthy neurons stop functioning, lose neural connections and
die. The damage continues to spread over time and symptoms of mild Alzheimer’s
begin to appear such as memory loss, personality changes, behavioural changes etc.
In moderate AD, damage spreads to areas of the brain responsible for language,
senses, thinking ability. Affected person may also experience visions, delusions and
problems in recognizing family and friends. This is followed by severe AD where
damage spreads throughout the brain. Brain shrinks significantly resulting in the
loss of ability to communicate and to perform even simple bodily functions such as
swallowing food, ultimately leading to death [4].

Physiological changes in the brain that are characteristic features of AD and are
measurable as early as in pre-clinical stage are neuritic plaques and neurofibrillary
tangles. Neuritic plaques (also called Aβ plaques) are abnormal deposits of amy-
loid beta (Aβ) peptides2 that accumulate between the neurons and disturb their
function. Neurofibrillary tangles (NFTs) are deposits of tau protein inside neurons.
Tau proteins in healthy neurons act as a stabilizer for microtubules3. In AD, tau
molecules are detached from microtubules and tangle with each other to disrupt the
transport system of neurons resulting in cognitive decline and neuronal loss [5]. Fig-
ure 1.2 illustrates the formation of NFTs. Apart from Aβ plaques and NFTs, other

Figure 1.2: Illustration of the formation of tau neurofibrillary tangles.4

factors that contribute to neurodegeneration are oxidative stress, neuroinflamma-
tion, injury to cholinergic neurons (neurons that use acetylcholine neurotransmitter
for communication), increasing age, head injury, infections, genetic and epigenetic
factors, physiological disorders (including diabetes, obesity, and cardiovascular dis-
eases) and environments factors [6], [7].

2

1.2 Diagnosis of AD and therapeutic strategies
Various tests are carried out to diagnose Alzheimer’s disease including family his-
tory, medical history, neurological assessment, vitamin B12 estimation, MRI for
neuronal examination and other tests. Association of vitamin B12 with the risk of
AD development and progression has been reported in previous studies and its de-
ficiency can damage the brain through oxidative stress. Estimation of vitamin B12
using patient’s serum sample with serum homocysteine level and complete blood
count is used to diagnose the vitamin B12 deficiency [8]. AD can also be diagnosed
through identification of biomarkers including brain amyloid markers and neuronal
injury markers. Amyloid markers of brain consist of cerebrospinal fluid (CSF) and
positron emission tomography (PET) while markers of neuronal injury involve flu-
orodeoxyglucose (FDG) for metabolic activity, cerebrospinal fluid tau and MRI for
atrophy (degeneration or shrinkage of nerve tissues) measurement [9].

Alzheimer’s disease is a significant health issue whose cure has not yet been found.
Various therapeutic approaches including drug and non-drug options including exer-
cise and diet are recently in use to control and improve the symptoms of AD. Various
methods to understand the pathology of AD have been proposed to develop success-
ful therapeutic strategies including damage of free radical and cholinergic neurons,
inflammatory response, and abnormal tau and amyloid protein metabolism [10], [11].

Early detection of Alzheimer’s disease at preclinical or non-symptomatic stage is
possible using imaging techniques such as positron emission tomography and resting
state function MRI (rs-fMRI) to assess the brain ageing, its activity and accuracy
of brain’s cognitive functions. These imaging techniques use the markers such as
genetic determinant and Aβ-peptide pathology for evaluating the neuronal activity.
Through potential genetic mutations it is estimated that the individual is susceptible
to progressive neurodegeneration and memory loss in later ages or not. Significant
genetic alterations with aberrant Aβ pathology increases the chances of developing
neurodegenerative disorders and accelerating the brain ageing. Accumulation of Aβ-
peptide deposits also triggers another hallmark of AD which is tau protein tangles
formation. Therefore, to stop the progression of AD, early detection is the only
option [9].

1.3 Machine learning for early detection of AD
Several studies have been done in the domain of machine learning for early detection
of Alzheimer’s disease. Sharma and Mandal [12] provides a survey of research done
on early diagnosis of Alzheimer’s using neuroimaging data. They provide a summary
of research articles that reviewed the work done in the domain of machine learning
for diagnosing AD.

Most recently, Mezrar and Bendella [13] developed a cognitive tool called AlzCoGame.
They claim that they overcame the limitations of traditional diagnostic techniques
or tests by employing gamification techniques and machine learning in AlzCoGame.

3

They further report that they validated their model’s performance using K-fold cross
validation and multiple classification metrics.

Work by Ghazal et. al. [14] used MRI images for multi-class classification. They
define the classes as four stages (four classes) of dementia viz. no dementia, very mild
dementia, mild dementia, and moderate dementia. They report that their proposed
approach which uses convolutional neural network (CNN) for image classification
performs with over 91 percent accuracy.

Pirrone et. al. [15] report using supervised classification for analysing Electroen-
cephalography (EEG) signals to predict the presence of biomarkers of cognitive
impairment. They used multi-class classification for three classes of patients, i.e.
healthy control group, patients with mild cognitive impairment, and patients di-
agnosed as having Alzheimer’s. They also used one-versus-rest (OVR) approach
and using binary classification for prediction of the three classes. They claim to
have achieved accuracies of 80-90 percent with OVR approach and 75 percent with
three-class classification approach.

Mofrad et. al. [16] present a framework for building models to predict cognitive
decline using MRI images. They also employ the statistical approach of mixed ef-
fects model in addition to machine learning. The focus of this study was to predict
conversion from normal cognitive function to mild cognitive impairment, and con-
version from mild cognitive impairment to the diagnosis of Alzheimer’s. They report
that in case of conversion from MCI to AD, the model is 75 percent accurate in its
prediction.

Revathi et. al. [17] put forward a two-stage classification approach. They use
physical health factors in the first stage and cognitive ability test results in the
second stage. In the first stage, they use support vector machines and random
forest to estimate the influence of physical health factors (specifically hypertension
and diabetes) on cognitive decline. In the second stage, they use multi-class logistic
regression on the results of cognitive ability test to predict cognitive impairment
in later stages of a subject’s life. The target classes used in this study are no
Alzheimer’s, uncertain Alzheimer’s and, definite Alzheimer’s and accuracy of 89
percent is reported in the second stage.

Mohammed et. al. [18] based their research on Open Access Series of Imaging
Studies (OASIS) dataset5 and MIR image dataset from Kaggle6. They used trans-
fer learning using two pre-trained convolutional neural networks, i.e., AlexNet and
ResNet-50 combined with support vector machines. They also used other algorithms
including t-distributed stochastic neighbour embedding (t-SNE) and classification
algorithms including decision tree, random forest, and k-nearest neighbours. They
report that the hybrid model (AlexNet combined with support vector machines)
provided nearly 95 percent accuracy.

Mirzaei and Adeli [19] reviewed the research work done for detection of AD using
ML. They reviewed the works that used a wide range of techniques including support

4

vector machines, random forest classification, CNN, K-means clustering etc. They
conclude that CNN approaches have shown to be the most promising. They also
highlight ongoing efforts to build prediction models that use enhanced probabilistic
neural networks, dynamic classification among many others.

1.4 Our work
In this thesis, we build on the block-wise analysis performed previously by Olofs-
son [20]. Data collection and sources have already been discussed by Olofsson in
their thesis. Olofsson divided the data into five blocks based on similar set of fea-
tures, performed feature selection with repeated elastic net technique (RENT) [21],
and used different classification algorithms for predicting the presence of biomark-
ers of early AD. Olofsson’s work can be categorized as a model-centric approach
where data is kept the same and iterations are performed over the model and hyper-
parameters to improve performance. The objective of our work is the same as that
of Olofsson, i.e., analyse patients’ data to predict the risk factors and the presence
of biomarkers of Alzheimer’s disease. However, we adopt a data-centric approach,
where the data blocks are iteratively improved (e.g., different pre-processing, fea-
ture transformations, resampling, embeddings etc.) with minimal changes in the
machine learning model(s).

This thesis is divided into five chapters: introduction to Alzheimer’s disease and
a review of previous research in machine learning for early detection of the disease
(Chapter 1); theoretical concepts used in our work (Chapter 2); the underlying
data and the methods we use (Chapter 3); results and discussion (Chapter 4); and
conclusions drawn from our work (Chapter 5).

Notes

1Figure reused from [3] under Creative Commons Attribution License.

2Amino acid chains linked together by peptide bonds.

3Cylindrical structures that are important architectural elements of a neuron.

4Image by ADEAR: "Alzheimer’s Disease Education and Referral Center, a service of the
National Institute on Aging." Source: https://commons.wikimedia.org/wiki/File:TANGLES_
HIGH.jpg, Public domain, via Wikimedia Commons.

5https://www.oasis-brains.org/

6https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images

5

https://creativecommons.org/licenses/by/4.0/
https://commons.wikimedia.org/wiki/File:TANGLES_HIGH.jpg
https://commons.wikimedia.org/wiki/File:TANGLES_HIGH.jpg
https://www.oasis-brains.org/
https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images

2
Theory

2.1 Model-centric vs. Data-centric AI
Leading experts in AI education and industry have come out as strong proponents of
moving from the classic strategy of so-called model-centric AI towards data-centric
AI [22], [23], [24]. Recently, there has been a lot of discussion around model-centric
vs. data-centric approach to artificial intelligence [25], [26], [27], [28], [29]. Figure
2.1 is a simple schematic that highlights the difference between two approaches. The
fundamental difference is that in model-centric approach, data is kept fixed and the
machine learning model/code and its hyper-parameters are iteratively improved with
the objective to achieve better model performance; while in data-centric approach,
data is iteratively improved to enable more machine learning models to perform
well. The need for data-centric approach stems from the requirement of building

Figure 2.1: Model-centric and data-centric approach to artificial intelligence.

machine learning models that can be deployed in production environment. Although
deployment of a production level machine learning pipeline is beyond the scope of
our current work; we are attempting a data-centric approach to see whether adequate
prediction performance can be obtained for our data with this approach. We try
several methods to improve quality of the data while keeping the classification model
almost fixed.

6

2.2 Data pre-processing
The pre-processing steps applied to the patients’ data by Olofsson have been dis-
cussed at length in their work [20]. In this section, we briefly touch upon the steps
that we apply to the data during our work.

2.2.1 Standardization
Many machine learning algorithms are known to benefit from scaling of the fea-
tures, e.g., the gradient descent algorithm that minimizes the cost function in ML
algorithms converges faster if the features are scaled. This can only be done to nu-
merical features and one of the ways to scale the features for better convergence is
standardization. Standardization brings the mean of each feature to 0, and standard
deviation of each feature to 1. This is achieved using equation 2.1:

x
′

i,j = xi,j − µj
σj

(2.1)

where for the feature j, xi,j and x
′
i,j are ith original value and standardized value,

respectively; and µj, σj are mean and standard deviation, respectively.

2.2.2 Encoding categorical features
Categorical features are the ones that have labels instead of numeric values, e.g., the
feature gender in our data has two possible values: male and female. Such features
do not have an order i.e., one value cannot be ranked higher or lower than the other;
these are called nominal categories. If a categorical feature can be ordered e.g., a
feature size can be small, medium, large etc.; it is called an ordinal category. In this
thesis, we only have to pre-process nominal categories, so we restrict our discussion
to such features. We use one-hot encoding to encode nominal categorical features.
For example, gender observations shown in table 2.1 are one-hot encoded as shown
in table 2.2. Notice that one-hot encoded features have numerical values (0 and 1),
and they can now be standardized.

Table 2.1: Nominal categorical feature: gender

Observation gender
1 male
2 female

Table 2.2: gender feature after one-hot encoding.

Observation male female
1 1 0
2 0 1

7

2.2.3 Shapiro-Wilk test
Many of the statistical analysis procedures e.g., correlation, analysis of variance etc.
assume that the data follows a Gaussian/normal distribution. There are several
statistical tests that can be done to check whether data is normally distributed.
Visual assessment, e.g., Q-Q plots or P-P plots, and Shapiro-Wilk test are highly
recommended to test normality of data [30]. Shapiro-Wilk test is a hypothesis test
where the null hypothesis is that a subset of population (sample) belongs to a normal
distribution. We use visual assessment and Shapiro-Wilk test to check for normality
of all numerical features in our data.

2.2.4 Data transformation
Sometimes, the original features require some kind of transformation to change
their distribution. It is often desirable to have normally distributed features for
reliable statistical analyses. Depending on the original distribution of a feature,
transformation is applied to the feature to bring it closer to a normal distribution.
For the features in our data, we use two different transformations for this purpose.

Yeo-Johnson transformation:

Power transforms are data stabilization transformations that can remove the skew-
ness from original data and make it more normally distributed. As mentioned earlier,
normally distributed data can be advantageous in statistical analysis, and in build-
ing the ML models. Box-Cox transformation [31], introduced in 1964 by Box and
Cox is perhaps the most widely used power transformation, but it is restricted in a
way that it requires the data points to be strictly positive. In year 2000, Yeo and
Johnson [32] developed a power transform that removed the restriction for the data
to be strictly positive and we use this transformation for our data. Yeo-Johnson
transformation is given by equation 2.2:

ψ(y, λ) =

(y+1)λ−1
λ

y ≥ 0 and λ 6= 0,
log (y + 1) y ≥ 0 and λ = 0,
−((−y+1)2−λ−1)

2−λ y < 0 and λ 6= 2,
− log (−y + 1) y < 0, λ = 0

(2.2)

where ψ is the transformed value of y, and λ is the power parameter that needs to
be estimated for approximation of normal distribution. If λ = 1, equation 2.2 gives
identity transformation (no change and ψ = y).

Log transformation:

This is a straightforward transformation that changes the data to log of data. It
removes skewness from data in cases where the data follows a log-normal distribu-
tion, therefore it is restricted in its usage. We use natural log transformation, and
it is given by the equation 2.3 (y′ is the transformed value of y):

y
′ = ln(y) (2.3)

8

To demonstrate how these transformations change the data distribution, we gen-
erate random data that resembles a log-normal distribution (figure 2.2). The data
distribution changes to a normal distribution after Yeo-Johnson transformation is
applied to this data (figure 2.3). Because the example data has a log-normal dis-
tribution, it can also be changed to a normal distribution using log transformation
(figure 2.4). As mentioned earlier, log transformation is restricted in its usage to
normalize the data because it can only normalize data distribution if the original
data has a log-normal distribution. However, it offers easy interpretability and even
though Yeo-Johnson transformation also works for log-normal distributions, we pre-
fer log transformation in cases where the data allows it i.e., if the data appears to
have a log-normal distribution.

Figure 2.2: Example data, randomly generated, resembling a log-normal distribution.

Figure 2.3: Data distribution after Yeo-Johnson transformation of example data.

Figure 2.4: Data distribution after log transformation of example data.

2.3 Outlier detection and manifold learning
Data points that deviate from the data distribution are outliers. They can adversely
impact any statistical analysis or machine learning model. Li et. al. [33] developed

9

Empirical Cumulative distribution-based Outlier Detection (ECOD), which is an
unsupervised outlier detection method. ECOD uses high-density regions (inliers)
and low-density regions (outliers) in the data to determine where data points are
less likely to be present. It is dependent on setting a threshold which is the fraction
of outliers expected in the data, hence knowledge about the data is important.

In addition to ECOD, we use manifold learning [34] to visualize our high-dimensional
data in lower dimensions, and to help us in identifying potential outliers. We consider
two manifold learning techniques: (i) t-distributed Stochastic Neighbour Embedding
(t-SNE) [35] and (ii) Uniform Manifold Approximation and Projection (UMAP) [36].
We choose UMAP as our manifold learning algorithm. The rationale behind choos-
ing UMAP over t-SNE is discussed more in section 4.1.6. Manifold learning methods
are becoming increasingly popular [37] and they provide the ability to capture non-
linear structure in data while performing dimensionality reduction. Hence, they can
be a powerful tool to visualize the groups/clusters/patterns of data points and to
identify outliers even if the original data resides in higher dimensions.

Manifold learning can be both supervised and unsupervised, but it is typically
unsupervised and learns from high dimensional structure of the data to create a
lower dimensional embedding. It can also be argued that these methods can give
an idea about class separability of high-dimensional data in low-dimensional space.
For this reason, we use manifold learning also as one of the data preparation steps.

2.4 Feature selection

Feature selection aims to select a subset of features from the dataset that performs
better or at least as good as the whole set of features. From methodological point
of view, feature selection has three types: filter approach, wrapper approach, and
embedded approach. In filter approach, a pre-defined importance criterion is used
to rank the features. In wrapper approach, machine learning models are trained
on candidate subsets of features and the subset that offers best performance is
selected. In embedded approach, feature selection is integrated into the machine
learning algorithm. Jenul et. al. [20] provide a concise summary of different feature
selection approaches.

We use Exhaustive Feature Selection (EFS) from mlxtend1 library for our data.
EFS belongs to the wrapper approach of feature selection and a supervised learning
model is trained for every possible subset of features from the dataset. Combined
with cross-validation, it somewhat guarantees that the best performing subset is
selected. However, EFS can be computationally expensive if the number of features
is high. This is not a critical concern after we divide our data into blocks (details
in Chapter 3) and hence, we choose EFS.

10

2.5 Synthetic Minority Over-sampling Technique
The data being used in this thesis is imbalanced and one of the ways to tackle this is
through resampling, i.e., by either under-sampling the majority class, over-sampling
the minority class, or a combination of both. We address the class imbalance in our
data by using Synthetic Minority Over-sampling Technique (SMOTE) [38]. This
is a data augmentation technique and is used to oversample the minority class by
generating synthetic samples of data. We use a variant of this technique called
Borderline SMOTE [39] and augment the data in each block with synthetic data
points to balance the classes.

In Borderline-SMOTE, a classification model is trained, and focus is placed on
samples of minority class that are misclassified i.e., samples that are near the bor-
derline between two classes. Synthetic samples are then generated that are similar
to the misclassified samples, thereby increasing the population of minority class in
the region where it is required.

It is reported that feature selection before oversampling using SMOTE offers
better results [40]. Therefore, we also follow this approach and apply SMOTE after
feature selection in our data iterations.

2.6 Dynamic ensemble selection
Different classification algorithms produce different errors on different data samples.
Hence, combining different classifiers and creating an ensemble to be used on differ-
ent subsets of data can offer better prediction performance [41], [42]. Bagging and
Boosting [43], [44] are such techniques that use ensemble learning for classification.
In addition, multiple classifier systems have also been explored at length to improve
classification accuracy [45]. Dynamic ensemble selection (DES) is also an ensemble
learning technique that uses multiple classifiers. In DES, multiple ML models are
trained on training data and a dynamic selection is made from ensemble members
to make predictions on new data. When new data comes in, its similarity with
data points in the training set is determined using KNN; the classification model
that performs best on nearest neighbours of the new data point is chosen to make
predictions [46]. DESlib2 library provides Python implementation of DES.

2.7 Performance metric
Considerable amount of literature is available on different performance metrics and
what they mean. Hence, we choose not to describe them all. Like the previous
work [20], we use Matthews correlation coefficient (MCC) as our primary perfor-
mance metric and briefly describe it here. In addition to MCC, we report five other
performance metrics as well, to get a more detailed impression of model perfor-
mance. These five metrics are: (i) accuracy, (ii) area under the receiver operating
characteristic curve (ROC AUC), (iii) F1 score, (iv) precision, and (v) recall.

11

Matthews correlation coefficient

Matthews correlation coefficient (MCC) is widely regarded as a reliable performance
metric [47], even more so in case of imbalanced classes. MCC is given by equation
2.4, where TP, FP, TN, FN mean true positive, false positive, true negative, false
negative, respectively. Value of MCC ranges from -1 to +1, where +1 is perfect
classification and MCC of 0 is considered as good as random guessing.

MCC = (TP · TN)− (FP · FN)√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2.4)

2.8 Model validation
Validation of model performance is the key to building robust machine learning
models that can generalize and perform well on unseen data. There are several
options for the choice of model validation protocol and they mostly depend on the
amount of available data. If sufficient data is available, the most straightforward
hold-out validation is done in which data is divided into training and test sets e.g., in
70:30 (train:test) proportion. Model is trained on the training set, validated on the
test set, and then hyper-parameters are tuned for best performance. If there is less
data available, K-fold cross validation is a reasonable choice. The data is divided
into equal chunks (K number of chunks), and one chunk is chosen as validation set
while model is trained on the remaining data. The training/validation step is then
repeated by selecting a different chunk of data as the validation set. The process
continues until all chunks of data are used as validation sets; this is illustrated in
figure 2.5. Because multiple models are trained during K-fold cross validation, the
reported performance metric is usually the average performance across all models.

Figure 2.5: Example of K-fold cross validation, with K=10. The data is divided into
ten chunks represented by numbers 1-10. Each chunk represents 10% of available data.

12

An extension of K-fold is iterated K-fold or repeated K-fold. In this protocol,
repetitions of K-fold cross validation are done and the data is shuffled in each rep-
etition so the chunks of data are not the same across repetitions. A total of K×m
models are trained in repeated K-fold cross validation, where m represents the num-
ber of repetitions/iterations. We use repeated K-fold cross valiation for evaluating
and validating the model performance in our work.

Notes

1http://rasbt.github.io/mlxtend/api_subpackages/mlxtend.feature_selection/

2https://github.com/scikit-learn-contrib/DESlib

13

http://rasbt.github.io/mlxtend/api_subpackages/mlxtend.feature_selection/
https://github.com/scikit-learn-contrib/DESlib

3
Materials and Methods

3.1 Data blocks
In previous work [20], the data was divided into five blocks by grouping together
the similar features. We use the same data blocks:

Block A: Patient group

Block B: Physical health and family history

Block C: Results of cognitive tests

Block D: Lesion and white-matter hypersensitivity

Block E: Results from MRI of subcortical brain structures

This is a binary classification (0 or 1) problem, and the objective is to predict the
presence or absence of biomarkers of Alzheimer’s disease. For the target column, 1
means that there is evidence of the presence of biomarkers of AD in a patient, and
0 means otherwise.

Data in Block A only represents the subject group to which patients belong e.g.,
cognitive symptoms control group, family history control group etc. Block A does
not provide any other information about risk factors or health history. This is
further confirmed by the results achieved previously [20], where performance of the
models trained on features of Block A was poor. Hence, we exclude Block A from
our analysis.

Furthermore, we perform basic data cleaning and feature engineering slightly
differently than how it was done previously [20]. Hence, we end up with different
size of data for Block B and the test set. This is explained further in Chapter 4.

3.2 Computational resource
We perform all of the computations on Windows 10 Enterprise 20H2 (OS build
19042.1826) running on 11th Gen Intel® CoreTM i7-1165G7 CPU @ 2.80 GHz with

14

15.7 GB of usable random-access memory. Storage media is a solid-state drive.

We use Jupyter Notebook as Python 3.9 IDE for coding work. In addition to
the most used Python libraries for data pre-processing, visualization, and machine
learning such as NumPy, pandas, matplotlib, seaborn, scikit-learn; we also use
additional Python libraries that provide implementations of methods described in
Chapter 2. These libraries and their brief descriptions are provided in table 3.1.
We use GitHub Desktop version 2.9.12 (x64) as Git client to manage the repository
(M30-DV Master Thesis) on GitLab.

Table 3.1: Python libraries used in this thesis.

Python library Brief description
SciPy Scientific computing including statistical functions
hoggorm Explorative multivariate statistics
pyOD Outlier/anomaly detection in multivariate data
sklearn.manifold Manifold learning/non-linear dimensionality reduction
mlxtend Useful library for common data science tasks
imbalanced-learn Tools for dealing with imbalanced classes
DESlib Modules for dynamic ensemble selection algorithms

3.3 Data-centric approach
As discussed in Chapter 2, we follow a data-centric approach and the data prepa-
ration steps are applied iteratively while the machine learning model is kept fixed.
Following each iteration of data preparation, we use dynamic ensemble selection
which serves as our classification model. The performance of ML models for all the
data iteration are compared to determine which combination of data preparation
steps delivers the best performance.

3.3.1 Data preparation iterations
We plan a set of 17 iterations on the data (1 baseline + 16 different combinations of
data preparation steps) and feed the data to ML model after each iteration. The data
preparation steps and their purpose is briefly described in table 3.2; we also assign
IDs to these steps for easy reference. The underlying theory behind these steps has
been explained in Chapter 2. Steps and their order of application that constitutes
each data iteration is given in table 3.3. We apply these 17 data iterations one-by-
one, on each of the four data blocks separately, and a separate machine learning
model (discussed in the next section) is trained in each case. Note that the data
iterations DI-10 to DI-16 do not have step S2, so these iterations can be regarded
as the ones that do not use data transformation to change the distribution of data.
On the contrary, data iterations DI-02 to DI-09 involve the step S2 and so the data
distribution is modified in these iterations.

15

https://gitlab.com/muntazirnaqvi/m30-dv-master-thesis

Table 3.2: Data preparation steps to be used in data iterations (S0 is described briefly
in figure 3.1).

ID Data preparation Purpose
S0 Data cleaning Data blocks with only basic cleaning
S1 Standardization Bring data on the same scale
S2 Power/Log-transform Change data to normal distribution
S3 Exhaustive feature selection Select subset of features that work best
S4 Resampling using SMOTE Fix class imbalance
S5 Manifold learning Separate classes in low-dim embedding

3.3.2 ML Model: Dynamic Ensemble Selection
We now discuss the machine learning model that we use after each data iteration to
make predictions. We are using dynamic ensemble selection (DES). The algorithm
we use for DES is k-Nearest Neighbour Oracle (KNORA) whose implementation is
provided in DESlib library. Different classification algorithms can be selected to
create a pool of classifiers that serve as the ensemble to be used by KNORA. We
use a variant of KNORA called KNORA-Eliminate, or KNORA-E for short. For a
data point to be classified, KNORA-E selects all classifiers in the ensemble that give
perfect predictions on the nearest neighbours of that given data point. In case no
ensemble member achieves perfect accuracy, the process is repeated with reduced
size of the neighbourhood until model(s) with perfect performance are selected and
are used to make predictions on the data point.

Pool of classifiers for KNORA

By default, KNORA implementation in DESlib uses bagging (bootstrap aggrega-
tion) ensemble decision trees as the pool of classifiers. Remember that we are fol-
lowing a data-centric approach in which model code is kept fixed. Therefore, we use
the default implementation of KNORA as our classification model.

3.4 Workflow
The 17 data iterations listed in table 3.3 can be divided into two categories: DI-02
to DI-09 are with transformation of data distribution (step S2), and DI-00, DI-01,
and DI-10 to DI-16 are without transformation of data distribution. For sake of
clarity, we visualize the workflow of both categories of data iterations.

Figure 3.1 shows the schematic of data iterations that include step S2. Figure 3.2
shows the schematic of data iterations that do not have step S2. Note that DI-00
and DI-01 are pre-requisites for DI-02, hence these iterations are shown in both
workflows. Both workflows are repeated for four blocks of data (Block B, Block C,
Block D, and Block E), resulting in separate models for every combination of data
iteration and data block. The results are then compared to determine which of these
models perform the best.

16

Table 3.3: Data preparation iterations for data-centric approach in this thesis. The ML
model (dynamic ensemble selection) is trained after each iteration, for each of the four

data blocks.

Data Iteration ID Steps and their order
DI-00 S0 (to be used as baseline)
DI-01 S0 → S1
DI-02 S0 → S1 → S2
DI-03 S0 → S1 → S2 → S3
DI-04 S0 → S1 → S2 → S3 → S4
DI-05 S0 → S1 → S2 → S3 → S4 → S5
DI-06 S0 → S1 → S2 → S3 → S5
DI-07 S0 → S1 → S2 → S4
DI-08 S0 → S1 → S2 → S4 → S5
DI-09 S0 → S1 → S2 → S5
DI-10 S0 → S1 → S3
DI-11 S0 → S1 → S3 → S4
DI-12 S0 → S1 → S3 → S4 → S5
DI-13 S0 → S1 → S3 → S5
DI-14 S0 → S1 → S4
DI-15 S0 → S1 → S4 → S5
DI-16 S0 → S1 → S5

17

DI-00
(Baseline)

S0: Data cleaning
- Handling missing values
- Creating data blocks
- Exploratory data analysis

DI-01

S1: Standardization

DI-02

S2: Data transform

DI-09

S5: Manifold Learning

DI-07

S4: Resampling

DI-03

S3: Feature Selection

DES: Dynamic Ensemble Selection

Algorithm: KNORA-E

Pool of classifiers: bagging ensemble decision trees

Cross validation: Repeated K-fold cross validation

DI-04

S4: Resampling

DI-05

S5: Manifold Learning DI-06

S5: Manifold Learning

DI-08

S5: Manifold Learning

Figure 3.1: Schematic of data-centric approach to our work: data iterations with data
transformation step S2.

18

DI-00
(Baseline)

S0: Data cleaning
- Handling missing values
- Creating data blocks
- Exploratory data analysis

DI-01

S1: Standardization

DI-16

S5: Manifold Learning

DI-14

S4: Resampling

DI-10

S3: Feature Selection

DES: Dynamic Ensemble Selection

Algorithm: KNORA-E

Pool of classifiers: bagging ensemble decision trees

Cross validation: Repeated K-fold cross validation

DI-11

S4: Resampling

DI-12

S5: Manifold Learning DI-13

S5: Manifold Learning

DI-15

S5: Manifold Learning

Figure 3.2: Schematic of data-centric approach to our work: data iterations without
data transformation.

19

4
Results and Discussion

4.1 Data preparation

4.1.1 Data cleaning and standardization

The raw data has information about 789 patients who were investigated for Alzheimer’s
disease. There are 1505 observations and 1733 columns including the target column.
480 observations have missing target, so we drop those and are left with 1025 obser-
vations of 660 unique patients. Taking cues from the work done previously [20], data
is divided into five blocks (see Chapter 3) based on the available patient information.

Basic exploration and cleaning

Data blocks are created mostly in the same way as in the previous thesis [20]. How-
ever, Block B is processed differently. More specifically, the indicator for cardiovas-
cular disease (cvd_risk) in Block B was created as the sum of all those features
that could be potential risk factors (all categorical, 0 or 1). If there’s even a single
risk factor present, it was treated as the patient in susceptible to heart disease and
the cvd_risk for that patient is assigned a value of 1 (or 0 in the absence of no
risk factors). However, in some cases, the data for most or all of risk factors was
simply missing. When summation operation is applied over the dataframe to cre-
ate the cvd_risk, it was assigned a value of 0 even in cases where risk factors had
all NaN. This is clearly wrong, so we fix this and cvd_risk is assigned NaN where
data about risk factors was missing. Furthermore, information about headtrauma
(traumatic brain injury) and cns_infec (infection of the central nervous system) is
also included in Block B. Finally, we have slightly less data in Block B than what
was reported by Olofsson [20]. We also perform one-hot encoding of the nominal
categories in our data. The data points in which information about every feature in
all the blocks was available is kept as the test set. Table 4.1 shows the shape of each
data block after basic pre-processing steps. Note that we exclude Block A from our
analysis because of lack of information in the data. List of features and their types
in each data block are given tables A.1 – A.4 (Appendix A1).

20

Table 4.1: Size of the data blocks (no. of rows, no. of features) after basic exploration
and cleaning. Sum of the number of features across all blocks equals the number of

features in the test set.

Data block Size
Block B (254, 17)
Block C (753, 7)
Block D (121, 6)
Block E (439, 10)
Test set (164, 40)

Exploratory data analysis

A very comprehensive exploratory data analysis (EDA) of this data has already been
done previously [20]. This exploration includes analysis and visualization of missing
values, correlation coefficients within blocks and between data blocks, and princi-
pal component analysis. Instead of re-inventing the wheel, we focus our attention
regarding EDA on: (i) checking the distribution of data to determine whether to
apply transformations, (ii) checking for correlated features, and (iii) exploring the
possibility of linear dimensionality reduction through PCA.

Test of normality of data Instead of relying on the appearance (histogram,
KDE plot etc.), we perform the Shapiro-Wilk test for normality on all the non-
categorical features in our data to see whether they are normally distributed and
to decide whether to apply transformations or not. According to the Shapiro-Wilk
test performed using the SciPy library in Python, there are a total of 21 numerical
features in all the blocks that do not have a normal distribution. Examples of two
such features from each data block are visualized using normal probability plots in
figures A.1–A.8 (Appendix A2).

Correlated features There are features in the data that appear to be correlated.
Some features in some blocks have very high correlation among each other, while
some blocks have only some of the features that are correlated. For example, fea-
tures in Block C do not seem to correlate much, but features in Block D have high
correlation coefficients. We check for correlation among the features to see whether
dimensionality reduction or feature selection is warranted. Looking at the heatmaps
of Pearson’s correlation coefficients for the numerical features, and phi coefficients
for one-hot encoded features in figures A.9–A.13 (Appendix A3), we conclude that
we must explore dimensionality reduction and feature selection to address the issue
of correlation among the features in our data.

PCA We did PCA on all data blocks and observe that if we use the principal
components, we do not get a lot of benefit in terms of dimensionality reduction.
Because to capture enough variation in data, the number of principal components
required are not significantly lower than the number of original features. For exam-
ple, with Block B which has 17 features, we need 14 principal components to get

21

validated cumulative explained variance of over 90%. Figures A.14–A.17 (Appendix
A4) show the number of principal components vs. variance explained for each data
block. And table 4.2 gives the number of principal components required in each
block to get validated cumulative explained variance of over 90%.

Table 4.2: Number of principal components required to capture more than 90%
validated cumulative explained variance.

Data block Explained variance (%) No. of PCs required No. of features
Block B 93.6 14 17
Block C 92.4 6 7
Block D 95.5 4 6
Block E 92.1 7 10

Therefore, we conclude that PCA does not offer much in terms of dimensionality
reduction for our data. We also stand to lose the direct connection between original
features and the target after features are transformed in PCA. Hence, to address
the issue of correlated features, we look into feature selection in later part of our
work. We also explore manifold learning which is considered to be non-linear di-
mensionality reduction. The data cleaned until this step is denoted as S0, and it is
used in the first data iteration (DI-00). Results from the classification model using
this data serve as the baseline for the rest of our work.

Standardization

Following data cleaning and exploration, we perform the simple step of standardizing
the data as explained in Chapter 2.

4.1.2 Data transformation
Out of total 27 numerical features (across all the data blocks), there are 21 features
that are not normally distributed (checked using Shapiro-Wilk test). Although
some features fail the normality test, their normal probability plots (Q–Q plots
against normal distribution) show that their distribution is reasonably close to Gaus-
sian/normal distribution. We use Yeo-Johnson transformation on some features and
some features go through log transformation. As mentioned in Chapter 2, we prefer
log transformation due to its easy interpretability, but it only works for data that
has a log-normal distribution. So we apply log transformation where we can and
apply Yeo-Johnson transformation in other cases. After trying different options of
transforming the data, we settle with the following:

Features with normal distribution:

cowat_tscore, ANT_HPC, POST_HPC, ERC, Br36, Meninges

22

Feature close to normal distribution/no transformation applied:

age, edu_years, edu_level, mmse_total, clock_score,

vosp_tscore, cerad_recall, MISC, Br35

Features that are power transformed (Yeo-Johnson transformation):

systolic_bp, PSMD, Meninges_PHC, PHC, ColSul

Features that are log transformed:

tmta_sec, tmtb_sec, LesF, LesO, LesP, LesT, WMHo_rV

4.1.3 Visualizing high-dimensional data and outliers
To visualize high-dimensional data, we decide to use a manifold learning algorithm:
Uniform Manifold Approximation and Projection (UMAP). We also explored dif-
ferent outlier detection algorithms and use ECOD class from pyOD, which uses
empirical cumulative distribution function for unsupervised outlier detection. We
look at the plots from manifold learning and results from outlier detection to decide
how to identify outliers and what to do with them. Visual inspection of UMAP
projections for each data block do not show any data points that are away from rest
of the data. Using an outlier detection algorithm where we manually set a threshold
can provide different results and they can be different from our interpretation of
the UMAP projections. For example, there are 439 points in block E and setting a
1% fraction (called contamination in pyOD implementation of ECOD) identifies 5
data points as outliers. Screenshots of ECOD results are shown in figures A.18–A.21
(Appendix A5) and plots obtained from UMAP using two components are shown in
A.22–A.25 (Appendix A6).

ECOD is highly dependent on setting a manual threshold, so we perform a quali-
tative assessment and rely on the visual inspection of UMAP projections for identi-
fying clusters of data points and potential outliers. Looking at the plots, it appears
that there are no points that are away from rest of the data, even if we tune the
parameters of UMAP1. Hence, we decide not to drop any data points or treat any
of them as outliers.

Note: In this section, we have only talked about using manifold learning for vi-
sualizing high-dimensional data, and for identifying outliers. We are not yet using
manifold learning to transform our data for training the classification model. Later
(in section 4.1.6), we discuss using UMAP to create low-dimensional embedding of
data in some of the data iterations in our work.

4.1.4 Feature selection
We use brute-force evaluation of feature subsets using exhaustive feature selector
(EFS) with 5-fold cross validation from mlxtend library. We use k-nearest neigh-

23

bours (KNN) classification with EFS to evaluate the best performing subset. The
results of EFS (with k=5 in KNN) including the best performing feature subsets
and the corresponding MCC scores are given in tables 4.3 (feature selection after
step S2) and 4.4 (feature selection without prior step S2).

Table 4.3: Best performing subset of features determined by EFS (with step S2).

Data block Selected features after EFS MCC
Block B age, edu_years, cvd_risk, APOE_E2/E3, 0.598

APOE_E3/E3, cns_infec
Block C mmse_total, clock_score, cerad_recall 0.351
Block D LesF, LesP, WMHo_rV 0.420
Block E POST_HPC, MISC, ERC, PHC 0.398

Table 4.4: Best performing subset of features determined by EFS (without step S2).

Data block Selected features after EFS MCC
Block B age, edu_years, cvd_risk, APOE_E2/E3, 0.598

APOE_E3/E3, cns_infec
Block C mmse_total, clock_score, tmta_sec, 0.367

cerad_recall
Block D LesF, LesP, LesT, WMHo_rV 0.367
Block E POST_HPC, MISC, ERC, PHC 0.399

The MCC scores achieved after feature selection are comparable to that of pre-
vious work [20] which used RENT for feature selection. For ready reference, the
MCC scores reported previously [20] after using RENT are 0.5519 (Block B), 0.4048
(Block C), 0.3442 (Block D), and 0.3712 (Block E).

4.1.5 Handling class imbalance
Our data has imbalanced class distribution, and we choose to balance the classes by
resampling the data. Class distribution in each block is given in table 4.5. We use a
variant of Synthetic Minority Over-sampling Technique (SMOTE) called Borderline
SMOTE to oversample the minority class (class 1) by generating synthetic samples
of data. Class distribution after resampling using Borderline SMOTE is given in
table 4.6.

Table 4.5: Class distribution in each data block.

Data block Class distribution (0:1) Class distribution in % (0:1)
Block B 186:68 73::27
Block C 515:238 68:32
Block D 90:31 74:26
Block E 299:140 68:32
Test set 117:47 71:29

24

Table 4.6: Class distribution in each data block after applying Borderline SMOTE;
note that test data is not resampled.

Data block Class distribution (0:1) Class distribution in % (0:1)
Block B 186:186 50:50
Block C 515:515 50:50
Block D 90:90 50:50
Block E 299:299 50:50
Test set 117:47 71:29

4.1.6 Manifold learning for dimensionality reduction
Earlier in this chapter, we discussed manifold learning for visualizing high dimen-
sional data and outliers. However, the application of manifold learning methods
extend beyond just data visualization. They can be used as an indicator of the sep-
arability of classes in lower dimensions. We explore two different manifold learning
methods, viz. t-distributed Stochastic Neighbour Embedding (t-SNE) and Uniform
Manifold Approximation and Projection (UMAP). The superiority of UMAP over
t-SNE has been strongly argued by Oskolkov [48]. Some of those arguments are that
UMAP can embed in more than 3 dimensions while t-SNE is restricted to maximum
of 3 dimensions; this may not be a problem from visualization point of view, but
it is a limitation if manifold learning is used for dimensionality reduction. Also,
t-SNE does not preserve global structures, i.e., t-SNE can identify different clusters
but its results do not give much information about how different the clusters are
from one another, e.g., if two clusters of data points in two-dimensional t-SNE pro-
jection are far from each other, it does not guarantee that these clusters are very
different. t-SNE also requires too much memory and scales poorly as sample size
increases. Furthermore, documentation of the Python library umap points to inter-
esting scientific papers [49] that successfully used UMAP in a variety of subjects
for visualization of high-dimensional data and dimensionality reduction. Hence, we
perform of manifold learning using the library umap which provides Python imple-
mentation of the UMAP algorithm. In essence, manifold learning is an unsupervised
approach and we use it to produce a low-dimensional embedding of our data for use
in the classification model.

4.2 Classification model and performance
We use different combinations of data preparation steps for the data iterations (table
3.3) and then use dynamic ensemble selection (DES) model for classification (figures
3.1 and 3.2). This is repeated for four blocks of data viz. Block B, Block C,
Block D, and Block E. During model training, we implement repeated stratified
K-fold cross validation (5-folds with 2 repetitions) in DES for model validation.
Models are also tested on test data to evaluate predictive performance. The cross
validated performance and predictive performance of all the models are reported
using six performance metrics including Matthews correlation coefficient (MCC),
accuracy, area under the ROC curve (ROC AUC), F1 Score, precision, and recall.

25

The performance metrics achieved during cross validation and on test data for all
data iterations and for all data blocks are given in tables A.5–A.10 in Appendix A7.
It is obvious that most of the models are overfitting by a large margin (predictive
performance metrics are lower than performance metrics on training data), with
some classifiers performing even worse than random guessing (MCC lower than
zero on test data). Table 4.7 summarizes the data iterations that give the highest
metrics for each data block for both training and test data. The table shows that
for training data, best scores (after repeated k-fold cross validation) are achieved
with data iterations that include data transformation (S2), feature selection (S3),
and resampling (S4) steps. However, with regard to the performance on test data,
it is unclear which combination of pre-processing steps would give the highest score
for every data block; it seems that best performance is achieved by different pre-
processing for different data. Hence, we cannot conclude with certainty that a given
sequence of data pre-processing gives the best performance. We believe that further
research on more datasets is needed to establish more knowledge about what is best
in each situation/data block.

Table 4.7: Data iterations that give the best performance metrics for each data block
with training data (with repeated k-fold cross validation) and test data. Corresponding

performance metric recorded is given in parentheses.

Metric Block B Block C Block D Block E
Train Test Train Test Train Test Train Test

MCC DI-07 DI-12 DI-07 DI-15 DI-04 DI-03 DI-07 DI-00
(0.656) (0.350) (0.502) (0.255) (0.555) (0.227) (0.551) (0.343)

Accuracy DI-07 DI-16 DI-07 DI-03 DI-03 DI-03 DI-07 DI-00
(0.827) (0.744) (0.751) (0.732) (0.773) (0.732) (0.774) (0.744)

ROC AUC DI-07 DI-12 DI-07 DI-15 DI-04 DI-14 DI-07 DI-00
(0.853) (0.689) (0.777) (0.625) (0.778) (0.585) (0.785) (0.661)

F1 score DI-05 DI-12 DI-07 DI-15 DI-04 DI-04 DI-07 DI-00
(0.826) (0.559) (0.752) (0.462) (0.787) (0.404) (0.776) (0.512)

Precision DI-07 DI-16 DI-07 DI-03 DI-04 DI-06 DI-07 DI-00
(0.836) (0.581) (0.751) (0.565) (0.760) (0.600) (0.773) (0.564)

Recall DI-05 DI-12 DI-07 DI-05 DI-04 DI-08 DI-07 DI-14
(0.839) (0.660) (0.753) (0.511) (0.828) (0.426) (0.783) (0.553)

Notes

1https://umap-learn.readthedocs.io/en/latest/parameters.html

26

https://umap-learn.readthedocs.io/en/latest/parameters.html

5
Conclusion

In this thesis, we adopted a data-centric approach for building a classification model
that could predict the presence of biomarkers of Alzheimer’s disease. We started
with four data blocks that were created by grouping together the similar set of
features such as health history, results of cognitive tests, and results of medical
imaging. We iterated over different combinations of data pre-processing steps for
each of the four data blocks and trained dynamic ensemble selection with repeated
k-fold cross validation on each data iteration. We find that for training data, best
performing data iterations generally have three steps in common for all data blocks:
(i) transformation of data into a normal distribution, (ii) feature selection, (iii)
oversampling of minority class. However, looking at the predictive performance,
we see that the models are highly data dependent and it is not clear which is the
best sequence of data pre-processing that would work for all the data blocks. We
also find that most of the models we trained in this study were overfitting and had
significantly lower performance on test set than on the training set. Therefore, we
cannot claim to have conclusive proof that a given set of data pre-processing steps
gives the best performance in predicting the presence of biomarkers of Alzheimer’s
disease. More research with more data, and perhaps with more combinations of
data pre-processing steps should be explored to further develop knowledge about
the approach that can provide satisfactory and reliable performance.

27

Bibliography

[1] World Health Organization (WHO) - Dementia Fact Sheet updated on 2nd
September 2021 https://www.who.int/news-room/fact-sheets/detail/dementia
retrieved on 27 February 2022

[2] Eratne, D., Loi, S. M., Farrand, S., Kelso, W., Velakoulis, D., and Looi, J. C.
(2018). Alzheimer’s disease: clinical update on epidemiology, pathophysiology
and diagnosis. Australasian Psychiatry, 26(4), 347-357

[3] Breijyeh, Z., and Karaman, R. (2020). Comprehensive review on Alzheimer’s
disease: Causes and treatment. Molecules, 25(24), 5789.

[4] Armstrong, R. A. (2019). Risk factors for Alzheimer’s disease. Folia neuropatho-
logica, 57(2), 87-105.

[5] Knopman, D.S., Amieva, H., Petersen, R.C., Chételat, G., Holtzman, D.M.,
Hyman, B.T., Nixon, R.A. and Jones, D.T., (2021). Alzheimer disease. Nature
reviews Disease primers, 7(1), pp.1-21.

[6] Chen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y., Melcher, K., and Xu,
H. E. (2017). Amyloid beta: structure, biology and structure-based therapeutic
development. Acta Pharmacologica Sinica, 38(9), 1205-1235.

[7] Metaxas, A., and Kempf, S. J. (2016). Neurofibrillary tangles in Alzheimer’s
disease: elucidation of the molecular mechanism by immunohistochemistry and
tau protein phospho-proteomics. Neural regeneration research, 11(10), 1579.

[8] Jatoi, S., Hafeez, A., Riaz, S. U., Ali, A., Ghauri, M. I., and Zehra, M. (2020).
Low Vitamin B12 levels: An underestimated cause of minimal cognitive im-
pairment and dementia. Cureus, 12(2).

[9] Dubois, B., Hampel, H., Feldman, H.H., Scheltens, P., Aisen, P., Andrieu, S.,
Bakardjian, H., Benali, H., Bertram, L., Blennow, K. and Broich, K. (2016).
Preclinical Alzheimer’s disease: definition, natural history, and diagnostic cri-
teria. Alzheimer’s and Dementia, 12(3), pp.292-323.

[10] Gonneaud, J., Baria, A.T., Pichet Binette, A., Gordon, B.A., Chhatwal, J.P.,
Cruchaga, C., Jucker, M., Levin, J., Salloway, S., Farlow, M. and Gauthier, S.

28

(2021). Accelerated functional brain aging in pre-clinical familial Alzheimer’s
disease. Nature communications, 12(1), pp.1-17.

[11] King-Robson, J., Wilson, H., Politis, M., and Alzheimer’s Disease Neuroimag-
ing Initiative. (2021). Associations between Amyloid and Tau pathology, and
Connectome Alterations, in Alzheimer’s Disease and Mild Cognitive Impair-
ment. Journal of Alzheimer’s Disease, 82(2), 541-560.

[12] Sharma, S., and Mandal, P. K. (2022). A comprehensive report on Machine
Learning-based early detection of Alzheimer’s disease using multi-modal neu-
roimaging Data. ACM Computing Surveys (CSUR), 55(2), 1-44.

[13] Mezrar, S., and Bendella, F. (2022). Machine learning and Serious Game for
the Early Diagnosis of Alzheimer’s Disease. Simulation and Gaming, 53(4),
369–387.

[14] Ghazal, T. M., Abbas, S., Munir, S., Khan, M. A., Ahmad, M., Issa, G. F.,
Zahra, S. B., Khan, M. A., Hasan, M. K. (2022). Alzheimer disease detection
empowered with transfer learning. Computers, Materials and Continua, 70(3),
pp. 5005–5019.

[15] Pirrone, D., Weitschek, E., Di Paolo, P., De Salvo, S., and De Cola, M. C.
(2022). EEG Signal Processing and Supervised Machine Learning to Early Di-
agnose Alzheimer’s Disease. Applied Sciences, 12(11), 5413.

[16] Mofrad, S. A., Lundervold, A., Lundervold, A. S., and Alzheimer’s Disease
Neuroimaging Initiative. (2021). A predictive framework based on brain vol-
ume trajectories enabling early detection of Alzheimer’s disease. Computerized
Medical Imaging and Graphics, 90, 101910.

[17] Revathi, A., Kaladevi, R., Ramana, K., Jhaveri, R. H., Rudra Kumar, M., and
Sankara Prasanna Kumar, M. (2022). Early detection of cognitive decline using
machine learning algorithm and cognitive ability test. Security and Communi-
cation Networks, 2022.

[18] Mohammed, B. A., Senan, E. M., Rassem, T. H., Makbol, N. M., Alanazi, A. A.,
Al-Mekhlafi, Z. G., Almurayziq, T. S., and Ghaleb, F. A. (2021). Multi-method
analysis of medical records and MRI images for early diagnosis of dementia and
Alzheimer’s disease based on deep learning and hybrid methods. Electronics,
10(22), 2860.

[19] Mirzaei, G., and Adeli, H. (2022). Machine learning techniques for diagno-
sis of alzheimer disease, mild cognitive disorder, and other types of dementia.
Biomedical Signal Processing and Control, 72, 103293.

[20] Olofsson, C. (2021). Using Machine Learning and Repeated Elastic Net Tech-
nique for Identification of Biomarkers of Early Alzheimer’s Disease.

29

[21] Jenul, A., Schrunner, S., Huynh, B. N., and Tomic, O. (2021). RENT: A Python
Package for Repeated Elastic Net Feature Selection. Journal of Open Source
Software, 6(63), 3323, https://doi.org/10.21105/joss.03323

[22] Ng, A. (2021, Mar 24) MLOPs: From Model-centric to Data-
centric AI. DeepLearningAI https://www.deeplearning.ai/wp-
content/uploads/2021/06/MLOps-From-Model-centric-to-Data-centric-AI.pdf

[23] Kurlansik, R. and ML SMEs at Databricks (2021, Jun
23). Need for Data-centric ML Platforms. Databricks.
https://databricks.com/blog/2021/06/23/need-for-data-centric-ml-
platforms.html

[24] Patel, H. (updated on 2022, Jul 22) Data-Centric Approach vs
Model-Centric Approach in Machine Learning. Neptune.ai Blog.
https://neptune.ai/blog/data-centric-vs-model-centric-machine-learning

[25] Clemente, F. (2021, Mar 29) From model-centric to data-centric. To-
wards Data Science. https://towardsdatascience.com/from-model-centric-to-
data-centric-4beb8ef50475

[26] Muaz, U. (2021, May 9) From Model-centric to Data-centric Artificial Intel-
ligence. Towards Data Science. https://towardsdatascience.com/from-model-
centric-to-data-centric-artificial-intelligence-77e423f3f593

[27] Singh, A. (2021, Jul 22) Moving from Model-centric to Data-centric ap-
proach. Medium. https://medium.com/analytics-vidhya/moving-from-model-
centric-to-data-centric-approach-1468fb5dbafb

[28] Radečić, D. (2021, Aug 13). Data-centric vs. Model-centric AI? The Answer is
Clear. Towards Data Science. https://towardsdatascience.com/data-centric-vs-
model-centric-ai-the-answer-is-clear-4b607c58af67

[29] Nouri, S. (2021, Sep 30). Data-centric approach vs model-centric ap-
proach. LinkedIn. https://www.linkedin.com/pulse/data-centric-approach-vs-
model-centric-steve-nouri/

[30] Ghasemi, A., and Zahediasl, S. (2012). Normality tests for statistical analy-
sis: a guide for non-statisticians. International journal of endocrinology and
metabolism, 10(2), 486.

[31] Box, G. E., and Cox, D. R. (1964). An analysis of transformations. Journal of
the Royal Statistical Society: Series B (Methodological), 26(2), 211-243.

[32] Yeo, I. K., and Johnson, R. A. (2000). A new family of power transformations
to improve normality or symmetry. Biometrika, 87(4), 954-959.

[33] Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., and Chen, G. (2022). Ecod: Un-

30

supervised outlier detection using empirical cumulative distribution functions.
IEEE Transactions on Knowledge and Data Engineering.

[34] Cayton, L. (2005). Algorithms for manifold learning. Univ. of California at San
Diego Tech. Rep, 12(1-17), 1.

[35] Van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE.
Journal of machine learning research, 9(11).

[36] McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uniform mani-
fold approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426.

[37] Melas-Kyriazi, L. (2020). The mathematical foundations of manifold learning.
arXiv preprint arXiv:2011.01307.

[38] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002).
SMOTE: synthetic minority over-sampling technique. Journal of artificial in-
telligence research, 16, 321-357.

[39] Han, H., Wang, W. Y., and Mao, B. H. (2005, August). Borderline-SMOTE: a
new over-sampling method in imbalanced data sets learning. In International
conference on intelligent computing (pp. 878-887). Springer, Berlin, Heidelberg.

[40] Blagus, R., and Lusa, L. (2013). SMOTE for high-dimensional class-imbalanced
data. BMC bioinformatics, 14(1), 1-16.

[41] Brown, G., Wyatt, J., Harris, R., and Yao, X. (2005). Diversity creation meth-
ods: a survey and categorisation. Information fusion, 6(1), 5-20.

[42] Kittler, J., Hatef, M., Duin, R. P., and Matas, J. (1998). On combining clas-
sifiers. IEEE transactions on pattern analysis and machine intelligence, 20(3),
226-239.

[43] Bartlett, P., Freund, Y., Lee, W. S., and Schapire, R. E. (1998). Boosting the
margin: A new explanation for the effectiveness of voting methods. The annals
of statistics, 26(5), 1651-1686.

[44] Kuncheva, L. I., Skurichina, M., and Duin, R. P. (2002). An experimental study
on diversity for bagging and boosting with linear classifiers. Information fusion,
3(4), 245-258.

[45] Cruz, R. M., Sabourin, R., and Cavalcanti, G. D. (2018). Dynamic classifier
selection: Recent advances and perspectives. Information Fusion, 41, 195-216.

[46] Ko, A. H., Sabourin, R., and Britto Jr, A. S. (2008). From dynamic classifier
selection to dynamic ensemble selection. Pattern recognition, 41(5), 1718-1731.

[47] Chicco, D., and Jurman, G. (2020). The advantages of the Matthews correlation

31

coefficient (MCC) over F1 score and accuracy in binary classification evaluation.
BMC genomics, 21(1), 1-13.

[48] Oskolkov, N. (2019, Nov 2). How Exactly UMAP Works. GitHub.
https://github.com/NikolayOskolkov/HowUMAPWorks

[49] McInnes , L. (2018). Scientific papers - umap 0.5 documentation. UMAP:
Uniform Manifold Approximation and Projection for Dimension Reduction.
https://umap-learn.readthedocs.io/en/latest/scientific_papers.html

32

A
Appendix

A1: Features in each data block

Table A.1: List of features in Block B and their types.

Feature Type
age numerical
edu_years numerical
edu_level numerical
female categorical
male categorical
systolic_bp numerical
smok categorical
cvd_risk categorical
APOE_E2/E2 categorical
APOE_E2/E3 categorical
APOE_E2/E4 categorical
APOE_E3/E3 categorical
APOE_E3/E4 categorical
APOE_E4/E4 categorical
dementia_history categorical
headtrauma categorical
cns_infec categorical

Table A.2: List of features in Block C and their types.

Feature Type
mmse_total numerical
clock_score numerical
tmta_sec numerical
tmtb_sec numerical
vosp_tscore numerical
cowat_tscore numerical
cerad_recall numerical

I

Table A.3: List of features in Block D and their types.

Feature Type
LesF numerical
LesO numerical
LesP numerical
LesT numerical
PSMD numerical
WHo_rV numerical

Table A.4: List of features in Block E and their types.

Feature Type
ANT_PHC numerical
Post_HPC numerical
MISC numerical
Meninges_PHC numerical
ERC numerical
Br35 numerical
Br36 numerical
PHC numerical
ColSul numerical
Meninges numerical

II

A2: Normal probability plots of continuous fea-
tures
Note: Only two examples of not-normal (failed normality test) features from each
data block are shown here. See Jupyter notebook in code repository for more details.

Figure A.1: Normal probability plot of the feature age: example from Block B.

Figure A.2: Normal probability plot of the feature systolic_bp: example from Block B.

Figure A.3: Normal probability plot of the feature tmta_sec: example from Block C.

III

Figure A.4: Normal probability plot of the feature tmtb_sec: example from Block C.

Figure A.5: Normal probability plot of the feature PSMD: example from Block D.

Figure A.6: Normal probability plot of the feature WMHo_rV : example from Block D.

IV

Figure A.7: Normal probability plot of the feature Meninges_PHC : example from
Block E.

Figure A.8: Normal probability plot of the feature ColSul: example from Block E.

V

A3: Correlation of features

Figure A.9: Pearson’s correlation coefficients for continuous features in block B.

Figure A.10: Phi coefficients for one-hot encoded features in block B.

VI

Figure A.11: Pearson’s correlation coefficients for features in block C.

Figure A.12: Pearson’s correlation coefficients for features in block D.

VII

Figure A.13: Pearson’s correlation coefficients for features in block E.

VIII

A4: Principal Component Analysis

Figure A.14: Number of principal components vs. % variance explained: Block B.

Figure A.15: Number of principal components vs. % variance explained: Block C.

IX

Figure A.16: Number of principal components vs. % variance explained: Block D.

Figure A.17: Number of principal components vs. % variance explained: Block E.

X

A5: Outlier detection using ECOD

Figure A.18: Results of outlier detection using ECOD (1% contamination) for Block B.

Figure A.19: Results of outlier detection using ECOD (1% contamination) for Block C.

Figure A.20: Results of outlier detection using ECOD (1% contamination) for Block D.

Figure A.21: Results of outlier detection using ECOD (1% contamination) for Block E.

XI

A6: Visualizing high-dimensional data

Figure A.22: UMAP embedding with 2 components for Block B.

Figure A.23: UMAP embedding with 2 components for Block C.

XII

Figure A.24: UMAP embedding with 2 components for Block D.

Figure A.25: UMAP embedding with 2 components for Block E.

XIII

A7: Model performance
Table A.5: MCC scores achieved after cross validation, for each data iteration and all

data blocks. Corresponding scores achieved on test data are given in parentheses.

Data Iteration ID Block B Block C Block D Block E
DI-00 0.478 (0.219) 0.201 (0.174) 0.292 (0.089) 0.259 (0.343)
DI-01 0.413 (0.254) 0.231 (0.227) 0.164 (0.142) 0.238 (0.280)
DI-02 0.431 (0.144) 0.209 (0.110) 0.155 (0.153) 0.240 (-0.013)
DI-03 0.439 (0.264) 0.316 (0.249) 0.369 (0.227) 0.333 (0.000)
DI-04 0.650 (0.145) 0.332 (0.142) 0.555 (0.165) 0.473 (0.000)
DI-05 0.648 (0.132) 0.251 (0.099) 0.410 (-0.01) 0.442 (0.000)
DI-06 0.375 (0.277) 0.259 (0.111) 0.317 (0.220) 0.302 (0.000)
DI-07 0.656 (0.245) 0.502 (0.124) 0.451 (0.122) 0.551 (-0.058)
DI-08 0.516 (0.000) 0.384 (0.186) 0.444 (0.095) 0.350 (-0.13)
DI-09 0.334 (-0.141) 0.246 (0.248) 0.242 (0.142) 0.270 (0.000)
DI-10 0.439 (0.264) 0.301 (0.205) 0.302 (0.087) 0.331 (0.316)
DI-11 0.568 (0.177) 0.449 (0.082) 0.438 (0.099) 0.506 (0.293)
DI-12 0.553 (0.350) 0.339 (0.128) 0.276 (-0.028) 0.443 (0.118)
DI-13 0.375 (0.277) 0.314 (0.236) 0.184 (0.057) 0.354 (0.205)
DI-14 0.628 (0.198) 0.500 (0.174) 0.509 (0.201) 0.486 (0.220)
DI-15 0.418 (0.193) 0.354 (0.255) 0.348 (0.110) 0.346 (0.095)
DI-16 0.304 (0.314) 0.244 (0.250) 0.270 (-0.03) 0.315 (0.174)

Table A.6: Accuracy scores achieved after cross validation, for each data iteration and
all data blocks. Corresponding scores achieved on test data are given in parentheses.

Data Iteration ID Block B Block C Block D Block E
DI-00 0.807 (0.720) 0.671 (0.677) 0.744 (0.646) 0.686 (0.744)
DI-01 0.780 (0.720) 0.679 (0.701) 0.711 (0.671) 0.672 (0.732)
DI-02 0.788 (0.713) 0.670 (0.659) 0.711 (0.671) 0.673 (0.701)
DI-03 0.791 (0.689) 0.720 (0.732) 0.773 (0.732) 0.715 (0.713)
DI-04 0.824 (0.652) 0.665 (0.677) 0.772 (0.659) 0.736 (0.713)
DI-05 0.823 (0.598) 0.625 (0.573) 0.703 (0.579) 0.720 (0.713)
DI-06 0.760 (0.713) 0.697 (0.652) 0.757 (0.732) 0.707 (0.713)
DI-07 0.827 (0.671) 0.751 (0.646) 0.722 (0.652) 0.774 (0.543)
DI-08 0.755 (0.713) 0.692 (0.659) 0.717 (0.604) 0.674 (0.476)
DI-09 0.754 (0.421) 0.685 (0.707) 0.740 (0.689) 0.693 (0.713)
DI-10 0.791 (0.689) 0.708 (0.677) 0.740 (0.652) 0.714 (0.726)
DI-11 0.782 (0.652) 0.724 (0.634) 0.714 (0.652) 0.752 (0.707)
DI-12 0.776 (0.701) 0.669 (0.634) 0.636 (0.604) 0.721 (0.604)
DI-13 0.760 (0.713) 0.716 (0.720) 0.710 (0.665) 0.728 (0.683)
DI-14 0.812 (0.652) 0.750 (0.683) 0.750 (0.707) 0.743 (0.646)
DI-15 0.708 (0.634) 0.677 (0.701) 0.672 (0.622) 0.671 (0.561)
DI-16 0.736 (0.744) 0.684 (0.726) 0.756 (0.622) 0.708 (0.683)

XIV

Table A.7: ROC AUC scores achieved after cross validation, for each data iteration and
all data blocks. Corresponding scores achieved on test data are given in parentheses.

Data Iteration ID Block B Block C Block D Block E
DI-00 0.752 (0.587) 0.619 (0.583) 0.623 (0.542) 0.637 (0.661)
DI-01 0.686 (0.612) 0.620 (0.606) 0.567 (0.566) 0.636 (0.621)
DI-02 0.696 (0.545) 0.618 (0.551) 0.582 (0.572) 0.639 (0.498)
DI-03 0.718 (0.636) 0.658 (0.596) 0.641 (0.576) 0.680 (0.500)
DI-04 0.838 (0.572) 0.714 (0.563) 0.778 (0.582) 0.754 (0.500)
DI-05 0.833 (0.572) 0.636 (0.554) 0.716 (0.495) 0.724 (0.500)
DI-06 0.694 (0.634) 0.628 (0.553) 0.637 (0.570) 0.657 (0.500)
DI-07 0.853 (0.629) 0.777 (0.561) 0.746 (0.559) 0.785 (0.469)
DI-08 0.769 (0.500) 0.708 (0.595) 0.731 (0.550) 0.691 (0.429)
DI-09 0.650 (0.422) 0.630 (0.617) 0.589 (0.559) 0.631 (0.500)
DI-10 0.718 (0.636) 0.656 (0.602) 0.685 (0.540) 0.685 (0.655)
DI-11 0.799 (0.591) 0.741 (0.540) 0.731 (0.546) 0.775 (0.648)
DI-12 0.781 (0.689) 0.686 (0.565) 0.644 (0.487) 0.734 (0.563)
DI-13 0.694 (0.634) 0.650 (0.600) 0.574 (0.523) 0.681 (0.600)
DI-14 0.827 (0.604) 0.769 (0.580) 0.757 (0.585) 0.770 (0.618)
DI-15 0.729 (0.604) 0.697 (0.625) 0.680 (0.557) 0.689 (0.552)
DI-16 0.662 (0.636) 0.629 (0.604) 0.595 (0.487) 0.669 (0.580)

Table A.8: F1 scores achieved after cross validation, for each data iteration and all
data blocks. Corresponding scores achieved on test data are given in parentheses.

Data Iteration ID Block B Block C Block D Block E
DI-00 0.579 (0.361) 0.426 (0.391) 0.435 (0.326) 0.482 (0.512)
DI-01 0.545 (0.425) 0.454 (0.424) 0.316 (0.357) 0.473 (0.436)
DI-02 0.558 (0.230) 0.439 (0.333) 0.320 (0.372) 0.474 (0.039)
DI-03 0.568 (0.485) 0.495 (0.371) 0.455 (0.312) 0.534 (0.000)
DI-04 0.821 (0.387) 0.658 (0.346) 0.787 (0.404) 0.740 (0.000)
DI-05 0.826 (0.421) 0.628 (0.407) 0.702 (0.289) 0.723 (0.000)
DI-06 0.527 (0.472) 0.460 (0.345) 0.467 (0.290) 0.497 (0.000)
DI-07 0.823 (0.481) 0.752 (0.370) 0.738 (0.360) 0.776 (0.272)
DI-08 0.751 (0.000) 0.694 (0.429) 0.727 (0.381) 0.681 (0.259)
DI-09 0.480 (0.296) 0.465 (0.442) 0.391 (0.320) 0.484 (0.000)
DI-10 0.568 (0.485) 0.502 (0.430) 0.455 (0.313) 0.535 (0.505)
DI-11 0.775 (0.424) 0.716 (0.333) 0.727 (0.329) 0.756 (0.500)
DI-12 0.778 (0.559) 0.669 (0.388) 0.649 (0.235) 0.720 (0.404)
DI-13 0.527 (0.472) 0.503 (0.395) 0.350 (0.247) 0.543 (0.422)
DI-14 0.809 (0.447) 0.749 (0.381) 0.763 (0.368) 0.749 (0.473)
DI-15 0.710 (0.455) 0.675 (0.462) 0.688 (0.380) 0.681 (0.410)
DI-16 0.468 (0.462) 0.464 (0.400) 0.388 (0.205) 0.522 (0.381)

XV

Table A.9: Precision scores achieved after cross validation, for each data iteration and
all data blocks. Corresponding scores achieved on test data are given in parentheses.

Data Iteration ID Block B Block C Block D Block E
DI-00 0.713 (0.520) 0.473 (0.425) 0.514 (0.359) 0.511 (0.564)
DI-01 0.619 (0.515) 0.489 (0.474) 0.411 (0.405) 0.492 (0.548)
DI-02 0.638 (0.500) 0.471 (0.378) 0.372 (0.410) 0.493 (0.250)
DI-03 0.637 (0.462) 0.584 (0.565) 0.657 (0.588) 0.565 (0.000)
DI-04 0.833 (0.391) 0.676 (0.412) 0.760 (0.404) 0.730 (0.000)
DI-05 0.816 (0.358) 0.624 (0.338) 0.712 (0.280) 0.719 (0.000)
DI-06 0.566 (0.500) 0.525 (0.375) 0.515 (0.600) 0.561 (0.000)
DI-07 0.836 (0.439) 0.751 (0.378) 0.709 (0.381) 0.773 (0.250)
DI-08 0.766 (0.000) 0.689 (0.412) 0.704 (0.345) 0.666 (0.217)
DI-09 0.551 (0.227) 0.503 (0.487) 0.477 (0.429) 0.529 (0.000)
DI-10 0.637 (0.462) 0.543 (0.435) 0.520 (0.361) 0.561 (0.523)
DI-11 0.802 (0.404) 0.736 (0.349) 0.694 (0.368) 0.744 (0.490)
DI-12 0.771 (0.484) 0.669 (0.373) 0.628 (0.263) 0.723 (0.355)
DI-13 0.566 (0.500) 0.570 (0.517) 0.412 (0.346) 0.585 (0.442)
DI-14 0.825 (0.411) 0.750 (0.432) 0.727 (0.483) 0.732 (0.413)
DI-15 0.709 (0.397) 0.678 (0.477) 0.659 (0.358) 0.664 (0.333)
DI-16 0.518 (0.581) 0.501 (0.536) 0.542 (0.258) 0.550 (0.432)

Table A.10: Recall scores achieved after cross validation, for each data iteration and all
data blocks. Corresponding scores achieved on test data are given in parentheses.

Data Iteration ID Block B Block C Block D Block E
DI-00 0.502 (0.277) 0.389 (0.362) 0.414 (0.298) 0.457 (0.468)
DI-01 0.501 (0.362) 0.426 (0.383) 0.300 (0.319) 0.461 (0.362)
DI-02 0.508 (0.149) 0.414 (0.298) 0.302 (0.340) 0.461 (0.021)
DI-03 0.516 (0.511) 0.435 (0.277) 0.402 (0.213) 0.511 (0.000)
DI-04 0.812 (0.383) 0.645 (0.298) 0.828 (0.404) 0.751 (0.000)
DI-05 0.839 (0.511) 0.633 (0.511) 0.700 (0.298) 0.731 (0.000)
DI-06 0.508 (0.447) 0.411 (0.319) 0.436 (0.191) 0.457 (0.000)
DI-07 0.815 (0.532) 0.753 (0.362) 0.778 (0.340) 0.783 (0.298)
DI-08 0.744 (0.000) 0.700 (0.447) 0.767 (0.426) 0.699 (0.319)
DI-09 0.442 (0.426) 0.435 (0.404) 0.338 (0.255) 0.450 (0.000)
DI-10 0.516 (0.511) 0.470 (0.426) 0.433 (0.277) 0.514 (0.489)
DI-11 0.755 (0.447) 0.699 (0.319) 0.772 (0.298) 0.773 (0.511)
DI-12 0.788 (0.660) 0.672 (0.404) 0.678 (0.213) 0.719 (0.468)
DI-13 0.508 (0.447) 0.454 (0.319) 0.333 (0.191) 0.511 (0.404)
DI-14 0.798 (0.489) 0.750 (0.340) 0.811 (0.298) 0.768 (0.553)
DI-15 0.715 (0.532) 0.675 (0.447) 0.722 (0.404) 0.704 (0.532)
DI-16 0.445 (0.383) 0.435 (0.319) 0.307 (0.170) 0.500 (0.340)

XVI

	Introduction
	Alzheimer's disease
	Diagnosis of AD and therapeutic strategies
	Machine learning for early detection of AD
	Our work

	Theory
	Model-centric vs. Data-centric AI
	Data pre-processing
	Outlier detection and manifold learning
	Feature selection
	Synthetic Minority Over-sampling Technique
	Dynamic ensemble selection
	Performance metric
	Model validation

	Materials and Methods
	Data blocks
	Computational resource
	Data-centric approach
	Workflow

	Results and Discussion
	Data preparation
	Classification model and performance

	Conclusion
	Bibliography
	Appendix

