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Abstract

Introduction

Head and neck cancer is one of the leading causes of cancer-related deaths globally
and arguably has a long-standing history of impacting human life both medically
and economically. Common treatment options which are considered most effective
require early and precise delineation of tumors. But this is not an easy task as it
requires hours of discussion and iterations for every patient and clinical expertise,
and is also prone to human error.

Due to advancements in medical imaging and deep learning, particularly with con-
volutional neural networks (CNN), automatic segmentation of tumors has become
a hot topic for researchers, and results from different studies have shown prom-
ising outcomes. However, these auto delineation algorithms are still far from per-
fect, and given the nature of their use, their efficacy in the clinical environment is
a hot debate. One of the reasons for the low acceptance of these CNN-based mod-
els is their indecipherable black-box nature and inability to quantify and visualize
confidence in their delineations.

In this thesis, we have proposed monte carlo dropouts based technique to visu-
alize uncertainty in the predictions of convolutional neural networks using V-net
architecture to increase the interpretability of the model. This is done through
visualizing uncertainties in the input feature selection of the model and also its
predictions. Moreover, we have tabled a novel approach to quantify confidence in
predictions with a single comparable value as a percentage for easy interpretabil-
ity of the auto-segmentation to the clinicians.
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Methodology

Monte carlo methods are used to obtain the probabilistic distribution of the out-
comes for a numerical problem by repeated sampling. In this thesis, we are using
the same approach to find uncertainties in the prediction and input feature se-
lection of CNN-based automatic tumor segmentation model. The dataset being
used for this study consists of 197 patients diagnosed with head and neck tumors.
For repeated sampling, we have used dropout layers with two different rates in the
model to randomly disable neurons while making predictions, this setup ensures to
have slightly different predictions for the same image in each iteration. The vari-
ance in these predictions of each voxel is then visualized as an uncertainty map of
the prediction, higher variance defines an uncertain region.

For input feature importance, we have used guided backpropagation which high-
lights only those voxels which had a positive gradient in the backpropagation pass.
The approach to finding uncertainty in input feature importance is the same as
for prediction, that is to find and visualize pixel-wise variance in feature selection
over all samples drawn from the same patient scan.

Moreover, to quantify uncertainty in prediction, we have used the approach to
estimate segmentation dice score from the overlap metric of uncertainty map and
segmentation from the model. This was done by training a separate regression
model, with overlap dice score from uncertainty map and prediction as the inde-
pendent variable and segmentation dice as the target.

Results

Results from the input feature selection of the model concur with the previous
studies on the subject done by NMBU healthcare data science group. For visu-
alizing uncertainties, the uncertainty maps in the prediction and feature selection
were found to be highlighting regions with potential false predictions with ac-
ceptable precision. Hence increasing the interpretability of the CNN model used
to make predictions and assisting clinicians to focus on uncertain regions in the
auto-delineated scan.

For quantification of uncertainty in prediction, our approach of using a separate
regression model for segmentation dice estimation achieved an acceptable perform-
ance measured in coefficient of determination R2.
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Conclusion

The outcomes of this thesis exhibit the efficacy of using monte carlo approach to
obtain uncertainty in predictions made by CNN model, hence increasing inter-
pretability and potentially acceptability of deep learning models for automated
segmentation of tumors in clinical settings.
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Chapter 1

Introduction

1.1 Cancer: A problem for society

Worldwide, cancer is one of the main causes of death, responsible for nearly 10
million deaths in 2020 [1]. A rising age expectancy in the global population is
identified as a leading cause of an increase in cancer cases, which foresees an
estimated amount of over 16 million deaths caused by cancer in 2040 [2]. Head
and neck cancers(HNC) are one of the most common forms of cancer. Under this
umbrella term HNC, tumors in the oral cavity, pharynx, lip, larynx, and paranasal
sinuses; occult primary cancer, salivary gland cancer, and mucosal melanoma are
considered [3].

There are several treatment methods for cancerous diseases, also referred to as ma-
lignant tumors or neoplasms, which include Surgery, Radiation therapy, Chemo-
therapy, and Targeted therapy, all of which are dependent on the delineation or
contouring of tumors and are only successful if done in an early stage [4]. Tu-
mor segmentation involves correctly identifying the location of a tumor within a
medical image.

Although this has historically been done manually, manual tumor delineation is
a time-consuming process and is usually performed by experienced radiologists.
Given the time complexity of cancer treatment and the accuracy required for le-
sion delineation, computer-assisted automated segmentation is considered a viable
solution to reduce the time required for tumor delineation and increase accuracy
[5].
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2 CHAPTER 1. INTRODUCTION

1.1.1 Auto-delineation of tumors using deep learning

Since segmentation of tumors from medical images is an image classification prob-
lem, many studies based on using deep learning have shown promising results
[6][7][8] since the advent of convolutional neural networks [9]. Previously, image
analysis-based heuristics were used to automatically segment tumors from medical
images which included algorithms such as thresholding, edge detection, cluster-
ing, watershed, etc [6] but the use of convolutional neural networks increased the
accuracy of segmentation by many folds.

Convolutional Neural Networks (CNN) is a particular type of neural network which
are specifically designed to cater to image segmentation problems [8] as they utilize
more spatial information from images as compared to histogram-based approaches.
However, like any other AI algorithm, they are also not perfect and make false
predictions.

Given the sensitive nature of tumor delineation, which requires high accuracy
for precise delivery of treatment medicines, the adoption of convolutional neural
networks in clinical environments has always been in question, primarily due to
the inability of CNNs to provide confidence and interpretability in its predictions.

1.1.2 Problem Statement

The use of machine learning in medical imaging applications has come a long
way [10][11] but its full adaptation with confidence in the clinical environment is
still far from its final goal. Particularly after the development of deep learning
algorithms to automatically segment tumor volumes, which not only saves time
for the delineation of tumors but also provides high accuracy by removing the
human factor, the debate for its acceptance and adoption in clinical circles is still
ongoing.

Although these algorithms have shown promising performances for a large set
of patients, they are still prone to failure for some and there could be multiple
reasons contributing to these failures including but not limited to, the dataset
used for training, location, and the type of tumor, the quality of the hardware
used for input scans and modalities involved.

But the reluctance in their adoption in clinical environments is not only limited
to their propensity to fail, but also because of the indecipherable black-box nature
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of these deep learning models. Some of the challenges faced by medical experts to
adopt deep learning-based segmentations which, we have tried to address in this
thesis are summarized here as:

• Interpretability in convolutional neural networks. As, CNNs lack this prop-
erty inherently, which is the ability to produce and visualize the features in
the input scan which were considered important by the model to make a par-
ticular prediction. Also, those features where the model was not certain of
their importance. This property is crucial because it might help radiologists
to compare feature importance given by the model based on their expertise
in the medical field.

• Uncertainty in predictions, the ability to quantify the probable errors in its
predictions and also visualize those regions where the deep-learning model
was unsure of its predictions. This property is important to assist radiologists
to give importance and focus more on the regions where the model is unsure
of its predictions.

1.2 Structure of thesis

After the introduction, in this thesis, we have discussed the background related
to our problem statement in detail. This includes a brief discussion and literature
review of medical imaging and how deep learning can assist in delineating tumors
from medical images automatically. We have also discussed briefly deep learning
algorithms that are commonly used for tumor segmentation, convolutional neural
networks in particular, and also discussed components involved in a typical con-
volutional neural network model.

Since the model used in this study is based on V-net architecture, for 3D medical
images. We have included a short literature review of this architecture as well.
Moreover, in the theory, we have discussed the definition of uncertainty in predic-
tions of the neural network model and how the monte carlo method can be used
to achieve that. Post theoretical background, we have discussed our methodology
which includes experimental setup as well. In the end, we have shared results from
the study followed by discussion and recommendations.
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Chapter 2

Theoretical Background

Working on this thesis involves multidisciplinary knowledge. So the following
pages contain the background knowledge related to the thesis. First, we look at
the process of obtaining details about the internal structures of the human body
through non-invasive or mildly invasive medical techniques. Then we look into
what makes a tumor different in these scenarios. After getting a clear picture of
the medical imaging process, the automatic detection utilizing deep learning with
its components, usage, and limitations are further discussed.

2.1 Medical Imaging

To properly diagnose certain diseases, we need to understand what is the current
state of the human body. This state, when compared to a healthy population, we
can conclude the differences as the issues regarding the disease. Although this is an
extremely simplified way of explaining the process of diagnosis, the fundamental
process holds truth. To get details about the state of the human being one can
observe the human visually or also can orally verify the issues experienced by the
human. But, this process limits the diagnosis to diseases that exhibit symptoms
and have some external visual cues. To extend diagnostic power to a wide variety
of diseases and to perform early diagnostics, it would be best if the internal state
is known to the doctors. This state can be measured through various techniques
but can be classified broadly into invasive and non-invasive techniques.

Medical Imaging is a type of non-invasive technique, which provides more insight

5



6 CHAPTER 2. THEORETICAL BACKGROUND

into the internal state and structure of the human body. Although the majority of
the medical imaging is performed non-invasively, sometimes there are mildly invas-
ive techniques that are performed to obtain suitable results. Some such example
is the injection of specialized dyes which can improve contrast while imaging. As
the medical imaging that needs to be performed is done to find the internal state,
the imaging process can not be performed in the visible spectrum of Electromag-
netic Waves (EM). This means the imaging is done in the other spectral part of
the EM wave. For example, the imaging techniques for Computed Tomography
(CT) scans utilize the spectral range corresponding to EM Waves, and Magnetic
Resonance Imaging (MRI) scanning system is based on the radio wave spectrum.
Positron Emission Tomography or PET scanning technology utilizes the gamma
wave spectrum of the EM waves. With modern advancements in medical tech-
nologies, the results of performing a scan or imaging have higher resolution and
with the support of an image processing algorithm give a 3d output with precise
measurements.

Doctors are trained to read the results of the scan, with some doctors even spe-
cializing to interpret particular results of the scan and correlate them with the list
of known issues to arrive at a conclusion for a diagnosis. Apart from diagnosis, the
imaging techniques also provide a visual aid for surgeons to prepare themselves
for safe surgery. Since in our thesis we mostly worked on tumor segmentation, we
look in the following chapter how tumors are identified by medical professionals
from the results obtained from the scanning process.

2.1.1 Tumor Identification

Tumors are nothing but cells that often fail to perform their regular function and
multiply at a rate much more rapid than regular cells. This makes tumors compete
for the nutrition and oxygen required by the healthy cells performing the actual
function. Since tumors multiply rapidly they often make the healthy cells starve
and suffocate, thereby killing them in the process [12]. If the death of healthy cells
eventually happens on a larger scale as the tumor grows, thereby making very few
cells left to perform the bodily functions necessary for survival. This is the cause
of fatality or severe sickness among cancer patients as the tumor progresses.

The identification of tumors from medical imaging can be even quite arbitrary
in the final stages of tumor growth for certain types of cancer. Since a tumor
would appear different than what would be considered a normal internal structure
a large tumor can have distinctive features which can highlight it from the rest of



2.2. DEEP LEARNING 7

the cells. As often we do not want to wait till the final stages of the disease to
start with treatment for early diagnosis of tumors, we can differentiate a tumor
cell from the healthy cells by looking at the consumption of nutrients or the blood
flow patterns to that particular area. Tumors also have different absorption, so
using a specialized dye injected into the bloodstream might eventually accumulate
in a larger concentration within the cells of the tumors. This dye can then be
scanned in the human body looking for its concentration gradient across the body.

2.2 Deep learning

Realizing the merits of intelligence in form of computation has been a focus for
researchers, even from the beginning of the computational era. With the shrinking
of processor size and the number of cores that can fit in a single die, the power
of parallel computing has provided a huge boost for this field. Apart from the
computational power, with the advent of digitalization, the availability of data
also exploded. A major part of artificial intelligence is to make the machine learn
itself by training it with input data and the expected output data. Therefore,
the increment in the amount of data has resulted in more reliable training. Deep
learning is one of the emerging fields of machine learning models. The concept of
deep learning draws inspiration from the biological process of learning. As how in
the human brain the learning processes are significantly influenced by the neurons
and their connection strength, in deep learning the same concept has a simplified
mathematical model of the biological process.

The architecture for a deep learning model as shown in Figure 2.1, consists of a
repeated number of layers connected in a successive manner. The starting layer
or the input layer is the layer containing nodes that receive the input data. This
input layer has the same dimensions as the width of the input data. After passing
through this layer the data is multiplied by the weight value of the connection and
shifted by a bias. Then the resultant values are applied to a function called the
activation function and those are the values that get stored in the subsequent node
in the hidden layer. This mathematical process continues cascading till the final
output layer. The final value in the output layer is then taken to be the output
data. The model’s parameters such as individual connection weights and biases
constantly get updated in the training phase of the model, with the update propor-
tional to the ratio of expected value to that of obtained value. The mathematical
process through which the network’s parameters get updated during training is
referred to as back-propagation [7].
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Figure 2.1: An architectural diagram of the deep learning network. The circles rep-
resent the nodes and the arrows represent the connection between different nodes. Here
only 3 hidden layers are represented, but usually, there are many layers of hidden layers
before the output layers. Note: Adapted from [13], permitted usage under Creative
Commons license.

2.2.1 Convolutional Neural Network

Convolutional Neural Networks are a type of Artificial Neural Network (ANN)
that specializes in image classification. The architecture of CNN was designed
based on inspiration from the biological neural system[14]. A typical CNN has
three base layers [15],

• Convolutional layer

• Pooling layer

• Fully-connected layer

The convolutional layer can be considered the backbone of CNNs. The purpose of
the convolutional layer is to find important features from the input image. This is
done by sequentially moving a kernel or filter over the receptive field of the input
image to find important features by taking the dot product of the input pixel and
kernel pixels. The final output (commonly known as a feature map) is actually an
array of these dot products.
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The next is the pooling layer, also called the downsampling layer. The sole purpose
of this layer is to reduce the shape of its input image. This is done in a similar
fashion as in the convolutional layer, by running kernel over input, however, here
only aggregation is done. This aggregation can either be ’max pooling’ which is
selecting the maximum value of the input pixels or it can be ’average pooling’,
which is by taking the average of input pixel while sliding kernel over the input
image. This is done to reduce the computational complexity of the model.

In fully-connected layers, unlike partially connected layers, each output node is
directly connected to the node in the input layer. This layer is used to perform
final classification and typically uses a softmax activation function to produce class
probability.

In addition to these layers, there are other layers as well that can be used based on
requirements. One such notable layer is the dropout layer, which disables nodes
from the previous or input layer to regularize the model. This is usually done in
the training phase and these layers are kept disabled while making predictions.

There are different architectures that have been developed on top of convolutional
neural networks to solve a different set of problems which includes U-net, ResNet,
V-net, nn-Unet, etc. In this thesis, we have used V-net architecture to segment
tumors in PET/CT scans and to quantify uncertainties in predictions.

2.2.2 V-net architecture

V-net architecture is very similar to the infamous U-net CNN architecture [16],
however, the only notable difference is that V-net takes more spacial information
from the input scan as it performs 3D convolutional operations on 3D input images.

A typical V-net architecture consists of encoder and decoder sections, each of
these sections can have multiple blocks. In the encoder, each block contains 3D
convolutional layers to get feature maps followed by a max pooling layer to reduce
the size of the input image. While the decoder has all inverse operations as of
the encoder, it contains convolutional layers followed by a 3D up-convolutional
layer, to restore the segmented image to the original image shape. In addition, at
each block, feature maps from the corresponding encoder layer are appended to
reconstruct the final segmentation.

Figure 2.2 below shows an example of V-net architecture, the image has been used
under Creative Commons license.
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Figure 2.2: An example V-net architecture, shows the down-sampling path on the left
and up-sampling path on right. Adapted from [17], permitted usage under Creative
Commons license.

2.3 Prediction Uncertainties

A CNN model, although it is among the forefront runners for successful predictions
and classification of tumors, they come along with quite some drawbacks. The
major drawback is that the results of predictions do not cover the detail regarding
the confidence level for that prediction. This is also one of the problem statements
that this thesis work seeks to address. The confidence level of prediction in simpler
terms can be explained as when the model predicts a certain region to have a
tumor, it does not always have complete certainty on its prediction. As the usage
of the automated diagnostic systems is only to enhance and support the diagnostics
made by a medical professional, without knowing the reliability of the prediction,
the doctors might have hard distinguishing which predictions are reliable. If the
doctors then have to virtually check every prediction with the same amount of
effort, it defeats the purpose of the system.

The uncertainty if quantified and presented could indicate the reliability of the
prediction. As no model is 100 percent accurate, if they come along with a measure
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of confidence in their predictions, it could aid in improving the diagnostic efficiency.

2.3.1 Methods to gauge uncertainty

Quantifying uncertainty in prediction is challenging, requiring a strong statistical
model. Bayesian inference[18] is one such method, which has been employed for
this task [19]–[21]. The equation describing this method of inference is given in
Equation (2.1).

P (y∗|x∗,D) =

∫
P (y∗|x∗,W ) · P (W |x∗,D)dW (2.1)

where,

W = The wights of the model

D = The dataset containing the images and the tumor segments

x∗ = A new data sample of the medical images

y∗ = A new data sample detailing the tumor segments in x∗

It is easier to calculate the first factor in the integral, as it could be done with
a single pass, but in a bayesian neural network calculating the second part of
the integral is quite difficult. This is because the equation requires calculating
the distribution of weights which can not be done analytically. This makes the
cost of computation infeasible in practical terms. So to have a workaround for
the same, other approximations for the calculations are employed. A dropout
method [22] is one of the methods that have been used. In a dropout method,
some of the connections in the neural networks are as the name suggests dropped
out. Since, if the dropped-out connections are the same during data collection,
it would not result in variation in data. So it should be randomized, this is the
process called Monte Carlo dropout [23] and is the method that we have utilized
in this thesis. When this method is used then the value can be approximated as
given in Equation (2.2).

P (y∗|x∗,D) ≈ 1

T
ΣT

t=1F (fWi
(x∗)) (2.2)

where,



12 CHAPTER 2. THEORETICAL BACKGROUND

T = Total number of samples

F = Softmax function to calculate the probability

fWi
= The model f as a function along with its weights parameters

The variance among different tumor segmentation predicted by the models gives
us the value of the uncertainty for the model.

2.4 Interpretability in convolution neural networks

For doctors to understand a prediction, it should be in such a form that its pre-
dictions can be backed by some scientific reasons. Since CNNs are designed only
to provide predictions, they make it harder for medical professionals to trust and
interpret the predictions. if the predictions even have to a degree what regions of
the image had made it arrive at this conclusion, then the predictions can be trusted
to a greater extent, if those specified regions seem reasonable to the professional
[24].

One of the methods which have been observed to have a good effect on the same
is through guided back-propagation which is explained in the following section

2.4.1 Guided Back-propagation

Guided back-propagation [25], [26] involves analyzing the gradient present in the
deep learning network with respect to the input image. A high positive gradient
implies the particular pixel has high importance to that of prediction. Conversely,
a negative gradient implies very low importance. Including both positive and
negative gradients will not properly highlight the important region as they would
be noisy. In this process, the negative gradients are equated to zero and only the
positive gradients are kept as is. This is done in a backward pass of the neural
network.

Using a similar Monte Carlo method as discussed above, the confidence value for
each pixel impacting the decision can be calculated as given in the Equation (2.3)

q(σ0|x∗) ≈
1

T
ΣT

t=1∇θf
gb(x∗;W

∗
t ) (2.3)
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where,

T = the total number of samples

σ0 = The specific pixel or feature of the image

q = The significance of a pixel/feature for the segmentation

∇θ = The gradient of the layer w.r.t the parameters
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Chapter 3

Methodology and Experimental
setup

Methods to quantify uncertainty in the segmentation made by deep learning mod-
els, that were briefly discussed in Chapter 2 were implemented in this thesis using
a dataset that contains 3D scans of head and neck cancer masses.

This chapter highlights significant details of the dataset that was used for the study.
Since this thesis is a continuation and extension of the work of the healthcare
research group at NMBU, more granular details about the dataset can be found
in past research papers and dissertations [16][7].

Furthermore, this chapter explains the experiments that were performed and de-
scribes the implementation of theory from Chapter 2 for quantification and visu-
alization of uncertainties in auto-delineation of tumors using convolutional neural
network models for interpretation.

The code to perform experiments and analysis is available at GitHub repository
(https://github.com/ahmarabbas14/MS uncertainity) and can be used to rep-
licate results.

3.1 The dataset

The dataset provided for this thesis was contained in a single HDF5 file. It contains
3D scans from the head and neck regions of 197 cancer patients who went through

15
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treatment at Oslo University Hospital, the Radium hospital. The scans include
both CT and PET modalities [7].

The dataset also contains manual delineations from experienced radiologists at the
Oslo University Hospital, corresponding to each patient’s PET/CT scan. These
delineation masks included gross tumor volume (GTV) and also the affected lymph
nodes for the patients with advanced stage and were used as ground truths for deep
learning models in this study. In cases where multiple delineations were available,
a union of these delineations was used as ground truth. Moreover, a voxel in
the ground truth image for a patient that represents a healthy (or non-cancerous)
tissue has a value 0 while a cancerous voxel is marked as 1, which makes this a
binary segmentation problem.

The HDF5 file contains fourteen groups in the file root, each group has dataset
”input” (PET/CT scans) and ”target” (manual delineations). Each of these groups
represents a fold that belongs to repurposed dataset after splitting for training,
validation, and testing purpose as shown in Table 3.1

Table 3.1: Count of patients and folds belonging to each of the datasets

Dataset Folds No. patients

train 0-9 142

val 10 15

test 11-13 40

More details about the dataset can be found in the previous thesis from the same
research group in Moe’s work [7] and Huynh’s thesis [16].

For this thesis, methods for visualization and quantification of uncertainty in seg-
mentation were applied on the folds belonging to the test dataset as explained in
Table 3.1. Also, it is important to note here that this data was stratified based on
tumor stage to avoid any bias.

3.2 Model variants

As explained in the previous section, the dataset we have available has three
dimensions, to utilize the full potential of convolutional neural networks for 3D
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data [27], we trained this dataset on different variants of volumetric convNet (V-
net) architecture [28]. V-net architecture has become a popular choice for medical
image segmentation problem recently, as it requires pixel-wise classification of the
3D input image and 3D images provides more spatial signal as compared to 2D
[29][30].

For this thesis, first, we trained and compared four different models to measure the
effect of using dropout layers during the training process. Details of these models
are highlighted in Table 3.2.

During the testing phase, model.2 and model.3 as mentioned in Table 3.2 with dro-
pout rates 0.5 and 0.1 were used to make different predictions in multiple iterations,
details of the testing process and method to visualize and quantify uncertainty in
this thesis work are mentioned in Section 3.3 and Section 3.4 respectively.

Performance metrics

Dice and Jaccard Index are often considered reliable metrics to evaluate the per-
formance of medical image segmentation problems [31]. In this thesis, the Dice
score was used to analyze and compare the performance of different models and
outcomes. Dice score (also known as Sørensen–Dice index) is calculated in a sim-
ilar way as Intersection-over-Union (IoU) but by giving twice the weight-age to
correctly identified pixels or voxels. The equation for calculation of dice score is
given below Equation (3.1)

Dice =
2TP

2TP + FN + FP
(3.1)

Where TP stands for True Positive, which is the count of voxels that were tumorous
and were predicted as such. FN represents False Negatives, the count of voxels
that were incorrectly classified as non-cancerous and FP stands for False Positive,
which is the total voxels that were incorrectly predicted as cancerous.

3.2.1 Model architecture without dropout layers

The base V-net model which was used in this thesis consisted of the encoder (or
down-sampling) and the decoder (up-sampling) sections, each of these sections has
four blocks. For the encoder section, In each block, there are two 3D-convolutional
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layers with a kernel size of 3, followed by a 3D max-pooling layer. The filters in
each convolutional layer double after every block, starting from 32 and going all
the way up to 256. This architecture makes sure that the feature map is doubled
after every block and the input shape is reduced to half.

For the middle block (bridge) between encoder and decoder sections, two 3D-
convolutional layers with 512 filters and 3 kernel size are followed by a 3D up-
convolution layer.

In the decoder section, just like the encoder, two 3D-convolutional layers are used
at every block followed by an up-convolutional layer. In addition, the feature maps
from the corresponding encoder section are appended to the input of the layer to
reconstruct the segmented image. In the end, activation from a sigmoid function is
used to give the probability of a voxel belonging to either of the classes. Figure 3.1
gives a visualization of the architecture explained here.

Figure 3.1: Visual representation of the variant of Vnet architecture which was used
in this thesis. Convolution layers are marked with labels and the number of filters in
each layer is marked in the parenthesis. Layers between input and Conv3D(512) mark
the Encoder or the down-sampling path on the left and the rest is the up-sampling path

3.2.2 Model architecture with dropout layers

Core architecture for the model with dropout layers is the same as the one ex-
plained in Section 3.2.1 to a larger extent. However, two dropout layers were
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added in the middle or bridge block after each 3D-convolution layer. This ar-
chitecture was trained and tested with two different dropout rates, 0.5 and 0.1
respectively as mentioned in Table 3.2.

Figure 3.2 below depicts the placement of these dropout layers in the architecture.
The placement of the dropout layers here was inspired by Wickstrøm’s work [26].
However, during the experimental setup, another architecture was tried with a
dropout layer after every convolutional layer in encoder block, which increased the
complexity of the model exponentially and we did not have enough resources to
train such model, hence the idea was deemed not feasible to implement.

Figure 3.2: Another variant of Vnet architecture as discussed in Figure 3.1, However,
this variant marks the dropout layers with their placement. This architecture was used
with different dropout rates as mentioned in Section 3.2.2

3.3 The training and testing procedure

The ’train’ and the ’validation’ datasets as explained in Table 3.1 were trained and
validated on the four different models as shown in Table 3.2 to analyze the effect
of adding dropout layers in the model for strong regularization. The mean of dice
scores from all patient scans in the test data was used as the comparative metric
in this thesis.
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Table 3.2: Model variants for training with varying dropout and learning rates

Model dropout rate learning rate

model.1 0 0.0001

model.2 0.5 0.0001

model.3 0.1 0.0001

model.4 0.1 0.001

During the training process, trained weights were saved in an HDF5 file after every
5th epoch and the epoch with the best performance (minimum loss) was marked
to be used at the time of testing.

To estimate the predictive distribution and input feature importance using Monte
Carlo dropout method, the best epoch weights from the pre-trained model ’model.1’
as mentioned in Table 3.2 were used. These weights were loaded at the test time to
the models ’model.2’ and ’model.3’ described in Table 3.2 and 20 iterations were
made on each of the models with the ’test’ dataset scans, that gave us 20 differ-
ent predictions for each of the scan in the dataset and 20 different input feature
importance corresponding to those predictions.

The output predictions and guided back-propagation based feature importance
from each iteration were stored in a separate HDF5 file and were further processed
as explained in Section 3.4 and Section 3.5

All experiments which were mentioned here were performed on Orion, High-Performance
Computing (HPC) cluster provided and maintained by the IT department of
NMBU, using shared Graphics Processing Units (GPU) [32]. At a time, four ex-
periments were executed in parallel at max and they took on an average between
12 to 18 hours to complete based on the load on shared resources.

Figure 3.3 defines process flow for training and testing using Monte Carlo dropout
method.

3.3.1 Test model modifications to capture uncertainty

Adding dropout layers to a model is an effective method to regularize neural net-
works and reduce overfitting [33]. However, as per TensorFlow’s documentation,
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these dropouts by default are only applied in the training phase and are kept dis-
abled at the time of testing or making predictions. Monte Carlo based testing
models as explained in Section 3.3 require dropout layers to be activated and ap-
plied at the time of making prediction as well. Hence, the dropout layers in the
test model call a custom API of deoxys framework [16] which keeps dropouts active
using the ’training’ call argument enabled as per TensorFlow’s documentation [34]
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Figure 3.3: Visual representation of end-to-end training and testing process. Each box
identifies a process and the arrow show flow of the process. During testing with Monte
Carlo methodology, each image was given a forward pass with the model 20 times (N=20)
to estimate predictive distribution
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3.4 Uncertainty in prediction

As defined in Section 3.3, to obtain uncertainty in prediction, 20 different predic-
tions were made on each of the test scans using Monte Carlo Method and these
predictions were stored in an HDF5 file. They were further processed to produce
an uncertainty map. The uncertainty map highlights the voxels in segmentation
on which the deep learning model was not sure of its prediction.

This was done by stacking all predictions of a particular scan and taking standard
deviation over each of the voxels. The voxels with higher standard deviation
represent an uncertain region, however, the voxels where the model was very sure of
its prediction should theoretically have very similar or close class probability values
hence lower standard deviation. The standard deviation value for a particular voxel
is referred to as the uncertainty value here.

These uncertainty maps were thresholded to remove noise, this was done by setting
all voxels which had uncertainty values lower than the mean of all uncertainty
values plus thrice the standard deviation of all uncertainty values for a particular
scan to zero. The purpose of thresholding the uncertainty map is to highlight only
those voxels where the deep learning model is really unsure of its prediction and
remove all very small uncertainty values which actually show confidence in the
model.

The thresholded uncertainty maps were further plotted using the python library
matplotlib [35] to visualize uncertainty in prediction.

Moreover, the mean of all predictions for a particular scan was used as the final
segmentation in this thesis work.

3.4.1 Uncertainty for false predictions

In order to quantify the effectiveness of uncertainty maps to highlight false pre-
dictions of the deep learning model, it was important to find regions where seg-
mentation was done wrong. This included all voxels with False Positive and False
Negative predictions.

This was done by voxel-wise subtraction of ground truth and deep learning seg-
mentation. The absolute difference was stored and displayed as an error region
(ER) for qualitative and quantitative analysis in this thesis. The overlap of error
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region and uncertainty map was summarized using dice score Section 3.2, higher
the dice value indicates better identification and representation of error region by
uncertainty map.

3.4.2 Uncertainty to predict segmentation quality

Another problem based on the indecipherable black-box nature of deep learning
models which was explained in earlier sections is that it does not give a measure
of confidence in its prediction [36][37]. Only visualizing thresholded uncertainty
map with the auto-segmentation from deep learning models does not fulfill the
purpose as this in practice is not quantifiable, and its interpretation may vary
from clinician to clinician.

To address this issue, based on the recommendation and work from [36] we quan-
tified segmentation quality based on the overlap between uncertainty maps and
auto-segmentation made by the deep learning model. This overlap was measured
in dice score Section 3.2, the high dice score, in this case, means higher uncer-
tainty in prediction. Dice scores obtained from the overlap of the uncertainty map
and segmentation from the test dataset were further trained using four different
shallow learning regression models using actual prediction dice score as the target
to predict segmentation dice score in real-time.

Table 3.3: Regression models to predict segmentation dice score

Regression Model Model Class Hyper-parameters

GradientBoostingRegressor Ensemble random state = 0

RandomForestRegressor Ensemble NA

LinearRegression Linear NA

Ridge Linear alpha = 0.5

These models were trained with 60% of the data from the segmentation output in
the test dataset and were tested with the whole test dataset (i.e. 40 patients)



3.5. UNCERTAINTY IN FEATURE IMPORTANCE 25

3.5 Uncertainty in feature importance

Similar to the process of visualizing uncertainty in prediction, input feature import-
ance produced using guided back-propagation approach was stored in an HDF5 file
as mentioned in Section 3.3. This data included two modalities of scans PET and
CT and were stored as channels in the output file. At the time of visualization,
both these modalities were displayed on top of each other.

To visualize the uncertainty in feature selection by the model for prediction, all
gradients depicting voxel importance for a particular scan were stacked and the
voxel-wise standard deviation was calculated to visualize uncertainty in feature
importance. The higher standard deviation at a voxel represents that the model
was not sure if that particular voxel was important for classification.

The voxel-wise mean was used to depict actual feature importance which was
given to each voxel by the model to produce segmentation and was visualized in a
different color than uncertainty.



26 CHAPTER 3. METHODOLOGY AND EXPERIMENTAL SETUP



Chapter 4

Results

The methodology for the implementation of monte carlo dropouts based approach
to find uncertainty in predictions and input feature importance as detailed in
Chapter 3 was implemented using the deoxys framework developed by Huynh
[16].

In this chapter we are going to discuss results from the experiments that were
performed, we have divided this chapter into 3 main components. First, we are
going to share results from the comparison of model variants that differ from
each other based on the use of dropout layers and learning rates as mentioned
in cite table. Followed by a qualitative analysis of results from visualization of
input feature importance and uncertainty associated with it. And finally, in the
end, results from visualization of uncertainty in predictions and performance of
our approach to predict segmentation quality based on overlap metric between
uncertainty map and deep learning based segmentation are discussed.

4.1 Effect of dropout layers on model perform-

ance

As explained in Section 3.2, four different model variants were trained to measure
the effect of using dropout layers in the architecture. Out of these four variants,
three were trained using dropout layers while the fourth one was 3D replication of
the architecture from Huynh’s work [16] and was used as the benchmark.

27
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During the training process, the model was validated using validation dataset after
every 5 epochs. Figure 4.1 shows dice score from validation dataset after every 5th
epoch when validation was performed. Since early stopping with a tolerance of
’30’ was used during the training process, hence we can see model.1 and model.3
stopped training after 80 and 85 epochs respectively.

The Figure 4.1 also shows that the maximum dice score (0.659) during validation
was achieved by model.2 at the 100th epoch. In addition, the line plot shows
model.3 has the most consistent performance over epochs.

Figure 4.1: Scatter plot depicting performance of model variants as explained in
Table 3.2 on validation dataset. Validation was performed after every 5 epochs. Since
early stopping was used during the training and validation process, hence model.1,
model.2, model.3, and model.4 stopped training after 80, 100, 85, and 100 epochs re-
spectively.

Table 4.1 shows average dice score performance and standard deviation in dice
score over epochs for all model variants. Although the average dice perform-
ance does not change significantly between variants, the results reflect that all
model variants with dropout layers outperformed the benchmark model without
the dropout layers. In addition, the standard deviation in dice score over epochs
for model.3 is significantly low which shows that its performance is rather stable
and does not change a lot over epochs. The low standard deviation over epochs
for dropout-based architectures, explains and complies with the theory of using
dropouts for stronger regularization and preventing models from over-fitting as
explained in Chapter 2
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Table 4.1: Results from model variants for the training and validation process

Model No. of epochs Avg. dice Standard deviation in dice over epochs

model.1 80 0.589 0.143

model.2 100 0.593 0.103

model.3 85 0.619 0.018

model.4 100 0.585 0.078

After training and validation, all model variants were tested using the test dataset
as mentioned in Table 3.1. Figure 4.2 shows the performance of each variant on the
test dataset measured in dice score. One obvious observation from the line graph
(Figure 4.2) below shows that all models performed worse for patient IDs 110,
82,93, and 16, however, ’model.3’ appears to perform relatively better in most
of the cases. The worse performing patients were manually verified and it was
found that there was not enough signal in PET/CT scans for these patients. This
observation goes in line with studies based on the same datasets from the NMBU
healthcare data science group [7][16].

Figure 4.2: The plot shows performance of model variants (Table 3.2) on test dataset.
The horizontal axis marks patient IDs in the test dataset, while the vertical axis shows
their respective dice score.

Figure 4.3 below shows the average dice score performance of all model variants
that were experimented with. model.3 with the dropout rate of 0.1 and learning
rate of 0.0001 outperformed all other variants with an average dice score of 0.708.
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Figure 4.3: Illustrates average dice score on the test dataset of the training model
variants. ’model.3’ (0.1 dropout rate and 0.0001 learning rate) outperforms others with
an average dice score 0f 0.7089

Although the average dice performance did not increase significantly with the use
of the dropout layers, from comparative results before, it is easier to deduce that
dropout layers do regularize the model and prevent over-fitting.

4.2 Uncertainty in feature importance

Feature importance for predictions in each iteration of monte carlo approach was
calculated using guided backpropagation. The voxel-wise mean was used to visu-
alize features that were considered important for prediction by the model while
the variance in the gradient of input voxel was used to visualize uncertainty in
feature importance. Higher the variance shows that model was unsure about the
importance of that particular voxel for making predictions.

For further qualitative analysis of uncertainty in feature importance and predic-
tions following groups of patients were selected, these groups were formed based
on slices with high(dice > 0.75), low(dice < 0.2) and intermediate(dice > 0.5
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and < 0.6) overlap between error region (ER) and uncertainty maps as shown in
Table 4.2, Table 4.3 and Table 4.4

Table 4.2: Patient scan slices with high (dice > 0.75) overlap between error region
(ER) and uncertainty maps.

Patient idx slice idx dice

110 58 0.813

169 34 0.766

242 121 0.763

Table 4.3: Patient scan slices with low (dice < 0.2) overlap between error region (ER)
and uncertainty maps.

Patient idx slice idx dice

164 81 0.161

191 63 0.142

120 136 0.131

Table 4.4: Patient scan slices with intermediate (dice > 0.5) overlap between error
region (ER) and uncertainty maps.

Patient idx slice idx dice

73 94 0.510

116 75 0.519

16 57 0.572

Figure 4.4 Figure 4.5 and Figure 4.6 are the visualization of importance and uncer-
tainty of importance of input features for making predictions. These visualizations
were created based on patient groups selected for analysis as shown in Table 4.2
Table 4.3 and Table 4.4 respectively.

All these visualizations have four columns, from left to right, the first column
contains PET/CT scan with ground truth and prediction contours, the second
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column contains the uncertainty map of predictions, and the third column shows
feature importance and uncertainty in feature importance in CT channel and the
last column shows the same in PET channel. For feature importance, pixels high-
lighted in green define the region where the model was sure that those features
are important for prediction while voxels marked in red highlights voxel where the
model was unsure of their importance.

From Figure 4.4(a) we can see in the image labeled as PET/CT, that there is some
part of gross tumor volume (GTV) that was correctly segmented while the rest
of the GTV was not. However, when combining this with information from the
uncertainty map and feature importance from both modalities, we can see that
the false negative region has an uncertainty mark for those pixels, also feature
importance in both modalities shows uncertain features in the same region.

Figure 4.4(b) is a good example of false positive prediction, we can see that the
error dice for the slice is 0.813 which is a high number (on a scale of 0-1) and
the uncertainty map surrounds the segmented region. When we compare the
uncertainty region in prediction to the feature importance we can see that high
uncertainty in prediction is associated with the regions of uncertain features (red
pixels), this should indicate that the segmentation might not be correct.

Figure 4.5(a) is a good example to detect false negative predictions. We can see
in the first picture from the left that no tumor was detected by the segmentation
algorithm, however, the uncertainty map shows some uncertain predictions which
also reflects in PET and CT feature importance maps that model is highly unsure
in that particular region.
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(a)

(b)

(c)

Figure 4.4: Visualization of feature importance and uncertainty in feature selection
from each of the scan modalities (PET/CT). The first column on left shows PET/CT
scan with prediction and ground truth contours, the second depicts the uncertainty
map, thirst column from the left shows feature importance from CT scan where voxels
that were deemed important by the model for segmentation are colored in green while
red shows voxel where the model was uncertain of their importance. The last column
depicts the feature importance of PET scans with the same color scheme as used for the
CT channels. Graphics from patient idx 242 are shown in (a) from 110 in(b) and from
patient idx 169 in (c)
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(a)

(b)

(c)

Figure 4.5: Visualization of uncertainty in feature importance for slices with low over-
lap between error region and uncertainty map (dice < 0.2). Column description is the
same as explained in Figure 4.4. Here (a) shows results from patient idx 164, (b) from
patient idx 120 and (c) from patient idx 191 as explained in Table 4.3
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(a)

(b)

(c)

Figure 4.6: Repetition of visualization from Figure 4.4 for patient with intermediate
overlap between error region and uncertainty map (dice = 0.5 − 0.6) as mentioned in
Table 4.4

One thing that is common in all the above images is that the combination of
uncertainty in feature importance and uncertainty in prediction is able to identify
and highlight false predictions made by convolutional neural networks and also
true positive predictions where the model was really sure. This potentially gives
clinicians enough additional information to interpret the segmentation made by
the model.
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4.3 Uncertainty in prediction

4.3.1 Qualitative analysis

Chapter 3 explained the approach of monte carlo dropouts and its implementation
for this thesis that was used as a Bayesian approximation. The mean from the
distribution of predictions was used as the final segmentation and the standard
deviation which was thresholded using mean + 3 * (standard deviations) was used
to produce uncertainty map. In this section were are performing a qualitative
analysis of results from uncertainty maps and how they were able to define false
predictions in the model.

Error region is defined as the region in a scan that was predicted incorrectly by
the deep learning model. This included both false positive and false negative
predictions. To quantify if uncertainty maps which are obtained as Bayesian ap-
proximation are able to highlight false predictions in the model, we employed an
overlap metric of uncertainty map and error region in the test dataset, measured
in dice score. Table 4.5 below summarizes the results when uncertainty maps
were obtained using model.2 and model.3 in the test cycle as defined in Table 3.2.
An average dice score of 0.228 and 0.211 was achieved by model.2 and model.3
respectively. ’Max. dice’ shows the maximum overlap between uncertainty and
error region which was defined by each of the models.

Table 4.5: Model performance measured in the overlap between error region and un-
certainty map

Model Learning rate Dropout rate Avg. dice Max. dice

model.2 0.0001 0.5 0.228 0.536

model.3 0.0001 0.1 0.211 0.414

The results from the table above (Table 4.5) do not give any conclusive results
on whether false predictions were successfully highlighted by uncertainty maps or
not. Hence we performed some quantitative analysis using patient groups that
were defined in Table 4.2, Table 4.3 and Table 4.4.

Figure 4.7, Figure 4.8 and Figure 4.9 below shows PET/CT scans with segment-
ation and ground truth contours as marked in plot legend in the first column
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from the left, the second column highlights the error region, which is the pixel-
wise difference of segmentation and ground truth and the last column visualizes
uncertainty maps obtained from model.2 in the test cycle.

From Figure 4.7(a) we can see that the uncertainty map from the model highlights
almost the whole segmentation and ground truth region however, uncertainty is
stronger (bright voxels) just outside the predicted tumor, hence indicating a prob-
able false negative region. The same pattern can be seen in Figure 4.9(a) where
false negative predictions have higher uncertainty values associated.

Figure 4.7(b) is an example where the uncertainty map was able to highlight false
positive predictions, where the uncertainty map covers almost all of the predicted
segmentation and is particularly bright on the edges of the structure.

Although the quantitative stats mentioned in Table 4.5 indicated an insufficient
correlation between the uncertainty map and error region, but from qualitative
analysis, all these figures reflect that the uncertainty map, especially the bright
region was able to highlight the error region more or less in some way. And it is
expected behavior as per theory, that the uncertainty region could not fully define
the error region but gives enough evidence to be interpreted as false predictions,
especially where uncertainty is high.
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(a)

(b)

(c)

Figure 4.7: Visualization of Uncertainty in prediction for a patient with high overlap
between error region and uncertainty map (dice > 0.75). The first column from the
right shows scan with both modalities (PET/CT) plotted on top of each other and
a contour drawn against ground truth (blue) and predicted tumor(red). The Middle
column shows the error region for prediction, this includes both false positive and false
negative predictions. The last column on right shows the uncertainty map. Patient idx
121 is shown in (a), Patient idx 110 in (b) and Patient idx 169 in (c)
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(a)

(b)

(c)

Figure 4.8: Visualization of Uncertainty in prediction for a patient with low overlap
between error region and uncertainty map (dice < 0.2). Column descriptions are the
same as in Figure 4.7. (a) visualizes results from Patient idx 164 with error dice 0.161
(b) from Patient idx 120 with error dice 0.131 and (c) Patient idx 191 with error dice
0.142
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(a)

(b)

(c)

Figure 4.9: Visualization of Uncertainty in prediction for patient with intermediate
overlap between error region and uncertainty map (dice = 0.5 − 0.6). (a)(b)(c) shows
results from patient idx 116, 16 and 73 respectively

4.3.2 Quantitative analysis

As explained in Section 3.4.2, in order to potentially improve the acceptability
of deep learning models for auto segmentation of tumors in clinical settings, in
addition to the visualization of feature importance and uncertainty in prediction,
it is crucial to provide an estimate of confidence of model in its prediction in
terms of easily interpretable and comparable metric. For this at first, we trained a
simple ordinary least square (OLS) model based on average prediction uncertainty
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values for each scan to predict segmentation dice score. This model was trained
on the test dataset, however, it didn’t perform quite well as the Figure 4.10 below
shows the model could only achieve R2 of 0.183 depicting not a good fit. This was
expected as the average uncertainty value theoretically is not a comparable metric
between data points.

Figure 4.10: This plot illustrates the performance of an Ordinary least-squares (OLS)
model when applied to predict segmentation dice score from average uncertainty value
for scans in the test dataset. The coefficient of determination achieved for this model is
0.183

We adopted another novel approach, inspired by a study from [36] to quantify
patient level segmentation confidence. For this, we used an overlap metric of
uncertainty map and predicted tumor measured in dice to estimate segmentation
dice. In theory, a high overlap between uncertainty map and predicted tumor
should represent a low segmentation dice or vice versa, as that would mean the
model is not certain in its prediction when the overlap is high.

To achieve this, four shallow learning regression models were trained to predict seg-
mentation dice as shown in Table 4.6. Gradient boosting regressor outperformed
all others with an R2 value of 0.728 and 0.487 with uncertainties calculated through
model.2 and model.3 respectively. Figure 4.11 below shows predicted dice scores
plotted against actual dice score of segmentation, these predictions were made
using Gradient boosting regressor, while the input variable (i.e. dice score from
the overlap of uncertainty map and predicted tumor) was calculated based on
uncertainty maps estimated using model.2.



42 CHAPTER 4. RESULTS

Table 4.6: Regression models to predict segmentation dice score from the overlap of
segmentation and uncertainty map

dropout = 0.5 dropout = 0.1

Regression Model R2 MSE RMSE R2 MSE RMSE

GradientBoostingRegressor 0.728 0.009 0.095 0.487 0.017 0.131

RandomForestRegressor 0.469 0.017 0.133 0.534 0.015 0.124

LinearRegression 0.012 0.033 0.181 0.0124 0.033 0.181

Ridge 0.023 0.032 0.180 0.0096 0.0331 0.182

Figure 4.11: Graphs show results from our novel approach to estimate segmenta-
tion dice score based on the overlap between uncertainty map Section 3.4.2 and actual
segmentation from deep learning model using Gradient boosting regression. On the hori-
zontal axis, we have the dice score from the predicted tumor and the vertical axis shows
the estimated dice score. These results were obtained by using model.2 Table 3.2 in test
time to make predictions

Figure 4.12 below show repetition of the same approach using uncertainty map
through model.3. In this experiment gradient boosting regressor achieved an R2

of 0.487 and MSE of 0.017 while Random forest regressor achieved R2 of 0.534 and
MSE of 0.015 as shown in Table 4.6.
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Figure 4.12: Repeated experiment as mentioned in Figure 4.11 with model.3, which
had 0.1 dropout rate. Coefficient of determination R2 using gradient boosting regression
for this was calculated to be around 0.487
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Chapter 5

Discussion

In this chapter, we have discussed and analyzed results obtained from the methods
explained in Chapter 3 in further detail. It is important to mention here that all ex-
periments were executed using the deoxys framework developed by Huynh [16] and
the predictions and feature importance obtained using guided back-propagation
were saved in 20 different HDF5 files. These 20 files represent the output from
each iteration of monte carlo method and were analyzed separately using a differ-
ent code-base (https://github.com/ahmarabbas14/MS uncertainity) to obtain
uncertainty maps and further analysis.

The results discussed in Chapter 4 concur with the theory explained in Chapter 2
and other studies [26][36] which were the inspiration for this thesis and were used
as the basis for this study, as we have seen from the results that uncertainty maps
obtained using Monte Carlo dropouts does explain and highlight false predictions
made by convolutional neural networks.

We also did establish that using dropout layers does improve the performance of
models in the training stage by regularizing models and preventing them from
over-fitting. And the same dropout layers can be used for Bayesian approximation
[21] using monte carlo approach.

The results obtained from different experiments are further discussed and com-
pared in the sections to follow.
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5.1 Importance of dropout layers

Figure 4.1 clearly shows that models trained with dropout layers have rather stable
performance over epochs as compared to the ones without dropout layers, this
shows the effect of strong regularization. However, this is done over the cost of
more epochs during the training process which is expected and in line with theory.

Figure 4.3 illustrates that using dropouts not only helps in regularizing models
and better performance with the validation dataset but also outperforms the non-
dropout based model with the test dataset. During experiments, model variants
only differ from one another based on the dropout and learning rates as shown in
Table 3.2. However, it will be interesting to compare the performance of models
based on different placements of the dropout layer in combination with other hyper-
parameters.

Our results also comply with other studies regarding the efficacy of dropouts to
improve model performance [38][39]

5.2 Qualitative and quantitative analysis of pre-

diction uncertainty

In section Section 4.3 and Section 4.2 we briefly talked about the results which
were obtained by visualizing uncertainties in predictions and input feature selec-
tion. In this section, we are discussing the interpretation of those results, whether
these visualizations are sufficient to identify false prediction and segmentation
confidence, and their interpretation in the clinical environment.

False predictions

Table 4.5 shows that the average dice score calculated based on the overlap between
error region and uncertainty maps does not reflect significant performance, how-
ever, if we compare this theoretically, these results are expected as we have threshol-
ded uncertainty maps to mean + 3 * (STD) for every scan and there must be
uncertainty in the true positive region as well. Hence a better choice of metric in
this case would have been precision as mentioned by [5]
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However the qualitative analysis in Section 4.3 shows that uncertainty maps were
able to highlight false predictions in almost all patient groups which were selected
for analysis. Figure 4.7 (a) is the perfect example to interpret that uncertainty
maps in predictions and feature importance combined show high variance in the
region corresponding to false predictions.

True predictions

Figure 4.4(a) shows that the uncertainty values in the true predicted region are
very low as compared to the false prediction region. Also, the model is really sure
about the corresponding feature importance map as we can see only green pixels
highlighted in the PET and CT importance map for true positive predictions.

5.3 Visualization of uncertainties

Based on the finding and discussion above, we find it imperative to recommend a
holistic view for clinicians, that should assist them while making delineations in
PET/CT scans and would potentially improve the acceptability and reliability of
deep learning models in the clinical environment.

Figure 5.1 below shows a sample view for radiologist’s interpretation. These visu-
alizations were created from a patient scan in test dataset with a moderately high
dice score (0.720). From left to right, we have the predicted tumor delineated over
scan slice, followed by uncertainty map and feature importance map from CT and
PET modalities respectively.

There are two structures predicted by the CNN, the structure predicted in the
bottom part of the image has very low corresponding uncertainty values, which
means the algorithm is very sure in its prediction, and the corresponding feature
importance in PET and CT scans also reflect that CNN is very sure about the
importance of those pixels in the input slice, hence its easier to interpret that the
segmentation is highly confident in this case.

The second predicted structure in this slice, on the top side of the image has high
uncertainty values associated with both uncertainty map and feature importance,
reflecting that this might be a false prediction and would require manual investig-
ation from radiologists.
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The label of the image shows patient and slice IDs, followed by an estimated dice
score on a scale of 0-1, the value of 0.8204 reflects that model is very certain in its
prediction and should help radiologists with interpreting results.

Figure 5.1: Illustration of visualization recommended to be presented to clinicians to
potentially improve interpretation of auto-segmentation. The first picture from the left
shows PET/CT scan with segmentation contour. The next image gives a visualization
of the uncertainty map, followed by feature importance in the CT channel and feature
importance in the PET channel in the last column at the right

5.4 Different approaches for uncertainty and fu-

ture work

We have discussed that monte carlo dropout method is a promising approach to
quantify uncertainties in segmentation made by deep learning models. However,
there are other approaches as well that can be used for Bayesian approximation.
[40] has done a comparison of some of the approaches in their study which includes
Aleatoric Uncertainty, Ensembles, and Auxiliary Networks. Figure 5.2 below was
adopted from [21] which reflects the difference between monte carlo dropouts ap-
proach and the ensemble approach. The primary difference between these ap-
proaches is that in MC dropouts, uncertainty is estimated by deliberately turning
some neurons off while making predictions, forcing the model to make slightly dif-
ferent predictions in each iteration. While on contrary, in the ensemble approach,
as the name suggests, completely different models are trained and tested separately
and the variance in their predictions is used to quantify uncertainty in prediction.

The ensemble approach requires more development efforts as multiple different
models are to be trained and tested and hence require more computations. There-
fore, we used monte carlo approach in this thesis, however, for future work, these
two approaches can be compared in a different study.
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Figure 5.2: The figure shows (a) Monte carlo dropout based T predictions which were
obtained by using dropout layers in test time (b) shows Ensemble method based T
predictions. Adapted from [21], permitted usage under Creative Commons license

In addition to comparing monte carlo dropouts and ensemble approaches, it is also
important to repeat experiments performed in this thesis with dropout layers and
other hyper-parameters at different positions in the model to gauge the effect of
those on uncertainty quantification.
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Chapter 6

Conclusion

To summarize, the central idea behind this thesis work was to analyze the effect-
iveness of the dropout layer in the deep learning model and to examine if they can
be used in tandem with monte carlo approach to estimate uncertainty in model
predictions. For this, we performed experiments to get 20 different predictions for
input scan images using different dropout models, and the variance in those pre-
dictions were used to approximate uncertainty in model predictions. In addition,
we also employed guided back-propagation to approximate uncertainties in input
feature selection to improve the interpretation of convolutional network models.
Results from our experiments go in line with other studies on the same subject
[26][36][21][5] as discussed in the section before. Contributions of our work are
highlighted in Section 6.1

6.1 Contributions of our work

Based on all the experiments that were performed and the analyses which were
made on the outcomes of those experiments to gauge the effectiveness of using
monte carlo dropouts method, in this thesis, we were able to contribute the fol-
lowing:

• Firstly our quantitative analysis shows that the use of dropout layers in
convolutional neural network models helps with regularization and improves
its performance on test images. And these dropout layers can be kept act-
ive at the time of making predictions to estimate uncertainty in the model
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predictions.

• We exhibited that monte carlo dropout method is an effective method for
Bayesian approximation in a deep learning model. Our proposed uncertainty
visualizations obtained from this method can potentially help clinicians at
the time of their assessments and subsequently improve reliance on CNNs
for auto tumor segmentation.

• We experimented and showed outcomes of a novel approach to quantify pre-
diction certainty as inspired from [36] and achieved significant accuracy in
predictions.
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