
Open Journal of Microphysics, 2022, 12, 55-85 
https://www.scirp.org/journal/ojm 

ISSN Online: 2162-2469 
ISSN Print: 2162-2450 

 

DOI: 10.4236/ojm.2022.122004  May 31, 2022 55 Open Journal of Microphysics 
 

 
 
 

Planck Units Measured Totally Independently 
of Big G 

Espen Gaarder Haug  

Norwegian University of Life Sciences, Ås, Norway  
 

 
 

Abstract 

In this paper, we show how one can find the Planck units without any know-
ledge of Newton’s gravitational constant, by mainly focusing on the use of a 
Cavendish apparatus to accomplish this. This is in strong contrast to the as-
sumption that one needs to know G in order to find the Planck units. The 
work strongly supports the idea that gravity is directly linked to the Planck 
scale, as suggested by several quantum gravity theories. We further demon-
strate that there is no need for the Planck constant in observable gravity phe-
nomena despite quantization, and we also suggest that standard physics uses 
two different mass definitions without acknowledging them directly. The 
quantization in gravity is linked to the Planck length and Planck time, which 
again is linked to what we can call the number of Planck mass events. That is, 
quantization in gravity is not only a hypothesis, but something we can cur-
rently and actually detect and measure. 
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1. Background 

In 1899, Max Planck [1] [2] introduced what is known today as the Planck units. 
He did this by assuming there were three universal constants; namely, the speed 
of light c, the Planck constant  , and Newton’s gravitational constant. Using 
dimensional analysis, he derived a mass, time, length, and temperature (energy), 
which he thought were important, even fundamental units. These were given  

mathematically by p
c

m
G

=
 , 3p

G
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=
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tually the Planck temperature 
5

2
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c
T

Gk
=

  which is directly linked to the Planck 

energy). 
Haug [3] [4] has recently suggested that G is a universal composite constant of  

the form 
2 3
pl cG =


, and that it is the Planck units that are even more funda-

mental. Naturally, we can find 
2 3
pl cG =


 mathematically by solving Planck’s  

formula for the Planck length with respect to G. Similarly, we can solve the 
Planck mass formula, the Planck time formula, or the Planck energy formula  

with respect to G; this gives 2
p

c
G

m
=
 , 

2 5
pt cG =


, and 
5

2
p

c
G

E
=
 , respectively. To  

suggest that the gravitational constant is a composite constant related to the Planck 
units was already suggested in 1984 by Cahill [5] [6]. His suggested formula was  

based on solving the Planck mass formula for G, so his formula was 2
p

c
G

m
=
 .  

However, modern physics relies on G to find the Planck units, so claiming that 
G is a universal composite constant seems to lead to a circular problem. This 
circular problem was likely first pointed out in 1987 by Cohen [7]. For example, 
McCulloch [8] [9], as late as 2016, suggested the same composite formula  

(re-discovery) for G as Cahill, that is; 2
p

c
G

m
=
  (unaware of the Cahill formula,  

as it was more or less forgotten), and McCulloch repeated the standard physics 
assumption that one needs to know G in order to find the Planck mass. In his 
own words: 

In the above gravitational derivation, the correct value for the gravitational 
constant G can only be obtained when it is assumed that the gravitational inte-
raction occurs between whole multiples of the Planck mass, but this last part of 
the derivation involves some circular reasoning, since the Planck mass is defined 
using the value for G.—M. McCulloch, 2016. 

This is a common assumption in modern physics, but here we will prove that 
the Planck mass and the other Planck units can be extracted from gravity obser-
vations with no knowledge of G, and we will also discuss some possible implica-
tions of this method. There also exist suggestions to link the gravitational con-
stant to electromagnetic parameters or constants such as the fine structure con-
stant; see Kallinski [10] and Sánchez [11], or to cosmological constants as likely 
first suggested by Bleksley [12] in 1951. However, this is outside the scope of this 
paper as the focus here is on the Planck units. Still, there are also likely to be di-
rect links between, for example, the cosmological constants, such as the Hubble 
constant, and the Planck units, as described recently by Haug [13] [14] [15]. 

2. A Short History of the Gravitational Constant 

Newton did not measure the gravitational constant himself, nor did he introduce  
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it in his work. His formula was actually 
2

Mm
F

R
= , which he only described in  

words in Principia [16]. Even without any gravitational constant, he was able to 
measure and predict the mass of planets relative to each other quite accurately; 
see Cohen [17] for a more detailed description. In 1798, Cavendish [18] pro-
duced his famous paper on finding the density of the Earth and he did not 
measure, describe, or use a gravitational constant either. The Cavendish appara-
tus was needed to compare the density of the Earth with a mass of a known uni-
form material, such as water, iron, mercury, or lead. If one knew of a planet or 
moon in our solar system that consisted of a uniform amount of matter, and also 
knew the amount of that matter, then a Cavendish apparatus would not be 
needed to find the density of that celestial object—the Earth, for example. How-
ever, this is obviously not the case. Therefore, the Cavendish apparatus is very 
useful because then one has full control over the choice of the material of the 
gravitational objects; they can be made of lead, for example. Then one can com-
pare the weight of such an object with whatever clump of matter one has decided 
on as a standard weight, such as the kg. 

The Cavendish apparatus is also well suited for measuring the gravitational 
constant. What is known today as Newton’s gravitational constant was actually 
first mentioned by Cornu and Baille [19] in 1873, which introduced the formula  

2

Mm
F f

R
= . In any case, in 1894, the notation G for the gravitational constant  

was introduced by Boys [20]. It took many years before G became the standard 
notation; as late as 1928, Max Planck [21] was still using the notation f and Eins-
tein [22] used the notation k in 1916, for example. Naturally, whether the gravi-
tational constant is called f, k or G is merely cosmetic, what is interesting here is 
that for hundreds of years, scientists were able to perform a large number of 
gravity calculations, measurements, and predictions with no knowledge of G; see 
Haug [23] for an in-depth study of the history of the gravitational constant. One 
can argue that Cavendish used G indirectly, but we can just as well argue that he 
was relying on the Planck units indirectly, which, like the gravitational constant, 
had not been introduced at the time of Cavendish. The Planck units were intro-
duced in 1899, while Newton’s gravitational constant was introduced in 1873. Of 
course, the fact that one constant was introduced before another one does not 
necessarily make it more fundamental, and the frontiers of understanding may 
change over time; something we will also look at in this paper. 

3. The Planck Mass Measured Directly with a Cavendish  
Apparatus 

Remarkably, using a Cavendish apparatus, we can measure the Planck units 
without any knowledge of Newton’s gravitational constant. Here we will demon-
strate this first for the Planck mass. A Cavendish apparatus consists of two small 
balls and two larger balls, all made of lead, for example. The torque (moment of 
force) is given by: 
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κθ                                (1) 

where κ  is the torsion coefficient of the suspending wire and θ  is the deflec-
tion angle of the balance. We then have the following well-known relationship: 

LFκθ =                              (2) 

where L is the length between the two small balls in the apparatus. Further, F can 
be set equal to the gravitational force given by: 

2 3 2 5 5

2 2 2 2 2 2
p p

p p

l c t cMm Mm c Mm c Mm
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R R E R m R
= = = =

 
 

            (3) 

This means we have: 

2 2
p

c Mm
L
m R

κθ =
                           (4) 

We also have the natural resonant oscillation period of a torsion balance given 
by: 

2
I

T
κ

= π                             (5) 

Further, the moment of inertia I of the balance is given by: 
2 2 2

2 2 2
L L mL

I m m   = + =   
   

                    (6) 

This means we have 
2

2
2
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T
κ

π=                           (7) 

And when solved with respect to κ , this gives 
2 2

2 2 22
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κ
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π
 

2 2

2

2mL
T

κ π
=                           (8) 

Next in Equation (4), we are replacing κ  with this expression, and solving 
with respect to the Planck mass: 

2 2

2 2 2
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mL c Mm
L

T m R
θπ
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2 2 2

2 2

2 1

p
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2 22p
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2

2 22p
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L R θπ

=
                         (9) 

The mass M is the mass of each of the two large lead balls in the Cavendish 
apparatus, not the mass of the Earth. All we need in order to find the mass of the 
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large balls is an accurate measurement of weight. Such a measurement of weight 
should be independent of knowledge of Newton’s law of gravitation, but since 
weight is an effect of gravity, they are still related. For example, the act of choos-
ing an arbitrary clump of matter and using that as the standardized weight unit 
can be applied here. If we work with the kg definition of mass, we can weigh the 
large balls in the Cavendish apparatus with the one kg mass on the other side. 
Keep in mind that in addition to measurements done in relation to the Caven-
dish apparatus, we need the Planck’s constant. Planck’s constant can be found 
from the Watt balance [24] [25] [26] [27], or more traditionally from the black 
body spectrum [28]. That we need the Planck constant is related to the fact that 
we are operating with masses in the form of kg. The new kg definition1 is direct-
ly linked to the Planck constant. 

The angle θ  and the oscillation time period T are what we measure with the 
Cavendish apparatus. The length L is the distance between the small lead balls 
and R is the distance between the large lead ball’s centre to the centre to the 
small lead ball, when the arm is in equilibrium position (mid-position). 

Today, there even exists a small, ready-to-use Cavendish apparatus, which 
measures the angle of the arm and the time very accurately by fine electronics 
and is plugged directly into a computer with a USB cable; see Figure 1. Using 
this low-budget apparatus, we can measure the Planck mass with about only 5% 
error without any knowledge of Newton’s gravitational constant. 
 

 
Figure 1. Low budget modern Cavendish apparatus combining old mechanics with 
modern electronics that feed directly to your computer through a USB cable. It is 
remarkable that using such an instrument, we can measure the Planck mass with only 
about 5% error. 

 

 

1The 2018 definition decided upon at the General Conference on Weights and Measures (CGPM). 
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As soon as we know the Planck mass, we have the input needed to perform 
gravitational predictions, such as predictions on the orbital velocity of planets 
and satellites, for example; see Table 1. Looking at several places in Table 1, we 
find the parameter N, which is the number of Planck masses in the gravitational 
object, e.g. the Earth. The number of Planck masses in the Earth can be found 
first by finding the Planck mass from a Cavendish apparatus as described in this 
section. Second, one measures the gravitational acceleration on the surface of the 
Earth; to do this we simply need an object we can drop, a brass ball, for example, 
and two time-gates2. Next we have from the table that: 

2
p

c
g N

R m
=

  

2
pR m

N g
c

=


                         (10) 

Now we have N (the number of Planck masses in the Earth,  
2

326371000
9.81 2.74pmN

c

×
= × ≈


), and again we had no need for G to find it;  

we now have the input we need to complete all other gravity predictions in the 
table. 

Haug [29] [30] [31] has, in a similar way, shown how the Planck units can be 
found independent of big G using a Newton force spring as well as a pendulum 
clock and a ball clock, but here the focus is on using a Cavendish apparatus. We 
have looked at this briefly before [32], but this paper goes into the topic in much 
more depth. See also Appendix A, on how we can extend the derivation above to 
find the Planck length and Planck time “directly” from a Cavendish apparatus 
without knowledge of both G and  . 

Table 1 shows a series of outputs we can get from a Cavendish apparatus. All 
of the Planck units in this table require that we know the Planck constant as well, 
and some also require the speed of light to find them. 

4. Why Newton’s Gravitational Constant Likely Is a  
Universal Composite Constant 

In our analysis, the first strong indication that the gravitational constant is a 
composite constant is given by its output units, which are m3∙kg−1∙s−2. It would be 
very strange if something concerning the fundamental nature of reality would be 
found in metres cubed, divided by kg and seconds squared. The Planck mass, the 
Planck length, and the Planck time are somewhat easier to relate to. The speed of 
light is also something we can relate to logically; it is the distance light travels in 
a vacuum during a pre-specified time interval. The Planck constant is more 
complex (and its interpretation is outside the scope of this paper), but it is re-
lated to the view that energy seems to come in quanta; see also [33]. In sum, the 
Planck mass, the Planck time, the Planck length, and even the speed of light 
seem to be more intuitive than does the gravitational constant. 

 

 

2Or alternatively a ball with a built-in stop-watch; such balls are sold for this particular purpose, and 
are known as g-balls. 



E. G. Haug 
 

 

DOI: 10.4236/ojm.2022.122004 61 Open Journal of Microphysics 
 

Table 1. The table shows a series of gravity formulas when using the standard Newton gravitational constant and the alternative 
when arguing that Newton’s gravitational constant is a composite constant. Note that N is the number of Planck masses in the 
gravitational object; this can be found by measuring the Planck mass indirectly first. 

 Standard form/way Planck form Observed 

Gravitational constant 116.67 10G −≈ ×  
2 3

11
2 6.67 10p

p

l cc
G

m
−= = ≈ ×




 indirectly only 

Cavendish: Gravitational constant 
2 2

2

2L R
G

MT
θπ

=   indirectly only 

Cavendish: Planck mass Only derived from G 
2

2 22p

cMT
m

L R θπ
=

  indirectly only 

Cavendish: Planck length Only derived from G 
2 2

2 3

2
p

L R
l

MT c
θπ

=
  indirectly only 

Cavendish: Planck time Only derived from G 
2 2

2 5

2
p

L R
t

MT c
θπ

=
  indirectly only 

Cavendish: Schwarzschild radius Normally dependent on G 
2 2

2 2

4
s

L R
r

c T
θπ

=  indirectly onlyo 

Newton’s gravity force 2

mM
F G

R
=  1 2 2

c
F n n

R
=

  indirectly only3 

Gravitational acceleration field 2

GM
g

R
=  2

2
plg N c
R

=  or 
2

p

c
g N

R m
=

  Yes 

Mass from acceleration field 
2gR

M
G

=  
2

2 3
p

gR
M

l c
=

  indirectly only 

Orbital velocity o

M
v G

r
=  p

o

l
v c N

r
=  Yes 

Escape velocity 2e

M
v G

r
=  2 p

e

l
v c N

r
=  indirectly only4 

Time dilation 2 1 2

2
1

GM
t t

rc
= −  2 1 1 2 plt t N

r
= −  Yes 

Newton’s gravitational bending of light 2

2GM
rc

δ =  2 plN
r

δ =  Twice of that 

GR gravitational bending of light 2

4GM
rc

δ =  4 plN
r

δ =  Yes 

Gravitational red-shift ( ) 2limr

GM
z r

R→+∞ =  ( )lim p
r

l
z r N

r→+∞ =  Yes 

Schwarzschild radius 2

2
s

GM
r

rc
=  2s pr N l=  indirectly only 

Einstein’s field equation 4

1 8
2v v v

G
R g R T

cµ µ µ=
π

−  2

81
2

p
v v v

p

l
R g R T

m cµ µ µ

π
− =  indirectly only 

 

 

 

3Actually, Newton’s gravitational force has never been observed directly, only indirectly through the 
predictions that come from mathematically rearranging this formula to develop other predictions, 
such as orbital velocity. 
4To my knowledge the escape velocity has not been tested empirically. 
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Continued 

Einstein’s constant 2

8 G
c

κ =
π  

8 p

p

l
m

κ =
π

 Indirectly only 

Einstein’s cosmological constant vacκρΛ =  
8 p

vac
p

l
m

ρΛ
π

=  indirectly only 

Hawking temperature 
3

8 b

c
GM kπ

  
21

8
p

b

m c
T

N kπ
=  indirectly only5 

Hawking dissipation time 
2 3

4

15360
ev

G M
t

c
=

π


 315360 pT N t= π  indirectly only6 

Bekenstein-Hawking luminosity 
6

2 215360
c

P
G Mπ

=
  

2

2 2

1
15360 p

c
P

N l
=

π
  indirectly only7 

 
Haug [3] has shown that assuming the gravitational constant is a composite 

will help make all of the Planck units more intuitive. For example, the Planck  

time is given by 5p
G

t
c

=
 ; when rewritten based on the idea that the gravita-

tional constant is a composite, this simply gives the (known) p
p

l
t

c
= . The latter 

form is well known, but the view that Newton’s gravitational constant is a com-

posite constant renders the form 5p
G

t
c

=
  unnecessary. We might then ask,  

what is the intuition on 5c  and G? The answer may not be so clear. Yet, the  

intuition behind pl

c
 is simple; it is a very short distance divided by the speed of  

light, so it comprises a very short time interval. The gravitational constant com-
posite formula has the same challenge, in that we could end up with a circular 
problem again because modern physics typically assumes that we need to know 
big G before we can find the Planck units. However, as we have demonstrated 
clearly in this paper and other papers using other approaches, this is not the case. 
This does not mean that big G is wrong; it is just likely to be a composite uni-
versal constant rather than a fundamental constant. 

We find that many gravitational formulas may be seen from a new perspective 
when rewritten based on the idea that Newton’s gravitational constant is a com-
posite constant; we summarize a selection of such gravitational formulas in Ta-
ble 1. 

5. Relative Standard Uncertainty 

Assume we have measured the Planck mass (with a standard uncertainty of 1%) 
on the kitchen table with Cavendish apparatus plugged into our computer. The 
relative uncertainty in the gravitational constant must then be: 

 

 

5At least not directly. 
6At least not directly. 
7At least not directly. 
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3

2 1100 2%
100 50

p

p

p p

m
mG c

m G Gm
∂

× = × = =
∂ ×

                 (11) 

That is to say, the standard uncertainty in the Newton gravitational constant 
will always be twice that of the standard uncertainty in the Planck mass mea-
surements. This is in line with what is found in NIST (2018) CODATA, which 
reports a relative standard uncertainty for the gravitational constant of 2.2 × 10−5 
and 1.1 × 10−5 for the Planck mass. 

Considerable experimental efforts have been going into, and are still going 
into, improving the measurement of accuracy in G; see, for example, [34] [35] 
[36] [37] [38]. Our claims in this paper that the gravitation constant is not 
needed to find the Planck units, nor to predict gravitational phenomena, do not 
reduce the significance of this effort. It is just that these researchers are, in reality,  

measuring the Planck length indirectly, or actually 2
pl  since we have 

2 3
pl cG =


  

and c  and   are today defined as exact constants. The only uncertainty then 
comes from pl . This explains why it is so hard to measure G precisely and why 
it has a bigger uncertainty than other constants, such as the fine structure constant. 
This is because G is just an indirect measure of the smallest length that exists. 

6. Finding the Planck Length and Planck Time without  
Knowledge of G and h 

We can actually find the Planck length and the Planck time without knowing the 
Planck constant, in addition to not knowing G. To do this, we also need to know 
the Compton wavelength of the mass (the gravitational object). Here we will 
show how the Compton wavelength from any mass can be found with no know-
ledge of  ; for a discussion of the Compton wavelength and its relation to the 
de Broglie wavelength, see Appendix A. We can write any kg mass as: 

1 1h
m

c cλ λ
= =

                         (12) 

where λ  is the reduced Compton wavelength of the mass in question. This is  

simply the well-known Compton [39] wavelength formula, 
mc

λ =
  solved  

with respect to the mass8. Equation (12) actually holds for any mass, including 
composite masses such as protons and even cosmological size objects. A mass 
consisting of many fundamental particles does not have one Compton wave-
length, but rather it has one for each fundamental particle it consists of. Howev-
er, these wavelengths from each elementary particle can be aggregated in the 
following way: 

 

 

8Compton gave this formula indirectly in his 1923 paper and it assumes the electron initially stands 

still. The relativistic version of the reduced Compton wavelength would be 
mc

λ
γ

=
 , see [40].  
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1

1 2 3

1
1 1 1 1

n

i

n

λ

λ λ λ λ
=

= =
+ + + +

∑


                (13) 

This is then what we will call a reduced Compton equivalent mathematical 
wavelength for the mass in question. This is because a composite mass consists 
of many elementary particles that likely all have their own reduced Compton 
wavelengths. We will soon get back to how the Compton wavelength may be re-
lated to the de Broglie wavelength. In this framework, c and   are constants; 
the only thing that distinguishes different size rest-masses is the Compton wave-
length. We think there is no simpler way to express the kg mass from assumed 
fundamental constants, and naturally we also need one variable to distinguish 
between different mass sizes, and this variable is the Compton wavelength. This 
does not alter the basic standard addition of mass rule since we must have9: 

1 2 3m m m m= + +  

1 1 1

1 1 1 1
c c c cλ λ λ λ
= + +

     

1 1 1

1 2 3

1 1 1 1
1

1 1 1
c c c cλ λ λ

λ λ λ

= + +

+ +

                   (14) 

In this case, all we need to compare the relative size of masses will be their 
Compton wavelengths. One can find the Compton wavelength of an electron, for 
example, by Compton scattering10. This does not require that one first knows the 
mass in kg or the Planck constant. One is simply shooting a photon with wave-
length 1λ  before it hits the electron. Then one measures the photon wavelength, 

2λ , of the photon after it hits the electron, and in addition one measures the an-
gle, θ , between the incoming photon and the outgoing photon; from this alone 
we know the Compton wavelength of the electron, and mathematically we have: 

( )1 2 1 cos
h
mc

λ λ θ− = −  

( )1 2 1 cos
1

e

h
h c
c

λ λ θ

λ

− = −  

( )1 2 1 coseλ λ λ θ− = −  

 

 

9In addition, comes binding energy, but we can always do a correction for this as energy can be 
treated as a mass equivalent. Ignoring binding energy will maximum give a extra error of approx-
imately 1% in the Compton wavelength. 
10Or from the hydrogen spectrum based on the Rydberg formula [41]. The reduced Compton wave-

length of an electron, as derived from the Rydberg formula, is 
2 2

2
2 2
1 2

1 1
2 2 2e Z

n n
λ α αλ


−

π


=  
 

, where Z  

is the atomic number, and 1n  is the principal quantum number of an energy level, and 2n  is the 
principal quantum number of an energy level for the electron transition. In this formula, λ  is the 
observed electromagnetic radiation wavelength in a vacuum. See Appendix A for the Rydberg for-
mula approach.  
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1 2

1 cose
λ λ

λ
θ

−
=

−
                        (15) 

What is important here is that   not exist in the end result, nor the mass 
size, all we need is the two wavelengths of the photon and the angle between the 
ingoing and outgoing photon to find the Compton wavelength. The reduced 
Compton wavelength eλ , is simply the Compton wavelength divided by 2π . 

Next, the cyclotron frequency is given by: 

2
qB

f
m

=
π

                          (16) 

Because the electrons and protons have the same charge, the cyclotron ratio is 
equal to their mass ratio, and their mass ratio is equal to their reduced Compton 
wavelength ratio: 

2

2

eP P P

e P e

e

qB
mf m

qBf m
m

λ
λ

π

π

= = =                     (17) 

This means if we know the Compton wavelength of the electron and the cyc-
lotron frequency of the electron and the proton, then we also know the Compton 
wavelength of the proton. Next we can simply count the number of protons in 
the gravity object. We can count the number of protons used as the gravity ob-
ject (the large mass) in the Cavendish apparatus. This is naturally a challenge, 
but not impossible. For example, in recent years one has used very uniform sili-
con crystal balls that have been turned into almost perfect spheres, and has basi-
cally counted the number of atoms11, see [43] [44]. So, this is more than pure 
theory. 

As soon as we know the Compton wavelength of the gravity object in the Ca-
vendish apparatus, we can easily find the Compton wavelength from the Earth, 
for example. This is because we must have the following relation: 

21
12 2

1 1 1 1 1 2
2

22 2 12 2
22

22

1

1

GM
R

g R R M c
GM Mg R R

cR

λ λ
λ

λ

= = = =




               (18) 

We can measure the gravitational acceleration field from the large ball in the 
Cavendish apparatus without knowledge of any constants; it is given by: 

2

2

4L
g

T
θπ

=                          (19) 

Further, the gravitational acceleration field of the Earth can be measured 
without knowledge of any physical constant. This also means that we can find 
the Compton wavelength of small and large objects without knowledge of any 
gravitational constant. In Appendix A, we show, similar to our derivation for the 
Planck mass in Section 3, that the Planck length from a Cavendish apparatus is 
given by: 

 

 

11Other methods also exist to count the number of atoms, see [42], for example. 
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2 2

2 3

2
p

L R
l

MT c
θπ

=
                      (20) 

If we now replace M with 1

M

M
cλ

=
 , where Mλ  is still the reduced Compton  

wavelength, but we have just added a subscript symbol, so one can later easily 
see when the reduced Compton wavelength comes from the larger or smaller 
mass; then the Planck constant cancels out, and we are left with: 

2 2

2 2

2
2M

p M
L R R

l L
TcT c

λ θ
λ θπ

= =
π               (21) 

and since we can find the reduced Compton wavelength without knowledge of 
the kg mass or the Planck constant, we can find the Planck length also without 
any knowledge of G or  . The same is the case for the Planck time, which is 
just the Planck length divided by the speed of light, so it is given by: 

2 2

2 4 2

2
2M

p M
L R R

t L
T c Tc

λ θ
λ θπ

= =
π               (22) 

Clearly, the Planck length and the Planck time can be found without know-
ledge of the Planck constant or the gravitational constant, but also the Planck 
mass; see Table 2 for a summary of the Planck units. Other gravitational predic-
tions can be found by using a Cavendish apparatus. 

7. Is Newton’s Gravitational Constant Even Needed? 
At the beginning of this paper, we pointed out that Newton’s original gravita-

tional formula was 
2

Mm
F

R
= , and not the “modern” (1873) version of 

2

Mm
F G

R
= .  

The characteristic of Newtonian mechanics, which appears at this point, is that 
the force depends on the product of the masses and on the inverse of the relative 
distance squared. By dimensional analysis, it at first seems that a multiplicative 
dimensional constant with dimensions equal to the Newton gravitational con-
stant must appear in this expression to get the right dimensions of Newton force, 
which in modern physics is given by m∙kg∙s−2. Based on this, any of the following 
constants will do, as they are dimensionally equivalent and will give exactly the  

same output values 
2 3 2 5

3 1 2
2 m kg sp p

p

l c t cc
G

m
− −= = = = ⋅ ⋅


 

. However, the need for  

these dimensions in the gravitational constant, as we will demonstrate, is simply 
due to our modern kilogram mass definition, which we have reason to think is 
incomplete. We will claim that all observable gravity phenomena need GM  
and not GMm . One of the masses always cancels out in the derivation for any 
observable gravity phenomena, something we will soon show more clearly. So, 
the dimensions that are input for any gravity phenomena are linked to 

3 2m sGM −= ⋅ . That is, there is no kg in any directly observable gravitational 
observation, only in the gravitational force formula itself and in the current mass  



E. G. Haug 
 

 

DOI: 10.4236/ojm.2022.122004 67 Open Journal of Microphysics 
 

Table 2. The table highlights the Planck units and other gravitational phenomena that can be found with a Cavendish apparatus. 
The table also shows what constants we will need to find those units and phenomena when using this method. 

 From Cavendish Apparatus: Constants needed: 

Planck mass 
2

2 2

1
2 2p

M

cMT T
m

L R R Lθ λ θπ
= =

π
   Needs   

Planck mass 
2 2 2

2 22 2
M

p

c M T TMc
m

L R R L
λ λ

θ θπ
=

π
=  Needs c 

Planck energy 
5 2 2

2 2

1
2 2p

M

c MT Tc
E

L R R Lθ λ θπ π
= =

   Needs   and c 

Planck energy 
6 2 2 3

2 22 2
M

p

c M T TMc
E

L R R L
λ λ

θ θπ
=

π
=  Needs c 

Planck length 
2 2

3 2

2
2p M

L R R
l L

c MT cT
θ λ θπ
=

π
=

  Needs c 

Planck time 
2 2

5 2 2

2
2p M

L R R
t L

c MT c T
θ λ θπ
=

π
=

  Needs c 

Schwarzschild radius 
2 2

2 2

4
s

L R
r

c T
θπ

=  Needs c 

Gravitational acceleration 
2

2

2L
g

T
θπ

=  Constant free 

Orbital velocity 
2

2

4
o

RL
v

T
θπ

=  Constant free 

Newton gravitational constant 
2 2 2

2 2

2 2 ML R L R c
G

MT T
θ θλ

= =
π π


 Needs   and c 

 

definition. Actually 
2 3 2

21p p

M M

l c l
GM c

cλ λ
= =




. We see that the Planck constant  

embedded in G always cancels with the Planck constant embedded in the kg 
mass. We will claim the Newton gravitational constant is needed to get the 
Planck constant out of the kg mass definition and to get the Planck length into 
the mass. Prof. Jammer [45] has, in his work on mass, made it clear that we still are 
searching for an adequate definition of mass and, to put it edgily, he has stated 
“mass is a mess”. Even if one knows much about mass today, we think one 
should be open to new suggestions of mass definitions as long as they seem to 
lead to a consistent theory, in particular if the suggestions can add a deeper un-
derstanding. Haug [29] has recently suggested a new mass definition where any 
mass is given by: 

p pl l
m

c λ
=                          (23) 

That is, mass should be seen as the Planck time multiplied by pl

λ
, which we  
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have coined collision-time. Our new mass definition assumes that any mass is 
quantized and observations can only exist in whole Planck times; something we 
will get back to in Section 8. What is interesting here is that when one uses that 
mass definition instead, one will get a Newtonian gravity formula equal to: 

3
2

Mm
F c

R
=                         (24) 

and when we use the unit of length equal to the unit of time connected through  

the speed of light, we get Newton’s original formula 2

Mm
F

R
= . Even if we set  

1c = , this is not the same as setting also 1h =  and 1G = , so this is not why 
we do not need h and G. The dimensions of this gravity formula are different 
than in standard gravity. But then we will claim the Newton force itself cannot 
be observed. This formula still gives identical predictions for any observable 
gravity phenomena as does the “modern” 1873 version of the Newton formula. 
This can be clearly seen in Table 3. Even if the gravity force formulas are differ-
ent, all the formulas for predictable phenomena end up being identical, both in 
numerical outputs and dimensions. However, our new approach contains one 
less physical constant. In the Newtonian formula, we need to know G and M. 
When we break down the mass to the simplest way for expressing it in terms of  

kg based on fundamental constants, we have 1

M

M
cλ

=
 . So, to know G and M,  

we need to know three constants: G,  , and c; these are the three constants that 
Planck suggested were the fundamental universal constants. In addition, we 
need to know one variable that is dependent on the mass size, namely the 
Compton wavelength. However, to know the gravitational constant multiplied 
by the kg mass, GM, we only need to know the Planck length, the speed of light, 
and the Compton wavelength. That is, if we know that G is a composite constant 
and we can only assume G is a composite constant, if (and only if) we can find 
the Planck units without knowing G first hand. Here, we have demonstrated that 
this is indeed the case. 

In our alternative mass and gravity formula, we have: 
2

3 2 p

M

l
c M GM c

λ
= = .  

However, when using 3c M  rather than GM , we do not need more informa-
tion to know our gravitational constant, 3c , in addition to our mass M , com-
pared in order to find the product of the two 3c M . To know both G and M, we 
need information that is not necessary for predicting gravity phenomena, name-
ly the Planck constant. Indirectly, we will claim standard physics uses two dif-
ferent masses without being aware of it, or at least not acknowledging it directly. 
The convention is to use the kg mass definition, which is linked to the Planck 
constant that contains enough information to be used in all non-gravity physics.  

In addition, modern physics indirectly uses our new mass definition p p

M

l l
M

c λ
=   

that is obtained by multiplying G with M, which gives 3GM c M= , where 3c   
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Table 3. The table shows that any gravity observations we can make contain GM and not GMm; GM contains and needs less in-
formation than is required to find G and M. We can, therefore, set up an alternative Newton-like gravity that only requires know-
ledge of the speed of light (gravity) and the Planck length; this alternative theory gives exactly the same predictions for anything 
that can be observed. 

 Modern Newton: Alternative: 

Mass ( )1
kg

M

M
cλ

=
  p p

M

l l
M

c λ
=  (collision-time, see [29]) 

Non observable (contains GMm )   

Gravitational constant 
2 3

, pl cG G
 

=  
 

 3c  

Gravity force ( )2
2 kg m s

Mm
F G

R
−= ⋅ ⋅  ( )3 1

2 m s
Mm

F c
R

−= ⋅  

Observable predictions, identical for 
the two methods: (contains only GM )   

Gravity acceleration 
22

2 2
p

M

lGM c
g

R R λ
= =  

23 2

2 2
p

M

lc M c
g

R R λ
= =  

Orbital velocity 
2
p

o
M

lGM
v c

R Rλ
= =  

23
p

o
M

lc M
v c

R Rλ
= =  

Time dilation 
2 2

2 221 1 p
R f f

M

lGMT T c T
R Rλ

= − = −  
2 23

2 221 1 p
R f f

M

lc MT T c T
R Rλ

= − = −  

Gravitational red-shift 

2

2
1 1

2

2
2 2

221 1
1 1

2 21 1

p

M

p

M

lGM
R c R

z
GM l
R c R

λ

λ

− −
= − = −

− −

 

23

2
1 1

23

2
2 2

221 1
1 1

221 1

p

M

p

M

lc M
R c R

z
lc M

R c R

λ

λ

− −
= − = −

− −

 

Gravitational red-shift ( )
2

2
p

M

lGM
z r

c R Rλ∞ ≈ =  ( )
23

2
p

M

lc M
z r

c R Rλ∞ ≈ =  

Gravitational deflection (GR) 
2

2

4 4 p

M

lGM
c R R

δ
λ

= =  
23

2

4 4 p

M

lc M
c R R

δ
λ

= =  

Advance of perihelion ( ) ( )
2

2 2 2

6 6
1 1

p

M

lGM
a e c a e λ

=
− −
π π  ( ) ( )

23

2 2 2

6 6
1 1

p

M

lc M
a e c a e λ

=
−
π

−
π  

Indirectly/“hypothetical” observable 
predictions: (contains only GM )   

Escape velocity 
22

2 p
e

M

lGM
v c

R Rλ
= =  

232
2 p

e
M

lc M
v c

R Rλ
= =  

Schwarzschild radius 
2

2

2
2 p

s
M

lGM
r

c λ
= =  

23

2

2
2 p

s
M

lc M
r

c λ
= =  
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Continued 

Gravitational parameter 
2

2 p

M

l
GM cµ

λ
= =  

2
3 2 p

M

l
c M cµ

λ
= =  

Two body problem ( )
2 2

2 2
1 2

1 1

p pl l
G M M c cµ

λ λ
= + = +  ( )

2 2
3 2 2

1 2
1 2

p pl l
c M M c c

λ λ
+ = +  

Quantum analysis:   

Constants needed G,  , and c or pl ,  , and c pl  and c 

Variable needed one for mass size one for mass size 

 
is a gravitational constant. In a recent publication [4] [29], we have claimed that  

incorporating our mass definition 
3

G
M M

c
=  into physics could be useful for  

unifying gravity with other parts of physics, but that is outside the scope of this 
paper; see [46]. The fact that we can find all of the Planck units without know-
ledge of G, and also the Planck length and Planck time without knowledge of  , 
and further, that we can predict observable gravity phenomena only using two 
constants, the Planck length and the speed of light, rather than three constants, 
is the essence of this paper. 

8. Interpretation of the Alternative Mass Definition and Its  
Link to Standard Mass 

Our new mass definition is rooted in ideas similar to those of Newton’s. Newton 
was clear that mass was the quantity of matter (“quantities materiae”). Less 
known among many researchers today is that Newton [16] also clearly claimed 
all matter ultimately consisted of indivisible particles with spatial dimension and, 
further, that the smallest time interval was also indivisible. In other words, the 
mass should somehow be related to the quantity of these indivisible particles. In 
Principia [16], in the third part of his book, which was about gravity, Newton 
even claimed that the indivisible particles were the foundation of his entire phi-
losophy. Newton held on to this view, as he repeated much of it in his book Op-
ticks [47], published in 1704. 

Naturally, Newton had not yet figured out the size of these indivisible particles, 
nor the time interval of the indivisible moment of time, as he called it, nor had 
he made any observations that could directly back his hypothesis. Almost 300 
years later, in 1899, Max Planck first linked the Newton gravity theory indirectly 
to the Planck units by deriving the Planck units from dimensional analysis, rely-
ing also on the gravity constant G combined with h and c. At that time, there 
was considerable disagreement about the importance of the Planck units. Eins-
tein was likely the first, in 1916, to suggest that a quantum gravity theory was the 
next step, after he finished his general relativity theory; in his own words: 

“Because of the intra-atomic movement of electrons, the atom must radiate 
not only electromagnetic but also gravitational energy, if only in minute 
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amounts. Since, in reality, this cannot be the case in nature, then it appears that 
the quantum theory must modify not only Maxwell’s electrodynamics but also 
the new theory of gravitation”. 

In 1918, Eddington [48] suggested the Planck length had to play a central role 
in a quantum gravity theory and stated: “But it is evident that this length (the 
Planck length) must be the key to some essential structure. It may not be an un-
attainable hope that someday a clearer knowledge of the process of gravitation 
may be reached.” However, other prominent physicists at that time, such as 
Bridgman [49] ridiculed the idea that the Planck units could play a role of any 
importance, and that they were more like mathematical artefacts coming out of 
dimensional analyses [50]. Even to this day, the physics community is split in its 
opinions on the Planck units. The majority of researchers seem to think the 
Planck length and the Planck time are the shortest possible even hypothetical 
observable length and time interval; see, for example, [51] [52], while others are 
still claiming that the Planck length is more or less a mathematical artefact [53]. 
If the Planck length can only be calculated from G, h, and c as believed by most 
researchers today, then why not simply assume the Planck units have no signi-
ficance, just as Einstein abandoned the ether? If it cannot be detected then why 
not simply abandon it? However, since we have now demonstrated that we can 
measure the Planck length and the Planck time independent of G and  , and 
also that all observable gravity predictions we have looked at can be made using 
only two constants, pl  and c, this gives strong support to the idea that the 
Planck length is indeed central in gravity, and represents something very fun-
damental. 

Returning to our new mass definition, in our model, we will postulate that 
both energy and matter ultimately consist of indivisible particles, somewhat sim-
ilar to the Newton corpuscular theory, which again was rooted in ideas from an-
cient atomism, see [54]. Even if several researchers were clearly interested in this 
path, maybe mostly from a historical perspective, for example Schrödinger [55], 
little or nothing seemed to come out of this line of thought in recent times. Most 
researchers have assumed this path leads to a dead end and have stopped inves-
tigating it, but we will challenge that view here; see also Whyte [56]. Today we 
know much more about mass and energy than was known in Newton’s time, and 
we can, therefore, combine some new insights with the corpuscular view of 
Newton. We will assume the indivisible particles always move at the speed of 
light, except when they collide. The collision itself lasts the Planck time. Actually, 
we do not need to assume that the diameter of this particle is the Planck length, 
or that it moves at the speed of light or that the collision lasts the Planck time. 
All we need to do is assume it has a diameter, and that it has extension in space 
as Newton explicitly pointed out in Principia. Further we must assume that such 
indivisible particles move at a constant speed when not colliding. Both the di-
ameter of this indivisible particle and its speed can be extracted from gravity 
phenomena with no prior knowledge of G,  , or c; see Appendix C. Next, we 
can use these two constants (the Planck length and the speed of light) to predict 
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any observable gravity phenomena as shown in Table 3. 
In our model, indivisible particles that do not collide will be what we call pure 

energy and are massless (and they move at c, not by assumption, but from what 
we find from observable gravity phenomena). It is easy to think this is automat-
ically in conflict with the wave-particle duality, but this is not necessarily the 
case, as the wavelength in this theory will be the distance between two indivisible 
particles travelling in the same direction and after each other. Further, in this 
model, it is the collision between indivisible particles that corresponds to what 
we call mass, so the quantity of matter is linked to the quantity of collisions 
(number of collisions). However, there are two aspects of these collisions: first, 
how many collisions one has in an observational time-window, but also the du-
ration of these collisions. We will show that the current mass definition contains 
information about the number of collisions. That is, the quantity of mass can be 
counted as the number of collisions, but this would be an incomplete definition 
of mass, as it does not tell anything about the duration of these collisions. We 
will assume the duration of each collision is the Planck time. 

Let us first go back to the standard mass definition to show why we mean the 
standard mass definition contains the number of collisions in a mass. An elec-
tron has a mass of approximately 9.1 × 10−31 kg. That is, it is basically a fraction 
of one kg. Therefore, we will always get the same value for mass if we write  

1kg 1 kg
e em m

m
=  since 1kg 1 kgm = ; this ratio, we could claim, is dimensionless, but  

still one could claim this is actually what we call the kg mass of an object as, if we 
always linked it to one kg; that is, if we always keep one kg in the denominator, 
which is needed if we want to get the kg mass. One could try to object here, as kg 
is also related to weight, but Newton pointed out in Principia that mass is a word 
for the quantity of matter, and he also stated “I have always found that the quan-
tity of matter to be proportional to their weight.” This should not be misunders-
tood, but if we move one kg from the Earth to the moon and also an object of 
100 grams, the mass and the weight of the 100 grams will still be the same as 
found from weighing it on the moon relative to the one kg clump of matter we 
also brought there. The weight of the 100 g or the one kg moved to the moon is 
only lower compared to similar masses as measured in the Earth’s gravitational 
field. As long as the one kg and the 100 grams are in the same gravitational field, 
and both are relative to each other at rest, they will have the same weight relative 
to each other no matter what gravity field we measure them in (except in a zero 
gravity field). That is, the weights in kg are directly proportional to the quantity 
of matter in each object for masses that are in the same gravitational field, as first 
pointed out by Newton. 

The mass ratio of an electron relative to one kg can be written: 

1kg 1kg

1kg 1kg

1

1
e e e e

c
m c f

cm f
c

λ λ

λ λ

= = =




                  (25) 
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The reduced Compton frequency of one kg is: 
2

50
1kg

1kg

1 kg
8.52 10 times per second

1 kg

c c c
f

c
λ

×
= = = ≈ ×

×
 

     (26) 

And the electron’s reduced Compton frequency is: 

207.76 10 times per seconde
e

c
f

λ
= ≈ ×               (27) 

Interestingly, this is also very close to the trembling motion by the electron 
predicted by Schörodinger [57], that has not actually been observed. However, 
what if it is an internal “trembling motion”, or more precisely the numbers of 
collisions that happen at the Compton periodicity inside the electron? That is, 
matter is ticking at the Compton frequency, something that has been more or 
less verified by recent research; see [29] [58] [59]. In any case, the kg mass of the 
electron, based on the view that the kg definition of mass from a deeper perspec-
tive actually is a frequency ratio, is given by: 

20
31

50

7.76 10
9.1 10 fraction of one kg

8.52 10em
−×

= ≈ ×
×

          (28) 

which is the well-known electron mass. 
Similar frequencies (collisions-ratios) can be found for any mass, small or 

large. The Compton frequency ratio will always give the correct mass as ex-
pressed in kg. That is, we will claim the kg mass of an object is closely related to 
the ratio of Compton frequency in the mass is question when divided by Comp-
ton frequency in a one-kg mass. This is not really a surprise, as it is in line with  

existing knowledge because it is well known that we have: 2 1 2

1 1

1

c
m

cm
λ λ
λ

λ

= = . 

However, if one always uses one kg as the reference mass 1 1kgm m= , then this 
always presents a frequency ratio that gives the mass relative to one kg; in other 
words, the kg mass of an object. In our view, any mass expressed as kg (or pound) 
or relative to any human chosen reference mass (such as a pond) is, from a dee-
per perspective, best understood as a frequency ratio, that again we claim 
represents a collision ratio. It is important to see that such a mass definition in 
general is independent of the observational time window; if we cut the observa-
tional time window to half a second, then the frequency ratio of both the elec-
tron and the one-kg reference mass drops in half, so the electron mass is still the 
same 9.1 × 10−31 kg. An exception is when we get to observational time windows 
close to the Compton time of the elementary particle in question. If, for example, 
the observational time window is equal to one-and-a-half times the Compton 
time of the particle in question, then the observed mass is suddenly time-dependent.  

If we are studying an electron, then one-and-a-half Compton time is 1.5 e

c
λ

. 
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The number of collisions in the electron in this time interval can only be one, as 
we assume one collision happens every Compton time. However, the numbers of  

collisions in one kg will be 50 301.5 8.52 10 1.65 10e

c
λ

× × ≈ ×  collisions, and the 

observed mass of the electron will then be 31
30

1kg

1
6.07 10

1.65 10
ef
f

−= ≈ ×
×

  

fraction of a kg. This is lower than the known electron mass. This is a considera-
bly shorter time interval than we can measure with today’s best atomic or optical 
clocks, which is about 10−19 of a second (see Campbell et al. [60] and Za-
non-Willette et al. [61]), so our predictions above are not in conflict with what 
has been observed. If we had an observational window of an electron over just a 
random Planck time, then there would only be a probability for the electron to 
be in a collision state, but we could not calculate this probability without know-
ing the duration of the collision itself, something we soon will get back to. 

In our model, a collision happens between two indivisible particles at the 
Compton periodicity in matter. Still, it is clear that the kg definition of matter 
does not contain any information about the duration of these collisions, only the 
number of collisions in a given time interval as well as the ratio relative to the 
numbers of collisions in a kg. An analogy would be that you have a clock that 
rings every hour; we know the time between each time it rings, that is one hour, 
but the clock does not tell us how long the ring lasts. If the duration of collisions 
is what is important for gravity, then one cannot use such a mass definition for 
gravity predictions without adding this aspect to the mass. If the Planck length 
and the speed of light are linked to the duration of the collision, in form of 
Planck time, then the Planck time must appear directly or somehow embedded 
in the mass definition for it to be of any use for gravity calculations. And this is 
what we claim the current gravity theory unknowingly does when multiplying G 
with M. Then we are getting the Planck length into the mass, and the Planck 
constant out of the mass. This is to get also the duration of each collision into 
the mass definition/model. Again, no one knew about the Planck length when 
suggesting a gravity constant G in 1873, but it could very well be that the gravity 
constant contains what is missing in the rest of the gravity formula, which is 
found by calibrating it to gravity observations. That G was introduced a few 
years before the Planck units does not make it more fundamental. On the con-
trary, one most often understands things at a surface level first. 

Actually, it looks like any mass definition that is relative to a human-
ly-constructed reference mass will indirectly be a collision (frequency) ratio that 
does not contain information about the duration of the collisions. Even if we 
take the ratio of two masses based on our new collision-time mass definition, 
where we choose the reference mass to be the collision-time of a one kg mass,  

1kg
1kg

p pl l
m

c λ
= , then the end result is that this mass ratio is identical to the kg 

mass ratio: 
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31

1kg 1kg

1kg1kg

9.1 10 fraction of one kg

p p

e e e

p p

cl l
m fc

l l cm f
c

λλ

λλ

= = = ≈ ×       (29) 

We see here that when we define the mass as a ratio relative to a human-selected 
reference mass (collision time of a kg mass or just the kg mass or for example 
pound) then the Planck length cancels out in such a mass ratio definition. If the 
Planck time is related to the duration of the collision itself, then the standard 
mass definition (a ratio relative to a human constructed mass) has no informa-
tion about this part. We have reason to think gravity is directly related by the 
duration of these collisions. This is more than a loose opinion; we have demon-
strated how the Planck length and Planck time can be extracted from gravity 
phenomena with no knowledge of G or  . We have shown how a long series of 
observable gravity phenomenon are only dependent on two constants, namely 
the Planck length and the speed of light (speed of gravity). So, to describe any 
gravity phenomena, one needs to get the Planck time into the mass. Standard 
physics has been able to do this by calibrating a constant G to gravity observa-
tions. This gravity constant is, in all observable gravity phenomena, multiplied  

by the gravitational mass, GM, and this is equal to 
2 3

3 31p p pl c l l
GM c c m

c cλ λ
= = =




.  

Thus, standard physics is getting indirectly the mass we have suggested and 
standard gravity needs to do this (and do this by multiplying G with M), as we 
need the duration of the internal collisions that happen inside matter. This is 
partly a hypothesis, but it is more than that, as it gives an explanatory model of 
why and how we can measure the Planck length and the Planck time without 
any knowledge of G and  . 

Returning to our new mass definition p pl l
m

c λ
= . The first part of this equa-

tion p
p

l
t

c
=  represents the duration of a collision between two indivisible par-

ticles. The second part, pl

λ
, presents the percentage of the observational time  

window when the mass is in a collision state; that is, for how much of the obser-
vational time window two indivisible particles are in collision. For example, as-
sume we observe an electron in a one-second observational time window.  

According to our model, it then has 207.76 10e
e

c
f

λ
= ≈ ×  collisions in that time  

window. The duration of the sum of the collisions is  
20 237.76 10 4.19 10 secondpt

−× × ≈ × , which is identical to 234.19 10 %pl

λ
−≈ ×  of  

the observational time (in this case one second). That is, for any observed ele-
mentary particle, such as an electron, we see that this fraction is very small. 
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When we are observing (even hypothetically) the particle at time windows as  

short as one Planck time then pl

λ
 represents the probability for the particle to 

be in a collision state. Assume an electron has a collision every Compton time: 
211.29 10e

ct c
λ −= ≈ ×  seconds. However, the one collision we will have in this  

observational time window only lasts the Planck time. If we take a random-
ly-selected Planck time observational window, then we do not know if the par-
ticle is in collision state or not, but we know the probability, which must be:  

=

p

p

l
lc

c
λ λ

 (for a Planck time observational time-window). 

If the reduced Compton wavelength of the particle is less than the Planck 

length, then 1pl

λ
> , then the integer part will be identical to the number of  

collisions (quantization) during a Planck time observational time window, and 
the remaining fraction (if any) can be seen as a probability for an additional col-
lision to happen in the observational time window of the Planck time. This also 
means that if we hypothetically observe masses in an observational time window 
of one Planck time, then particles considerably smaller than a Planck mass are 
dominated by probability, while masses equal to or above the Planck mass size 
are dominated by determinism. It is also important to be aware that if the mass 
has a Compton wavelength shorter than the Planck length, then it must be a 
composite mass. That is, it must consist of more than one elementary particle; 
see section 6 for further details. 

9. Consistency 

We have introduced a new mass definition, so a natural question to ask is: “Does 
this lead to a consistent theory, or does it lead to inconsistencies when the con-
sensus theory today is already proven to work well?” We have completed exten-
sive research to ensure that it leads to a consistent theory. We can always go be-
tween this mass and the standard mass simply by multiplying the new mass with  

2
pl
 , or by multiplying the standard kg mass with 

2
pl


 to go back and forth be-

tween them. This is identical to multiplying the standard mass with 
3

G
c

 (since 
2

3
plG

c
=


), which makes it easy to see why we have 3GM c M= . 

One might suspect that, since our new mass definition and the standard mass 
definition only differ by a ratio of two known physical constants, and 3GM c M= , 
that this is a trivial change of units without any important implications. One 
could come up with an almost infinite number of unit changes that lead to no 
new insights and that might only make the formulas and the output dimensions 
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less intuitive than the established framework. For example, we could multiply all 
masses and all energies by c ; this would alter no rules of physics, but would 
make the existing formulas look more complex, and the output and dimensions 
would be less intuitive than they are in the existing framework, but it would not 
lead to any new insight. As a minimum, a change of units should lead to some 
simplification and hopefully some new insight. We will claim that our change of 
mass definition both simplifies the formulas and leads to new important insights 
in physics. 

Our multiplication of the existing kilogram mass with a ratio of two constants 
is more than just a change of units because our new mass definition contains the 
two constants needed for predicting all observable gravitational phenomena, 
namely the Planck length and c, while the standard mass contains the Planck 
constant and c, but has no information about the Planck length. However, as 
carefully explained in the previous sections, one is indirectly doing the same al-
ready in standard physics, but by multiplying G with M, one is getting the 
Planck length into the mass and, at the same time, removing the Planck constant. 
Our new mass definition simply makes Newtonian gravity and other parts of 
gravity simpler; we can now work with two constants rather than three. Taking 
up a popular theme of the day, superstring theory, for example, suggests that the 
speed of light c and the Planck length are the two fundamental constants [62], 
but superstring theory still has not led to the breakthrough once hoped for, and 
thus it is time to look at existing formulas in a new and fresh way. This new view 
gives us an idea that we may have been using two different mass definitions all 
along without being aware of it, or explicitly noting it, as explained in the section 
above. 

10. Conclusion 

We have shown that the Planck mass (and Planck energy) can be measured with 
a Cavendish apparatus without any prior knowledge of G. Further, we have 
shown how the Planck length and Planck time can be found with no knowledge 
of G and   using a Cavendish apparatus. This no longer posits the Planck 
units as simply being a derived constant from big G, but possibly makes the 
Planck units even more important than big G, since the gravitational constant  

can be written as a composite constant 
2 5 2 35

2 2
p p

p p

t c l cc c
G

m E
= = = =
 

 
. In addi-

tion, we have shown that the standard mass definition is possibly incomplete,  
since all gravity phenomena can be calculated by only knowing the Planck length 
and the speed of light, plus one variable describing the mass size, which is the 
Compton wavelength. All of these elements can be found without any know-
ledge of G or the Planck constant. We claim that the embedded gravitational  
constant contains the Planck constant to get the Planck constant out of the stan-

dard mass definition, since all predictable gravity phenomena have 
2

2 p

M

l
GM c

λ
= .  
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It seems that standard physics indirectly uses two different mass definitions: one 
for all other areas of physics, the standard kg mass definition, but in gravity, we 
think one is indirectly using a more complete mass definition that one gets by 
always multiplying M with G. Using the same mass definition in non-gravity 
physics as well could be the key to unifying gravity with other areas of physics. 
We do not need the Planck constant for quantization in gravity, as we get that 
from the Planck length, the Planck time, and the embedded Compton frequency 
embedded in matter. 
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Appendix A: The Planck Time and the Planck Length 

We can also find the Planck time directly without any knowledge of G in a Ca-
vendish experiment by utilizing the derivation below: 

LFκθ =  
2 52 2

2 2

2 pt cmL Mm
L

T R
θ =

π


 

2 2

2 5

2
p

L R
t

MT c
θπ

=
                        (30) 

And, since we can express M as 1
M

cλ
=
 , we get: 

2 2p M
R

t L
c T

λ θπ
=                        (31) 

Similarly, we can also find the Planck length without knowledge of G and   
by taking into account that the mass of an elementary particle can be written as: 

1
m

cλ
=
                            (32) 

In this case, we know the mass is the Planck mass, so the reduced Compton 
wavelength is related to the Planck length that we can find directly using a Ca-
vendish apparatus: 

LFκθ =  
2 32 2

2 2

2 pl cmL Mm
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T R
θ =

π


 

2 2

2 3

2
p

L R
l

MT c
θπ

=
  

2p M
R

l L
cT

λ θπ
=                        (33) 

In other words, all of the natural Planck units can be found directly from a 
Cavendish apparatus, with no knowledge of G. The Planck time, or the Planck 
length can also be found without knowledge of the Planck constant in addition 
to no knowledge of G. 

Appendix B: The De Broglie Wavelength versus the Compton  
Wavelength 

In 1924, de Broglie [63] suggested that there was likely a matter wavelength. He 
perhaps came up with this suggestion since it had been shown that light had a 
wave-particle duality, so why not matter also? He indicated that the matter wa-
velength was given by the formula (see also [64]): 

b
h h
p mv

λ = =                          (34) 
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where bλ  is the de Broglie matter wavelength. Solved with respect to m, this 
gives 

b

h
m

vλ
=                          (35) 

This formula is valid when v c  (the non-relativistic approximation). A 
drawback in describing the mass as a function of the de Broglie wavelength in-
stead of the Compton wavelength is that the mass is then not defined for a 
rest-mass, since this would mean 0v = . And dividing by zero is undefined, or 
infinity [65] [66], neither of which make much sense. The relativistic form of the  

de Broglie wavelength is b
h
mv

λ
γ

=  and the relativistic form of the Compton 

wavelength is h
mc

λ
γ

= , where 2 21 1 v cγ = −  is the Lorentz factor. This  

means that the de Broglie wavelength is always equal to the Compton wavelength  

times c
v

. And we can again see that the de Broglie wavelength is not defined for  

a rest-mass particle, while the Compton wavelength is. 

From this, we also have 1

b

h h
m

cv cv
v

γ γ γ
λ λλ

= = =
 , where again bλ  is the  

de Broglie wavelength, and λ  and λ  are respectively the Compton wave-
length and the reduced Compton wavelength. As a particle velocity is close to 
zero, the de Broglie wavelength approaches infinity, something that has led to a 
series of strange assumptions. 

Haug [29] has even suggested that the Compton wavelength is the true matter 
wavelength and that the de Broglie wavelength is just a mathematical derivative 
of this. As the de Broglie wavelength always contains the Compton wavelength, 
one can naturally get to most of the same results from using the de Broglie wa-
velength. However, in the case of a rest-mass particle, in general we cannot use 
the de Broglie wavelength, but an in-depth discussion of this is outside the scope 
of this paper. When wave-like properties in electrons were observed [67] [68], it 
was assumed the de Broglie hypothesis was correct. It was correct in the sense 
that matter does indeed have wave-like (and particle-like) properties; still, this 
does not mean that the de Broglie wavelength was actually measured. The 
Compton wavelength, on the other hand, has been measured in a long series of 
experiments. 

Another drawback in using the mass as calculated from the de Broglie wave-
length is that we need to know the velocity of the particle. When using the 
Compton wavelength for a rest-mass, we eliminate v. Further, the mass from the 
Compton formula is the rest-mass. The mass formula linked to the Compton  

wavelength can easily be extended to a relativistic form [40]; this is 
mc

λ
γ

=
 ,  

but that is not needed here. 
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Appendix C 

We assume the diameter of the indivisible particle is x and that this massless 
particle moves at an unknown speed y. We have the following Newtonian 
“equivalent” gravity formula (see also Table 3): 

3 3
2 2

M m

y y y y
x xMm

F x x
R R

λ λ
= =                   (36) 

This equation we discussed in Section 7, but we then assumed px l=  and 
y c= . Here, we assume the diameter of the indivisible particle and the speed of 

it is totally unknown but, as we will demonstrate, they can be extracted from 
gravity phenomena and can then be used to predict any other gravity phenome-
na with no prior knowledge of G,  , or c. 

This means we have: 

3 3
2 2

M m

y y y y
x xMm

LF Lx Lx
R R

λ λ
κθ = = =              (37) 

where κ  is the torsion coefficient of the suspending wire and θ  is the deflec-
tion angle of the balance. 

We also have that the natural resonant oscillation period of a torsion balance 
is given by: 

2
I

T
κ

= π                          (38) 

Further, the moment of inertia I of the balance is given by: 
2 2 2

2 2 2
L L mL

I m m   = + =   
   

                  (39) 

This means we have 
2

2
2
mL

T
κ

π=                         (10) 

And when solved with respect to κ , this gives: 
2 2

2 2 22
T mL

κ
=

π
 

2 2

2

2mL
T

κ π
=                          (41) 

Next in the equation 4, we are replacing κ  with this expression, and solving 
with respect to the Planck mass: 

2 2
3

2 2

2 M m

y y y y
x xmL

Lx
T R

λ λ
θ =

π  

2 2

2

2M L R
xy

T
λ

θ
π

=                       (42) 
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As we have shown before in this paper, the reduced Compton wavelength can 
be found independent of any prior knowledge of any physical constants. This 
means only x and y are unknowns. From this equation alone we cannot find 
their separate values, but observations show pxy l c≈ , and we will claim we 
must have xy exactly equal to pl c  if one looks away from any measurement er-
ror. Since x is the diameter of the indivisible particle, then it makes sense that 
this diameter is the Planck length. And we know y is the speed of the indivisible 
massless particle, so then the speed of the particle is c. 

We can, however, also find their separate values without any speculation. 
What we have measured with a Cavendish apparatus could be classified as a 
Newtonian gravity phenomenon. All Newtonian phenomena contain pl  and c, 
that is x and y, so from Newtonian phenomena alone we can only extract the 
combination of them. We can naturally measure the speed of light from elec-
tromagnetic phenomena and then divide xy by c and find that px l= , but then 
we assume the speed in gravity formulas (the speed of gravity?) is identical to the 
speed of light. This is not needed, as we can separate the value of y and x only 
from gravity observations with no prior knowledge of G,  , and c. 

For example, from gravitational deflection we have:  
3

3 2

2 2

4
4 4

M

x xy
y M xy

Ry R y R
λδ

λ
= = = . Solved with respect to x, we have 

4
M Rx

δλ
= . 

The sun’s deflection has been measured to be approximately 1.75 arcseconds. 
This gives a value of px l≈   

(
46

351.75 648000 1.77 10 696340000
1.616 10 m

4
x

−
−× × × ×

= ≈ ×
π ). This is no  

coincidence. This is because the Planck length is the only physical constant that 
the deflection of light is dependent on. The same is true with gravitational 
red-shift, and gravitational time dilation. So, from these, we can find the Planck 
length independent of knowledge of any other constant. Next we can measure 
any Newtonian gravity phenomena, which will give us pyl ; by dividing by the 
Planck length we then find the y c≈ . This is also no coincidence. All observa-
ble gravity phenomena are only dependent on c and pl  and they can be ex-
tracted from gravity phenomena with no prior knowledge of any physical con-
stant. Again, superstring theory has suggested that only the same two constants 
are needed, but there do not seem to have been any real breakthroughs with it. 
The path we are proposing is thus revolutionary. It means G is a composite that 
contains c,  , and pl ; it contains   to get this out of our incomplete mass 
definition and it gets pl  into the mass definition, and c is needed in some but 
not all gravity phenomena. 
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