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A B S T R A C T   

We show that the one-way speed of light, along an open contour AB on the uniformly rotating Earth, is 
observable. Our approach exploits the property of the Sagnac effect that can measure the Earth’s local angular 
velocity and, correspondingly, the peripheral speed of the contour AB relative to Earth Centered Inertial (ECI) 
frame. Light speed variations, measured on the rotating Earth, may be related to the velocity w of the ECI frame 
relative to a hypothetical preferred frame. Since it is possible to test Einstein’s postulate of a universal light 
speed, standard special relativity is confirmed to be a viable falsifiable theory.   

1. Introduction 

In the context of relativistic theories, the one-way speed of light in 
free space from point A to point B, with fixed distance AB = L0, is 
considered to be arbitrary and to depend on the procedure adopted to 
synchronize the spatially separated clocks A and B [1–13]. In standard 
special relativity based on relative simultaneity, the one-way light speed 
is assumed to coincide with the average round-trip light speed c of 
Einstein synchronization. Instead, in relativistic preferred frame the-
ories adopting absolute simultaneity, the one-way light speed is not 
invariant and differs from the average speed c [3,4]. The aim of our 
article is to present an experiment suitable for testing light speed 
invariance by measuring variations of the one-way speed of light on the 
rotating Earth. 

In order to clarify the relevance of our experiment in the context of 
relativistic theories, in the first sections of our article we review the role 
of simultaneity in the interpretation of light speed propagation on 
moving contours. In Section 2 we discuss clock synchronization and 
show when, in optical experiments, variations of the one-way speed of 
light are not detectable because they vanish on average. Furthermore, 
we revise aspects of light propagation in the circular and linear Sagnac 
[14,15] experiments, as seen in the laboratory frame and in a frame 
co-moving with a section of the contour. In Section 3 we consider light 
propagation on an open contour AB on the rotating Earth. Assuming that 
the Earth Centered Inertial (ECI) frame is in motion, relative to the 
hypothetical preferred frame of relativistic theories, we show that 

variations of the one-way speed of light along AB are observable. Our 
approach is based on the property of the Sagnac effect that can deter-
mine the Earth local angular velocity and, correspondingly, the relative 
speed between the contour AB and the ECI frame. 

Epistemologists [16] claim that the basic postulates of a meaningful 
physical theory must be testable (i.e., falsifiable). Since, from a con-
ceptual perspective, our experiment indicates that the invariance of the 
speed of light can be tested, we may conclude that standard special 
relativity is a valid and viable falsifiable theory. 

The reader familiar with the role of relative and absolute simulta-
neity in SR may wish to skip reading Section 2 and the Appendix and go 
directly to Section 3 where our test of the invariance of c is described. 

2. Light speed propagation on a moving contour in the context 
of relativistic theories 

Several authors [1,2,4,9,12,13,17], have emphasized the difficulties 
that emerge with standard SR – based on Einstein synchronization and 
the Lorentz transformations (LT) – when applied to light propagation on 
moving closed contours. These difficulties show up in the diverse in-
terpretations of the Sagnac effect [4,9,10,12,13], widely discussed in the 
literature [18]. In order to surmount the difficulties, some physicists [1, 
3,4,9–11], propose adopting coordinate transformations based on con-
servation of simultaneity, in lieu of the LT based on “relative” 
simultaneity. 

In the case of a closed contour, the root of the problem is the time 
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discontinuity in the LT, highlighted by Landau and Lifshitz [17] by 
stating: “… synchronization of clocks along a closed contour turns out to 
be impossible in general. In fact, starting out along the contour and 
returning to the initial point, we would obtain for dx◦ a value different 
from zero …“. Following Landau and Lifshitz [17], various physicists [1, 
2,4,9–13] recognize that the standard synchronization procedure pro-
posed by Einstein fails (or is non-integrable) when applied to the closed 
contour of the Sagnac effect. 

2.1. Describing light propagation on a moving closed contour 

Einstein synchronization procedure introduces an indeterminateness 
in the one-way speed of light, which is related to the conventionality of 
clock synchronization [3,5–7]. In discussing the speed of light we have 
to distinguish between one-way speed and average speed. The term 
Constancy of the Speed of Light refers to the average speed of light cav =
c during a round-trip (e.g., the round-trip starting from point A to point B 
and then back to A), assuming that it is the same in all inertial frames [1, 
3,9]. However, when using the LT with standard synchrony the 
assumption is more stringent because it requires that the one-way speed 
of light c from A to B is the same as that from B to A. 

Relativistic theories assume the existence of an inertial frame S 
where physical empty space is homogeneous and isotropic and, thus, the 
one-way speed is c. For theories with coordinate transformations 
conserving simultaneity, frame S is the preferred frame, while for 
standard SR, based on the LT and relative simultaneity, the one-way 
speed is c on S and on any other inertial frame. Within relativistic the-
ories, time depends on an arbitrary synchronization parameter ϵ [3] and 
the coordinate transformations between two inertial frames of reference, 
S′ and S, in relative motion with velocity v = îv, may be written as, 

t′ = t
/

γ − ϵx′/c2; x′ = γ(x− vt); y′ = y; z′ = z. (1) 

Adjusting the value of ϵ, the three most common transformations are: 

GT (ϵ = 0) t′ = t x′ = x − vt
LT (ϵ = v) t′ = γ(t − vx

/
c2) x′ = γ(x − vt)

LTA (ϵ = 0) t′ = t/γ x′ = γ(x − vt),
(2)  

where in (2) the transformations y′ = y; z′ = z are understood. With ϵ =
0 and γ = 1, GT stands for the Galileo transformations of Newtonian 
physics. With the factor γ = (1 − v2/c2)−1/2 depending on v and ϵ = v, LT 
stands for the Lorentz transformations, based on standard synchrony and 
relative simultaneity. With ϵ = 0, LTA stands for the Lorentz trans-
formations based on absolute synchrony and simultaneity. The LTA (or 
ALT in Ref. [13]) are known in the literature as the Tangherlini-Selleri 
transformations [4,19,20], used by several authors [1,2,9,12,13]. 

The arbitrariness of the light speed is made apparent by writing the 
explicit light speed dependence on ϵ, 

c′ = c′ (ϵ) = dx′

dt′ =
c

1 + v/c − ϵ/c, (3)  

which, to first order in v/c, is valid for the GT. 

2.2. Clock synchronization and the one-way speed of light 

In Fig. 1-a, a light ray (a photon) is sent along a closed stationary 
circular contour of length 2L = 2πr from clock A at point A to clock B at 
point B at the middle distance L = πr = AB. In the context of preferred 
frame relativistic theories [3], if space is not isotropic on the frame S 
where AB is stationary, the outward one-way light speed cout differs from 
the return one-way speed cret (either along the upper or lower semi-
circle). In classical pre-relativistic physics the anisotropy of space can be 
thought of as due to the effect of a hypothetical ether wind of velocity w 
that modifies the speed of light. In relativistic theories adopting absolute 
synchrony with the LTA (2), the one-way speed c is modified to cout = c/

(1+w /c) = γ2
w(c−w) ≃ c − w and cret = c/(1−w /c) = γ2

w(c+w) ≃ c + w 
when AB is moving with velocity ≃ w relative to the preferred frame. 

Assuming that the two-way average speed is cav = c in frame S, if cret 
and cout are evaluated with the LTA, the round-trip time interval Tround 
and the average speed cav are related by, 

Tround = 2L
c = 2L

cav
= L

cout
+ L

cret

= L
γ2

w(c − w)
+ L

γ2
w(c + w)

= 2L
c .

(4) 

On average, in (4) the effect of the ether wind cancels for a round 
trip, as happens in the Michelson-Morley experiment where the LTA 
foresee the same null result [3] of the LT (with w = 0 and cout = cret = c). 

Since, on calculating Tround with different synchronies, expression (4) 
provides the same result, some authors assume that the one-way speed of 
light is arbitrary and different synchronies are physically equivalent [3, 
5–8]. However, if the one-way light speed is arbitrary, the fundamental 
postulate of light speed invariance cannot be tested. In this case, epis-
temologists [16] could claim that special relativity is not a meaningful 
physical theory because one of its basic postulates is not testable 
(falsifiable). Hence, for the standing of the theory it is relevant to 
determine whether the LTA and the LT are physically equivalent or not. 

The effect of space anisotropy on the one-way speed of light may be 
described in terms of the velocity field w (as done by Silberstein [21] 
and Post [18]) which mimics the velocity of the classical ether wind. If w 
is uniform, we have ∇ × w = 0. In this case, the procedure (4), which is 
used to synchronize clock A with clock B, provides the same result when 
light performs the round trip from A to B and back to A on the upper 
semicircle, or from A to B on the upper but back on the lower semicircle. 
Thus, when ∇ × w = 0, the synchronization procedure (4), foresees that, 
on average, light propagates as if the velocity field is zero (w = 0, no 
ether wind). 

However, in case of rotational motion the velocity field is not curless 
and ∇ × wrot = 2ω ∕= 0, where ω is the rotational angular velocity. 
Consider the contour of Fig. 1-b that is rotating clockwise at the pe-
ripheral velocity v = ωr relative to the isotropic space of the stationary 

Fig. 1. a) On the stationary circular contour a photon is sent from clock A to 
clock B at the speed cout and returns from B to A at the speed cret. The speed of 
light is modified by the ether wind w but the average speed is not. b) If clock 
and contour are rotating at the angular velocity ω, as seen from the rotating 
frame there is an ether wind blowing at velocity w′

rot = v = ωr that modifies the 
speed of light c′

out . 
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frame S. As observed from the rotating frame S′

rot of the contour, the 
anisotropy of space – produced by the rotation of frame S relative to S′

rot 

– may be interpreted as due to a counter-rotating velocity field 
⃒⃒
w′

rot
⃒⃒
=

|v| (an ether wind) with ∇× w′

rot = 2ω′ . For light co-propagating out-
ward on the upper and back on the lower semicircle (Fig. 1-b), in 
agreement with the result of the Sagnac effect, the proper time interval 
τround measured by the rotating clock A is, 

τround = L
cʹout

+ L
cʹret

= L
γ2(c − v)

+ L
γ2(c − v)

= 2L
γ2(c − v)

= 2πr
γ2(c − v)

= 2L(
cʹout
)

av

,

(5)  

where c′

out = c′

ret = γ2(c−v) = (c′

out)av ∕= c represents the average one- 
way light speed of a photon co-propagating along the circumference 
of rest length 2πr = 2L, where c is modified by the wind rotational ve-
locity v ¼ wrot. 

In expression (5) we use the rest length 2πr = 2L (and not the rest 
length γ2πr = γ2L) in agreement with the considerations made by 
Kipreos and Balachandran in Ref. [13] and its companion paper. In fact, 
it is known that the inclusion of the γ term is incorrect because the 
corresponding Sagnac equation implies one-way speeds of light in the 
rotating frame that will generate an anisotropic two-way speed of light. 
Moreover, the anisotropic two-way speed of light that is linked to the 
Sagnac equation with the γ term is invalidated by high-resolution optical 
data. 

As seen from clock A, the ground path of the contour to be covered by 
the photon is 2L and, if v is uniform along the circumference, due to 
symmetry, the ground speed, i.e., the local speed along the rotating 
contour, is uniform and coincides with the average speed. Then, 
expression (5) shows that Einstein synchronization applied on the 
rotating contour fails (in the sense that it is not applicable, or integrable) 
because the average light speed (c′

out)av = c′

out along the closed contour 
2πr, differs from the value of the constant speed c postulated with Ein-
stein synchronization (4). Yet, Einstein synchronization can be applied 
to an open path (arc) AB of the circumference. For example, light can 
travel from A to a point B on the upper semicircle and back from B to A 
always on the upper semicircle. Thus, supporters of the LT can still claim 
that the local light speed is c along AB, a property that we wish to test in 
Section 3. 

A physical example where result (5) applies is given by the 
Michelson-Gale [22] experiment where the contour is stationary on 
Earth. The Michelson-Gale experiment is considered to be equivalent to 
a Sagnac effect and in both cases the failure of Einstein synchronization 
has been ascribed by some physicists to the fact that the measuring 
device is not on an inertial frame — “ … A state of kinematical accel-
eration … associated with a state of absolute motion …” Post [18] —. 
Nevertheless, as considered below, Einstein synchronization and the use 
of the LT lead to inconsistencies even in the linear Sagnac effect [15] 
where the measuring device can be on an inertial frame during the in-
terval τround of the photon round-trip. In fact, the circular contour of 
Fig. 1 can be stretched to assume an elliptical shape or, at the limit, the 
shape of the very long contour of Fig. 2, as in the linear Sagnac effect, 
where the dimension of the pulleys A and B can be assumed to be 
negligible. It is easy to verify that the same considerations made for the 
stationary circular contour of Fig. 1-a, apply for the stationary linear 
contour of Fig. 2-a. 

When clock and contour (a flexible optical fiber in the linear Sagnac 
effect [15]) are in motion (Fig. 2-b) relative to frame S where space is 
isotropic, we can maintain the analogy of the velocity field acting as an 
ether wind always blowing against the photon traveling from A to B on 
the upper section in the out trip, and from B to A on the lower section in 
the return trip, as in the case of the rotational motion of Fig. 1-b. 

Expression (5) applied to the contour of Fig. 2-b indicates again that 
the one-way ground speed of light is equal to the average speed, c′

out =

c′

ret = γ2(c − v) = c′

av ∕= c. It should be clear that the failure of Einstein 
synchronization is not related to the fact that clock A is accelerated (as in 
the circular Sagnac effect) or not accelerated (as it may be in the linear 
Sagnac effect), but to the fact that light is bound to propagate along the 
closed moving contour where the round-trip time interval τround is 
measured by a single clock that needs no synchronization and, thus, 
removes the indeterminacy of the one-way light speed. 

In general, curvilinear transformations in one dimension from 
frame Sσ to the frame S′

σ′ along the whole closed contour and co- 
moving with it, can be expressed as [9], σ′ = γ(σ − vt), where σ is 
the curvilinear one-dimensional spatial coordinate. The corresponding 
time transform is, t′ = t/γ or t′ = γ(t − vσ/c2), depending on whether 
we use absolute or relative simultaneity. The important point is that, 
for describing light propagation on the moving closed contour and 
interpreting result (5) of the Sagnac effect, no problems arise if abso-
lute simultaneity is adopted [1,3,4,9–13]. In flat spacetime with cy-
lindrical coordinates, is generally used the Langevin–Landau–Lifshitz 
metric [18,23–25], with τ = t′ = t/γ the proper time of the clock on the 
rotating circumference. However, if relative simultaneity is adopted, 
we are met with the undesirable consequence mentioned in Refs: [1,4, 
9–13]. In fact, the relative time transform t′ = γ(t − vσ/c2) predicts that 
a clock at the distance σ = 2L = 2πr from A (i.e., the same clock A) 
displays the time gap δt′ = −2vL/c2 and, thus, is out of synchrony with 
itself [1,2,4,9,12]. 

Instead of curvilinear coordinates, for the linear Sagnac effect we 
may introduce two Cartesian inertial frames, S′ co-moving with the 
upper section, and S′′ co-moving with the lower section (Fig. 2-b), 
moving at velocity v and − v, respectively, relative to frame S. In this 
case, using relative simultaneity, the Lorentz transformations between S′

and S′′ (derived in Refs: [9]) turn out to be given by, x′ = γw(x′′ − wt′′), t′
= γw(t′′ − wx′′/c2) where w = 2v/(1 + v2/c2), γw = γ2(1 + v2/c2). How-
ever, as pointed out by Landau and Lifshitz [17], for a closed contour we 
still have the time gap, which is now at B (x′′

B = L /γ) and is given by δt′ =
−(γw/γ)wL/c2 = −2γvL/c2. Some of the undesirable consequences 
emerging by adopting relative simultaneity in describing light propa-
gation along closed moving contours (discussed in Refs. [9,26]) are 
considered below and in the Appendix. 

Fig. 2. a) Clocks and contour (optical fiber) are stationary, while the photon 
moves at speed cout from A to B and speed cret from B to A. b) Clock and contour 
are in motion relative to the preferred frame S where the pulleys A and B are 
stationary. Relative to the clock, the one-way ground speed of light coincides 
with the average speed, c′

out = γ2(c − v) = c′

av ∕= c. The change of the light 
speed c can be interpreted as due to an ether wind w = v blowing against the 
photon in motion. 
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2.3. Ground path covered by the particle according to relative or absolute 
simultaneity 

We mentioned above that the problems of the LT and relative 
simultaneity are related, in general, to the failure of Einstein synchro-
nization when applied on a moving closed contour. The point is that 
with the LT, at the invariant ground speed c, the particle cannot cover 
the whole closed contour in the measured time interval τround. 

Let us consider the kinematical relation, 

cg =
ds
dτ, (6)  

where cg is the local ground speed of light along the contour’s ground 
path sg and the elementary path ds is traversed by light in the proper time 
interval dτ measured by a clock fixed to the contour. When measured 
along sg, even if the contour is in motion, each section ds of the contour 
maintains the same ground distance from the clock (at least to the first 
order). Then, to the first order in v/c, we expect that the following 
relation be valid, 

τround =
∫

dτ =
∮

g

dLg

cg
= 1

cg

∮

g

dLg =
Lg

cg
, (7)  

where the last two terms correspond to the special case cg = constant and 
(7) should hold for the rotating contours of Fig. 1-b and Fig. 2-b also. In 
the circular and linear Sagnac effects, the speed of light is assumed to be 
c on the stationary frame S. For light counter-propagating in a round 
trip, the clock on the contour in motion relative to S measures the in-
terval τround given by (5) (with v → −v and the ground path given by 2L 
= 2πr). It follows from (7) that, if the light ground speed is c, the ground 
path Lg−eff effectively covered in the interval τround is [9,26], 

Lg−eff =
∮
g
dLg = cτround = 2L

γ2(c + v)

= 2L
(

1 − v
c

)
= 2πr

(
1 − v

c

)
= 2πr − cδt′ < 2L,

(8)  

where δt′ is the time gap. 
Thus, we may infer from (8) that, by adopting the LT with the 

invariant light speed cg = c, the path Lg−eff effectively covered is open. 
Instead, by adopting the LTA with cg ∕= c, the path Lg−eff is closed and 

equal to the ground path 2L = 2πr [9,26]. What is implied by the Sagnac 
effect is that, if the local light speed is c along one of the two (upper or 
lower) relatively moving sections of the contour, it cannot be c along the 
other section. In order to corroborate our claim, for the convenience of 
the reader in the Appendix we work out in detail two simple examples of 
light propagation in the linear Sagnac effect (discussed also in Refs. [9, 
26]) and verify the length of the path effectively covered by the photon 
in a round trip. The example 6.1 of the Appendix is original and has not 
been discussed in previous works. The example 6.2 has been considered 
in Ref. [9] but is presented with an important change because we use 
now two clocks for determining the light speed on the upper and lower 
sections of the contour. Since the two clocks are both in uniform motion, 
the objection that the observer co-moving with the clock is not an in-
ertial observer does no longer apply. 

In conclusion, the Sagnac experiment shows that, with measure-
ments performed with a single clock where no clock synchronization is 
required, the average one-way (c′

out)av of (5) differs from the average 
two-way speed c = cav of Einstein synchronization (4). 

3. Experiment for measuring the velocity of the ECI frame 
relative to the preferred frame 

Lorentz invariance experiments based on optical experiments of the 
Michelson-Morley type have indicated the absence of a detectable 
external preferred reference frame with precision up to the 10−17 level 

[29]. There are Lorentz invariance experiments that use approaches 
other than light propagation and deal with properties of matter where 
Hughes–Drever-type experiments [30,31] test whether the dispersion 
relation of the kinetic energy of particles are isotropic. Furthermore, 
searching for violation of Lorentz symmetry for electrons, an electronic 
analogue of a Michelson–Morley experiment has been performed by 
splitting an electron wave packet bound inside a calcium ion into two 
parts with different orientations and recombine them after a time evo-
lution of 95 ms with a precision reaching the 10−18 level [32]. 

We have shown in the previous Sections that, in optical experiments 
of the Michelson–Morley and Sagnac type, light propagates within a 
closed contour, performing a round trip starting from the interfero-
metric device and returning back to it. In these experiments that attempt 
of verifying the isotropy of the speed of light, the average value c of light 
speed is involved and, thus, these experiments are “round-trip” and not 
“one-way experiments”. As shown also by Mansouri and Sexl [3], this 
type of experiments are unable to reveal the hypothetical velocity W 
relative to the preferred frame S, if this frame were to exist, because W 
vanishes on average. Thus, in our opinion “round-trip” optical experi-
ments are conceptually unsuitable for detecting light speed anisotropy 
or testing Lorentz invariance. It is possible that the considerations made 
above for “round-trip” optical experiments might hold also for proper-
ties of matter. For example, in the experiment related to the splitting of 
an electron wave packet, because of the recombination the change of 
orientation is “two-way” and the measured quantity is likely reflecting 
an average two-way property, rather than the one-way orientation of the 
wave packet. 

In any event, for “round-trip” optical experiments using interfero-
metric techniques the limitation for detecting W is evident and, for the 
purpose of testing Lorentz invariance, it becomes necessary to make use 
of “one-way experiments”, such as the one performed on the Earth 
surface described below, which relies on one-way light propagation 
along the short open path AB of Fig. 3. The time of flight of one-way light 
signals along AB are measured with the help of an emitter/detector with 
a single clock and, in principle, no interferometric techniques are 
required for our experiment. The essential additional information that 
leads to determining the one-way light speed in our experiment is the 
Earth peripheral velocity, which can be determined independently by a 
standard Sagnac experiment that provides the Earth angular velocity 
without the necessity of synchronizing clocks along the path AB. 
Although an independent Sagnac experiment is needed for providing the 
Earth angular velocity, it is worth emphasizing that our experiment is 
not a “round-trip experiment” of the Sagnac type because the time delay 
of the light signal propagating along the emitter/detector AB fixed to the 
Earth covers the “one-way path” AB only. 

Let us suppose that the ECI frame S′ is moving with uniform velocity 

Fig. 3. Relative to the stationary ECI frame S′, the preferred frame S is moving 
with velocity ≃ − w, while the circular section of the Earth of radius r′ is 
rotating at angular velocity ω′. Relative to frame S, a photon travels at speed c′′

= c′′(φ′) from B to A along the arc AB. Due to the ether wind w, the light speed 
c′′ varies for different angular positions φ′ of AB. 
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W′ relative to the preferred frame S where space is isotropic and the one- 
way speed of light is c, being ∇ × W′ = 0 in this case. As shown in Fig. 3, 
let w′ be the component of W′ on the Earth circular plane section of 
radius r′ perpendicular to the rotation axis. As seen from the ECI frame 
S′, there is a curless uniform ether wind of velocity ≃w blowing as 
indicated in Fig. 1-a. Let us consider the arc (or rod) AB on the Earth 
surface, rotating with angular velocity ω′ about the center O′ of the axis 
of rotation stationary on the ECI frame S′. One clock is fixed on the rod 
(of rest length L0) at the end point A. 

For standard SR based on the LT, on the ECI frame the speed of light 
along the rotating circumference of radius r′ is invariant and given by c. 
However, with absolute simultaneity and the LTA, empty space is not 
isotropic on S′ and the local one-way speed of light c′′(φ′) along the rod 
AB changes while AB changes direction relative to w′. Due to the motion 
at speed w′, the angular velocity ω′ is not uniform and depends on the 
angular position φ′. We wish to detect the possible variations of the one- 
way light speed c′′(φ′) along the arc AB that is co-rotating with the Earth 
at the peripheral speed v = ω′r′ relative to the ECI frame S′. 

As shown in Fig. 4, we consider the case when the rod AB is parallel 
to the velocity w′ and the inertial frame S′′ is instantaneously co-moving 
with the rod AB where clock A performs the following measurements.  

a) When B intersects the y′ axis of frame S′ and coincides with the origin 
O′ along y′, a photon is sent from B to A — in practice, the y′ axis may 
be formed by the radial line ideally joining point O′ to a nonrotating 
satellite Y′ fixed on the nonrotating ECI frame. Then, the photon is 
sent when B will intersect the radial Y′O′ line —. 

As observed from the preferred frame S, where the one-way speed of 
light is c, all clocks can be ideally synchronized and initially set at t = t′
= t′′ = 0, when xB = 0, xA = −L0/γw′′ and the rod AB is moving with 
velocity w′′. The photon sent from B toward A travels at speed − c ac-
cording to the equation − ct. The corresponding equation of clock A, 
moving with velocity w′′ from xA = − L0/γw′′ , is −L0/γw′′ + w′′t and, 
thus, the photon reaches A when − ct = − L0/γw′′ + w′′t. It follows that 

the photon time of flight from B to A is, 

tBA = L0
γw′′ (c + w′′) =

L0
c′′

⇒ τA = tBA

γw′′
= L0

γ2
w′′ (c + w′′)

= L0
c

(
1 − w′′

c

)
= L0

c′′ ,
(9)  

where in the second equation of (9) the term τA = tBA/γw′′ is the corre-
sponding proper time interval measured by clock A in frame S′′, in 
agreement with the time transform (2) from S to S′′ given by t′′ = t/γw′′ .  

b) Working out the calculations from frame S, the y′ axis is moving at 
velocity w′ while the rod AB and clock A are moving with velocity w′′. 
Then, we find that clock A reaches the y′ axis (or equivalently, the 
origin O′) when −L0/γw′′ + w′′t = w′ t i.e., after the time interval, 

Γ = L0
γw′′ (w′′ − w′ ) ⇒ τAΓ = Γ

γw′′
= L0

γ2
w′′ (w′′ − w′ ) =

L0
u′′. (10) 

The quantity u′′ in (10) represents the absolute value of the velocity 
of O′ and the ECI frame S′ relative to S′′. 

The observable proper time interval measured by clock A — between 
the arrival of the photon and the crossing of the y′ axis — is, 

δτA = L0
u′′ −

L0
c′′ =

L0
γ2

w′′ (w′′ − w′ ) −
L0

γ2
w′′ (c + w′′) =

L0
u′′ −

L0
c

(
1 − w′′

c

)
, (11)  

where u′′ and c′′ (or w′ and w′′) are still undetermined. 
We see from (11) that, if u′′ is known, the one-way light speed c′′ may 

be determined by knowing the measured proper time interval δτA. 
However, in order to evaluate u′′ in (10) and (11) we need to measure 

it by synchronizing clocks on S′′. Nevertheless, if we synchronize clocks 
on S′′ by adopting some internal procedure (e.g., clock transport), 
physicists might claim [3] that such a procedure turns out to be equiv-
alent to Einstein synchronization. In this case, the measured u′′ is linked 
to the average velocity v = vav = ωr′ of standard SR measured on S′, as 
follows. According to the LT, v is related to w′′ and w′ by the velocity 

Fig. 4. a) Frame S′′ is co-moving instantaneously with the rod (or arc) AB with velocity w′′ relative to the preferred frame S. A photon is sent from B to A when B 
coincides with the y′ axis of frame S′, moving with velocity w′ relative to S. b) When A coincides with the y′ axis of frame S′, clock A has measured the proper time 
interval δτA between the arrival of the photon and the crossing of the y′ axis. 
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transform v = (w′′ − w′)/(1 − w′w′′/c2), which gives w′ = (w′′ − v)/(1 −
vw′′/c2). Then, 

u′′ = γ2
w′′ (w′′ − w′ ) = γ2

w′′

(
w′′ − w′′ − v

1 − vw′′/c2

)

= γ2
w′′

v(1 − w′′2/c2)
1 − vw′′/c2 = v

1 − vw′′/c2.

(12) 

Substituting (12) in (11), 

[δτA]rs =
L0
u′′ −

L0
c′′ =

L0
v

(
1 − vw′′

c2

)
− L0

c

(
1 − w′′

c

)
= L0

v − L0
c , (13)  

where the last term represents the observable result predicted by stan-
dard SR with relative simultaneity, indicating that w′′ (or w′) is not 
observable with the sole measurement of δτA. 

In conclusion, expression (11) (derived from the preferred frame S) 
cannot be discriminated from expression (13) (based on the LT). Both 
expressions provide possible equivalent interpretations of the same 
observable δτA and it is not possible to determine w′′ and the one-way 
speed of light c′′ from (11) if u′′ is measured using an internal synchro-
nization performed on S′′. Therefore, in order to determine w′′ from (11), 
the velocity u′′ must be measured by means of a procedure that does not 
depend on synchronization. 

Measuring u′′ with a Sagnac experiment at the angular position 
of arc AB. 

An independent procedure to measure u′′ may be based on a Sagnac 
experiment, performed locally on the Earth at the angular position of arc 
AB. Ring lasers Sagnac experiments, which can measure the angular 
velocity ωE of the Earth with a precision δω/ωE < 10−8, are performed 
routinely on Earth [27,28]. Regardless of the nature of the interferom-
eter (ring laser or Michelson-Gale interferometer), in the Sagnac 
experiment the time delay between counter-propagating light signals is 
measured by a single clock (or interferometer) [18] that needs no syn-
chronization and, thus, the resulting ωE measured in the experiment is a 
synchronization-independent quantity. 

Let us consider a Sagnac interferometer of radius r* located on the 
Earth surface at the position of the rod AB and let the nonrotating in-
ertial frame S′′ be co-moving instantaneously with the center O* of the 
interferometer. As seen from S′′, the single clock C* — fixed to the 
rotating interferometer and measuring the time delay Δt* between the 
counter-propagating light signals of the Sagnac effect — is rotating at 
angular velocity ω′′

* = ωE with a peripheral speed v* = ω′′
*r* relative to an 

observer located at the center O* of the interferometer. The observed 
time delay is given by the standard expression [9,18] that can be derived 
from (5), 

Δt* =
2πr*

γ2
*(c − v*)

− 2πr*

γ2
*(c + v*)

= 4πr*

c
v*

c = 4ω′′
*AREA
c2 , (14)  

where in (14) AREA = πr2
* . Since the clock C* of the interferometer is 

practically moving at the same velocity w′′ of frame S′′ relative to the 
preferred frame S, we have t* ≃ t′′ = t/γw′′ . Therefore, it may be claimed 
that the quantity ω′′

* measured with a Sagnac experiment on the rotating 
frame S′

rot of the Earth corresponds to the angular velocity ω′′ = ωE = ω′′
* 

seen from the nonrotating inertial frame S′′ instantaneously co-moving 
locally (same longitude, or angular position φ′) with the point where the 
experiment is performed. The conclusion is that by means of (14) a 
Sagnac experiment can provide experimentally the local quantities ω′′ =
ωE = ω′′

* and u′′ = ω′′R = ω′′
*R, without the need of determining them by 

means of Einstein or other equivalent internal synchronizations of 
spatially separated clocks. 

As shown in Fig. 4, an observer on S′

rot co-rotating with AB sees point 
O′ fixed on the radial line perpendicular to the arc AB. However, the 
observer on the nonrotating frame S′′ sees the arc AB, together with the 
radial line and the origin O′ of frame S′, rotating instantaneously at the 
angular velocity ω′′ = ωE and, thus, sees point O′ and frame S′ moving at 

the instantaneous speed given by, 
⃒⃒
− u′′

O′

⃒⃒
= u′′ = ω′′r′′ = ωER. (15) 

Solving for c′′ expression (11) we find that the resulting experimental 
value is, 

c′′exp =
L0

L0/u′′ − δτA
≃ L0

L0
/(

ω′′
*R
)
− δτA

, (16)  

where ω′′
* and δτA are determined by experiment. 

The resulting c′′exp determines the natural clock synchronization 
parameter ϵ and, referring to the two cases considered here, special 
relativity based on the LTA (ϵ = 0) predicts the value, 

(c′′)LTA = γ2
w′′ (c+w′′) ∕= c (17)  

while special relativity based on the LT (ϵ = v) predicts the value, 

(c′′)LT = c. (18) 

As seen from frame S′′, the light speed c′′ along AB depends on the 
angular position φ′ of the arc AB. Therefore, by taking measurements at 
different values of φ′, i.e., different orientations of AB relative to w′, it is 
possible in principle to evaluate w′ and its direction. 

When φ′ = π/2 and AB is perpendicular to w′ and moving with ve-
locity uy in the − y direction, we have (c′′)LTA ≃ γ2

uy
(c+uy) independent 

of w′ to the first order in w′/c. In this case, the measurement of (c′′)LTA 
leads to the determination of uy, which is now different from w′′. When 
φ′ = π and AB is parallel to w′ but moving in the opposite direction 
relative to S′, we find an expression similar to (11), where w′′ is to be 
replaced by w′′

−, which may be different from w′′. 
Note that, due to rotation, the kinematical quantities on the rotating 

frame differ from those on frame S′′. For example, after the time interval 
Γ taken for performing the experiment, the length of arc (or rod) AB seen 
from frame S′′ is smaller than its rest length L0. With u′′ = ω′′R, the length 
variation ΔL0 in the time interval Γ is given by, 

ΔL0 = L0 −L0cos(ω′′Γ)= L0

(
1− cos

(
u′′

R
L0
u′′

))
= L0

(
1− cos

(
L0
R

))

≃ L0

(
1−
(

1−
(

L0
R

)2
))

=L0

(
L0
R

)2  

which is negligible assuming L0 ≪ R. Similar conclusions apply to the 
velocity u′′. Therefore, our approach becomes rigorous in the limit L0 → 
dL = infinitesimal and, thus, with our approach the one-way light speed is 
tested ideally at the differential level. 

Determining the one-way speed c′′ when w′ = 0 and the ECI 
frame S′ coincides with the preferred frame. 

When w′ = 0, as seen from the ECI frame S′, for both the LTA and LT 
the peripheral speed of the uniformly rotating circumference is u = v =
ωR. According to standard SR with the LT, an observer on frame S′′ sees 
the center O′ of the Earth, fixed on the ECI frame S′, moving instanta-
neously at speed (u′′

O′ )LT = − v. However, according to the LTA the 
velocities transform as 

u′′ = γ2(U − v)

when frame S′′ moves with velocity v relative to S, as in the case when 
the ECI frame S′ coincides with the preferred frame S. In this case, the 
velocity of the origin O′ of S′ is U = 0 and, as seen from frame S′′, point O′

and frame S′ are moving at the instantaneous speed (u′′
O′ )LTA = −γ2v = −

u′′ = −ω′′R = −γ2ωR and, therefore, ω′′ ∕= ω. With our experiment we 
can measure the quantity δτA, while the Earth angular velocity ω′′

* =
ω′′ = ωE is measured with a Sagnac experiment by means of (14). 

According to the LTA based on absolute simultaneity expression (17) 
becomes, 
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(c′′)LTA = γ2(c+ v) = L0
L0/(ω′′R) − δτA

. (19) 

Instead, according to the LT based on relative simultaneity expres-
sion (18) becomes, 

(c′′)LT = c = L0
L0/(ωR) − δτA

= L0
L0/v − δτA

. (20) 

The difference between (19) and (20) is due to the difference be-
tween ω′′ and ω, being ω′′ = γ2ω. The result of the experiment will point 
out the correct synchronization and corresponding one-way light speed. 

The important aspect, discussed in the previous Sections, is that the 
one-way light speed (c′′)LTA = γ2(c+v) is consistent with the one-way 
average speed of light in a Sagnac experiment involving a counter- 
moving light signal along the Earth circumference. Instead, the light 
speed (c′′)LT = c represents the local light speed on AB (obtained 
adopting Einstein synchronization), which is said to be non-integrable 
because it is not consistent with the one-way average speed measured 
in the Sagnac experiment. Thus, expression (19) with (c′′)LTA = γ2(c+v)
is the expected result consistent with the one-way average speed 
revealed by the Sagnac experiment. 

Some considerations on the experimental feasibility of our approach. 
The purpose of our paper is to show that the LT are not physically 

equivalent to the LTA and that, if it exists, the preferred reference frame 
is detectable at least in principle. To show that our approach can be used 
to detect the preferred reference frame in practice requires to provide 
experimental designs and details that go beyond the scope of our article. 
In any case, the realization of an experiment of this type may prove to be 
quite challenging and expensive. 

One of the experimental difficulties to overcome is to realize physi-
cally the y′ axis of the ECI frame S′ that is to be crossed by the emitter 
and detector. A solution could consists in setting on S′ a stationary op-
tical system that emits a steady laser beam. The beam direction can be 
monitored from frame S′ and can be made to go from the laser source (on 
a satellite stationary on frame S′ placed just above the rotating Earth 
surface) toward the center O′ of the ECI frame (and the Earth), as shown 
in Fig. 4. Hence, the resulting light beam mimicking approximately the 
y′ axis must be stationary on the ECI frame S′ and directed in such a way 
as to reach the Earth surface being perpendicular to it. 

With the beam operating, the emitter at B (sensitive to light) is 
activated by the beam when crossing it (Fig. 4 a)). Similarly, the receiver 
at A (equally sensitive to light) is activated by the beam when crossing it 
(Fig. 4 b)) after the time interval τAΓ given by Eq. (10). The laser beam 
may have some finite spread, or width, but what is important is that the 
beam and its shape be stable on frame S′. In this case, the result is that 
the emitter and the receiver will be crossing the border of the beam and 
be activated by it under the same physical conditions. Thus, if the sta-
bility of the beam intensity and shape are assured to a high degree, in 
practice the emitter and receiver will be activated one after the other at 
the same physical point of the beam border fixed on S′ and close to the y′
axis. Then, the subsequent precision in the resulting δτA of Eq. (11) will 
depend mainly on the resolution and response of the emitter-clock sys-
tem in relation to the light signal sent from emitter to clock. 

Concerning the sensitivity of detectors measuring δτA and the 
smallest measurable time interval, there are techniques capable of 
resolving femtosecond (10−15(s)) [33] or even attosecond (10−18(s)) 
[34] pulses of laser light while better limits may be achieved by means of 
advanced interferometry. The term dependent on w′′ in Eq. (11) is 

L0
c

w′′

c ∼ 10 km
3 × 108 m

/
s

30 km/s
3 × 108 m

/
s
∼ 3.3 × 10−9 s,

where, as a typical example, we assume L0 = 10 km and, relative to the 
preferred frame, an Earth speed w′′ ≃ w′ ≃ 30 km/s, corresponding to the 
velocity of revolution around the Sun (a possible historical candidate of 
preferred frame). This term is quite small and, depending on the 

corresponding experimental errors, quite difficult to detect. Neverthe-
less, it is well within the range of the sensitivity of available detectors 
and, thus, not impossible to observe if the experimental errors can be 
conveniently reduced or taken care of. 

Even though in practice our experiment might be not viable with 
present technology, it shows that, at least in principle, the imple-
mentation of the Sagnac effect may play an important role in light speed 
measurements. This fact, may stimulate further research and advances 
that could lead to more viable and practical tests of the one-way speed of 
light. 

We conclude this Section by pointing out that, in the context of 
relativistic theories where transformations with absolute simultaneity 
can be used, a null result for w′ may be supportive of a modern version of 
the Stokes-Planck theory [9,35], where physical space (the classical 
medium or ether) is dragged by massive bodies (planets and stars) in 
their motion in such a way that it can be practically locally at rest with 
the body. The physical space, which does not share the rotation of the 
body, can be described in terms of an ideal centered inertial frame (fixed 
to the center of mass of the body) where the ether wind velocity w = 0. 
Then, the centered inertial frame assumes the properties of a preferred 
frame where, locally and within the range of the gravitational field of 
the massive body, the one-way speed of light is c [9]. 

4. Conclusions 

A Sagnac experiment, performed locally at a point on the surface of 
the rotating Earth, can determine the angular velocity ω′′

* = ω′′
E of the 

Earth relative to the nonrotating inertial frame S′′ co-moving instanta-
neously with the point. Then, the speed u′′ = ω′′

*R — of the ECI frame 
relative to S′′ — is determined. If follows that the motion of the ECI 
frame, at velocity w′ relative to the hypothetical preferred frame of 
reference S of relativistic theories, can be detected by measuring the 
variations of the one-way speed of light along a rod AB co-rotating with 
the Earth, while the rod changes its velocity relative to S as the Earth 
rotates. 

In the special case of w′ = 0, we may assume that on the ECI frame 
space is isotropic and the one-way speed of light is c. In this case, our 
experiment can determine the local one-way speed of light along a rod 
AB on the rotating Earth surface. In principle, our experiment can test 
the invariance of the speed of light, showing that — as required by 
epistemologists [16] — the basic postulates of the theory can be verified 
experimentally and, thus, special relativity is a viable falsifiable theory. 
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Appendix 

Determining the ground path effectively covered by light in the linear Sagnac effect. 

Clock C* traveling always with uniform velocity on the upper section during the particle round-trip 

As shown in Fig. 5, clock C* is co-moving with the optical fiber sliding on the pulleys A and B at speed v relative to the frame S where the pulleys are 
stationary. Frame S′′ is co-moving with the lower section of the fiber at speed − v relative to S and − w relative to S′. The counter-moving photon starts 
its round trip from the coinciding origins O, O′, O′′ and A and C*, at t′ = t′′ = t = 0. The clocks at the origins O′ (clock C*) and O′ ′ are synchronized at t′
= t′′ = 0, while the remaining clocks along x′ or x′′ are synchronized adopting either relative or absolute simultaneity. The closed ground path, to be 
covered by the photon from clock C* and back to C* in a round trip, is 2L. For the photon out-trip described from C* co-moving with S′, the equation ct′
= L/γ − vt′ for the counter-moving photon traveling on the fiber lower section, gives 

τ*
out = t′out =

C*B
c = L

γ(c + v) = γ L
c (1− v / c). (21)  

Fig. 5. Relative to the frame of the pulleys, the fiber is moving clockwise. a) Clock C* is co-moving with upper section of the optical fiber together with the origin O′

of frame S′. The counter-moving photon leaves clock C* traveling along the lower section of the optical fiber. As seen from S′, the speed of the photon is c, the speed of 
the pulleys and frame S is − v, and the speed of the fiber lower section is − w. b) The curved arrow indicates the direction of motion of the photon. When the photon 
reaches B, according to S′ it has traveled the distance C*B ≃ L(1 − v/c) and A is at the distance AC* ≃ (v/c)L. The path C*B effectively covered by the photon at speed 
c in the interval t′out is less than the fiber ground path AC* + AB ≃ L(1 + v/c).. 

For the return trip on the upper section the equation L/γ − vt′out − ct′ = 0 gives 

τ*
ret = t′ret =

BC*
c = L

γc −
v
cT ′

out =
γL
c (1 − v/c)

Lg−ret = ct′ret = γL(1 − v/c)
(22) 

Fig. 5-b shows that at t′out the photon is at B at x′

B = ct′out = γL(1−v /c) and point A is at x′

A = vt′out = (v /c)γL(1−v /c) ≃ (v /c)L to the left of C*. 
During the interval t′out, the ground path supposedly covered by the photon is Lg−out = AC* + AB = (v/c)γL(1 − v/c) + L/γ = γL(1 + v/c) > L. However, 
according to (21), relative to C* the distance effectively covered at speed c is C*B = γL(1 − v/c) < L. If in the time interval t′out the photon covers at 
speed c the shorter path C*B = γL(1 − v/c), we may expect that, to cover in the same time interval the longer ground path AC* + AB = γL(1 + v/c), the 
photon ground speed relative to the fiber must be greater than c. 

In fact, if we use the LT, we find that from (21) the effective ground path covered in the out trip at speed c in the interval t′out is, 

Leff
g−out = ct′out = C*B = γL(1− v / c),

only, and not AC* + AB = γL(1 + v/c). Then, by means of (22), the total ground path effectively covered at speed c is open and given by, 

Leff
g−tot = Leff

g−out + Lg−ret = 2γL(1 − v/c)
= 2γL − 2(v/c)γL = 2γL − cδtʹ < 2L,

where the missing section cδt′ is related to the time gap discontinuity δt′ between S′ and S′′, as shown in the next example also. 
With absolute simultaneity and the LTA, we find that the total ground path effectively covered is closed, but the local ground speed in the out trip is 

c′ > c, i.e., not invariant. 
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Clock C* and photon counter-traveling with uniform velocity on the lower section during the out trip and on the upper section during the return trip 

Referring to Fig. 6, our basic assumption is that in the reference frame S′′ co-moving with the fiber lower section the one-way light speed is c. Frame 
S′ is moving with speed w = 2v/(1 + v2/c2) ≃ 2v relative to S′′, while the arm AB is translating at the uniform speed v relative to S′′. 

The transformations from S′′ to S′ can be derived as follows (see Ref. [9]): If S is the frame where the pulleys arm AB is stationary, frame S′ is moving 
with velocity v relative to S and the corresponding LT are t′ = γ(t − vx/c2), x′ = γ(x − vt). Frame S′′ is moving with velocity − v relative to S and the 
corresponding LT are t′′ = γ(t + vx/c2), x′′ = γ(x + vt). The inverse LT between S and S′ are, t = γ(t′ + vx′/c2), x = γ(x′ + vt′), which can be substituted in 
the LT between S′′ and S. The result provides the LT between S′′ and S′ given by, t′ = γw(t′′ − wx′′/c2), x′ = γw(x′′ − wt′′), where the relative velocity 
between S′′ and S′ is now w = 2v/(1 + v2/c2) and γw = γ2(1 + v2/c2). 

The initial conditions in S′′ are that point A is at the distance (v/c)L/γ to the left of C*, stationary on S′′ at the origin O′ ′, and B at (L/γ)(1 − v/c) to the 
right. In the out trip, the counter-moving photon leaves clock C* and, at speed c, reaches point B when ct′′ = (L/γ)(1 − v/c) + vt′′, i.e., after the time 
interval 

t′′ = τout =
L/γ

c = C*B
c . (23) 

In the meantime, as seen from frame S′′ where C* is stationary, point A is moving at speed v and reaches clock C* after the same time interval. At this 
instant, A ≡ O′′ coincide with the origin O′ and the clocks at the origin of S, S′, and S′′ are set at t = t′′ = t′ = 0. Then, at t′′ = 0 clock C* at A moves to the 
fiber upper section while, simultaneously in S′′, the particle at B does the same. 

Measuring time intervals on frame S′′ and frame S′. 
In changing its velocity while passing from S′′ to S′ at point A, clock C* takes a finite time interval η. Besides, due to the effect of acceleration, for 

relativistic theories there may be also a clock time delay, which is of second order in v/c [9]. Nevertheless, we may assume that AB = L is large enough 
to have cη ≪ cτround ≃ 2L and it is reasonable to neglect η and the time delay due to acceleration, as we shall do for simplicity in the following 
calculations.

Fig. 6. Relative to the frame of the pulleys, the fiber is moving clockwise. a) Clock C* is comoving initially with the fiber lower section and frame S′′ and, after 
leaving clock C*, the photon reaches B when, simultaneously on S′′, pulley A reaches clock C*. b) The curved arrow indicates the direction of motion of the photon. 
According to the LT with relative simultaneity, when simultaneously on S′′ clock C* is at A and the photon at B, on frame S′ clock C* is at A but the photon is already 
at K, having covered the distance BK in the past (t′ < 0). c) According to the LTA with absolute simultaneity, clock C* is at A and the photon at B simultaneously for 
both S′′ and S′. However, the photon return speed is now c′ ≃ c + w.. 

Alternatively, in order to avoid any problem related to the clock acceleration, we may use a second clock (C′* ≡O′) co-moving with the fiber upper 
section on the reference frame S′, which we synchronize with C* at t′′ = t′ = t = 0. [For simplicity, we do not show the second clock in Fig. 6.] Then, the 
first clock C* on S′′ can measure t′′out , while the second clock C′* on S′ can measure t′ret and both measurements are performed by a device on an inertial 
frame. Obviously, starting from t′ = 0, the time readings of C′* coincide in practice with those of C* if the latter is co-moving with frame S′ at t′⩾0. In 
any event, in the kinematical description of the circular and linear Sagnac effect, the acceleration of C* does not modify the proper time interval 
measured by the clock. 

Thus, we may assume that at t′ ⩾ 0 clock C* is co-moving with C′* ≡ O′ on S′, while the photon is traveling on the upper section moving toward the 
clock. As seen from frame S′′, in the return trip on the fiber upper section, at time t′′ the photon is at L/γ − ct′′, while C′* ≡ O′, moving at speed w is now 
at wt′′. Hence, photon and clock meet when L/γ − ct′′ = wt′′, after the return time interval, 

t′′ret =
L

γ(c + w). (24) 

From the time transform t′′ = γw(t′ + wx′/c2), the proper time of clock C′* at x′ = 0 is t′ = τ = t′′/γw and, 

tʹret = τret =
t′′ret
γw

= L
γγw(c + w)

= (γw/γ)L(1 − w/c)
c = KC*

c = Lʹ

c ,
(25)  

where KC* is the distance of the photon from C* at t′ = 0, as shown in Fig. 6-b. 
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Then, with the help of (23) and (25) the round-trip proper time measured by the clock (or clocks) is, 

τround = τout + τret =
C*B

c + KC*
c

= L/γ
c + (γw/γ)L(1 − w/c)

c

= L
γc +

(γw/γ)L
γ2

w(c + w)
= 2γL(1 − v/c)

c = 2Lγ
γ2(c + v)

,

(26)  

where τout and τret are observables measured separately on frame S and S′, respectively. 

Ground path covered with the LT 
The fact that, according to the expression KC*/c in (26), the photon is at L′ = (γw/γ)L(1 − w/c) at t′ = 0 (and not at point B at γwL/γ) is due to the 

effect of nonconservation of simultaneity, which places the photon to be at B in the past (t′ < 0). In fact, from the transform t′ = γw(t′′ − wx′′/c2) at t′′ =
0 and x′′

B = L/γ, we find t′B = −δt′ = −(γw /γ)wL/c2 and x′

B = γwL/γ. From x′

B the photon then moves by cδt′ =(γw/γ)Lw/c = 2γLv/c toward C′* in the 
time interval δt′ (time gap) to arrive at KC* = γwL/γ − cδt′ = L′. 

Since our aim is to check that, relative to clock C*, every section of the closed contour is being covered by the photon at the local speed consistent 
with the synchrony adopted, the local speed and corresponding path covered has to be evaluated separately on frames S and S′, with the approach 
adopted above. From inspection of (26), we see that the section BK is missing in the calculation of τround. Then, because of the missing section covered 
in the time gap δt′, the ground path effectively covered at speed c is given by, 

Lg−out = cτout = C*B = L/γ
Leff

g−ret = cτret = KC* = (γw/γ)L(1 − w/c)
Leff

g−tot = Lg−out + Leff
g−ret = cτround = C*B + KC*

= L/γ + (γw/γ)L(1 − w/c) = 2γL − cδt′ < 2L 

Thus, if covered at ground speed c with the LT, the ground path is open because the section BK = cδt′ has not been covered by the photon during the 
interval τround. 

Ground path covered with the LTA 
The inconsistency found above applies to the LT only, because with the LTA we have to the first order in v/c: 

Lg−out = cτout = C*B ≃ L
Lg−ret = BC* = c′ τret = γ2

w(c + w)τret ≃ L
Lg−tot = Lg−out + Lg−ret = cτround = C*B + BC*

≃ L + L = 2L,

as expected. 
In conclusion, it is physically impossible to cover at the local ground speed c the whole closed path 2L in the interval τround given by (26). Thus, in 

order to maintain c invariant in both the out and return trips, the standard LT introduce the mechanism of relative simultaneity (with the time gap δt′, 
corresponding to the time discontinuity mentioned by Landau and Lifshitz) to shorten the return path by cδt′ = BK. Thus, the undesirable consequence 
emerging by imposing the invariance of c with the LT is that the round-trip path covered at speed c is necessarily open. 
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