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Abstract 

The macroalgae industry is growing and sugar kelp (Saccharina latissima) has become a 

popular choice for cultivation. One of the challenges for the species as a product for human 

consumption and animal feed is high contents of iodine and arsenic. Iodine is an important 

antioxidant in brown macroalgae, and decreased iodine content in S. latissima individuals 

could inflict reduced stress tolerance.  

Mineral content was investigated in relation to thallus part, depth, thallus size, and ash 

percentage in cultivated S. latissima. A transcriptome analysis was performed on S. latissima 

samples from an earlier light stress experiment performed at Sintef Ocean Trondheim as part 

of the SafeKelp project.  

Comparisons between stipe and bottom samples showed that many inorganic elements have 

different concentrations in the stipe and bottom (but not iodine). Iodine, arsenic, phosphorus, 

and vanadium levels were significantly correlated with rope section (depth) in bottom 

samples, and bromine and phosphorus were significantly related to ash content. Thallus size 

(fresh weight) tended to increase in individuals growing closer to the surface, but the 

relationship was not significant.  

Proteins presumed to be vanadium-dependent iodoperoxidase (vIPO) and vanadium-

dependent bromoperoxidases vBPO was upregulated in samples treated with 250 µmol m-2s-1 

light, but efflux of iodine or bromine content was not observed in these samples. Arsenic and 

lead contents decreased with time at 250 µmol m-2s-1 light exposure. The metal complexing 

protein glutathione S-transferase was upregulated for samples exposed to 250 µmol light 

(days 1, 3, and 9). Various other stress related processes were observed to be regulated in the 

treated samples compared to control, including the xanthophyll cycle, base-excision repair, 

and peroxisome activity.  
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Introduction 

Background 

 

Demand and production of cultivated brown macroalgae is increasing in Norway (Stévant et 

al., 2017), and sugar kelp (Saccharina latissima) is a popular cultivation choice. The species 

has many desired traits such as high content of nutrients and bioactive compounds (Nielsen et 

al., 2020) but there are concerns linked to high contents of iodine and arsenic. Because iodine 

in kelp is related to stress tolerance, there is a need to know whether efforts to reduce iodine 

content in living plants would inflict decreased stress tolerance. Uncertainty remains 

regarding iodine and arsenic levels in brown macroalgae used for food and feed, and further 

research is needed to guide EU law-making decisions (Petursdottir et al., 2015). As the 

macroalgae cultivation industry grows, there is an increasing need to study both beneficial as 

well as potentially harmful compounds and elements in cultivation species such as S. 

latissima.  

 

Literature review 

 

The macroalgae industry is growing 
 

Macroalgae has historically been a valued food source especially in East Asian countries. The 

traditional uses for algae in Norway have been as feed and fertilizer (Goecke et al., 2020). 

Macroalgae today is used for food, feed, dietary products, pharmaceuticals, alginate 

production, biofuel, and more. To meet demand, there has been a substantial increase in total 

macroalgae production over the last 20 years. In 2016, 31.2 million tons fresh weight was 

produced globally, and production is expected to continue to increase (Goecke et al., 2020).  

Macroalgae are habitat-forming species providing food and shelter to a variety of organisms. 

In addition, they help in energy transfer and nutrient cycling (Teagle et al., 2017). Chile, 

China, and Norway are leading the exploitation of wild macroalgae, and wild harvest is still 



5 
 

the dominant practice in many countries (Buschmann et al., 2017). To ensure the health of 

ecosystems dependent on macroalgae, it is vital that future macroalgae exploitation depends 

on cultivation.  

In 2015, Norway produced approximately 150,000 tons fresh weight macroalgae (mostly from 

wild harvest), making up 65% of the total European supply (EU 2018). The brown algae 

Saccharina latissima is a popular species for cultivation and has been successfully cultivated 

across Europe (Nielsen et al., 2020). S. latissima offers several beneficial nutritional 

compounds for humans such as minerals, phenolic compounds, sugars, and polyunsaturated 

fatty acids (Nielsen et al., 2020).  

 

S. latissima is a powerful accumulator of iodine 
 

Iodine in trace amounts is essential to human health, and insufficient iodine intake affects 

around 2 billion people globally (Krela-Kaźmierczak et al., 2021). On the other hand, too 

much iodine can be toxic and cause either hypothyroidism or hyperthyroidism (Leung & 

Braverman, 2014). The recommended daily intake of iodine is 150 µg day-1 for adults and 

adolescents according to FAO & WHO (FAO & WHO, 2001), and only 32 mg of S. latissima dry 

biomass is enough to meet daily recommended intake for adults (Roleda et al., 2018).  

As far as we know, brown macroalgae are the most powerful accumulators of iodine of all 

living organisms. While seawater contains about 50 µg L-1, S. latissima typically contains 

around 2.7-3.5 g kg-1 iodine dry biomass (Sharma et al., 2018), a difference in concentration 

amounting to 5 orders of magnitude. Iodine is found as iodide (I-) in seawater and uptake is 

thought to be dependent on iodide oxidation in the apoplast producing I2 or HOI (Küpper & 

Carrano, 2019). Specific enzymes belonging to a group called vanadium-dependent 

haloperoxidases (vHPOs) are likely to be responsible for this oxidation, catalysed by 

hydrogen peroxide (H2O2). There are three types of vHPOs called iodoperoxidases (vIPOs), 

bromoperoxidases (vBPOs) and chloroperoxidases (vCPOs). vCPOs appear in cyanobacteria 

but does not seem to be present in brown or red algae (Liang et al., 2014). The classification 

of these enzymes is based upon the most electronegative halogen that the enzyme can oxidise 

(not counting astatine), meaning that vCPOs can oxidise chlorine, bromine, and iodine, while 

vBPOs can oxidise bromine and iodine. vIPOs can only reduce iodine but is approximately 7 

times more effective in this regard than vBPOs in Laminaria digitata (Colin et al., 2003).  
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Gametophytes in Laminariales, which lack vHPOs, does not seem to accumulate iodine 

(Küpper et al., 1998), which is strong evidence that these enzymes are central to the uptake of 

iodide from seawater. However, when exposed to H2O2, accumulation of iodine was initiated. 

Another pathway for iodine accumulation in Laminariales has been proposed to account for 

this, where I- reacts with Fe(III) to produce I2 (Crans et al., 2004), as seen in Equation 1.  

𝐹𝑒(𝐼𝐼𝐼) + 2𝐼− → 2𝐹𝑒(𝐼𝐼) + 𝐼2       Equation 1 

After oxidation of iodide to either I2 or HOI (Equation 2 and 3), the increased lipophilic 

nature of these species allows them to pass through the cell membrane (Küpper & Carrano, 

2019). After this point however, the details of I- uptake are highly uncertain. HOI and I2 are 

thought to be reduced back to I- and stored in either the apoplast or vacuoles in the cell.  

 

Release of iodine is an important stress response in S. latissima 
 

S. latissima is found mainly in the subtidal zone and sometimes in the intertidal zone (Bekkby 

& Moy, 2011), an environment where these macroalgae is exposed to several stressors that 

define their population. Stressors include exposure to air and intense sunlight, high 

temperature, ice formation, sedimentation, exposure to strong waves, as well as a wide variety 

of biotic stressors such as herbivores, epiphytes, and pathogens. According to Maharana et al. 

(2015), formation of reactive oxygen species (ROS) is related to both temperature and 

sunlight. ROS formation events happen when light energy exceeds photosynthetic capacity in 

photosystem II. The process results among other things in the formation of singlet oxygen 

(1O2) (Pospíšil, 2016), a highly reactive species. Other ROS include superoxide anion radicals 

(O2
-), hydroxyl radicals (OH-), and hydrogen peroxide (H2O2) (Maharana et al., 2015).  

One proposed stress response in Phaeophyceae is the scavenging of ROS by iodine, catalyzed 

by vIPO (Almeida et al., 2001). Once H2O2 or other ROS are present, iodide in the cells is 

oxidized and hypoiodous acid produced, while hydrogen peroxide is reduced to water 

(Equation 2 and 3). Hypoiodous acid reacts with a wide variety of organic substrates and 

forms iodocarbons. Iodocarbons can disturb bacteria biofilm formation and thus making them 

unable to form colonies. Bromide have also been found to act as an antioxidant, but iodide is 

thought to be more effective in this regard (Küpper et al., 2013).  
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𝐼− + 𝐻2𝑂2 ⇄ 𝐻𝐼𝑂 + 𝑂𝐻−        Equation 2 

𝐻𝐼𝑂 + 𝐼− + 𝐻+ ⇄ 𝐼2 + 𝐻2𝑂        Equation 3 

 

Variations in iodine concentration 
 

Iodine in S. latissima has been found to be relatively stable across years and seasons (Roleda 

et al., 2018). The same study looked at variation in iodine content in S. latissima between 

three geographical locations (France, Trondheim, and Bodø) and found significant 

differences. Regarding the distribution of iodine in S. latissima individuals we first need an 

introduction to S. latissima anatomy. A typical S. latissima individual has a holdfast 

connected to its substrate, and a stipe connecting the holdfast to a single, flat blade. The 

meristem is where non-differentiated cells are located which gives rise to other blade tissue by 

cell division and is located at the bottom close to the stipe. Early research on this topic 

suggested that iodine is located mostly in the holdfast, stipe, and meristematic zone, while the 

old part of the blade towards the tip has lower concentrations (Amat & Srivastava, 1985). This is 

in line with the finding that younger plants contain more iodine (Roleda et al., 2018). In 2008, 

Verhaeghe et al. showed that most iodine is stored in peripheral tissue, presumably in 

apoplastic spaces. Most of this iodine is stored as labile inorganic I- (up to 90%), and the rest 

is stored in various iodinated amino acid residues such as iodotyrosine.  

 

Bromine and vanadium-dependent bromoperoxidases (vBPOs) 
 

Bromine has a very similar role to iodine in brown macroalgae, acting as a simple antioxidant. 

Despite this, not nearly as much is known about bromine in kelp as is known about iodine. 

Verhaeghe et al. (2008) found bromine in Laminaria digitata to be distributed in the apoplast 

of peripheral tissue, just like iodine. In another study by Küpper et al. (2013), the highest 

levels of bromine found in L. digitata individuals was found in the peripheral layers of the 

stipe and in the holdfast. Most bromine is present as bromide (Br-) (Küpper et al., 2013). Even 

though iodine is the most efficient antioxidant in the presence of hydrogen peroxide, hydroxyl 

radicals and ozone (Colin et al., 2003; Küpper et al., 2008), bromine was found to the most 

effective antioxidant in the presence of superoxide (Küpper et al., 2013). Like vIPOs, vBPOs 

scavenge ROS producing halogenated compounds.  
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In addition, bromine and vBPOs are thought to be involved processes other than scavenging 

of ROS; in the interaction and cross-linking between macromolecules in another brown algae, 

Fucus serratus (Berglin et al., 2004), and in the disruption of quorum sensing (making 

bacteria unable to form biofilms) in red algae (Sandy et al., 2011).  

 

Heavy metals 
 

Arsenic, cadmium, and lead are heavy metals and are toxic even in trace amounts. Cell wall 

chemistry is the main factor that decides uptake rates of heavy metals in algae. While 

cadmium is mainly sequestered into algae by chelation, arsenic is taken up by adsorption and 

active uptake, and lead uptake requires chelation as well as ion exchange and reduction 

reactions (Roleda et al., 2019). The main cell wall polysaccharides associated with heavy 

metal uptake are carboxyl, amino, sulfhydryl, and sulfonate (Roleda et al., 2019).  

Previous research on heavy metals in S. latissima has found variation across seasons to be 

small, except for Hg having higher levels in autumn (Roleda et al., 2019). The same study 

reported variation across geographical locations to be significant for As, Cd, Hg, and Pb. This 

suggests that heavy metal content in brown macroalgae is highly dependent on the local 

environment.  

There is more concern around arsenic levels in S. latissima than around cadmium and lead 

levels. Arsenic appears as both inorganic arsenic (i-As) and as part of a variety of organic 

compounds such as arsenosugars, arsenolipids, and arsenosugarphospholipids. There is great 

complexity among the organic compounds that is not yet accounted for. Regarding arsenic 

distribution in individuals of S. latissima, the stipe appears to have lower content of total 

arsenic (Pétursdóttir et al., 2019). The same study also found that arsenic speciation changed 

with tissue age in S. latissima, specifically that older tissue parts (such as the tip of the blade) 

contained more water-soluble arsenic than younger tissue (meristematic region).  

Despite the complexity among the organic arsenic compounds, i-As seems to be the 

speciation of arsenic most associated with toxicity (Petursdottir et al., 2015). According to 

Roleda et al. (2019), only 1,6% on average of the total arsenic found in brown macroalgae is 

i-As. The same study conducted a health risk assessment and found that human consumption 

of S. latissima can generally be considered safe for seaweed harvested from non-contaminated 

waters. In France, the maximum allowable level of inorganic arsenic in algae condiments is 3 
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mg/kg (Petursdottir et al., 2015), but there is still no EU regulation concerning maximum 

arsenic levels in seaweeds (European Commission, 2015), partly because of the complexity of 

speciation of arsenic in seaweeds.  

 

Glutathione is involved in heavy metal protection in brown algae 
 

Glutathione is a highly conserved peptide found in almost all parts of the plant cell, yet the 

highest concentrations are found in the chloroplasts (Ahmad et al., 2010), where it plays an 

important role in the glutathione-ascorbate antioxidant system (Caverzan et al., 2012). 

Glutathione is found in its reduced form most of the time and can be linked to xenobiotics 

such as heavy metals by the glutathione S-transferase enzyme. Glutathione reductase is 

responsible for reducing oxidised glutathione back to its reduced form (Nowicka, 2022). 

Earlier research shows that glutathione combats heavy metal toxicity in the brown algae 

Fucus serratus and Fucus vesiculosus, by complexing metals including arsenic, cadmium and 

lead (Pawlik-Skowrońska et al., 2007). In addition, glutathione is the primary precursor to 

phytochelatins, another protein capable of complexing metals, and glutathione content was 

found in the same study to be a limiting factor in phytochelatin production.  

 

Methods for reducing potentially harmful elements after harvest 
 

Water blanching has been proposed as a method to reduce iodine content in S. latissima 

(Nielsen et al., 2020). Biomass soaking is another proposed method, which has been shown to 

reduce iodine content in S. latissima, and to reduce cadmium content in Alaria esculenta. 

However, these methods both results in collateral loss of beneficial compounds, as well as 

changing texture, colour, and taste.  

The possibility of using cultivar development to address high iodine and arsenic levels has not 

yet been explored. Cultivar development of kelp has focused mostly on biomass and size until 

now (Goecke et al., 2020), and attempts at targeting chemical composition has been focused 

on increasing beneficial compounds (Zhang et al., 2007).  
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RNA-sequencing 
 

The term RNA-sequencing or RNA-seq was first coined in 2008 (Nagalakshmi et al.) after 

being developed for 2-3 years and has since revolutionized transcriptomics. RNA-seq is 

characterized by the conversion of isolated RNA into double-stranded complementary DNA 

(ds-cDNA) by reverse transcription, which is then sequenced by various PCR methods 

(Weber, 2015). The technology offers several benefits over methods like Sanger sequencing 

and microarray-based sequencing. Firstly, RNA-seq is not based on already known sequences 

like in microarray methods and can thus be used to discover novel sequences. RNA-seq also 

provides higher coverage and greater resolution than both Sanger and microarray-based 

approaches (Kukurba & Montgomery, 2015). The RNA-seq technology is still developing today 

with improvements arriving continuously.  

There is a variety of tools available for the purpose of connecting sequenced reads to 

previously discovered genes and gene products in annotated genomes. The computing process 

of aligning transcript reads to already known protein sequences is known as blastx. The 

recently developed Diamond software claims faster execution than previous blastx softwares 

yet similar sensitivity (Buchfink et al., 2021). The Gene Ontology Consortium (GOC) started 

out as an endeavour to gather genes related to core biological functions in a common database 

(Ashburner et al., 2000), and has since become a standard resource for transcriptome studies 

when it comes to gene function annotation (Carbon et al., 2021).  

Two brown algae species have complete genome sequences at this point: Ectocarpus 

siliculosus (Cock et al., 2010) and Saccharina japonica (Ye et al., 2015). Ref focused 

thoroughly on vIPOs and vBPOs in their sequencing of the S. japonica genome. Until the 

complete S. latissima genome is sequenced, transcriptome projects on S. latissima must 

depend on these genomes.  

 

Previous transcriptome studies on brown algae 
 

The physiology and ecological requirements of S. latissima has been studied for several 

decades, including research on the effects of salinity and irradiance on growth (Spurkland & 

Iken, 2011) and the effects of visible and ultraviolet light on growth and damage (Davison et 

al., 2007; Roleda et al., 2006, 2007; Wiencke et al., 2006). Despite this, the molecular biology 
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and genetics of Laminariales is still not well understood (Heinrich, Frickenhaus, et al., 2012; 

Küpper & Carrano, 2019). 

During the early years of RNA-seq, Colin et al. (2003, 2005) looked at vHPO genes in L. 

digitata and found that vBPOs and vIPOs share a close common ancestor and that both 

vBPOs and vIPOs are encoded by a multigenic family. In 2014, (Liang et al., 2014) did a 

transcriptome analysis on S. japonica to show that vIPOs and vBPOs are closely related and 

likely diverged from vCPOs during an earlier time, presumably during the period of 

prokaryotic life.  

(Heinrich, Frickenhaus, et al., 2012) performed RNA-seq on S. latissima and in the process 

described a protocol for S. latissima RNA extraction which was used as a basis for the RNA 

extraction performed in this study. In the transcriptome study (Heinrich, Valentin, et al., 

2012), they used a microarray analysis to investigate acclimation processes in light and 

temperature stressed S. latissima. They found high temperature to have a bigger impact on the 

transcriptome than high light. Monteiro et al. (2019) used RNA-seq to study the role of 

geographical variation in the stress response of S. latissima to temperature and salinity. They 

found that, depending on the geographical origin of the specimens, different transcriptomic 

responses were observed after combinations of temperature and salinity exposure.  

 

Research questions and objective 
 

The objective of this research is to evaluate whether future attempts to reduce iodine and 

arsenic content in S. latissima is likely to compromise stress tolerance. This is not research on 

breeding, but an attempt to guide future breeding research on how stress tolerance possibly 

relates to the mineral composition in S. latissima. Several research questions were constructed 

as part of this objective:  

i) Variations in inorganic elements in S. latissima 

a. Are there differences in content of inorganic elements between the bottom of 

the blade and the stipe? 

b. Is there a relationship between rope section and content of inorganic elements?  

c. Is there a relationship between thallus size and content of inorganic elements?  

d. Is there a correlation between ash content and content of inorganic elements?  
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ii) Changes in gene expression as result of light-stress in S. latissima 

a. Which genes and processes are regulated by light-stress?  

b. Are there changes to iodine content and genes associated with iodine 

metabolism in response to light stress? 

c. Are there changes to arsenic, cadmium, and lead and genes associated with 

heavy metal in response to light stress?  

I aim to compare different parts of the thallus to know whether a sample from one part of the 

thallus can be used to predict mineral contents in other parts of the thallus. The original plan 

was to use samples from the middle and top of the blade as well, but because of challenges 

with the sample material, only the stipe and bottom part of the blade were examined. As it is 

desirable to select for large blade size in breeding, I also aim to check for correlation between 

thallus size and chemical profile. There is also the aspect that any change in the content of a 

single element could simply be the result of a change in all elements (that is, an increase or 

decrease in ash content). This needs to be kept in mind when looking at potential correlations 

between mineral contents and rope section and thallus size. I aim to investigate which 

transcriptomic processes are regulated during light stress, and especially processes related to 

iodine and heavy metals.  

 

 

 

 

 

 

 

 

 



13 
 

Materials and methods 

 

Study 1: mineral composition in cultivated S. 

latissima individuals 

 

Sampling 

 

The algae are grown on 15-meter-long ropes stretched out between buoys in the ocean. 

Individuals used in this experiment were cultivated on ropes at the cultivation site of Seaweed 

Solutions off the island of Frøya at the end of the Trondheim fjord. They were harvested in 

June 2021 and transported to the distribution facility of Seaweed Solutions in Trondheim 

where they were phenotyped.   

 

Design and phenotyping 

 

The samples arrived in boxes of about 2 m2, each box containing one rope of 15 m. For each 

rope, the first 0.5 m was cut off. Then sections of 1.5 m were cut off from the rope. The 

longest individual was phenotyped first, then starting from one end of the rope section 19 

other individuals were phenotyped. Fresh weight was measured for each individual.  
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Figure 1: Separation of thallus part samples used for mineral profiling in S. latissima. Picture painted 

by Lydia Gieselmann (n.d.) on commission for Silje Forbord.  

In addition, individuals of more than 5 g fresh weight from sections 5-9 on rope nr. S2 were 

selected for investigating relationships between mineral profile, thallus parts, thallus size, 

rope section and ash content. Thalli were separated into stipe, bottom, middle and top part 

samples as shown approximately in Figure 1, then each sample was weighed. These samples 

were delivered to Sintef Ocean Trondheim for freeze-drying.  

 

Bryozoa score 
 

A discrete “Bryozoa score” was noted after the freeze-drying step for each of the samples to 

be analysed. This was based on a rough eye-test, and the samples were scored from 1-4 as 

shown in table ?.  

Table 1: Scoring system for bryozoa contamination on freeze-dried S. latissima samples. Only the 

samples scheduled for mineral analysis were scored. The scoring scale ranges from 1-4 where 1 is low 

amount bryozoan fouling and 4 is high amount of bryozoan fouling.   

Score 1 2 3 4 

Description 0-2 colonies 3-4 colonies 5-6 colonies 7+ colonies 

 

Analysis of mineral content 
 

Then, the freeze-dried samples were ground in liquid nitrogen (LIN) and funnelled into 15 ml 

tubes. LIN was not strictly necessary as the samples were already freeze-dried but it made the 
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samples tissue brittle and easier to crush. For the largest samples, 0.1 – 0.2 g were set aside 

for ash percentage analysis. Then the samples were sent to an analysis laboratory belonging to 

the Faculty of Environmental Sciences and Natural Resources Management (MINA) at 

NMBU and analysed by Mina Marthinsen Langfjord for contents of iodine, arsenic, bromine, 

phosphor, vanadium, cobalt, cadmium, and lead. Iodine and bromine were analysed after 

basic extraction by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and the other 

elements were analysed after HNO3 decomposition in an UltraClave (MLS Milestone, Italy) 

at 260 °C using ICP-MS.  

 

Analysis of ash percentage 

 

Ash percentage was measured by incinerating the samples in heat-resistant tubes overnight at 

550 °C. Samples were weighed before and after incineration, and the ash percentage 

calculated by dividing the weight of the ash by the weight of the original sample. Many 

samples (especially stipe samples) did not have enough dry weight to cover both analysis of 

elements and ash percentage analysis. Therefore, ash percentage was measured mostly in 

bottom blade samples as they were generally larger.  

 

Section as a measure of depth 

 

As shown in Figure 2, the first section used was approximately in the middle of the rope 

(sections 5), and sections 6, 7 and 8 continued towards one end of the rope. The middle of the 

rope would naturally be hanging lower, although it is uncertain how much lower exactly.  
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Figure 2: Approximate depth placement of rope sections on which S. latissima samples were 

grown. The gray line is the rope stretched out between two buoys (yellow). This figure only 

illustrates approximate depth placements of rope sections 5-8 used in this experiment.  

Statistical analysis 

 

Statistical analyses were performed using R Studio (R Team, 2021) and Microsoft Excel.  

Three different subsets of the original dataset were used. The first subset (subset 1) contains 

20 samples from 10 individuals where every individual has one stipe sample and one sample 

from the bottom of the blade. The second subset (Subset 2) contains only samples from the 

bottom and includes some individuals that did not have a matching stipe sample and so could 

not be included in the first subset. The third subset (Subset 3) contains all possible samples 

that are from different individuals (i.e., thallus part did not matter, only rope section and 

measured wet weight of the original individual.  

A Principal component analysis (PCA) was carried out for each Subset. Variables included in 

the PCA for Subset 1 was the 8 element variables. In the PCA for Subset 2, ash percentage 

was included in addition to the 8 element variables.  

A 2-way analysis of variance (ANOVA) was performed for 8 elements: iodine, arsenic, 

bromine, phosphorus, vanadium, cobalt, cadmium, and lead. I looked at the main effects of 

depth and part but not interaction as shown in (Equation 4).  

 

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑖𝑗𝑘 = µ + 𝐷𝑒𝑝𝑡ℎ𝑖 + 𝑃𝑎𝑟𝑡𝑗 + 𝜀𝑖𝑗𝑘      Equation 4 
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Before arriving at the model described above, some other models were tested. A 3-way 

ANOVA model was tried for Subset 1 including individual as a factor nested in rope section, 

as well as the main effect of thallus part. Individual did not show any effect in this model and 

was therefore excluded going forward. A complete 2-way model was also attempted, 

including the effect of interaction in addition to the main effects of section and part. As only 

vanadium was significantly affected by the interaction, the complete model was also dropped 

in favour of the main effects model.   

 

Study 2: Transcriptome analysis of light-

stressed S. latissima individuals 
 

Mineral composition 
 

Sampling 
 

Individuals were cultivated on ropes at a Seaweed Solutions farm off the island of Frøya and 

sampled in May 2021 by Silje Forbord and Margot Nyeggen. S. latissima individuals with 

length of about 60 cm were chosen. After harvesting, the thalli were transported to Sintef 

Ocean Trondheim and an acclimation period was begun as explained in the section below.  

 

Experimental design 
 

The experiment was a crossed design experiment in which tissues were treated with either 100 

or 250 µmol m-2s-1 light for 1, 3 or 9 days. Two tissue pieces (15 cm each) from each 

sporophyte were cut from the central area above the meristem (Figure 3) and distributed 

indiscriminately in beakers. They were acclimated in flow-through deep water at 10 °C 

exposed to 40 µmol light. In addition, 4 whole sporophytes were acclimated the same way. 

The acclimation lasted for 7 days until the experiment began.  
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Figure 3: Separation of thallus part samples used for mineral profiling in S. latissima. Picture painted 

by Lydia Gieselmann (n.d.) on commission for Silje Forbord.  

As can be seen in Table ?, there were 6 treatment groups (100 day 1, 250 day 1, 100 day 3, 

250 day3, 100 day 9, and 250 day 9) and 5 control groups exposed to the same light as in the 

acclimation period (day 0 uncut, day 0, day 1, day 3, day 9). All treatments and controls had 4 

replicates, resulting in a total of 44 samples. 

 

Table 2: Experimental setup for transcriptome study on light-stressed S. latissima individuals. 

Abbreviations: C0=control day 0, C1=control day 1, C3=control day 3, C9=control day 9, 

MED1=samples exposed to 100 µmol m-2s-1 light for 1 day, MED3=samples exposed to 100 µmol m-

2s-1  light for 3 days, MED9=samples exposed to 100 µmol m-2s-1 for  9 days, MAX1=samples exposed 

to 250 µmol m-2s-1 light for 1 day, MAX3=samples exposed to 250 µmol m-2s-1 light for 3 days, 

MAX9=samples exposed to 250 µmol m-2s-1 light for 9 days. 

 Day 0 Day 1 Day 3 Day 9 

MIN (40 µmol light) C0 and UC 

(uncut) 

C1 C3 C9 

MED (100 µmol 

light) 

 MED1 MED3 MED9 

MAX (250 µmol 

light) 

 MAX1 MAX3 MAX9 
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At the end of the acclimation period fresh weight was measured for all samples. Then for each 

control sample, one piece was freeze-dried and saved for mineral content analysis and another 

part was frozen in liquid nitrogen and stored in a – 80 °C freezer, to be used in the RNA-seq 

analysis. At days 1, 3 and 9 of treatment the same was done for each sample due for that day. 

In addition, fresh weight was measured for the day 9 samples before freezing, to check 

whether different light intensities had effect on growth. Water samples for mineral analysis 

were collected at the start of the acclimation period, at the end of the acclimation period (day 

0) and at the end of the experiment ? (day 9). Silje Forbord and Margot Nyeggen did the 

experimental setup of the beaker glasses, and Åsmund Johansen setup the light systems.  

 

Analysis of minerals 
 

The freeze-dried samples were handled together with the freeze-dried samples from Study 1 

(see above), and analysed for the same mineral elements (iodine, arsenic, bromine, phosphor, 

vanadium, cobalt, cadmium, and lead) at an analysis laboratory belonging to the Faculty of 

Environmental Sciences and Natural Resources Management (MINA) at NMBU (analysed by 

Mina Marthinsen Langfjord).  

 

Statistical analysis of minerals content 
 

Mineral contents were analysed using R Studio and Microsoft Excel. Firstly, a Principal 

component analysis (PCA) was performed for the 8 element variables to get an overview of 

the variation. Day 0 samples were not included.  

Several analyses of variation (ANOVAs) were carried out. Firstly, a one-way ANOVA was 

used to determine the effect of cutting the material as shown in Equation 5.  

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑖𝑗 = µ + 𝐶𝑢𝑡𝑖 + 𝜀𝑖𝑗        Equation 5 

Another control was performed to determine the effect of time using 4 timepoints: one from 

the end of the acclimation period (excluding uncut samples), as well as day 1, 3 and 9 from 

the 40 µmol treatment.  

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑖𝑗 = µ + 𝑇𝑖𝑚𝑒𝑖 + 𝜀𝑖𝑗       Equation 6 
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Lastly, a two-way complete ANOVA model was performed looking at the effects of both time 

and light (excluding all day 0 samples).  

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑖𝑗𝑘𝑙 = µ + 𝑇𝑖𝑚𝑒 𝑖 + 𝐿𝑖𝑔ℎ𝑡𝑗 + (𝑇𝑖𝑚𝑒 ∗ 𝐿𝑖𝑔ℎ𝑡)𝑖𝑗 + 𝜀𝑖𝑗𝑘   Equation 7 

 

Transcriptome analysis 
 

RNA extraction 
 

The study done by (Heinrich, Frickenhaus, et al., 2012) was used a starting point for the 

RNA-extraction protocol, which was followed except for some modifications.   

Before starting the protocol, buffer RPE was diluted with 4 volumes of ethanol 100 % (44 

ml). In addition, the DNase I stock solution was prepared for on-column DNase extraction to 

be done later. Lyophilized DNase I (1500 Kunitz units) was dissolved in 550 µl of RNAse-

free water. The stock solution of DNase I was removed from the vial and aliquoted into 1.5 ml 

tubes and stored in a – 20 °C freezer.  

Between 100-150 mg of frozen sample was transferred to 2 ml sample tubes containing 

QIAGEN tungsten carbide beads and ground using TissueLyser (4x 30 seconds at 25 Hz). 

Samples were kept frozen using liquid nitrogen until the extraction buffer was added. One ml 

extraction buffer (100 mM Tris pH 8, 1 M NaCl, 50 mM EDTA pH 8, 2 % CTAB) were 

added to the tubes as well as 20 µl 2 M DTT. Samples were vortexed thoroughly then 

incubated at 45 °C for 10 minutes. One ml of chloroform:isoamylalchohol (24:1) were added 

and the tubes were shaken at maximum speed for 10 minutes, then centrifuged for 20 minutes 

(12000 x g, 20 °C). 750 µl of the aqueous phase were transferred to new 2 ml tubes. 1/3 

volumes (mostly 225 µl) of 100 % EtOH were added, and tubes were turned upside down 

carefully to mix the samples. 1 volume (mostly 975 µl) of chloroform:isoamylalchohol (24:1) 

were added and the samples were centrifuged for 20 min (12000 x g, 20 °C). 600 µl of the 

aqueous phase were transferred to new tubes and 1 volume (600 µl) of chloroform were 

added. Samples were centrifuged for 10 min (12000 x g, 20 °C). 450 µl of the aqueous phase 

were transferred to new tubes.  

From there, the QIAGEN RNeasy kit was used to continue the extraction according to the 

protocol supplied by the manufacturer (pp. 62 – 66), starting at step 3 (QIAGEN, 2012). 450 
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µl buffer RLT was added to each sample tube, and then tubes were vortexed vigorously. The 

lysate in each sample tube was transferred to QIAshredder spin columns placed in 2 ml 

collection tubes, then centrifuged for 2 min at 12000 x g, 20 °C. As the lysate exceeded 650 

µl which is the limit of the QIAshredder spin columns, this operation was performed in two 

steps. The supernatant of the flow-through for each sample was transferred to a new 2 ml 

collection tubes. There was no visible pellet in the bottom the tubes because most debris was 

already removed in the chloroform extraction, but the bottom the tubes were not disturbed 

nevertheless. 0.5 volumes of 100 % ethanol (normally 400 – 450 µl) were added to the lysate 

and mixed by pipetting. Tubes were not vortexed or centrifuged at this point. The lysate was 

transferred to RNeasy spin columns placed in 2 ml collection tubes. The samples were 

centrifuged for 15 s at 8000 x g (20 °C), and the flow-through discarded. This step was 

performed twice for each sample (but gathered in the same spin column) because sample 

lysate volumes exceeded 650 µl.  

On-column DNase digestion was performed at this point, following the same protocol (pp. 82-

84). Firstly, 350 µl buffer RW1 was added to the RNeasy spin columns. Samples were 

centrifuged for 15 s at 8000 x g (20 °C), and the flow-through was discarded. A DNase I 

incubation mix was made by mixing 10 µl DNase I stock solution with 70 µl buffer RDD for 

every sample. Then 80 µl incubation mix was added to each sample by pipetting it directly 

onto the spin column membrane, and samples were left on the benchtop (~22 °C) for 15 min. 

After incubation the spin column membrane was washed by adding 350 µl buffer RW1 to the 

spin columns and centrifuging for 15 s at 8000 x g (20 °C). The flow-through was discarded.  

Returning to the main protocol step 7 was skipped as this is another RW1 wash step. Then, 

500 µl buffer RPE was added to the RNeasy spin columns. The centrifugation speed and 

length in this step was modified during the course of the project but started out 8000 x g for 

15 s (20 °C) as stated in the protocol. However, to address some impurities detected in the 

final product, the speed and length was increased to 8500 – 9000 x g for 18 – 20 s (20 °C), 

and the step was repeated for some runs. In the next step another 500 µl buffer RPE was 

added to the spin columns and samples centrifuged for 2 min at 8000 x g (20 °C) to further 

wash and dry the spin columns. The spin columns were placed into new 2 ml collection tubes 

and the old collection tubes containing flow-through were discarded. The samples were then 

centrifuged for 10 min at 12000 x g (20 °C). The spin columns were place in new 1.5 ml 

collection tubes (supplied in the kit), and 30 µl RNAse-free water was added directly onto the 

spin columns. The samples were left on the benchtop for 1 min before centrifugation. They 
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were centrifuged for 1 min at 8000 x g (20 °C), resulting in the final eluate as flow-through. 

For each sample a 3.5 µl aliquot was set aside for NanoDrop and TapeStation testing. 

NanoDrop helps assess both quantity and purity of the RNA samples (Thermo Fisher 

Scientific Inc., 2008), while the TapeStation analyses quantity and integrity of the RNA 

(Agilent Technologies Inc., 2015). Samples were stored in a – 80 °C freezer until they were 

shipped to NovoGene for RNA-sequencing.  

 

Quality control, De novo assembly and reads alignment 
 

After the raw sequences returned from NovoGene, the data was processed using a variety of 

command-line software tools. The complete pipeline for RNA-seq postprocessing I used is 

outlined below.  

Firstly, the reads were checked for quality. FastQC provided an HTML report for each sample 

containing graphs showing potential areas of low quality (Andrews, 2010). To make 

interpretation of multiple samples easier, a program called MultiQC were used to compile the 

FastQC reports into a single HTML report (Ewels et al., 2016). A tool called Trimmomatic 

was used to trim areas of low quality from the sample reads (Bolger et al., 2014). Another 

round of FastQC/MultiQC was performed after trimming to check the quality again.  The final 

MultiQC plots and stats can be seen in the appendix.  

An essential part of the analysis is construction of a reference genome. If the genome of the 

organism is already fully sequenced, this genome can simply be used as reference. However, 

if a reference genome is not available, a “de novo assembly” can be constructed using 

samples from the experiment. A software program called Trinity was used to create the 

assembly in this study (Grabherr et al., 2011; Haas et al., 2013). Trinity is split into three 

software modules: Inchworm, Chrysalis and Butterfly.  

The first module (Inchworm) compresses the data by a series of steps. Firstly, reads are 

decomposed into k-mers, meaning all possible substrings (nucleotide sequences) of length k 

are found and cataloged. K-mer length of 25 was chosen for this analysis. The k-mer that 

appears the most times is used as a seed k-mer and extended at the 3’ end. Extension is 

determined by coverage, meaning the nucleotide that appears the most times in the catalogue 

of k-mers is added. If there are two or more nucleotides tied for most abundant, each path is 

explored to find which path offers the most cumulative coverage. Afterwards, the reverse path 
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is extended by the same method. When no k-mers can be extended in either direction, the 

assembled sequence (called contig) is stored and all k-mers found in the contig removed from 

the k-mer catalogue. Then a new seed k-mer is found and the process repeated.  

Chrysalis, the second module, takes contigs reported by Inchworm and groups them based on 

k-1mer (in this case 24-mer) overlaps. A k-mer graph (de Bruijn graph) is created for each 

group which shows overlaps between kmers and branches where there is variation.  

In the last step, Butterfly, the de Bruijn graphs generated in Chrysalis are simplified. Stretches 

that contain no branching are collapsed. Sequencing reads from the trimmomatic output is 

threaded into the graph and the most likely paths through the graph is reported back. The 

result is linear full-length transcripts for all alternatively spliced isoforms.  

After the reference genome was assembled Kraken2 was used as a taxonomic classifier 

(Wood et al., 2019). The database used is named “Standard” and contains sequences for 

archaea, bacteria, viral, plasmid, human, UniVec_Core (kraken2 page). Kraken2 queries the 

sequences to the database and outputs both classified and unclassified sequence files. The 

classified files contain sequences that matched to the database and thus contains sequences 

from other organisms.  

BUSCO v5 was used to check the completeness of the assembly genome (Manni et al., 2021). 

The database for stramenopiles was chosen which contains 100 BUSCO markers. The 

BUSCO program compares gene content in the assembly to the expected gene content based 

on the chosen taxonomical database (in this case the stramenopiles database).    

For aligning the reads to the de novo assembly, bowtie2 was used with RSEM as estimation 

method (Langmead & Salzberg, 2012; B. Li & Dewey, 2011). These tools try to match read 

sequences onto a reference genome, in this case the assembly that was made using Trinity. 

The end-to-end option was used, meaning the software tries aligning all the read characters in 

contrast to “local mode” where non-aligning end of reads can be trimmed to increase 

alignment score.  

After alignment about 550000 reads remained. Unfortunately, the alignment output log file 

was lost, so the exact number of aligned reads is not known. A software program called 

Corset was used to cluster these reads into 178827 “clusters” based on similarity which were 

used in downstream analyses. 
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Identifying differentially expressed genes 
 

The statistical analysis was performed in R Studio and Microsoft Excel. Functions from 

several R packages were used. All functions used are listed in Table ? along with their 

respective R packages and package citations. Complete scripts can be found in the appendix.  

Table 3: Overview of R packages used in identification of differentially expressed genes, with 

corresponding citations.  

R package Functions Package citation 

edgeR cpm(), filterByExpr(), 

calcNormFactors(),estimateGLMCommonDisp(), 

estimateGLMTrendedDisp(), 

estimateGLMTagwiseDisp() 

(Chen et al., 2016; 

McCarthy et al., 

2012; Robinson et 

al., 2009) 

limma plotDensities(), makeContrasts() (Ritchie et al., 

2015) 

DESeq2 vst() (Love et al., 2014) 

waldo compare() (Wickham, 2022) 

ade4 dudi.pca() (Bougeard & Dray, 

2018; Chessel et al., 

2004; Dray et al., 

2007; Dray & Dufour, 

2007; Shanmugam, 

2020) 

ggplot2 ggplot() (Ginestet, 2011) 

stats model.matrix() (R Team, 2021) 

seqinr import.fasta(), write.fasta() (Charif et al., 2015; 

Pearson & Lipman, 

1988) 

tidyr drop_na() (Wickham & Henry, 

2019) 

dplyr left_join(), group_by(), summarize(), ungroup(), 

distinct(), slice_max(),  

(Wickham et al., 

2019) 

Stringr str_detect() (Wickham, 2019) 
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RNA-seq data: import and data wrangling 
 

The clusters from the Corset program containing the reads were imported into R Studio and 

assigned metadata. Rows in the data and metadata were compared to make sure they were 

equal (compare function), and then imported into a list (DGEList function). Counts per 

million mapped reads (CPM) was calculated (cpm function). CPM is defined as:  

𝐶𝑃𝑀 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑔𝑒𝑛𝑒∗106

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠
      Equation 8 

The density of counts (logCPM) was then plotted for all samples in a single plot 

(plotDensities function). Based on the plot, many transcripts contained low read count. 

Transcripts with a read count of less than 20 were consequently filtered out (filterByExpr 

function). Then, count density was plotted again using the filtered transcripts. Density plots 

are included in the appendix.  

Library sizes were plotted against samples (shown in appendix). As the plot showed that there 

were imbalances in the library sizes, normalization factors were calculated to scale library 

sizes across samples (calcNornFactors function). The TMM method was used (weighted 

trimmed mean of M-values), proposed by Robinson & Oshlack (2010). 

Next, a variance stabilizing transformation (VST) was performed (vst function), which is a 

useful way of checking for outliers. The VST is calculated from the fitted dispersion-mean 

relations (Anders & Huber, 2010). By dispersion in edgeR is meant the squared Biological 

Coefficient of Variation (BCV2). The BCV is a factor, and between RNA sample replicates, 

the true, unknown gene abundance varies by this factor (McCarthy et al., 2012). The variance 

for the VST transformed counts was calculated and subsequently the 500 most variable genes 

were sorted out to be used in a PCA plot. The PCA was performed (dudi.pca function) and 

plotted (ggplot function).  

The design matrix was made using grouped variables (model.matrix function), that is using 

treatment groups as the single variable instead of using light intensity and treatment duration 

as two different variables. The 0 in the model removes intercept (Equation 9). 

𝐷𝑒𝑠𝑖𝑔𝑛 = 0 + 𝑔𝑟𝑜𝑢𝑝𝑖 + 𝜀𝑖𝑗        Equation 9 

 

Common dispersion, trended dispersion and tagwise dispersion were calculated 

(estimateGLMCommonDisp, estimateGLMTrendedDisp, and estimateGLMTagwiseDisp 
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functions), and plotted against the average log CPM. The BSV was calculated by taking the 

square root of the estimated common dispersion.  

The contrasts were made using the makeContrasts function. To best investigate the effect of 

both light-stress and treatment duration, the contrasts shown in Table 4 were chosen. The 

other contrasts were not investigated in this study.  

Table 4: Statistical setup for transcriptome study on light-stressed S. latissima individuals. 

Abbreviations: C0=control day 0, C1=control day 1, C3=control day 3, C9=control day 9, 

MED1=samples exposed to 100 µmol m-2s-1 light for 1 day, MED3=samples exposed to 100 µmol m-

2s-1 light for 3 days, MED9=samples exposed to 100 µmol m-2s-1 light for  9 days, MAX1=samples 

exposed to 250 µmol m-2s-1 light for 1 day, MAX3=samples exposed to 250 µmol m-2s-1 light for 3 days, 

MAX9=samples exposed to 250 µmol m-2s-1 light for 9 days. All controls were exposed to 40 µmol m-

2s-1 light.  

 End of 

acclimation 

1 day 3 days 9 days Comparison 

MIN (40 µmol 

light) 

C0 and UC C1 C3 C9 C9vsC0 

MED (100 

µmol light) 

 MED1 MED3 MED9 MED9vsMED1 

MAX (250 

µmol light) 

 MAX1 MAX3 MAX9 MAX9vsMAX1 

Comparison C0-UC MAX1vsC1 MAX3vsC3 MAX9vsC9  

 

For every gene, a negative binomial GLM (generalized linear model) was fitted to read counts 

(glmFit function). This fit was then used to conduct genewise tests for each contrast.  

 

Functional Analysis 
 

Output tables containing the differentially expressed genes for each contrast were made. 

However, they were identified by Corset IDs, while the blastx algorithm requires FASTA files 

(containing the actual sequences). Using R to subset data, the FASTA sequences were 

extracted from the Trinity assembly by Trinity IDs and their corresponding Corset IDs. The 
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seqinr package was used to read and write FASTA files (import.fasta and write.fasta 

functions).  

Then, blastx was run using the diamond software (Buchfink et al., 2021) on default sensitivity 

(finds hits of more than 60% identity). This program annotates proteins to the sequences by 

querying the sequences to a database. The “outfmt” output format value was set to 5, because 

Blast2Go (explained below) requires input files as .xml files.  

Subsequently, Blast2Go was used to make annotation maps and to annotate GO terms to the 

blastx hits. (Götz et al., 2008). When importing the blast results into Blast2Go, Highest 

Scoring Pair (HSP) Length Cutoff was set to 33, and HSP-Hit Coverage was set to 80. The 

latest Goa database version at the time was used (2022.03) for annotation mapping. For the 

actual GO annotation, the annotation Cutoff was set to 55, and the GO Weight was set to 5. 

Terms were filtered by the Phaeophyceae database. 1.0*10-8 was used as the lower threshold 

for E-value, and HSP-Hit coverage Cutoff was set at 75. Hit filter was set to 500. Evidence 

codes were chosen according to the default options in the program, and an overview of the 

actual values can be found in the appendix.  

After annotation, tables were exported from Omicsbox containing ids, ids, bitscore, evalue, 

similarity score, GO ids, count, GO terms, and category (Biological Process, Cellular 

Compartment, or Molecular Function). Rows containing no GO ids were removed (drop_na 

function). In R, this table was joined with data from earlier to include P values (left_join 

function), which were then -log10 transformed to use as scores for the GO terms. Because 

some GO terms contained very long descriptions behind commas, GO term strings were 

transformed to exclude commas and everything after (str_detect and strsplit functions). 

Subsequently, all rows were grouped by GO terms and mean -log10(p) values for each GO 

term were put into a new column, and the data ungrouped (group_by, summarize, and 

ungroup functions). Then, only unique GO terms were kept (the rest was discarded). The 

resulting data was grouped by category and the top 10 GO terms in each category was kept 

(distinct, group_by, slice_max, ungroup functions). Plots were made for each contrast using 

data made according to the method described above.  
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Results 
 

Study 1: mineral composition in S. latissima 

individuals 
 

Subset 1: rope section, thallus part, and bryozoa 
 

An overview of the data in Subset 1 is shown in Table 5, including mean values for element 

content and Bryozoa score as well as mineral content and Bryozoa score for each rope 

section. Mean values for most elements appears to be higher in bottom samples than in the 

stipe, but bromine is more concentrated in the stipe. The differences were indeed mostly 

significant (except for iodine content) according to two-way ANOVA tests (Table 6), and are 

illustrated more clearly in Figure 4.   

Table 5: Mean values for Subset 1 (10 individuals with both a stipe and bottom sample 

present) for 8 elements and Bryozoa score. Values are separated for stipe and bottom 

samples, as well as for the different rope sections (depth). Rope section 5 is the deepest part 

of the rope, while 8 is the highest up. Element abbreviations: I: iodine, As: arsenic, Br: 

bromine, P: phosphorus, V: vanadium, Co: cobalt, Cd: cadmium, Pb: lead. Element values 

are in mg kg-1. Bryozoa values are based on a scoring system from 1 to 4 where 1 is the least 

amount of bryozoa and 4 is the most.  

 Stipe  Bottom 

Rope  

section 5 6 7 8 Mean 

 

5 6 7 8 Mean 

            

I 5267 4767 4550 4700 4860  5367 5967 4200 5050 5250 

Br 1900 1500 1450 1300 1570  1267 1200 1045 725 1094 

            

As 66.7 69.7 70.5 60.0 67.0  97.3 103.3 80.0 86.0 93.4 

Cd 1.43 1.13 0.97 0.81 1.12  2.57 2.27 1.45 1.50 2.04 

Pb 0.153 0.107 0.050 0.047 0.097  0.283 0.263 0.210 0.087 0.223 
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V 0.34 0.31 0.29 0.28 0.31  1.23 1.04 1.25 0.69 1.07 

P 2133 1800 1950 1500 1870  2633 2267 2250 1850 2290 

Co 0.060 0.048 0.060 0.052 0.055  0.117 0.108 0.130 0.072 0.108 

            

Bryozoa 1.3 2.0 1.0 2.0 1.6  2.0 2.3 3.0 2.0 2.3 

 

 

 

Figure 4: Scatterplots for 8 inorganic elements as functions of rope section in S. latissima. 

Data is from Subset 1. Samples from the stipe are orange spheres while the samples from the 

bottom of the blade are aquamarine triangles. All y-axes are in mg/kg, although the scale is 

different for each subplot.  
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Table 6: Results from a 2-way main effects ANOVA model looking at 8 elements as functions 

of rope section and thallus part. Data is from Subset 1. The numbers stated are p-values with 

significance levels: p = 0,05*, p = 0,01**, p = 0,001***, - = no significance. Element 

abbreviations: I = iodine, As = arsenic, Br = bromine, P = phosphorus, V = vanadium, Co = 

cobalt, Cd = cadmium, Pb = lead.  

  I Br As Cd Pb V P Co 

Rope 

section 

 - 0.019 

* 

- 0.0008 

*** 

- 0.03 

* 

6.6*10-

5 *** 

- 

Thallus 

part 

 - 0.0006 

*** 

3.5*10-6 

*** 

3.5*10-6 

*** 

0.02 

* 

10-8    

*** 

3.2*10-

5 *** 

8.8*10-

6 *** 

 

 

Looking at Table ?, Bryozoa score seems to be higher (more colonization) for bottom samples 

when comparing rope sections. Bottom samples also have higher overall mean for Bryozoa 

score (2.3) than stipe samples (1.6). Using one-way ANOVA tests, no element was 

significantly affected by Bryozoa score at p = 0.05, but arsenic was affected at a significance 

level of p = 0.1.  

From Figure 4, it becomes clear that bottom samples have higher content of As, Cd, Pb, V, P, 

and Co. For iodine content there is no clear tendency in either thallus part or rope section. 

Bromine can be seen to be more concentrated in the stipe than in the bottom. In addition, there 

is a tendency that Br, Cd, Pb, V, P, and Co are more concentrated in the lower numbered rope 

sections (deeper).  

From the two-way main effects ANOVA  (Table 6) it was confirmed that rope section 

significantly affected Br, Cd, V, and P, but not Pb. The effect of rope section is significant for 

lead at p = 0,1, but not at p = 0.05. As suspected from the scatterplots, thallus part dominated 

the variance in the dataset, and was significantly affecting all elements except for iodine.  

Subset 2: rope section, ash content, and fresh weight 
 

Because thallus part was such a driving factor of the variation in Subset 1, Subset 2 was used 

for further analyses which included only bottom samples. Rope section was investigated also 

in this dataset, as well as % ash content, and weight.  
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In Figure 5 is seen the revisiting of element content versus rope section, for Subset 2. In 

contrast to the result in Subset 1, iodine and arsenic differed significantly between rope 

sections in this dataset. However, the relationship does not seem to be linear. For both 

elements, concentration tend to increase from rope section 5 to 6, decrease in section 7, then 

increases slightly in section 8. Phosphorus and vanadium were also significantly affected by 

rope section, and the correlation is negative. Br and Cd were not significantly affected by rope 

section, even though they were so in Subset 1. One sample seems to be an outlier in terms of 

Pb concentration containing more than 0.5 mg/kg.  

 

 

Figure 5: Scatterplots for 8 inorganic elements as functions of rope section in S. latissima. 

Data is from Subset 2. Colour indicates thallus size (wet weight in g) ranging from the 

smallest thalli shown in aquamarine and the biggest thalli shown in dark blue. All y-axes are 

in mg/kg, although the scale is different for each subplot.  

Figure 6 show elements plotted against % ash content. For most elements there seems to be 

little variation associated with ash content, although there is a slight tendency that element 

contents are increasing with increased ash content. For Br and P this positive correlation was 

significant at p = 0.01.  
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Figure 6: Scatterplots for 8 inorganic elements as functions of % ash content in S. latissima. 

Data is from Subset 2. Colouring and shape of the coordinates represents wet weight of the 

individual the sample originates from. All y-axes are in mg/kg, although the scale is different 

for each subplot.  

Regarding thallus size (measured wet weight of individuals), Figure 7 indicates that there is a 

negative relationship between thallus size and ash content. However, it is difficult to know 

which variable affects the other (which is the predictor, and which is the response). Weight 

was also plotted against rope section (Figure 7), in which thalli growing deeper seemed to be 

smaller, but the relationship was only significant at p = 0.1.  

 

 

Figure 7: Fresh weight (g) for S. latissima individuals plotted against rope section and % ash 

content in Subset 2 (only samples from the bottom of the blade, n = 14).  
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Study 2: Transcriptome analysis of light-

stressed S. latissima individuals 
 

Analysis of mineral profile 
 

The samples from the light-stress experiment were analysed to check the levels of various 

elements (I, As, Br, P, V, Co, Cd, Pb). A preliminary Principal Components Analysis (PCA) 

was used to look for patterns in the data and to get an overview (Figure 8). Principal 

component 1 (PC1) explains 32.85 % of the variation and most of the elements are positively 

correlated with this axis, except cobalt. Samples from the 40 µmol light control (marked red) 

are mostly positively correlated with PC1, and samples treated with 100 or 250 µmol light are 

mostly negatively correlated. Most samples being treated with 100 or 250 µmol light for 9 

days are in the -0.2 area of PC1, but no element vectors point clearly in this direction. For 

each light intensity including control, the day 9 samples are further to the left along PC1 than 

day 3 and day 1 samples. PC2 explains 24.8 % of the variance, but seems not to be associated 

with either time or light intensity. Vanadium is somewhat correlated with PC2, while 

cadmium, arsenic and to some degree cobalt and bromine are negatively correlated with PC2.  

 

Figure 8: Principal component analysis (PCA) for 8 response variables (Elements: I, As, Br, 

P, V, Co, Cd, Pb). The dataset contains samples from a light-stress experiment, where 
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samples were exposed to 40, 100 or 250 µmol light for either 1, 3 or 9 days. Colours indicate 

light intensities and different shapes indicate duration (days) of stress.  

 

Scatterplots were made for each element (Figure 9) as functions of time (days). Day 0 

samples are from the end of the acclimation period and therefore only includes samples 

treated with 40 µmol light.  
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Figure 9: Scatterplots for iodine, arsenic, bromine, phosphorus, vanadium, cobalt, cadmium, 

and lead as functions of time (days) in S. latissima. Colouring of the coordinates indicate the 

intensity of light-stress that they were exposed to during treatment. Day 0 samples were 

frozen in liquid nitrogen at the end of an acclimation period and were exposed to 40 µmol 

light.  
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A two-way ANOVA was used to check the effects of time and light stress as well as 

interaction on the chemical profile in S. latissima (Equation 7). This analysis excludes day 0 

control samples, although they are included in the scatterplots in Figure 9.  

Levels of vanadium, phosphorus and to a certain degree arsenic tend to decrease with time. 

Especially on day 9 of treatment concentrations were noticeably lower. From the ANOVA it 

was confirmed that these elements were significantly affected by both time and light (Table 

?). The effect of light is easily observable for phosphorus in the scatterplots, and for arsenic 

levels in day 9 samples. Vanadium content at days 1 and 3 was clearly lower for samples 

treated with high light (250 µmol light).  

Looking at the scatterplots (Figure 9), cobalt was the only element to increase steadily over 

time. This relationship was found to be significant, but cobalt levels were not significantly 

affected by light intensities. Lead content also shows an interesting pattern, increasing a lot 

during the first days of treatment (days 1-3), especially when only exposed to 40 µmol light. 

But after 9 days lead levels are back to pre-treatment levels. In the ANOVA both light and 

time was confirmed to have significant effect on lead levels and there was also interaction 

between light and time. 

Iodine, bromine, and cadmium were the most stable elements across time. Iodine tended to 

increase on day 1 of treatment but then returned to acclimation period levels. In addition, 

there are no apparent patterns of light intensities for either iodine, bromine, or cadmium. In 

agreement with these observations, no significant effect of either time or light was found for 

any of these elements.  
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Table 7: Results from two-way ANOVA analysing the effect of time (days), light stress and 

interaction on chemical profile in S. latissima. Dataset includes all samples from treatments 

and no samples from the end of the acclimation period (day 0). The numbers stated are F 

values. Stars are based on p-values with significance levels: p = 0,05*, p = 0,01**, p = 

0,001***, - = no significance. Element abbreviations: I = iodine, As = arsenic, Br = 

bromine, P = phosphorus, V = vanadium, Co = cobalt, Cd = cadmium, Pb = lead. 

 I As Br P V Co Cd Pb 

Time - F: 3.8 

* 

- F: 5.3 

* 

F: 9.4 

*** 

F: 8.8 

** 

- F: 10.8 

*** 

Light - F: 3.7 

* 

- F: 5.6 

** 

F: 5.9 

*** 

- - F: 12.0 

*** 

Interaction  

time*light 

- - - - - - - F: 4.1 

* 

 

Control 
 

A one-way ANOVA was used to check whether cutting the tissue had any effect on chemical 

profile in S. latissima (Equation 5). The samples used in this analysis were from the end of the 

acclimation period and had only been exposed to 40 µmol light. Only for lead content was 

there a significant difference between cut and uncut tissue. Another one-way ANOVA was 

used to check the effect of time on the chemical profile (Equation 6), and only samples 

exposed to 40 µmol light were used here as well. For vanadium and lead contents there was a 

significant effect of time.  
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RNA-seq results 
 

Quality control, de novo assembly and alignment  
 

Table ? contains stats from the Trinity de novo assembly. The total number of genes 

excluding isoforms outputted by Trinity is marked as Total trinity “genes”, while Total trinity 

transcripts includes alternatively spliced isoforms. According to these stats, the median and 

average contig lengths were longer among all transcripts than among only the “genes” (only 

the longest isoform per gene).  

 

Table 8: General statistics related to the de novo assembly. Units are noted in the Table, 

except Total trinity “genes” which is the total number of transcripts excluding isoforms in the 

finished assembly, and Total trinity transcripts is the total number of transcripts including 

isoforms. Percent GC: Guanine-cytosine content divided by all bases.  

General 

Total trinity “genes” 414164 

Total trinity transcripts 552394 

Percent GC 52.92 % 

Stats based on all transcript contigs 

Median contig length 349 bp 

Average contig 614.95 bp 

Total assembled bases 339.7 Mbp 

Stats based on only the longest isoform per “gene” 

Median contig length 312 bp 

Average contig 507.83 bp 

Total assembled bases 2100.3 Mbp 

 

94 % of the BUSCO groups searched were complete, although only 3 % were single-copy. 91 

% were complete and duplicated.  

Table 9: BUSCO output showing the completeness of the de novo assembly. BUSCOs represent 

markers that were either found (complete or fragmented) or not found in a database (stramenopiles).  

Results from dataset stramenopiles 
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94 Complete BUSCOs (94%) 

3 Complete and single-copy BUSCOs 91 Complete and duplicated BUSCOs 

5 Fragmented BUSCOs 

1 Missing BUSCO 

100 Total BUSCO groups searched 

 

The estimated variance in gene abundance across all samples and replicates was calculated to 

be ≈ 0.49 (BCV). After stabilizing the variance between counts based on the BCV, the top 

500 most variable genes (based on read counts between all samples) were selected and 

analysed using a principal component analysis which is shown in Figure 10. The first 

component (PC1) explains 43.8% of the variation and differentiates samples quite clearly by 

light intensity along its whole axis. Firstly, the two types of day 0 samples were exposed to 40 

µmol light but there seems to be a difference between along PC1. Continuing along PC1 were 

the rest of the samples exposed to 40 µmol light, then the samples exposed to 100 µmol light, 

and lastly the samples exposed to 250 µmol light. PC2, on the other hand, only explained 

17.3% of the variation, but there were some level of differentiation in terms of duration of 

treatment along this axis. For MIN samples, D9 samples are more positively correlated with 

PC2. For both MED and MAX samples, D9 samples are more negatively correlated with PC2, 

and D1 samples are more positively correlated.  
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Figure 10: Principal component analysis (PCA) for the 500 most variable genes among the 

transcripts that aligned to the assembly. Different colors represent light intensities while 

shapes represent treatment duration in days.  

Figure 11 shows Mean-Difference plots visualizing differentially expressed genes (DEGs) 

compared to average log counts (CPM). Genes had to be up or down regulated by more than 

log2(1.5) ≈ 58%, using an adjusted p-value of 0.05 (FDR), to be considered differentially 

expressed. All of the chosen contrasts (Table 4) are shown, in addition to MED1 vs C1 

(samples exposed to 100 µmol light for 3 days vs day 3 control samples) and MED9 vs C9 

(samples exposed to 100 µmol light for 9 days vs day 9 control samples). These two contrasts 

had very few DEGs. MAX1 vs C1, MED9 vs MED1, and MAX9 vs MAX1, are the most 

apparent contrasts that contain a lot of DEGs, and to a lesser extent also MAX3vsC3 and 

MAX9vsC9. There is a fair amount of DEGs in the time control (C9 vs C0), especially 

upregulated genes (438 upregulated and 151 downregulated). The cut control (C0 vs UC) 

contained a small amount of DEGs, but still more DEGs than MED1 vs C1 and MED9 vs C9.   
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Figure 11: Mean-Difference plots showing the log fold change in gene expression compared 

to the control plotted against average log CPM plotted on the x axis. Red and blue dots are 
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genes that are up or down regulated respectively by more than 0.58 %. 9 contrasts: 

MAX1vsC1, MAX3vsC3, MAX9vsC9, C9vsC0, MED9vsMED1, MAX9vsMAX1, C0vsUC, 

MED1vsC1, MED9vsC9. 

Figure 12 shows an upset plot visualizing the intersection of regulated genes between the 

treatment contrasts. The top 3 groups are set apart from the rest in terms of the number of 

differentially expressed genes. The effect of time at high light (MAX9-MAX1) caused up -or 

down regulation of 3641 genes in total. MED9-MED1 and MAX1-C1 caused regulation of in 

total 2700 and 2824 genes respectively. Out of the genes regulated in the top 3 groups, many 

genes were only regulated in that group. 1535, 1444, and 1417 genes were only regulated in 

MAX9-MAX1, MED9-MED1, and MAX1-C1 respectively. There was notable overlap 

between MAX9-MAX1 and MED9-MED1 (771 genes) as well as between MAX9-MAX1 

and MAX1-C1 (598 genes). 468 genes were only regulated in MAX3vsC3 and 373 genes 

were only regulated in MAX9vsC9 among the contrasts investigated. MAX3vsC3 and 

MAX9vsC9 had 111 DEGs in common.  

 

 

Figure 12: Upset plot for differentially expressed genes in 7 comparisons (MAX9vsMAX1, 

MED9vsMED1, MAX1vsC1, MAX3vsC3, MAX9vsC9, C9vsC0, and C0vsUC. The dot section 

shows by lines which groups have intersecting DEGs, and the black lines show how many 

genes intersect (dots with no line represent genes that are uniquely regulated in that group. 

Coloured bars represent the total amount of DEGs (intersecting and unique) for each group.   
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The upset plot does not say anything about which genes are up or down regulated in different 

treatments, and although the number of DEGs does say something about the magnitude of the 

total response to various treatments, it is not a useful parameter for understanding the 

processes that underlie these responses. A high number of DEGs does not necessarily indicate 

interesting genes. In the downstream analyses I therefore focused on the light contrasts 

(MAX1vsC1, MAX3vsC3, and MAX9vsC9), which are the most interesting contrasts a 

priori. Figures 13-15 show the top Gene Ontology terms (GO terms) for MAX1vsC1, 

MAX3vsC3, and MAX9vsC9. GO terms are sorted into biological process (BP), cellular 

component (CC) and molecular function (MF), distinguishing between different levels of 

organisation. In all 3 contrasts, GO terms in the CC category had lower scores than BP and 

MF, measured in -log10(p-value).  

Among the top GO terms for MAX1vsC1, “xanthophyll cycle” and “violaxanthin de-

epoxidase activity” both has high scores. Processes and activity involving arginine, malate, 

and glutamate is going on, as well as activity and transport of ATP and ADP. As can be seen 

among CC terms, higher organisation processes are also in motion, especially relating to the 

nucleolus. Notably, there is also peroxisome activity.  

For DEGs in MAX3vsC3, the “nucleolus” term can no longer be seen among CC terms. 

Higher organisation processes now include activity in ribosomes, cytoplasm, membranes, and 

in photosystem II. The xanthophyll cycle appears to active for this contrast as well.  Also, 

genes relating to O-acyltransferase activity, monooxygenase activity, and glutaminase activity 

appears to be differentially expressed.  

Among the top GO terms for MAX9vsMAX1, several terms are associated to the same 

processes as in MAX3vsC3, such as cytoplasm, photosystem II, membrane, glutaminase, and 

ribosome activity. In addition, processes involving cellular oxidant detoxification and 

glutathione metabolism appears to be active.   
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To look closer at the effect of light on gene products and specifically proteins related to 

vHPOs, the glutathione, and the xanthophyll cycle, heatmaps were made comparing relative 

expression of annotated gene products across samples treated with 250 µmol light as well as 

the controls. In Figure 16 is shown the top 10 most variable genes overall, while in Figure 17 

is shown relative expression for selected genes thought to be associated to vHPOs and heavy 

metals.  

For the top 10 most variable genes, there is a clear difference between treatment and controls 

samples for especially 5-methyltetrahydropteroyltriglutamate--homocysteine 

methyltransferase and HSP domain-containing protein. Glucose regulated protein /BiP is 

upregulated only on the first day of 250 µmol light and downregulated in the other treatments. 

CMD domain-containing protein is upregulated in all treatment groups versus the control 

groups. A putative lipoprotein gene, on the other hand, was upregulated in all the control 

groups compared to the treatment groups. The same was to a lesser extent also true for a 

Glycerol-3-phosphate dehydrogenase. EsV-1-12 was clearly upregulated in all groups 

compared to MAX1, and a Peptidase S74 domain-containing protein was clearly upregulated 

in all groups compared to C1. Tubulin alpha-2 chain was upregulated in MAX9, C3, and C9, 

while a Rieske domain-containing protein was downregulated in MAX1 and C1.  

 

Figure 16: Heatmap showing the top 10 most varibale gene products (proteins) across 7 

sample groups (C0, C1, C3, C9, MAX1, MAX3, and MAX9) in S. latissima. The gene products 

were selected by ordering all gene products by variation in logCPM across the samples 

mentioned above, selecting the top 10 proteins, and then range-normalizing the resulting list 
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from 0 to 1. The control groups are samples exposed to 40 µmol m-2s-1 light for 0, 1, 3, and 9 

days (C0, C1, C3, C9 respectively), and the treatments groups are samples exposed to 250 

µmol m-2s-1 light for 1, 3, and 9 days (MAX1, MAX3, and MAX9 respectively). All groups had 

4 replicates, except for C1 which had 3. Protein annotations were fetched using diamond 

blastx from the phaephyceae database.  

 

Regarding the vHPOs, vBPO seems to be strongly upregulated in MAX9, and to a certain 

extent in MAX3. vIPO also tend to be upregulated in the treatment groups, especially in 

MAX1. Out of the various glutathione S-transferase gene products, there seems to be higher 

expression in treatment groups, as well as in C1. Glutathione reductase has higher expression 

in treatment groups compared to controls. A chloroplastic violaxanthin de-epoxidase gene 

product was upregulated strongly in MAX1 and MAX3, and to a lesser degree in C1 and C3.  

 

Figure 17: Heatmap showing range-normalized counts (logCPM) of selected gene products 

across 7 sample groups (C0, C1, C3, C9, MAX1, MAX3, and MAX9) in S. latissima. The gene 

products were selected based on a manual search among all annotated gene products for the 

keywords “vanadium”, “glutathione”, and “xanthin”.  The control groups are samples 

exposed to 40 µmol m-2s-1 light for 0, 1, 3, and 9 days (C0, C1, C3, C9 respectively), and the 

treatments groups are samples exposed to 250 µmol m-2s-1 light for 1, 3, and 9 days (MAX1, 

MAX3, and MAX9 respectively). All groups had 4 replicates, except for C1 which had 3. 

Protein annotations were fetched using diamond blastx from the phaephyceae database. 
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Discussion  

Study 1: mineral composition in S. latissima 

individuals 

 

Subset 1 

 

Bryozoa 

 

The discovery of serious bryozoan fouling of much of the sample tissue in Study 1 posed 

some challenges. The bryozoan Membranipora membranacea is an epiphyte that colonize 

seaweeds in temperate waters and has been found to contain high levels arsenic (Getachew et 

al., 2015). The same study found colonized S. japonica tissue to have elevated levels of iodine 

and decreased levels of cadmium after removing the bryozoans. For this reason, only some of 

the samples were analysed for inorganic elements. Samples from the stipe and bottom of the 

blade had relatively few colonies and were therefore chosen for further analysis. The mean 

Bryozoan score in bottom samples were 2.3 and 1.6 in stipe samples. Bryozoan score had a 

significant effect on As at p = 0.1. This is not a convincing result, especially because the 

scoring system was visual. However, bryozoans are known to have high contents of As 

(Getachew et al., 2015), so the result is hardly surprising.  

 

Thallus part 

 

There were no significant differences in iodine content between stipe and the bottom of the 

blade. For iodine it would have been interesting to see the comparison to middle and tip 

samples, because these older parts of the thallus are believed to contain less iodine than the 

stipe and meristematic region (Amat & Srivastava, 1985; Roleda et al., 2018). Unfortunately, these 

were not analysed because of Bryozoan fouling as mentioned. At the same time, most iodine 
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is found in the peripheral tissue (Küpper et al., 2013; Verhaeghe et al., 2008), and it was not a 

goal of this study to investigate cross-sectional variation.  

On average 1570 mg/kg bromine was found in stipe samples, while bottom samples contained 

an average of 1094 mg/kg. (Sharma et al., 2018) found bromine values in cultivated S. 

latissima harvested in June to be on average between 1.2 and 1.4 g/kg, which is comparable to 

the values found in this study. (Verhaeghe et al., 2008) found bromine levels in the stipe to be 

on average 1.51 +- 0.02 mg/g, which is also in agreement with the levels found here. It is not 

clear why bromine content is higher in the stipe, while iodine is about the same in stipe and 

blade. It has been shown that vBPO plays an important role in the adhesive system of the 

holdfast in in F. serrata, by cross-linking phenolic polymers (Berglin et al., 2004). This could 

be a partial explanation why more bromine is found in the stipe (or rather the holdfast) than 

the blade, if indeed vBPO and bromine is connected to the adhesive system in S. latissima as 

well.  

Mean arsenic concentration is 67 mg/kg and 93.4 mg/kg in stipe and bottom samples 

respectively. These are levels of total arsenic however, and the inorganic fraction is suspected 

to be much lower. Roleda et al. (2019), computed average proportions of inorganic arsenic 

based on data from Almela et al. (2006) and Díaz et al. (2012). They found mean inorganic 

arsenic in Laminariales to be 1.72% of the total arsenic based on this. If we assume that the 

proportion of inorganic arsenic is about the same in these samples, the mean i-As would be 

about 1.15 mg/kg in stipe samples and 1.61 mg/kg in bottom samples. These levels are within 

the 3 mg/kg French maximum of i-As levels in algae condiments (Petursdottir et al., 2015).  

The mean cadmium content was 1.12 and 2.04 mg/kg in stipe and bottom samples 

respectively, which is within the EU maximum level of 3 mg/kg cadmium in food products 

from dried seaweed (No, 1881). Sharma (2018) found the cadmium level in June-harvested S. 

latissima to be 0.8-0.9 at 3 and 8 meters respectively.  

One of the aims of this study was to investigate whether one part of the blade can be used to 

predict the content of the whole blade. Obviously, it would have been better to have samples 

from all thallus parts, but this was not possible because of the bryozoan fouling as explained. 

In addition, the sample size was quite small for this experiment, and the results should be 

interpreted with that in mind. Despite these matters, the differences between the stipe and the 

bottom of the blade were quite clear and was significant for all elements except for iodine. 

Based on this, one should be careful with trying to predict mineral content for thallus parts 
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based on the content in other thallus parts. Even though iodine was not significantly different 

between the bottom and stipe, there is evidence from the literature that the tip contains less 

iodine as mentioned in the introduction (Amat & Srivastava, 1985).  

 

Subset 2 

 

After removing the variation associated with thallus part, various patterns emerged regarding 

rope section, ash content, and thallus size.  

 

Rope section, ash content, and fresh weight 

 

It is not unreasonable to assume that rope section as a factor is synonymous with depth, and 

depth is the most interesting aspect of rope section at least in this study. However, it should be 

mentioned that rope sections could differ from each other in other ways than having different 

depth. For instance, a rope could be eroded to a varying degree across its length or have 

varying degrees of smoothness and roughness across its surface and thus affect growing 

conditions. Furthermore, the exact depth of the rope sections is not known in this experiment, 

making the results somewhat difficult to compare to other studies. However, the relative 

differences in depth between the rope sections is taken as an acceptable measure of depth for 

the purposes of this discussion.  

In the scatterplots for mineral contents versus rope sections for Subset 2, Iodine and arsenic 

have some interesting sine shaped curves suggesting that the relationship between these 

elements and depth is not linear. There was a significant relationship according to ANOVA, 

but this is more likely to be random noise resulting from small sample size. There is no reason 

to think that depth is correlated with I and As by a sine wave relationship.  

P and V were both significantly correlated with rope section. Individuals growing deeper 

contained more P and V. Similarly, Sharma et al. (2018) found vanadium contents for S. 

latissima sampled in June to be slightly higher at 8 m than at 3 m, but there was no mention if 

the relationship was significant. On the other hand, the same study found phosphorus content 

for the same samples to be slightly higher at 3 m than at 8 m, oppositely of what was found in 
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this experiment. This is probably not a notable disparity, firstly because the actual depths of 

each rope section in this experiment is unknown, and so not necessarily comparable to other 

studies. Secondly, phosphorus was found to be significantly correlated (positively) to ash 

content in this experiment, meaning that at least some of the variation observed for 

phosphorus can be attributed to ash content. The same was true for bromine, that is, increased 

levels of bromine correlated with increased ash %.  

Regarding thallus size compared to rope sections and ash content, individuals growing on 

higher up rope sections tend to be bigger, but there was no significant correlation in this 

regard. It is logical that individuals growing deeper has less sunlight available and therefore 

gains less biomass. There appears to be a negative relationship between thallus size and ash 

content. But the challenge is to decide which of these is the predicting factor and which is the 

response.  

 

Study 2: Transcriptome analysis of light-

stressed S. latissima individuals 

 

Remarks on methods  

 

RNA-extraction 

 

It proved difficult to extract pure RNA samples from the sample tissues. The 260/230 ratio 

measured by NanoDrop was repeatedly found to be lower than 1, while ideal values are 2-2.2 

for RNA samples (Nanodrop, 1975). Although there are several possible contaminants 

absorbing light at 230 nm, phenols are likely candidates as algae are known to be rich in 

phenols (Nielsen et al., 2020). For future projects doing RNA-extraction on brown 

macroalgae I suggest experimenting with the centrifugation speeds and duration during the 

RPE cleaning step, as well as possibly repeating the step. These modifications though tended 

to decrease the concentration of the eluated RNA, but leaving water in the spin columns for 1 

minute on the bench before final eluation centrifugation should help increase concentration. 
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De novo assembly 

 

The reference genome assembled had a high grade of completion (94%), but only 3% of the 

complete gene markers were single-copy. This suggests that one or more gene (or whole 

genome) duplication events has occurred during the evolution of S. latissima after its 

departure from the rest of the stramenopiles. Liu et al. (2019) found a high number of 

orthogroups (group of genes deriving from a single ancestral gene) in the genome of S. 

japonica, which is also indicative of duplication events during the recent evolution of 

Saccharina species. However, some of the duplication found in the de novo assembly is 

probably due to isoforms, which had not been filtered at this point in the pipeline. Another 

BUSCO analysis should probably have been performed after filtering for isoforms. Similarly, 

all parameters of the MultiQC report were ok, except for sequence duplication levels 

(appendix).  

Moreover, according to the Trinity stats, the median and average contig lengths were longer 

among all transcripts than among the longest isoform per gene, which sounds to me like a 

contradiction. If the set of the longest isoforms per gene is a subset of the total number of 

transcripts (including isoforms), the former should always have longer average and median 

length. This observation suggests some sort of technical error which is beyond my current 

knowledge of Trinity.  

Peculiarly, only the first attempt at creating a de novo assembly succeeded even though there 

were several attempts to make new de novo assemblies. Various errors or bugs caused these 

attempts to fail and because of time concerns I had to move on (de novo assembly is time 

consuming). It would be interesting to go back to this step and experiment. Firstly, I would 

filter for isoforms as the results from MultiQC and BUSCO suggested. I would also perform 

the Kraken2 blast before assembly to filter out unwanted sequences from other organisms. If 

the de novo assembly is pure from unwanted sequences, there is no need to blast the transcript 

reads as was done here because the assembly will anyways not contain unwanted sequences 

from other organisms that the transcripts can align to.  
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Differentially expressed genes 

 

Biological coefficient of variation: can we know if the variation is due to environment or 

genetics?  

A BCV of between 0.2 and 0.4 is usually considered optimal, but values of up to 0.6 can be 

acceptable in for instance population studies. The BCV in this study was found to be 0.49 

across all samples. Although this is on the higher end, BCV naturally depends on the origin 

and treatment of the samples. Samples from clones or from the same individual are expected 

to have a lower BCV, but the samples in this experiment are from different individuals and 

can be expected to have slightly higher BCV. The PCA for the top 500 most variable genes 

indicates that more variance stems from light intensity than from treatment duration, although 

it is difficult to tell from a PCA how these factors interact.   

 

Mean-Difference plots 

 

From the Mean-Difference plots it becomes clear that there is not much DE between the 

treatments exposed to medium light (100 µmol m-2s-1 light) for 1 or 9 days and the 

corresponding control for that day (MED1 vs C1 and MED9 vs C9). Yet, MED9 vs MED1 

has a relatively high amount of DEGs, which indicates that 100 µmol light does not cause 

regulation of many genes in S. latissima. Notably, there is some level of variance coming 

from the time control and the cut control. The time control tells us that keeping tissue samples 

in beakers for 16 days (7 days acclimation + 9 days treatment) resulted in a fair amount of 

DE. Similarly, cutting samples caused some regulation of genes compared to acclimating 

whole thalli over a 7-day acclimation period. Regarding the samples exposed to 250 µmol 

light, they all had a substantial amount of DE compared to their respective time controls. 

However, the effect was greatest on day 1 (MAX1vsC1), as can also be seen in the upset plot. 

A possible explanation is that S. latissima responds to high light stress fairly quickly, 

initiating processes that lead to long-term protection, and then attempts to revert back to a 

baseline.  
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Upset plots 

 

The contrasts containing the most DEGs are MAX9vsMAX1, MED9vsMED1, and 

MAX1vsC1 as can be seen in the upset plot. There are many genes among these contrasts that 

does not intersect with other contrasts (they are only regulated in one contrast). There are 

notably few DEGs overlapping between MAX1vsC1 and MED9vsMED1 (31 genes), 

considering that there are in total 2824 and 2700 DEGs respectively in these contrasts. This 

illustrates the difference between sudden, intense light stress, and moderate light stress over 

time, and the different demands that these stresses place on the algae. In contrast, there are 

771 DEGs intersecting between MAX9vsMAX1 and MED9vsMED1, which can be attributed 

to the fact that these are both contrasts showing the effect of duration of treatment.  

 

Gene ontology analysis, gene products and mineral 

contents 

 

The blastx program finds comparisons between the read sequences and a protein database for 

all phaeophyceae. A selection of the presumed gene products that were also differentially 

expressed in any of the contrasts examined are visualised in the heatmaps. Keep in mind that 

these figures (Figures 16-17) only visualize how each gene product varies in logCPM across 

samples. The counts are normalized to account for the fact that the various gene products 

might have very different logCPM.  

 

Iodine and vIPOs 

 

According to the QuickGo web-tool (Bateman et al., 2021) there are four annotations on the 

vIPO gene product, all coming from Laminaria digitata (UniProtKB:Q4LDE6). Two of them 

are connected by the keyword “enables” to the GO term “peroxidase activity” (GO:0004601), 

while the other two are connected by the keyword “involved in” to the GO term “cellular 

oxidant detoxification” (GO:0098869. “Cellular oxidant detoxification” was among the most 
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significant GO terms among DEGs in MAX9vsC9, and a manual search revealed that also 

“peroxidase activity” was included in the DEGs for MAX9vsC9 and that “cellular oxidant 

detoxification” was present in both MAX1vsC1 and MAX3vsC3. The fact that “peroxidase 

activity” was not among the top 10 for any contrast does not mean the term isn’t significantly 

differentially expressed. Terms with -log10(p) values higher than 1.3 are significantly 

differentially expressed using adjusted (FDR) p-values of 0.05. In other words, genes related 

to peroxidase activity were up or down regulated by more than 58% compared to controls in 

the abovementioned contrasts. The GO terms “cellular oxidant detoxification” and 

“peroxidase activity” are however not exclusive to vIPOs and are connected to proteins such 

as glutathione reductase, catalase, APX protein, and 2-cys peroxiredoxin among others.  

From the heatmap of selected gene products the relative regulation of both vIPOs and vBPOs 

can be seen. vIPO 1 appears to be upregulated in MAX1 samples compared control, but also 

compared to MAX3 and MAX9 to a lesser degree. A possible explanation why vIPO in 

MAX1 was upregulated compared to MAX3 and MAX9 is that other antioxidants were more 

active in ROS scavenging as time went by.  

The iodine content measured in the mineral content analysis shows a slight uptick on day 1 

for all light intensities. If vIPO is indeed upregulated in MAX1 and spending stored iodide to 

reduce a surplus of hydrogen peroxide, we should expect iodine content to decrease in MAX1 

samples as iodide is released into the surrounding water (Küpper & Carrano, 2019). Thus, the 

uptick in iodine content on day 1 is slightly surprising, even if iodine was not significantly 

correlated with either time or light. Likely, the iodide efflux event happens on timescale of 

minutes or hours, and the one snapshot we have from day 1 is unlikely correspond to the peak 

of this response. One aspect that could be interesting to explore in future experiments is the 

efflux of iodine in response to stress on shorter timescale, and to monitor the iodide levels in 

the water.  

One of the aims of this study was to investigate how light stress affected iodine content and 

genes related to iodine metabolism, with the broader objective of investigating whether 

lowering iodine content would inflict decreases stress tolerance. Ultimately, since there were 

no significant changes to iodine levels, it becomes difficult to draw any conclusions regarding 

this objective.  
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Bromine and vBPOs 

 

Among the DE reads there were also reads annotated by blastx to vBPO gene products. 

According to the QuickGo web-tool (Binns et al., 2009), these gene products were annotated 

from several taxa, including two brown algae species: S. japonica (UniProtKB:A0A411NJS5) 

and Ectocarpus siliculosus (UniProtKB:D8LTP5). These presumed vBPOs are connected to 

the same GO terms as the vIPO gene product, that is it “enables” “peroxidase activity” and is 

“involved in” “cellular oxidant activity”.   

vBPO had a reversed pattern from vIPO among the treatments, being upregulated mostly in 

MAX9 samples (and downregulated in C9), indicating that vBPOs are important for long-

term photoprotection. However, this could also indicate that vBPOs were not important in the 

stress response to light and that other factors (such as time) were more prevalent at day 9.  

Just as iodine, bromine content was not significantly affected by either time, light or 

interaction.  

 

Heavy metals and the glutathione-ascorbate cycle 

 

Although other antioxidants and cellular detoxification systems (catalase? Peroxidoxin?) 

could also have been discussed in relation to heavy metals, the glutathione peptide was chosen 

for this discussion because various presumed glutathione gene products upregulated and 

because it is believed to be important for protection against heavy metals in algae. Obviously, 

there was no controlled metal exposure in this experiment, so the discussion on this topic is 

dependent on the levels of arsenic, cadmium, and lead measured in the mineral content 

analysis. Also, stress response processes are typically involved in more than one type of 

stress.  

Looking at the mineral content analysis for the light stressed individuals, both arsenic and 

lead was significantly affected by both time and light. From the scatterplots its apparent that 

both arsenic and lead levels in samples treated with 250 µmol light was lower on day 9. 

Although cadmium was not significantly affected by light, the same trend can be seen from 

the scatterplot of this element. This is an interesting find, as it does not appear to be the case 
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for any of the other elements (non-heavy metals). It is unclear why heavy metal levels would 

decrease after 9 days of exposure to light stress.  

Both glutathione reductase and glutathione S-transferase appear to be upregulated in treatment 

groups, compared to the controls, although among the different glutathione S-transferases 

there was no clear bias towards either MAX1, MAX3, or MAX9. The upregulation of 

glutathione reductase implies that there was increased oxidation in the tissues, which is as 

expected in stressed tissue. Since reduced glutathione is present in most of the cell, 

glutathione reductase activity might be an indication of the general oxidative level in the 

sample tissues. This assumption is based on the fact that the most prevalent form of 

glutathione is the reduced form but it is oxidised in highly oxidative states (Nowicka, 2022). 

Following this reasoning, it appears that the general level of ROS is high for the MAX1 

samples, but then have come under control in MAX3, and MAX9 samples. For all time 

control samples, glutathione reductase appears to be at a baseline expression level.  

Glutathione S-transferase, which is the enzyme associated with the linking of glutathione to 

heavy metals and other xenobiotics, was upregulated in treatment groups. The fact that 

contents of arsenic, cadmium, and lead decreased over time while exposed to intense light is 

agreeing with upregulation of glutathione S-transferase. In theory, this suggests that a certain 

level of light stress is helpful if someone endeavours only to reduce heavy metal levels in S. 

latissima. However, this is presumably not a sustainable strategy as long-term stress is likely 

to harm the algae in other ways.  

 

Contents of vanadium, phosphorus, and cobalt 

 

Vanadium and phosphorus were both negatively correlated with both time and light. While 

phosphorus is a macromineral central to many processes across all life, it is not especially 

interesting in the context of light stress. Vanadium is the namesake element in vanadium-

dependent haloperoxidases, although the actual role of vanadium in vHPOs remain quite 

elusive in the literature. To my knowledge there is no evidence that vanadium content acts as 

a limiting factor in the production of vHPOs. Cobalt is the only element that was positively 

correlated with time. There was no significant effect of light on cobalt levels, which suggests 
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that cobalt is not involved in light stress processes. It seems rather that the beaker residency or 

other factors were affecting cobalt levels in the samples.  

 

The xanthophyll cycle, heat shock proteins, and other observations 

 

Several GO terms and annotated gene products typically associated with stress responses were 

observed including the xanhophyll cycle, heat shock proteins (HSPs), and base-excision 

repair. It becomes clear that scavenging of ROS by vHPOs is not the only protection brown 

macroalgae has against abiotic stresses such as high light.   

Among differentially expressed genes in samples treated with 250 µmol light for 1 day 

(MAX1) compared to control day 1 (C1), the most significant GO terms were “xanthophyll 

cycle” and “violaxanthin de-epoxidase activity” (Figure 15). The xanthophyll cycle is found 

throughout higher plants, as well as in green and brown algae, and is crucial for 

photoprotection in these groups (Goss & Latowski, 2020). The main mechanism of the cycle is 

characterized by violaxanthin being converted by reversible de-epoxylation to zeaxanthin, 

which has photoprotective abilities (Havaux & Niyogi, 1999). The composition of xanthophyll 

compounds (violaxanthin, zeaxanthin, lutein, and neoxanthin) is highly conserved which 

underscores their importance in algae and higher plants (Pogson et al., 1998). The xanthophyll 

cycle delivers photoprotection within minutes, but also results in extended photoprotection 

that can last for days, weeks, or months (Goss & Latowski, 2020). The fact that genes related to 

violaxanthin de-epoxidase activity were regulated in the MAX1 samples compared to the C1 

samples is hardly surprising as they were exposed to intense light. However, both 

“xanthophyll cycle” and “violaxanthin de-epoxidase activity” scored lower in the MAX3vsC3 

contrast and is not seen among the top terms in MAX9vsC9. It would seem from this result 

that violaxanthin de-epoxidation is high during day 1 of stress but decreases sometime 

between day 1 and 9. This is consistent with previous research showing that the xanthophyll 

cycle is fast-acting mechanism that also provides long-lasting effects (Goss & Latowski, 2020). 

Presumably violaxanthin de-epoxidation produces enzymes that have slow turnover (not 

quickly degraded). It could also suggest that other protection mechanisms are more prevalent 

at prolonged stress exposure.  
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Among the top 10 gene products found by blasting DEGs to the diamond phaeophyceae 

database, a presumed heat shock protein (HSP) was upregulated MAX1, MAX3, and MAX9 

compared to all controls. The response was strongest on day 1 and appeared to decrease 

steadily until day 9. HSPs are classic stress response proteins and in a previous study HSPs 

were also found to be regulated in S. latissima after exposure to intense light at 17 °C 

(Heinrich, Valentin, et al., 2012).  

Base-excision repair also scored high, indicating that DNA damages were occurring at an 

increased rate.  Among the DEGs in samples exposed to 250 µmol light for 3 days compared 

to the day 3 control, the GO term “O-acyltransferase activity” scored very high (-log10(p) = 

13.8). Generally, O-acyltransferases catalyses the transfer of acyl groups (i.e., the OH group 

originating from an acid molecule) to oxygen-containing acceptor molecules. However, O-

acyltransferases is a huge group containing many subgroups, and the GO term “O-

acyltransferase activity” has 435,928 annotations in the QuickGo database at the time of 

writing (Binns et al., 2009). This makes it hard to draw any specific conclusions from this 

finding. A study on cultivated Saccharina latissima found two genes encoding a probable O-

acyltransferase to be downregulated after a 2-week exposure to darkness (H. Li et al., 2020).  

The appearance EsV-1 is surprising. According to the QuickGo web-tool (Binns et al., 2009), 

this protein is marked as “located in” “integral component of membrane” (GO:0016021) of 

the fully sequenced brown algae Ectocarpus siliculosus (UniProtKB:D8LTP5). This trans-

membrane protein is connected to the Ectocarpus siliculosus virus (EsV-1) which infects E. 

siliculosus population globally (Delaroque et al., 2000). However, the connection between the 

protein and the virus is not clear from the literature. This find could indicate that the EsV-1 

virus also infects S. latissima, but I could not find any evidence from previous research to 

support this. The appearance of this GO term could suggest that the samples were exposed to 

(unplanned) biotic stress.  

The GO term “peroxisome” is among the top terms in MAX1vsC1, which is interesting in the 

context of vHPOs. Peroxisomes are the organelles usually associated with the oxidation 

processes that produce hydrogen peroxide, which is subsequently scavenged by either catalase 

or enzymes like vHPOs in algae. Several types of substrates are broken down by such 

oxidation reactions in the peroxisome, including uric acid and fatty acids (Cooper & Hausman, 

2007). To the best of the authors knowledge, there is no consensus on the subcellular 

distribution of vHPOs in algae, and it is not inconceivable that peroxisomes have high 
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concentrations, although this is just a speculation. Peroxisome genes being regulated could 

also mean for one that other peroxidases like ascorbate peroxidase (APX) were active in the 

peroxisome.  

 

Conclusion 

There was found significant variations in mineral content between the stipe and bottom 

samples in S. latissima. Iodine, arsenic, phosphorus, and vanadium levels were also affected 

by rope section (measure of depth) in bottom samples. Individuals growing closer to the 

surface tended to have more biomass (fresh weight) than individuals growing deeper, but the 

relationship was not significant at p = 0.05. This research indicates that the scavenging of 

ROS by vIPO and vBPO is an important light stress response in S. latissima, but also that 

other processes such as the xanthophyll cycle and the glutathione-ascorbate cycle is important 

in this regard. Interestingly, the upregulation of vIPO in MAX1 samples did not correspond to 

an efflux of iodine.  

The relationship between halogen content, vHPOs and stress in S. latissima should be 

explored further in future studies. Maybe vIPO regulation and the efflux of iodine in response 

to stress should be studied on a shorter timescale. It should be considered in future light stress 

experiments on S. latissima that 100 µmol light might not be enough to cause considerate DE. 

Regarding the data in this study, several aspects can be explored further. New de novo 

assemblies can be made as discussed and compared to the current. Gene enrichment analyses 

and KEGG pathway analyses can be carried out which would aid in understanding the 

transcriptomic processes observed here. In addition, certain selected parameters like count 

filter and log fold change threshold can be experimented with to increase the scope of the 

study and to look other aspects of the transcriptome.  
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Appendix I 
 

Table 1. Subsets in study 1.  

Name  Number of samples Definition Purpose 

Subset 1 20 Contains both stipe 

and bottom samples 

from 10 individuals.  

Look for differences 

between thallus part. 
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Subset 2 10 Contains only 

bottom sample from 

10 individuals. 

Look for variance 

that is not due to 

part.  

 

MultiQC 
 

 

Table 2: MultiQC output, general stats.  

Sample name % dups % GC Million seqs 

K10_1 71.10% 56% 49.4 

K10_2 70.80% 56% 49.4 

K11_1 83.10% 54% 51.7 

K11_2 82.40% 54% 51.7 

K12_1 65.80% 55% 25.6 

K12_2 65.60% 55% 25.6 

K13_1 68.40% 54% 31.5 

K13_2 67.10% 54% 31.5 

K14_1 70.50% 55% 28.1 

K14_2 69.90% 56% 28.1 

K15_1 77.80% 55% 54.3 

K15_2 77.80% 55% 54.3 

K16_1 63.70% 55% 23.9 

K16_2 62.30% 55% 23.9 

K17_1 65.40% 55% 24.2 

K17_2 64.30% 55% 24.2 

K18_1 60.50% 54% 21.1 

K18_2 59.20% 54% 21.1 

K19_1 70.50% 54% 27.2 

K19_2 69.30% 54% 27.2 

K1_1 61.90% 54% 22.8 

K1_2 61.40% 54% 22.8 

K20_1 67.40% 55% 20 

K20_2 66.00% 55% 20 

K21_1 62.50% 55% 23.7 

K21_2 63.40% 55% 23.7 

K22_1 48.50% 54% 24.4 

K22_2 51.10% 54% 24.4 

K23_1 65.10% 54% 22.7 

K23_2 63.90% 54% 22.7 

K24_1 65.80% 55% 27.4 

K24_2 66.10% 55% 27.4 

K25_1 70.20% 53% 25.3 

K25_2 69.30% 54% 25.3 

K26_1 63.70% 54% 21 

K26_2 62.90% 54% 21 
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K27_1 68.20% 54% 21.2 

K27_2 67.20% 54% 21.2 

K28_1 70.00% 54% 19.8 

K28_2 69.20% 54% 19.8 

K29_1 64.10% 54% 21.3 

K29_2 64.40% 54% 21.3 

K2_1 68.20% 55% 19.5 

K2_2 67.30% 55% 19.5 

K30_1 67.80% 54% 22.6 

K30_2 68.10% 54% 22.6 

K31_1 68.80% 54% 26 

K31_2 69.30% 54% 26 

K32_1 67.70% 54% 21.8 

K32_2 67.40% 54% 21.8 

K33_1 73.10% 54% 29 

K33_2 73.20% 54% 29 

K34_1 66.60% 55% 31 

K34_2 65.20% 55% 31 

K35_1 83.30% 53% 44.9 

K35_2 83.10% 53% 44.9 

K36_1 71.30% 54% 25.7 

K36_2 71.70% 54% 25.7 

K37_1 76.30% 55% 50.4 

K37_2 75.80% 55% 50.4 

K38_1 65.90% 55% 22.1 

K38_2 64.90% 55% 22.1 

K39_1 71.40% 53% 22 

K39_2 71.10% 53% 22 

K3_1 75.30% 55% 23.7 

K3_2 74.50% 56% 23.7 

K40_1 66.90% 54% 26.7 

K40_2 66.50% 54% 26.7 

K41_1 26.70% 53% 21.2 

K41_2 38.90% 54% 21.2 

K42_1 63.50% 54% 19.6 

K42_2 62.40% 54% 19.6 

K43_1 65.90% 54% 21.3 

K43_2 65.90% 54% 21.3 

K44_1 70.00% 53% 21.8 

K44_2 69.10% 53% 21.8 

K4_1 60.40% 55% 24.1 

K4_2 57.10% 55% 24.1 

K5_1 65.80% 55% 21.1 

K5_2 64.70% 55% 21.1 

K6_1 72.40% 55% 25.2 

K6_2 70.30% 55% 25.2 

K7_1 66.30% 55% 23.9 

K7_2 64.50% 56% 23.9 
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K8_1 65.70% 54% 24.8 

K8_2 64.50% 55% 24.8 

 

 

 

Figure 1: MultiQC output, mean quality scores.  
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Figure 2: MultiQC output, per sequence quality scores.  

 

Figure 3: Per sequence CG content.  
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Figure 4: MultiQC output. Per base N content.  

 

Figure 5: MultiQC output. Sequence duplication levels. 
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Figure 6: Density of counts before filtering.  

 

Filtered counts with more than 20 reads  

 

 

Figure 7: Density of counts after filtering.  
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PCA stats (top 500 most variable genes) 

 

Number of regulated genes 
Table 3: number of differentially expressed genes for different contrasts.  

 Up Down Not significant 

MAX1vsC1 1579 1245 56786 

MAX3vsC3 570 631 58409 

MAX9vsC9 531 482 58597 

C9vsC0 438 151 59021 

MED9vsMED1 1150 1550 56910 

MAX9vsMAX1 1572 2069 55969 

C0vsUC 231 106 59273 

 

 

Evidence codes 
Table 3: Evidence codes used to annotate GO terms to the differentially expressed genes. Default Blast2Go values were 
selected.  

Computational analysis evidence codes 

ISS 0.8 

ISO 0.8 

ISA 0.8 

ISM 0.8 

IGC 0.7 
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IBA 0.8 

IBD 0.8 

IKR 0.8 

IRD 0.7 

RCA 0.8 

Experimental evidence codes 

IDA 1 

IPI 1 

IMP 1 

IGI 1 

IEP 1 

EXP 1 

Author statement evidence codes 

TAS 0.9 

NAS 0.8 

Curator statement evidence codes 

IC 0.9 

ND 0.5 

Automatically-assigned evidence codes 

IEA 0.7 

Obsolete evidence codes  

NR 0 
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Appendix II 
 

R scripts 
 

R script 1 
 

rm(list=ls()) 

 

library(ggplot2) 

library(tidyr) 

library(dplyr) 

library(ggpubr) 

library(cowplot) 

library(readxl) 

library(RColorBrewer) 

 

Stilkbunn <- read_excel("~/MASTER/Resultater/Data/B4K/data_stilkbunn.xlsx") 

Stilkbunn$Part <- as.factor(Stilkbunn$Part) 

Stilkbunn$Seksjon <- as.factor(Stilkbunn$Seksjon) # ikke som faktor for regresjon 

Stilkbunn$Bryozoa <- as.factor(Stilkbunn$Bryozoa) 

sapply(Stilkbunn, class) 

 

bunndata <- read_excel("~/MASTER/Resultater/Data/B4K/data_bunn.xlsx") 

bunndata$Seksjon <- as.factor(bunndata$Seksjon) 

bunndata$Part <- as.factor(bunndata$Part) 

bunndata$Bryozoa <- as.factor(bunndata$Bryozoa) 

bunndata <-  bunndata %>% drop_na(Ash) 

 

### ANOVA DEL OG SEKSJON OG INDIVID ### 

# ANOVA krever Seksjon og del som factor 

 

# jod.ANOVA2 <- aov(Jod~Seksjon/Individ+Part, data=Stilkbunn) 

# summary(jod.ANOVA2) 

 

# as.ANOVA2 <- aov(As~Seksjon/Individ+Part, data=Stilkbunn) 

# summary(as.ANOVA2) 

 

# br.ANOVA2 <- aov(Br~Seksjon/Individ+Part, data=Stilkbunn) 

# summary(br.ANOVA2) 

#  

# p.ANOVA2 <- aov(P~Seksjon/Individ+Part, data=Stilkbunn) 

# summary(p.ANOVA2) 

#  

# v.ANOVA2 <- aov(V~Seksjon/Individ+Part, data=Stilkbunn) 

# summary(v.ANOVA2) 

#  

# co.ANOVA2 <- aov(Co~Seksjon/Individ+Part, data=Stilkbunn) 

# summary(co.ANOVA2) 

#  
# cd.ANOVA2 <- aov(Cd~Seksjon/Individ+Part, data=Stilkbunn) 

# summary(cd.ANOVA2) 
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#  

# pb.ANOVA2 <- aov(Pb~Seksjon/Individ+Part, data=Stilkbunn) 

# summary(pb.ANOVA2) 

 

# Ingen elementer har sign effekt av individ 

 

 

# SJEKKER COMPLETE MODEL 

 

# jod.ANOVAl <- aov(Jod~Seksjon*Part, data=Stilkbunn) 

# summary(jod.ANOVAl) 

#  

# as.ANOVAl <- aov(As~Seksjon*Part, data=Stilkbunn) 

# summary(as.ANOVAl) 

#  

# br.ANOVAl <- aov(Br~Seksjon*Part, data=Stilkbunn) 

# summary(br.ANOVAl) 

#  

# p.ANOVAl <- aov(P~Seksjon*Part, data=Stilkbunn) 

# summary(p.ANOVAl) 

#  

# v.ANOVAl <- aov(V~Seksjon*Part, data=Stilkbunn) 

# summary(v.ANOVAl) # V er eneste element som har sign interaction (*) 

#  

# co.ANOVAl <- aov(Co~Seksjon*Part, data=Stilkbunn) 

# summary(co.ANOVAl) 

#  

# cd.ANOVAl <- aov(Cd~Seksjon*Part, data=Stilkbunn) 

# summary(cd.ANOVAl) 

#  

# pb.ANOVAl <- aov(Pb~Seksjon*Part, data=Stilkbunn) 

# summary(pb.ANOVAl) 

#  

# # ENDELIG MODELL 

#  

# jod.ANOVA6 <- aov(Jod~Seksjon+Part, data=Stilkbunn) 

# summary(jod.ANOVA6) 

#  

# as.ANOVA6 <- aov(As~Seksjon+Part, data=Stilkbunn) 

# summary(as.ANOVA6) 

#  

# br.ANOVA6 <- aov(Br~Seksjon+Part, data=Stilkbunn) 

# summary(br.ANOVA6) 

#  

# p.ANOVA6 <- aov(P~Seksjon+Part, data=Stilkbunn) 

# summary(p.ANOVA6) 

#  

# v.ANOVA6 <- aov(V~Seksjon+Part, data=Stilkbunn) 

# summary(v.ANOVA6) 

#  

# co.ANOVA6 <- aov(Co~Seksjon+Part, data=Stilkbunn) 

# summary(co.ANOVA6) 

#  

# cd.ANOVA6 <- aov(Cd~Seksjon+Part, data=Stilkbunn) 

# summary(cd.ANOVA6) 

#  

# pb.ANOVA6 <- aov(Pb~Seksjon+Part, data=Stilkbunn) 
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# summary(pb.ANOVA6) 

 

# SCATTERPLOTS VEKT 

# Seksjon som factor her gir IKKE regresjonslinje 

# NUMERISK funker med regresjonslinje 

 

# SEKSJON VS VEKT 

 

seksjon <- ggplot(bunndata, aes(x=Seksjon, y=Weight)) +  

  geom_point(aes(), size=6) + 

  # geom_smooth(method="", se=F) + 

  labs(title = "Thallus size",  

       x = "Rope section",  

       y = "Weight (g)") +  

  theme(text = element_text(size = 20),  

        axis.text = element_text(face="bold", color="black", size=18), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5),  

        plot.margin = unit(c(2,1,2,1), "cm")) 

 

ash <- ggplot(bunndata, aes(x=Ash, y=Weight)) +  

  geom_point(aes(), size=6) + 

  # geom_smooth(method="", se=F) + 

  labs(title = "Thallus size",  

       x = "% ash content",  

       y = "Weight (g)") +  

  theme(text = element_text(size = 20),  

        axis.text = element_text(face="bold", color="black", size=18), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5),  

        plot.margin = unit(c(2,1,2,1), "cm")) 

 

plot_grid(seksjon, ash) 

 

# ELEMENTS 1 

 

iodine <- ggplot(Stilkbunn, aes(x=Seksjon, y=Jod)) +  

  geom_point(aes(col=Part, shape=Part), size=6) + 

  geom_smooth(method="", se=F) + 

  labs(title = "Iodine",  

       x = "Rope section",  

       y = "mg/kg") +  

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none") 
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bromine <- ggplot(Stilkbunn, aes(x=Seksjon, y=Br)) +  

  geom_point(aes(col=Part, shape=Part), size=6) + 

  geom_smooth(method="lm", se=F) + 

  labs(title = "Bromine",  

       x = "Rope section",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        axis.title.y = element_blank(), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

bromine2 <- ggplot(Stilkbunn, aes(x=Seksjon, y=Br)) +  

  geom_point(aes(col=Part, shape=Part), size=6) + 

  geom_smooth(method="lm", se=F) + 

  labs(title = "Bromine",  

       x = "Rope section",  

       y = "mg/kg", 

       col = "Thallus part", 

       shape = "Thallus part") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        axis.title.y = element_blank(), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5),  

        legend.direction = "vertical") 

legend <- cowplot::get_legend(bromine2) 

# grid.newpage() 

# grid.draw(legend) 

 

arsenic <- ggplot(Stilkbunn, aes(x=Seksjon, y=As)) +  

  geom_point(aes(col=Part, shape=Part), size=6) + 

  labs(title = "Arsenic",  

       x = "Rope section",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none") 

 

cadmium <- ggplot(Stilkbunn, aes(x=Seksjon, y=Cd)) +  

  geom_point(aes(col=Part, shape=Part), size=6) + 

  geom_smooth(method="lm", se=F) + 

  labs(title = "Cadmium",  

       x = "Section",  

       y = "mg/kg") + 
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  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        axis.title.y = element_blank(), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none")  

 

lead <- ggplot(Stilkbunn, aes(x=Seksjon, y=Pb)) +  

  geom_point(aes(col=Part, shape=Part), size=6) + 

  geom_smooth(method="lm", se=F) + 

  labs(title = "Lead",  

       x = "Rope section",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        axis.title.y = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none") 

 

vanadium <- ggplot(Stilkbunn, aes(x=Seksjon, y=V)) +  

  geom_point(aes(col=Part, shape=Part), size=6) + 

  geom_smooth(method="lm", se=F) + 

  labs(title = "Vanadium",  

       x = "Rope section",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

phosphorus <- ggplot(Stilkbunn, aes(x=Seksjon, y=P)) +  

  geom_point(aes(col=Part, shape=Part), size=6) + 

  geom_smooth(method="lm", se=F) + 

  labs(title = "Phosphorus",  

       x = "Rope section",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        axis.title.y = element_blank(), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  
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        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

cobalt <- ggplot(Stilkbunn, aes(x=Seksjon, y=Co)) +  

  geom_point(aes(col=Part, shape=Part), size=6) + 

  geom_smooth(method="", se=F) + 

  labs(title = "Cobalt",  

       x = "Rope section",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        axis.title.y = element_blank(), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

plots <- align_plots(iodine, bromine, legend, align = 'h', axis = 'r') 

 

top_row <- plot_grid(plots[[1]], plots[[2]], plots[[3]],  

                     #labels = "", label_size = 12,  

                     ncol = 3) 

 

plots2 <- align_plots(arsenic, cadmium, lead, 

                     align = 'h', axis = 'l') 

 

middle_row <- plot_grid(plots2[[1]], plots2[[2]], plots2[[3]], 

                        #labels = c("C", "D", "E"), label_size = 12,  

                        ncol = 3) 

 

plots3 <- align_plots(vanadium, phosphorus, cobalt,  

                     align = 'h', axis = 'l') 

 

bottom_row <- plot_grid(plots3[[1]], plots3[[2]], plots3[[3]], 

                        #labels = c("F", "G", "H"), label_size = 12,  

                        ncol = 3) 

 

cowplot::plot_grid(top_row, middle_row, bottom_row,  

                   ncol = 1, nrow = 3) 

 

 

# ELEMENTS 2 ASH 

 

iodine <- ggplot(bunndata, aes(x=Ash, y=Jod)) +  

  geom_point(aes(col=Weight), size=6) + 

  labs(title = "Iodine",  

       x = "% ash content",  

       y = "mg/kg") +  

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5), 
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        legend.position = "none") 

 

iodine2 <- ggplot(bunndata, aes(x=Ash, y=Jod)) +  

  geom_point(aes(col=Weight), size=6) + 

  labs(title = "Iodine",  

       x = "Section",  

       y = "mg/kg") +  

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5), 

        legend.direction = "vertical") 

 

bromine <- ggplot(bunndata, aes(x=Ash, y=Br)) +  

  geom_point(aes(col=Weight), size=6) + 

  geom_smooth(method="lm", se=F) + 

  labs(title = "Bromine",  

       x = "% ash content",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        axis.title.y = element_blank(), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

arsenic <- ggplot(bunndata, aes(x=Ash, y=As)) +  

  geom_point(aes(col=Weight), size=6) + 

  labs(title = "Arsenic",  

       x = "% ash content",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none") 

 

cadmium <- ggplot(bunndata, aes(x=Ash, y=Cd)) +  

  geom_point(aes(col=Weight), size=6) + 

  labs(title = "Cadmium",  

       x = "% ash content",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        axis.title.y = element_blank(), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 
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        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none")  

 

lead <- ggplot(bunndata, aes(x=Ash, y=Pb)) +  

  geom_point(aes(col=Weight), size=6) + 

  labs(title = "Lead",  

       x = "% ash content",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        axis.title.y = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none") 

 

vanadium <- ggplot(bunndata, aes(x=Ash, y=V)) +  

  geom_point(aes(col=Weight), size=6) + 

  labs(title = "Vanadium",  

       x = "% ash content",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

phosphorus <- ggplot(bunndata, aes(x=Ash, y=P)) +  

  geom_point(aes(col=Weight), size=6) + 

  geom_smooth(method="lm", se=F) + 

  labs(title = "Phosphorus",  

       x = "% ash content",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        axis.title.y = element_blank(), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

cobalt <- ggplot(bunndata, aes(x=Ash, y=Co)) +  

  geom_point(aes(col=Weight), size=6) + 

  labs(title = "Cobalt",  

       x = "% ash content",  

       y = "mg/kg") + 
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  theme(text = element_text(size = 25), 

        axis.text = element_text(face="bold", color="black", size=21), 

        axis.title.y = element_blank(), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

iodine <- iodine + scale_color_gradient(low = "aquamarine", high = "darkblue") 

iodine2 <- iodine2 + scale_color_gradient(low="aquamarine", high="darkblue") 

legend <- cowplot::get_legend(iodine2) 

bromine <- bromine + scale_color_gradient(low="aquamarine", high="darkblue") 

arsenic <- arsenic + scale_color_gradient(low="aquamarine", high="darkblue") 

cadmium <- cadmium + scale_color_gradient(low="aquamarine", high="darkblue") 

lead <- lead + scale_color_gradient(low="aquamarine", high="darkblue") 

vanadium <- vanadium + scale_color_gradient(low="aquamarine", high="darkblue") 

phosphorus <- phosphorus + scale_color_gradient(low="aquamarine", high="darkblue") 

cobalt <- cobalt + scale_color_gradient(low="aquamarine", high="darkblue") 

 

plots <- align_plots(iodine, bromine, legend, align = 'h', axis = 'r') 

 

top_row <- plot_grid(plots[[1]], plots[[2]], plots[[3]],  

                     #labels = "", label_size = 12,  

                     ncol = 3) 

 

plots2 <- align_plots(arsenic, cadmium, lead, 

                      align = 'h', axis = 'l') 

 

middle_row <- plot_grid(plots2[[1]], plots2[[2]], plots2[[3]], 

                        #labels = c("C", "D", "E"), label_size = 12,  

                        ncol = 3) 

 

plots3 <- align_plots(vanadium, phosphorus, cobalt,  

                      align = 'h', axis = 'l') 

 

bottom_row <- plot_grid(plots3[[1]], plots3[[2]], plots3[[3]], 

                        #labels = c("F", "G", "H"), label_size = 12,  

                        ncol = 3) 

 

cowplot::plot_grid(top_row, middle_row, bottom_row,  

                   ncol = 1, nrow = 3) 

 

ash_anova1 <- aov(Jod ~ Ash, data = bunndata) 

summary(ash_anova1) 

ash_anova2 <- aov(As ~ Ash, data = bunndata) 

summary(ash_anova2) 

ash_anova3 <- aov(Br ~ Ash, data = bunndata) 

summary(ash_anova3) 

ash_anova4 <- aov(P ~ Ash, data = bunndata) 

summary(ash_anova4) 

ash_anova5 <- aov(V ~ Ash, data = bunndata) 

summary(ash_anova5) 

ash_anova6 <- aov(Co ~ Ash, data = bunndata) 

summary(ash_anova6) 

ash_anova7 <- aov(Cd ~ Ash, data = bunndata) 
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summary(ash_anova7) 

ash_anova8 <- aov(Pb ~ Ash, data = bunndata) 

summary(ash_anova8) 

 

# ELEMENTS 3 WEIGHT 

 

iodine <- ggplot(bunndata, aes(x=Jod, y=Weight)) +  

  geom_point(aes(col=Bryozoa), size=6) + 

  labs(title = "Weight",  

       x = "Iodine (mg/kg)",  

       y = "Weight (g)") +  

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none") 

 

iodine2 <- ggplot(bunndata, aes(x=Jod, y=Weight)) +  

  geom_point(aes(col=Bryozoa), size=6) + 

  labs(title = "Weight",  

       x = "Iodine (mg/kg)",  

       y = "Weight (g)") +  

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5), 

        legend.direction = "vertical") 

legend <- cowplot::get_legend(iodine2) 

 

bromine <- ggplot(bunndata, aes(x=Br, y=Weight)) +  

  geom_point(aes(col=Bryozoa), size=6) + 

  labs(title = "Weight",  

       x = "Bromine (mg/kg)",  

       y = "Weight (g)") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        axis.title.y = element_blank(), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

arsenic <- ggplot(bunndata, aes(x=As, y=Weight)) +  

  geom_point(aes(col=Bryozoa), size=6) + 

  labs(title = "Weight",  

       x = "Arsenic (mg/kg)",  

       y = "Weight (g)") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 
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        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none") 

 

cadmium <- ggplot(bunndata, aes(x=Cd, y=Weight)) +  

  geom_point(aes(col=Bryozoa), size=6) + 

  labs(title = "Weight",  

       x = "Cadmium (mg/kg)",  

       y = "Weight (g)") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        axis.title.y = element_blank(), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none")  

 

lead <- ggplot(bunndata, aes(x=Pb, y=Weight)) +  

  geom_point(aes(col=Bryozoa), size=6) + 

  labs(title = "Weight",  

       x = "Lead (mg/kg)",  

       y = "Weight (g)") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        axis.title.y = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none") 

 

vanadium <- ggplot(bunndata, aes(x=V, y=Weight)) +  

  geom_point(aes(col=Bryozoa), size=6) + 

  labs(title = "Weight",  

       x = "Vanadium (mg/kg)",  

       y = "Weight (g)") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

phosphorus <- ggplot(bunndata, aes(x=P, y=Weight)) +  

  geom_point(aes(col=Bryozoa), size=6) + 

  geom_smooth(method="lm", se=F) + 

  labs(title = "Weight",  
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       x = "Phosphorus (mg/kg)",  

       y = "Weight (g)") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        axis.title.y = element_blank(), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

cobalt <- ggplot(bunndata, aes(x=Co, y=Weight)) +  

  geom_point(aes(col=Bryozoa), size=6) + 

  labs(title = "Weight",  

       x = "Cobalt (mg/kg)",  

       y = "Weight (g)") + 

  theme(text = element_text(size = 25), 

        axis.text = element_text(face="bold", color="black", size=21), 

        axis.title.y = element_blank(), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

iodine <- iodine + scale_color_gradient(low = "#E69F00", high = "#F0E442") 

bromine <- bromine + scale_color_gradient(low="aquamarine", high="darkblue") 

bromine2 <- bromine2 + scale_color_gradient(low="aquamarine", high="darkblue") 

arsenic <- arsenic + scale_color_gradient(low="aquamarine", high="darkblue") 

cadmium <- cadmium + scale_color_gradient(low="aquamarine", high="darkblue") 

lead <- lead + scale_color_gradient(low="aquamarine", high="darkblue") 

vanadium <- vanadium + scale_color_gradient(low="aquamarine", high="darkblue") 

phosphorus <- phosphorus + scale_color_gradient(low="aquamarine", high="darkblue") 

cobalt <- cobalt + scale_color_gradient(low="aquamarine", high="darkblue") 

 

plots <- align_plots(iodine, bromine, legend, align = 'h', axis = 'r') 

 

top_row <- plot_grid(plots[[1]], plots[[2]], plots[[3]],  

                     #labels = "", label_size = 12,  

                     ncol = 3) 

 

plots2 <- align_plots(arsenic, cadmium, lead, 

                      align = 'h', axis = 'l') 

 

middle_row <- plot_grid(plots2[[1]], plots2[[2]], plots2[[3]], 

                        #labels = c("C", "D", "E"), label_size = 12,  

                        ncol = 3) 

 

plots3 <- align_plots(vanadium, phosphorus, cobalt,  

                      align = 'h', axis = 'l') 

 

bottom_row <- plot_grid(plots3[[1]], plots3[[2]], plots3[[3]], 

                        #labels = c("F", "G", "H"), label_size = 12,  

                        ncol = 3) 
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cowplot::plot_grid(top_row, middle_row, bottom_row,  

                   ncol = 1, nrow = 3) 

 

weight_anova1 <- aov(Weight ~ Jod, data = bunndata) 

summary(weight_anova1) 

weight_anova2 <- aov(Weight ~ Br, data = bunndata) 

summary(weight_anova2) 

weight_anova3 <- aov(Weight ~ As, data = bunndata) 

summary(weight_anova3) 

weight_anova4 <- aov(Weight ~ Cd, data = bunndata) 

summary(weight_anova4) 

weight_anova5 <- aov(Weight ~ Pb, data = bunndata) 

summary(weight_anova5) 

weight_anova6 <- aov(Weight ~ V, data = bunndata) 

summary(weight_anova6) 

weight_anova7 <- aov(Weight ~ P, data = bunndata) 

summary(weight_anova7) 

weight_anova8 <- aov(Weight ~ Co, data = bunndata) 

summary(weight_anova8) 

 

section_anova1 <- aov(Jod ~ Seksjon*Weight*Ash, data = bunndata) 

summary(section_anova1) 

section_anova2 <- aov(Br ~ Seksjon+Weight+Ash, data = bunndata) 

summary(section_anova2) 

section_anova3 <- aov(As ~ Seksjon+Weight+Ash, data = bunndata) 

summary(section_anova3) 

section_anova4 <- aov(Cd ~ Seksjon+Weight+Ash, data = bunndata) 

summary(section_anova4) 

section_anova5 <- aov(Pb ~ Seksjon+Weight+Ash, data = bunndata) 

summary(section_anova5) 

section_anova6 <- aov(V ~ Seksjon+Weight+Ash, data = bunndata) 

summary(section_anova6) 

section_anova7 <- aov(P ~ Seksjon+Weight+Ash, data = bunndata) 

summary(section_anova7) 

section_anova8 <- aov(Co ~Seksjon+Weight+Ash, data = bunndata) 

summary(section_anova8) 

 

bryo_anova1 <- aov(Jod ~ Bryozoa, data = Stilkbunn) 

summary(bryo_anova1) 

bryo_anova2 <- aov(As ~ Bryozoa, data = Stilkbunn) 

summary(bryo_anova2) 

bryo_anova3 <- aov(Br ~ Bryozoa, data = Stilkbunn) 

summary(bryo_anova3) 

bryo_anova4 <- aov(P ~ Bryozoa, data = Stilkbunn) 

summary(bryo_anova4) 

bryo_anova5 <- aov(V ~ Bryozoa, data = Stilkbunn) 

summary(bryo_anova5) 

bryo_anova6 <- aov(Co ~ Bryozoa, data = Stilkbunn) 

summary(bryo_anova6) 

bryo_anova7 <- aov(Cd ~ Bryozoa, data = Stilkbunn) 

summary(bryo_anova7) 

bryo_anova8 <- aov(Pb ~ Bryozoa, data = Stilkbunn) 

summary(bryo_anova8) 

 

bryo_anova9 <- aov(Bryozoa ~ Part, data = Stilkbunn) 

summary(bryo_anova9) 
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weight_anova9 <- aov(Weight ~ Seksjon, data = bunndata) 

summary(weight_anova9) 

 

# ELEMENTS 4 

 

iodine <- ggplot(bunndata, aes(x=Seksjon, y=Jod)) +  

  geom_point(aes(col=Weight), size=6) + 

  geom_smooth(method="lm", se=F) + 

  labs(title = "Iodine",  

       x = "Rope section",  

       y = "mg/kg") +  

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none") 

 

bromine <- ggplot(bunndata, aes(x=Seksjon, y=Br)) +  

  geom_point(aes(col=Weight), size=6) + 

  labs(title = "Bromine",  

       x = "Rope section",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        axis.title.y = element_blank(), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

bromine2 <- ggplot(bunndata, aes(x=Seksjon, y=Br)) +  

  geom_point(aes(col=Weight), size=6) + 

  labs(title = "Bromine",  

       x = "Rope section",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        axis.title.y = element_blank(), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5),  

        legend.direction = "vertical") 

legend <- cowplot::get_legend(bromine2) 

# grid.newpage() 

# grid.draw(legend) 

 

arsenic <- ggplot(bunndata, aes(x=Seksjon, y=As)) +  

  geom_point(aes(col=Weight), size=6) + 

  geom_smooth(method="lm", se=F) + 
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  labs(title = "Arsenic",  

       x = "Rope section",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none") 

 

cadmium <- ggplot(bunndata, aes(x=Seksjon, y=Cd)) +  

  geom_point(aes(col=Weight), size=6) + 

  labs(title = "Cadmium",  

       x = "Section",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        axis.title.y = element_blank(), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none")  

 

lead <- ggplot(bunndata, aes(x=Seksjon, y=Pb)) +  

  geom_point(aes(col=Weight), size=6) + 

  labs(title = "Lead",  

       x = "Rope section",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        axis.title.y = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none") 

 

vanadium <- ggplot(bunndata, aes(x=Seksjon, y=V)) +  

  geom_point(aes(col=Weight), size=6) + 

  labs(title = "Vanadium",  

       x = "Rope section",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 
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phosphorus <- ggplot(bunndata, aes(x=Seksjon, y=P)) +  

  geom_point(aes(col=Weight), size=6) + 

  labs(title = "Phosphorus",  

       x = "Rope section",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        axis.title.y = element_blank(), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

 

cobalt <- ggplot(bunndata, aes(x=Seksjon, y=Co)) +  

  geom_point(aes(col=Weight), size=6) + 

  labs(title = "Cobalt",  

       x = "Rope section",  

       y = "mg/kg") + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        axis.title.y = element_blank(), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

 

iodine <- iodine + scale_color_gradient(low="aquamarine", high="darkblue") 

bromine <- bromine + scale_color_gradient(low="aquamarine", high="darkblue") 

bromine2 <- bromine2 + scale_color_gradient(low="aquamarine", high="darkblue") 

arsenic <- arsenic + scale_color_gradient(low="aquamarine", high="darkblue") 

cadmium <- cadmium + scale_color_gradient(low="aquamarine", high="darkblue") 

lead <- lead + scale_color_gradient(low="aquamarine", high="darkblue") 

vanadium <- vanadium + scale_color_gradient(low="aquamarine", high="darkblue") 

phosphorus <- phosphorus + scale_color_gradient(low="aquamarine", high="darkblue") 

cobalt <- cobalt + scale_color_gradient(low="aquamarine", high="darkblue") 

 

plots <- align_plots(iodine, bromine, legend, align = 'h', axis = 'r') 

 

top_row <- plot_grid(plots[[1]], plots[[2]], plots[[3]],  

                     #labels = "", label_size = 12,  

                     ncol = 3) 

 

plots2 <- align_plots(arsenic, cadmium, lead, 

                      align = 'h', axis = 'l') 

 

middle_row <- plot_grid(plots2[[1]], plots2[[2]], plots2[[3]], 

                        #labels = c("C", "D", "E"), label_size = 12,  

                        ncol = 3) 
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plots3 <- align_plots(vanadium, phosphorus, cobalt,  

                      align = 'h', axis = 'l') 

 

bottom_row <- plot_grid(plots3[[1]], plots3[[2]], plots3[[3]], 

                        #labels = c("F", "G", "H"), label_size = 12,  

                        ncol = 3) 

 

cowplot::plot_grid(top_row, middle_row, bottom_row,  

                   ncol = 1, nrow = 3) 

 

section_anova1 <- aov(Jod ~ Seksjon, data = bunndata) 

summary(section_anova1) 

section_anova2 <- aov(Br ~ Seksjon, data = bunndata) 

summary(section_anova2) 

section_anova3 <- aov(As ~ Seksjon, data = bunndata) 

summary(section_anova3) 

section_anova4 <- aov(Cd ~ Seksjon, data = bunndata) 

summary(section_anova4) 

section_anova5 <- aov(Pb ~ Seksjon, data = bunndata) 

summary(section_anova5) 

section_anova6 <- aov(V ~ Seksjon, data = bunndata) 

summary(section_anova6) 

section_anova7 <- aov(P ~ Seksjon, data = bunndata) 

summary(section_anova7) 

section_anova8 <- aov(Co ~Seksjon, data = bunndata) 

summary(section_anova8) 

 

 

R script 2 
 

rm(list=ls()) 

 

library(ggplot2) 

library(tidyr) 

library(dplyr) 

library(ggpubr) 

library(ggfortify) 

library(Hmisc) 

library(kableExtra) 

library(readxl) 

library(ggfortify) 

 

safepca <- read_excel("~/MASTER/Resultater/Data/data_safekelp.xlsx") 

safepca$Light <- as.factor(safepca$Light) 

safepca$Time <- as.factor(safepca$Time) 

sapply(safepca, class) 

View(safepca) 

str(safepca) 

 

# PCA 2 

 

pca2 <- prcomp(safepca[-c(1:8),8:15], scale = TRUE) 

summary(pca2) 
 

# safepca2 <- cbind(safepca, pca2$x[,1:6]) 
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# View(safepca2) 

 

# PLOTS 

 

plot(pca2, type="l") 

 

# biplot(pca2, scale=0) 

 

autoplot(pca2, data =safepca[-c(1:8),], size= 6, 

         shape = "Time", colour= "Light",  

         loadings= T, label = F, 

         loadings.label = T, loadings.label.size  = 6) + 

  labs(title="PCA Time and Light") + 

  theme(text = element_text(size = 20),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5)) 

 

 

 

R script 3 
 

rm(list=ls()) 

 

library(ggplot2) 

library(tidyr) 

library(dplyr) 

library(ggpubr) 

library(readxl)  

library(cowplot) 

library(RColorBrewer) 

 

Safedata <- read_excel("~/MASTER/Resultater/Data/data_safekelp.xlsx") 

Safedata$Light <- as.factor(Safedata$Light)    # best med time som integer? 

Safedata$Time <- as.integer(Safedata$Time)      # og light som factor 

Safedata$Replikat <- as.integer(Safedata$Replikat) 

Safedata$Cut <- as.factor(Safedata$Cut) 

sapply(Safedata, class) 

View(Safedata) 

 

 

  

# Safedata$Time <- as.factor(Safedata$Time) 

# Safedata$Light <- as.integer(Safedata$Light)  

#  

# k <- levels(Safedata$Light)[Safedata$Light] 

# Safedata$Light <- as.integer(k) 

#  

# l <- levels(Safedata$Time)[Safedata$Time] 

# Safedata$Time <- as.integer(l) 

#  

# str(Safedata) 
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# glimpse(Safedata) 

# summary(Safedata) 

# dim(Safedata) 

 

# GG SCATTERPLOTS 

 

# JOD 

 

 

# ELEMENTS 1 

 

iodine <- ggplot(Safedata, aes(x=Time, y=Jod)) +  

  geom_point(aes(col=Light), size=6) + 

  labs(title = "Iodine",  

       x = "Time (days)",  

       y = "mg/kg") +  

  scale_x_continuous(breaks= c(0,1,3,9)) + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none") 

 

bromine <- ggplot(Safedata, aes(x=Time, y=Br)) +  

  geom_point(aes(col=Light), size=6) + 

  labs(title = "Bromine",  

       x = "Time (days)",  

       y = "mg/kg") + 

  scale_x_continuous(breaks= c(0,1,3,9)) + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        axis.title.y = element_blank(), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

bromine2 <- ggplot(Safedata, aes(x=Time, y=Br)) +  

  geom_point(aes(col=Light), size=6) + 

  labs(title = "Bromine",  

       x = "Time (days)",  

       y = "mg/kg", 

       col = "Light") + 

  scale_x_continuous(breaks= c(0,1,3,9)) + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        axis.title.y = element_blank(), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5),  
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        legend.direction = "horizontal") 

legend <- cowplot::get_legend(bromine2) 

# grid.newpage() 

# grid.draw(legend) 

 

arsenic <- ggplot(Safedata, aes(x=Time, y=As)) +  

  geom_point(aes(col=Light), size=6) + 

  labs(title = "Arsenic",  

       x = "Time (days)",  

       y = "mg/kg") + 

  scale_x_continuous(breaks= c(0,1,3,9)) + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none") 

 

cadmium <- ggplot(Safedata, aes(x=Time, y=Cd)) +  

  geom_point(aes(col=Light), size=6) + 

  labs(title = "Cadmium",  

       x = "Time (days)",  

       y = "mg/kg") + 

  scale_x_continuous(breaks= c(0,1,3,9)) + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        axis.title.y = element_blank(), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none")  

 

lead <- ggplot(Safedata, aes(x=Time, y=Pb)) +  

  geom_point(aes(col=Light), size=6) + 

  labs(title = "Lead",  

       x = "Time (days)",  

       y = "mg/kg") + 

  scale_x_continuous(breaks= c(0,1,3,9)) + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none") 

 

vanadium <- ggplot(Safedata, aes(x=Time, y=V)) +  

  geom_point(aes(col=Light), size=6) + 

  labs(title = "Vanadium",  

       x = "Time (days)",  

       y = "mg/kg") + 
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  scale_x_continuous(breaks= c(0,1,3,9)) + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        axis.title.y = element_blank(), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

phosphorus <- ggplot(Safedata, aes(x=Time, y=P)) +  

  geom_point(aes(col=Light), size=6) + 

  labs(title = "Phosphorus",  

       x = "Time (days)",  

       y = "mg/kg") + 

  scale_x_continuous(breaks= c(0,1,3,9)) + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        axis.line = element_line(colour = "black"),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

cobalt <- ggplot(Safedata, aes(x=Time, y=Co)) +  

  geom_point(aes(col=Light), size=6) + 

  labs(title = "Cobalt",  

       x = "Time (days)",  

       y = "mg/kg") + 

  scale_x_continuous(breaks= c(0,1,3,9)) + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        axis.title.y = element_blank(), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(),  

        panel.grid.minor = element_blank(),  

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5),  

        legend.position = "none") 

 

 

 

 

cowplot::plot_grid(legend, middle_row, bottom_row, 

                   ncol = 1, nrow = 3) 

 

 

 

 

 

 

 

plots <- align_plots(iodine, bromine, align = 'h', axis = 'r') 
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top_row <- plot_grid(plots[[1]], plots[[2]],  

                     #labels = "", label_size = 12,  

                     ncol = 2) 

 

plots2 <- align_plots(arsenic, cadmium, 

                      align = 'h', axis = 'l') 

 

middle_row <- plot_grid(plots2[[1]], plots2[[2]], 

                        #labels = c("C", "D", "E"), label_size = 12,  

                        ncol = 2) 

 

cowplot::plot_grid(top_row, middle_row,  

                   ncol=1, nrow = 2) 

 

 

 

plots3 <- align_plots(lead, vanadium,  

                      align = 'h', axis = 'l') 

 

bottom_row <- plot_grid(plots3[[1]], plots3[[2]], 

                        #labels = c("F", "G", "H"), label_size = 12,  

                        ncol = 2) 

 

plots4 <- align_plots(phosphorus, cobalt,  

                      align = 'h', axis = 'l') 

 

bottoms <- plot_grid(plots4[[1]], plots4[[2]],  

                        #labels = c("F", "G", "H"), label_size = 12,  

                        ncol = 2) 

 

cowplot::plot_grid(bottom_row, bottoms, 

                   ncol = 1, nrow = 2) 

 

 

 

 

# ANOVA HEL ELLER SKJAERT  

 

cutANOVA1 <- aov(Jod~Cut, data=Safedata[1:8,]) 

summary(cutANOVA1) 

 

cutANOVA2 <- aov(As~Cut, data=Safedata[1:8,]) 

summary(cutANOVA2) 

 

cutANOVA3 <- aov(Br~Cut, data=Safedata[1:8,]) 

summary(cutANOVA3) 

 

cutANOVA4 <- aov(P~Cut, data=Safedata[1:8,]) 

summary(cutANOVA4) 

 

cutANOVA5 <- aov(V~Cut, data=Safedata[1:8,]) 

summary(cutANOVA5) 

 

cutANOVA6 <- aov(Co~Cut, data=Safedata[1:8,]) 

summary(cutANOVA6) 
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cutANOVA7 <- aov(Cd~Cut, data=Safedata[1:8,]) 

summary(cutANOVA7) 

 

cutANOVA8 <- aov(Pb~Cut, data=Safedata[1:8,]) 

summary(cutANOVA8) 

 

# ANOVA 4 TIDSPUNKT BARE 40 

 

jod.ANOVA4 <- aov(Jod~Time, data=Safedata[c(1:20),]) 

summary(jod.ANOVA4) 

 

as.ANOVA4 <- aov(As~Time, data=Safedata[c(1:20),]) 

summary(as.ANOVA4) 

 

br.ANOVA4 <- aov(Br~Time, data=Safedata[c(1:20),]) 

summary(br.ANOVA4) 

 

p.ANOVA4 <- aov(P~Time, data=Safedata[c(1:20),]) 

summary(p.ANOVA4) 

 

v.ANOVA4 <- aov(V~Time, data=Safedata[c(1:20),]) 

summary(v.ANOVA4) 

 

co.ANOVA4 <- aov(Co~Time, data=Safedata[c(1:20),]) 

summary(co.ANOVA4) 

 

cd.ANOVA4 <- aov(Cd~Time, data=Safedata[c(1:20),]) 

summary(cd.ANOVA4) 

 

pb.ANOVA4 <- aov(Pb~Time, data=Safedata[c(1:20),]) 

summary(pb.ANOVA4) 

 

# ANOVA TID OG LYS 

 

jod.ANOVA5 <- aov(Jod~Time*Light, data=Safedata[-c(1:8),]) 

summary(jod.ANOVA5) 

 

as.ANOVA5 <- aov(As~Time*Light, data=Safedata[-c(1:8),]) 

summary(as.ANOVA5) 

 

br.ANOVA5 <- aov(Br~Time*Light, data=Safedata[-c(1:8),]) 

summary(br.ANOVA5) 

 

p.ANOVA5 <- aov(P~Time*Light, data=Safedata[-c(1:8),]) 

summary(p.ANOVA5) 

 

v.ANOVA5 <- aov(V~Time*Light, data=Safedata[-c(1:8),]) 

summary(v.ANOVA5) 

 

co.ANOVA5 <- aov(Co~Time*Light, data=Safedata[-c(1:8),]) 

summary(co.ANOVA5) 

 

cd.ANOVA5 <- aov(Cd~Time*Light, data=Safedata[-c(1:8),]) 

summary(cd.ANOVA5) 

 

pb.ANOVA5 <- aov(Pb~Time*Light, data=Safedata[-c(1:8),]) 

summary(pb.ANOVA5) 
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# EKSTRA 

 

jod.ANOVA7 <- aov(Jod~Time, data=Safedata[-c(1:8),]) 

summary(jod.ANOVA7) 

 

jod.ANOVA8 <- aov(Jod~Light, data=Safedata[-c(1:8),]) 

summary(jod.ANOVA8) 

 

jod.ANOVA9 <- aov(Jod~Time*Light, data=Safedata[-c(1:8),]) 

summary(jod.ANOVA9) 

 

 

 

 

iodine <- ggplot(Safedata[1:8,], aes(x=Time, y=Jod)) +  

  geom_point(aes(), size=6) + 

  labs(title = "Iodine",  

       x = "Time (days)",  

       y = "mg/kg") +  

  scale_x_continuous(breaks= c(0,1,3,9)) + 

  theme(text = element_text(size = 25),  

        axis.text = element_text(face="bold", color="black", size=21), 

        panel.border = element_rect(size = 2, linetype = "solid", fill = NA), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(),  

        plot.title=element_text(hjust=0.5), 

        legend.position = "none") 

 

 

R script 1 
 

# Safekelp RNA-seq analysis 

 

rm(list=ls()) 

 

library(tidyverse) 

library(data.table) 

library(waldo) 

library(readxl) 

library(edgeR) 

library(DESeq2) 

library(adegenet) 

library(RColorBrewer) 

library(adegenet) 

library(ade4) 

library(factoextra) 

library(UpSetR) 

library(ggvenn) 

library(VennDetail) 
library(affy) 

library(dplyr) 
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library(tibble) 

 

setwd("C:/Users/simon/Prosjekter/RNA_seq/r_analysis") 

 

#loding counts matrix file 

dta <- read.table("counts.txt", header = T) 

dim(dta) 

names(dta) 

 

#creating metadata for the counts 

mdta <- data.frame( 

  id=c( 

    'K1','K2','K3','K4','K5','K6','K7','K8','K10','K11','K12','K13','K14','K15','K16','K17', 

    'K18','K19','K20','K21','K22','K23','K24','K25','K26','K27','K28','K29','K30','K31', 

    'K32','K33','K34','K35','K36','K37','K38','K39','K40','K41','K42','K43','K44'), 

  rep=c( 

    1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7, 

    8,8,8,8,9,9,9,9,10,10,10,10,11,11,11,11), 

  Light=c( 

    'MIN','MIN','MIN','MIN','UC','UC','UC','UC','MIN','MIN','MIN','MIN','MIN','MIN','MIN','MIN', 

    'MIN','MIN','MIN','MED','MED','MED','MED','MED','MED','MED','MED','MED','MED','MED','MED', 

    'MAX','MAX','MAX','MAX','MAX','MAX','MAX','MAX','MAX','MAX','MAX','MAX'), 

  Days=c( 

    'C0','C0','C0','C0','C0','C0','C0','C0','D1','D1','D1','D3','D3','D3','D3', 

    'D9','D9','D9', 

    'D9','D1','D1','D1','D1','D3','D3','D3','D3','D9','D9','D9','D9','D1','D1','D1','D1', 

    'D3','D3','D3','D3','D9','D9','D9','D9'), 

  group2=c( 

    'C0','C0','C0','C0','UC','UC','UC','UC','C1','C1','C1','C3','C3','C3', 

    'C3','C9','C9','C9','C9','MED1','MED1','MED1','MED1','MED3', 

    'MED3','MED3','MED3','MED9','MED9','MED9','MED9','MAX1','MAX1','MAX1', 

    'MAX1','MAX3','MAX3','MAX3','MAX3','MAX9','MAX9','MAX9','MAX9'), 

  treatment2=c( 

    'C','C','C','C','C','C','C','C','C','C','C','C','C','C','C','C', 

    'C','C','C', 

    'T','T','T','T','T','T','T','T','T','T','T','T','T','T','T','T', 

    'T','T','T','T','T','T','T','T'), 

  stringsAsFactors = TRUE) 

 

rownames(mdta) <- mdta$id 

 

##checking the order of samples in metadata and count data 

waldo::compare( 

  colnames(dta),  

  rownames(mdta)) 

 

#preparing DEGlist 

FtDEG <- DGEList( 

  counts = dta,  

  samples = mdta,  

  remove.zeros = T) 

dim(FtDEG) 

 

##plotting distribution of counts 

# plotDensities( 

#   cpm( 

#     FtDEG$counts, 
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#     log = T), 

#   # col = c("red", "blue", "green", "yellow", 

#   #         "pink", "orange","black", "gray"), 

#   legend = F, 

#   main = "Density of reads") 

 

##Filtering transcripts with low read counts 

keep <- filterByExpr( 

  FtDEG, 

  min.count=20, ## BYTTE TIL 30? 

  group = FtDEG$samples$group2) 

 

table(keep)  

 

FtDEG <- FtDEG[keep, ,keep.lib.sizes=FALSE] 

dim(FtDEG) 

 

##plotting distribution of counts 2 

# plotDensities( 

#   log(FtDEG$counts), 

#   # col = c("red", "blue", "green", "yellow", 

#   #         "pink", "orange", "black", "gray"), 

#   legend = F,  

#   main = "Density of reads after filtering") 

 

#mean lib.size 

lib.size <- as.character( 

  round(mean(FtDEG$samples$lib.size * 1e-6),  

        2)) 

 

#plotting library sizes   # INKLUDERT  

barplot( 

    FtDEG$samples$lib.size*1e-6, 

    names=FtDEG$samples$sample, 

    ylab="Library size (millions)") + 

  abline( 

    h=mean(FtDEG$samples$lib.size*1e-6), 

    col="Red", 

    lty=5, lwd=1) + 

  text( 

    x=8.5, 

    y=20.5, 

    paste( 

      lib.size, 

      "million reads", 

      sep = " "), 

    col= "black") 

 

#plotting transcripts counts    # IKKE INKLUDERT 

# barplot( 

#   rowSums(FtDEG$counts*1e-6),  

#   las=2,  

#   main="Counts per transcript",  

#   axisnames = FALSE,  

#   ylab = "counts in millions",  

#   cex.axis=0.8) 
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#normalization 

FtDEG <- calcNormFactors( 

  FtDEG,  

  method = "TMM") 

 

FtDEG$samples 

 

#logcpm values 

lcpm <- cpm( 

  FtDEG,  

  prior.count = 2,  

  log=TRUE) 

 

boxplot( 

  lcpm, 

  xlab= "samples", 

  ylab= "log-cpm") 

 

## Variance Stablizing transformation  - VST 

vsd <- vst( 

  round(FtDEG$counts),  

  blind = F) #default blind=T(for totally unsupervised clustering) 

 

## Hierarchical Clustering  

sampleTree <- hclust( 

  dist( 

    t(vsd))) 

 

# plot 

 

plot( 

  sampleTree, 

  labels = FtDEG$samples$group2, 

  main = "Hierarchical Clustering", 

  sub = "", 

  xlab = "", 

  cex.lab = 1.5, 

  cex.axis = 1.5, 

  cex.main = 2) 

 

# compute pairwise correlations 

vsd_cor <- cor(vsd) 

 

#assigning colors  

# ann_colors = list( 

#   cultivar = c(Engmo = "orange2", 

#                Grindstad= "darkgreen"), 

#   treatment = c(C = "#084594", T1 = "#6BAED6", T2 =  )) 

 

# run dev.off() if problem 

# plotting correlations heatmap 

 

pheatmap::pheatmap( 

  vsd_cor, 

  clustering_distance_rows = "correlation", 

  clustering_distance_cols = "correlation", 

  annotation = mdta[,c(3,4)], 
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  labels_row = mdta$Days, 

  labels_col = mdta$Light, 

  # annotation_colors = ann_colors, 

  angle_col = 45, 

  main ="Correlation") 

 

 

 

# transpose vst count matrix 

vsdt <- t(vsd) 

 

#calculating the variance of the vst transformed counts 

var_genes <- apply(vsdt, 2, var)   #kind of a for loop, calculates the variance in all columns 

 

# sorting & picking top 500 highly variable genes for plotting 

select_var <- names( 

  sort( 

    var_genes,  

    decreasing=TRUE))[1:500] 

 

# extracting 500 highly variable transcripts from vst matrix 

vsdpc <- vsdt[,select_var]   # selecting subset based on the content of select_var 

 

#principle component analysis 

pc <- dudi.pca( 

  vsdpc,  

  center=T,  

  scale=F,  

  scannf=F,  

  nf=6) 

summary(pc) #Projected inertia (%) is the variance explained by each pc axis 

 

#visualize the % of variance explained by each principle components 

fviz_eig(pc, addlabels = T) 

 

#adding metadata for principle components 

pcaData <- as.data.frame(pc$li[,1:6]) 

 

# pcaData$group <- FtDEG$samples$group2[match( 

#   rownames(pcaData),  

#   rownames(FtDEG$samples))] 

 

pcaData$Light <- FtDEG$samples$Light[match( 

  rownames(pcaData),  

  rownames(FtDEG$samples))] 

 

pcaData$Days <- FtDEG$samples$Days[match( 

  rownames(pcaData), 

  rownames(FtDEG$samples))] 

 

# pcaData$treatment <- FtDEG$samples$treatment[match( 

#   rownames(pcaData),  

#   rownames(FtDEG$samples))] 

 

#plotting 

ggplot( 

  pcaData, 
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  aes( 

    x = Axis1, 

    y = Axis2, 

    color = Light, 

    shape = Days)) + 

  geom_point(size =6) + 

  xlab("PC1: 43.8% variance") + 

  ylab("PC2: 17.3% variance") + 

  coord_fixed() + 

  ggtitle("PCA (top 500 highly variable genes)") + 

  theme(text = element_text(size = 20), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.background = element_blank(), 

        axis.line = element_line(colour = "black"), 

        plot.title=element_text(hjust=0.5)) 

 

# model matrix 

design <- model.matrix( 

  ~ 0+group2, 

  FtDEG$samples) # using grouped variable (treatment & cultivar) 

 

# design_alt <- model.matrix( 

#   ~ 0+Light+Days+Light:Days, 

#   FtDEG$samples) # adding 0 removes intercept 

 

colnames(design) <- levels(FtDEG$samples$group2) 

 

# estimating common dispersion 

# FtDEG <- estimateGLMCommonDisp(FtDEG, design = design)   

# FtDEG <- estimateGLMTrendedDisp(FtDEG, design = design) 

# FtDEG <- estimateGLMTagwiseDisp(FtDEG, design = design) 

 

FtDEG <- estimateDisp(FtDEG, design = design) 

 

#biological coefficient of variance 

sqrt(FtDEG$common.dispersion)  

 

# = 0.49 

 

# plotBCV(FtDEG, main = "Biological coefficient of variation") 

 

# making contrasts 

# my_contrasts<- makeContrasts( 

#   MAX_MIN_1 = D1MAX-D1MIN, 

#   MAX_MIN_3 = D3MAX-D3MIN, 

#   MAX_MIN_9 = D9MAX-D9MIN, 

#    

#   MIN_9_0 = D9MIN-C0,  

#   MED_9_1 = D9MED-D1MED,  

#   MAX_9_1 = D9MAX-D1MAX,  

#    

#   CUT = C0-NC, 

#    

#   MED_MIN_1 = D1MED-D1MIN, 

#   MED_MIN_3 = D3MED-D3MIN, 

#   MED_MIN_9 = D9MED-D9MIN, 
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#   levels = design) 

 

my_contrasts<- makeContrasts( 

  MAX_MIN_1 = MAX1-C1, 

  MAX_MIN_3 = MAX3-C3, 

  MAX_MIN_9 = MAX9-C9, 

   

  MIN_9_0 = C9-C0,  

  MED_9_1 = MED9-MED1,  

  MAX_9_1 = MAX9-MAX1,  

   

  CUT = C0-UC, 

   

  levels = design) 

 

 

# glm fit 

fit <- glmFit(FtDEG, design) 

 

# MAX1-C1 

 

fit1 <- glmTreat( 

  fit,  

  contrast = my_contrasts[,1], 

  lfc = log2(1.5)) # should be down or up regulated by about 30 %. the ones below threshold are not 

important, but not all of the ones above are nececarily important.  

 

summary( 

  decideTests( 

    fit1, 

    p.value = 0.05)) 

 

light1 <- topTags( 

  fit1,  

  n = nrow(FtDEG),  

  adjust.method = "fdr", 

  p.value = 0.05)$table %>% rownames_to_column("GeneID") 

 

# write.table( 

#   light1, 

#   file = "light1_outny.txt", 

#   col.names = T, 

#   row.names = F, 

#   quote = F) 

 

 

# plotMD(fit1, main = "Mean-Difference plot, MAX1 vs C1") 

#        # main.cex=2, cex.main=2, cex.lab=1.5, cex.axis=1.5) 

 

 

# MAX3-C3 

 

fit2 <- glmTreat( 

  fit, 

  contrast = my_contrasts[,2], 

  lfc = log2(1.5)) 
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summary( 

  decideTests( 

    fit2, 

    p.value = 0.05)) 

 

light3 <- topTags( 

  fit2,  

  n = nrow(FtDEG),  

  adjust.method = "fdr",  

  p.value = 0.05)$table %>% rownames_to_column("GeneID") 

 

# write.table( 

#   light3, 

#   file = "light3_outny.txt", 

#   col.names = T, 

#   row.names = F) 

 

# plotMD(fit2, main = "Mean-Difference plot, MAX3 vs C3") 

 

# MAX9-C9 

 

fit3 <- glmTreat( 

  fit, 

  contrast = my_contrasts[,3], 

  lfc = log2(1.5)) 

 

summary( 

  decideTests( 

    fit3, 

    p.value = 0.05)) 

 

light9 <- topTags( 

  fit3,  

  n = nrow(FtDEG),  

  adjust.method = "fdr",  

  p.value = 0.05)$table %>% rownames_to_column("GeneID") 

 

# write.table( 

#   light9, 

#   file = "light9_outny.txt", 

#   col.names = T , 

#   row.names = F) 

 

# plotMD(fit3, main = "Mean-Difference plot, MAX9 vs C9") 

 

# C9-C0 

 

fit4 <- glmTreat( 

  fit,  

  contrast = my_contrasts[,4], 

  lfc = log2(1.5)) 

 

summary( 

  decideTests( 

    fit4, 

    p.value = 0.05)) 
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timeMIN <- topTags( 

  fit4,  

  n = nrow(FtDEG),  

  adjust.method = "fdr", 

  p.value = 0.05)$table %>% rownames_to_column("GeneID") 

 

# write.table( 

#   timeMIN,file = "time40_outny.txt", 

#   col.names = T, 

#   row.names = F) 

 

# plotMD(fit4, main = "Mean-Difference plot, C9 vs C0") 

 

# MED9-MED1 

 

fit5 <- glmTreat( 

  fit,  

  contrast = my_contrasts[,5], 

  lfc = log2(1.5)) 

 

summary( 

  decideTests( 

    fit5, 

    p.value = 0.05)) 

 

timeMED <- topTags( 

  fit5,  

  n=nrow(FtDEG),  

  adjust.method = "fdr", 

  p.value = 0.05)$table %>% rownames_to_column("GeneID") 

 

# write.table( 

#   timeMED,file = "time100_outny.txt", 

#   col.names = T, 

#   row.names = F) 

 

# plotMD(fit5, main = "Mean-Difference plot, MED9 vs MED1") 

 

# MAX9-MAX1 

 

fit6 <- glmTreat( 

  fit,  

  contrast = my_contrasts[,6], 

  lfc = log2(1.5)) 

 

summary( 

  decideTests( 

    fit6, 

    p.value = 0.05)) 

 

timeMAX <- topTags( 

  fit6,  

  n=nrow(FtDEG),  

  adjust.method = "fdr", 

  p.value = 0.05)$table %>% rownames_to_column("GeneID") 

 

# write.table( 
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#   timeMAX,file = "time250_outny.txt", 

#   col.names = T, 

#   row.names = F) 

 

# plotMD(fit6, main = "Mean-Difference plot, MAX9 vs MAX1") 

 

# C0-UC 

 

fit7 <- glmTreat( 

  fit,  

  contrast = my_contrasts[,7], 

  lfc = log2(1.5)) 

 

summary( 

  decideTests( 

    fit7, 

    p.value = 0.05)) 

 

cut_nocut <- topTags( 

  fit7,  

  n=nrow(FtDEG),  

  adjust.method = "fdr", 

  p.value = 0.05)$table %>% rownames_to_column("GeneID") 

 

# write.table( 

#   cut_nocut,file = "cut_nocut_outny.txt", 

#   col.names = T, 

#   row.names = F) 

 

# plotMD(fit7, main = "Mean-Difference plot, C0 vs UC") 

 

# MED1-C1 

 

fit8 <- glmTreat( 

  fit,  

  contrast = my_contrasts[,8], 

  lfc = log2(1.5)) # should be down or up regulated by about 30 %. the ones below threshold are not 

important, but not all of the ones above are nececarily important.  

 

summary( 

  decideTests( 

    fit8, 

    p.value = 0.05)) 

 

lightMED1 <- topTags( 

  fit8,  

  n = nrow(FtDEG),  

  adjust.method = "fdr", 

  p.value = 0.05)$table %>% rownames_to_column("GeneID") 

 

# write.table( 

#   lightMED1, 

#   file = "lightMED1_outny.txt", 

#   col.names = T, 

#   row.names = F, 

#   quote = F) 

 



111 
 

# plotMD(fit8, main = "Mean-Difference plot, MED1 vs C1") 

 

# MED3-C3 

 

fit9 <- glmTreat( 

  fit,  

  contrast = my_contrasts[,9], 

  lfc = log2(1.5)) # should be down or up regulated by about 30 %. the ones below threshold are not 

important, but not all of the ones above are nececarily important.  

 

summary( 

  decideTests( 

    fit9, 

    p.value = 0.05)) 

 

lightMED3 <- topTags( 

  fit9,  

  n = nrow(FtDEG),  

  adjust.method = "fdr", 

  p.value = 0.05)$table %>% rownames_to_column("GeneID") 

 

# write.table( 

#   lightMED3, 

#   file = "lightMED3_outny.txt", 

#   col.names = T, 

#   row.names = F, 

#   quote = F) 

 

# plotMD(fit9, main = "Mean-Difference plot, MED3 vs C3") 

 

# MED9-C9 

 

fit10 <- glmTreat( 

  fit,  

  contrast = my_contrasts[,10], 

  lfc = log2(1.5)) # should be down or up regulated by about 30 %. the ones below threshold are not 

important, but not all of the ones above are nececarily important.  

 

summary( 

  decideTests( 

    fit10, 

    p.value = 0.05)) 

 

lightMED9 <- topTags( 

  fit10,  

  n = nrow(FtDEG),  

  adjust.method = "fdr", 

  p.value = 0.05)$table %>% rownames_to_column("GeneID") 

 

# write.table( 

#   lightMED9, 

#   file = "lightMED9_outny.txt", 

#   col.names = T, 

#   row.names = F, 

#   quote = F) 

 

# plotMD(fit10, main = "Mean-Difference plot, MED9 vs C9") 
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dev.off() 

 

# title(ylab="log-fold-change",mgp=c(2, 1, 0)) 

 

par(mfrow = c(1,3), cex = 0.78, cex.main = 2, cex.lab = 2) 

plotMD(fit1, main = "MAX1 vs C1", ylab = '') 

title(ylab="log-fold-change", mgp = c(2.4,1,0)) 

plotMD(fit2, main = "MAX3 vs C3", ylab = '') 

plotMD(fit3, main = "MAX9 vs C9", ylab = '') 

 

# par(mfrow = c(1,3), cex = 1, cex.main = 2, cex.lab = 2) 

plotMD(fit4, main = "C9 vs C0", ylab = '') 

title(ylab="log-fold-change", mgp = c(2.4,1,0)) 

plotMD(fit5, main = "MED9 vs MED1", ylab = '') 

plotMD(fit6, main = "MAX9 vs MAX1", ylab = '') 

 

# par(mfrow = c(1,4), cex = 0.78, cex.main = 2, cex.lab = 2) 

plotMD(fit7, main = "C0 vs UC", ylab = '') 

title(ylab="log-fold-change", mgp = c(2.4,1,0)) 

plotMD(fit8, main = "MED1 vs C1", ylab = '') 

plotMD(fit10, main = "MED9 vs C9", ylab = '') 

 

# plotMD(fit9, main = "MED3 vs C3", ylab = '') 

 

# venn plot 

x= list( 

  "MAX9 vs MAX1" = timeMAX$GeneID, 

  "MAX1 vs C1" = light1$GeneID, 

  "MED9 vs MED1" = timeMED$GeneID) 

 

ggvenn( 

  x,  

  fill_color = c("#0073C2FF", "#EFC000FF", "#CD534CFF"), 

  show_percentage = F, 

  fill_alpha = 0.4, 

  set_name_size = 6, 

  stroke_color = "black", 

  stroke_linetype = 0) 

 

# upset plot 

 

upset <-   list( 

  "MAX1 vs C1" = light1$GeneID, 

  "MAX3 vs C3" = light3$GeneID, 

  "MAX9 vs C9" = light9$GeneID,  

  "C9 vs C0" = timeMIN$GeneID, 

  "MED9 vs MED1" = timeMED$GeneID,  

  "MAX9 vs MAX1" = timeMAX$GeneID,  

  "C0 vs UC" = cut_nocut$GeneID) 

 

upset(fromList(upset), nsets = 7,  

      mainbar.y.label = "DE genes in intersection",  

      sets.x.label = "Number of genes \nin the dataset", 

      sets.bar.color = c("red", "green", "blue", "orange", "yellow", "lightblue", "purple" ), 

      point.size = 3.5, 

      line.size = 1.2, 
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      text.scale = c(2.8,2.8,2.5,2.5,2.5,2.5)) 

 

# c(intersection size title,  

#   intersection size tick labels,  

#   set size title,  

#   set size tick labels,  

#   set names,  

#   numbers above bars) 

 

upset2 <- list( 

  "UC" = round(rowMeans(FtDEG[["counts"]][,4:8])), 

  "C0" = round(rowMeans(FtDEG[["counts"]][,1:4])), 

  "C1" = round(rowMeans(FtDEG[["counts"]][,9:11])), 

  "C3" = round(rowMeans(FtDEG[["counts"]][,12:15])), 

  "C9" = round(rowMeans(FtDEG[["counts"]][,16:19])), 

   

  "MED1" = round(rowMeans(FtDEG[["counts"]][,20:23])), 

  "MED3" = round(rowMeans(FtDEG[["counts"]][,24:27])), 

  "MED9" = round(rowMeans(FtDEG[["counts"]][,28:31])), 

   

  "MAX1" = round(rowMeans(FtDEG[["counts"]][,32:35])), 

  "MAX3" = round(rowMeans(FtDEG[["counts"]][,36:39])), 

  "MAX9" = round(rowMeans(FtDEG[["counts"]][,40:43]))) 

 

upset(fromList(upset2), nsets = 11,  

      mainbar.y.label = "Genes in intersection",  

      sets.x.label = "Number of genes \nin the dataset",  

      sets.bar.color = c("red", "green", "blue", "orange", "yellow", "lightblue", "purple", "darkgreen",  

                         "darkblue", "pink", "aquamarine"), 

      point.size = 3.5, 

      line.size = 1.2, 

      text.scale = c(2.8,2.8,2.5,2.5,2,2.5)) 

 

 

R script 1 
 

rm(list=ls()) 

 

library(stringr) 

library(Bios2cor) 

library(seqinr) 

library(terra) 

 

setwd("C:/Users/simon/Prosjekter/RNA_seq/r_analysis") 

 

allkeys <- read.table("clusters_new.txt", header = F) 

 

outfls = list.files(pattern = "*_outny.txt", full.names = F)  

dfs<-lapply(outfls, FUN=read.table, sep=" ", header=T)  

names(dfs)<- substr(outfls,1, nchar(outfls)-4) 

 

list2env(dfs,envir=.GlobalEnv) 
 

light1_trins <- allkeys[,1] %in% light1_outny[,1] 
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light3_trins <- allkeys[,1] %in% light3_outny[,1] 

light9_trins <- allkeys[,1] %in% light9_outny[,1] 

time40_trins <- allkeys[,1] %in% time40_outny[,1] 

time100_trins <- allkeys[,1] %in% time100_outny[,1] 

time250_trins <- allkeys[,1] %in% time250_outny[,1] 

cutno_trins <- allkeys[,1] %in% cut_nocut_outny[,1] 

 

light1_fin <- allkeys[light1_trins,2] 

light3_fin <- allkeys[light3_trins,2] 

light9_fin <- allkeys[light9_trins,2] 

time40_fin <- allkeys[time40_trins,2] 

time100_fin <- allkeys[time100_trins,2] 

time250_fin <- allkeys[time250_trins,2] 

cutno_fin <- allkeys[cutno_trins,2] 

 

assembly_dta <- import.fasta( 

  "safekelp_trinity_assembly.Trinity.fasta",  

  aa.to.upper = TRUE, gap.to.dash = TRUE, log.file = NULL) 

 

light1_write <- assembly_dta[light1_fin] 

light3_write <- assembly_dta[light3_fin] 

light9_write <- assembly_dta[light9_fin] 

time40_write <- assembly_dta[time40_fin] 

time100_write <- assembly_dta[time100_fin] 

time250_write <- assembly_dta[time250_fin] 

cutno_write <- assembly_dta[cutno_fin] 

 

file.create("light1_extracted4.fasta") 

file.create("light3_extracted4.fasta") 

file.create("light9_extracted4.fasta") 

file.create("time40_extracted4.fasta") 

file.create("time100_extracted4.fasta") 

file.create("time250_extracted4.fasta") 

file.create("cutno_extracted4.fasta") 

 

write.fasta(light1_write, names = names(light1_write), open = "a", 

            file.out = "light1_extracted4.fasta", nbchar = 80, as.string = FALSE) 

write.fasta(light3_write, names = names(light3_write), open = "a", 

            file.out = "light3_extracted4.fasta", nbchar = 80, as.string = FALSE) 

write.fasta(light9_write, names = names(light9_write), open = "a", 

            file.out = "light9_extracted4.fasta", nbchar = 80, as.string = FALSE) 

write.fasta(time40_write, names = names(time40_write), open = "a", 

            file.out = "time40_extracted4.fasta", nbchar = 80, as.string = FALSE) 

write.fasta(time100_write, names = names(time100_write), open = "a", 

            file.out = "time100_extracted4.fasta", nbchar = 80, as.string = FALSE) 

write.fasta(time250_write, names = names(time250_write), open = "a", 

            file.out = "time250_extracted4.fasta", nbchar = 80, as.string = FALSE) 

write.fasta(cutno_write, names = names(cutno_write), open = "a", 

            file.out = "cutno_extracted4.fasta", nbchar = 80, as.string = FALSE) 

 

 

 

 

R script 1 
 

# GO CHARTS 
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library(tidyverse) 

library(tidyr) 

library(data.table) 

library(readxl) 

library(biomaRt) 

library(qdapRegex) 

library(clusterProfiler) 

library(topGO) 

library(WGCNA) 

 

library(ggplot2) 

library(dplyr) 

library(stringi) 

library(readr) 

library(forcats) 

library(stringr) 

library(qdapRegex) 

library(tibble) 

 

setwd("C:/Users/simon/Prosjekter/RNA_seq/r_analysis") 

 

###############################    1    ############################### 

rm(list=ls()) 

 

allkeys <- read.table("clusters_new.txt", header = F) 

colnames(allkeys) <- c("GeneID","TrinID") 

 

annotated1 <- read_tsv("./annotated1_3.tsv") 

light1 <- read.table("./light1_outny.txt", header = T) 

 

colnames(annotated1) <- c("qseqid", "sseqid", "bitscore", "evalue", "pident", 

                          "goids", "count", "terms", "category") 

 

temp1 <- left_join(allkeys,light1,by=c("GeneID"), keep = F) 

 

colnames(temp1)[2] <- "qseqid" 

 

temp2 <- left_join(temp1,annotated1,by=c("qseqid"), keep=F) 

 

str_which(temp2$terms, "peroxidase") 

str_which(temp2$terms, "cellular oxidant") 

 

write.table(temp2[c(324819, 167756, 167772, 198757, 198778, 248844, 248851, 

                    248857, 324822, 335874, 335899, 335925,  

                    335950, 335975, 336000, 336025),], 

            file= "MAX1vsC1_print.txt", sep = "\t") 

 

temp2_omit <- temp2 %>% drop_na() 

temp2_omit$log10.pval<--log10(as.numeric(temp2_omit$PValue)) 

temp2_omit$r_log10.pval <- round(temp2_omit$log10.pval, digit = 2) 

 

for (i in 1:length(temp2_omit$terms)) { 

  if (isTRUE(str_detect(temp2_omit$terms[i], ","))) { 

    temp2_omit$terms[i] <- strsplit(temp2_omit$terms[i], "[,]", fixed = F)[[1]][1] 

  } else { 

    next 
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  } 

} 

 

 

anno_means <- temp2_omit %>% 

  group_by(terms) %>%  

  dplyr::summarize(Mean = mean(log10.pval, na.rm=T)) %>% 

  ungroup() 

 

temp3_omit <- left_join(temp2_omit,anno_means, by=c("terms"), keep= F) 

temp3_omit$rmeans <- round(temp3_omit$Mean, digit = 2) 

 

anno_grouped <- temp3_omit %>% 

  distinct(terms, .keep_all = T) %>% 

  group_by(category) %>%  

  slice_max(order_by = rmeans, n= 10) %>% 

  ungroup() 

 

 

 

ggplot(anno_grouped, aes(x = rmeans, y = fct_reorder(terms, rmeans), fill = category)) + 

  geom_bar(stat = "identity") + 

  facet_wrap( ~ category, scales = "free_y", nrow = 3) + 

  geom_text( 

    aes(label = rmeans), 

    color = "black", 

    hjust = -0.1, 

    size = 5.5, 

    position = position_dodge(0.9) 

  ) + 

  ggtitle("Distribution of GO terms for MAX1 vs C1") + 

  xlab("-log10(p values)") +  

  ylab("Top GO terms grouped by category") + 

  theme( 

    legend.position = "bottom", 

    panel.grid = element_blank(), 

    panel.background = element_blank(),  

    axis.ticks = element_blank(), 

    strip.text.x = element_text(size = 20, face = "bold"), 

    strip.background = element_blank(), 

    text = element_text(size = 19),  

    axis.title.x = element_text(size = 20), 

    axis.text.x = element_text(size = 14), 

    axis.title.y = element_text(size = 20)) 

 

###############################    3    ###############################  

rm(list=ls()) 

 

allkeys <- read.table("clusters_new.txt", header = F) 

colnames(allkeys) <- c("GeneID","TrinID") 

 

annotated1 <- read_tsv("./annotated3_3.tsv") 

light1 <- read.table("./light3_outny.txt", header = T) 

 

colnames(annotated1) <- c("qseqid", "sseqid", "bitscore", "evalue", 

                          "pident", "goids", "count", "terms", "category") 
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temp1 <- left_join(allkeys,light1,by=c("GeneID"), keep = F) 

 

colnames(temp1)[2] <- "qseqid" 

 

temp2 <- left_join(temp1,annotated1,by=c("qseqid"), keep=F) 

 

str_which(temp2$terms, "peroxidase") 

str_which(temp2$terms, "cellular oxidant") 

 

write.table(temp2[c(248083, 248092, 240454, 240458,  

                    240460, 248086, 248095),], file = "MAX3vsC3_print.txt", 

            sep = "\t") 

 

temp2_omit <- temp2 %>% drop_na() 

temp2_omit$log10.pval<--log10(as.numeric(temp2_omit$PValue)) 

temp2_omit$r_log10.pval <- round(temp2_omit$log10.pval, digit = 2) 

 

 

for (i in 1:length(temp2_omit$terms)) { 

  if (isTRUE(str_detect(temp2_omit$terms[i], ","))) { 

    temp2_omit$terms[i] <- strsplit(temp2_omit$terms[i], "[,]", fixed = F)[[1]][1] 

  } else { 

    next 

  } 

} 

 

 

 

anno_means <- temp2_omit %>% 

  group_by(terms) %>% 

  dplyr::summarize(Mean = mean(log10.pval, na.rm=T)) %>% 

  ungroup() 

 

temp3_omit <- left_join(temp2_omit,anno_means, by=c("terms"), keep= F) 

temp3_omit$rmeans <- round(temp3_omit$Mean, digit = 2) 

 

anno_grouped <- temp3_omit %>% 

  distinct(terms, .keep_all = T) %>% 

  group_by(category) %>% # group your data based on the variable Rating 

  slice_max(order_by = rmeans, n= 10) %>% 

  ungroup()  

 

ggplot(anno_grouped, aes(x = rmeans, y = fct_reorder(terms, rmeans), fill = category)) + 

  geom_bar(stat = "identity") + 

  facet_wrap( ~ category, scales = "free_y", nrow = 3) + 

  geom_text( 

    aes(label = rmeans), 

    color = "black", 

    hjust = -0.1, 

    size = 5.5, 

    position = position_dodge(0.9)) + 

  ggtitle("Distribution of GO terms for MAX3 vs C3") + 

  xlab("-log10(p values)") +  

  ylab("Top GO terms grouped by category") + 

  theme( 

    legend.position = "bottom", 

    panel.grid = element_blank(), 
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    panel.background = element_blank(),  

    axis.ticks = element_blank(), 

    strip.text.x = element_text(size = 20, face = "bold"), 

    strip.background = element_blank(), 

    text = element_text(size = 19),  

    axis.title.x = element_text(size = 20), 

    axis.text.x = element_text(size = 14), 

    axis.title.y = element_text(size = 20)) 

 

###############################    9    ############################### 

rm(list=ls()) 

 

allkeys <- read.table("clusters_new.txt", header = F) 

colnames(allkeys) <- c("GeneID","TrinID") 

 

annotated1 <- read_tsv("./annotated9_3.tsv") 

light1 <- read.table("./light9_outny.txt", header = T) 

 

colnames(annotated1) <- c("qseqid", "sseqid", "bitscore", "evalue",  

                          "pident", "goids", "count", "terms", "category") 

 

temp1 <- left_join(allkeys,light1,by=c("GeneID"), keep = F) 

 

colnames(temp1)[2] <- "qseqid" 

 

temp2 <- left_join(temp1,annotated1,by=c("qseqid"), keep=F) 

 

str_which(temp2$terms, "peroxidase") 

str_which(temp2$terms, "cellular oxidant") 

 

write.table(temp2[c(300057, 240387, 240390, 240392, 300058),],  

            file = "MAX9vsC9_print.txt", sep = "\t") 

 

temp2_omit <- temp2 %>% drop_na() 

temp2_omit$log10.pval<--log10(as.numeric(temp2_omit$PValue)) 

temp2_omit$r_log10.pval <- round(temp2_omit$log10.pval, digit = 2) 

 

 

 

for (i in 1:length(temp2_omit$terms)) { 

  if (isTRUE(str_detect(temp2_omit$terms[i], ","))) { 

    temp2_omit$terms[i] <- strsplit(temp2_omit$terms[i], "[,]", fixed = F)[[1]][1] 

  } else { 

    next 

  } 

} 

 

 

 

anno_means <- temp2_omit %>% 

  group_by(terms) %>% 

  dplyr::summarize(Mean = mean(log10.pval, na.rm=T)) %>% 

  ungroup() 

 

temp3_omit <- left_join(temp2_omit,anno_means, by=c("terms"), keep= F) 

temp3_omit$rmeans <- round(temp3_omit$Mean, digit = 2) 
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anno_grouped <- temp3_omit %>% 

  distinct(terms, .keep_all = T) %>% 

  group_by(category) %>% # group your data based on the variable Rating 

  slice_max(order_by = rmeans, n= 10) %>% 

  ungroup() 

 

ggplot(anno_grouped, aes(x = rmeans, y = fct_reorder(terms, rmeans), fill = category)) + 

  geom_bar(stat = "identity") + 

  facet_wrap( ~ category, scales = "free_y", nrow = 3) + 

  geom_text( 

    aes(label = rmeans), 

    color = "black", 

    hjust = -0.1, 

    size = 5.5, 

    position = position_dodge(0.9) 

  ) + 

  ggtitle("Distribution of GO terms for MAX9 vs C9") + 

  xlab("-log10(p values)") +  

  ylab("Top GO terms grouped by category") + 

  theme( 

    legend.position = "bottom", 

    panel.grid = element_blank(), 

    panel.background = element_blank(),  

    axis.ticks = element_blank(), 

    strip.text.x = element_text(size = 20, face = "bold"), 

    strip.background = element_blank(), 

    text = element_text(size = 19),  

    axis.title.x = element_text(size = 20), 

    axis.text.x = element_text(size = 14), 

    axis.title.y = element_text(size = 20)) 

 

 

R script 4 
 

rm(list= ls()) 

 

library(tidyverse) 

library(tidyr) 

library(readxl) 

library(qdapRegex) 

library(clusterProfiler) 

library(topGO) 

library(ggplot2) 

library(dplyr) 

library(forcats) 

library(stringr) 

library(readr) 

library(forcats) 

library(stringr) 

library(edgeR) 

library(stats) 

library(gplots) 
library(tibble) 

library(RColorBrewer) 
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library(BBmisc) 

 

## import 

setwd("C:/Users/simon/Prosjekter/RNA_seq/r_analysis") 

 

## counts 

counts <- read.table("counts.txt", header = T) 

counts <- rownames_to_column(counts,var = "GeneID") 

counts <- as_tibble(counts) 

 

counts$C0 <- rowMeans(counts[,2:5]) 

counts$UC <- rowMeans(counts[,6:9]) 

counts$C1 <- rowMeans(counts[,10:12]) 

counts$C3 <- rowMeans(counts[,13:16]) 

counts$C9 <- rowMeans(counts[,17:20]) 

counts$MED1 <- rowMeans(counts[,21:24]) 

counts$MED3 <- rowMeans(counts[,25:28]) 

counts$MED9 <- rowMeans(counts[,29:32]) 

counts$MAX1 <- rowMeans(counts[,33:36]) 

counts$MAX3 <- rowMeans(counts[,37:40]) 

counts$MAX9 <- rowMeans(counts[,41:44]) 

 

counts <- counts %>%  

  select(-c(2:44))  

 

## contrast files 

fls <- list.files(pattern = "*_outny.txt", full.names = F) 

dfs <- lapply(fls, FUN=read.table, sep="", header=T) 

dfs <- lapply(dfs, FUN=as_tibble, sep="", header=T) 

dfs <- lapply(dfs[], FUN=select, -c(3,5:6)) 

names(dfs)<- substr(fls,1, nchar(fls)-10) 

list2env(dfs,envir=.GlobalEnv) 

colnames(light1) <- c('GeneID', 'logFC_1', 'logCPM_1') 

colnames(light3) <- c('GeneID', 'logFC_3', 'logCPM_3') 

colnames(light9) <- c('GeneID', 'logFC_9', 'logCPM_9') 

colnames(time40) <- c('GeneID', 'logFC_40', 'logCPM_40') 

colnames(time100) <- c('GeneID', 'logFC_100', 'logCPM_100') 

colnames(time250) <- c('GeneID', 'logFC_250', 'logCPM_250') 

colnames(cut_nocut) <- c('GeneID', 'logFC_cut', 'logCPM_cut') 

 

contrasts <- full_join(light1, light3, by = c("GeneID"), keep = F) 

contrasts <- full_join(contrasts, light9, by = c('GeneID'), keep = F) 

contrasts <- full_join(contrasts, time40, by = c('GeneID'), keep = F) 

contrasts <- full_join(contrasts, time100, by = c('GeneID'), keep = F) 

contrasts <- full_join(contrasts, time250, by = c('GeneID'), keep = F) 

contrasts <- full_join(contrasts, cut_nocut, by = c('GeneID'), keep = F) 

 

rm(list= c('light1','light3','light9','time40','time100','time250','cut_nocut')) 

 

## keys 

keys <- read.table("clusters_new.txt", header = F) 

colnames(keys) <- c("GeneID","TrinID") 

 

## blast results 

afls <- list.files(pattern = "*_3.tsv", full.names = F) 

adfs <- lapply(afls, FUN=read.table, sep="\t", header=T, na.strings = '-') 

adfs <- lapply(adfs, FUN=as_tibble, sep="", header=T) 
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adfs <- lapply(adfs[], FUN=select, -c(3:9)) 

adfs <- lapply(adfs[], FUN=distinct, .keep_all = T) 

names(adfs)<- substr(afls,1, nchar(afls)-6) 

list2env(adfs,envir=.GlobalEnv) 

colnames(annotated1) <- c('TrinID', 'sseqid') 

colnames(annotated3) <- c('TrinID', 'sseqid') 

colnames(annotated9) <- c('TrinID', 'sseqid') 

colnames(annotated40) <- c('TrinID', 'sseqid') 

colnames(annotated100) <- c('TrinID', 'sseqid') 

colnames(annotated250) <- c('TrinID', 'sseqid') 

colnames(annotatedcutno) <- c('TrinID', 'sseqid') 

 

annotations <- full_join(annotated1, annotated3, by = c("TrinID", 'sseqid'), keep = F) 

annotations <- full_join(annotations, annotated9, by = c('TrinID', 'sseqid'), keep = F) 

annotations <- full_join(annotations, annotated40, by = c('TrinID', 'sseqid'), keep = F) 

annotations <- full_join(annotations, annotated100, by = c('TrinID', 'sseqid'), keep = F) 

annotations <- full_join(annotations, annotated250, by = c('TrinID', 'sseqid'), keep = F) 

annotations <- full_join(annotations, annotatedcutno, by = c('TrinID', 'sseqid'), keep = F) 

 

rm(list= 

c('annotated1','annotated3','annotated9','annotated40','annotated100','annotated250','annotatedcutno')) 

 

annotations <- annotations %>%  

  drop_na(sseqid) 

 

annotations <- filter(annotations, !(str_detect(annotations$sseqid[], 'Uncharacterized'))) 

 

for (i in 1:length(annotations$sseqid)) { 

  if (str_detect(annotations$sseqid[i], 'Uncharacterized')) { 

    next 

  } else {  

    annotations$sseqid[i] <- strsplit(annotations$sseqid[i], "[_]", fixed = F)[[1]][2] 

    annotations$sseqid[i] <- strsplit(annotations$sseqid[i], "OS", fixed = F)[[1]][1] 

  } 

} 

 

# annogrep <- annotations %>% 

#   filter(grepl('peroxidase|cellular oxidant', sseqid)) 

 

# annogrep <- left_join(annogrep, keys, by = "TrinID") 

# annogrep <- left_join(annogrep, contrasts, by = "GeneID") 

 

annotations <- inner_join(annotations, keys, by = c('TrinID'), keep = F) 

 

annotations <- annotations %>% 

  distinct(GeneID, .keep_all = T) 

 

 

################ annotation and counts ################ 

 

 

 

 

anno_counts <- inner_join(annotations, counts, by = c('GeneID'), keep = F) 

 

anno_medians0 <- anno_counts %>% 

  group_by(sseqid) %>%  
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  dplyr::summarize(C0 = max(C0, na.rm=T)) %>% 

  ungroup() 

anno_medians1 <- anno_counts %>% 

  group_by(sseqid) %>%  

  dplyr::summarize(UC = max(UC, na.rm=T)) %>% 

  ungroup() 

anno_medians2 <- anno_counts %>% 

  group_by(sseqid) %>%  

  dplyr::summarize(C1 = max(C1, na.rm=T)) %>% 

  ungroup() 

anno_medians3 <- anno_counts %>% 

  group_by(sseqid) %>%  

  dplyr::summarize(C3 = max(C3, na.rm=T)) %>% 

  ungroup() 

anno_medians4 <- anno_counts %>% 

  group_by(sseqid) %>%  

  dplyr::summarize(C9 = max(C9, na.rm=T)) %>% 

  ungroup() 

anno_medians5 <- anno_counts %>% 

  group_by(sseqid) %>%  

  dplyr::summarize(MED1 = max(MED1, na.rm=T)) %>% 

  ungroup() 

anno_medians6 <- anno_counts %>% 

  group_by(sseqid) %>%  

  dplyr::summarize(MED3 = max(MED3, na.rm=T)) %>% 

  ungroup() 

anno_medians7 <- anno_counts %>% 

  group_by(sseqid) %>%  

  dplyr::summarize(MED9 = max(MED9, na.rm=T)) %>% 

  ungroup() 

anno_medians8 <- anno_counts %>% 

  group_by(sseqid) %>%  

  dplyr::summarize(MAX1 = max(MAX1, na.rm=T)) %>% 

  ungroup() 

anno_medians9 <- anno_counts %>% 

  group_by(sseqid) %>%  

  dplyr::summarize(MAX3 = max(MAX3, na.rm=T)) %>% 

  ungroup() 

anno_medians10 <- anno_counts %>% 

  group_by(sseqid) %>%  

  dplyr::summarize(MAX9 = max(MAX9, na.rm=T)) %>% 

  ungroup() 

 

medians <- full_join(anno_medians0, anno_medians1, by = c('sseqid'), keep = F) 

medians <- full_join(medians, anno_medians2, by = c('sseqid'), keep = F) 

medians <- full_join(medians, anno_medians3, by = c( 'sseqid'), keep = F) 

medians <- full_join(medians, anno_medians4, by = c( 'sseqid'), keep = F) 

medians <- full_join(medians, anno_medians5, by = c( 'sseqid'), keep = F) 

medians <- full_join(medians, anno_medians6, by = c( 'sseqid'), keep = F) 

medians <- full_join(medians, anno_medians7, by = c( 'sseqid'), keep = F) 

medians <- full_join(medians, anno_medians8, by = c( 'sseqid'), keep = F) 

medians <- full_join(medians, anno_medians9, by = c( 'sseqid'), keep = F) 

medians <- full_join(medians, anno_medians10, by = c( 'sseqid'), keep = F) 

 

 

rm(list=c('anno_medians0','anno_medians1','anno_medians2','anno_medians3','anno_medians4', 

          'anno_medians5','anno_medians6','anno_medians7','anno_medians8','anno_medians9', 



123 
 

          'anno_medians10')) 

 

catmat <- medians[,-c(3,7:9)] 

 

 

 

 

################ annotation and contrasts ################ 

 

 

 

# anno_contrasts <- inner_join(annotations, contrasts, by = c('GeneID'), keep = F) 

#  

# anno_medians0 <- anno_contrasts %>% 

#   group_by(sseqid) %>%  

#   dplyr::summarize(MAX1_C1_FC = max(logFC_1, na.rm=T)) %>% 

#   ungroup() 

# anno_medians1 <- anno_contrasts %>% 

#   group_by(sseqid) %>%  

#   dplyr::summarize(MAX3_C3_FC = max(logFC_3, na.rm=T)) %>% 

#   ungroup() 

# anno_medians2 <- anno_contrasts %>% 

#   group_by(sseqid) %>%  

#   dplyr::summarize(MAX9_C9_FC = max(logFC_9, na.rm=T)) %>% 

#   ungroup() 

# anno_medians3 <- anno_contrasts %>% 

#   group_by(sseqid) %>%  

#   dplyr::summarize(C9_C0_FC = max(logFC_40, na.rm=T)) %>% 

#   ungroup() 

# anno_medians4 <- anno_contrasts %>% 

#   group_by(sseqid) %>%  

#   dplyr::summarize(MED9_MED1_FC = max(logFC_100, na.rm=T)) %>% 

#   ungroup() 

# anno_medians5 <- anno_contrasts %>% 

#   group_by(sseqid) %>%  

#   dplyr::summarize(MAX9_MAX1_FC = max(logFC_250, na.rm=T)) %>% 

#   ungroup() 

# anno_medians6 <- anno_contrasts %>% 

#   group_by(sseqid) %>%  

#   dplyr::summarize(C0_UC_FC = max(logFC_cut, na.rm=T)) %>% 

#   ungroup() 

#  

# anno_medians7 <- anno_contrasts %>% 

#   group_by(sseqid) %>%  

#   dplyr::summarize(MAX1_C1_CPM = max(logCPM_1, na.rm=T)) %>% 

#   ungroup() 

# anno_medians8 <- anno_contrasts %>% 

#   group_by(sseqid) %>%  

#   dplyr::summarize(MAX3_C3_CPM = max(logCPM_3, na.rm=T)) %>% 

#   ungroup() 

# anno_medians9 <- anno_contrasts %>% 

#   group_by(sseqid) %>%  

#   dplyr::summarize(MAX9_C9_CPM = max(logCPM_9, na.rm=T)) %>% 

#   ungroup() 

# anno_medians10 <- anno_contrasts %>% 

#   group_by(sseqid) %>%  

#   dplyr::summarize(C9_C0_CPM = max(logCPM_40, na.rm=T)) %>% 
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#   ungroup() 

# anno_medians11 <- anno_contrasts %>% 

#   group_by(sseqid) %>%  

#   dplyr::summarize(MED9_MED1_CPM = max(logCPM_100, na.rm=T)) %>% 

#   ungroup() 

# anno_medians12 <- anno_contrasts %>% 

#   group_by(sseqid) %>%  

#   dplyr::summarize(MAX9_MAX1_CPM = max(logCPM_250, na.rm=T)) %>% 

#   ungroup() 

# anno_medians13 <- anno_contrasts %>% 

#   group_by(sseqid) %>%  

#   dplyr::summarize(C0_UC_CPM = max(logCPM_cut, na.rm=T)) %>% 

#   ungroup() 

#  

# medians2 <- full_join(anno_medians0, anno_medians1, by = c('sseqid'), keep = F) 

# medians2 <- full_join(medians2, anno_medians2, by = c('sseqid'), keep = F) 

# medians2 <- full_join(medians2, anno_medians3, by = c( 'sseqid'), keep = F) 

# medians2 <- full_join(medians2, anno_medians4, by = c( 'sseqid'), keep = F) 

# medians2 <- full_join(medians2, anno_medians5, by = c( 'sseqid'), keep = F) 

# medians2 <- full_join(medians2, anno_medians6, by = c( 'sseqid'), keep = F) 

# medians2 <- full_join(medians2, anno_medians7, by = c( 'sseqid'), keep = F) 

# medians2 <- full_join(medians2, anno_medians8, by = c( 'sseqid'), keep = F) 

# medians2 <- full_join(medians2, anno_medians9, by = c( 'sseqid'), keep = F) 

# medians2 <- full_join(medians2, anno_medians10, by = c( 'sseqid'), keep = F) 

# medians2 <- full_join(medians2, anno_medians11, by = c( 'sseqid'), keep = F) 

# medians2 <- full_join(medians2, anno_medians12, by = c( 'sseqid'), keep = F) 

# medians2 <- full_join(medians2, anno_medians13, by = c( 'sseqid'), keep = F) 

#  

# rm(list=c('anno_medians0','anno_medians1','anno_medians2','anno_medians3','anno_medians4', 

#           'anno_medians5','anno_medians6','anno_medians7','anno_medians8','anno_medians9', 

#           'anno_medians10','anno_medians11','anno_medians12','anno_medians13')) 

#  

# medians2sel <- medians2[,c(1,2,6,7,9,13,14)] 

#  

#  

# ## catmat ## 

#  

# catmat <- inner_join(medians1sel, medians2sel, by = c('sseqid'), keep = F) 

 

 

 

mypalette <- brewer.pal(11,"RdYlBu") 

morecols <- colorRampPalette(mypalette) 

# col.cell <- c("purple","orange")[sampleinfo$CellType] 

 

 

################ plotting ################ 

 

catmat1 <- column_to_rownames(catmat, var = "sseqid") 

catmatcpm <- cpm(catmat1[1:7], log = T) 

var_genes <- apply(catmatcpm, 1, var) 

 

select_var <- names(sort(var_genes, decreasing=TRUE))[1:10] 

 

highly_variable_cpm <- catmatcpm[select_var,] 

 

#write.table(highly_variable_cpm, file = "cpm1_ut.tsv", sep = '\t') 
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highly_variable_cpm <- read_xlsx("cpm1_inn.xlsx") 

 

highly_variable_cpm <- column_to_rownames(highly_variable_cpm, var = "...1") 

 

highly_variable_cpm <- as.matrix(highly_variable_cpm) 

 

normcpm <- normalize( 

  highly_variable_cpm, 

  method = "range", 

  range = c(0,1), 

  margin = 1, 

  on.constant = "quiet") 

 

pheatmap::pheatmap( 

  normcpm, 

  #scale = "column", 

  # clustering_distance_rows = "correlation", 

  # clustering_distance_cols = "correlation", 

  # cluster_rows = T, 

  # cluster_cols = T, 

  # annotation = mdta[,c(4,5)], 

  # labels_row = mdta$Days, 

  # labels_col = mdta$Light, 

  annotation_colors = rev(morecols(50)), 

  angle_col = 45, 

  fontsize = 20, 

  main ="Top 10 most variable genes across samples") 

 

################ chosen genes ################ 

 

catgrep <- catmat %>% 

  filter(grepl('vanadium|Vanadium|xanthin|glutathione|Glutathione', sseqid)) 

 

test1 <- anno_counts %>% 

  distinct(sseqid, .keep_all = T) 

 

test2 <- inner_join(catgrep, test1, by = "sseqid", keep = F) 

 

test3 <- test2[,c(1,10)] 

 

test4 <- inner_join(test3, contrasts, by = "GeneID") 

 

catcpm2 <- column_to_rownames(catgrep, var = "sseqid") 

 

#write.table(catcpm2, file = "catgrep_ut3.tsv", sep = '\t') 

 

catgrep_inn <- read_xlsx("catgrep_inn3.xlsx") 

 

catgrep_inn <- column_to_rownames(catgrep_inn, var = "...1") 

 

normcat <- cpm(catgrep_inn[1:7], log = T) 

 

normcat <- normalize( 

  catgrep_inn, 

  method = "standardize", 

  range = c(0,1), 
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  margin = 1, 

  on.constant = "quiet" 

) 

colnames(normcat) <- colnames(catgrep_inn) 

 

 

highly_variable_cpm <- as.matrix(normcat) 

 

pheatmap::pheatmap( 

  highly_variable_cpm, 

  scale = "row", 

  #clustering_distance_rows = "correlation", 

  # clustering_method = "complete", 

  # clustering_distance_cols = "correlation", 

  #cluster_rows = T, 

  # cluster_cols = T, 

  # annotation = mdta[,c(4,5)], 

  # labels_row = mdta$Days, 

  # labels_col = mdta$Light, 

  annotation_colors = rev(morecols(50)), 

  angle_col = 45, 

  fontsize = 20, 

  main ="Genes associated with vHPOs and heavy metal") 

 

 

SSH scripts 
 

SSH script 1 
 

## TRINITY 

 

module load Anaconda3/5.3.0 

 

source activate Trinity 

 

cd /mnt/SCRATCH/simonha/link_trinity2 

 

# trinity denovo assembly 

 

Trinity --seqType fq --max_memory 110G --CPU 110 \ 

           --left forward_1.fq.gz --right reverse_2.fq.gz \ 

           --min_contig_length 200 --SS_lib_type FR --full_cleanup \ 

           --min_kmer_cov 2 --output /mnt/SCRATCH/simonha/safekelp_trinity_assembly  

 

source deactivate 

 

## KRAKEN2 

 

cd /mnt/SCRATCH/simonha/Kraken4 

 

#to decontaminate a denovo assembly / single end reads 

 
kraken2 -db /mnt/SCRATCH/simonha/Kraken2/db_deconta 

/mnt/SCRATCH/simonha/safekelp_trinity_assembly.Trinity.fasta \ 
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--threads 70 --classified-out /mnt/SCRATCH/simonha/Kraken4/class/cseqs.fasta --unclassified-out 

/mnt/SCRATCH/simonha/Kraken4/unclass/unseqs.fasta \ 

--output . --report ./report_Kraken4 

 

## FASTQC 

 

module load Anaconda3/5.3.0 

 

source activate Quality 

 

cd /mnt/users/simonha/RNA_SEQ/link 

 

# fastqc 

 

fastqc *.fq.gz 

 

source deactivate 

 

 

## MULTIQC 

 

module load Anaconda3/5.3.0 

 

source activate Quality 

 

cd /mnt/users/simonha/RNA_SEQ/link 

 

multiqc * -o . 

 

source deactivate 

 

## BUSCO 

 

conda activate /mnt/SCRATCH2/IPV-RNAseq22/anaconda3/envs/Busco 

 

busco -m transcriptome -i ../safekelp_trinity_assembly.Trinity.fasta -o BUSCO_out -l embryophyta_odb10 

-f -c 20 

 

conda deactivate 

 

## ABUNDANCE ESTIMATION 

 

cd /mnt/SCRATCH/simonha/alignment 

 

# use find . -type f -name "*.isoforms.results" to find paths to all files   

 

abundance_estimates_to_matrix.pl --est_method RSEM --out_prefix FT --cross_sample_norm TMM --

name_sample_by_basedir \ 

--gene_trans_map /mnt/SCRATCH/simonha/safekelp_trinity_assembly.Trinity.fasta.gene_trans_map \ 

./K1/RSEM.isoforms.results \ 

./K2/RSEM.isoforms.results \ 

./K3/RSEM.isoforms.results \ 

./K4/RSEM.isoforms.results \ 

./K5/RSEM.isoforms.results \ 

./K6/RSEM.isoforms.results \ 

./K7/RSEM.isoforms.results \ 

./K8/RSEM.isoforms.results \ 
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./K10/RSEM.isoforms.results \ 

./K11/RSEM.isoforms.results \ 

./K12/RSEM.isoforms.results \ 

./K13/RSEM.isoforms.results \ 

./K14/RSEM.isoforms.results \ 

./K15/RSEM.isoforms.results \ 

./K16/RSEM.isoforms.results \ 

./K17/RSEM.isoforms.results \ 

./K18/RSEM.isoforms.results \ 

./K19/RSEM.isoforms.results \ 

./K20/RSEM.isoforms.results \ 

./K21/RSEM.isoforms.results \ 

./K22/RSEM.isoforms.results \ 

./K23/RSEM.isoforms.results \ 

./K24/RSEM.isoforms.results \ 

./K25/RSEM.isoforms.results \ 

./K26/RSEM.isoforms.results \ 

./K27/RSEM.isoforms.results \ 

./K28/RSEM.isoforms.results \ 

./K29/RSEM.isoforms.results \ 

./K30/RSEM.isoforms.results \ 

./K31/RSEM.isoforms.results \ 

./K32/RSEM.isoforms.results \ 

./K33/RSEM.isoforms.results \ 

./K34/RSEM.isoforms.results \ 

./K35/RSEM.isoforms.results \ 

./K36/RSEM.isoforms.results \ 

./K37/RSEM.isoforms.results \ 

./K38/RSEM.isoforms.results \ 

./K39/RSEM.isoforms.results \ 

./K40/RSEM.isoforms.results \ 

./K41/RSEM.isoforms.results \ 

./K42/RSEM.isoforms.results \ 

./K43/RSEM.isoforms.results \ 

./K44/RSEM.isoforms.results \ 

 

## ALIGNMENT 

 

cd /mnt/SCRATCH/simonha/alignment 

 

#quantification 

for infile in K1_1.clean.fq.gz K2_1.clean.fq.gz K3_1.clean.fq.gz K4_1.clean.fq.gz K5_1.clean.fq.gz 

K6_1.clean.fq.gz K7_1.clean.fq.gz K8_1.clean.fq.gz K10_1.clean.fq.gz K11_1.clean.fq.gz 

K12_1.clean.fq.gz K13_1.clean.fq.gz K14_1.clean.fq.gz K15_1.clean.fq.gz K16_1.clean.fq.gz 

K17_1.clean.fq.gz K18_1.clean.fq.gz K19_1.clean.fq.gz K20_1.clean.fq.gz K21_1.clean.fq.gz 

K22_1.clean.fq.gz K23_1.clean.fq.gz K24_1.clean.fq.gz K25_1.clean.fq.gz K26_1.clean.fq.gz 

K27_1.clean.fq.gz K28_1.clean.fq.gz K29_1.clean.fq.gz K30_1.clean.fq.gz K31_1.clean.fq.gz 

K32_1.clean.fq.gz K33_1.clean.fq.gz K34_1.clean.fq.gz K35_1.clean.fq.gz K36_1.clean.fq.gz 

K37_1.clean.fq.gz K38_1.clean.fq.gz K39_1.clean.fq.gz K40_1.clean.fq.gz K41_1.clean.fq.gz 

K42_1.clean.fq.gz K43_1.clean.fq.gz K44_1.clean.fq.gz; 

do 

base=$(basename ${infile} _1.clean.fq.gz) 

align_and_estimate_abundance.pl --seqType fq --SS_lib_type FR \ 

                                --transcripts /mnt/SCRATCH/simonha/alignment/unseqs.fasta \ 

                                --left <(zcat ${infile}) --right <(zcat ${base}_2.clean.fq.gz) --est_method RSEM --

aln_method bowtie2 \ 
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                                --trinity_mode --prep_reference --output_dir 

/mnt/SCRATCH/simonha/alignment/${base} --thread_count 80 2>&1 > ${base}_opt 

done 

 

#S1_1.trimm.fq.gz  S2_1.trimm.fq.gz  S49_1.trimm.fq.gz  S38_1.trimm.fq.gz S43_1.trimm.fq.gz  

S44_1.trimm.fq.gz  S7_1.trimm.fq.gz  S8_1.trimm.fq.gz 

 

## CORSET  

 

cd /mnt/SCRATCH/simonha/corset 

 

####corset command### 

 

 

### 

# /mnt/users/simonha/software/corset-1.09-linux64/corset *.bam -r true-stop 

 

for FILE in `ls *.bam` ; do 

   /mnt/users/simonha/software/corset-1.09-linux64/corset -r true-stop $FILE & 

done 

wait 

 

## CORSET 2 

 

cd /mnt/SCRATCH/simonha/corset 

 

####corset command### 

 

#### 

 

corset K1.bam.corset-reads K2.bam.corset-reads K3.bam.corset-reads K4.bam.corset-reads K5.bam.corset-

reads K6.bam.corset-reads \ 

K7.bam.corset-reads K8.bam.corset-reads K10.bam.corset-reads K11.bam.corset-reads K12.bam.corset-

reads K13.bam.corset-reads \ 

K14.bam.corset-reads K15.bam.corset-reads K16.bam.corset-reads K17.bam.corset-reads K18.bam.corset-

reads K19.bam.corset-reads \ 

K20.bam.corset-reads K21.bam.corset-reads K22.bam.corset-reads K23.bam.corset-reads K24.bam.corset-

reads K25.bam.corset-reads \ 

K26.bam.corset-reads K27.bam.corset-reads K28.bam.corset-reads K29.bam.corset-reads K30.bam.corset-

reads K31.bam.corset-reads \ 

K32.bam.corset-reads K33.bam.corset-reads K34.bam.corset-reads K35.bam.corset-reads K36.bam.corset-

reads K37.bam.corset-reads \ 

K38.bam.corset-reads K39.bam.corset-reads K40.bam.corset-reads K41.bam.corset-reads K42.bam.corset-

reads K43.bam.corset-reads \ 

K44.bam.corset-reads \ 

 -n 

K1,K2,K3,K4,K5,K6,K7,K8,K10,K11,K12,K13,K14,K15,K16,K17,K18,K19,K20,K21,K22,K23,K24,K25

,K26,K27,K28,K29,K30,K31,K32,K33,K34,K35,K36,K37,K38,K39,K40,K41,K42,K43,K44 \ 

 -g 1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11,11,11,11 \ 

 -d 0.3 -m 10 -i corset -f true \ 

 

 

## DIAMOND  

 

diamond blastx --db ./phaeophyceae_db.dmnd -q ./light1_extracted.fasta -o matches1.xml --outfmt 5 #--

ultra-sensitive 

 



 

 

 


