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1. Introduction  
 

1.1. Sunflower crop 
 

Sunflower (Helianthus annus L.) is consistently labelled as an agroecological crop 

providing ecosystem services in diverse cropping systems (Ceccon et al., 2005; Debaeke et 

al. 2017). Its potential for sustainable intensification of agriculture relies on its agronomic 

features allowing it to grow under reduced input systems and/or under diverse crop 

management practices (Debaeke et al. 2017). Foremost, sunflower is characterized by a 

taproot able to extract water from deep soil horizons (Cabelguenne et al., 1998). It also has 

the capacity to limit its leaf area and water potential during early water stress, inducing a 

decrease in transpiration level and thus in water loss (Blanchet et al., 1990; INRAE, 2020). 

Therefore, sunflower is considered drought tolerant (Champolivier et al. 2011; Morizet et 

Merrien, 1990). Sown during the spring season, the crop does not require irrigation, and 95% 

of its area in France is grown under rainfed conditions (Debaeke et al., 2017). Able to reach 

an optimum yield performance with only 75% of its water needs, sunflower uses a moderate 

volume of irrigation water of 80 mm during the entire crop cycle, compared to corn that 

requires more than 200 mm (Lecomte and Nolot, 2011). Furthermore, sunflower is an 

ecological crop that needs little phytosanitary interventions and has low nitrogen fertilization 

requirements (56kg.ha1) (Agreste, 2014; Occitanie DRAAF, 2019). The treatment frequency 

index of sunflower is 1.7, which makes it among the least pesticide-dependent field crops, 

compared to, for example, durum wheat and oilseed rape having a treatment frequency index 

of 3.8 and 5.7, respectively (Occitanie DRAAF, 2019; Butault et al., 2010). Sunflower yield in 

organic systems may reach up to 90% of the conventional one (Martin-Monjaret et al., 2019; 

Lieven and Wagner, 2012). Moreover, sunflower crop has the capacity to improve soil and 

reduce weeds for the next crop by breaking up winter crop successions. It has a short crop 

cycle, occupying the soil for a short period of time. It especially represents a favorable 

preceding crop for cereals such as durum wheat (Ceccon et al., 2005; Lecomte and Nolot, 

2011), resulting in an average yield increase of 15% in the following wheat compared to 

wheat without sunflower as a previous crop (Martin-Monjaret, 2019). 

 

Sunflower is part of the major oilseed crops grown worldwide (Ceccon et al., 2005; 

Bret-Mestries et al., 2016), reaching 57.1 million tons of seeds produced in 2019–2020 (FAO, 

2021). France, in particular, is the third largest oilseed sunflower producer in Europe after 

Ukraine and Romania (FAO, 2021; Semae, 2021). The French surface grown to sunflower is 

550,000 ha (i.e.,16% of the total European surface) for a total production of 1.2 million tons. 

Nevertheless, its productivity greatly varies from year to year, and mean yields in France 
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have barely exceeded 2 tons per ha−1 for the last 10 years (Desbois and Legris, 2007; 

Franceagrimer, 2021). The underlying reason is that sunflower crop is sensitive to a wide 

range of biotic and abiotic factors including birds (Sausse et al., 2021), fungal diseases 

(Jouffret et al., 2011), high temperatures and soil conditions (Alberio et al., 2015; Debaeke et 

al., 2017; Harris et al., 1978) affecting its growth cycle and final yield. In France, sunflower is 

mainly grown in the southwestern parts (e.g., Occitanie and Nouvelle Aquitaine regions) 

characterized by a warm climate. Sunflower crop is often grown in clay hilly areas, sensitive 

to soil erosion because of steep slopes greater than 10% (Lecomte and Longueval, 2013). 

The crop is therefore subjected to seedling establishment problems (Lecomte and Nolot, 

2011). Besides, sunflower is grown in France under conventional tillage with a frequent return 

of the crop in the rotation, and after a long fallow period during which soils are left bare. This 

increases nutrient leaching, and reinforces the presence of weeds and pests, becoming more 

complex to control (Lecomte and Longueval, 2013).  

 

Growing sunflower in more sustainable cropping systems, with no- or minimum-tillage 

could help reduce the negative environmental impacts of conventional tillage while improving 

the soil fertility level and ensuring productivity in water-limited environments (Ordóñez 

Fernández et al., 2007; Celik et al., 2013). But classical management of no-till has several 

environmental and economic drawbacks (such high cost of herbicides, degradation of soil 

physical properties, etc.). The implementation of cover crops (CCs) before sunflower crop 

may counteract those issues and help sunflower cropping systems to address the dual 

challenges of production and environmental preservation (Durru et al., 2015; Therond et al., 

2017; Tilman et al., 2002; Tittonell, 2014). Cover crops (CCs) are non-cash crops that are 

grown as a sole crop or as a mixture during the fallow period between the previous harvest 

and sowing of the subsequent primary crop (Justes and Richard, 2017). The relevance of 

such a practice is based on an agroecological paradigm to intra-field and intra-farm 

diversification in space and time (Pelzer et al., 2012), and allowing an increased reliance on 

ecosystem services1 (Altieri and Rosset, 1996; Duru et al, 2015; Lamichhane and Alletto, 

2022; Wezel et al., 2014).  

 

 

 
1 Ecosystem services are natural capital assets that provide life-support services. Agriculture supplies 
all three major categories of ecosystem services (provisioning, regulating and cultural services) while 
it also demands supporting services that enable it to be productive. Ecosystem services from 
agriculture include regulation of water and climate systems, aesthetic, and cultural services, as well 
as enhanced supporting services, such as soil fertility (Swinton et al., 2007).  
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1.2. Sunflower emergence and establishment quality 
 

Sunflower crop is particularly demanding in terms of seedbed preparation and its 

seedlings are often prone to damage by slugs, birds, and wild animals (Lecomte and 

Longueval, 2013; Lecomte and Nolot, 2011). The crop establishment consists of three sub-

phases; sowing to seed germination; seed germination to seedling emergence; and seedling 

emergence to initial competition among young plants (Lamichhane, 2022 (Editorial)). The 

crop’s establishment quality (i.e., high rate of uniform healthy-looking young plants compared 

to the sowing density) under different field conditions is determined with key indicators such 

as seedling emergence vigor (i.e., the speed of seedling emergence) and final rates (Maguire, 

1962).   

 

Seedling emergence is one of the most important factors to the success of optimum plant 

density. But this early phase is vulnerable and can be significantly altered by interacting 

abiotic components and biotic stresses; the seedbed2 structure in particular (i.e., biological, 

physical, and chemical components), but seeds and seedlings characteristics as well 

(Creamer and Finney, 2008; Doran, 1980; Lamichhane et al., 2018; Glen et al., 1989; Otten 

and Gilligan, 2006; Melander and Kristensen, 2011, Brown and Morra., 1996; Håkansson et 

al., 2002). A poor seedbed structure generally impedes a seedling's emergence due either 

to mechanical forces exerted on seedlings, or soil moisture availability and aeration for the 

crop (Lamichhane et al., 2018). Large soil aggregates for instance, reduce soil-seed contact 

and restrict water movement (Braunack and Dexter, 1989). This may cause poor crop 

emergence, particularly in clay and clay loam soils, where the seedbed often becomes coarse 

and non-uniform and dries out quickly under drought (Håkansson et al., 2022). Ferraris 

(1992) and Onemli (2011) report that sunflower seedling emergence increases with soil 

organic matter content as it increases soil moisture content.  

Seedling vitality is also an essential trait for a successful crop establishment (Ellis, 1992), 

and is inherent to seed characteristics. Seedling vigor is defined as a complex aspect of seed 

performance influencing emergence level, rate and growth uniformity and sometimes lower 

vegetative and reproductive yield (Moses Kamanga et al., 2021; Perry, 1981). Under non-

optimal conditions, sown seeds may show contrasting abilities to establish plants due to 

differences in their vigor (Finch-Savage and Bassel, 2016). In the field, it corresponds to the 

emergence speed of the seedlings. A seedling that takes longer to establish will be more 

sensitive to early biotic stresses (Marcos-Filho, 2015).  

 

 
2 The seedbed constitute the upper layer of soil which has been tilled (or not) to a condition to promote 
germination, emergence, and growth of seedlings (Braunack and Dexter, 1989). 
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1.3. Sunflower verticillium wilt development  
 

Fungal diseases are another constraint for the stability of sunflower yield. Sunflower 

verticillium wilt (SVW) specifically, caused by the soilborne ascomycete fungus Verticillium 

dahliae (V. dahliae), has become increasingly invasive the past 10 years in southwestern 

France (Debaeke et al, 2017; Bret-Mestries et al., 2022; Mestries, 2019). This pathogen 

survives in the soil as microsclerotia, a long-lasting surviving structure that constitute the 

main potential infective inoculum of V. dahliae in field soils, where it can survive for up to 14 

years in the absence of a susceptible host (Fradin and Thomma, 2006; Wilhelm, 1955). The 

percentage of farmers’ fields with SVW in the southwest of France has increased since 2013 

from 20% of the plots to more than 40% of the plots affected (Martin-Monjaret et al., 2019), 

causing up to 30% yield losses (Mestries and Lecomte, 2012). The first symptoms of SVW 

appear on the lower leaves at the base of the plants, starting from 40 days after sowing, when 

the plant approaches the flowering stage (González-Thuillier et al., 2015; Schneiter and 

Miller, 1981), and going up progressively towards the upper leaves. From small spots, the 

disease progresses to large, intense yellow chlorosis that develops between the veins. These 

lesions rapidly evolve into large brown necroses surrounded by a golden yellow margin 

(Supplemental Figure 2). 

 

In France, no active chemical substance is registered for farmers to control sunflower 

verticillium wilt. Among different management levers, use of resistant or tolerant genotypes 

is the most important way to reduce SVW (Inderbitzin et al., 2011; Klosterman and Hayes, 

2009; Quiroz et al., 2008; Yadeta et al., 2013). Moreover, crop management such as no-

tillage may affect the inoculum retention, as infected stubbles remain in the soil surface. 

Roots confined to or growing near the soil surface may be prone to pathogen attack. 

Nevertheless, Quiroz et al (2008) showed that after sunflower cultivation under a no-tillage 

system, verticillium microsclerotia were reduced compared to sunflower plots under 

conventional tillage.  No-till increases soil microbial activity which would provide a highly 

competitive environment and increase root density and plant root activity (Lynch and Panting, 

1980, Carter and Rennie, 1984). It appeared that the combination of no-tillage and highly 

resistant cultivars is a promising tool to manage V. dahliae in sunflower (Quiroz et al., 2008). 

Additionally, fertilization strategy could impact verticillium development as well (Elmer, 2000; 

Elmer and Ferrandino, 1994). Green manures appeared to be negatively correlated with 

verticillium infections (Davis et al., 2010).  
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1.4. Cover crops  
 

The long interculture period between a wheat and a sunflower is particularly suitable for 

cover cropping. In most cases, CCs provide and enhance ecosystem services (Schipanski et 

al., 2014). Legume cover crops (Fabaceae) are able to biologically fix atmospheric nitrogen. 

Thus, they generally have a low C/N ratio and mineralize rapidly after incorporation, 

increasing soil mineral nitrogen available for the next crop (Couëdel et al., 2018), and 

increasing soil organic matter content (Smith et al., 1987). They are used as a green manure 

to improve soil nutrition for the subsequent primary crop, avoiding in most cases nitrogen pre-

emptive competition3. Crucifer (Brassicaceae) have a deep and dense root system allowing 

them to reach far into the soil to capture nutrients (Couëdel et al. 2018). Among other, they 

absorb excess nitrate from the soil and improve soil conservation services (e.g., preserving 

soil aggregate stability, soil erosion control) (Finney et al., 2016; Couëdel et al., 2018). They 

also reduce pests and fungal diseases (Couëdel et al., 2018; Justes and Richard, 2017; 

Lavergne et al., 2021) thanks to allelopathic mechanisms4.  

Allelopathy occurs when one plant species releases chemical compounds, either directly or 

indirectly through microbial decomposition of residues. For weed management purposes, 

allelopathy is considered a nonherbicide strategy of control (Liebman and Dyck, 1993). 

Crucifer in particular, release several potentially biocidal hydrolysis products for fungus such 

as isothiocyanates, from secondary metabolites known as glucosinolates present in their 

tissues. Termed as biofumigation (Kierkegaard and Sarwar, 1998), this process and method 

involves crushing and burying of crucifer’s biomass at the flowering stage (Michel et al., 

2007), inducing allelopathic effects during the decomposition of the crop, which would, among 

other, help fighting against V. dahliae. Glucosinolates were detected in 11 dicotyledonous 

plant families and can be present in very different numbers and amounts (Reau et al., 2005). 

For instance, white mustard contains only two types, whereas some others have more than 

30 types like horseradish, with contents ranging from less than 0.02 lmol/g to more than 100 

lmol/g (Fenwick et al., 1983). Within species, there can also be significant diversity. Seeds, 

leaves, roots or flowers do not contain exactly the same glucosinolates concentration 

(Kirkegaard and Sarwar, 1997). Additionally, conversion of precursor glucosinolates to 

isothiocyanates is not complete and yields of only 15% have been observed (Gimsing and 

Kirkegaard, 2009). The amounts of isothiocyanates metabolized from glucosinolates are thus 

 
3 Pre-emptive competition happens when the nitrogen uptake by the catch crop occurs in a type of 
competition with the succeeding crop (Thorup-Kristensen, 1993).  
4 Allelopathy is defined as a direct or indirect interaction, whereby allelochemicals released by one 
organism influence the physiological processes of other neighboring organisms (Graeber et al., 2017)  
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very small, but these compounds may have efficient antifungal and antibacterial activities. In 

vitro experiments of biofumigation showed probing results on the reduction of SVW whereas 

this alternative disinfection in field conditions still appear to be very contrasted (Morris et al., 

2020). The effectiveness of Brassicaceae for biofumigation ultimately depends on several 

factors such as the plant’s parts used, the biomass produced and its glucosinolates 

concentration, the timing and efficiency of incorporation (to achieve peak glucosinolates 

presence), losses due to volatilization, leaching, and microbial degradation (reviewed by 

Brown and Morra, 1997; Kierkegaard and Sarwar, 1998) as well as mild temperatures and 

water availability (Morris et al., 2020). The biochemical and physical characteristics of crop 

residues also determine their decomposition kinetics, the proportion of compounds likely to 

diffuse to the soil, the mode of microbial colonization and the nature of the microbial 

populations involved in the decomposition process. The nitrogen content (or carbon/nitrogen 

ratio) is a criterion that allows the overall prediction of the net effect of residue incorporation 

on soil mineral nitrogen dynamics (Nicolardo and Recous, 2001).  
 

One of the only study available to date, indicates that cover cropping enhances 

sunflower yields, more after Fabaceae mixtures than after fallow in a reduced-tillage system, 

and more after Brassicaceae in a no-tillage system (Rosner et al., 2018). The potential utility 

of growing Brassicaceae CCs to regulate soilborne diseases such as V. dahliae could thus 

be supported by other cover crops species, such as Fabaceae. Contrasting traits and 

functional groups within CCs mixtures generally help maximize ecosystem services and avoid 

disservices5 (Lavergne et al., 2021). Couëdel et al., (2018) fund that mixtures of CCs tended 

to have more biomass per plant than for sole crops, both for shoots and roots, providing better 

green manure effect and maintaining or even increasing total glucosinolates production per 

plant.  

 

While many studies report positive effects of cover crops (sole or in mixture) on the 

subsequent cash crop, there is not a consensus on the potential of CCs in improving 

sunflower yields in the literature (Ait Kaci Ahmed et al., 2022; Bolandi et al., 2015; Viguier et 

al., 2021). More specifically, little is known on the effects of CCs with long cycles on sunflower 

performance as most studies are focused to date on cover crops grown for a shorter period 

of time (Schipanski et al., 2014). As well, the impact of mechanical stresses due to CCs 

residues and soil characteristics within a no-tillage system (changes in seedbed structure, 

seed-soil contact, and plant growing environment and pathosystems etc.) is unknown on 

 
5 Disservices are the ecosystem generated functions, processes and attributes that result in perceived 
or actual negative impacts on human wellbeing (Vaz et al., 2017). 
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sunflower successful emergence. Additionally, most sunflower varieties available to date 

belong to late maturity groups which were bred for conventional cropping, enhancing risk for 

crop establishment failure (Lamichhane et al., 2022). Also, literature generally focus on a 

single service, which may limit the definition, management, and use of CCs for their complete 

panel of ecosystem services. Complementary ability of CCs may as well reflect different 

efficiencies of seed germination and seedling emergence, and the rapidity of soil cover, that 

are important for an enhanced level of ecosystem services. Finally, field biofumigation by 

Brassicas supported by legumes is still very little studied. Understanding species choice to 

successfully combine nutrient cycling benefits of legumes with pest suppressive potentials of 

crucifers is important to design appropriate mixtures that can achieve maximum production 

of bioactive compounds for pest suppression without generating related disservices within 

the agroecosystem.  

Considering the current lack of knowledge on the effect of CCs on sunflower emergence and 

establishment, and verticillium wilt development we performed field experimentations to 

understand the potential effect of CCs mixtures on 4 sunflower genotypes and measured key 

variables that affect the crop performance viz. emergence vigor and final rates and verticillium 

wilt incidence and severity were tested.  

 

 

2. Material and methods 
 

2.1 Experimental design and crop management system 
  

2.1.1. Field site  
 

A field experiment was carried out from September 2021 to August 2022 at INRAE 

Auzeville-Tolosane, southwestern France (43.528◦ N, 1.501◦ E). The experimental site was 

characterized by a temperate oceanic climate (cfb.), according to the Köppen-Geiger climate 

classification. The soil type of the experimental plot was clay-loam (composed of 35% of clay, 

36% of silt, and 29% of sand), calcareous and hydromorphic from 50 cm and deeper. The 

site receives less than 750 mm of precipitation annually, and Auzeville-Tolosane 

meteorological station recorded mean monthly temperatures between 7°C (in January) to 

22°C (in June and August), the past ten years (Climatik, 2022). Figure (1) exhibits the 

cumulated rainfall and monthly average air and soil (at 10cm depths) temperatures of the last 

10 years and during the experiment, on the field site. 
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Figure 1 : Weather data at Auzeville experimental site. From growing seasons of cover crops 
(September 2021) until sunflower maturity (August 2022), compared to mean tendancies of the last 10 
years 

 
2.1.2. Seedbed characterization 

 
Seedbed conditions were characterized using photographical observations of the 

seedbed, and identifying the seedbed type like showed Lamichhane et al., (2021). A cracked 

soil surface and relatively large soil aggregates were observed (Figure 2a), testifying of a 

quite dry and compact soil.  The seed furrow did not close properly at the time of sowing 

(Figure 2b). The seed line was left open, and the soil dried quickly, potentially leaving seeds 

visible to the naked eye and seedlings planted in a hole (Figure 2c).  

 

 
 
Figure 2 : Seedbed photographies 
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2.1.3. Cover crops choice and management system 
 

Seven cover crops treatments were sown in a completely randomized plot (0,58 ha), 

with four replicates. Cover crops mixtures ranged in diversity from one to three species and 

included a no cover crop control (Table 2 and Appendix 1). Individual cover crops 

characteristics are summarized in Table (1). Mixtures were designed to include services 

defined by two characteristics: N fixing function (Fabaceae, legume) and biofumigation 

potential (Brassicaceae, crucifer). Chosen species are commonly grown in southwestern 

France. They were selected for their contrasting characteristics considering complementary 

root system and occupation of the airspace. Cover crops with a high biomass potential and 

those having long cycle were prioritized. 

 
Table 1 : Cover crops used in this study 

Family Species Scientific name Variety Root 
System* 

 

Legume Winter field bean Vicia faba L. Irena Pivot  
Hairy vetch Vicia villosa L. Savane Pivot  
Purple vetch Vicia americana L. Titane Pivot  
Field pea Pisum sativum L. Arkta Pivot  

Crucifer  Brown mustard  Brassica juncea L. Vitasso Pivot  
Fodder radish  Raphanus sativus L. 

var. oleiformis  
Terranova Pivot  

 
White mustard 

 
Sinapis alba L. 

 
Abraham 

 
Pivot 

 

 
Rye 

 
Secale cereale L. 

 
Wastauro 

 
Fasciculate 

 

Hydrophyllaceae  
Phacelia 

 
Phacelia L. 

 
Maja 

 
Pivot 

 

 
Poacae 

 
Forage sorghum 

 
Sorghum bicolor L. var. 
Moench  

 
Pipper 

 
Fasciculate 

 

      
 

*Information were retrieved from Arvalis (no date) and Semences de France (no date). 

 
Table 2 : Composition of cover crops treatments 

Treatment n° Composition 

1 Forage sorghum, winter field bean and brown mustard 

2 Purple vetch and fodder pea 

3 Fodder radish, white mustard, and hairy vetch 

4 Rye 

5 Purple vetch, rye, and field pea 
6 Brown mustard, winter field bean, and phacelia 

7 Bare soil 
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Cover crops were sown using a cereal seed drill (Kuhn, Saverne, France) on 09/07/2021 for 

sorghum forage and on 13/09/2021 for the others. Species grown in sole crop were sown at 

densities recommended by the cover crop seed distributor and breeder (notably, 150kg/ha 

for winter field bean, 1.5kg/ha for brow mustard and 14kg/ha for forage soghum). In a mixture 

of two or three species, the sowing density for each species was 1/2 or 1/3 of its 

corresponding sole-crop density. Cover crops were not fertilized. The destruction and 

biofumigation was performed by crushing and dethatching close to the flowering of the 

Brassicaceae on 07/04/2022, except for sorghum forage on 19/10/2021. Cover crops were 

chopped using a flail mower (Kverneland, Klepp, Norway) and quickly incorporated into the 

soil using a cultivator (Agrisem International, Ancenis-Saint-Géréon, France).  

 

 

2.1.4. Sunflower choice and management system 
 

 

Sunflower was sown 3 weeks after CCs destruction on 28/04/2022 and arranged in 

completely randomized microplots (6m x 3m each), allowing the seeding of six sunflower 

rows at 50 cm distance. The four sunflower genotypes sown were Carrera CLP, MAS86OL, 

MAS89M, and MAS98K. Characteristics of sunflower genotypes are summarized in Table 

(3). For each genotype, data of the Thousand-Seed Weight (TSW) and germination 

capacities were retrieved from the seed companies' indications.  

Late maturity group were favored to better benefit of the effects of the buried CCs residues. 

Indeed, CCs degrade in the soil releasing mineral elements from 18 days after destruction 

and burial. Two thirds of the nitrogen requirements of sunflower are generally supplied by 

nitrogen residues at sowing and mineralization of soil organic matter, as sunflower has a 

deep root system. The highest nitrogen requirements of the crop are between flower bud and 

flowering, i.e., 120 kg/ha. Its nitrogen needs are therefore relatively late in the crop cycle 

(Enrique et al., 2015). Sunflower genotypes were then selected on the basis of two 

parameters to evaluate water stress tolerance: the leaf expansion and the transpiration 

thresholds. Carrera CLP and MAS98K were chosen for their low leaf expansion rates and 

contrasting transpiration rates Table (3). MAS86OL and MAS89M were chosen for their high 

leaf expansion rates and contrasting transpiration rates. MAS89M is one of the few varieties 

that have very low transpiration level.  
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Table 3 : Key characteristics of the 4 oilseed sunflower varieties 

Genotype Oil type Maturity 
group 

TSW (g) Germination 
capacity (%) 

Breeder 

Carrera CLP Linoleic Late 76 86 Masseeds 
MAS86OL Oleic Mid-late 77 89 Masseeds 
MAS89M Linoleic Mid-early 57 96 Masseeds 
MAS98K Linoleic Mid-early 63 98 Masseeds 

 

 

Genotype Leaf expansion 
rate 

Transpiration rate Drought 
resistance 

Verticillium 
resistance 

Carrera CLP - 4,55 - 5,4 Tolerant Non sensitive 
MAS86OL - 2,4 - 7,64 Tolerant Non sensitive 
MAS89M - 2,15 - 13,98 Tolerant Non sensitive 
MAS98K - 3,68 - 8,68 Tolerant Non sensitive 

 

 

Stubble tillage before sunflower sowing was performed with a rotary harrow, at less than 15 

cm deep. Sunflower seeds were not treated. Sunflower was sown using an experimental 

seeder at a depth of 3 cm, seeding density being 8.8 seeds per m2. Protection nets (F1070 

DIATEX) protecting against birds were placed on 29/04 on the plot. Pre-emergence herbicide 

(Mercantor Gold and Racer) were applied 4 days after sowing on 02/05/2022 to control weeds 

during the growing season. No fertilizer or glyphosate was applied. Sunflower was irrigated 

10 DAS with 30mm of water. 

 

2.2. Cover crops sampling and measurement  

 

For an estimation of the incorporated residues into the soil, approximately 15 days prior 

cover crop termination (week of 21/03/2022), samples of the shoot and root biomass of 

Brassicaceae and Fabaceae (sole crops and mixtures) were collected. Samples were 

performed from 0.5 m2 replicates in 4 microplots for each CCs treatments per block. Samples 

were collected from the middle of the plots to avoid edge effects between treatments. They 

were separated by plant species (weeds were also sampled), and aerial and root parts of 

every species were dissociated. Fresh samples were weighed, dried at 80°C for 48 h and 

weighed again to estimate the total dry biomass produced per species.  
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2.3. Seedling emergence dynamics and rates 

Some factors related to the seed affect germination and emergence (seed viability, 

germination power and vigor) (Gonzalez Belo et al., 2014, section crop management). 

Laboratory experiments were performed to calculate the sunflower varieties germination 

capacities. Seeds were sterilized with bleach for 10 minutes, rinsed with clear water and 

dried. The experiment was done on 25 seeds per variety which were deposited into 8 

millimeters of water in petri dishes. It was replicated 4 times. They were placed in an incubator 

at 26°C. Germination was monitored 3 and 7 days after incubation.  

 

Thermal time (cumulative degree-days (°Cd)) was calculated from sowing (time 0) as the 

sum of the average daily air temperature minus the base temperature of each sunflower 

variety (base 6) using the following equation: 

 

v 𝑇ℎ𝑒𝑟𝑚𝑎𝑙	𝑡𝑖𝑚𝑒	(𝑇𝑇𝑖) = ∑ (𝑇𝑚𝑑 − 𝑇𝑏𝑔𝑒𝑟𝑚)!"#
!"$  

 

Where TTi is the cumulative thermal time on ith day since the initialization day (d=1) and 

Tmd is the daily average air temperature, and Tbgerm is the germination base 

temperature (4.55 for sunflower crop, based on Lamichhane et al., 2022). 

 

Field emergence dynamics of sunflower genotypes started 7 DAS (from 05/04/2022). 

Measurements were carried out on 4 microplots per variety per microplots, on 4 linear meters 

of central rows. The number of seedlings completely out of the soil surface and visible to the 

naked eye was counted every day until the number of seedlings did not increase anymore 

for three consecutive days. The seedling was considered emerged when the cotyledons 

break through the surface and do not touch the surface of the seedbed (BBCH stage 09) 

(Lancashire et al., 1991). If precipitations were expected in the following days, emergence 

observations continued as wetting of the crusted surface could promote the emergence of 

additional seedlings. Emergence rates and vigor were calculated as follows:  

 

v 𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑒	𝑟𝑎𝑡𝑒	 = 100	 ∗ %&'()*	,-	)')*.)/	0))/12%.0
0,32%.	/)%0245
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v from	(Maguire, 1962): 

Emergence	vigor	(t) = 	
∑𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑒𝑚𝑒𝑟𝑔𝑒𝑑	𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔𝑠	(𝑡)𝐷𝐴𝑆
number	of	final	emerged	seedlings  

Where vigor (t) is the vigor index of emerged seedlings and DAS is the number of days 

after sowing at t time (in days after sowing or thermal time).  

In order to improve data quality and deeper understand seedlings growth, adjusted value of 

the emergence percentage was determined by fitting a Gompertz function with the observed 

emergence rates. The Gompertz growth model is commonly used to interpret growth, by 

understanding or predicting patterns of progression (Jeger, 2004; Tjørve and Tjørve, 

2017).  Adjustments of emergence dynamics were made in relation to degree-days and DAS: 

 

v 𝐺(𝑡) = 𝐺𝑚𝑎𝑥	𝑒(78
!
"9:

($".&)) 

 

Where G (t) is the percentage of emerged seeds at t time (in days after sowing or 

thermal time), Gmax is the final observed percentage of emergence, b, and c 

parameters of the Gompertz model. 

Regarding Gompertz adjustments applied to emergence rates, their accuracies were 

evaluated through the efficiency (EF) of the model, the root mean square error (RMSE) and 

the mean error (MD): 

 

With Pj and Oj respectively the fitted and observed values, n the number of observations 

and Ö the mean of the observed values. The accuracy of the model EF varies from -∞ 

to 1. The closer EF is to 1, the more accurate the model predictions are. The unit of 

RMSE is the same as that of the variables analyzed. The model deviation MD estimates 
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the tendency of the model to under- or over-predict the obtained values compared to the 

measured values.  

Causes of non-emergence were determined at stages 12 and 14 on the BBCH scale 

(Lancashire et al., 1991) using the visual diagnostic key adapted from the literature review of 

pre-emergence damping-off symptoms (Lamichhane, 2022 (Editorial)). Observations were 

done on the 4 replicates of the 4 genotypes. Empty points along the rows where seedlings 

did not emerge were selected (2 points per rows, 15 points per varieties). Each observation 

was associated with a cause of non-emergence, according to the symptoms observed.  

Post-emergence damage were analyzed at stage 12 and 14 on the BBCH scale (Lancashire 

et al., 1991). Observations were made on the 4 replicates of the 4 genotypes and 1m2 (i.e., 

2 linear meters) per row was considered. The total number of emerged plants as well as the 

number of seedlings with post-emergence damage were counted. The causes of post-

emergence damages were identified using the visual diagnostic key adapted from the 

literature review of post-emergence damping-off symptoms (Lamichhane, 2022 (Editorial)). 

 
2.4. Investigation of verticillium incidence and severity  

 

Typical symptoms of SWV are the formation of bleached and grayish lesions on the main 

stem, branches, or pods (Supplemental Figure 2). Before SVW appeared, 10 sunflowers 

were tagged within 5 (out of 7) CCs treatments for the 4 blocks (four replicates per treatment). 

Overall, 800 sunflowers were recorded. At the first signs of SVW, 40 days after sowing 

(08/06/2022), symptoms were assessed weekly.  

During the growing season, the incidence of verticillium wilt was assessed by noting the 

presence or absence of verticillium wilt symptoms on plants followed-up. At each observation, 

the verticillium incidence percentage was calculated for each microplots, using the following 

equation from Palanga et al., (2017):  

v 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒	 = 	 <=>?:@	AB	CDEFGH	I#GJ	HK>CGA>H
<=>?:@	AB	CDEFGH	A?H:@L:!	(J:@:	$M	CDEFGH)

 

 

The severity of symptoms was assessed by visually estimating a severity score. To describe 

the severity of symptoms on leaves, a rating scale from 0 to 4 was used: 0 = healthy plant, 1 

= [1–20%], 2 = [21–50%], 3 = [51–80%] and 4 = >80% of the plant displaying wilt symptoms. 
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Disease severity was assessed up to 102 DAS, until sunflower physiological maturity, when 

the sunflowers' ray florets fall. At least 8 observations were made. Disease severity index 

(DSI) was investigated based on the severity scores, for each microplot, according to the 

equation from Chaube and Singh (1991):  

v 𝐷𝑆𝐼	(%) = N=>	(HOA@:	B@:P=:FOK	Q	HOA@:)
(RAGED	F=>?:@	AB	A?H:@LEG#AF	Q	>EQ#>ED	HOA@:)

𝑥	100 

 

Growth stages at each rating dates were recorded. Area under the Disease Progress Curve 

(AUDPC) was calculated according to Shaner and Finney (1977):  

 

v 		𝐴. 𝑈. 𝐷. 𝑃. 𝐶. = 	∑ ((S#TS(#T$)
U

F8$
# ) ∗ 	(𝑡(𝑖 + 1) − 𝑡𝑖)) 

 

in which Yi is the disease severity on the ith date, and n is the number of dates on 

which Verticillium dahliae was recorded.  

 

2.5. Statistical analysis 
 
 
Seedlings emergence and verticillium incidence data obtained was converted into 

percentage. Arcsine and square root transformations were carried out on all data prior to the 

application of statistical analysis to improve the homogeneity of variance (Ahrens et al., 

1990). An ANOVA was performed when the data followed a normal distribution according to 

the Shapiro–Wilk test (p < 0.05) while a non-parametric Kruskal–Wallis’s test was computed 

when the data did not meet the ANOVA assumptions. Statistical analyses consisted in two 

one-way ANOVA or two Kruskal-Wallis’s test to determine the potential effect of CCs mixtures 

and sunflower genotypes, on the measured variables under field conditions. In case of 

significant effect on the measured variables, the ANOVA and Kruskal-Wallis’ tests were 

followed by a Tukey's HSD post-hoc and a Dunn test, respectively, to assess the significant 

differences between treatments. Cover crops were pooled by mixtures only. For all data 

analyses, differences among treatments were considered significant at α = 0.05.  

A potential correlation between final emergence and vigor (quantitative variables) was 

studied using Spearman's correlation coefficient (non-parametric test). The significance of 

the correlation was determined using the test of nullity of the correlation coefficient. Only 

coefficients significantly different from 0 were interpreted. All statistical analyses were applied 

using R Studio (version 4.2.0).  
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3. Results 
 

3.1. Cover crops biomass 
 

Data obtained from sampling and laboratory weighing of CCs indicated that 

treatments that were the most productive (total biomass above and below ground) were the 

sorghum-faba bean-mustard (SFM), mustard-faba bean-phacelia (MFP) and radish-mustard-

vetch (RMV) treatments (with 9.83 t/ha, 5.4 t/ha, 4 t/ha, respectively). Regardless of the 

mixtures, crops with the highest total biomass were forage sorghum destroyed in October 

2021 (3.6 t/ha), brown mustard in the MFP treatment (3.7 t/ha), white mustard in the RMV 

treatment (1.7 t/ha), faba bean (2 t/h), and rye (0.9 t/ha). Radish also stood out with a high 

biomass of 1.7 t/ha, since it is composed of a large pivot. On the opposite, brown mustard 

from the sorghum-faba-bean mustard (SFM) treatment produced a very low biomass of 0.018 

t/ha.  

 
3.2. Sunflower seedlings emergence rates and dynamics 

 
 

Seedlings mean emergence rates under field conditions of the 4 sunflower genotypes 

are reported in Table (4). Seedlings emergence began 8 DAS (96.7°C-day) and attained its 

maximum value 18 DAS (224.6°C-day). A significant effect of genotype (p < 0.05) was 

observed on this variable. Throughout the phase, emergence rates were the highest for 

MAS89M and MAS98K genotypes, whereas the lowest emergence rates were observed for 

MAS86OL followed by Carrera CLP. The thermal time to reach the 50% emergence 

(TT50%emer) of sunflower genotypes ranged from 76 °C-day to 77 °C-day. Final emergence 

rates of sunflower genotypes ranged from 63% to 75% (Figure 5). 

 
 
Table 4 : Sunflower genotypes emergence rates at each rating dates 

  Emergence rate (%)± SD 
Genotype 8 DAS 

(96.7°Cd) 
9 DAS 

(109.25°d) 
11 DAS 

(137,55°Cd) 
15 DAS 

(199.7°Cd) 
18 DAS 

(250.65°Cd) 
Carrera 
CLP  

43 ±15 a 51 ± 16 ab 56 ± 17 ab 66  ± 15 ab 67 ± 15 ab 

MAS86OL 34  ± 9 b 46  ± 9 b 52  ± 10 b 61 ± 12 b 63  ± 12 b 
MAS89M 45  ± 11 a 56  ± 13 a 63  ± 13 a 74  ± 13 a 75  ±13 a 
MAS98K 46  ± 13 a 54  ± 14 a 59 ± 14 ab 72  ±13 a 73  ± 12 a 

Kruskal  
p-value  

0.003578 0.02262 0.0009369 0.002178 0.004784 

 
SD= Standard deviations. Mean emergence rates in the same column followed by the same letters 
are not significantly different (P < 0.05, Kruskal-Wallis test). 
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Adjustments of seedlings emergence dynamics of sunflower genotypes were performed 

using the Gompertz function. The quality of adjustments is reported in Figure (3). The 

determination coefficient R2 ranged from 0.97 to 0.99.  

 

 
Figure 3 : Graphical representation of Gompertz’s adjustments of the emergence dynamics of 4 
sunflower genotypes in relation to thermal time  

Vertical bars reported in the figure represent standard deviations.  
 
 
Seedlings emergence rates under field conditions as affected by CCs treatments are reported 

in Table (5). A significant effect of CCs treatments (p < 0.05) was observed on this variable, 
that was consistent over time. Emergence rates of sunflower were the highest following a 

bare soil treatment and a sorghum-faba bean-mustard treatment, while lower emergence 

rates were observed following a radish-mustard-vetch treatment, a rye treatment, and a 

vetch-pea treatment. The thermal time to reach the 50% emergence (TT50%emer) after CCs 

treatments ranged from 78 °C-day to 82 °C-day. Final emergence rates ranged from 63% to 

77 % (Figure 5). 
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Table 5 : Seedlings emergence rates after CCs treatments at each rating dates 

  Emergence rate (%)±SD 
Treatment 8 DAS 

(96,7°Cd) 
9 DAS 

(109,25°d) 
11 DAS 

(137,55°Cd) 
15 DAS 

(199,7°Cd) 
18 DAS 

(250,65°Cd) 
 

Mustard-Faba 
bean-Phacelia 

 
45 ± 12 ab 

 
55 ±13 ab 

 
61 ± 11 abc 

 
71 ± 11 abc 

 
72 ± 11 abc 

Radish-Mustard-
Vetch 

36 ± 11 ab 44 ± 13 b 48 ± 13 c 60 ± 12 c 61 ± 12 c 

Rye 34 ± 13 b 43± 13 b 50 ± 15 c 62 ± 18 abc 64 ± 17 c 

Bare soil 48 ± 12 a 61 ±10 a 69 ± 9 a 78 ± 8 a 79 ±8 a 

Sorghum-Faba 
bean-Mustard 

44 ± 10 ab 57 ± 8 ab 63 ± 9 ab 77 ±	56 ab 78 ± 6 ab 

Vetch-Pea 42 ± 16 ab 51 ± 15 ab 54 ± 15 c 64 ± 15 abc 65 ± 15 bc 

Vetch-Rye-Pea 45 ± 14 ab 53 ± 14 ab 58 	± 15 abc 65 ±13 abc 67	±	3 bc 

Kruskal p-value  0.02064 0.001305 0.0006077 0.0004202 0.001594 

 
SD= Standard deviations. Treatments correspond to: SFM: Sorghum-Faba bean-Mustard; Rye: Rye; 
MFP: Mustard- Faba bean-Phacelia; RMV: Radish-Mustard-Vetch; BS: Bare Soil; VP: Vetch-Pea; 
VSP: Vetch-Rye-Pea. Vertical bars reported in the figure represent standard deviations. Mean 
emergence rates in the same column followed by the same letters are not significantly different (P < 
0.05, Kruskal-Wallis test). 
 
 
Adjustments of the seedling emergence dynamics after CCs treatments were performed 

using a Gompertz function (Tjørve and Tjørve, 2017; Wang and Zuidhof, 2004). The quality 

of adjustments is reported in Figure (4). The determination coefficient R2 ranged from 0.97 to 

0.99. 

 

 
Figure 4 : Graphical representation of Gompertz’s adjustments of sunflower seedlings emergence 
dynamics after cover crops treatments, in relation to thermal time. Treatments correspond to: SFM: 
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Sorghum-Faba bean-Mustard; Rye: Rye; MFP: Mustard- Faba bean-Phacelia; RMV: Radish-Mustard-
Vetch; BS: Bare Soil; VP: Vetch-Pea; VSP: Vetch-Rye-Pea. Vertical bars reported in the figure 
represent standard deviations. 

 
Figure 5 : Final seedling emergence rates (18 DAS) of 4 sunflower genotypes (b) after CCs treatments 
(a). Vertical bars reported in the figure represent standard deviations. Treatments correspond to: SFM: 
Sorghum-Faba bean-Mustard; Rye: Rye; MFP: Mustard- Faba bean-Phacelia; RMV: Radish-Mustard-
Vetch; BS: Bare Soil; VP: Vetch-Pea; VSP: Vetch-Rye-Pea. 

 
3.3. Sunflower seedlings emergence vigor 
 
Seedlings mean emergence vigor index of the 4 sunflower genotypes are reported in 

Table (6). A non-significant effect of genotype (p > 0.05) was observed on this variable, 

except at the first observation date (for which p < 0.05). Mean emergence vigor index ranged 

from 0.7 (8 DAS) to 0.36 (18 DAS).  

 
Table 6 : Emergence vigor index of the 4 sunflower genotypes 

  Vigor (index) ±SD 
Genotype 8 DAS 

(96,7°Cd) 
9 DAS 

(109,25°d) 
11 DAS 

(137,55°Cd) 
15 DAS 

(199,7°Cd) 
18 DAS 

(250,65°Cd) 
Carrera CLP  0.08  ± 0.02a 0.16 ±0.03a 0.24 ± 0.04a 0.30 ± 0.04a 0.36 ±0.04a 
MAS86OL 0.07 ± 0.02a 0.15 ± 0.03a 0.23 ± 0.03a 0.29 ± 0.03a 0.35 ± 0.03a 
MAS89M 0.08  ±	0.01a 0.16 ± 0.03a 0.24 ± 0.03a 0.30 ± 0.03a 0.36 ± 0.03a 
MAS98K 0.08  ± 0.02a 0.16 ±0.03a 0.23 ± 0.04a 0.30 ± 0.04a 0.35 ± 0.04a 
Tukey p-value  0.04746 0.3445 0.6836 0.6230 0.6196 

 
SD= Standard deviations. Mean index in the same column followed by the same letters are not 
significantly different (P<0.05, ANOVA). 
 
 
Seedlings mean emergence vigor index after CCs treatments is reported in Table (7). A 

significant and consistent over time effect of CCs treatments (p < 0.05, except at the first 

observation date) was observed on this variable. Highest values were obtained after a vetch-

Tuckey HSD test p. value = 0.000426 Tuckey HSD test p. value =2.04e-05 
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rye-pea treatment, followed by vetch-pea, bare soil and mustard-faba bean-phacelia 

treatments whereas the lower values were attained after a radish-mustard-vetch treatment 

and a rye treatment. Mean emergence vigor index ranged from 0.6 (8 DAS) to 0.30 (18 DAS). 

 

 
Table 7 : Emergence vigor index of sunflower after CCs treatments. 

Vigor (index) ±SD 
Treatment 8 DAS 

(96,7°Cd) 
9 DAS 

(109,25°d) 
11 DAS 

(137,55°Cd) 
15 DAS 

(199,7°Cd) 
18 DAS 

(250,65°Cd) 
Mustard-Faba 

bean-Phacelia 
0.06 ±	0.04 a  0.13 ±	0.07 ab  0.19 ± 0.11 ab  0.24 ±	0.13 ab  0.29 ±	0.15 ab  

Radish-Mustard-

Vetch 
0.06 ±-0.03 a  0.12 ±	0.07 ab  0.18 ±	0.10 ab  0.23 ±	0.12 ab  0.27 ±	0.14 b  

Rye 0.05 ±	0.03 a  0.11 ±	0.06 b  0.17 ±	0.09 b  0.22 ±	0.12 b  0.27 ±	0.14 b  

Bare soil 0.06 ±	0.03 a  0.13 ±	0.07 ab  0.19 ±	0.10 ab  0.24 ±	0.13 ab  0.29 ±	0.15 ab  

Sorghum-Faba 

bean-Mustard 
0.06 ±	0.03 a  0.12 ±	0.07 ab  0.18 ±	0.23 ab 0.23 ±	0.12 ab  0.28 ±	0.15 ab  

Vetch-Pea 0.06±	0.04 a  0.13 ±	0.07 ab  0.19 ±	0.10 ab  0.25 ±	0.13 a  0.29 ±	0.15 ab  

Vetch-Rye-Pea 0.07 ±	0.04 a  0.14	± 0.08 a 0.20 ±	0.11 a  0.25  ±	0.13 a  0.30 ±	0.16 a  

Tukey p-value  0.08366 0.0174 0.01364 0.01461 0.01397 

 
SD= Standard deviations. Mean index in the same column followed by the same letters are not 
significantly different (P<0.05, ANOVA). 
 
 

3.4. Correlation between sunflower final emergence rates and vigor 
 

 

A Spearman test and a linear regression were performed to identify a potential correlation 

between final emergence rates and vigor of sunflower genotypes after CCs treatments 

(Figure 6). The two variables showed a significant degree of linear association.  

 
Table 8 : Comparison of final vigor and emergence rates of sunflower genotypes 

Genotype Final vigor index ±SD Final emergence (%)±SD 

CARRERA CLP 0.36 ±0.04 a  67 ± 15 ab 
MAS 86OL 0.35 ± 0.03 a  63 ± 12 a 
MAS89M 0.36 ± 0.03 a  75 ±13 b 
MAS98K 0.35 ± 0.04 a  73 ± 12 b 
Tukey p.value 0.6196 0.004784 

SD= Standard deviations. Mean index in the same column followed by the same letters are not 
significantly different (P<0.05, ANOVA). 
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Table 9 : Comparison of final vigor and emergence rates of sunflower seedlings after CCs treatments 

Treatment 
Final vigor index ±SD Final emergence (%)±SD 

Mustard-Faba bean-
Phacelia 

0.29 ±	0.15 ab  72  ±11 abc 

Radish-Mustard-
Vetch 

0.27 ±	0.14 b  61  ±12 a 

Rye 0.27 ±	0.14 b  64  ±17 a 
Bare soil 0.29 ±	0.15 ab  79  ±	8 c 
Sorghum-Faba 
bean-Mustard 

0.28 ±	0.15 ab  78  ±6 bc 

Vetch-Pea 0.29 ±	0.15 ab  65  ±15 ab 
Vetch-Rye-Pea 0.30 ±	0.16 a  67		±3 ab 
Tukey p.value 0.01397 *   0.001594 

 
SD= Standard deviations. Mean index in the same column followed by the same letters are not 
significantly different (P<0.05, ANOVA). 
 
 
 
 
 
 
 
 

 
 

Figure 6 : Linear regression of the final emergence rates and vigor of sunflower seedlings (P<0.05, 
Spearman test) 

 
 

Spearman p. value=0.0426 
Spearman correlation coefficient= 0.1919039 

y=72.7x+42.4 
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3.5. Non-emergence causes  
 

Non-emergence rates of sunflower seedlings due to each related causes are reported in 

Figure (7). The absence of seed or the presence of damaged seeds due to bird’s predation 

was the key cause of seedlings non-emergence while minor impacts of mechanical stresses 

(i.e., seedling mortality due to a soil surface crust and soil clods, recognizable with an intact 

seed content but no germination) and of soil-dwelling pests (presence of holes or larvae in or 

around seeds) were also observed (Supplemental Figure 3). Non-emergence rates at the plot 

scale ranged from 20% to 40%.  

 

 
Figure 7: Percentage of sunflower seedlings non-emergence due to related causes from the visual 
diagnostic key adapted from the literature review of pre-emergence damping-off symptoms 
(Lamichhane, 2021 (Editorial)). Vertical bars represent standard deviations. 

 

A non-significant effect of genotype (p > 0.05) was observed on this variable (Figure 8) 

whereas a significant effect (p < 0.05) of CCs treatment was fund (Figure 9). Sunflower grown 

after rye appeared to be the most impacted by bird’s predation, whereas after a bare soil, 

birds caused the lowest losses. Soil pest such as seed maggots, wireworms, symphylans, 

millipedes were more harmful after radish-mustard-vetch and a vetch-pea treatments. Lowest 

values for this same cause were obtained after the bare soil and the vetch-rye-pea 

treatments. Non-emergence of sunflower seedlings was also observed because of damping-

off diseases (rotten seed content and no germination), especially after a radish-mustard-

vetch treatment. 
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Figure 8: Non-emergence percentage of sunflower genotypes seedlings related to causes from the 
visual diagnostic key adapted from the literature review of pre-emergence damping-off symptoms 
(Lamichhane, 2022 (Editorial)). Vertical bars represent standard deviations. 

  

 

Vertical bars represent standard deviations. SFM: Sorghum-Faba bean-Mustard; Rye: Rye; MFP: 
Mustard- Faba bean-Phacelia; RMV: Radish-Mustard-Vetch; BS: Bare Soil; VP: Vetch-Pea; VSP: 
Vetch-Rye-Pea 
 

Figure 9: Non-emergence percentage of sunflower seedlings after CCs treatments related to causes 
from the visual diagnostic key adapted from the literature review of pre-emergence damping-off 
symptoms (Lamichhane, 2022 (Editorial)).  
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3.6. Post-emergence damages  
 

No post-emergence damages were observed on the sunflower seedlings at the time of 
observations.  
 
 

3.7. Verticillium incidence 
 

First verticillium leaf symptoms appeared 43 DAS (655.3°d). Verticillium mean incidence 

percentage on sunflower genotypes under field conditions are reported in Table (10). A 

significant effect of sunflower genotypes (p < 0.05) was observed on this variable throughout 

the rating phase. The number of infested plots varied from 10% (43 DAS) to 100% (from 78 

DAS). Verticillium incidence percentage was the higher for MAS98K from 43 DAS to 64 DAS, 

and the lower for MAS89M at the last rating date.  
 
Table 10 : Verticillium incidence percentage on 4 sunflower genotypes from first symptoms until the 
final evaluation 

Incidence (%)±SD 

Genotype 43 DAS 
(655.3°d) 

  

50 DAS 
(809.4°d) 

58 DAS 
(968.0°d) 

64 DAS 
(1050.8°d) 

71 DAS 
(1180.5°d) 

78 DAS 
(1334.5°d) 

Carrera 
CLP 

10 ±13 a 52 ±39 a 55 ±40 ab 55 ±40 ab 94 ±18 a 94 ±18 a 

MAS86OL 11 ±14 a 45 ±36 ab 60 ±39 ac 60 ±39 ac 95 ±22 a 95 ±22 a 

MAS89M 10 ±14 a 4 ±25 b 53 ±35 b 53 ±35 b 93 ±17 a 93 ±17 a 

MAS98K 17±20 b 50 ±37 ab 64 ±40 ac 64 ±40 ac 93 ±20 a 93 ±20 a 

Kruskal 
p.value 

0.004607 0.03837 0.00295 0.002557 0.6083 0.4082 

 
Genotype 85 DAS 

(1491,0°d) 
 

92 DAS 
(1625,2°d) 

Carrera 
CLP 

97 ±12 b 99	±4 a 

MAS86OL 100 ±0 a 
 

100 ±0 a 

MAS89M 93 ±22 b 
 

96	±11 b 

MAS98K 93 ±23 b 100	±0 a 
Kruskal 
p.value 

1.623e-06 8.75e-09 

SD= Standard deviations. Means in the same column followed by the same letters are not 
significantly different (P<0.05, Kruskal-Wallis test). 
 
 
 
 
In the same way, a consistent and significant effect of CCs treatments (p < 0.05) was fund 

on verticillium incidence percentage (Table 11). Values ranged from 4% (43 DAS) to 100% 



 
 

25 
 

(from 78 DAS). Until 64 DAS, verticillium incidence was the highest after a sorghum-faba 

bean-mustard and vetch-pea mixture, followed by a mustard-faba bean-phacelia mixture. 

The bare soil treatment appeared to be the less infected by verticillium at symptoms 

apparition. From 78 DAS, sorghum-faba bean-mustard and vetch-pea mixtures attained the 

highest values with the bare soil treatment. The lowest final incidence was observed after a 

radish-mustard-vetch treatment. 

 
Table 11 : Verticillium incidence percentage on sunflower plants after cover crops treatments from 
first symptoms until the final evaluation 

Incidence (%)±SD 
Treatment  43 DAS 

(655.3°d)  
50 DAS 
(809.4°d) 

58 DAS 
(968.0°d) 

64 DAS 
(1050.8°d) 

71 DAS 
(1180.5°d) 

78 DAS 
(1334.5°d) 

Mustard-
Faba bean-
Phacelia 

12 ±15 b 52	±36 b 53	±36 c 53	±36 c 92 ±17 b 92 ±17 b 

Radish-
Mustard-
Vetch 

5 ±10 c 35 ±34 c 41	±37 dc 40	±36 dc 78	±35 c 78	±35 c 

Bare soil 4 ±11 c 31 ±28 c 39 ±36 d 39  ±36 d 100 ±0 a 100  ±0 a 
Sorghum-
Faba bean-
Mustard 

19 ±15 a 64	±34 c 86 ±32 a 86	±32 a 100	±0 a 100	±0 a 

Vetch-Pea 19 ±19 a 53 ±31 b 70	±30 b 70	±30 b 99±5 a 99	±5 a 
Kruskal 
p.value 

2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 

 
Treatment  85 DAS 

(1491,0°d) 
 

92 DAS 
(1625,2°d) 

Mustard-
Faba bean-
Phacelia 

98	±8 a 98	±7 ab 

Radish-
Mustard-
Vetch 

81	±33 b 96	±11 b 

Bare soil 100	±0 a 100	±0 a 
Sorghum-
Faba bean-
Mustard 

100	±0 a 100	±0 a 

Vetch-Pea 99	±5 a 100	±0 a 
Kruskal 
p.value 

2.2e-16 2.2e-16 

 
SD= Standard deviations. Means in the same column followed by the same letters are not significantly 
different (P<0.05, Kruskal-Wallis test). 
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Figure 10: Verticillium incidence dynamics on sunflower plants after cover crops treatments in 
relation to days after sowing   

Treatments correspond to: SFM: Sorghum-Faba bean-Mustard; Rye: Rye; MFP: Mustard- Faba bean-
Phacelia; RMV: Radish-Mustard-Vetch; BS: Bare Soil; VP: Vetch-Pea; VSP: Vetch-Rye-Pea. Vertical 
bars reported in the figure represent standard deviations. 
 
 

3.8. Verticillium severity  
 

The disease severity index allowed to evaluate the severity of verticillium symptoms 

expressed on the sunflower plants. A significant effect of sunflower genotypes (p<0.05) was 

observed on the DSI (Table 12). The DSI varied from 2.5 (43 DAS) to 53.3 (92 DAS) (Figure 

11). At the first and last rating dates, the DSI attained the highest values for the MAS98K 

genotype compared to the 3 other genotypes. This quite high severity may be due to a high 

initial density of inoculum.   
 
 
Table 12 : Disease Severity Index of verticillium on 4 sunflower genotypes from first symptoms until 
the final evaluation 

Disease Severity Index ±SD 

Genotype 43 DAS 
(655.3°d)  

50 DAS 
(809.4°d) 

58 DAS 
(968.0°d) 

64 DAS 
(1050.8°d) 

71 DAS 
(1180.5°d) 

Carrera 
CLP 

2.5 ± 3.4 b 13.1 ± 9.8 a 14.0 ± 10.2 ac 13.9 ± 10.1 ac 25.5 ± 6.4 b 

MAS86OL 2.8 ± 3.5 b 11.2 ± 8.9 ab 15,9 ± 11.1 ab 15.9 ± 11.1 ab 26.8 ± 8.8 a 

MAS89M 2.5 ± 3.5 b 10.3 ± 6.3 b 13.2 ± 8.7 c 13.2 ± 8.7 c 26.3 ± 8.3 ab 

MAS98K 4.1 ± 5.0 a 12.4 ± 9.4 ab 16.3 ± 10.3 a 16.4 ± 10.5 a 26.8 ± 9.7 ab 

Kruskal 
p.value 

0.004607 0.03837 0.004133 0.003589 0.2156 

Genotype 78 DAS 
(1334.5°d) 

85 DAS 
(1491,0°d) 

92 DAS 
(1625,2°d) 
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Carrera 
CLP 

31.3 ± 11.5 a 36.0±12.7 a 43.4±18.8 a 

MAS86OL 28.0 ± 9.8 ab 36.3±11.8 a 
 

45.9±19.3 a 

MAS89M 27.8 ± 9.9 b 32.5±14.8 b 
 

46.0±25.5 a 

MAS98K 27.5 ± 10.9 b 35.3±16.8 ab 53.3±21.1 b 
Kruskal 
p.value 

0.004878 0.03081 0.0001173 

 
SD= Standard deviations. DSI in the same column followed by the same letters are not significantly 
different (P>0.05, Kruskal-Wallis test). 
 
 

A highly significant effect of CCs treatments (p<0.05) was observed on the DSI (Table 13). It 

varied from 1.1 to 4.7 (43 DAS) and from 28.9 to 67.5 (92 DAS) (Figure 11). Throughout the 

rating dates, no tendencies were identified. At the last rating date (92 DAS), each treatment 

was significantly different from the others. The bare soil treatment attained the highest DSI 

followed by the sorghum-faba bean-mustard mixture and the vetch pea mixture. The mustard-

faba bean-phacelia mixture obtained the lowest DSI followed by the radish-mustard-vetch 

mixture.  

 
Table 13 : Disease Severity Index of verticillium on sunflower plants after CCs treatments from first 
symptoms until the final evaluation 

 
Disease Severity Index ±SD 

Treatment 43 DAS 
(655.3°d)  

50 DAS 
(809.4°d) 

58 DAS 
(968.0°d)  

64 DAS 
(1050.8°d) 

71 DAS 
(1180.5°d) 

Mustard-Faba 
bean-Phacelia 

3.0 ±3.6 c 13.0 ± 9.0 b 13.1 ± 9.1 c 13.1 ± 9.1 c 23.3 ± 4.7 b 

Radish-
Mustard-Vetch 

1.3 ± 2.6 c 8.8 ± 8.6 c 10.2 ± 9.3 d 10.1 ± 9.1 d 19.6 ± 9.0 c 

Bare soil 1.1 ± 2.7 c 7.7 ± 7.0 c 10.2±9.6 d 10.3 ± 9.9 d 28.4 ± 4,1 a 
Sorghum-Faba 
bean-Mustard 

4.7 ± 3.9 a 16.1 ± 8.6 a 23.0 ± 9.1 a 23.0 ± 9.1 a 31.6 ± 9.7 a 

Vetch-Pea 4.7 ± 4.8 a 13.3 ± 7.9 b 17.5 ± 7.4 b 17.5 ± 7.4 b 28.4 ± 7.2 a  
Kruskal 
p.value 

2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 

 
 
 
 
 
 
 
 
 
 

     

Treatment  78 DAS 
(1334.5°d) 

85 DAS 
(1491,0°d) 

 

92 DAS 
(1625,2°d) 
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Mustard-Faba 
bean-Phacelia 

23.4 ± 4.8 c 26.4±5.9 b 28.9±8.9 e 

Radish-
Mustard-Vetch 

20.4 ± 9.8 d 28.4±16.0 b 38.6±18.6 d 

Bare soil 34.4 ± 8,1 b 42.2±11.6 a 67.5±16.8 a 

 
Sorghum-Faba 
bean-Mustard 

32.2 ± 9.6 ab 39.1±15.3 b 57.0±20.8 b 

Vetch-Pea 32.5 ± 10.9 b 38.8±12.8 b 45.8±16.0 c 
Kruskal p.value 2.2e-16 2.2e-16 2.2e-16 
 
SD= Standard deviations. DSI in the same column followed by the same letters are not significantly 
different (P>0.05, Kruskal-Wallis test). 
 
 
 

 
Figure 11: Verticillium disease severity index of sunflower genotypes (a) and after CCs treatments (b) 
related to days after sowing.  

Vertical bars reported in the figure represent standard deviations 

 
 

Area under the Disease Curve (AUDPC) was performed for each sunflower plant. On 

the one hand, a non-significant effect (P>0.05) of sunflower genotypes was observed on this 

variable. On the other hand, a significant effect (P<0.05) of CCs treatment was observed on 

this variable (Table 14). AUDPC varied from 3.1 (43 DAS) to 388.3 (92 DAS). Throughout 

the rating dates, a higher AUDPC was observed after a sorghum-faba bean-mustard 

treatment and a vetch-pea treatment than other treatments. At the first rating date (42 DAS), 

the bare soil treatment followed by the radish-mustard-vetch treatment presented the lowest 

AUDPC values. At the last rating date (92 DAS) and for the total AUDPC, sorghum-faba 

bean-mustard treatment and vetch-pea treatment along with the bare soil treatment attained 

the highest AUDPCs (Figure 12). The AUDPC was the lowest for the mustard-faba bean-

phacelia and radish-mustard-vetch treatments. 
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Table 14 : Area under the Disease Curve (AUDPC) of verticillium disease on sunflower plants from 
first symptoms until the final evaluation 

AUDPC (per plant) ±SE 

Treatment 43 DAS 
(655.3°d) 

 

50 DAS 
(809.4°d) 

58 DAS 
(968.0°d) 

64 DAS 
(1050.8°d) 

71 DAS 
(1180.5°d) 

Mustard-Faba 
bean-Phacelia 

8.3 ±4.4 ab 44.6 ±10.0 b 73.1 ±13.3 b 73.5 ±13.3 b 101.9 ±9.3 c 

Radish-Mustard-
Vetch 

4.1 ±3.0 bc 28.8 ±9.4 c 53.7 ±13.4 c 57.6 ±13.2 c 83.8 ±10.3 c 

Bare soil 3.1±1.9 c 24.5 ±9.5 c 49.9	±14.8 c 57.3	±14.1 c 108.5	±11,4d 

Sorghum-Faba 
bean-Mustard 

13.1 ±7.6 a 58.2 	±12.4 a 109.4	±9.1 a 128.6 	±6.4 a 152.7	±5.0 a 

Vetch-Pea 13.1	±6.3 a 50.3 ±12.6 ab 86.2 ±13.6 b 98.0	±12.6 a 128.6	±9.1 b 

Kruskal p.value 1.299e-05 3.93e-11 2.2e-16 2.2e-16 2.2e-16 

Treatment  78 DAS 
(1334.5°d) 

85 DAS 
(1491,0°d) 

 

92 DAS 
(1625,2°d) 

Total AUDPC 

Mustard-Faba 
bean-Phacelia 

130.8 ±6.3 b 143.5 ± 8.8c 164.3 ± 7.2e 741.6 ± 63.5c 

Radish-
Mustard-Vetch 

112.8±8.4 c 151.1 ± 11.8c 221.5 ± 9.3d 715.7 ± 68.0c 

Bare soil 175.4±11.5 a 250.9 ±10.9a 

 
388.3 ±17.2a 

 
1082.6 ± 70.9b 

 
Sorghum-Faba 
bean-Mustard 

178.5 ±5.8 a 229.3 ± 4.9b 331.4 ± 8.7b 1237.5 ± 49.9a 

Vetch-Pea 170.6 ±6.1 a 230.1 ± 4.2b 285.5 ± 8.5c 1083.9 ± 61.3b 
Kruskal p.value 2.2e-16 2.2e-16 2.2e-16 2.2e-16 

SE= Standard Error. Means in the same column followed by the same letters are not significantly 
different (P>0.05, Kruskal-Wallis test). 
 

 

 
Figure12: Total Area Under the Disease Progress Curve (AUDPC) of verticillium impact evaluations 
after CCs treatments 

Treatments correspond to: SFM: Sorghum-Faba bean-Mustard; Rye: Rye; MFP: Mustard- Faba bean-
Phacelia; RMV: Radish-Mustard-Vetch; BS: Bare Soil; VP: Vetch-Pea; VSP: Vetch-Rye-Pea. 
Treatments with the same letter above are not statistically different according to Tuckey HSD test at 
the a=0.05 level. Vertical bars reported in the figure represent standard deviations 
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4. Discussion 
 

This study aimed to assess the seedbed conditions at the time of sunflower seedlings 

emergence as well as the level of verticillium damage during sunflower growing season, after 

Brassicaceae and Fabaceae cover crops grown in sole crop or in a mixture of two or three 

species. At the time of CCs crushing, the total biomass of the CCs treatments as well as the 

individual biomass of the CCs within the treatments, showed great variability. The reasons 

for such differences are not relevant to the study. Nevertheless, it was expected to observe 

more pronounced effects on the variables considered in the study after a high amount of 

biomass left on the ground, either positive or negative, than a low or no biomass.  CCs 

residues left on the soil were able to create seedbed conditions either conducive or 

detrimental for the emergence rates and vigor of sunflower seedlings and by the same token 

for the development of V. dahliae. 

 

4.1. Sunflower seedlings emergence dynamics and vigor 
 

Laboratory experiments of sunflower varieties germination capacity provided high 

germination rates results for all varieties, except for MAS86OL which only reached 40% 

emergence. The hypothesis of an issue with the MAS86OL seed lot was raised as 

germination rates were inconsistent with indications of the seed company (86%).  

 

Seedling emergence dynamics are an important indicator of plant performance, 

including the final yield. A high final emergence rate is not sufficient for sunflower seedlings 

to successfully establish. For instance, a low emergence speed of sunflower seedlings is 

detrimental because it will result in a low emergence vigor. Indeed, a slow and uneven 

emergence is more susceptible to bird, slug, and soil pest damage and a non-optimal initial 

vigor will lead to poor growth and stunted young plants (Lamichhane, 2022 (Editorial)). Field 

emergence rates of the sunflower varieties were not all considered acceptable according to 

Terres Inovia, especially for MAS86OL and Carrera CLP, whose mean final emergence rates 

were below 70%. Treatments with the lowest emergence rates were correspondingly the 

ones that stood out in the causes of non-emergence, showing that they were more sensitive 

to biotic and abiotic stresses. Emergence vigor index also appeared to be lower than 

expected. Masseed (the breeder) indicates that selected genotypes had a level 7 emergence 

vigor, which corresponds to genotypes that are "tolerant” to early stresses, and which should 

therefore have a relatively high vigor. A seedling vigor under optimal conditions would be 1 

(Miller and McDonald, 1975; TeKrony and Egli, 1991). However, in the field conditions, the 
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vigor did not exceed 0.35 for all sunflower genotypes. There was a positive relationship 

between emergence vigor and final emergence rates; 20% of the emergence rates explained 

the final vigor. The reason for increase in emergence rates and emergence vigor is due to 

favorable environmental factors. Relatively low final emergence rates and vigor thus testified 

of stressful conditions that prevented seedlings from emerging and developing rapidly.   

 

On the one hand, the sowing date close to the crushing of CCs residues could have been a 

physical factor limiting seedlings emergence. Indeed, CCs residues left on the soil raised the 

question of mechanical obstacles that could hinder sunflower seedlings emergence, 

especially in a no-till system. Increasing seed-soil contact is one of the major objective of 

tillage operations (Blunk et al., 2021). The presence of too large amount of crop residues in 

the same way as large soil clods, reduces soil-seed contact (Lamichhane et al., 2021). The 

soil-seed contact is necessary for rapid seed imbibition, germination, and seedling 

emergence, allowing the seed to get access to the soil moisture it needs. The degree of 

contact increases as soil macroporosity decreases (Brown et al., 1996). Consequently, the 

time interval between the seed germination and seedling emergence phase in a seedbed 

comprising crop residues and soil aggregates is longer, due to the increased tortuosity of the 

seedling path before reaching the soil surface (Boiffin et al., 1992). This could explain 

relatively low vigor and non-optimal emergence rates. Also, during the early stages of crops 

cycle, emergence and seedling establishment do not depend on the quantity of available 

nitrogen in the soil. It is therefore not a limiting or impacting factor for seedling emergence. 

The emergence and establishment phase is influenced by the nature and amount of reserves 

contained in the seed (Gardarin et al., 2016). Seed mass, for instance, is positively correlated 

with final emergence rates and germination speeds (Eriksson, 1999; Gómez, 2004; Tamet et 

al., 1996). The ability of the seedling to bypass or cross obstacles depends on the emergence 

force it develops (Sinha and Ghildyal, 1979). This force is itself dependent on stem diameter, 

which in turn is correlated with seed mass (Gardarin et al., 2016). To this extend, low final 

emergence rates could be explained also by a low vigor whereby seedling may have 

exhausted the seed reserves during hypocotyl elongation without being able to emerge under 

the effect of stronger mechanical constraints such as the presence of clods or a soil crust. 

This would also be particularly true after CCs with an important biomass that were more 

difficult to crush, such as radish. Bare soil had the advantage of not having any mechanical 

obstacles due to crop residues, thus offering a better soil-seed contact, as confirmed with the 

study results.  

 

On the other hand, CCs biomass left on the soil most probably modified the seedbed 

temperature and humidity, creating more humid and therefore cooler sowing conditions. 



 
 

32 
 

Temperature and humidity play an important role during crop early phases as they condition 

good water supply for the seed and the seedling. This could explain the relatively better 

emergence and establishment quality of sunflower seedlings after a sorghum-faba bean-

mustard treatment which presented a high biomass. Spring and summer 2022 were 

particularly dry and hot, with mean air and soil temperatures higher than the average of the 

last ten years. The seedbed dried very quickly after sowing, leaving a small soil crust, and 

cracked soil surface. Around 10 DAS especially, the observed emergence rates were much 

lower than the predictions of the Gompertz model. According to Lamichhane et al., (2022), 

sunflower has a basic water potential of 1 for germination and, in a soil with texture as the 

one we had in our experimental site, the crop undergoes a water stress below a threshold 

corresponding to ~12% of soil gravimetric moisture. This threshold was most likely exceeded 

around 10 DAS (130°C-days), creating non-optimal conditions for emergence. Irrigation at 10 

DAS may have facilitated emergence of seedlings, but due to its high volume (between 25 

and 40 mm) it could also have accentuated the soil surface crust formation under high air 

temperatures. Thus, higher emergence rates and vigor could have been expected under less 

dry and warm conditions. 

 

Additionally, soil incorporation of fresh CCs roots and shoots could have been a source of 

release of compounds implicated in the allelopathic growth inhibition or promotion of the 

sunflower seedlings. It has been documented a lot that, exudates generated from particular 

CCs such as alfalfa, vetch, or rye, can inhibit the seed germination of cash crop species 

(Aguilar-Franco et al., 2019). Ercoli et al., 2006 mentioned allelopathy mechanisms impacting 

seedling’s growth reductions. However, there is no report if allelopathy could actually also 

impact the emergence phase.  Sunflower generally showed lower emergence rates and vigor 

index following a rye, a vetch, and a mustard treatment, possibly due to allelopathic inhibition 

potentials of Brassicaceae. Higher emergence rates occurred with sorghum-faba bean-

mustard treatments. This is consistent with the fact that the mustard biomass was very small 

for this specific treatment. Thus, these results confirm studies conducted by Barnes and 

Putman (2017), Aguilar-Franco et al., (2019), Geddes et al. (2015), or Ercoli et al., (2006) 

who showed that CCs such as rye, brown mustard or hairy vetch are toxic to target species 

such as weeds, suggesting the release of phytotoxins from plant biomass. But it also 

assumed that the sorghum specie used did not have a high allelopathic potential, as it was 

the case for faba bean specie. The efficiency of allelopathy would depend among other on 

sowing densities (Aguilar-Franco et al., 2019). The combination of mustard and vetch 

probably increased the allelopathic effect on the sunflower. In the case of the mustard-faba 

bean-phacelia treatment which resulted in a moderate emergence and vigor of sunflower 

seedlings, phacelia and faba bean probably helped dilute the potential negative impact of 
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mustard on seedlings emergence. Nevertheless, the impact of phacelia could not be 

identified as positive, negative, or neutral. 

With a low C/N, legumes such as faba bean and vetch could be crushed more easily and 

degraded quickly in the soil. It appeared they have counteracted the negative effects of 

Brassicaceae on seedling emergence, since sorghum- faba bean-mustard and mustard-faba 

bean-phacelia treatments had moderate emergence and vigor. On their own, however, with 

vetch-pea treatment, they did not have a positive effect on emergence.  

 

Sunflower crop is not able to compensate pre- and post-emergence damage and/or 

losses due to several factors (McMaster et al. 2012). As seedling emergence rate is a major 

component of final crop yield, it was important to identify the primary causes leading to non-

emergence to better understand plot phenomenon, and later control biotic and abiotic factors 

responsible for such damages. In the study, biotic stresses were the main factors for 

emergence failure. Sunflower seeds appeared to be particularly susceptible to birds and 

seeding problems, even though these two causes seem at first glance of contrasting nature. 

Indeed, when sowing in good conditions the seed is normally well buried in the soil and 

therefore not accessible to birds. The absence of seeds is therefore sometimes more of a 

seedling problem, rather than birds coming in because the seed is accessible. On a side of 

the experimental plot, during seeding, some seed furrows did not close properly. It was 

hypothesized that there was an increased moisture due to weather conditions in the days 

before seeding, as well as due to crop residues. The non-emergence caused by birds must 

thus be put into perspective. 

Wireworms were also a significant cause of non-emergence. It today represents one of the 

most important soil-dwelling pests from an economic point of view, both in a conventional or 

no-till system. These pests cause severe damage on crops, especially at the crop 

establishment phase (Lamichhane, 2022 (Editorial)). Their broad host range including 

vegetables such as peas and radishes could explain a relative lower emergence rates after 

radish-mustard-vetch and vetch-pea treatments. On the contrary, wireworms had a lower 

impact after a bare soil and a vetch-rye-pea mixture, explained respectively by the absence 

of crops before sowing (wireworms are usually found in the topsoil layers, eating crop roots) 

and on the other hand because generally low infestation of wireworms are observed in crop 

rotations thanks to biofumigation potential of Brassicaceae, such as rye (Dierauer, 2017). In 

general, a diverse crop rotation promotes various beneficial organisms and lowers the 

infestation of wireworms (Dierauer, 2017). No attack of slugs was observed due to the very 

low rainfall. 
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It would have been interesting to additionally determine germination rates and causes 

of non-germination. The causes of non- germination could have helped refine the emergence 

and vigor analysis since they are related and confirm or not the hypotheses of mechanical or 

thermal stress, allelopathy potential of Brassicaceae, as well as bird’s predation. However, 

this step was too destructive on the microplots of the experiment since this requires digging 

up the seeds, which is risky on a quite small experiment.  

 

No post-emergence damages were observed while bird predation is generally mostly 

observed in post-emergence. Sausse et al., (2021) found that 10% of the plots they studied 

were severely affected, with more than 20% of the seedlings totally destroyed, and leading 

to reseeding and significant yield losses. This shows the effectiveness of the bird net installed 

on the plot during the emergence phase (6 DAS), as well as the different methods used such 

as the scarecrow, bird cannon and stakes. 

 
4.2. Verticillium wilt incidence and severity 

 

The outbreak of verticillium disease started early in the sunflower growth cycle (40 

DAS) and occurred in all the experimental micro-plots although seed companies classified 

studied genotypes as “non-sensitive” to sunflower verticillium wilt (SVW).  

Soil and climatic factors may have influenced the incidence and severity of SVW. Indeed, 

temperature is an important driver of pathogen incidence, and humidity has even a prevailing 

role in predicting fungal plant disease outbreaks (Romero et al., 2022). High temperatures as 

well as an increased humidity could provoke or facilitate fungal diseases (Romero et al., 

2022).  Seasonal temperatures of 2022 were relatively high compared to the last ten years, 

and the soil warmed up with an average maximum temperature of 23°C at 10 cm deep in 

July 2022. The optimal soil temperature for the production of microsclerotia and verticillium 

infection is estimated in a range of 15 to 25°C (Calderon Madrid et al., 2014; Soesanto ,2001), 

which is also the average soil temperature at 10 cm depth between May and August 2022. 

An earlier incidence is indeed linked with microsclerotia density and could cause more severe 

damage to the crop (Erreguerena et al., 2019). On the opposite, very little rainfall occurred 

from seeding to the end of the observations compared to the previous ten years, and irrigation 

was only performed once. Consistently, Gimsing and Kirkegaard (2006), found no effect on 

either glucosinolates or isothiocyanates concentrations with a single irrigation. This study 

showed a low verticillium incidence after a bare soil treatment at the beginning of the 

verticillium outbreak. Cover crops residues left on the soil increased soil moisture compared 

to the bare soil and thus would confirm the hypothesis of higher moisture favoring the early 

attack of verticillium on sunflower plants. However, since the experimental plot is also located 
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next to a river and on hydromorphic deep soil horizons, it can be assumed that the deeper 

soil horizons were wet, providing in all cases a favorable environment for microsclerotia to 

multiply.  

 

In order to be effective against soil borne pathogens, biofumigation needs a minimum 

of 0.53 t ha−1 of sole crop total dry matter biomass production (Morris et al., 2020). A high 

biomass production do not lead to a dilution of glucosinolates concentration (Gimsing and 

Kirkegaard, 2006). This biomass threshold for effective biofumigation has been exceeded 

with CCs residues biomass and should not have been a limiting factor for biofumigation 

succeed. Biofumigation also depends on many factors such as the timing of incorporation, 

the efficiency of incorporation, activity of the specific enzymes, and losses of isothiocyanates 

due to volatilization, leaching, and microbial degradation (reviewed by Brown and Morra, 

1997). Residues were left to the soil shortly before sowing of the sunflower, which probably 

made it possible to reduce isothiocyanates losses by volatilization. The other parameters 

could not be evaluated. 

 

Overall, after a radish-mustard-vetch and a mustard-faba bean-phacelia treatment, 

the incidence and severity of verticillium was lower than after sorghum-faba bean-mustard 

and vetch-pea treatments. The most feasible explanation of Verticillium wilt diminution was 

by the Brassicaceae CCs, especially mustard and radish (since the sorghum-faba bean-

mustard treatment presented a very low mustard biomass).  

White and brown mustard are particularly used in biofumigation for their content in 

isothiocyanate precursors and also for their agronomic features (Reau et al., 2005). 

Isothiocyanates present in these species are characterized by their low volatility and thus 

persistence in the soil as they are degraded. In a general way, isothiocyanates in white 

mustard are less volatile than those in rapeseed, for example, and should be slower acting. 

In brown mustard, glucosinolates are present in significant amounts in the aerial parts and 

are hydrolyzed to volatile isothiocyanates that are likely to have a rapid action, giving it the 

most potent action. In contrast, white mustard is capable of releasing slower acting 

isothiocyanates (Reau et al., 2005). Also, the reduction in SVW achieved by forage radish in 

our study supports previous results showing a significant reduction in germination or 

microsclerotia development following exposure to chopped forage radish under laboratory 

conditions (Neubauer et al., 2014). However, it was complex to deduce exactly which 

mechanisms acted on the decrease of verticillium wilt or not, as no data was obtained on soil 

concentrations of glucosinolates and isothiocyanates. Glucosinolates production differ 

between shoots and roots of the crops, and among the major hydrolysis products of 

glucosinolates, isothiocyanates are generally considered the most toxic, however they also 
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vary in their toxicity to different organisms (reviewed by Brown and Morra, 1997).  However, 

the results showed that mustards would present an enhanced biofumigation potential than 

other Brassicaceae such as radish and rye. This is confirmed among others by Larkin et al., 

(2011) who, for instance, stipulated that mustard blends resulted in slightly better disease 

control than rye.   

 

It also appeared that SVW incidence and severity would be positively correlated with 

seedlings emergence rates and vigor. Indeed, while MAS86OL genotype had the lowest 

emergence rates and vigor index, it was less affected by verticillium. On the contrary, 

MAS98K genotype which had the highest emergence rates and vigor, was the most rapidly 

infested. No explanation was found for this, as more vigorous seedlings are normally less 

susceptible to fungal attacks. However, since V. dahliae enters through the roots, and as the 

vigorous seedlings will develop their root system more quickly, it was hypothesized that 

verticillium could have more impact, since it infected these roots first.  

In the same way, most affected sunflower plants were after a bare soil, sorghum-faba bean-

mustard and vetch-pea treatment. Data of soil nitrogen residues between 0 and 90 cm depth 

obtained from CCs sampling showed higher amounts of nitrogen after the vetch-pea, bare 

soil and sorghum-faba bean-mustard treatments. Conversely, the radish-mustard-vetch, rye 

and mustard-faba bean-phacelia treatments had the lowest soil mineral nitrogen residues. 

This did not seem to be correlated with the CCs biomass left on the ground. Soil mineral 

nitrogen could be explained by the previous crop as well as by the lower C/N ratio of legumes, 

such as vetch and its ability to take up nitrate from the soil and fix atmospheric nitrogen 

(Couëdel et al., 2018).  

The results of this study seemed to be correlated with soil nitrogen supply. It does not allow 

to confirm the negative correlation that would exist between soil nitrogen supply and 

incidence and severity of verticillium found by Davis et al., (2010), since we observed a 

positive correlation. Davis et al., (2010) mentions that disease reduction with green manures 

would be strongly correlated with both non-specific microbial activity and major changes in 

microbial populations. He also states that green manure treatments often do not reduce 

pathogen populations but reduce pathogen infections based on increased general microbial 

activity. Compared to all other treatments, the bare soil was affected later but more 

consistently. This confirms that the microbial activity following the CCs residues could reduce 

verticillium attacks later in the growth cycle. Also, in the case of our study, where it is the first 

time that cover crops were grown, one can think that the green manure effect could not be 

yet observed in the soil. We could thus expect with time, higher bacterial populations and 

microbial activity and lower fungal populations. In contrast, these observations support a 

previous study (Seassau et al., 2010) showing a strong positive correlation between high 
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nitrogen supply and premature maturation caused by Phoma, another sunflower fungal 

disease. Higher nitrogen could have led to an increase in the development of P. macdonaldii, 

which eventually would have caused an overexpression of V. dahliae symptoms. Like on the 

opposite, a significant reduction in SVW after purple vetch was measured by Ait Kaci Ahmed 

et al., 2021, and Phoma symptoms were rare. These results are still poorly understood at this 

time (Wheeler et al., 2012). 

 

Concerning associations with legumes and given the results it was not possible to 

conclude on an improved performance of mixtures. Notably because the radish-mustard-

vetch and mustard-faba bean-phacelia treatments contained legumes that did not present a 

significant biomass and therefore a high nitrogen composition. The pea vetch treatment was 

strongly affected. 

 

Finally, the severity of verticillium wilt must be put into perspective. The evaluation of 

the severity of the symptoms was potentially overestimated since the scoring includes a scale 

with only few stages. A plant that is in the score 2, presented symptoms that affected 20% to 

50% of the plant, which is very broad. Symptom severity was thus probably lower in the field 

than calculated (the highest percentage was taken to calculate the DSI). Also, since the 

studied plots were microplots, one can also ask to what extent the “border effect” was 

excluded. Indeed, with six rows of sunflowers, only two rows in the center of the plot were 

considered, although they were very close in distance to the edge of the microplot. Many 

sunflowers did not emerge, and microplots had gaps, which probably concentrated the 

verticillium attack on the neighbouring plants. Also, the plot borders were not totally respected 

because of the lack of plants, which sometimes forced to observe the plot border rather than 

the center of the microplot.  

 

 
5. Conclusion 
 

This study gives some evidence that cover crops could provide ecosystem services 

to sunflower by improving the crop establishment and by controlling verticillium wilt compared 

to a bare soil during the fallow period. In only one year of experimentation, CCs had a 

consistent and strong impact on the parameters studied. In particular, CCs biomass played 

a key role in the effectiveness of CCs to provide ecosystem service. Nevertheless, results 

sometimes showed contrasted and antagonistic reactions of sunflower to CCs, concerning 

emergence quality and verticillium control.  
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On the one hand, and despite that weather conditions (drought and heat creating a soil 

surface crust) were not optimal, the sunflower showed a quite high emergence after CCs, 

which seemed to be favored by a higher seedbed moisture. However, a possible allelopathic 

effect at emergence after Brassicaceae has been noted, potentially preventing seedlings from 

emerging optimally and rapidly. Seedlings vigor was also impacted by CCs residues acting 

as mechanical obstacles and preventing an optimal soil-seed contact. Seedlings most 

probably exhausted the seed reserves without being able to emerge under the effect of such 

stronger mechanical constraints. The presence of Fabaceae may have diluted the negative 

effects of Brassicas at emergence, but further studies are needed to understand their effects 

in the mixtures. The results are encouraging, especially in a no-till system. For the 

establishment of CCs in cropping systems, attention should be paid to the soil practices and 

the crushing method of the residues in order to obtain a seedbed with a fine texture.  

On the other hand, although they might have reduced the final seedling emergence rates, 

mustard and radish cover crop species showed a high biofumigation potential and seemed 

to be the most suitable species to provide this targeted ecosystem service. Biofumigation by 

crucifer did not appear to be supported by legume CCs on the one year of experimentation, 

since the soil mineral nitrogen content was possibly positively correlated with the incidence 

and severity of verticillium. Soil mineral nitrogen might have promoted other microorganisms, 

weakening sunflower plants, and leading to overexposure of verticillium. Since this is the first 

year of the study, subsequent years may see a positive effect of microbial activity as 

previously demonstrated. In all cases, the early verticillium attack associated with high 

temperatures and a seedbed moisture at the time of sowing, caused significant damages. 

Further studies are needed to fill the current knowledge gap concerning the mechanisms that 

drive biofumigation in field conditions and the benefits provided by cover crops mixtures 

mutualization. Even though Brassicaceae were likely to contribute to pathogen suppression, 

they do not represent a solution for a total elimination of SVW.  
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Appendix 
Supplemental Figure 1: Cover crops treatments before their destruction (photographies 
taken by UMR-AGIR). 
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Supplemental Figure 2: Sunflower verticillium wilt leaf symptoms (photographies taken by 
Bertille Rueda). 
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Supplemental Figure 3a:  Visual diagnostic key describing major causes affecting crop 
establishment and descriptions of their symptoms/characteristics.  
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Supplemental Figure 3b: Examples of non-emerged seedlings due to different causes 
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Résumé:  
 

Le tournesol (Helianthus Annuus) est confronté à d'importants problèmes de 
production dans le sud-ouest de la France. Il est principalement cultivé dans les zones 
vallonnées, au sein de rotations courtes et suivant une longue période de jachère pendant 
laquelle les sols sont laissés nus. Les problèmes d'implantation de la culture et les attaques 
fongiques sont récurrents et provoquent des pertes de rendement importantes. Les effets de 
l’implantation de cultures intermédiaires ont été évalués sur les taux d'émergence et la 
vigueur des plantules de tournesol, et sur le développement du flétrissement verticillien. 
Quatre génotypes de tournesol ont été semés dans un champ expérimental, après sept 
traitements de cultures intermédiaires contenant divers mélanges de Fabacées et 
Brassicacées. Les services écosystémiques fournis par ces familles de cultures semées 
seules ou combinées ont été évalués sur les variables d’intérêt, dans un système sans labour 
et sans glyphosate. Les cultures intermédiaires ont eu un impact significatif dans cette 
expérience d'une année. Les conditions météorologiques ont fortement influencé la 
diminution de l'émergence et de la vigueur des plantules de tournesol, ainsi que l'apparition 
précoce de la maladie du verticillium. En général, les résidus de cultures intermédiaires ont 
inhibé l'émergence des plantules en réduisant le contact sol-graine et en épuisant les 
réserves de graines. Les Brassicacées telles que le radis et la moutarde ont également 
montré un impact négatif sur l'émergence des plantules de tournesol par des mécanismes 
d'allélopathie, alors qu'elles ont réduit le développement du flétrissement verticillien par 
rapport aux autres traitements. L'association avec les Fabacées n'a pas permis de conclure 
à une mutualisation des services rendus, si ce n'est qu'elle a peut-être dilué les effets négatifs 
des Brassicacées lors de l'émergence. Une corrélation positive entre l'azote minéral du sol 
et la sévérité de la verticilliose a été observée. L'hypothèse d'une augmentation de l'activité 
microbienne affaiblissant les plantes de tournesol a été émise. Des études complémentaires 
sont nécessaires pour comprendre comment les Brassicacées et les Fabacées interagissent 
lors des différentes étapes du cycle de culture du tournesol, afin de cibler et de maximiser 
les services écosystémiques qu'elles fournissent. 
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Sunflower (Helianthus Annuus) faces major production challenges in southern-
western France. It is mostly grown in hilly areas, in short rotations and after a long fallow 
period during which soils are left bare. Crop establishment issues and fungal attacks are 
recurrent, causing significant yield losses. The effects of agroecological cover crops (CCs) 
implementation were assessed on the sunflower emergence rates and vigor, its seedling 
establishment and on the verticillium wilt development. Four sunflower genotypes were sown 
in an experimental field, following seven CCs treatments containing diverse mixtures of 
Fabaceae and Brassicaceae. Ecosystem services provided by these crops families sole or 
combined were evaluated on the measured variables, in a no-till system and without 
glyphosate. CCs had a significant impact in this one-year experiment. Weather conditions 
strongly influenced the decrease in emergence and vigor of sunflower seedlings, as well as 
the early outbreak of verticillium disease. In general, cover crop residues inhibited seedling 
emergence by reducing soil-seed contact and depleting the seed reserves. Brassicaceae 
such as radish and mustard also showed a negative impact on sunflower seedling emergence 
through allelopathy mechanisms, whereas they reduced verticillium wilt development 
compared to other treatments. The association with Fabaceae did not allow to conclude on 
a mutualization of the services provided, except that it possibly diluted the negative effects of 
Brassicaceae at emergence. A positive correlation between soil mineral nitrogen and 
verticillium was observed. The hypothesis of an increase in microbial activity weakening the 
sunflower plants was made. Further studies are needed to understand how Brassicaceae et 
Fabaceae interact at the different stage of the crop cycle, in order to target and maximize 
ecosystem services provided by them.  
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