


1 Acknowledgement 4

2 Summary 5

3 Sammendrag 6

4 Abbreviations 7

5 Introduction 8
5.1 Background 10

5.1.1 Innate and Adaptive Immunity 10
5.1.2 Role of Antibodies in Adaptive Immunity 11
5.1.3 Affinity and Specificity 11
5.1.4 The Antigen Binding Site 12
5.1.5 V(D)J recombination gives rise to naive antibody repertoire diversity 13
5.1.6 The Special Role of the CDRH3 13
5.1.7 Levels of Antibody Cross-Reactivity 14
5.1.8 Implications of Polyreactivity 14
5.1.9 Properties of Polyreactive Antibodies 15
5.1.10 Experimental Assessment of Polyreactivity 17
5.1.11 Prediction of Polyreactivity in Silico 18
5.1.12 In Silico Prediction of Antibody-Antigen Binding 18
5.1.13 Machine Learning 18
5.1.14 Overfitting and Underfitting 19
5.1.15 Machine Learning Architectures 19
5.1.16 Machine Learning for Antibody-Antigen Binding Prediction 21
5.1.17 Benchmarking 22
5.1.18 Simulated Data 23
5.1.19 ML-Based Prediction of Antibody Polyreactivity 24
5.1.20 Works on ML Prediction of Polyreactivity Published During this Project 24
5.1.21 Data Leakage 25
5.1.22 Interpretability 26

6 Aim of the Thesis 27
6.1 Goal 1: Comparing combinations of model architecture and sequence encoding for
creation of supervised ML models to predict polyreactivity 27
6.2 Goal 2: Investigate overestimation of model generalizability due to close similarity
between sequences in the training and validation datasets (Data Leakage) 28
6.3 Goal 3: Look into interpretability of select models 28

7 Results 29
7.1 Goal 1: Comparing combinations of model architecture and sequence encoding for
creation of supervised ML models to predict polyreactivity 29

1



7.1.1 Formalization of Antibody Polyreactivity as an ML Problem 29
7.1.2 Amino Acid (AA) Composition differs between Polyreactivity Classes 33
7.1.3 Classifying Polyreactivity Based on Leucine Content Left Room for
Improvement 36
7.1.4 AA Enrichment in Polyreactive Sequences is Position Dependent 38
7.1.5 Logistic Regression Trained on One-Hot Encoding Reaches ~0.9 Macro f1 score
40

7.1.5.1 Performance of binary classification were comparable between classes and
confusion occurs most often between adjacent classes in multiclass classification44

7.1.6 Using Neural Networks Improves Prediction Score 47
7.1.6.1 Neural Networks increased correct prediction of both classes 48
7.1.6.2 Differences between models were significant 49

7.1.7 Interpretation of CNN accuracy with varying kernel sizes reveals that high
accuracy can be achieved based on short sequence patterns and accuracy increase with
increased pattern length 49

7.2 Goal 2: Investigate overestimation of model generalizability due to close similarity
between sequences in the training and validation datasets (Data Leakage) 51

7.2.1 Polyreactivity is predictable from features that are generalizable beyond
sequence similarity as measured by Levenshtein Distance 51

7.3 Goal 3: Look into interpretability of select models 57
7.3.1 Logistic Regression Coefficients emphasize the role of AA composition 57
7.3.2 Conserved Start and End Motifs of CDRH3 did not Bias Model Ranking 61

8 Discussion 63
8.1 Goal 1: Comparing combinations of model architecture and sequence encoding for
creation of supervised ML models to predict polyreactivity 63

8.1.1 Ability to predict polyreactivity depending on datatask 63
8.1.2 Between a selected list of model architectures, how do these models compare in
their ability to correctly classify antibody CDRH3 sequences based on observed levels
of “polyreactivity”? 65
8.1.3 Does providing explicit positional information improve the models ability to predict
levels of polyreactivity? 68
8.1.4 Is polyreactivity prediction improved by using models that capture nonlinear
relationships between features? 68
8.1.5 In the interest of identifying minimal pattern length predictive of polyreactivity,
how does prediction accuracy change in response to increase in the possible length of
recognized patterns? 69

8.2 Goal 2: Investigate overestimation of model generalizability due to close similarity
between sequences in the training and validation datasets (Data Leakage) 71

8.2.1 Is the predictive power of the models dependent on close similarity to already
observed sequences in terms of LD, and could the models learn patterns that are not
based on close sequence similarity? 71

8.3 Goal 3: Look into interpretability of select models 72
8.3.1 What type of sequence features does the logistic regression model emphasize
when predicting polyreactivity? 72

2



8.3.2 Can attribution methods, like integrated gradients, capture sequence features
which impact the prediction of the best neural network? 73

8.4 Limitations 75
8.5 Outlook and Future Perspectives 78

9 Methods 80
9.1 In Silico Polyreactivity Dataset 80
9.2 Formulation of the Problem and Data Processing 82
9.3 Test Exclusion 83
9.4 List of Tasks, what is Input and Output 84
9.5 Balancing 84

9.5.1 Sequence Encoding 85
9.5.2 K-fold validation 86
9.5.3 Performance metrics 86
9.5.4 Leucine 87
9.5.5 Architectures tested with AA Composition and One-Hot Sequences 87

9.6 Hyperparameter Strategy 87
9.6.1 Hyperparameter Boundaries 88
9.6.2 Hyperparameters Shallow Learning 90
9.6.3 Neural Networks 91
9.6.4 Hyperparameters Neural Network 92

9.7 Version of Libraries Used 92
9.8 Calculation of Levenshtein Distances 92
9.9 Investigating Distributions, UMAP and Clustering 93

9.9.1 UMAP 93
9.9.2 Hierarchical Clustering and Fcluster 94
9.9.3 DBSCAN 94
9.9.4 Silhouette Score as to Quantify Clustering Efficiency 95

9.10 Estimating Macro f1 when the model is trained and tested on different Clusters
defined by Similarity 95
9.11 Estimating Macro f1 depending on Minimum Distance to Training Data 96

9.11.1 Positive control for data leakage 96
9.12 Integrated Gradients 97
9.14 Balancing End-Motifs 98
9.15 Preprocessing and Model evaluation on Test-Data 98
9.16 Hypothesis testing 99

9.16.1 Execution 99
9.17 Hardware used 99

10 References 100

11 Appendix 107

3



1 Acknowledgement

This thesis is part of a Master’s study in Bioinformatics at the Norwegian University of Life

Sciences (NMBU) and the work that is presented was carried out at the Department of

Immunology, Rikshospitalet, Oslo from August 2021 until August 2022.

First I would like to thank my supervisor Dr. Philippe Robert. My sincerest gratitude for all

the advice and support you have given me. Your advice on planning and carrying out research

for my thesis has been invaluable. Mercí for sharing your wisdom with me and teaching me

much about research.

I would also like to thank my co-supervisor and leader of my lab Prof. Victor Greiff for first

and foremost allowing me to be a part of his research group and conduct my thesis there, and

also for advice he has provided underway. And I would like to thank Dr. Rahmad Akbar for

providing valuable advice and feedback.

I also want to express my gratitude for the help provided by my internal supervisor Prof. Lars

Gustav Snipen. My sincerest gratitude for advice and help with the administrative work

related to the thesis. And thank you for all you have taught me about bioinformatics through

the years.

Thanks to all the members of GreiffLab for their support and for being both welcoming and

supportive. It has been a pleasure to work with you. In particular, I would like to thank Robert

Frank for introducing integrated gradients and thank you to Maria Chernogovskaya, Puneet

Rawat and Eva Smorodina for their advice.

Lastly, I would like to thank my family for supporting me throughout my masters and

previous studies. My thanks are also extended to my dog Sjakka. Even though she will never

read this, I want to express my appreciation for 12+ years together. You have brought me

much joy over the years and been a truly enriching presence in my life.

Oslo, July 2022

Ingvild Frøberg Mathisen

4



2 Summary

Antibodies are of great importance as therapeutics and a prerequisite for their success is high

specificity to a desired target. Some antibodies however, termed polyreactive, are able to

recognize and react to a diverse range of antigens. Therapeutic antibodies have been

successful in the treatment of cancers, autoimmune conditions as well as infectious diseases.

The process of developing a new treatment requires a lot of resources and time. Many

candidates are not approved following clinical trials, one of the negative indicators of success

is polyreactivity. In silico methods that predict polyreactivity can aid in prioritizing good

candidates for further development. In this work we benchmarked machine learning

approaches for predicting polyreactivity, using data from the simulation framework Absolut!,

with various combinations of sequence encodings and machine learning architectures. We

found that polyreactivity could be predicted with close to 90% macro f1 using

logistic-regression and amino acid composition. Marginal but significant improvements in

macro f1 score were obtained by inclusion of positional information using logistic regression

and feed-forward neural network with one hidden layer was able to achieve macro f1 of

~93%. The best logistic regression model and neural network were able to generalize to

sequences that were more than 50% different to the sequences used for training the model.

Further we looked into interpretability of the models and size of possible sequence motifs,

suggesting that short motifs can be predictive of polyreactivity. Our results demonstrate how

different approaches compare in predicting polyreactivity given large amounts of data and

information on the CDRH3 sequence. As of now, experimental (in vitro) datasets containing

information on polyreactivity have been limited in size. Larger datasets are being produced

and in the future, we anticipate that our findings will be relevant for guiding the development

of machine learning models for predicting polyreactivity.
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3 Sammendrag
Antistoffer er av stor betydning som legemidler og en forutsetning for at de skal lykkes er høy

spesifisitet til et ønsket mål. Noen antistoffer, kalt polyreaktive antistoffer, er imidlertid i stand

til å gjenkjenne og reagere på flere ulike antigener. Terapeutiske antistoffer har hatt stor

suksess i behandling av kreft, autoimmune sykdommer, så vel som infeksjonssykdommer.

Prosessen med å utvikle en ny antistoffbehandling krever imidlertid mye ressurser og tid.

Mange kandidater blir ikke godkjent etter kliniske studier og polyreaktivitet kan være en av

årsakene til dette. In silico metoder som predikerer polyreaktivitet kan hjelpe til med å

prioritere kandidater med større sannsynlighet for å lykkes. I dette arbeidet har vi

sammenlignet maskinlærings metoder med varierende måter å fremstille sekvensdata og

arkitektur for å forutsi polyreaktivitet ved hjelp av data fra en antistoff-antigen bindings

simulator kalt Absolut!. Vi fant at polyreaktivitet kunne forutsies med nær 90% makro f1

score ved bruk av logistisk regresjon og aminosyresammensetning alene. Marginal men

signifikant økning i f1 score ble registret når informasjon om aminosyrenes posisjon var

inkludert ved bruk av logistisk regresjon. Nevrale nettverk var i stand til å oppnå makro f1 på

~93%. Den logistiske regresjonsmodellen og det beste nevrale nettverket var i stand til å

generalisere til sekvenser som var mer enn 50 % forskjellige fra sekvensene som ble brukt for

trening av modellen. Videre så vi på tolkbarhet av modellene og størrelsen på eventuelle

sekvens motiver, og fant at korte motiver kan være prediktive for polyreaktivitet. Resultatene

våre viser hvordan forskjellige tilnærminger sammenlignes for å forutsi polyreaktivitet gitt

store mengder data og informasjon om CDRH3-sekvensen. Tidligere har de fleste

eksperimentelle (in vitro) datasett brukt til å etterforske polyreaktivitet vært av begrenset

størrelse. Det produseres nå større datasett og i fremtiden regner vi med at funnene våre vil

være relevante for styre utvikling av maskinlæringsmodeller for å forutsi polyreaktivitet.
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4 Abbreviations

AA = amino acid

ABS = antigen binding site

ADCC = antibody dependent self mediated toxicity

BCR = B-cell receptor

CDC = complement dependent cytotoxicity

CDR = complementarity determining region

CDRH3 = 3rd CDR on the antibody heavy chain

CNN = convolutional neural network

DL = data leakage

DT = decision tree

FNN = feed-forward neural network

LD = levenshtein distance

LR = logistic regression

ML = machine learning

RF = random forest

SHM = somatic hypermutation

UMAP = Uniform Manifold Approximation and Projection

PDB = Protein Data Bank
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5 Introduction

Antibodies have become an increasingly important class of therapeutics. Therapeutic

antibodies are used to treat several types of illnesses such as cancer, autoimmune disease, and

increasingly infectious diseases (Pecetta, Finco, and Seubert 2020). In 2018, the value of the

global antibody market was about 115.2 billion US dollars (Lu et al. 2020) and 7 out of the

top 10 most sold drugs worldwide were antibodies (Urquhart 2019). It is estimated that the

value of the antibody market will rise to 300 billion US dollars by 2025. However, the

elimination (attrition) of candidate antibodies along discovery pipelines requires a lot of time

and money. In 2017, the cost of preclinical development for therapeutic antibodies was more

than 1 billion dollars (Elgundi et al. 2017). Not all candidates that advance to clinical trials are

successfully approved for use. Specifically, the rate of success for antibody therapies from

phase 1 trials to approval has been reported to lie between 17% and 25% (Kaplon and

Reichert 2018). To speed up the development of novel antibody therapeutics, the design and

prioritization of candidates with desirable properties can increase the chance of successful

approval following clinical trials.

In silico approaches to antibody design and selection have been proposed to reduce the time

and cost of development and increase the chance of successful approval (Akbar et al. 2022;

Norman et al. 2020). Traditional low-throughput computational methods are already used as

aids for this purpose (Norman et al. 2020). The development of computationally less

expensive and high-throughput machine-learning approaches has the potential to significantly

reduce expenditures and improve the time it takes for drugs to become available for patients.

Success of antibodies as drugs can be attributed to their desirable druglike properties, such as

stability and solubility, favorable pharmacokinetics, high affinity etc. as well as high

specificity (Starr and Tessier 2019). Antibodies are often assumed to be highly specific with

minimal non-target interactions. Some antibodies however exhibit broad cross-reactive

binding to structurally different antigens, a phenomena called polyreactivity. Polyreactivity in

therapeutic antibodies is a negative indicator for success through clinical trials (Cunningham

et al. 2021), in particular due to off-target binding.
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Despite pioneering works identifying predictors of polyreactivity and modeling (Rabia et al.

2018; Boughter et al. 2020), few studies have attempted to predict antibody polyreactivity.

Thus no such tool has yet been used in real-world antibody development. As polyreactivity is

a hindrance to drug approval, it is of current interest to develop and benchmark better machine

learning (ML) methods.

Most polyreactivity datasets however are small and likely insufficient for reliably

benchmarking. To address a general lack of large thoroughly annotated antibody-antigen

datasets available for benchmarking, a framework for simulating antibody-antigen binding

called Absolut! was created (Robert et al. 2022). Absolut! is based on a lattice-based

framework representing proteins-protein interactions called Ymir, (Robert, Arulraj, and

Meyer-Hermann 2021), that simulates the binding between antibodies and antigens through

exhaustive docking of the antibody sequence onto a 3D grid representation of the antigen.

Absolut! can be used as an oracle to predict how certain methods will perform when

predicting various levels of antibody-antigen binding. In this work, we will be using Absolut!

data to benchmark methods for predicting polyreactivity.
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5.1 Background

5.1.1 Innate and Adaptive Immunity

The cellular and molecular mechanisms of the immune system have historically been

separated into two layers, namely innate and adaptive immunity. The innate immune system

makes up the first response mechanisms which initially detect an infection and is able to

respond rapidly. These responses are initiated within minutes (Kaur and Secord 2019). Innate

immunity usually recognizes evolutionarily conserved structures that are characteristic of

different classes of pathogens (Gao et al. 2022). This allows it to detect a foreign attack. If the

innate immune response is not successful in eliminating the threat, the adaptive immune

response (of which B-cells are a part) is initiated.

Adaptive immune system responses typically take a few days to develop the first time a

particular pathogen is encountered (Janeway et al. 2001). The antigens from the pathogen

must be presented to the lymphocytes (B- and T-cells) by cells from the innate immune

system (antigen presenting cells) (Charles Molnar and Gair 2015), for the naive B- and T-cells

that recognize the antigens to be activated. A naive B-cell (or T-cell) is a mature lymphocyte

that has not yet recognized an antigen. Recognition is based on the B- or T-cell receptor

sequence which varies between cells. Then, following activation, these lymphocytes have to

go through processes of cell growth, proliferation, production of soluble signals, and (for

B-cells) a process of somatic hypermutation (SHM) that specifically mutates the B-cell

receptor (BCR) gene (Eisen 2014).

SHM is an important part of the affinity (strength of antigen binding) maturation process.

Affinity maturation is a process by which the affinity of the antibody is tuned to the target.

Several steps of hypermutation and subsequent selection of high affinity clones which are

allowed to survive and expand more rapidly, lead to the production of antibodies with

increased affinity to the antigen over time. This process takes place in anatomical structures

called germinal centers (Victora and Nussenzweig 2022). Sequence variation and modification

through affinity maturation allow the adaptive immune system to mount more specific and

customized responses to the pathogen.
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5.1.2 Role of Antibodies in Adaptive Immunity

In nature, antibodies are weapons of the immune system against disease-causing agents such

as viruses, toxins, and bacteria as well as tumor-transformed cells. Antibodies are ‘Y’-shaped

glycoproteins produced by B-cells (Parham 2014). When these proteins are bound to the

B-cell membrane, they are referred to as B-cell receptors (BCRs), while ‘antibodies’ refer to

the BCRs in their secreted form. Antibodies bind to particular molecular structures (called

antigens) either in the extracellular medium, or on the surface of pathogens. After binding to

an antigen, antibodies can participate in different modes of immune defense mechanisms.

They can neutralize the target’s ability to interact with cells in the body (i.e., preventing viral

entry) (Klasse 2014). They can also make the target more recognizable to other parts of the

immune system, such as tagging a pathogenic cell for destruction by other immune cells

(ADCC) or the complement system (CDC) (Ravetch and Bolland 2001; Shakib 2016;

Hashimoto, Wright, and Karzon 1983). In this way, antibodies help the body rid itself of

specific pathogens by screening the extracellular medium, including the mucosa.

5.1.3 Affinity and Specificity

The properties of antibody-antigen binding can be quantified with different measures, in

particular affinity and specificity. Antibody-antigen affinity refers to the strength of binding

while specificity refers to the clarity of preference for that antigen over others. An antibody

with high affinity binds strongly to a target and forms a stable complex. Binding strength is

measured by the dissociation constant (Libretexts 2015), which in the case of

antibody-antigen binding describes the tendency of the antibody-antigen complex to

dissociate into antibody and antigen. This property is the primary property tuned during

affinity maturation. Antibody specificity on the other hand is determined by discriminative

affinity differences between encountered antigens. Specificity is a relative measure of the

propensity of an antibody to bind to one antigen to the exclusion of others (Starr and Tessier

2019). Affinity describes the strength of binding between the antibody and one antigen,

specificity describes the strength of binding to one or a few cognate antigens versus the

strength of binding to other antigens.

11

https://paperpile.com/c/AVoWpq/00GW
https://paperpile.com/c/AVoWpq/kNuh1
https://paperpile.com/c/AVoWpq/iAT69+3p1ve+fhu9
https://paperpile.com/c/AVoWpq/iAT69+3p1ve+fhu9
https://paperpile.com/c/AVoWpq/qxQG6
https://paperpile.com/c/AVoWpq/RdAWe
https://paperpile.com/c/AVoWpq/RdAWe


5.1.4 The Antigen Binding Site

Figure 1: Structure of an antibody highlighting regions involved in antigen recognition. Antibodies share a
characteristic ‘Y’-shape with one Fc region and two Fab regions. The Fc region can interact with other cells of
the immune system (it is also the part that is bound to the B-cell in non-secreted form). The antigen-binding sites
are located at the ends of the Fab region, defining two identical antigen binding sites per antibody. The Fab of the
antibodies is made up of four segments, two heavy (VH) chains and two light (VL) chains. The variable (Fv)
regions of the antibody is located farthest away from the Fc region. The Fv region is made up of the variable
domains of the heavy and light chains as opposed to the rest of the Fab (and Fc) region which is made up of the
constant domains. The Fv region is host to the complementary determining regions (CDRs). There are three
CDRs belonging to the light chain (L1, L2 and L3) as well as three belonging to the heavy chain (H1, H2 and
H3). (Adapted from Figure 4 of (Akbar et al. 2022), used by consent of Dr. Rahmad Akbar)

The affinity and specificity of an antibody to an antigen is largely determined by the sequence

and structure of the antigen binding site (ABS) (black box in Figure 1). The ABS are located

at the ends of the Fab regions (Figure 1) and is the structure where the antibody binds

antigens. These parts of the antibodies are made up of two segments, one heavy chain and one

light chain (Chiu et al. 2019) which defines the ABS. There is one ABS on each Fab region.

The part of the ABS that binds to the antigen is called the paratope (the part of the antigen that

the paratope binds to is called the epitope). Each ABS contains six hypervariable loops which

often dominate the paratope (Akbar et al. 2021), called complementary determining regions

(CDRs). The CDRs are typically thought of as the main determinants of antibody-antigen

binding as the sequence diversity of the ABS is centered in these loops.
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5.1.5 V(D)J recombination gives rise to naive antibody repertoire diversity

Prior to affinity maturation, the sequence variation in the hypervariable loops is determined by

a mechanism called somatic V(D)J-recombination (Parham 2014). Amongst somatic cells

only lymphocytes (e.g., B-cells and T-cells) have the capacity to rearrange their own genome.

The genes coding for the heavy and light chains of the antibodies are segmented and spread

out across parts of the chromosome termed the heavy- and light chain loci (one heavy-chain

loci and two light-chain loci). Where the loci are the positions of the genes/ gene fragments on

the chromosome. For the antibody chain genes to become functional, the segments need to be

combined into one continuous gene. The segments encoding the variable regions of the

immunoglobulins are classed into three types of segments (The V, D and J segments). The

heavy chain genes include one of each type of segment and the light chain genes include one

V and one J segment. In mice (Mus musculus) there are estimated to be 112 V-genes, 12

D-genes and 4 J-genes included in the locus encoding the variable region of the heavy chain

when excluding pseudogenes (Wardemann and Busse 2017). During VDJ-recombination one

version of each type of relevant segments is combined to form a complete gene. This variation

included in the genes encoding the variable region of the antibody along with other factors

creates substantial ABS diversity.

5.1.6 The Special Role of the CDRH3

Of the three CDRs on each light- and heavy chain, the CDR3 is the most variable. The CDR1

and -2 are coded by the V segment whereas the CDR3 stems from the junction between

segments (VDJ in heavy chain genes and VJ in light chain). The CDR3 is often considered the

most determinant, in the sense that by only changing the CDR3 and leaving the CDR1 and 2

the same the antibodies can recognize and distinguish between many targets (Xu & Davis,

2000). Inspection of 825 antibody-antigen complexes from the Antibody Database (AbDb)

found that the CDRH3 was the only region that was involved in ligand-binding in all studied

complexes (Akbar et al., 2021). Research suggests that this particular loop is also important in

determining polyreactivity, specifically as grafting polyreactive CDRH3 onto

non-polyreactive antibodies has been shown to make said antibody polyreactive (Ditzel, Itoh,

and Burton 1996).
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5.1.7 Levels of Antibody Cross-Reactivity

When an antibody binds more than one antigen, the phenomenon is called cross-reactivity.

Cross-reactivity can be divided into several categories depending on the level of binding

specificity: conserved recognition, promiscuity and polyreactivity (Robert, Marschall, and

Meyer-Hermann 2018). The first two categories describe binding to closely related antigens,

where the epitopes are conserved (conserved recognition) or mutated variants (promiscuity,

typically point mutations) where the difference due to the mutations does not abrogate binding

respectively. Polyreactivity, however, denotes binding to unrelated or diverse antigens

(Notkins 2004). By definition, polyreactivity can be expected to display the least specific

binding patterns compared to the aforementioned types of cross-reactivity.

Some have argued for another class defined as polyspecificity (Cunningham et al. 2021).

Polyspecificity would then denote a more “specific” binding to multiple antigens (resembling

the idea of “oligo-reactivity” characterizing an antibody that is specific to only a few antigens

(Notkins 2004)) while polyreactivity would refer to more “unspecific” binding to a larger

number of antigens. However, polyspecificity and polyreactivity have been used somewhat

interchangeably to describe binding to structurally and sequentially different antigens, and

their meaning is variable in different studies. Here, the general concept of polyreactivity will

be used for antibodies that bind more than one (i.e., an arbitrary number of) unrelated

antigens. One could further subdivide polyreactivity into unspecific polyreactivity and

oligo-reactivity based on the number of antigens bound.

5.1.8 Implications of Polyreactivity

Polyreactivity has been suggested to have various implications for antibodies' role in fighting

disease and regulating bodily homeostasis (regulation of normal steady functioning). Evidence

has been presented that polyreactive antibodies play important parts in regulating gut

homeostasis in mice (Bunker et al. 2017) and development of tolerance (Dimitrov et al. 2013).

Polyreactivity has also been suggested to be a feature of broadly neutralizing antibodies,

fighting certain viruses with rapidly mutating genomes like HIV (Mouquet et al. 2010) and

Influenza (Guthmiller et al. 2020). However, possibly the most important role of

polyreactivity (and cross-reactivity in general) is to increase the number of targets the

adaptive immune system can recognize.
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Because antibodies can recognize more than one antigen the immune system is able to react to

a larger variety of antigens than would otherwise be possible (and that some antibodies

neutralizing a virus strain can still neutralize, to a certain extent, mutated variants). Even

though the sequence diversity in the naive antibody repertoire is large (estimated at

1013)(Greiff et al. 2017), there exist a finite number of potential ABS sequence variants but an

infinite number of potential targets (Dimitrov et al. 2013). If each antibody only recognized

one target, this could leave holes in the adaptive immune response where antibodies would not

be able to respond to every potential intruder. Holes in adaptive immunity due to the limited

number of recognizable structures could be exploited by pathogens which mutate their

genome to evade the immune system.

However, among the different types of cross-reactivity, polyreactivity is usually considered an

undesirable trait in therapeutic antibodies. Partly because antibodies recognizing non-target

self antigens can cause harm to healthy tissue (Zorn and See 2017). Polyreactive antibodies

also clear faster from the bloodstream (Kelly et al. 2015). A study showed that, between

antibodies that progressed to step 2 or 3 clinical trials and those approved, red flags for

polyreactive behavior were increasingly rare in antibodies that had progressed farther in the

process (Jain et al. 2017). In general, despite polyreactivity being favorable for immunity,

polyreactivity in therapeutic antibodies can decrease the chance of successfully obtaining

approval as a marketable therapeutic.

5.1.9 Properties of Polyreactive Antibodies

Some features that are thought to be correlated with polyreactivity. The most commonly

mentioned feature is perhaps the increased flexibility of the antibody binding interface

(Dimitrov et al. 2013). Molecular dynamics simulations have been used to show increased

number of- and flexibility between conformational states in polyreactive antibodies

(Fernández-Quintero et al. 2020). Other features that have been proposed include a longer

CDRH3 (Aguilera et al. 2001), though this has been found to be insignificant in anti-HIV

antibodies (Mouquet et al. 2010) and in a study of therapeutic antibodies (Lecerf et al. 2019),

as well as the proportions or numbers of certain amino acid residues in the CDRs.
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Amino acid composition of the ABS has been linked to increased polyreactive binding.

Multiple studies reported a relationship between the number of one or several amino acids or

physicochemical properties belonging to certain amino acids and polyreactivity (Rabia et al.

2018; Lecerf et al. 2019; Birtalan et al. 2008; Kelly et al. 2018). Among the amino acids

which have been mentioned are the charged amino acids. Positively charged amino acids

(Arginine and Lysine) have been linked to increased polyreactivity (Rabia et al. 2018; Lecerf

et al. 2019). Correspondingly negatively charged amino acids have been negatively correlated

with polyreactivity (Rabia et al. 2018). In the same study the authors reported that

polyspecificity could with some accuracy be predicted from the net charge of the CDRs.

Tyrosine, Serine and Glycine were found to contribute to specific but not non-specific binding

in a study looking at their contribution to antibody affinity (Birtalan et al. 2008), whereas

Arginine contributed to non-specific binding. Tyrosine in particular has been identified as a

major contributor to both affinity and specificity (Koide and Sidhu 2009), although several

studies have reported increased presence of Tyrosine in polyreactive sequences (Thompson et

al. 2012; Harvey et al. 2022). Other amino acids that have been implicated in polyreactivity

include Tryptophan, Valine and Glutamine (Kelly et al. 2018; Lecerf et al. 2019). However,

the impact of amino acids can be context dependent (i.e., depending on other amino acids

either in a neighboring position or farther away in the sequence) and dependent on the target

antigens and the experimental conditions.

It has been reported that the correlation between amino acids and polyreactivity can vary due

to sequence position and due to the local sequence environment. In a study of 1000 antibodies

from different sources, the properties of the amino acid sequence of the CDR loops were

reported to vary depending on position, while charge and hydrophobicity were linked to

polyreactivity (Boughter et al. 2020). A study looking at contributions of sequence motifs to

non-specificity found that tryptophan was tied to polyreactivity overall but in particular when

occurring in motifs, also while tyrosine was depleted in polyreactive sequences two

consecutive tyrosine residues contributed to polyreactivity (Kelly et al. 2018). An examination

of binding interfaces from two anti-Amyloid antibodies showed that, while both contained

similar amounts of arginine, the arginine mutations in the less specific antibody contributed

more to binding and the surrounding sequence were comparatively more hydrophobic (Tiller

et al. 2017).
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The type of assay performed, and the experimental conditions, have been found to influence

observed polyreactivity (Labrousse, Adib-Conquy, and Avrameas 1997; Lecerf et al. 2019). It

has been demonstrated that temperature can alter whether an antibody is polyreactive

(Labrousse, Adib-Conquy, and Avrameas 1997). When different experiments are used to

evaluate polyreactivity, the amino acid composition and physicochemical properties that are

enriched in polyreactive sequences can differ (Lecerf et al. 2019), both in terms of

significance of enrichment but also in terms of what group (specific or polyreactive) was

enriched with certain amino acids in the CDRH3. For example ELISA and baculovirus

particle (BVP) assay yielded polyreactive antibodies significantly enriched in positively

charged antibodies. Using polyspecificity reagent (PSR) yielded polyreactive antibodies with

significantly reduced number of hydrophobic amino acids.

5.1.10 Experimental Assessment of Polyreactivity

Several experimental methods have been developed and used to assess polyreactivity.

Competitive binding assays have been utilized to assess cross-reactive binding (Tiller et al.

2017). Large protein microarrays have been used to assess polyreactivity as well (Planchais et

al. 2019). An assay has been described assessing polyreactivity to a selection of 32 proteins

(Frese et al. 2013). However, there are some methods that are commonly used to evaluate

polyreactivity between antigens.

Common methods include the enzyme-linked immunosorbent assay (ELISA), against small

panels of selected antigens (Wardemann et al. 2003). The antigens are chosen to cover a range

of different physicochemical properties and include different types of macromolecules.

Reactivity is determined by setting a threshold based on binding of negative control antibodies

(Mouquet et al. 2010; Mietzner et al. 2008). Flow cytometric methods have also been

developed for evaluating polyreactivity, such as the polyspecifisity reagent (PSR) assay which

evaluates polyreactivity of IgG antibodies in yeast display against proteins from Chinese

Hamster Ovary (CHO) cells (Xu et al. 2013). This method enables negative selection for

polyreactivity while simultaneously screening for high affinity to the desired target. Another

flow cytometry essay was recently developed where monoclonal antibodies are displayed on

tiny magnetic beads (Makowski et al. 2021).
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5.1.11 Prediction of Polyreactivity in Silico

No widely used in silico method exists to predict polyreactivity as of now, unlike some

developability metrics (Akbar et al. 2022; V. K. Sharma et al. 2014). Developability describes

the ability of an antibody treatment to progress from discovery to development (Bailly et al.

2020). Developability parameters refer to certain key features predictive of developability.

Examples include thermal stability, solubility and clearance to name a few (Mason et al. 2021;

Bailly et al. 2020). There exists in silico methods for scoring antibodies based on several of

these parameters (Mason et al. 2021). Some developability parameters are tied to specificity

such as hydrophobicity and presence of positively charged patches (Raybould et al. 2019).

However, these parameters are not directly predicting polyreactivity.

5.1.12 In Silico Prediction of Antibody-Antigen Binding

Besides polyreactivity, computational methods for predicting the properties of antibody

binding (affinity, specificity and paratope-epitope prediction) have been developed in recent

years. Robust prediction and generation of antibodies that are able to bind desired targets have

great potential in speeding up and reducing cost of antibody discovery and development

(Akbar et al. 2022). In silico methods for antibody design have traditionally included methods

such as homology modeling and protein-protein docking (Norman et al. 2020). Machine

Learning methods have also widely been applied to antibody-antigen datasets albeit small size

datasets (Akbar et al. 2022).

5.1.13 Machine Learning

ML refers to methods by which a computer can make predictions regarding an outcome based

on data. Instead of having a human manually identify rules and patterns of information to

create predictive models, model creation is outsourced to a machine. The learning part of

machine learning refers to how parameters of ML models are updated to improve model

accuracy through iterative learning processes when exposed to more examples (Naqa and

Murphy 2015).
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Supervised learning, a subfield of machine learning, teaches a computer algorithm to predict

an outcome through training on labeled data. Labeled data describe data where the outcome is

available as well as other data regarding the features of each given case. The algorithm can

learn to make predictions regarding a certain outcome on unseen data through training an

algorithm to make predictions by recognizing patterns in labeled examples.

5.1.14 Overfitting and Underfitting

A fundamental problem in ML is the tradeoff between model underfitting and overfitting

(Jabbar and Khan 2014). Overfitting describes a state where the model performs well on

previously seen (training) data but does not generalize well to unseen data. A model which

underfits is not able to capture the relationship between the independent variables and the

label both in training and unseen data. Overfitting is due to learning biases in the training data

and often affects flexible models capable of picking up on complex patterns (Yin et al. 2015).

Underfitting is due to overly simple models that are not capable of capturing the relevant

complexity. During model selection over- and underfitting can be diagnosed by high variance

or bias respectively. High variance is observed as low performance on test/validation data as

compared to the training data and high bias as low performance overall (Raschka and Mirjalili

2019). When selecting a model one typically wants to select a model that is not complicated

enough to overfit but is complex enough to capture relevant relationships in the data.

5.1.15 Machine Learning Architectures

There exists several popular ML architectures used to solve various supervised prediction

tasks (Raschka and Mirjalili 2019). These architectures can roughly be divided into traditional

(not neural network) machine learning architectures and neural networks. Examples of

traditional models include models such as linear and logistic regression, support vector

machines, decision trees and ensemble methods like random forests. Neural networks are

models made up of one or more layers of artificial neurons, which are processing units

inspired by biological neurons. In this thesis we will refer to the traditional models as

“shallow” and the neural networks (more than one layer) as neural networks, though neural

networks without several hidden layers are often also referred to as “shallow” . The various

ML architectures have different advantages and limitations. It is not always obvious what

architectures perform the best for any given problem (“Machine Learning in Bioinformatics:

A Brief Survey and Recommendations for Practitioners” 2006; Libbrecht and Noble 2015).

19

https://paperpile.com/c/AVoWpq/RfHS
https://paperpile.com/c/AVoWpq/7mPl
https://paperpile.com/c/AVoWpq/hCw8
https://paperpile.com/c/AVoWpq/hCw8
https://paperpile.com/c/AVoWpq/hCw8
https://paperpile.com/c/AVoWpq/BHT6+uR40
https://paperpile.com/c/AVoWpq/BHT6+uR40


ML architectures differ in their ability to model nonlinearities and interactions between input

features (Christoph Molnar 2022c; Dreiseitl and Ohno-Machado 2002; Tu 1996). Feature

interactions refer to how the value of one feature can influence the effect that another feature

has on the final prediction. A logistic regression model can only handle each input feature

separately and is not able to capture nonlinear relationships between the input features unless

this relationship is provided as a separate feature (Dreiseitl and Ohno-Machado 2002). In the

case of classification models like logistic regression, they work well when the classes are

linearly separable based on provided features. Tree-based models or neural networks (Tsang,

Cheng, and Liu 2017) on the other hand are able to capture dependencies between the

individual input features.

Tree-based models (including decision trees and random forests) and neural networks capture

nonlinearities in different ways. Decision trees make predictions through a series of questions

parting the data points into nodes with increasingly homogenous data points based on the

answer. The series of questions forms a hierarchy with the end nodes (termed leaf-nodes)

determining prediction (Kingsford and Salzberg 2008). Random forests are ensemble models

which base decisions on averaging the outputs of multiple decision trees. Decision trees can

be prone to overfitting. Random forests leverage the ability of individual trees to fit well to

subsets of the data to build models which are typically more robust (Tang, Garreau, and von

Luxburg 2018). Because of the hierarchical nature of decision trees (the next question is

determined by the answer to the previous) they are capable of modeling feature interactions.

The ability of feed-forward neural networks to model non-linear interactions comes from

hidden layers of several neurons whose output is decided by a non-linear activation function

(Tsang, Cheng, and Liu 2017). The artificial neurons in the network take the weighted sum of

the input features (plus bias) and apply an activation function. A single neuron can resemble

models like logistic regression (Raschka and Mirjalili 2019) (though the activation function

may not be sigmoid). Without introducing a nonlinearity, the artificial neuron behaves like a

linear model. A neural network with at least one hidden layer requires a nonlinear function

applied to each hidden layer, otherwise it could be seen as equivalent to a linear model (S.

Sharma, Sharma, and Athaiya 2020) (a logistic regression model if we assume that the output

layer contains a sigmoid function).
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Convolutional neural networks (CNNs) are a special type of feed forward neural networks

particularly developed to capture local feature patterns. CNNs were inspired by the

organization of neurons in the part of the visual cortex which process visual information

(Fukushima 1980). They contain convolutional layers, consisting of filters which perform

convolutions between sections of the input and a kernel with learnable weights. The results

from each convolution are stored in a feature map and passed on to the next layer.

Non-linearities in CNNs are introduced through non-linear activation functions and non-linear

pooling operations (Zhang et al. 2021; Gulcehre et al. 2014; Tsang, Cheng, and Liu 2017; Wei

et al. 2019). CNNs are popular models in several fields including biomedical applications, and

predicting antibody-antigen binding (Mason et al. 2021). Due to their ability to capture local

patterns they have also been used for data mining purposes in bioinformatics research like

mining regulatory motif discovery in genomics (Quang and Xie 2016; Alipanahi et al. 2015).

5.1.16 Machine Learning for Antibody-Antigen Binding Prediction

It has long been an open question whether or not antigen-antibody binding prediction could

even be possible (Akbar et al. 2021). It has often been taught that the complexity of the task

was too great for reliable prediction, because of the large amount of possible variation in

antibody sequences and in antigens, and the comparatively small size of available datasets.

There is also a lack of data on antibody-antigen binding due in part to experimental assays

only isolating antibody sequences with high and low affinity, without further knowledge of

affinity or the paratope-epitope interface. However, methods have been developed to predict

paratope-epitope binding interfaces (Pittala and Bailey-Kellogg 2020). A study (Akbar et al.

2021) has shown that antigen-antibody interaction can be predicted using a simplified

encoding of antibody-antigen interactions (called structural interaction motifs), creating a

vocabulary of antibody-antigen interactions with reduced complexity. The existence of a

reduced complexity vocabulary describing antigen-antibody binding suggests that there are

universal rules for antibody-antigen binding that can be learnt from small-scale structural

datasets (~825 structures).
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The ability to identify candidate antibodies with increased affinity and good developability

profiles (according to estimated developability parameters), using a CNN has been

demonstrated on binders of the HER2 antigen (Mason et al. 2021). The authors were able to

increase the number of promising candidates using the CNN to filter a large number of

potential candidate sequences. The authors showed experimentally that 30 of the selected

sequences had increased affinity to HER2, demonstrating the usefulness of in silico prediction

tools for this purpose.

5.1.17 Benchmarking

Benchmarking refers to comparing strategies based on chosen metrics, often in comparison to

a chosen benchmark metric (Olson et al. 2017; Reichenbach et al. 2019). In ML, modeling

approaches are compared based on performance according to metrics of prediction correctness

(though other metrics can be used such as speed) (Thiyagalingam et al. 2022). Examples can

include metrics like accuracy, recall and precision for classification tasks. Benchmarking can

refer to comparison between ML architectures, but it can also refer to comparison between

other factors like encodings or different methods of splitting the data. In this thesis we will be

benchmarking combinations of classification schemes (labeling of the classes), feature

encodings and model architectures.

In order to get reliable estimates of prediction metrics, the predicted labels have to be

compared to ground truth labels. Ground truth is referring to parameters of the data that are

known. In ML ground truth typically describes information that is known to be true, which is

used to evaluate the model inferences (Techopedia 2017). As an example, for classification of

images (based on what they portray) true class-labels can be determined by empirical

observation.
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5.1.18 Simulated Data

Data that is generated in silico to replicate real-world data on a particular phenomenon,

(simulated data), can be used to evaluate the effectiveness of ML methods. Simulated data has

been used to guide methodological development when large scale ground-truth datasets have

not been available (Prakash, Shrikumar, and Kundaje 2022; Earl et al. 2014; Weber et al.

2020). The premise of using simulated data is that simulated data is capable of reproducing

important characteristics of the data that the methods are designed to be used on. With

simulated data, the process behind how the data is generated and the features of the data is

known. For the benchmarking of ML methods to predict antibody-antigen specificity, the

simulation software Absolut! was created (Robert et al. 2022).

In order to overcome the lack of data available for benchmarking ML approaches for

prediction of various levels of antibody binding Absolut! was made to allow for

unconstrained generation of data on antibody-antigen complexes (Robert et al. 2022). A

simplification of antibody-antigen binding, the simulations estimate binding energy between

discretized lattice representations of antigens and CDR sequences of fixed length. Through

exhaustive docking, the best folding pose of the antibody onto the antigen is identified, and

the energy calculated based on experimentally derived energy potentials. Absolut! is a tool to

enable investigation into different methods and approaches, with the data capturing important

levels of biological complexity. Such levels include biological amino acid composition and

topology of the antigen, amino acid composition and sequential dependencies as a result of

using experimentally derived sequences, and reactivity networks similar to ones observed

with experimental data. That conclusions from Absolut! are transferable to real-life

experimental data was validated for a select number of tasks, such as ranking models for

predicting affinity to the cancer antigen HER2 and evaluating the impact on data

augmentation on pose classification.
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5.1.19 ML-Based Prediction of Antibody Polyreactivity

When it comes to ML prediction of polyreactivity, one in silico pipeline has been proposed

using a Support Vector Classifier (SVC) on centered positional matrices representing CDR

sequences experimentally determined to be polyreactive (Boughter et al. 2020). The

antibodies included in the study were evaluated for polyreactivity using ELISA. The authors

proposed that polyreactivity was due to a neutral binding surface. The reported accuracy of

the SVC model was above 0.75. However, the utilized data exclusively included antibodies

that showed greater levels of non-specific binding (4 out of 4-7 antigens) compared to

antibodies binding none of the antigens in the ELISA arrays.

It is not clear which kinds of ML architecture or feature encodings would be good for

predicting polyreactivity. To further improve machine learning tools for polyreactivity

prediction, benchmarking approaches could help solve this problem.

5.1.20 Works on ML Prediction of Polyreactivity Published During this Project

In a recent preprint, (Harvey et al. 2022), the authors used ML methods to predict (AUC ~0.8)

and modify the degree of polyreactivity in nanobody sequences. The most successful method

used on data of size 110,931 was logistic regression on one-hot encoded sequences. When the

size of the dataset was increased to > 2 million clones they found comparable AUC for an

RNN and CNN model. In their study they designed the training and test datasets in such a

manner that there were not highly similar sequences to the training sequences included in the

test data.
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5.1.21 Data Leakage

The suitability of a ML method is usually determined by the performance on chosen accuracy

metrics when generalizing to unseen data (generalization). When there are samples in both the

training and test dataset which are very similar, it is hard to know if a trained model has

reached high accuracy by learning generalizable patterns (desirable), or if it has overfitted

elements in the training dataset and predicts based on similar known elements in the training

(undesirable). Sequence similarity can pose problems for ML predictions of protein functions

based on sequences (Petti and Eddy 2022). In particular, if the function that is being predicted

(for instance polyreactivity), is tied to or heavily correlated with similarity between

sequences, high accuracy due to similarity could become a problem. Having exceedingly

similar members of the same protein family separated into training and test data can be seen

as a form of data leakage (information in the test dataset was already given in the training

dataset), and having a lot of highly similar sequences in training and test datasets can lead to

problems of poor generalization.

Problems of similarity biasing protein function predictions is often due to the evolutionary

relationship of sequences within the same protein-family (Petti and Eddy 2022). Members of

a protein family typically share biological functions. Naive antibody sequences have not yet

evolved by affinity maturation. Of note, the hosting lab has shown on Absolut! data that

very similar antibody sequences can bind to different antigens (Robert et al. 2022). However,

it is not to our knowledge known whether polyreactivity is predictable by similarity (neither in

in silico data nor in real-world experimental data). Exploring how similarity may bias

polyreactivity prediction would help elucidate whether model performance could be due to

similarity or to what extent the model learns generalizable patterns.
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5.1.22 Interpretability

The main task of ML is usually to find a good approximation of a function, which does not

necessarily need an explanation for high accuracy. However, it can often be advantageous to

examine the model more closely and to find how a model achieved high accuracy (i.e. input

patterns that were learnt by a model) (Lipton 2018). Indeed, in domains where trust in the

model predictions is imperative, traditional metrics such as model accuracy is often not

sufficient and there is a greater emphasis on model interpretability and explainability (Ahmad,

Eckert, and Teredesai 2018). Interpretation of the model can be useful in order to examine

potential biases which may lead to overfitting (an example is when an image-based animal

recognition model recognizes wolves based on the background snow) and to better understand

the underlying problem and use the insight to inform further inquiry.

In order to facilitate such examination the model would have to be somehow interpretable.

That is, there would have to be a way to interpret how the model makes a decision in a way

that is understandable to humans (Gilpin et al. 2018). Some models are typically considered

interpretable, such as short decision trees and logistic regression (Christoph Molnar 2022c).

These models possess internal model features that can be extracted to directly interpret the

model, such as the coefficients of linear models (Christoph Molnar 2022a). Other models are

more challenging to interpret. Models which are challenging to examine are traditionally

called “black boxes''. Neural networks are examples of such models. There have been several

methods proposed for extracting feature attributions (i.e., giving a weight on the features of a

given input element, related to the contribution of those features in the model output). These

methods aim at ascertaining how the features of an input contribute to the output and what

features the model focuses on when making predictions. One of these is called integrated

gradients (Sundararajan, Taly, and Yan 2017), which computes the average over gradients for

an output with respect to linear interpolations between the input and an arbitrarily defined

baseline. With integrated gradients, elements of input with a high impact on the output are

attributed a higher gradient, which can help localize predictive patterns in the input elements.
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6 Aim of the Thesis

The overarching goal of the thesis is to benchmark supervised ML classifiers for antibody

polyreactivity in terms of how well they classify sequences with varying levels of

polyreactivity. Benchmarking classification algorithms can help elucidate how best to predict

polyreactivity. We are interested in what types of model architectures work well for these

tasks and what types of sequence features may be predictive. Specifically, we will focus our

attention on the following goals.

6.1 Goal 1: Comparing combinations of model architecture and sequence encoding for

creation of supervised ML models to predict polyreactivity

The first aim we will pursue is comparing ML architectures for prediction of polyreactivity

based on > 100.000 sequences. Which model architectures are best for predicting

polyreactivity is an open question. We will compare architectures, both traditional “shallow”

models as well as neural networks. Polyreactivity will be defined by the number of antigens

bound by the sequences between 142 proteins, as binary or multiclass problems. The macro f1

scores achieved by each model will be examined as well as confusion matrices.

1. Between a selected list of ML model architectures, how do these models compare

in their ability to correctly classify antibody CDRH3 sequences based on

observed levels of “polyreactivity”?

In order to evaluate what type of sequence features are important for predicting polyreactivity

we will use different encodings, primarily amino acid composition and one-hot encoding. We

will also compare the performance of models capable of capturing complex feature

interactions in comparison to models that are not (i.e. logistic regression).

2. Does providing explicit positional information improve the models ability to

predict levels of polyreactivity?

3. Is polyreactivity prediction improved by using models that capture nonlinear

relationships between features?
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4. In the interest of identifying minimal pattern length predictive of polyreactivity,

how does prediction accuracy change in response to increase in the possible

length of recognized patterns?

6.2 Goal 2: Investigate overestimation of model generalizability due to close similarity

between sequences in the training and validation datasets (Data Leakage)

For the models to be able to generalize to unseen sequences they should be able to learn

functionally relevant patterns and not predict based on functionally irrelevant similarity. We

will evaluate whether the performance of selected models are due to data leakage, referring to

similarity between training and validation/test sequences in terms of Levenshtein distance

(LD).

5. Is the predictive power of the models dependent on close similarity in terms of

LD to already observed sequences?

6.3 Goal 3: Look into interpretability of select models

Finally, we will look into interpretability of the selected models. Demonstrating how the

logistic regression model can be interpreted and, in accordance with the goal of determining

what features are most predictive, examining how the models make predictions. To look into

interpretability of the neural networks we will extract feature attributions and determine if the

integrated gradients method can find relevant attributions.

6. What type of sequence features does the logistic regression model emphasize

when predicting polyreactivity?

7. Can attribution methods, like integrated gradients, capture sequence features

which impact the prediction of the model?
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7 Results

7.1 Goal 1: Comparing combinations of model architecture and sequence encoding for

creation of supervised ML models to predict polyreactivity

7.1.1 Formalization of Antibody Polyreactivity as an ML Problem

In this work, we focus on predicting the degree of antibody polyreactivity from the sequence

of their CDRH3 (treated as 11-mers), using different ML strategies. In order to predict

polyreactivity, the problem had to be formulated into an ML task. There could be different

ways to define antibody polyreactivity in terms of defining the model outputs.

Table 1: Formulation of problem as a machine learning task We decided to approach the problem of
predicting polyreactivity by predicting binding to several antigens among many (unspecific) rather than binding
to particular antigens.

Aim: Input-output:

Predict the degree of (unspecific)
polyreactivity of an antibody, as a measure of
how many antigens it is estimated to bind

CDRH-3 11-mer sequence, → ML →

class (based on degree of polyreactivity)

Formalizing a “degree of polyreactivity” requires a quantitative definition. Antibody

polyreactivity generally refers to binding several structurally different or sequence unrelated

antigens (i.e., not homologous nor with highly similar sequence). There are different

polyreactivity properties of an antibody that could be predicted. We decided to predict what

we call “degree of polyreactivity” as the number of antigens bound by an antibody, among a

predefined set of antigens. Predicting other levels of polyreactivity, such as predicting the

paratopes or epitopes to the multiple bound antigens or measures of dissimilarity between the

epitopes that one antibody binds, would also be possible and is left for future work. In order to

predict “degree of polyreactivity” based on the number of bound antigens we had to further

define the task based on how the number of antigens should correspond to a label.
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We base our work on an in silico database of antibody-antigen complexes containing 142

peptide/protein antigens. The included antigens are non-redundant, meaning that they

represent different proteins (they are not closely related mutants of the same protein) or they

are treated as different proteins by the framework (see Methods). For these antigens the

binding energy of 6.9 million CDRH3 sequences has been assessed (Robert et al. 2022)

(further information to be found under Methods). The binding energy was calculated by

stretches of 11 AAs of the CDRH3s (11-mers). In this work we are working with the 11-mers

that achieved suitable binding energy per a threshold as binders. To get a label by which the

CDRH3 sequences could be classified based on “degree of polyreactivity” we had to decide a

threshold for how many antigens the sequence had to bind in order to be considered

“polyreactive”.

The number of antigens, of any given list of antigens, an antibody has to bind to be

defined as polyreactive is not known (Boughter et al. 2020). To our knowledge, there does

not exist an agreed upon definition of polyreactivity that can be extended to binding between

any selection of antigens. There are different possible ways to define polyreactivity based on

the number of bound antigens between the 142 antigens included. A first possible

formalization is to consider any 11-mer that binds more than one antigen as polyreactive.

Alternatively, polyreactivity can be defined as binding to x number of antigens where x is a

number greater than 2.
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It has been proposed that antibodies can bind more than one antigen in a

“specific”-manner (Cunningham et al. 2021). In that case not demonstrating broad reactivity

but rather a pattern of binding two or few antigens to the exclusion of others. Such could be

the case in our data as well. One can also define a third group of antibodies as oligo-specific,

where the antibody can bind to a small number of unrelated antigens (Notkins 2004). It may

also be that polyreactivity is best described through more than two or even tree classes but is

for example better defined through multiple classes with increasing polyreactivity. In the

previously published elife paper (Boughter et al. 2020) looking at prediction of polyreactivity

only the most specific and most polyreactive antibodies were included in the study to avoid

confusion due to varying levels of polyreactivity. Since the purpose of their analysis was to

ascertain the possibility of predicting polyreactivity the removal was deemed to not be a big

issue. In this work we want to include all levels of polyreactivity as removing sequences with

intermediate levels of polyreactivity may distort measures of model accuracy. The reported

accuracy would not reflect how well the models work on potentially more difficult to classify

“borderline” cases. To investigate these different possibilities, several binary and

multiclass tasks were formalized for antibody polyreactivity, and datasets were created

accordingly, differing by the definition of polyreactivity classes (Figure 2).
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Figure 2: Formalization of antibody polyreactivity prediction tasks as classification problems, and size of
the classes within the dataset available for each task before balancing. (A) definition of four ML problems
varying in their definition of classes, depending on the degree of polyreactivity of antibodies. (BCDE) Number
of available sequences for each class of each ML problem. The numbers above each column represents the
number of sequences in the class, rounded to the nearest 1000. Except for in sublot E where they were rounded to
the nearest 10.000.D. B) The size of classes in data classified as per task "strict polyreactivity". C) The size of
classes in data classified as per task "non-strict polyreactivity". D) The size of classes in data classified as per
task "coarse multiclass". E) The size of classes in data classified as per task "finer grained multiclass".

32



The separation between classes was manually defined in order to have minimal

inequality of class size while fulfilling the role of the datatask (Figure 2). Emphasis on

class size equality had the purpose of avoiding defining classes with very few sequences. The

classes in "strict polyreactivity" (Figure 2) were almost balanced to begin with, the specific

antibodies making up about 40% of the dataset (446k vs 584k which is approximately 0.43).

In "non-strict polyreactivity" the polyreactive sequences made up a bit less than 25% of the

data as the decision boundary was decided by the third quartile of the binding distribution. For

the “finer grained multiclass” task, the smallest number of sequences in any class was 12k,

which would leave 12k sequences for each class after balancing. The exact number of

sequences in each class is given in Table 3 (see Methods).

7.1.2 Amino Acid (AA) Composition differs between Polyreactivity Classes

Figure 3: Amino acid composition correlates with levels of polyreactivity. Difference (subtraction) in
expected occurrence of each amino acid in one class (higher polyreactivity) from another (lower polyreactivity).
The y-axis denotes the classes being compared. Comparisons are sorted by datatask (left of the y-axis). For the
finer grained task the number represents degree of polyreactivity from 1 (specific) to 5 (most polyreactive).
Amino acids which were more common in polyreactive sequences are colored in red and those were more
frequent in specific sequences blue.
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We first looked for differences in amino acid (AA) occurrences between classes which

could potentially be predictive of polyreactivity. To this end we quantified the AA

composition of sequences depending on class according to the defined tasks (Figure 3). We

show the pairwise enrichment of AAs between two classes where the more polyreactive class

of the two is compared to the more specific one. The enrichment was calculated as the

expected occurrence of the AA in sequences of the more polyreactive class subtracted by the

expected occurrence in the more specific class. The expected occurrence was calculated as the

mean occurrence. The results thus represent the increase in the number of times a particular

residue would be expected to occur in sequences that are more polyreactive vs less.

AA composition differed between all classes that were compared (Figure 3). We observed

that there were differences in expected occurrence of several residues for all compared

classes. The expected AA occurrence differed between classes for most residues. These

differences in AA composition could potentially be leveraged to predict degree of

polyreactivity. Expected leucine occurrence represented the largest enrichment of any AA

within sequences of the more polyreactive classes. Though the expected occurrence of

Leucine was high in all classes (see Appendix), Leucine was consistently more common in the

sequences of the more polyreactive class. The direction of enrichments were largely consistent

across class comparisons.

Which AAs were enriched or depleted in more polyreactive sequences remained mostly

consistent between all class comparisons. Expected occurrence of Leucine (L),

Phenylalanine (F), Tryptophan (W), Isoleucine (I) and in most cases Valine (V) was also

higher in increasingly polyreactive sequences. Expected occurrence of Alanine (A), Aspartic

acid (D), Glycine (G), arginine (R), Serine (S) and Tyrosine (Y) was higher in more specific

sequences. The exceptions being the differences in Valine occurrence between class 4 and 5 as

defined by the “finer-grained” multiclass task, and Tyrosine between specific vs oligoreactive

sequences per the coarse grained multiclass task, compared to all other comparisons.
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The magnitude of the differences varied between the different polyreactivity classes. As

an example, the difference in expected Leucine occurrence was larger between the classes in

"non-strict polyreactivity" than "strict polyreactivity". They were smaller between class

“spec” and “oligo” then they were between class “oligo” and “poly” for task “coarse grained

multiclass”. For the “finer grained polyreactivity” task the magnitudes were generally smaller

between class 2 and -3 as well as 3 and 4 then they were between class 1 and 2 as well as 4

and 5. The latter comparison yielded the largest differences. The differences in AA

composition were in general larger when the most polyreactive classes were included

(“polyreactive” or class 5), which were also the classes with the broadest range of- and

extreme high values, in terms of number of antigens.
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7.1.3 Classifying Polyreactivity Based on Leucine Content Left Room for Improvement

We were interested to see whether any single amino acid occurrence would be a good

predictor of polyreactivity. Since leucine was the AA which displayed the biggest frequency

difference between classes, we looked at how the distributions of leucine content differed for

the classes of each task and assessed whether leucine could be a good predictor of

polyreactivity.

Figure 4: Leucine content is not sufficient to predict polyreactivity. ABCD) Histogram of how many Leucines
occur in the CDR3 sequences of each class based on how the classes are defined (datatask).E) Macro averaged
f1-score, precision and recall for logistic regression trained using only Leucine content as predictor. The
horizontal axis represents each datatask ("strict polyreactivity": 1A, "non-strict polyreactivity": 1B ,”coarse
multiclass”: 2B2, “finer grained multiclass”: 2C2.)
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Polyreactive sequences often contained a similar number of leucines as more specific

sequences. The distributions of Leucine content (Figure 4 A-D) within each class overlap. If

Leucine content is high then the sequence is more likely polyreactive, however most

polyreactive sequences contain a similar number of Leucines as observed in specific

sequences (Figure 4 A and -B). A similar pattern can be observed for the multiclass

classification schemes (Figure 4 C and -D). The leucine content distributions of the classes at

each extreme of reactivity in "finer grained multiclass" were more separated, however even

between these classes there was overlap.

Leucine content was not a good predictor of polyreactivity in and of itself. For binary

classification of low vs high polyreactivity (Figure 4 E) the logistic regression achieved

precision and recall of 0.65 which leaves room for improvement. For multiclass classification

the model performed about as well as random (“coarse multiclass”) in terms of f1-score,

precision being lower than recall. For the finer grained classification task the model achieved

a low precision of 0.11. This was possibly due to the model not predicting any instances of

certain classes as the distributions overlapped.

No other single amino acid occurrence separated the classes better than Leucine. The

distributions of all AA frequencies separated by class, for both binary classes and "coarse

multiclass", were included (see Appendix). No individual AA content distributions clearly

separated the classes. Thus, no single AA frequency looked to be a good predictor by itself.

We then later assessed whether AA composition as a whole (not only one AA) would be

enough to classify the sequences using ML.
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7.1.4 AA Enrichment in Polyreactive Sequences is Position Dependent

Figure 5: Difference in amino acid frequency between classes depending on the position in the antibody
11-mer sequence. A and B) Difference between the number of polyreactive sequences containing each residue
(x-axis) at each 11-mer sequence position (y-axis) compared to specific sequences. The figures display
differences per the “strict polyreactivity” and “non-strict polyreactivity” tasks respectively. C) Difference in
sequence logos between strict polyreactivity classes where the height of each column on the y-axis displays
Jensen-Shannon (JS) divergence. The size of the letters represent the probability of that amino acid occurring
within the distribution associated with one class compared to the other (enrichment) normalized by the sum of
the absolute probability differences in the distributions (“normalizedDifferenceOfProbabilities: Normalized
Probability Differences in DiffLogo: DiffLogo: A Comparative Visualisation of Biooligomer Motifs” 2020),
where the distribution is the probability distribution of each amino acid occuring in the given position (one
direction of the column from the midline). The distributions above the midline represent probability distributions
for each position in specific sequences and below the midline the same for polyreactive). D) JS divergence
between non-strict polyreactivity classes. Similar to C. E) Similar to A but displaying differences relative to how
frequently the residue (x-axis) occurs in that position (y-axis) overall. F) Same as E for “non-specific
polyreactivity”.
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Analysis of AA composition dependent on position revealed that the enrichment in AA

content within polyreactive sequences differed between positions (Figure 5). Besides the

AAcomposition across the entire length of the 11-mers we wanted to look at the differences in

AA composition for each position. Enrichment refers to the number of polyreactive sequences

in the dataset, depending on the task, that contain the given feature (contained x AA at y

position) subtracted by the number of specific sequences with the same feature. We observed

that the AA enrichments differed between positions both in terms of magnitude and whether

the residue was enriched or depleted in polyreactive sequences.

The enrichments observed in polyreactive versus specific sequences, defined by “strict

polyreactivity” (Figure 5A) and “non-strict polyreactivity” (Figure 5B), showed similar

positional AA composition. Examples of these similarities include the enrichment in Leucine

and Phenylalanine. While not taking the total frequency of observed occurrences into account,

Leucine was enriched in polyreactive sequences between position 1 and 8 without observable

enrichment at later positions (Figure 5 A and -B, -E and -F). Phenylalanine was enriched at

positions 1 to 9 in both cases with the greatest difference at the eighth position (Figure 5 A

and -B). Polyreactive sequences had enriched V and W at the end position and D at the 9th as

well as Y at the 8th and 10th position. They also displayed lower C at the 1st, A at the 1st and

2nd and R at the first 3 positions (but enrichment of R at the 4th to 7th position). While there

were some differences between the positional enrichments in polyreactive sequences

depending on the task they shared marked similarities.

Taking into account the total occurrence of the feature in the dataset displayed features

depleted in polyreactive sequences. When the enrichments were divided by the observed

frequency of the feature the resulting heatmaps (Figure 5E and -F) mainly differed from the

heatmaps showing total enrichments (Figure 5 A and -B) by highlighting the features which

were depleted in polyreactive sequences. Examples of such features included Glutamate (E),

Glutamine (Q) and Lysine (K) across sequence positions. These features did not occur as often

in the sequences of any class, but were more likely to appear in specific sequences.
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Leucine and to lesser extent phenylalanine and tryptophan dominated polyreactive

sequences (Figure 5), the majority of residues were depleted in polyreactive compared to

specific sequences at most positions. Both the enrichment heatmaps and JS divergence plots

show that most residues are depleted in polyreactive sequences throughout the sequences. At

the positions in the middle of the sequences the enrichments in the polyreactive sequences are

dominated by a few residues (Figure 5C and -D), whereas there are more residues

characterizing specific sequences. Generally there were fewer residues characterizing

polyreactive sequences at each position.

The positions with larger JS divergence contain more information in terms of difference

between specific and polyreactive sequences. The JS divergence was higher at positions in the

beginning of the 11-mers (i.e., greater divergence between distributions of AAs at these

positions) especially at the second and third position, and became smaller towards the end of

the sequences (reduced to less than a half/a third of it is at the third position). At the start

positions of the 11-mers where the divergence was largest L, F and I among other residues

were enriched in polyreactive sequences whereas C, A and R were depleted.

The ends of the CDRH3 sequences were unequally distributed between the classes. Both

the JS divergence plots and the heatmaps (Figure 5) indicate that it is more common for

specific sequences to contain the start (CAR) signal and a lesser tendency for end motifs

(DVW/DYW) to be more common in polyreactive sequences. CAR is the motif characterizing

the beginning of the CDRH3 loop, and it typically ends with the motif DYW or DVW. It

could appear that there was preferential usage of 11-mers from the end of the CDRH3 among

the polyreactive sequences rather than from the beginning.

7.1.5 Logistic Regression Trained on One-Hot Encoding Reaches ~0.9 Macro f1 score

In order to examine whether the AA composition or one-hot encoding of the sequences is

enough to predict its degree of polyreactivity, we evaluated the performance of several

traditional shallow learning models. Predictions were made based on either the 11-mer AA

composition or the one-hot encoded sequence. All models were trained and tested on their

ability to make correct predictions based on both encodings separately. Macro f1 scores were

recorded for each combination of shallow model, encoding and classification task (Figure 6).
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Figure 6: Positional information allows for higher prediction f1 score than amino acid composition alone
Macro f1 of shallow ML models, using the amino acid composition (A) and one-hot encoded sequences (B),
either macro f1 on the validation dataset (gray) or the test dataset (colors). Macro f1 of controls predicting
shuffled labels is included in black. Facet columns represent the different data tasks (strict:
“strict-polyreactivity”, non-strict: “non-strict polyreactivity”, coarse: “coarse multiclass”, finer: “finer grained
polyreactivity”).
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For all tasks, the models outperformed the randomized controls, which tested macro f1

of the models on randomized class labels (Figure 6). When labels were shuffled the models

achieved about a 0.5 macro f1 score for both binary classification tasks, about 0.33 for the

“coarse multiclass” task and 0.2 for the “finer-grained multiclass” task. These scores were

expected due to the chance of guessing the correct class at random for the given number of

classes. When the labels were not shuffled the macro f1 of each model were higher than the

control by a wide margin (> 0.2).

The macro f1-score between models was depending on the task. The macro f1 was lower

for the multiclass tasks and highest for the “non-specific” polyreactivity task. The macro f1

scores were the lowest for task “finer grained multiclass”, the task with the most classes.

Increases in macro f1 between architectures were similar in terms of ranking for all

tasks.

F1 scores were highest when classifying the sequences based on one-hot encoding.

Adding explicit positional information (one-hot encoding) impacted the performance of the

models. The macro f1 scores of the decision trees decreased, but the macro f1 of the random

forests increased for all tasks but “non-strict polyreactivity” and for all tasks macro f1 of

logistic regression increased. The increased macro-f1 score of the logistic regression model

allowed for improvement of macro f1 score overall.

For all tasks, logistic regression was the best at predicting polyreactivity in terms of

macro f1 score, based on both encodings. Logistic regression achieved the highest macro f1

score on the test data regardless of the encoding used or the task the classes were defined by.

However, when AA composition was used, the increase in f1 from that of decision tree and

random forest was smaller than when the models were trained on one-hot encoding.

Classifying polyreactivity based on AA composition, logistic regression achieved about 0.01

point higher f1 (Figure 6 A). When the given encoding was one-hot sequences, the logistic

regression achieved more than 0.01 point higher macro f1 for all tasks. The largest increase

was observed for task “non-strict polyreactivity”. Logistic regression achieved an increased

score of almost 0.09 above the next-best model (Figure 6 B). The highest performing

combination of architecture and encoding on all tasks, logistic-regression trained on one-hot

encoding, achieved a macro f1 score of 0.83, 0.89, 0.75 and 0.59 on the different tasks.
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While the macro f1 scores were somewhat different on the test dataset than they were with

cross-validation (Figure 6) the scoring rank between models were similar. With the exception

of models trained on AA-composition for task “coarse multiclass” where the ranking was

similar to the other tasks on the test data but not the validation data. The decision trees trained

on the one-hot encoded sequences performed the worst.

In general, we observed that the AA composition was able to separate the classes with

high accuracy for binary classification and improvements of ~0.30 above random using

all models for multiclass classification (Figure 6). The shallow methods approached 0.90

macro f1, with the complete balanced dataset (the size of the dataset was not reduced beyond

balancing classes), for the highest scoring combination of task, encoding and model

(Figure 6). The highest score was observed for logistic regression, predicting

“non-specific” polyreactivity based on one-hot encoded sequences.
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7.1.5.1 Performance of binary classification were comparable between classes and confusion

occurs most often between adjacent classes in multiclass classification

Figure 7: Shallow Learning models performed comparably well predicting the positive and the negative
class. Confusion matrices showing the number of samples of each class (vertical axis) which were given each
predicted label (horizontal axis), divided by the total number of samples in the true class. The numbers reflect the
results on the test dataset. A) Confusion matrices for model predicting task “strict polyreactivity” using amino
acid composition. B) Confusion matrices for model predicting task “non-strict polyreactivity” using amino acid
composition. C) Confusion matrices for model predicting task “strict polyreactivity” using one-hot encoded
sequences. D) Confusion matrices for model predicting task “non-strict polyreactivity” using one-hot encoded
sequences.

For the binary classification tasks, the ability of all models to identify sequences of both

classes was close to equal (Figure 7). The random forest, decision tree, and logistic

regression (trained on one-hot encoded sequences) were somewhat more successful at

predicting specific sequences for datatask "strict polyreactivity" (Figure 7 A and C). The most

notable differences were between the fractions of polyreactive sequences that were correctly

predicted by the decision trees compared to the specific sequences for the “strict

polyreactivity” task. The decision trees were less successful in correctly identifying the

polyreactive sequences, with 5% and 7% fewer of the polyreactive sequences being correctly

classified when trained on AA composition or one-hot encoding respectively. The logistic

regression trained on AA composition was about equally successful at predicting the true

labels of both classes. For datatask "non-strict polyreactivity" (Figure 7 B and D) all models

except the decision tree trained on one-hot- encoding were better at classifying polyreactive

sequences, though the difference was small (differences of ~1-2%).
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Figure 8: Trained shallow ML models for multiclass polyreactivity prediction display greater confusion
between adjacent classes. Confusion matrices showing the fraction of samples of each true class (vertical axis)
that were given a particular predicted class (horizontal axis) by each model using amino acid composition and
sequence. The results reflect prediction of test data labels. A) Confusion matrices for “coarse multiclass”,
encoding is specified above. Each tile represents an intersection between the true class of the samples and the
predicted label. B) Confusion matrix datatask "finer grained multiclass".
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The models trained for the multiclass classification tasks were more successful at

separating the classes at each extreme than they were in predicting the sequences

belonging to each intermediate class (Figure 8). The gray was centered around the diagonal.

In other words, most confusion was observed between classes adjacent in terms of the number

of antigens bound by the 11-mers, with decreased confusion between classes that were farther

apart in terms of the number of antigens bound by the class members. While the logistic

regression was better at correctly predicting the sequences belonging to class 1, 3, 4, and 5,

the decision tree and the random forest were somewhat better at classifying the sequences

belonging to class 2 with one-hot encoded data (Figure 8 B). For multiclass tasks the classes

were easier to separate with increased distance in the number of antigens bound by the

sequences within them.
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7.1.6 Using Neural Networks Improves Prediction Score

As high model performance could be reached using traditional shallow models we wanted to

know if using a feed-forward artificial neural network (FNN) (1 or more layers) or CNN could

further improve macro f1. Improved macro f1 could imply the existence of complex patterns

in the sequences that are not captured by the shallow models.

Figure 9: Neural Networks improve prediction performance Macro f1 for all models trained and tested on
data for "non-strict polyreactivity". The balanced training set was used to train the model and they were tested on
the unbalanced independent test set. The gray bars represent macro f1 on the balanced training dataset. The black
bars represent mean macrof1 from 10-fold cross-validation on shuffled labels.

Macro f1 score of the FNN and CNN both reached approximately 0.93 on the test dataset

(Figure 9) was higher than logistic regression. The macro f1 scores represented an

improvement in macro f1 score of ~0.04 above logistic regression. Potentially implying the

existence of more complex patterns in the data. The single layer neural network (FNN)

performed the best with a macro f1 of > 0.93.
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7.1.6.1 Neural Networks increased correct prediction of both classes

Figure 10: Neural networks increase correct prediction of both classes defined by “non-strict”
polyreactivity. Confusion matrices showing the number of samples of each class (vertical axis) which were
given each predicted label (horizontal axis) by one of the neural networks, divided by the total number of
samples in the true class. The numbers reflect the results of prediction on the test dataset.The name of the model
is given above the confusion matrices.

Compared to logistic regression, both neural networks increased the fraction of

sequences that belonged to each class that were correctly predicted (Figure 7) (Figure 10).

The gain was larger for sequences of the polyreactive class (0.95/0.96 vs 0.91) as opposed to

the specific class (0.94/0.95 vs 0.93). Both the CNN and FNN were more successful at

identifying polyreactive sequences compared to specific sequences (Figure 10). The fraction

of sequences of each class that were correctly predicted was near equal.
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7.1.6.2 Differences between models were significant

In order to verify that the differences between models were significant, McNemar's test

was used, testing all model combinations on the same task. The test specifically looks at

whether the marginal differences between two trained models are significant. For two models

that are being compared (Model 1 and Model 2) the marginal difference refers to the number

of samples that Model 1 got right and Model 2 wrong and vice versa.

For the selected task (“non-strict polyreactivity”) all differences were significant at 0.05

(and 0.01) after adjusting for multiple testing. The adjusted p-values were overall low (see

Appendix).

For task "strict polyreactivity" all tests were significant except for the comparison between

logistic regression trained on AA composition vs random forest trained on one-hot encoded

sequences. All models were different from "coarse multiclass", and from “finer grained

multiclass” all models differed except for the same models as in "strict polyreactivity"

(logistic-regression with AAcomposition and random forest with one-hot encoding).

7.1.7 Interpretation of CNN accuracy with varying kernel sizes reveals that high accuracy can

be achieved based on short sequence patterns and accuracy increase with increased pattern

length

To understand the type of minimal length patterns that are predictive of polyreactivity,

we compared the performance of 1D CNNs with varying numbers of kernels and

increasing kernel size (Figure 11). To make the results easier to interpret, only one

convolutional layer was used. Since only one convolutional layer was used relevant motifs

had to be learned using this one layer, which provides a more faithful representation of motif

length (Koo and Eddy 2019). The results were generated as part of the parameter search for

the CNN model benchmarked above. We looked at the performance when max pooling was

used to reduce the filtermap down to one output.
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Figure 11: Increase in CNN kernel size from one to kernel size of two has the most impact on polyreactivity
prediction accuracy Accuracy of the CNN architecture (see methods) depending on the number of filters
(facets) and the size of each kernel (x axis), when a max pooling is used after the output of the kernels, to remove
positional information.The vertical axis shows the achieved macro f1 score on a validation dataset. The model is
here evaluated on five train/validation folds and the results from each are displayed as transparent points whereas
the mean point is opaque.

When complete max-pooling was used (i.e. only the largest output from the convolution

operation was kept for each combination of filter and sequence), large kernel sizes performed

the best (Figure 11). With the largest number of filters (150) a kernel size of 7 reached the

highest accuracy. CNN with five filters performed better then with only one, more filters did

improve prediction though for large kernels the improvements were marginal. Large sequence

patterns can be made up of smaller patterns (f.ex. a filter of size 3 can contain two patterns of

size 2), therefore we were particularly interested in which single (+1) increase led to the

largest increase in model accuracy. The large increases were observed when the kernel-size

was increased from kernel size one to two (regardless of the number of filters),

potentially indicating that the most predictive or most of the predictive patterns are

short (size 2).
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7.2 Goal 2: Investigate overestimation of model generalizability due to close similarity

between sequences in the training and validation datasets (Data Leakage)

7.2.1 Polyreactivity is predictable from features that are generalizable beyond sequence

similarity as measured by Levenshtein Distance

Figure 12: Minimum distances (measured by LD) from each sequence to another sequence in the 10k
dataset tend to be short (<4) A) Histogram with the distribution of Levenshtein distances (LD) between any
pair of 11-mer CDRH3 sequences in a sample of 10K randomly selected sequences. B) Histogram showing the
distribution of distance to the closest 11-mer CDRH3 sequence to another sequence in the same sample.

In order to explore the similarity of polyreactive and specific sequences in the data, we

calculated the Levenshtein distance (LD) between all pairs of sequences in a selection of

10k sequences. Distributions of LD between all sequences (Figure 12 A), displaying the

number of sequences as a function of LD, revealed that most distances were LD 8-10 and with

few sequences LD <7. Indicating that larger differences are more common with a majority of

sequence pairs being separated by LD >8. Most of the sequences had one or more sequences

that are similar to them (LD = 2-4) (Figure 12 B). A small subset has a sequence just 1 LD

away, in other words they are almost the same sequence, but with one substitution separating

them. Random splitting of sequences between train and test datasets will likely split pairs

of sequences of small LD in train and test (i.e. very similar).
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Figure 13: UMAP clustering of sequences by their LD shows similarity clusters that are not related to the
polyreactive class A) The results of UMAP on Levenshtein distances are colored by class as per datatask
"non-strict polyreactivity" (specific/oligo vs polyreactive). Specific sequences are shown in gray and
Polyreactive in red. B) Same UMAP colored by clusters achieved through using fclust on hierarchical clustering
based on average linkage.

We investigated whether polyreactive sequences can be clustered based on their

similarity. UMAP (Uniform Manifold Approximation and Projection) was performed on all

the sequences of the reduced dataset using the LD between each pair of sequences as the

distance metric (Figure 13). With a selected set of UMAP parameters (see Methods), the

UMAP was able to find structure within the data and to visually create clusters of the

sequences (Figure 13). Many of the clusters were not completely separated from the rest. The

lack of separation was most apparent when looking at the larger cluster/set of clusters in the

middle (Figure 13 A). Interestingly, the clusters did not separate the polyreactivity classes,

and there were no major clusters where the classes were separated, with samples of both

colors represented throughout Figure 13 A. The UMAP results indicate that similarity

between sequences does not necessitate same class, and it is therefore not clear that the

performance of trained models on randomly split sequences (Figure 6) between train and

test could be due to similarity.
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Figure 14: DBSCAN cluster the data based on UMAP coordinates The UMAP displayed in Figure 13 where
the data points are colored based on clustering with DBSCAN. DBSCAN parameters: Epsilon = .25 Min samples
= .35

To test whether high f1 scores were due to data leakage of information between training

and test datasets in the form of similarity, we generated training and validation datasets

with reduced inter-dataset sequence similarity. We used DBSCAN to annotate the UMAP

results into separate clusters (Figure 14), though some of the data points were denoted as

noise (class = -1). In order to evaluate the quality of the clustering, we calculated silhouette

score for the clustering. Silhouette score is suitable to evaluate clusters when identity is not

known a priori. It is a measure of intra-cluster tightness and how well separated the clusters

are from one another. Silhouette score for the clustering was 0.075 after removal of noise,

which is low. A silhouette score can be between -1 and 1, where a score close to 0 would

indicate overlapping clusters. However, the main goal was to get train-test separation with

increased minimum distance. If that was achieved then overlapping clusters is not a problem

per say. We used the cluster notation to separate clusters into either the train or

validation dataset when training a logistic-regression model and compared macro f1 to

controls with the same number of sequences in the training and validation data.
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Figure 15: Separation of sequences based on clusters by LD increased the minimum distance between tre
train and validation data. A) The figure displays the mean fraction of the total number of minimum distances,
the given LD (x-axis) represented for the minimum distance distributions with or without separating clusters.
When the sequences were divided into training and validation sequences based on clustering it is referred to as
the reduced data-leakage (DL) state.B) Show the same as plot A but the distances do not represent minimum LD
but rather all LDs between the validation and training data.

Separation of clusters was successful in increasing the distance between train and

validation (Figure 15). Separating similarity based clusters reduced the proportion of

sequences in the validation data which had a minimum LD to the training sequences of 1-3

and increased the proportions that were at least LD = 4 removed from the training sequences.

Ensuring that only a small proportion (mean ~ 0.02) of sequences were LD < 3 different from

the training sequences and increasing the distance between the train and validation data

overall (Figure 15 A and -B). The cluster separation was successful in increasing the

minimum distances somewhat with increase in the fraction of sequences 4 and 5 LD apart

from ~0.2, but did not lead to large Levenshtein distances (LD >= 5) becoming the majority or

even half of the mean minimum distances observed.
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Figure 16: Logistic Regression models trained on datasets with reduced data leakage keep a high F1 score
Distributions of macro f1 score of logistic regression on "non-strict polyreactivity" binary classification when the
train and test data are separated by clusters and control with equal train and test size separated at random.

Clustering the data by similarity and then training and testing a model on different

clusters did decrease model macro f1, though it remained above 0.75 (Figure 16). The

lowest macro f1 was 0.76. In most cases the macro f1 was comparable between the clustered

data and the controls. The median macro f1 for the cluster separation was about 0.895 with the

median macro f1 being slightly higher for the controls ~0.911 (Figure 16). There is a lower

end tail of outlier macro f1 scores from cluster separation. However, even between these the

values remain relatively high with some scores being lower.

The above results show the effect of increasing the distances between training and validation

sequences so that the overall distance is larger and the amount of validation sequences with a

near identical partner in the training data was minimized. It does not directly show how the

model behaved on subsets of sequences with various LD from the training sequences.

In order to more directly quantify data leakage, logistic regression and the best

performing model overall (FNN) were tested separately on sequences of the validation

dataset with a given similarity to any sequence in the training data. Similarity was

measured by the LD to the closest sequence in the training dataset, from LD=1 to 6

(Figure 17). As the number of validation sequences with LD > 6 was few, predictions of these

were not assessed. A positive control guesser was used to quantify how well a model that

predicted class based on similarity would perform in comparison to the trained models.
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Figure 17: Trained models perform equally well on similar or dissimilar sequences to sequences in the
training dataset Macro F1 score for validation subgroups defined by minimum Levenshtein distance to a
sequence used for training the model. The models used were a logistic regression model (LR) as well as a
feed-forward neural net (FNN) trained on data containing one hot encodings for the sequences. The classification
is based on "non-strict polyreactivity" (binary classification: specific/oligoreactive vs polyreactive sequences).
As a control the macro f1 score when the class of the samples was predicted based on the closest sequences in
the training data was included (white). The control shows the performance of a manually defined heuristic
“guesser” that outputs the class of the most similar sequence/s in the training dataset. For each subset the guesser
took all the sequences in the training data that were closest to the sample in the validation subset it was
classifying, and calculated the mean of their class labels. If the mean class was >0.5 the sample was predicted to
be polyreactive, if the mean class was <0.5 then it was predicted to be specific. If the mean of the classes was 0.5
however the class was assigned at random.

The prediction accuracy of both models remained high for all minimum distance subsets

(Figure 17). Logistic regression did not display noticeable decrease in performance as the

minimum distance to the training data became larger. We see that there is not much difference

in the f1 between validation subsets with short minimum distance to the training data

compared to larger distance (LD=6) (Figure 17). We can see that the FNN did perform

somewhat worse with increased training distance though the drop was small (0.048). Trained

on the selection of 10k sequences the feed-forward neural network (FNN)

underperformed compared to the same model trained on >400k sequences. Both models

outperformed the control. A dip in performance when the distance to train increased from 1 to

2 and from 2 to 3 similar to the control was not observed for either. Altogether, our results

support that the FNN and LR trained models managed to reach high f1-score by learning

patterns that are not relying on close sequence similarity between training and test datasets.
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7.3 Goal 3: Look into interpretability of select models

7.3.1 Logistic Regression Coefficients emphasize the role of AA composition

In order to explore interpretability of the logistic regression model, we extracted the

logistic regression coefficients to examine how they weighted each AA (AA composition)

or combination of position and AA (one-hot). Some interpretability is lost when features are

scaled as a feature value of one is not the same as one of said AA or one of said AA at a given

position. To get a more direct interpretation of the effect of the features on prediction, the

models were trained without scaling the coefficients and the macro f1 was confirmed to be the

same.

Figure 18: Logistic Regression coefficients trained on data from task “non-strict polyreactivity”
A) Model coefficients from logistic regression model trained on amino acid composition when the features are
unscaled (task = “non-strict polyreactivity”). Macro f1 was inspected to confirm that it is the same scaled or
unscaled . B) Model coefficients for models trained on one-hot encoded sequences. C and D) Similar to A and B
but for datatask “strict polyreactivity”.
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A few AAs contributed positively to the output. The features Cysteine, Phenylalanine,

Isoleucine, Leucine, Methionine, Valine and Tryptophan were given positive coefficients. The

coefficients of the Cysteine and Tyrosine were the smallest in absolute magnitude and < 0.5

for both tasks (Figure 18 A). In particular the coefficient associated with Phenylalanine is the

largest positive coefficient followed by Leucine. Positive coefficients represent positive

correlation between that feature and increased probability of making a positive class

prediction. With logistic regression the coefficient multiplied by the feature value directly

contributes to the logit (or log of the odds). The logit is the sum of weighted features for a

particular input prior to transformation into probabilities. The coefficients of the model show

what the impact of one of each AA in the sequence or having said AA at a specific position

would be on the logit. As an example, for each Valine in the sequence the logit would increase

by about 1 (“non-strict” polyreactivity) or by exp(1) to the odds ratio (Christoph Molnar

2022b).

The coefficients of the model trained on one-hot sequences show that most of the variation is

between different AAs (Figure 18 B), though there were some differences in the magnitude of

the coefficients between positions. Larger variation between different AAs at the same

position compared to little variation between different positions for the same AA shows that

the effect of the amino is somewhat consistent across positions.

The coefficients of the model trained on “strict polyreactivity” were similar to the ones

trained on “non-strict” polyreactivity except when it came to magnitude. The relationship

between the magnitude of coefficients for different features was similar. However, the

coefficients were smaller in the logistic regression model trained on “strict polyreactivity”.
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6.3.1 Integrated Gradients Enable Interpretability of FNN

Figure 19: Integrated gradients from four polyreactive sequences. One heatmap represents a unique
sequence. Red and yellow tones suggest a positive correlation with making a positive classification, blue
negatively correlates. The placement of the sequences in the grid is arbitrary and does not reflect relationships
between them. The white background signifies features that are not present in the sequence.

The integrated gradients, feature attributions indicating the effect of each feature upon

prediction (see Methods), calculated for the polyreactive sequences agree with the

logistic regression coefficients (Figure 19). The purpose of integrated gradients is to reveal

what features the model focuses on and how the feature contribute to the output. For the

sequence “LSSPLWYFDVW”, the largest attributions were given to the Leucines and then to

the Phenylalanine. The Valine, Tryptophan and Tyrosine were also given positive attributions

and the Serine at the 3rd position was assigned a negative attribution. Features that are given

positive coefficients from logistic regression were assigned positive attributions, Leucine

and Phenylalanine showed larger positive impact as was observed in Figure 18.

59



In order to assess the correlation between the integrated gradients and logistic regression

coefficients 5000 polyreactive sequences were chosen and used to get an average of the

integrated gradients across all features.

Figure 20: Average integrated gradients for 5k polyreactive sequences (as defined by "non-strict
polyreactivity") resemble logistic regression coefficients. A) Average of 5k integrated gradients. Warm colors
show features contributing positively towards classifying the sequence as polyreactive whereas cool colors
contribute negatively. The horizontal axis shows the amino acids and the vertical axis represents each of the 11
positions in the sequences. The range of the color palette was set manually. White squares represent features that
were never encountered. B) How often the feature occurred in the 5k sequences. C) Top: Pearson correlation
coefficient between amino acids at the same position between integrated gradients and logistic regression
coefficients on unscaled data (numbers 1-11 represent positions). Bottom: Correlation between integrated
gradients and coefficients at differing positions for the same amino acid. Strength of Attribution: Mean absolute
logistic regression coefficients.
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The mean attributions reflected in the integrated gradients are in agreement with results

from logistic regression. Like with logistic regression there were more observed variation

between the AAs then between the same AA at different positions in terms of mean

attribution. Integrated gradients corresponded to coefficients, the pearson correlation between

the coefficients and the mean of the integrated gradients was close to 1 (minimum pearson

correlation ~ 0.977) for each position (Figure 20 C above). The correlation between

coefficients and mean gradients of different positions with the same AA were positive

(minimum Pearson correlation ~ 0.321) (maximum Pearson correlation ~ 0.980) (Figure 20 C

below). The correlation was lower within residues where the strength of the attribution was

low. This included amongst others Asparagine and Lysine which were never observed at

specific positions when calculating mean of IGs.

The logistic regression model is considered interpretable, and can be interpreted through

examination of model coefficients. Integrated gradients assigned feature attributions that were

in line with previously observed class differences and correlated with logistic regression

coefficients. An interesting observation regarding the attributions given to the AAs is that they

look to correspond well with their mean interaction potential according to the inter-residue

potentials used in the simulation (Miyazawa and Jernigan 1996).

7.3.2 Conserved Start and End Motifs of CDRH3 did not Bias Model Ranking

The CDRH3 end motifs, the pattern marking the beginning and end of the CDRH3, are not

distributed evenly between the classes. This could potentially be problematic because these

are conserved motifs where there is little sequence variation. A concern would be whether the

uneven distribution of the motifs could bias the ranking of the models. To evaluate to what

degree the conserved motifs at the end of the CDR-H3 sequences might bias the ranking of

the models, a dataset was created where the end-motifs (CAR and DVW/DYW) were

balanced between classes.
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Figure 21: Balancing end-motifs does not change ranking of methods
In order to test whether common end motifs for CDRH3 bias the ranking, end motifs were balanced per the
classes. So that an equal amount of sequences from both classes would begin with CAR, AR etc. A) Results of
using traditional shallow models on the sequences with balanced ends. B) Results of neural networks.

Comparing the accuracies of the model on the full “non-strict” polyreactivity dataset

compared to the dataset with ends balanced, the macro f1 scores were similar. There were

some differences between the macro f1 on the balanced vs full dataset, however the ranking of

the models remained largely the same. The differences were in the ranking of the random

forest vs decision trees trained on AA composition and the neural networks performed

similarly on the balanced data. The influence of the end motifs on prediction is minimal and

did not influence the ranking of the model to a large extent (Figure 21). We also reran part of

the CNN kernel analysis with balanced ends (see Appendix).
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8 Discussion

8.1 Goal 1: Comparing combinations of model architecture and sequence encoding for

creation of supervised ML models to predict polyreactivity

8.1.1 Ability to predict polyreactivity depending on datatask

We classified polyreactivity in four different ways in order to investigate how the models

would behave depending on different definitions of polyreactivity. The purpose of defining

different scenarios was primarily to see if the classes would be predictable or if it would make

a large difference to the ranking of the models. This was motivated by the lack of a universal

framework for defining polyreactivity and the uncertainty, pointed out in literature, that

binding to few antigens is driven by similar properties as binding to many (Boughter et al.

2020).

In all scenarios polyreactivity was predictable, as seen by the substantial increase in macro f1

compared to randomized controls (Figure 6). Between the various tasks, the rankings of model

macro f1 were largely similar. That the binary classification tasks were the easiest to predict

indicates that dividing the data up into more classes did not help the models learn but rather

made the task more difficult due to the increased number of possible labels. This was further

demonstrated by the multiclass confusion matrices (Figure 8). While we did not conduct

further investigation whether there were antibodies binding few antigens in a distinct fashion

(which could further elucidate to what extent such could be the case). In general, comparing a

class with higher polyreactivity compared to another class with lower polyreactivity shows the

same trends in sequence enrichments (Figure 5) and coefficients from logistic regression

(Figure 18). Which seem to suggest that the classes are not entirely distinct in character with

completely different binding rules, but rather appear to divide a continuum going from “less”

to “more” polyreactive.
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Here, we formalized polyreactivity as classification inspired by previous studies into

polyreactivity. In the future, within the range of the class definitions that we tested, degree of

polyreactivity could potentially be described as a continuum of more classes of degrees, or

alternatively as a regression problem. For instance, Harvey et al. predicted a quantitative

polyreactivity measurement, called the “polyspecific reagent binding” (PSR) (Harvey et al.

2022), which is a fluorescent measurement of the amount of different denatured antigens

bound by a single antibody, without knowing exactly which antigen variants they bound to.

Binary prediction of polyreactivity however can still provide insight into how to predict

polyreactivity and help create a test for polyreactivity.

Viewing polyreactivity as a continuum, defining a threshold for testing whether an antibody is

polyreactive would be more of a question of what level of polyreactivity is acceptable for the

intended use. However, this task can be answered using a classification approach. While there

is no universal framework describing the degree of polyreactivity, by comparing the tested

antibodies to an antibody with known specificity using the same essay could set a threshold

for acceptable levels of polyreactivity. However, some potential limitations to this approach

have been highlighted by a study showing that for issues of developability, clusters of traits

might be more meaningful than using hard cutoff levels for individual developability

parameters (Jain et al. 2017). Still, a test for acceptable levels of polyreactivity could

potentially be used to warn off a potential problem alongside other parameters (Jain et al.

2017).
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8.1.2 Between a selected list of model architectures, how do these models compare in their

ability to correctly classify antibody CDRH3 sequences based on observed levels of

“polyreactivity”?

Here, several supervised ML approaches were benchmarked for predicting polyreactivity

based on macro f1 score (Figure 6 and Figure 9). Three selected shallow learning models were

tested using two types of sequence encodings (AA composition and one-hot encoding of the

CDRH3 11-mer sequences) (Figure 6). We also benchmarked two neural networks for

predicting “non-strict polyreactivity” based on one-hot encoding (Figure 9).

Of the traditional shallow models, the logistic regression reached the highest macro f1-scores

(Figure 6) on all tasks. The increase in macro-f1 score indicates that between the tested

architectures (decision tree, logistic regression and random forest), with the selected

parameters, the logistic regression models best captured relationships between classes. The

results imply that within the range of values that were used to separate the classes, logistic

regression was the best model for capturing the relationships between the sequence features

and polyreactivity.
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The tree-based architectures (decision tree and random forest) displayed high variance in

performance between the training and test sequences when trained on one-hot encoded

sequences, indicative of overfitting (Figure 9). Decision tree models are often prone to

overfitting, as was observed with the high variance between the training f1 and test f1 for the

decision trees (and random forests) trained with positional information. When the decision

tree was trained on AA composition, tuning the length of the tree was sufficient to avoid

overfitting. When positional information was included, no decision tree model could be

identified without either high bias or high variance. Random forests are often more robust to

overfitting as they are ensemble models that rely on majority voting from several long

decision trees. However, we see that they displayed high variation between training and test

macro f1. For task “non-strict” polyreactivity the test macro f1 was lower when positional

information was provided while the test accuracy was high, which might be indicative of

overfitting (Figure 9). It is possible that further hyperparameter tuning could improve the

performances of the models. Tuning parameters that would introduce more variation between

the individual trees or reduce their size might help improve the ability of the model to

generalize to unseen data. However, from the results it looks like the method by which the

tree-based architectures fit to the data was not optimal.

Our results support using relatively complex models, in particular feed-forward neural

networks (with one hidden layer), for prediction of polyreactivity when a substantial amount

of data is available for training. When trained on training splits from the complete “non-strict”

polyreactivity the neural networks achieved increased macro f1 score on the test data

compared to logistic regression (Figure 9). However, the feed-forward neural network (FNN)

performed worse than the logistic regression model when trained on the smaller subset of 10k

sequences (for assessment of data leakage) (Figure 17). The low performance of the network

when trained on fewer samples may indicate that if the available training dataset is smaller

(not larger than 5k sequences of each class), training a model based on an architecture with

limited complexity such as logistic regression could yield a more accurate model. That more

data is needed to train neural networks than what is needed to train a logistic regression model

is expected as neural networks are generally considered more difficult to train. Since

Absolut! data reflect a simplification of antibody-antigen binding, we would expect that our

data is less complex than experimental data and thus even more experimental data might be

necessary to successfully train neural networks with the same performance as in simulated

datasets.
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In future studies the finding that neural networks could potentially outperform logistic

regression will become more relevant as more experimental data become available. Most

research looking at polyreactivity to date has been conducted on smaller datasets of 1000

sequences or less (Boughter et al. 2020). However, the recent advances in experimentally

assessing polyreactivity could enable creation of larger polyreactivity datasets in the future

suitable for training neural networks. Indeed, in a recent preprint Harvey et al. (Harvey et al.

2022) already report creating such a dataset from their newly invented approach.

The McNemar's test showed that most of the observed differences between models were

significant, however that does not necessarily mean that they are interesting. At a large sample

size (>100k) the power of the test is such that any difference is likely to lead to a rejection of

H0. That is, we can assume that the power of the model will be high. The power is described

by , where is the probability of not rejecting H0 when there is an effect. Or rather,

failing to report that there is an effect when such is the case. Therefore, some of the results,

while significant, are not so interesting in practice (Breur 2016). The differences between the

decision tree and random forest trained on amino acid composition or the two neural networks

(difference < 1%) would perhaps not be very interesting.

The test directly compares pretrained models. For the results to be generalized further we

must assume that the variation in performance due to training has to be small (Dietterich

1998). The results produced by cross-validation demonstrated low variation between splits

(Supplementary Table5), compared to differences in macro f1. However, the variation was

higher for the neural networks and as there was little difference in performance we may not be

certain that there is a difference between the neural network architectures. However, as the

difference was so small to begin with, the question of whether they are significantly different

is likely not of much interest.
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8.1.3 Does providing explicit positional information improve the models ability to predict

levels of polyreactivity?

During this project we have trained ML models on different encodings with varying levels of

complexity and using architectures that are able to capture different types of features. We have

compared the performance of logistic regression, decision tree and random forests on both AA

composition and one-hot encoded sequence in terms of macro f1 scores. The testing of these

models has been conducted in part for the purpose of investigating what features are

predictive of polyreactivity in our data.

Explicit positional information did give the logistic regression model a performance boost on

all tasks and lead to increased overall scores (as the logistic regression models trained on

one-hot encoded sequence performed better than the other models on each task). Thus it could

be reasonable to assume that positional information does increase prediction performance.

The logistic regression models trained on one-hot encoding were significantly different to the

ones trained on AA composition in terms of the size of marginal differences ( ).

Low variance, similar to the logistic regression models trained on AA composition, indicates

that adding positional information did not lead to an overly complicated function overfitting to

the training data (Figure 9). Our results indicate that the effect of each AA on prediction of

polyreactivity can depend on the position in the CDRH3 sequence as the sequence encoding

leads to better prediction than just AA composition.

8.1.4 Is polyreactivity prediction improved by using models that capture nonlinear

relationships between features?

In evaluating the performance of the neural networks compared to logistic regression we also

evaluated whether there could be any nonlinear interactions between individual sequence

features determining polyreactivity (as per the task “non-strict polyreactivity). A limitation of

logistic regression is that it assumes that, if there are any interactions between the features,

logistic regression requires that the relationships are manually provided as independent

features (interaction terms) (Christoph Molnar 2022c). Architectures like neural networks on

the other hand are capable of capturing interactions without manual help. We also observed

that without introducing non-linearity to the CNN model the macro f1 on the validation data

was noticeably reduced, and more comparable with logistic regression (Supplementary Figure

4). This could further support that the increase in performance was due to nonlinearity. The
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increased performance of the neural networks compared to logistic regression (and the CNN

without nonlinearity) supports that the rules underlying polyreactivity (in the Absolut!

dataset) involve interactions between features in the one-hot encoded sequences.

The tree-based architectures (decision tree and random forest) are also able to capture

non-linear relationships between the features. However the way that they model these

relationships are different. They rely on a top-down approach that progressively separates the

data into smaller groups. As previously mentioned, the tree based models displayed a

tendency towards high variance when trained on one-hot encoding indicative of learning the

bias of the training data. Thus, even though the tree-based models can account for feature

interactions, the way they model these relationships was likely not optimal for the task (at

least with the parameters used).

8.1.5 In the interest of identifying minimal pattern length predictive of polyreactivity, how

does prediction accuracy change in response to increase in the possible length of recognized

patterns?

Accuracy of CNNs with one convolutional layer can reveal presence of predictive patterns

with a given max length depending on kernel size. To get an idea of the minimal length of

sequence patterns predictive of polyreactivity we examined how the accuracy of CNNs with a

single convolutional layer changed with increased kernel size. The CNNs included a max

pooling layer that reduced the resulting feature map from each filter of the previous

convolutional layer to a single output representing one sequence pattern. Thus, all positional

information not included in this output was removed, and it guaranteed that each feature map

represented a pattern no longer than the kernel size. As mentioned in the introduction,

convolutional layers can be seen as feature extractors (Raschka and Mirjalili 2019), detecting

patterns in the original input which then become the input features of the subsequent layers.

The output of the max pooling layer is fed to the output layer which weights each pattern and

transforms the output into class probabilities similar to a logistic regression model. We could

imagine the model as similar to a logistic regression model predicting polyreactivity with

patterns of max size equivalent to the kernel size as input features.
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High accuracy with longer kernel size is not necessarily due to longer patterns. While a large

kernel size enables capturing longer patterns, the model could still potentially be making

predictions based on shorter patterns. Longer patterns might also be made up of combinations

of shorter patterns, such as an observed pattern of size 3 being made up of 2 patterns of size 2

or even longer non-contiguous patterns being made up of several short patterns. Without

further investigations into the kernel weights we cannot be sure what each filter in the CNN

represents. Due to the uncertainty in what the kernels represent and the possibility of longer

kernels finding shorter patterns we are mainly interested in accuracy increase with each

increase in kernel size.

Short sequence patterns were predictive of polyreactivity. We observed large jumps in

accuracy with increase in kernel size from one to two, even for models with 1 - 5 filters

(Figure 11). These jumps in accuracy demonstrate that, even when the number of detectable

patterns were reduced, patterns of size 2 were predictive of polyreactivity. As the number of

filters increased, the increase in accuracy with larger kernels were reduced, potentially

indicating that most predictive patterns in the data were short or could be expressed as short

patterns. Though, as the length of the sequences is limited to 11 there could be tradeoffs where

the presence of some patterns informs the model of the absence of another pattern. When the

number of detectable patterns are reduced the risk of such an effect is low. Since larger

increases in accuracy were detected with few filters it seems likely that the observed effect

was due to short patterns which are themselves predictive and that there are short patterns

predictive of polyreactivity.

We have not looked into what patterns are predictive. The results suggest that there are short

patterns but confirmation and identification of specific predictive k-mers (sequence patterns of

size k) require further investigation. To further evaluate to what degree short patterns are

predictive of polyreactivity the weights of the CNNs with kernel size 2 could be extracted and

studied further. Alternatively, a list of k-mers could be selected with max k of 2 and used to

train a model on encoding specifying whether a sequence contains said k-mer. Predictive

patterns could be identified through feature selection. Such an analysis could be particularly

interesting for comparing the patterns with AA composition to investigate to what extent they

reflect positional dependencies.
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CNN models predicting polyreactivity based on patterns of max length 2 reached high

accuracy. With the largest number of filters the accuracy reached 87% (Figure 11) for the

model with kernel size of 2. We might expect a model making predictions based on explicit

2-mers would reach comparable accuracy on our data or higher. Longer kernel size led to

higher accuracy regardless of filter number. This could be potentially indicative of long range

dependencies in the sequences (Robert et al. 2022). However, a weakness with the analysis of

the CNN architectures with max pooling, is that the models cannot know how many times the

same pattern appears in a sequence. A model basing prediction not only on the presence of

2-mers, but also frequency within the sequence could potentially further break down longer

patterns and reach even higher accuracy. To be certain of this however, would require testing.

Using short k-mers is desirable as using long k-mers lead to large numbers of potential motifs

rarely seen in the data, causing trouble due to high computational cost, and risking certain

motifs very rarely or never being observed during training (Ostrovsky-Berman et al. 2021).

8.2 Goal 2: Investigate overestimation of model generalizability due to close similarity

between sequences in the training and validation datasets (Data Leakage)

8.2.1 Is the predictive power of the models dependent on close similarity to already observed

sequences in terms of LD, and could the models learn patterns that are not based on close

sequence similarity?

As for whether the performance of the models is due to data leakage, in terms of similar

sequences in the train and test data, our results do not seem to support that. When training and

validation sequences were separated using clustering, the number of sequences in the

validation which closely resembled the training sequences was reduced. The cluster separation

also caused the minimum and total LD between the training and validation data to increase

(Figure 15). Still, the macro f1 of logistic regression remained high (Figure 16). Thus, the

logistic regression model was able to separate classes in the validation set without having seen

highly similar sequences in the training dataset. Though the change in distance was mainly a

reduction of sequences that were 1-3 LD apart from the nearest training sequences.
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The analysis of the performance of both the logistic regression and FNN on subsets of

sequences with varying LD gave more insight into the generalizability of the models.

Evaluation of model performances on subsets of variable distance to the training sequences

showed that both tested models reached high macro f1 scores on all subsets and outcompeted

the control (Figure 17) indicating that the models are not making predictions based on close

sequence similarity (LD). That the models outperformed the control in classifying sequences

that resemble the ones seen prior (LD = 1), indicates further that they did not get confused due

to similarity (Mason et al. 2021; Robert et al. 2022). Coupled with the high macro f1 on

sequences that were dissimilar from the training sequences (LD = 5-6) this result implies that

the models were able to learn generalizable features not depending on close sequence

similarity (LD).

The training conditions were different in the minimum distance control compared to the

conditions the final models were tested on, as only 10k training sequences were used. When a

smaller number of sequences are used there will be fewer sequences that are similar to one

another in the training data which could potentially force the model to generalize better.

However, when the training sequences cover a broader range of possible values it can make it

easier for the models to actually learn relevant patterns since the model can more easily

distinguish between the effects of features. The performance of the neural network

underperformed as compared to when the same architecture was trained on the full dataset,

potentially indicating difficulties learning on only the 10k sequences in the training data.

8.3 Goal 3: Look into interpretability of select models

8.3.1 What type of sequence features does the logistic regression model emphasize when

predicting polyreactivity?

Logistic regression emphasized the effect of AA composition. The logistic regression

coefficients (Figure 18B and -D) exhibited larger variation between amino acids and little

variation between positions. The coefficients from task “strict polyreactivity” and “non-strict

polyreactivity” did not differ in whether they were positive or negative depending on position

(Figure 18). We can surmise that the effects of position on residue influence on model

prediction is one of differing magnitude. Possibly due to different probability of the residue

being involved in binding to the epitope. The emphasis on AA composition is in line with the

results showing that the macro f1 score was high when the logistic regression was trained on
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AA composition. Our results agree with previous observations that AA composition is

predictive of polyreactivity. While no other study has looked directly at predicting

polyreactivity based on the total AA composition, high performance has been reported using

features based on AA composition (Rabia et al. 2018). It also aligns with previous findings

emphasizing the correlation between AA composition or physicochemical properties (tied to

AA composition) and polyreactivity (Lecerf et al. 2019; Boughter et al. 2020; Kelly et al.

2018; Birtalan et al. 2008).

The emphasis of the logistic regression on AA composition is not necessarily surprising. The

logistic regression has to find coefficient values that predicts the label of all sequences,

without taking into account feature interactions. The number of possible 11-mer sequences is

very large, and capturing the effects of each position is therefore difficult for a model that

assumes the features are independent as this can be due to interaction between positions. And

as mentioned AA composition can predict polyreactivity well.

The effects of position could be underestimated due to biases of the simulation. There is a

possibility of some bias due to the simulation not taking into account the conformational

rigidity in the CDRH3, as it has been proposed that differences between position is due to

stabilization of the antibody conformation (Harvey et al. 2022). This can have led to some

underestimation of the effect of position on the influence of each residue. The limitations of

the data are described further in the limitations section.

8.3.2 Can attribution methods, like integrated gradients, capture sequence features which

impact the prediction of the best neural network?

In order to interpret how the sequence features influence the predictions of the neural

networks and potentially diagnose problematic behavior, attribution methods such as

integrated gradients could be used. To evaluate the potential of the integrated gradients for

interpretation of the neural network decision-making, we correlated the mean integrated

gradients of 5000 sequences to the coefficients of the logistic regression model trained on the

same data.
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A limitation with integrated gradients as an attribution method is that it is developed to

investigate the feature attributions for each individual input and not at the scale of multiple

inputs (Sundararajan, Taly, and Yan 2017). However, such a method has been used to find out

globally what the model focuses on (Sarasua, Pölsterl, and Wachinger, n.d.). IGs are often

used on images or inputs where each individual feature in the raw data is not necessarily

meaningful in and of themselves. For the purposes of this analysis we assume each feature to

be the same between inputs. Each position in the input array represents the same AA at the

same position between inputs, similar to how the logistic regression views them and we do not

care that positional dependencies may alter the meaning of the position. The average of the

IGs across multiple sequences could still be informative when we are interested in how the

IGs align with previous results.

The method by which integrated gradients are computed fulfills a completeness axiom. That

is, the total of the integrated gradients add up to the difference in model output for the baseline

and for the actual input (Sundararajan, Taly, and Yan 2017). However, IGs have been known

to produce noisy attributions (Kapishnikov et al. 2021) and gradients from the points along the

interpolation where the output changes minimally can bias the attributions (Miglani et al.

2020). Therefore, they should not be considered the absolute truth in terms of the overall

feature attributions of the model (as would also be the case with feature attributions of

individual sequences). The main purpose of this analysis was to get an overview of whether

attributions align previous results to see if the integrated gradients can extract reasonable

attributions. As the mean of the IGs resembled the logistic regression coefficients, this

supported that the IGs were able to extract somewhat reasonable attributions.

The correlation between coefficients and integrated gradients (Figure 20) convey that the

mean integrated gradients reflect similar overall attributions as was observed with logistic

regression coefficients. The logistic regression model is assigning weights that best model a

linear function where each variable/feature can only have one universal weight/coefficient.

Therefore, it seems logical that the mean of the integrated gradients sampled from many

sequences resembles the coefficients. The gradients do not appear random and reflect features

that have been observed through other analysis, both in terms of logistic regression

(Figure 18) and observation of class sequences (Figure 5). That the attributions make sense in

terms of previously observed results shows that the integrated gradients are detecting relevant

features (i.e., that they are working somewhat as intended).

74

https://paperpile.com/c/AVoWpq/1kxQ3
https://paperpile.com/c/AVoWpq/XOG1
https://paperpile.com/c/AVoWpq/1kxQ3
https://paperpile.com/c/AVoWpq/QKEa
https://paperpile.com/c/AVoWpq/qC6p
https://paperpile.com/c/AVoWpq/qC6p


One of the purposes of extracting feature attributions generally is to identify signs that the

model is making decisions based on irrelevant features or noise. Both the IGs and logistic

regression coefficients displayed attributions based on the AA residue type that are similar

and aligns to their overall binding energy with other residues. Thus displaying a level of

explainability as it is reasonable that the sequences are more likely to be considered binders

for several antigens as the AA composition promotes optimal binding energies. The model

appears to have learned relevant features for classification.

8.4 Limitations

The benchmarking of ML models and other analysis was performed on data from the software

Absolut!. The purpose of the software is to benchmark ML approaches for prediction of

different antibody-antigen binding prediction problems. For this purpose Absolut! is built to

replicate many levels of biological complexity that are present in experimental datasets and

are important for evaluating ML approaches. A major limitation is that we cannot directly use

train models on Absolut! datasets to predict real-world antibodies. Nor can we directly

conclude what features are predictive of polyreactivity (Leucine, specific k-mers etc.) in

real-world datasets. This thesis informs on the expected types of features that are most

predictive of polyreactivity and architectures which capture their relationship with

polyreactivity. Since we have only worked on Absolut! data so far we cannot be certain as to

the extent our conclusions are applicable to experimental data.

Limitations of the software include that it is a simplification of antibody-antigen binding

(these limitations are also highlighted in the revised version of the paper which describe

Absolut! (Robert et al. 2022), of note the author of this thesis is co-author in the revised

manuscript):

● In the real world proteins do not fold according to a euclidean grid with only 90 degree

angles. And the distances between AAs can vary in real life complexes.

● The framework can only compare CDR sequences/k-mers of fixed length. Thus not all

the 11-mers included in this study represent full length CDRH3 sequences.

● The framework allows the antibodies to take any possible binding conformation, and

therefore does not take into account the effect of differing flexibility.
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● The effects of solvent interactions are not implemented, thus we were not able to

account for the effects of solvents on polyreactivity.

● 3D distribution of charge is not implemented.

● Absolut! has not implemented features to estimate binding energy to non-peptide

antigens. Thus, all the antigens in this study are proteins/peptides made up of AA

chains. Polyreactivity is often measured against several types of macromolecules

including complex sugars; we cannot be certain that the results would be transferable

to non-peptide antigens.

That conclusions from Absolut! are generalizable to experimental settings has been validated

for certain use cases (Robert et al. 2022). Correspondence between results on Absolut! data

and experimental data lends credence to the limited levels of complexity that is maintained in

the data being sufficient to draw conclusions on the comparative success of ML methods.

However, this is the first time that Absolut! is used to benchmark ML methods for prediction

of cross-reactivity and it has yet to be experimentally validated for this use. Still, if the level

of complexity is enough for benchmarking models to predict binding affinity to an antigen it

may have the complexity necessary to benchmark methods for cross-reactivity prediction as

well.

76

https://paperpile.com/c/AVoWpq/fg4L


There are some levels of complexity which may have a larger impact on prediction of

polyreactivity in particular. The CDRH3 is flexible and has been shown to take several

conformations (Fernández-Quintero et al. 2020), however in some antibodies the CDRH3 may

be more flexible than in others. It has been widely suggested that polyreactive antibodies have

more flexible ABSs (Dimitrov et al. 2013; Notkins 2004; Guthmiller et al. 2020;

Fernández-Quintero et al. 2019). Though interestingly a recent study found that the

polyreactive antibodies they studied were unusually rigid (Borowska, Boughter, and Adams

2020). In the Absolut! framework each CDRH3 is equally flexible since any possible binding

conformation is evaluated and no mechanism has been implemented to account for differential

flexibility. Therefore, the data may not capture the full complexity of antibody-antigen

polyreactivity due to flexibility. Since all sequences are flexible, we could imagine that they

all have a potential to be polyreactive if they only achieve high enough affinity to several

antibodies, and that the models would not fully capture the complexity of specific binding.

However, we do not know how not including variable flexibility of antibodies influences the

prediction performance of the classifiers.

In order to test the effect of variable flexibility the models could be ranked on experimental

data accounting for flexibility. Ranking the models on experimental data alone would not tell

us directly whether flexibility was an important factor. However, if we had sufficient numbers

of polyreactive and specific antibodies with comparable flexibility we could compare

prediction on those to prediction of polyreactivity of antibodies with highly flexible CDRH3

in comparison to the specific antibodies. The feasibility of conducting such an analysis would

depend on whether it would be possible to find such data and the practicality in attaining data

regarding flexibility from such sequences.

The limitation that the sequences are 11-mers of the same size could impact how the

performance of the models generalizes to experimental datasets where the sequences are of

different lengths. It could give a leg up to methods that cannot deal with input of unequal

sizes. It may be desirable then to align 11-mers back to their original CDRH3 sequence and

develop a method for evaluating the binding energy of the full-length CDRH3 sequence.

However, that would possibly be challenging due to not being able to account for structural

constraints.
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Since conclusions from Absolut! data regarding the ranking of models that predict specific

affinity have been shown to be generalizable to experimental data, we could imagine that such

would be the case also for non-specific polyreactive binding despite the simplifications. Since

we may expect some of the same complexity of specific binding to translate to non-specific

binding.

8.5 Outlook and Future Perspectives

Our results represent early findings, benchmarking approaches to guide further development

of ML models for prediction of antibody polyreactivity. At the beginning of this project

several features of polyreactive antibodies had been elucidated, however few studies had

looked into directly predicting polyreactivity in silico beyond using net charge of the CDRs or

hydrophobicity as predictors. With one relatively recent study being the only study to our

knowledge comprehensively investigating predicting polyreactivity using ML approaches

(Boughter et al. 2020). During this project we have benchmarked several ML models for

predicting polyreactivity based on sequence information where polyreactivity was estimated

against 142 antigens, four different ways using data from Absolut!. We showed that in all

cases polyreactivity was predictable and provided a ranking of select models. We have

investigated predictive power based on k-mer length using basic CNN models, which

indicated that short patterns can be predictive of polyreactivity. Additionally, we validated that

selected models did not rely on sequence similarity (LD) for prediction and looked into

interpretability of said models.

Still there are questions remaining. We have not yet benchmarked methods according to how

well they predict polyreactivity defined through binding on a separate list of antigens. It has

been noted that the observed polyreactivity of an antibody can differ based on the assay used

(Lecerf et al. 2019), and shown that estimations of polyreactivity do not necessarily correlate

based on the antigens polyreactivity is tested against (Harvey et al. 2022). And as the binding

of the antibody to the antigen is dependent on the antigen as well as the antibody it would be

of interest to know how well the models can predict polyreactivity against different antigens.

For this purpose Absolut! data can be used. Polyreactivity can be estimated based on

different antigens for the antibody sequences in the training and test data.
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The nature of potential feature interactions and the makeup of potential motifs predictive of

polyreactivity were not further investigated in this work. Investigation into how the neural

networks make predictions as well as possible short motifs could help further elucidate what

levels of feature complexity are predictive of polyreactivity. As the integrated gradients were

able to identify relevant attributions we could potentially use these for further investigation.

We would need some sort of experimental validation to evaluate the generalization of our

observations. Ideally, the experimental validation should be done on a dataset which closely

mirrors the limitation of Absolut! data. Moreover, our study only includes proteins.

Therefore, the data from protein-arrays, PSR and potentially ELISA would be beneficial,

where several protein antigens are used to evaluate polyreactivity. Our dataset includes only

naive antibodies to avoid bias due to different levels of affinity maturation. So further

validation on our findings would be more relevant on naive antibody sequences.

The traditional in-vitro polyreactivity datasets are relatively small, which also limits the

validation of our findings. As we observed, on small datasets the logistic regression

outperformed the neural network. However, with recent advancements in assay development

(Harvey et al. 2022) it may become feasible to conduct more comprehensive evaluations.
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9 Methods

9.1 In Silico Polyreactivity Dataset

We use an in silico dataset, generated using the simulation software Absolut! that simulated

the binding between 7.3 million CDR-H3 sequences and 142 nonredundant antigens (Robert

et al. 2022). The antigens were selected from the AbDb database (Ferdous and Martin 2018),

and originated from 41 different species and relevant for 45 different disease classifications/

adverse health effects (example cancer, allergy, infection etc.). The antibody sequences used

were taken from murine BL6 FACS sorted naive B cells (Greiff et al. 2017).

Absolut! simulates the binding of peptides of 11 AAs (AAs) to coarse-grained antigen

structures described in a 3D lattice where one lattice position can only contain one AA and

covalently bound AAs are neighbors in the lattice. The 3D lattice representations of the

selected antigens were generated from their PDB structure as described in (Robert et al.

2022). The root-mean-square distance (RMSD) is minimized to find an antigen lattice

representation that best reflects its original PDB structure.

The energy of the CDR-antigen complex is calculated through interaction potentials between

interacting partners in the complex. Residues adjacent to one another which are not covalently

linked are considered interaction partners. The affinity between interaction partners are

determined by experimentally inferred interaction potentials (Miyazawa and Jernigan 1996).

Both the binding energy between antibody sequence and antigen as well as self-folding energy

is taken into account. The self-folding energy refers to the sum of interaction potentials

between interacting partners in the same protein. The binding energy is measured as the sum

of interaction potentials between partners in the antigen and antibody sequence. The energy of

the complex does not equate to the affinity as the affinity depends on information from the

rest of the antibody which is not available, however it does reflect a tendency for the CDRH3

to bind to the antigen.
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For each antibody CDRH-3 sequence, every possible contiguous 11-mer was assessed for

binding to each of the 142 antigen lattice structures, returning a binding energy and the best

antibody-antigen structure. For each antigen, the CDRH3 sequences with the lowest 1%

binding energy were used to set a threshold, all 11-mers whose binding energy was estimated

as lower than the threshold were classified as binders (further information can be found in the

original paper (Robert et al. 2022)). The information regarding the binders were stored in a

table containing binary information of whether the sequence was bound to each antigen

(Figure 22). Only sequences that were considered a binder for at least one antigen were kept.

Figure 22: Description of the polyreactivity dataset with the eleven amino acids long substrings of the
CDR-H3 sequences that were lower than the 1% energy threshold which are defined as binders. It also contains a
column which conveniently shows how many antigens are bound among the 142. The third column contains a
binary number for each antigen, describing the target antigens. Only sequences with at least one target antigen
are kept. Only 6 sequences are shown.

Of the 142 antigens, most are from different proteins with a couple of exceptions. There are 2

versions of Interleukin 2, one from Homo sapiens and the other Mus musculus. There are also

2 separate entries for Interleukin 13. Comparison of the sequences considered binders for both

Il-2s showed ~10% overlap and between the Il-13s there was only a 2% overlap (Figure 23).

This was not particularly high (even on the lower end) in terms of the binder overlap between

the included antigens. Thus, we considered them as separate antigens.

81

https://paperpile.com/c/AVoWpq/fg4L


Figure 23: Rate of overlap in the antibodies bound by 500 randomly selected pairs on antigens.
The rate of overlap was calculated by taking the number of antibodies considered a binder to the first antigen that
was also considered a binder to the second antigen and dividing that by the number of antibodies total considered
a binder for each adding the results together (for each antigen in the pair) and dividing by 2.

9.2 Formulation of the Problem and Data Processing

We aim to formalize the problem of polyreactivity prediction as a classification problem

where each sequence is annotated with a class describing how many antigens it binds. To

determine strategy for dividing classes the distribution of the number of antibodies that were

considered a binder to each number of antigens was inspected. This revealed a smooth

distribution where 445.500 (~43%) antibodies recognizing only one antigen, while 146.997

(~14%) recognized 2, 79.573 (~8%) recognized 3 antigens, and the remaining 357.234

(~35%) recognized 4 or more antigens. Since the distribution was smooth the polyreactivity

classes are defined based on the amount of antibodies that would be observed in a class rather

than dividing classes based on observed gaps in the distribution (If we for example imagined

the distribution as two peaks with few intermediate sequences).
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In order to detect potential outliers (binding to distinctly large numbers of antigens) that were

not observed in the analysis of the distribution via histogram, a combined box and scatter plot

was made to observe outliers directly.

Figure 24: The number of antigen each antibody is estimated to bind follows a continuous distribution. A:
Represents the number of CDR3 sequences (vertical-axis) which binds to a given number of antigens
(horizontal-axis) as a histogram. B: Box-plot showing the medium, quartiles and suggested outlier candidates.
The ticker black line towards the end of the plot is made up of consecutive dots. The data is based on the training
data.

We did not identify obvious outliers in Figure 24B. Considering all the data points created an

almost continuous line, and the visualization of individual data points in gray did not reveal

points markedly separated from the others, no sequences were considered outliers as they

were not markedly different from any other antibody in the data.

9.3 Test Exclusion

The data was separated into “training + validation” data (80%) and “test” data (20%) in a

stratified manner that ensures there is roughly the same proportion of CDR3s binding a given

number of antigens in both the test and training datasets. The sequences were separated into

“test” before classes were assigned. The test dataset is excluded from all further analyses and

never provided to the ML until single final testing. To ensure smooth stratification (and to

avoid single sample “classes”), the sequences binding to 51 or more antigens were grouped

together as the “51+” class. The train and test data was then stored separately.
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9.4 List of Tasks, what is Input and Output

The sequences were grouped into classes based on the number of bound antigens to fit

multiple ML formalisms (Table 2). For task "strict polyreactivity", the “specific” class was

defined strictly as those that are only bound to one antigen, a fraction which makes up about

40% of the data. For tasks “non-strict polyreactivity" and "coarse multiclass" the polyreactive

sequences were separated from the specific/oligoreactive sequences by the 3rd quartile (about

6). Separating the classes by the 3rd quartile was done so that there would be less data loss

and because it provided a relative measure of what it would mean to bind “many'' antigens.

The 5 classes of "finer grained multiclass" were defined by first assigning those sequences

which bound 1 antigen to class 1, since they could not be divided up, and then dividing the

remaining sequences about equally (quartiles).

Table 2: List of ML tasks and the borders defining what class the CDRH3 sequences are assigned to based
on the number of antigens they bind in the dataset.

Task Class 1 Class 2 Class 3 Class 4 Class 5

"strict
polyreactivity"

1 >1

"non-strict
polyreactivity"

1-6 >= 7

"coarse
multiclass"

1 2-5 >=6

"finer grained
multiclass"

1 2 3-5 5-11 >11

9.5 Balancing

The data was balanced using undersampling (Table 3) with a random number of sequences

from the majority class (or the classes which were not the minority). Undersampling was

deemed appropriate since the smallest class was always containing large amounts(>100k) of

sequences for training models.
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Table 3: The size of the balanced dataset and number of samples in the unbalanced classes for all tasks

task Size of balanced
data

class 1 class 2 class 3 class 4 class 5

"strict
polyreactivity"

891.000 445.500 583.804

"non-strict
polyreactivity"

468.516 795.046 234.258

"coarse
multiclass"

794.607 445.500 318.935 264.869

"finer grained
multiclass"

595.855 445.500 146.997 171.938 119.171 145.698

9.5.1 Sequence Encoding

ML approaches were tested on both the AA composition and one-hot encoding. These are

features taken directly from the sequence requiring minimal amounts of engineering. AA

composition has been implicated in polyreactivity and one-hot encoding is a popular method

of encoding biological sequence information (Trabelsi, Chaabane, and Ben-Hur 2019; Jing et

al. 2020). AA composition also serves as a control to ascertain whether positional information

improves model performance. For AA composition, each of the 20 common AA side chains

were represented as one feature where the rows reported how many times said AA occurred in

the CDR3. For one-hot encoding the CDR3 sequences were first divided into single AAs

where each position is one feature in R and then exported to a csv file. The features were then

converted to one hot encoding in python using pandas get_dummies() (“Pandas.get_dummies

— Pandas 1.4.3 Documentation” n.d.). For each position the first column was removed to

remove data redundancy, since the sum of the values along the 20 AAs per position is always

1, and therefore prevents giving the model the same data twice.
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Figure 25: Example of one-hot encoding of sequence data. Displayed is an output showing one-hot encoded
data where the first 4 amino acids at the first position and last 4 at the 11th position can be seen. Where the
amino acid is present at that position the data frame contains a 1 and where not 0.

9.5.2 K-fold validation

The models were evaluated using stratified 10-fold cross-validation. As a control the models

were also trained and tested on a dataset with shuffled labels to inspect that the accuracy was

the same as random guessing (basal accuracy to be expected at random).

9.5.3 Performance metrics
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9.5.4 Leucine

A logistic regression model (sklearn LogisticRegression) was fitted to the data and evaluated

using 10-fold cross-validation. The hyperparameters were not tuned. As logistic is typically

less sensitive to hyperparameters, and the purpose of the experiment was to see whether

leucine was a good predictor in itself and not directly focusing on optimizing the model,

hyperparameter optimization was not deemed necessary.

9.5.5 Architectures tested with AA Composition and One-Hot Sequences

Decision Tree (scikit-learn)

Logistic Regression (scikit-learn)

Random Forest (scikit-learn)

Feed Forward Neural Network (Tensorflow)

Convolutional Neural Network (Tensorflow)

9.6 Hyperparameter Strategy

In order to find decent hyperparameter values to optimize the models a selection of

hyperparameters which we believed could potentially affect the model performance was

chosen (Table 4). Then for each hyperparameter the effect of a broad range of values on macro

f1 (both train and validation), recall and precision (validation) was inspected. Based on this

inspection a second range of values were selected to test for the effect of different

combinations of parameter values using grid-search. The best performing hyperparameters

(maximum macro f1 on validation data across 5 folds) were thus used to test the performance

of the model.

When validating/testing all shallow models and for tuning logistic regression the data was

scaled using StandardScaler( ), however when tuning decision trees and

random forests it was not used as these architectures do not require scaled data. It should not

impact the performance.
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9.6.1 Hyperparameter Boundaries

Decision tree: max_features, max_depth and min_impurity_decrease

Random forest: max_features, n_estimators

Logistic Regression: C, tol

Table 4: Range of hyperparameters tested for each task for shallow models, depending on the architecture.
model encoding parameter grid

decision tree amino acid
composition

[{'max_depth': [10, 13, 15, 17, 20, 25],
'min_impurity_decrease': [0., 0.0001, 0.001],
'max_features': [5, 10, 15, 20]}]

decision tree one-hot [{'max_depth': [25, 30, 33, 35, 37, 40, 45, 50],
'min_impurity_decrease': [0., 0.0001, 0.001],
'max_features': [100, 125, 150, 175, 209]}]

logistic regression both [{'logisticregression__C': [0.25, 0.5, 0.75],
'logisticregression__tol': [1e-5, 1e-3, 1e-2]}]

random forest amino acid
composition

[{'max_features': [5, 10, 12, 16, 20], 'n_estimators': [10, 25, 50, 75, 100,
150, 300]}]

random forest one-hot [{'max_features': [20, 30, 50, 100, 209],
'n_estimators': [30, 50, 75, 100, 150, 300]}]

In order to tune hyperparameters for the feed forward - and convolutional neural networks, a

selection of parameters were chosen to test against arrays of different values. Each parameter

was tested separately to other parameters according to the values in Table 5.

Table 5: Parameters tested individually for both neural networks. Batch denominator is the number of

batches the data is cut into. Layers denote the number of hidden layers in the network.

Model Parameter Values

Both Batch Denominator [5, 10, 25, 50, 75, 100, 200, 500]

Both Learning Rate [0.001, 0.002, 0.01, 0.02, 0.1, 0.2]

FNN Layers [1, 2]

FNN Neurons [5, 10, 25, 50, 100, 150, 200]

CNN Filters [1, 10, 50, 100, 200, 400]

CNN Kernel Size [1, 2, 3, 4, 5, 6, 7, 8, 9]

CNN Max Pooling [1, 2, 3, 4]
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Afterwards, a grid search was performed on the architecture design parameters (Table 2 and

Table 3), using the best hyperparameters for learning rate and batch denominator. These

values were chosen based on inspecting the results of tuning each parameter separately.

Certain parameters were deemed to be more important. The metric emphasized was macro f1,

and the best selected parameters are shown in Table 8.

Table 6: The parameter values that were tested using grid-search for the feed-forward neural net.

Parameter Tested Values

n Neurons [1, 5, 10, 20, 30, 50, 75, 100, 125, 150, 175]

Layers [1, 2]

Table 7: The parameter values that were tested using grid-search for the convolutional neural net.

Parameter Tested Values

Filters [1, 2, 3, 4, 5, 6, 7, 8]

Kernel Size [1, 5, 10, 20, 30, 50, 75, 100, 150]

Max Pool [1, 2, ‘kernel size max’]

To perform one max pooling operation across the entire output of the convolutional layer the

max value of the max pool parameter had to be determined (“kernel size max”). The

maximum possible value for max pool parameter based on the kernel size was one more than

the length of the sequences minus the kernel size. Example: With kernel size 8 and stride of 1

the output of the convolution for that filter is of size 4 (11-8 +1).
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9.6.2 Hyperparameters Shallow Learning

Table 6: Best hyperparameter values for shallow models trained on amino acid composition.
model task parameter 1 parameter 2 parameter 3

decision tree "strict
polyreactivity"

max_depth 15 max_features 20 min impurity decrease 0

logistic regression "strict
polyreactivity"

C 0.25 tol 1e-05 none

random forest "strict
polyreactivity"

n estimators 300 max_features 12 none

decision tree "non-strict
polyreactivity"

max_depth 15 max_features 20 min impurity decrease 0

logistic regression "non-strict
polyreactivity"

C 0.25 tol 1e-05 none

random forest "non-strict
polyreactivity"

n estimators 150 max_features 16 none

decision tree "coarse
multiclass"

max_depth 17 max_features 20 min impurity decrease 0

logistic regression "coarse
multiclass"

C 0.5 tol 1e-05 none

random forest "coarse
multiclass"

n estimators 300 max_features 16 none

decision tree "finer grained
multiclass"

max_depth 17 max_features 20 min impurity decrease 0

logistic regression "finer grained
multiclass"

C 0.75 tol 1e-05 none

random forest "finer grained
multiclass"

n estimators 300 max_features 16 none

Table 7: Best hyperparameter values for shallow models trained on one-hot encoded sequences.
model task parameter

1
parameter 2 parameter 3

decision tree "strict
polyreactivity"

max_depth max_features min impurity decrease 0

logistic regression "strict
polyreactivity"

C 0.5 tol 0.01 none

random forest "strict
polyreactivity"

n
estimators

300 max_features 100 none

decision tree "non-strict
polyreactivity"

max_depth 35 max_features 209 min impurity decrease 0

logistic regression "non-strict
polyreactivity"

C 0.25 tol 1e-05 none

random forest "non-strict
polyreactivity"

n
estimators

300 max_features 100 none

decision tree "coarse
multiclass"

max_depth 40 max_features 209 min impurity decrease 0

logistic regression "coarse
multiclass"

C 0.5 tol 1e-05 none
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random forest "coarse
multiclass"

n
estimators

300 max_features 100 none

decision tree "finer grained
multiclass"

max_depth 40 max_features 209 min impurity decrease 0

logistic regression "finer grained
multiclass"

C 0.75 tol 1e-05 none

random forest "finer grained
multiclass"

n
estimators

300 max_features 100 none

9.6.3 Neural Networks

Figure 26: Architecture of the best performingFNN (a) and CNN (b). (a) FNN dimensions: One-hot encoded
11-mers (220 dimensions) are preprocessed for correlated (dummy) features by removing the first amino acid of
each position, that would be 1 - sum (other amino acids at this position), therefore 209 dimensions. The best
architecture contained one hidden layer of 100 neurons (ReLu activation). (b) CNN dimensions: 1D
convolutional neural network with one convolutional layer of 100 filters that span over 8 positions. The best
pooling was achieved by taking the maximum of every block of two positions. The activation function used in
the final layer of each model was Sigmoid.

In order to complement the previously tested shallow architectures, we consider a

feed-forward neural network architecture (FNN) with one or more layers, and a convolutional

network (CNN). For the CNN we selected a basic architecture used on 2D input and altered it

to become a 1D CNN (Zhou 2020) which was fitted to our data. The models were created and

trained using Tensorflow. To train the networks the Adam optimizer was used, and the loss

function was binary cross-entropy. The model with the best hyperparameters was then

evaluated using 10-fold cross validation. The models were additionally validated on data with

shuffled labels as a control in the same manner as the other models.
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9.6.4 Hyperparameters Neural Network

Table 8: Best parameter values for both FNN and CNN

Model Parameter 1 Value Parameter 2 Value Parameter 3 Value

FNN n Neurons 100 Layers 1 None

CNN Filters 100 Kernel Size 8 Max Pooling 2

9.7 Version of Libraries Used

R version = 4.0.4
Python = 3.7.6 (private computer) and 3.7.4 (immunohub)
R:
ggplot2 3.3.5
tidyverse 1.3.1
Python:
Tensorflow 2.6.0
scikit-learn 0.24.2
numpy 01.20.3
matplotlib 3.4.2
scipy 1.7.1

9.8 Calculation of Levenshtein Distances

Levenshtein distance was chosen as the metric to represent distance between the sequences.

Levenshtein distance is the minimum number of alterations that separate two character strings.

In terms of protein sequences the Levenshtein distance is the minimum number of

substitutions, deletions and/or insertions needed to transform one sequence into another.

To calculate the Levenshtein distances between sequences the distance() attribute from the

package python-Levenshtein was used and the results stored in a numpy matrix as integer

values. Since we used sequences of the same length (11 AAs), normalization of LD based on

sequence length was not necessary.

The algorithm to calculate LD can be expressed as such:

(Contributors to Wikimedia projects 2003)
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Tokens a and b represent two strings (or substrings) being compared. The statement above

specifies how the LD is calculated for each position of the strings. If the length of either string

is zero, then the LD is equal to the length of the other string. Since it is unlikely that one

wants to calculate the LD between a string and nothing, this step is relevant to later positions

when the algorithm has run through all positions of one string. If the first position of both

strings contain the same character, then nothing is added to the LD and the LD is calculated

for the rest of the string positions. Else, 1 is added to the LD and the algorithm is repeated on

either the remainder of string a vs string b, the remainder of string b vs string a or the

remainder of both. The first two options correspond to insertions/deletions and the last

correspond to a substitution.

9.9 Investigating Distributions, UMAP and Clustering

A sample of 10K sequences was randomly selected, as a basis, to generate dissimilar

training/validation datasets by clustering (the size of the dataset was reduced to improve time

efficiency). 5K of the selected sequences were from each class as defined by task "non-strict

polyreactivity" (specific/oligoreactive vs polyreactive).

To investigate how often the sequences have any given minimum distance to another

sequence, a histogram showing this distribution was created (Figure 12). To get the

distribution of minimal distance the values from the matrix diagonal (0) were removed. The

matrix was turned into a long form dataframe, which was then grouped by each individual

sequence. The smallest values in each group were selected to be used for display in a

histogram.

9.9.1 UMAP

In order to visualize how the sequences relate to each other in terms of Levenshtein distance,

the UMAP dimensionality reduction algorithm was used (for results see Figure 2). To find

decent values for the parameters n_neighbors and min_dist (“Basic UMAP Parameters —

Umap 0.5 Documentation” n.d.) a range of possible values were chosen for each to evaluate

in combination using a nested loop. The results were then saved as figures and an optimal

combination selected by visual inspection. Parameters were selected based on the ability to

separate clusters.
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Table 9: Range of values and the parameters that were tested for optimization of umap dimensionality
reduction.

Parameter Value Range

min_dist [0.1, 0.3, 0.5, 0.7, 0.9]

n_neighbors [5, 7, 10, 30, 50, 100, 200, 500, 1000, 5000]

The distance matrix was given to UMAP and it was specified that the distances were

precomputed:
lv_umap = umap.UMAP(metric='precomputed', min_dist=0.1, n_neighbors=100)

coordinates = lv_umap.fit_transform(mat_levenshtein)

9.9.2 Hierarchical Clustering and Fcluster

Previously described methods for reducing similarity between train and test data has involved

separation of clusters (Petti and Eddy 2022). We first attempted to cluster the sequences by

LD using hierarchical clustering. Average linkage was able to find some clusters in the data,

however they were of very uneven size. Attempts to use the fcluster attribute from the

scipy library to get cluster labels resulted in only a few larger clusters and several small

clusters (Figure 13B). For the threshold parameter t, we set the value to 9

(“Scipy.cluster.hierarchy.fcluster — SciPy v1.8.1 Manual” n.d.). The criteria used was

“distance”, for this criteria the t parameter determines the maximum cophenetic distance

between any data points in a cluster. Several values of t were tested. 9 was chosen as 8 led to

large numbers of small clusters and 10 combined all samples into one large cluster.

9.9.3 DBSCAN

DBSCAN was used to cluster the result of UMAP in order to get cluster labels for subsequent

analysis of model generalization. Parameter values for DBSCAN (“sklearn.cluster.DBSCAN”

n.d.) were selected in a similar fashion to UMAP. The criterias that were prioritized was that

there should be enough clusters to separate them in a balanced manner and that the LD was

not too large between training and validation, but not too many as to generate a lot of

overlapping clusters.
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Table 10: The range of values of and the parameters that were tested for optimization of dbscan clustering.
Lists containing the values compared for hyperparameters epsilon and minimum samples.

Parameter Value Range

eps [0.25, 0.5, 0.75, 1]

min_samples [5, 10, 20, 24, 25, 27, 30, 35, 40, 45, 50, 55, 75, 100, 150, 500]

9.9.4 Silhouette Score as to Quantify Clustering Efficiency

The quality of the clusters that were identified using UMAP and DBSCAN were
evaluated using Silhouette score.

(“Sklearn.metrics.silhouette_score” n.d.)

The silhouette score is the mean silhouette coefficient for all clustered samples. The silhouette

score for the clustering is the average score across all data points, where each individual score

is based on the average of the distances to all other points in the cluster compared to the

distances to points in the nearest cluster.

9.10 Estimating Macro f1 when the model is trained and tested on different Clusters defined

by Similarity

UMAP and DBSCAN were used to get cluster labels. Then the sequences that were labeled by

DBSCAN as noise were removed. The same 10k sequences that were used for UMAP and

DBSCAN were used for this analysis. Assignment of each cluster to the training or validation

data was decided at random with 6 being assigned to train and the rest (n=4) being assigned to

validation. That there would not be too few training or validation sequences were prioritized.

As a control, sequences of the same 10k subset were randomly split into training and

validation data with the same number of sequences in each as with the clustered split. This

was done as the number of sequences in each clustered split varies and for fair comparison it

was desirable to test a random split with the same number of sequences. This process was

repeated 100 times.
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9.11 Estimating Macro f1 depending on Minimum Distance to Training Data

To get the macro f1 of the model on test sequences with different minimum distances (LD) to

any training sequence, the minimum distance was used to split the validation dataset into

subsets. These are defined by having the same minimum distance to any given training

sequence.

Only subsets with minimum distance from 1 to 6 were generated as there were not enough

sequences with higher minimum distance to get a good estimation of accuracy. The simulation

was repeated 10 times. Each round 50k sequences were used where 10k was used for training

and the rest would be split into the 6 validation subsets. The size of the validation data had to

be sufficiently large in order to get a decent subset size (about 100 sequences or more).

However, with increased training size the probability of there being closely related sequences

increases. Therefore the size of the training dataset was not increased above 10k.

The macro f1 score was calculated for each subset and stored in a dataframe along with the

number of sequences in the subset. The model used to predict the classes was logistic

regression and the classification scheme used was that of task "non-strict polyreactivity"

(specific/oligoreactive vs polyreactive). In order to see whether the FNN score was based on

similarity the quantification analysis performed on logistic regression was repeated on the

FNN.

9.11.1 Positive control for data leakage

A positive control for the data leakage quantification was made so it would be possible to

compare model performance to an instance where classification was based on similarity. For

each sample in the validation data the minimum LD to training sequences was calculated and

the most similar sequences identified. A heuristic based guesser would take the class of the

similar sequences and make a prediction using the average class. The class would be positive

(polyreactive) if the mean was above 0.5 and negative if lower. If the mean was 0.5 then class

was randomly assigned.
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Table 11: Mean and standard deviation in sample size for minimum distance subsets. Results found in
Figure 17. Numbers reflect the mean and standard deviation (SD) of the size of the subsets used to evaluate
macro f1 based on minimum Levenshtein distance to training sequences.

Minimum Levenshtein Distance Sample Size Mean Sample Size SD

1 2209.3 31.3

2 114464.7 105.8

3 16102.6 81.2

4 5918.2 54.7

5 1166.3 26.6

6 133 9.4

9.12 Integrated Gradients

In order to examine the contributions of each feature to the model predictions we calculated

integrated gradients (Sundararajan, Taly, and Yan 2017). They were calculated using

interpolation between one real case input data and a baseline tensor containing only zeros. A

zero baseline was taken as an example of a negative input instance. We used 100 interpolation

steps, same as has been used to cluster binder vs non-binding 11-mer sequences (Robert et al.

2022). The interpolation between the input and a baseline is crucial for the sensitivity of the

method, as it searches the values in input space between negative (for the baseline) and

positive (for the output), where the output increases (has not become saturated).

The gradients for all interpolation steps were summed up for each feature (positions in the

tensors) for the same input and divided by the number of interpolation steps. The yield of this

process is the mean of the local gradient for each feature. To get an idea of the average effect

of each feature the integrated gradients were summed up over a collection of 5000

polyreactive sequences before being divided on how often the feature was observed. The

results are shown in Figure 20.

The choice of an all zero baseline was based on easy interpretability and making sure that the

prediction for the baseline would be negative (negative class) and close to zero. Per

recommendation (Sundararajan, Taly, and Yan 2017) we checked the baseline prediction, the

prediction for the baseline values was 7.656236e-34. This works well for the positive class

(though not necessarily so well for the negative class).
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9.13 Coefficients

In order to gain insight into how logistic regression predicted polyreactivity we trained the

logistic regression model on both data containing AA composition and one-hot encoding for

datatask "strict polyreactivity" and "non-strict polyreactivity" and then extracted the

coefficients after training (results displayed in Figure 18). 80/20 train-validation split was

used to verify that the performance was similar to what has been seen previously and that the

performance was similar when the features were not scaled.

9.14 Balancing End-Motifs

In order to inspect whether the end motifs were biasing ranking, the sequences were balanced

based on both end motif (CAR and DYW/DVW) and class. Balancing was performed so that

each version of the beginning (CAR, AR, R) and stop end motifs (D, DV, DY, DYW) occured

with the same frequency within each class as defined by datatask "non-strict polyreactivity".

The ends of the CDRH3 sequence were thus not removed and present in the data but since

these motifs were equally dispersed between classes it would not be easy for the models to

make classifications based on these. The sequences were divided into subsets which consisted

of sequences that contained both ends of the CDRH3 (complete sequences), those that

contained either end and 11-mers from the middle of the CDRH3 which contained none of the

motifs. These subsets were combined.

9.15 Preprocessing and Model evaluation on Test-Data

Test data for each task was treated similar to the training data in terms of preprocessing

features and classification. The test-data was not balanced. Models were trained using the

entire balanced training data for each task. The test was performed once for each model

investigated using kfold validation (task, architecture, encoding), except the model using only

Leucine as indicator.
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9.16 Hypothesis testing

In order to test whether observed differences in performance between two classifiers were

statistically significant or due to chance, McNemar's test was used. The McNemar's test is

used to compare paired nominal data. It has been shown to be suitable for comparing

classifiers per low type 1 error rate (Dietterich 1998), and was recommended when the models

were only measured on one test set. It directly tests whether two trained classifiers are

different, however it was found to work well for comparing classifiers regardless of training

with some constraints (Dietterich 1998). The limitations of the test when drawing conclusions

about whether two models (untrained) are significantly different include that it requires the

assumption that variation in classifier performance due to sampling and the randomness of the

learning algorithm is low. As testing was performed once we do not know how much the

performances would vary on the test-data. However, the standard deviations of the macro f1

produced during cross-validation were low (Supplementary Table5).

9.16.1 Execution

The test was carried out on each pair of classifiers for each task, classifiers for different tasks

were not compared as the variation in accuracy between tasks was large. The Bonferroni

method was used to correct for multiple testing (Jafari and Ansari-Pour 2019). Adjusted

p-values were calculated using the number of tests for said task multiplied by the p-value.

Adjusted p-values are p-values adjusted for multiple testing by multiplication by the number

of tests performed.

9.17 Hardware used

Computations were run on an internal e-infrastructure “Immunohub”, which is funded by the

University of Oslo (UiO) and operated by the hosting lab (GreiffLab: https://greifflab.org/)

and SandveLab (https://sandvelab.org/) together with the University Center for Information

Technology, University of Oslo, IT-Department (USIT). As well as a private Windows

computer by Asus with Intel(R)Core(TM ) i7-10510U CPU.
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11 Appendix

Supplementary Figure   1: Distribution of Amino Acids occurrences within sequences of each class per task
“strict” polyreactivity (1A).
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Supplementary Figure   2: Distribution of Amino Acids occurrences within sequences of each class per task
“non-strict” polyreactivity (1B).
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Supplementary Figure 3: Distribution of Amino Acids occurrences within sequences of each class defined by
task “coarse grained multiclass” (2B2).
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Supplementary Figure 4: Without max pooling or activation function the CNN model performance
decreased and was comparable to logistic regression. Results of 5-fold cross validation of a CNN model with
one hidden layer. The models differed in whether max pooling was deployed or the activation function used in
the convolutional layer.

Supplementary Figure 5: Accuracy depending on CNN kernel max length on data with balanced sequence
ends.Accuracy based on 5 fold cross validation evaluating accuracy on data where the sequence end motifs
where balanced. Performed in a similar fashion as previous results included under Results, ReLu activation
function was used for the convolutional layer.
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Supplementary Table 1: Expected occurrence of each amino acid in sequences
of the given class per task “strict polyreactivity.
Amino
Acid

poly
reactive specific Task

A 0,706 0,865 strict polyreactivity
C 0,242 0,288 strict polyreactivity
D 0,766 0,843 strict polyreactivity
E 0,119 0,171 strict polyreactivity
F 1,141 0,958 strict polyreactivity
G 0,626 0,797 strict polyreactivity
H 0,086 0,096 strict polyreactivity
I 0,351 0,313 strict polyreactivity
K 0,049 0,072 strict polyreactivity
L 1,711 1,139 strict polyreactivity
M 0,161 0,205 strict polyreactivity
N 0,127 0,171 strict polyreactivity
P 0,262 0,278 strict polyreactivity
Q 0,071 0,078 strict polyreactivity
R 0,729 0,809 strict polyreactivity
S 0,316 0,423 strict polyreactivity
T 0,345 0,393 strict polyreactivity
V 0,564 0,522 strict polyreactivity
W 0,882 0,729 strict polyreactivity
Y 1,748 1,847 strict polyreactivity

Supplementary Table 2: Expected occurrence of each amino acid in sequences
of the given class per task “non_strict polyreactivity”
Amino
Acid polyreactive specific Task
A 0,631 0,815 non-strict polyreactivity
C 0,218 0,274 non-strict polyreactivity
D 0,710 0,829 non-strict polyreactivity
E 0,092 0,156 non-strict polyreactivity
F 1,224 1,014 non-strict polyreactivity
G 0,542 0,747 non-strict polyreactivity
H 0,082 0,092 non-strict polyreactivity
I 0,363 0,328 non-strict polyreactivity
K 0,035 0,065 non-strict polyreactivity
L 2,058 1,287 non-strict polyreactivity
M 0,141 0,192 non-strict polyreactivity
N 0,102 0,160 non-strict polyreactivity
P 0,255 0,272 non-strict polyreactivity
Q 0,065 0,076 non-strict polyreactivity
R 0,689 0,786 non-strict polyreactivity
S 0,263 0,391 non-strict polyreactivity
T 0,305 0,384 non-strict polyreactivity
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V 0,562 0,541 non-strict polyreactivity
W 0,956 0,773 non-strict polyreactivity

Y 1,707 1,817 non-strict polyreactivity

Supplementary Table 3: Expected occurrence of each amino acid in sequences
of the given class per task “coarse grained multiclass”
Amino
Acid oligo poly spec
A 0,760 0,639 0,866
C 0,259 0,221 0,288
D 0,808 0,716 0,843
E 0,138 0,096 0,170
F 1,081 1,215 0,957
G 0,687 0,553 0,798
H 0,088 0,083 0,096
I 0,343 0,362 0,313
K 0,058 0,037 0,072
L 1,457 2,016 1,140
M 0,176 0,143 0,206
N 0,146 0,105 0,171
P 0,267 0,256 0,278
Q 0,075 0,066 0,078
R 0,758 0,695 0,810
S 0,353 0,270 0,423
T 0,374 0,311 0,393
V 0,566 0,562 0,522
W 0,827 0,945 0,730

Y 1,778 1,710 1,848

Supplementary Table 4: Expected occurrence of each amino acid in sequences
of the given class per task “finer grained multiclass”
Amino
Acid class 1 class 2 class 3 class 4 class 5
A 0,863 0,786 0,739 0,690 0,597
C 0,289 0,265 0,255 0,241 0,205
D 0,843 0,827 0,792 0,754 0,685
E 0,170 0,145 0,133 0,114 0,082
F 0,958 1,051 1,108 1,163 1,258
G 0,794 0,711 0,668 0,618 0,501
H 0,097 0,089 0,088 0,084 0,081
I 0,312 0,331 0,353 0,359 0,365
K 0,070 0,063 0,055 0,046 0,030
L 1,141 1,360 1,538 1,771 2,216
M 0,204 0,184 0,169 0,153 0,135
N 0,173 0,155 0,138 0,121 0,093
P 0,279 0,269 0,265 0,265 0,249
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Q 0,079 0,077 0,073 0,073 0,061
R 0,814 0,768 0,749 0,730 0,665
S 0,423 0,371 0,339 0,306 0,239
T 0,390 0,376 0,372 0,346 0,281
V 0,522 0,556 0,576 0,571 0,553
W 0,727 0,814 0,840 0,880 0,998

Y 1,852 1,803 1,752 1,716 1,707

Supplementary Table 5: Mean and standard deviation of Macro f1 scores for each model evaluated by
10-fold cross-validation. Model Abreviations: LR = Logistic Regression, DT = Decision Tree, RF = Random
Forest, CNN = Convolutional Neural Network, FNN = Feed Forward Neural Network.

Model Mean Macro F1 Standard
Deviation

FNN 0.950 0.00202

CNN 0.946 0.00309

LR onehot non-strict 0.919 0.00115

DT onehot non-strict 0.812 0.00152

RF onehot non-strict 0.850 0.00162

LR AA composition non-strict 0.896 0.00128

DT AA composition non-strict 0.887 0.00174

RF AA composition non-strict 0.884 0.00123

LR onehot strict 0.828 0.00213

DT onehot strict 0.773 0.00172

RF onehot strict 0.812 0.00117

LR AA composition strict 0.809 0.00209

DT AA composition strict 0.802 0.00186

RF AA composition strict 0.790 0.00134

LR onehot coarse grained multiclass 0.757 0.00191

DT onehot coarse grained multiclass 0.665 0.00226

RF onehot coarse grained multiclass 0.710 0.00188

LR AA composition coarse grained
multiclass

0.690 0.00165

DT AA composition coarse grained
multiclass

0.711 0.00109

RF AA composition coarse grained
multiclass

0.693 0.00174
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LR onehot finer grained multiclass 0.597 0.00177

DT onehot finer grained multiclass 0.492 0.00134

RF onehot finer grained multiclass 0.506 0.00223

LR AA composition finer grained
multiclass

0.546 0.00209

DT AA composition finer grained
multiclass

0.535 0.00217

RF AA composition finer grained
multiclass

0.512 0.00191

Supplementary Table  6: Results of Mcnemar's test of significance between models for task strict
polyreactivity.
The Architecture 1 and Architecture 2 columns denote the architecture used to train the tested model for a
Mcneamar test comparing pairs of classifiers. The Encoding X columns denote the encoding of the sequences
which the model was trained on.

Architecture 1 Encoding 1 Architecture 2 Encoding 2 Chi squared Raw p-values
Adjusted
p-value

DecisionTreeC
lassifier aacomp

DecisionTreeClassi
fier onehot 813,579 6,02E−179 9,03E−178

DecisionTreeC
lassifier aacomp LogisticRegression aacomp 390,323 7,04E−87 1,06E−85

DecisionTreeC
lassifier aacomp LogisticRegression onehot 1928,509 0 0

DecisionTreeC
lassifier aacomp

RandomForestClas
sifier aacomp 206,805 6,84E−47 1,03E−45

DecisionTreeC
lassifier aacomp

RandomForestClas
sifier onehot 196,422 1,26E−44 1,89E−43

DecisionTreeC
lassifier onehot LogisticRegression aacomp 1542,857 0 0

DecisionTreeC
lassifier onehot LogisticRegression onehot 3474,071 0 0

DecisionTreeC
lassifier onehot

RandomForestClas
sifier aacomp 359,133 4,35E−80 6,52E−79

DecisionTreeC
lassifier onehot

RandomForestClas
sifier onehot 3210,532 0 0

LogisticRegres
sion aacomp LogisticRegression onehot 965,554 5,52E−212 8,28E−211

LogisticRegres
sion aacomp

RandomForestClas
sifier aacomp 929,546 3,71E−204 5,56E−203

LogisticRegres
sion aacomp

RandomForestClas
sifier onehot 6,288

0,0121553182
5 0,1823297737

LogisticRegres onehot RandomForestClas aacomp 2777,306 0 0
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sion sifier

LogisticRegres
sion onehot

RandomForestClas
sifier onehot 303,859 4,75E−68 7,13E−67

RandomForest
Classifier aacomp

RandomForestClas
sifier onehot 542,025 6,84E−120 1,03E−118

Supplementary Table  7: Results of Mcnemar's test of significance between models for task “non-strict”
polyreactivity.
The Architecture 1 and Architecture 2 columns denote the architecture used to train the tested model for a
Mcneamar test comparing pairs of classifiers. The Encoding X columns denote the encoding of the sequences
which the model was trained on.

Architecture 1 Encoding 1 Architecture 2 Encoding 2 Chi squared Raw p-value
Adjusted
p-value

CNN onehot
DecisionTreeClass
ifier aacomp 10139,633 0 0

CNN onehot
DecisionTreeClass
ifier onehot 23520,048 0 0

CNN onehot FNN onehot 136,064 1,93E−31 5,41E−30

CNN onehot
LogisticRegressio
n aacomp 7933,443 0 0

CNN onehot
LogisticRegressio
n onehot 3501,552 0 0

CNN onehot
RandomForestCla
ssifier aacomp 10868,404 0 0

CNN onehot
RandomForestCla
ssifier onehot 16807,886 0 0

DecisionTreeC
lassifier_aaco
mp aacomp

DecisionTreeClass
ifier onehot 5024,209 0 0

DecisionTreeC
lassifier_aaco
mp aacomp FNN onehot 11452,606 0 0

DecisionTreeC
lassifier aacomp

LogisticRegressio
n aacomp 492,690 3,70E−109 1,04E−107

DecisionTreeC
lassifier aacomp

LogisticRegressio
n onehot 3577,668 0 0

DecisionTreeC
lassifier aacomp

RandomForestCla
ssifier aacomp 59,972 9,62E−15 2,69E−13

DecisionTreeC
lassifier aacomp

RandomForestCla
ssifier onehot 1571,169 0 0

DecisionTreeC
lassifier onehot FNN onehot 24900,089 0 0

DecisionTreeC
lassifier onehot

LogisticRegressio
n aacomp 6821,102 0 0
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DecisionTreeC
lassifier onehot

LogisticRegressio
n onehot 12791,464 0 0

DecisionTreeC
lassifier onehot

RandomForestCla
ssifier aacomp 4357,845 0 0

DecisionTreeC
lassifier onehot

RandomForestCla
ssifier onehot 2171,819 0 0

FNN onehot
LogisticRegressio
n aacomp 9268,778 0 0

FNN onehot
LogisticRegressio
n onehot 4560,276 0 0

FNN onehot
RandomForestCla
ssifier aacomp 12290,098 0 0

FNN onehot
RandomForestCla
ssifier onehot 17985,734 0 0

LogisticRegres
sion aacomp

LogisticRegressio
n onehot 2184,440 0 0

LogisticRegres
sion aacomp

RandomForestCla
ssifie aacomp 748,499 8,51E−165 2,38E−163

LogisticRegres
sion aacomp

RandomForestCla
ssifier onehot 2731,735 0 0

LogisticRegres
sion onehot

RandomForestCla
ssifier aacomp 4068,617 0 0

LogisticRegres
sion onehot

RandomForestCla
ssifier onehot 7307,576 0 0

RandomForest
Classifier aacomp

RandomForestCla
ssifier onehot 1203,926 8,55E−264 2,39E−262

Supplementary Table  8: Results of Mcnemar's test of significance between models for task “coarse”
multiclass.
The Architecture 1 and Architecture 2 columns denote the architecture used to train the tested model for a
Mcneamar test comparing pairs of classifiers. The Encoding X columns denote the encoding of the sequences
which the model was trained on.

Architecture 1 Encoding 1 Architecture 2
Encoding
2 Chi squared Raw p-value

Adjusted
p-value

DecisionTreeC
lassifier aacomp

DecisionTreeClass
ifier onehot 1091,023861 2,95E−239 4,42E−238

DecisionTreeC
lassifier aacomp

LogisticRegressio
n aacomp 294,4213111 5,41E−66 8,12E−65

DecisionTreeC
lassifier aacomp

LogisticRegressio
n onehot 2719,710161 0 0

DecisionTreeC
lassifier aacomp

RandomForestCla
ssifier aacomp 481,2830269 1,12E−106 1,69E−105

DecisionTreeC
lassifier aacomp

RandomForestCla
ssifier onehot 41,01088074 1,51E−10 2,27E−09
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DecisionTreeC
lassifier onehot

LogisticRegressio
n aacomp 1812,482246 0 0

DecisionTreeC
lassifier onehot

LogisticRegressio
n onehot 4976,406069 0 0

DecisionTreeC
lassifier onehot

RandomForestCla
ssifier aacomp 348,0882523 1,11E−77 1,66E−76

DecisionTreeC
lassifier onehot

RandomForestCla
ssifier onehot 2980,106766 0 0

LogisticRegres
sion aacomp

LogisticRegressio
n onehot 1837,921468 0 0

LogisticRegres
sion aacomp

RandomForestCla
ssifier

aacomp.cs
v 1177,382424 5,02E−258 7,53E−257

LogisticRegres
sion aacomp

RandomForestCla
ssifier onehot 14,00608033

0,0001822204
258

0,0027333063
87

LogisticRegres
sion onehot

RandomForestCla
ssifier aacomp 4274,113006 0 0

LogisticRegres
sion onehot

RandomForestCla
ssifier onehot 1050,65239 1,76E−230 2,63E−229

RandomForest
Classifier aacomp

RandomForestCla
ssifier onehot 426,7186 8,42E−95 1,26E−93

Supplementary Table  9: Results of Mcnemar's test of significance between models for task ”finer-grained”
multiclass.
The Architecture 1 and Architecture 2 columns denote the architecture used to train the tested model for a
Mcneamar test comparing pairs of classifiers. The Encoding columns denote the encoding of the sequences
which the model was trained on.

Architecture 1 Encoding 1 Architecture 2 Encoding 2 Chi squared Raw p-value
Adjusted
p-value

DecisionTreeC
lassifier aacomp

DecisionTreeC
lassifier onehot 651,673 9,67E−144 1,45E−142

DecisionTreeC
lassifier aacomp

LogisticRegres
sion aacomp 1038,184 9,01E−228 1,35E−226

DecisionTreeC
lassifier aacomp

LogisticRegres
sion onehot 4619,440 0,00E+00 0

DecisionTreeC
lassifier aacomp

RandomForest
Classifier aacomp 290,583 3,71E−65 5,57E−64

DecisionTreeC
lassifier aacomp

RandomForest
Classifier onehot 390,503 6,43E−87 9,65E−86

DecisionTreeC
lassifier onehot

LogisticRegres
sion aacomp 2213,181 0,00E+00 0

DecisionTreeC
lassifier onehot

LogisticRegres
sion onehot 6233,839 0,00E+00 0

DecisionTreeC
lassifier onehot

RandomForest
Classifier aacomp 175,758 4,09E−40 6,13E−39
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DecisionTreeC
lassifier onehot

RandomForest
Classifier onehot 3851,062 0,00E+00 0

LogisticRegres
sion aacomp

LogisticRegres
sion onehot 2093,235 0,00E+00 0

LogisticRegres
sion aacomp

RandomForest
Classifier aacomp 1910,595 0,00E+00 0

LogisticRegres
sion aacomp

RandomForest
Classifier onehot 7,830 5,14E−03

0,0770831319
2

LogisticRegres
sion onehot

RandomForest
Classifier aacomp 6051,104 0,00E+00 0

LogisticRegres
sion onehot

RandomForest
Classifier onehot 1262,561 1,55E−276 2,32E−275

RandomForest
Classifier aacomp

RandomForest
Classifier onehot 1007,989 3,29E−221 4,94E−220
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