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Abstract

Spectroscopic data are usually perturbed by noise from various sources that
should be removed prior to model calibration. After conducting a preprocessing
step to eliminate unwanted multiplicative effects (effects that scale the pure sig-
nal in amultiplicativemanner), we discuss how to correct amodel for unwanted
additive effects in the spectra. Our approach is described within the Tikhonov
regularization (TR) framework for linear regression model building, and our
focus is on ignoring the influence of noninformative polynomial trends. This is
obtained by including an additional criterion in the TR problem penalizing the
resulting regression coefficients away from a selected set of possibly disturbing
directions in the sample space. The presented method builds on the extended
multiplicative signal correction, and we compare the two approaches on several
real data sets showing that the suggested TR-based method may improve the
predictive power of the resulting model. We discuss the possibilities of impos-
ing smoothness in the calculation of regression coefficients as well as imposing
selection ofwavelength regionswithin the TR framework. To implement TR effi-
ciently in the model building, we use an algorithm that is heavily based on the
singular value decomposition. Because of some favorable properties of the sin-
gular value decomposition, it is possible to explore the models (including their
generalized cross-validation error estimates) associated with a large number of
regularization parameter values at low computational cost.

KEYWORDS

multivariate calibration, preprocessing, Tikhonov regularization

1 INTRODUCTION

Spectroscopic data are often contaminated by various sources of noise and disturbances making analysis and/or interpre-
tations challenging. Preprocessing of spectroscopic data before building models may therefore be essential for obtaining
both accurate predictions and useful interpretations.1,2 The noise in spectroscopic data is typically caused by various phys-
ical effects, depending on the type of technology being used. Baseline shifts and various types of scatter effects are quite
common in spectroscopic data. Mathematically, we often model the noise as multiplicative and additive effects, where
we assume that the noisy part of each spectrum is unique.
The purpose of the present paper is to discuss how to eliminate the influence of additive effects in linear regression

model building by using the Tikhonov regularization (TR) framework. The elimination part is attained by adding an
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extra criterion to the linear regression problem, forcing the regression coefficients to be orthogonal to the directions in
the sample space spanned by the additive effects. By varying a tuning parameter, the directions corresponding to additive
effects can be completely removed or allowed to contribute to the model in a restricted fashion if this contributes to
improving predictive performance. The suggested method can be applied directly to the raw data, or subsequent to any
data preprocessing step. See also Andries and Kalivas3 for a theoretical discussion of this idea.
The focus of our work is on how to remove the influence of polynomial trends efficiently as an integrated part of the

model building.Wewill also compare this approachwith some existing preprocessingmethods that correct for polynomial
trends. This idea has been mentioned in papers by Kalivas4 and Stout and Kalivas5 in the context of TR and discussed in
Vogt et al6 in the context of principal component regression. The proposed method solves a penalized linear least squares
problem by including additional penalty terms within the TR framework. The solution to this least squares problem will
be orthogonal to unwanted polynomial trends in the data.
Using raw spectra as input to this TR problemwill often produce subpar results. The reason for this is that spectral data

often contain scattering effects that affect the spectra multiplicatively. These effects should be corrected in a preprocess-
ing step prior to model building. Here, we discuss using extended multiplicative signal correction (EMSC) and standard
normal variate (SNV) to preprocess data prior to model building. In the examples, we will use EMSC to preprocess
the spectra.
For regularization in the TR problem, we will discuss 3 different types of regularizations: (1) L2 regularization, (2)

discrete first derivative regularization, and (3) discrete second derivative regularization. For L2 regularization without
any wavelength selection, we will show that polynomial trends can be corrected for when preprocessing the data. We
will also show that when using a type of derivative regularization or L2 regularization with wavelength selection, an
extra polynomial criterion in the TR problem is necessary for obtaining orthogonality between the unwanted polynomial
trends and the regression coefficients. By using one of the above types of regularizations togetherwith EMSCpreprocessed
spectra, we obtain regression models comparable to Partial Least Squares (PLS) models with EMSC preprocessed spectra.
In the following sections, we give a short review of some common preprocessingmethods for spectroscopic data, and of

the TR-framework. Thereafter, we introduce the baseline correcting approach as themain topic of this paper. The baseline
correcting method is then compared to EMSC, and some similarities and differences between the two approaches are
discussed. Finally, we show the results of applying the TR method on 2 different data sets of Raman spectra.

2 PREPROCESSING OF SPECTRAL DATA

2.1 Preprocessing
Preprocessing of spectral data is widely considered as necessary prior to regressionmodel building.1,7,8 There are different
ways to describe noise and artifacts in spectroscopic data. One can, for example, distinguish between baseline, scatter,
noise, and misalignments.7 In Raman spectroscopy, fluorescence may cause large baseline effects,8,9 which can result in
a vertical shift of the spectra. Many baseline correcting procedures rely on a baseline estimation and correction by fitting
and subtracting low degree polynomials from the spectra. See, for example, Liland et al,8 for a review of several baseline
estimation algorithms, or Liland et al10 for a discussion of how to choose an appropriate baseline correction.
In NIR spectroscopy, there may be variations in the spectra due to variable path lengths that light travels inside the

samples, and/or scatter effects due to the particle size distribution.11,12 Ambient light and light intensity of the radiation
source can also affect the spectra.13 Scatter effects can be caused by the particle size in a sample being similar in size to
the wavelength of the light used, and it is often modeled by individual scaling factors adjusting each spectrum.7 The most
common scatter correction methods aremultiplicative scatter correction (MSC) and standard normal variate (SNV),7,14 as
well as baseline correcting procedures.
The method suggested in this paper does not include the correction of multiplicative scatter effects, so such effects

must be handled prior to solving the regression problem. A review of the two methods most commonly used to correct
for multiplicative scatter effects is given in the next section.

2.2 Scatter correction by SNV and EMSC
The SNV was introduced in Barnes et al,11 where it is claimed that the main variation in near-infrared diffuse reflectance
spectra are due to (1) scatter, (2) path length, and (3) chemical composition. The variations due to scatter and path
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length may corrupt the spectra by both an unwanted vertical shift and an unwanted multiplicative effect (due to scatter
rather than chemical information). The SNV is simply an autoscaling procedure correcting each spectrum individually
as follows14: Suppose we have n spectra represented by the vectors x(1), … , x(n). Then for i = 1, … ,n, we define the
SNV-corrected spectra as follows:

xcor(i) =
x(i) − x̄(i)
sd(x(i))

, (1)

where x̄(i) and sd(x(i)) denote the mean and standard deviation of the spectrum x(i), respectively.
In Barnes et al.11 the authors also suggest a baseline correcting procedure referred to as detrending. The detrending is

obtained by regressing the spectra onto a polynomial evaluated at the measured wavelengths and returning the residual
vectors from these regressions.
The MSC was introduced in Geladi et al12 to separate absorption in samples due to chemical content from the various

sources of scatter. The idea behind the MSC is that scatter and light absorption due to chemical effects have different
dependencies on electromagnetic wavelengths and that this fact should enable the possibility of separating the scatter
phenomena from the signal of interest. By using the MSC, we model each spectrum as follows:

x(i) = a · 1 + b · xref + emi, (2)

where xref is a fixed reference spectrum and 1 is a vector of corresponding length. The scalars a, b are obtained by
least-squares regression, and emi is the associated residual vector (where the subscriptm is used to indicate MSC prepro-
cessing). In the original description of the MSC, it is argued that one should be using an “ideal” sample as the reference
spectrum xref, and correct the other spectra “so that all samples appear to have the same scatter level as the ‘ideal”’.15, p. 495
Choosing the reference spectrum to be the sample mean of the considered spectra is often considered a useful choice.9,12

In the end, the MSC-corrected spectrum is given by the formula

xm(i) =
x(i) − a · 1

b
= xref +

1
b
emi. (3)

It is a simple task to extend theMSCby including additional terms in the representation of the spectrum x, and the result-
ing correction method is usually referred to as the EMSC.16 The most basic version of the EMSC has the representation

x(i) = a · 1 + b · xref + c1 · v1 + c2 · v2 + eei, (4)

where the vectors v1 and v2 represent the measured wavelength numbers and the square of these numbers, respectively.
The subscript e in the residual eei is conventionally used to denote that EMSC preprocessing is taking place. The scalars
a, b, c1, c2 are obtained by linear least squares fitting of x to the vectors 1, xref, v1 and v2. The corrected spectra are given by
(where the subscript e is used to indicate EMSC preprocessing):

xe(i) =
x(i) − a · 1 − c1 · v1 − c2 · v2

b
= xref +

1
b
eei. (5)

The basic EMSC modeling described above can also be extended to include polynomials of an arbitrary degree.9 Note
that the scalars a, b to be estimated in both the MSC and EMSC formulas will in general not be identical because the
vectors v1 and v2 are not required to be orthogonal to the vectors 1 and xref.
In practice, this means that the estimated multiplicative effect (b) of a spectrum depends on whether the MSC or the

EMSC is chosen for the preprocessing. This is also pointed out in Rinnan et al,14 and more details will be given below.
By using the EMSC preprocessing, we are eliminating the components of the spectra associated with the subspace

spanned by the vectors v1 and v2. Note that the projection of a corrected spectrum xe(i) onto this subspace is identical to
the projection of the reference spectrum xref for all samples (1 ≤ i ≤ n) and that this projection in general will be nonzero.
Therefore, the v1, v2-directions will not influence the later models obtained by methods such as PLS as the (corrected)
data matrices are always centred prior to model building. As we will discuss later, these directions may or may not affect
the regression coefficients in TR depending on the type of regularization used.
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The MSC and SNV are often considered as similar for most applications when a representative spectrum is used as the
reference spectrum,14 as they both include a centering as well as a scaling part. However, the two methods may in some
cases produce very different results as their centerings and scalings are calculated according to different strategies.17

It is worthwhile to note that the SNV operates on each spectrum completely individually, whereas the EMSC uses a
reference spectrum based on all the available spectra to be included in the individual correction models. This issue is
relevant, for example, when using cross-validation strategies for model selection. If the EMSC preprocessing is used and
the reference spectrum is taken as themean spectrum of the training set, then strictly speaking a newEMSCmodel should
be recalculated for each choice of training set, whereas this challenge does not occur when the SNV method is used.
There are also other preprocessing methods that can be used to estimate and correct for scatter effects. One example

is the optical path-length estimation and correction,2 which allows for estimating scatter when the concentration of the
components in a sample is known. When using optical path-length estimation and correction, there is also a polynomial
correction by projection.

3 TIKHONOV REGULARIZATION

3.1 A brief overview of TR for linear least squares modeling
In this section, we briefly review the TR framework for linear least squares modeling. We assume that we have a data
matrix X ∈ Rn×p associated with n samples and p predictor variables, and a corresponding response vector y ∈ Rn.
We also assume that we have a matrix L ∈ Rp×p, and a tuning parameter 𝜆 > 0. The TR problem is specified by the
linear system [ X√

𝜆 · L

]
𝜷 =

[
y
0

]
. (6)

The corresponding least squares problem to be minimized with respect to 𝜷 is as follows:

||X𝜷 − y||2 + 𝜆||L𝜷||2, (7)

where the regularization parameter 𝜆 is considered as fixed. The purpose of the regularization matrix L in (6) and (7) is
to impose additional constraints on the regression coefficients and to overcome problems with multicollinearity present
in the ordinary least squares formulation. The most common choice for L is the identity matrix (I). Various discrete
differential operators and diagonalmatrices representingwavelength selections are other popular choices.4,5 Note that the
choice L = I corresponds to the ordinary Ridge regression problem18 without variable standardization. As shown later in
the examples, the choice of regularization may have a considerable impact on the resulting regression coefficients.

3.2 Regression coefficients
In the following, we will assume that the regularization matrix L in (6) is invertible. If L ≠ I (the identity matrix), one
can then transform the problem into standard form by considering XL−1 in the place of the original X (see, eg, Stout and
Kalivas5 for a more thorough explanation). Without loss of generality, we will therefore assume L = I in the following. If
L is not invertible the standardization process is a bit more involved. See, eg, Hansen19 for details about this case.
The least squares solution of (6) can be obtained by solving the corresponding normal equations

(X ′X + 𝜆I)𝜷 = X ′y. (8)

By considering the reduced SVD of X = USV′ (here, S is the diagonal matrix of nonzero singular values, U and V
represent the corresponding left and right singular vectors), the solution 𝜷 to (8) simplifies to

𝜷 = V (S′S + 𝜆I)−1SU ′y. (9)

A derivation of this expression can be found in Hastie et al.20 The following properties of Equation 9 should be noted:
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1. The formula for the regression coefficients in (9) are only depending on 𝜆 in the inversion of a diagonal matrix. This
implies that from the reduced SVD of a data matrix, the computation of the regression coefficients corresponding to
any choice of the regularization parameter 𝜆 only requires multiplication of matrices and the inversion of a diagonal
matrix. Thus, having calculated the reduced SVD of the data matrix, we can generate regression coefficients for any
value of 𝜆 at a very low computational cost.

2. FromEquation 9, it is clear that thematrixV(S′S+𝜆I)−1SU′ linearly transforms (by leftmultiplication) any response
vector y ∈ Rn to be associated with the data matrix X into a corresponding vector 𝜷 ∈ Rp of regression coefficients.

The above remarks imply that once we have calculated the reduced SVD of the data matrix X, the desired model for
any value of 𝜆 and any choice of response vector y can be obtained directly by ordinary matrix multiplications. The
only restriction with this approach is its reliance upon the SVD of X. If X is large and calculating its reduced SVD
is not computationally feasible one can solve the least squares problem (6) using alternative techniques, such as QR
factorization.

3.3 Model selection
When using a regularized approach to linear modeling such as TR, choosing an appropriate value of the regularization
parameter(s) can make or break the modeling process.4 Thus, having a good procedure for choosing the value(s) of the
parameter(s) is essential.
Choosing an appropriate value of the regularization parameter is a trade-off betweenmodel fit andmodel complexity.20

There is no known approach to this problem that always provides an objectively optimal solution.19 Some alternatives
include consideration of L-curves19,21 or more statistically motivated techniques like cross-validation. In this paper, we
advocate for using the generalized cross-validation (GCV) proposed by Golub et al22 for the selection of an appropriate
regularization parameter value. The reason for this is that, as explained below, this can be implemented very efficiently
using the singular value decomposition of the data matrix X. In the examples, we will compare the TR models to PLS
models. To make the comparison fair, we can of course use leave-one-out cross-validation (LOOCV) for both TR and PLS.
In our experience, minimization of the LOOCV and GCV statistics results in comparable values of the regularization
parameter, and it matters little which one is used. We indicate this in the examples by giving prediction results for TR
solutions obtained from both LOOCV and GCV.
The primary motivation for preferring the GCV is that this method avoids some problems with LOOCV) as the GCV is

a rotation-invariant version of the LOOCV.
The GCV statistic is defined as (our projection matrix differs from the one in Golub et al22 by a factor of n in the term

with 𝜆) follows:

GCV(𝜆) = ||(I − A(𝜆))y||2[
1
n
Tr(I − A(𝜆))

]2 , (10)

where A(𝜆) = X(X′X + 𝜆I)−1X′.
We now showhow theGCV statistic can be calculated usingmatrix addition andmultiplication only when the SVD ofX

is known. Note that the numerator in (10) is simply the squared norm of the residual. As discussed in the previous section,
the regression coefficients (and hence the corresponding residuals) can be calculated using only matrix multiplications.
Using the reduced SVD of X the matrix A can be expressed as follows:

A(𝜆) = US(S′S + 𝜆I)−1S′U ′ = U[S2(S2 + 𝜆I)−1]U ′. (11)

The matrix inside the brackets in (11) is diagonal and can be calculated directly by simple scalar operations for any
choice of 𝜆.
It is therefore computationally “inexpensive” to compute theGCVstatistic once the SVDof the datamatrixX is available.

Thus, one way of finding a good value of the regularization parameter 𝜆 using GCV is to consider it as a function of 𝜆,
and plot the GCV(𝜆)-function for a “large” but finite set of well-spread 𝜆 values. Finally, we choose the particular 𝜆 value
associated with the smallest GCV value. For a more genuine minimization of GCV(𝜆), the minimizer obtained from the
discrete procedure proposed above can be taken as a starting point for running a numerical optimization routine.
A MATLAB implementation of this approach using the fminbnd-function from MATLABs Optimization Toolbox is

given in Appendix A. The code in Appendix A also include code for calculating the GCV statistic for a selected sample
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of values of the regularization parameter. In our experience, this approach works equally well to using fminbnd to find
the optimal value of the regularization parameter, assuming a sufficiently sized sample of values of the regularization
parameter is selected in an appropriate range.
We note that the use of GCV here is primarily aimed at selecting an appropriate value of the regularization parameter

𝜆 rather than providing an accurate error estimate of the model. Once a good value for the regularization parameter has
been found, the associated model may be validated with respect to its predictive performance using some appropriate
cross-validation strategy or a separate test set.

3.4 Adding additional criteria to the model calibration
The basic formulation of the TR problem given in (6) is easily extended by including additional rows in the equation.
Such inclusions correspond to imposing additional constraints on the desired regression coefficients.
The focus of this this paper is to eliminate the influence of additive effects in spectra by integrating additional constraints

in the TRproblem formulation. This can be done by inserting extra rows into thematrix on the left-hand side in Equation 6
and corresponding zeros on the right-hand side. The extra rows should be chosen as set of basis vectors spanning the
subspace of additive effects that are not supposed to influence our final model. In what follows, we discuss primarily
polynomial trends. For a more general theoretical discussion, see, eg, Andries and Kalivas.3
Additive effects are often modeled as lower-order polynomials. An orthogonal basis for such polynomial spaces can be

obtained by considering the Legendre polynomials up to some desired degree.23 More precisely, we create a matrix with
the polynomial trends evaluated evenly in the interval [−1, 1] as columns.We then find aQR-decomposition of thismatrix
and use the resulting orthogonal vectors as rows in the matrix P (see the MATLAB-function Plegendre in Appendix A
implementing the details). By multiplying P with a huge constant

√
𝜇, and inserting zeros in the corresponding rows of

the response vector on the right-hand side of (6), the updated equation becomes

⎡⎢⎢⎣
X√
𝜇 · P√
𝜆 · L

⎤⎥⎥⎦𝜷 =

[ y
0
0

]
. (12)

The least squares solution of (12) corresponds to finding the minimizer with respect to 𝜷 of the expression

||X𝜷 − y||2 + 𝜇||P𝜷||2 + 𝜆||L𝜷||2, (13)

where 𝜆 and 𝜇 are considered as fixed quantities. By selecting 𝜇 sufficiently large, we can force the regression coefficients
solving the least squares problem (12) to be numerically as close to orthogonal to the chosen P-directions in themeasured
samples as we like. The resulting model will therefore ignore such polynomial trends directly, instead of deflating them
off the spectra in a preprocessing step.
We note that this method is also applicable in correcting for arbitrary known interferents (not only polynomial trends)

by specifying an appropriate set of basis vectors for the actual interferent-subspace.
In the limiting case when 𝜇 grows large, the suggested method corresponds to projecting the spectra onto subspaces

orthogonal to the polynomial trends, but as we will show later, in the context of TR with L ≠ I, the two approaches are
not equivalent.
In the discussion above and what follows, we suggest using a “hard-coded” large value for 𝜇. In the code for the exam-

ples, the value 𝜇 = 1024 is used. This value was chosen to be large enough to make the regression coefficients obtained
orthogonal to the polynomial trends to machine precision. If the scale of the measurements is significantly different than
for the examples used in the present work, then a different value of 𝜇 may be chosen. The result of this choice is to com-
pletely remove the influence of the directions spanned by the rows in P on the regression coefficients. We note that it is
also possible to treat 𝜇 as an ordinary regularization parameter that may be chosen by some model selection criterion. If
this is done and the regularization parameter is not chosen too large, then the rows inP are allowed to contribute partially
in the resulting regression coefficients.
In the practical calculations, we first centreX and ywith respect to their columnmeans before appending

√
𝜇P toX and

calculating the singular value decomposition for the augmented matrix. When computing the GCV statistic as described
in the previous section, it is therefore important to truncate the GCV calculations to only account for the upper n rows of
the augmented X as it does not make sense to consider the rows in P for model selection. See the code in Appendix ?? for
the required details.
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4 COMPARISON WITH EMSC

4.1 MSC and EMSC explained by linear algebra
The EMSC preprocessing is used for both eliminating polynomial trends and correcting for scatter effects in spectro-
scopic data. By using the EMSC preprocessing with second-order polynomial correction, the spectra are projected onto a
4-dimensional subspace (where 3 of the basis vectors are associated with the second-degree polynomial subspace). In the
present work, we suggest including the correction of polynomial trends as an integrated part of the TR approach by con-
sidering the required equations enforcing the desired orthogonality properties. Because the EMSC as well as the proposed
TR approach are aiming at the same purpose, it is of interest to compare and contrast the twomethods. Before comparing
the two methods, we will briefly review the linear algebra required for describing the MSC and the EMSC preprocessing.
Recall that the rows of the matrix X ∈ Rn×p and the vector y ∈ Rn represent our spectra and associated response

measurements. We also assume the reference spectrum xref ∈ Rp to be known. For MSC and EMSC, the two subspaces
required for filtering the samples are given by the subspace basesWMSC = {1, xref } ⊂ Rp andWEMSC = {1, xref , v1, v2} ⊂

Rp, respectively. According to Section 2.2, the formulae for MSC and EMSC preprocessing are given by Equations 3 and 5.
For both types of preprocessing, the scaled residuals 1

b·i
e·i are considered to be representative for the interesting chemical

information of the associated samples x·(i). To make a direct comparison of xm(i) and xe(i), one needs to express these
vectors with respect to a common basis. An appropriate basis can be obtained by extendingWEMSC into a complete basis
forRp. Such a basis can be found by introducing a set of basis vectorsWr = {r1, … , rp−4} ⊂ Rp that spans the orthogonal
complement of span(WEMSC), ie, span(Wr) = span(WEMSC)⟂ and Rp = span(WEMSC)⊕ span(Wr).
With respect to the basisWEMSC ∪Wr, the preprocessed spectra given in (3) and (5) can be represented as follows:

xm(i) =
aei − ami

bmi
· 1 + bei

bmi
· xref +

ci1
bmi

· v1 +
ci2
bmi

· v2 + 1
bmi

·
p−4∑
j=1

𝛼jrj (14)

and

xe(i) = 0 · 1 + 1 · xref + 0 · v1 + 0 · v2 + 1
bei

·
p−4∑
j=1

𝛼jrj (15)

forMSC and EMSC, respectively. The first of these equations is obtained by applying theMSC preprocessing to the sample
x(i) with the basisWEMSC∪Wr. The differences between the scatter correction scalars (the bmi and bei in the above equations)
will typically be small for MSC and EMSC. However, in some cases, they may be noticeably different and the differences
may affect the predictive power of the model (as is shown for the fish oil data in Section 5). Aside from the different
estimates of the scatter correction scalars bmi and bei, the differences between the MSC and EMSC preprocessed spectra
are clearly located in the subspace spanned by the vectors {1, v1, v2, xref}.

4.2 MSC with trend correction versus EMSC
Wewill now compare the removal of polynomial trends by EMSC to the removal of such trends by including the required
polynomial orthogonality as an additional constraint in the TR problem. Although we will limit investigation to consider-
ing polynomials of degree 2 or less, the given argument readily generalizes to the correction of polynomial trends of any
degree. Consider the following two regression problems:[ XEMSC√

𝜆 · L

]
𝜷 =

[
y
0

]
(16)

and ⎡⎢⎢⎣
XMSC√
𝜇 · P√
𝜆 · L

⎤⎥⎥⎦𝜷 =

[ y
0
0

]
, (17)

where P is a matrix with 3 rows representing the space of polynomials of degree 2. First, we consider the case when L = I
(this corresponds to putting restrictions on the L2-norm of the solution vector 𝜷) and the corresponding solution of (16).
Denote the reduced SVD ofXEMSC byXEMSC = USV ′ . From (9), we see that the solution 𝜷 to (16) is a linear combination

of the columns in V. From Equation 15, we see that after centering XEMSC, the rows in XEMSC will be orthogonal to the
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vectors in WEMSC. By considering the the full SVD of XEMSC, all the vectors in WEMSC can be expressed as linear
combinations of the right-singular vectors associated with the singular value zero.
As the right singular vectors are orthogonal, it follows that the columns of V are orthogonal toWEMSC. Therefore, the

solution of (16) will be orthogonal to the vectors inWEMSC. Because we assume L = I together with EMSC preprocessed
spectra, the solution vector will be orthogonal to the trends being corrected for in the EMSC preprocessing. Thus, in this
case, adding an extra polynomial correction criterion to (16) will not affect the regression coefficients.
Now, consider the solution of (17). From (3) and (14), we see that after centering, the rows in XMSC will be orthogonal

to the vectors in WMSC. Without the inclusion of the additional polynomial criterion (represented by the matrix P) the
solution vector of (17) would in general only be orthogonal to the vectors xref and 1. However, the additional polynomial
criterion forces the solution �̂� of (17) to also be as close to orthogonal to the vectors v1 and v2 as we like by choosing√
𝜇 to be sufficiently large. The difference in the solutions of (16) and (17) is therefore explained by the difference in

the estimated scatter coefficients. Such estimates will often be fairly similar, but as demonstrated in the fish oil example
below, their differences may affect the predictive power of the model.
In themore general case withL ≠ I, one can solve (16) and (17) by first transforming the data as indicated in Section 3.2.

Such transformations will in general affect the right singular vectors of the data matrix. Therefore, the above argument
based on L = I to show that the solution to (16) is orthogonal to the vectors in WEMSC is no longer valid. So when
using a regularization matrix L ≠ I, the resulting regression coefficients will not in general be orthogonal to the trends
corrected for in the preprocessing. In this case, adding the extra polynomial block

√
𝜇P to (16) corresponding to the

polynomial trends removed in the preprocessing may affect the resulting regression coefficients (this point is illustrated
in the examples presented below). In the examples, we will also in some cases add an extra criterion to the TR problem
consisting of a diagonal matrix with large entries for wavelengths that are irrelevant for prediction. In this case, for the
same reason as discussed above, it will be necessary to add an extra orthogonality condition to the TR problem to ensure
orthogonality between the regression coefficients and the unwanted polynomial trends. We note that if SNV is used for
preprocessing the data, the detrending described in Barnes et al11 will correspond to the polynomial trend correction
proposed here if L2 regularization is used together with a large “hard-coded” value of the 𝜇 parameter. We also note that
if the 𝜇 parameter is chosen by validation instead of using a hard-coded value, then the method of removing polynomial
trends discussed here will not be equivalent to other methods that removes the projection onto subspaces spanned by
polynomials, such as, eg, EMSC and SNV with trend correction.
The regression coefficients (ie, the model parameters) obtained when using EMSC preprocessing may sometimes rep-

resent information considered to be useful for interpretations.24 When using both MSC preprocessing and correction of
polynomial trends by themethod suggested in this paper, we do not derive these coefficients explicitly, aswe obtain regres-
sion coefficients that are orthogonal to the subspaces of interest without explicitly calculating the sample projections onto
these subspaces (for prediction purposes these parameters are clearly irrelevant). The EMSC model parameters are the
regression coefficients obtained by solving multiple OLS problems, so these parameters can always be calculated at the
computational cost of solving the regression problem A′B = X′, where A is a matrix with columns being the vectors in
the basisWEMSC.

5 EXAMPLES

Here, we will study the practical side of the theoretical considerations discussed in this paper by applications to two data
sets of Raman spectra.Wewill primarily use EMSC to preprocess the spectra.Whenusing EMSC to correct Raman spectra,
it is common to use polynomials up to degree 6 or 7. This choice of polynomial degree can be justified as the chemical
information in Raman spectra is generally contained in very steep peaks.9 In both examples, unless otherwise stated, we
use EMSC to preprocess the spectra and correct for polynomial trends up to and including degree 6, and we refer to this
as EMSC(6) preprocessing.
In addition to TR models, we also provide PLS models for comparisons. Selection of the PLS models are based on

LOOCV. The regularization parameter values for the TR models shown in the tables are primarily obtained by LOOCV.
The regularization parameter values for the associated models obtained by GCV are in most cases very similar to the
LOOCV results. The tables in the examples below also include prediction results from TR models obtained using GCV.
This is included to illustrate that LOOCV and GCV typically performs very similarly for selecting the value of the regular-
ization parameter in TR. As we have shown earlier, the GCV statistic can be calculated very efficiently. We can therefore
safely recommend using GCV for estimating an appropriate value of the regularization parameter.
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The fminbnd function from theMATLABOptimisation Toolbox was used to determine the value of the regularization
parameter giving the minimal GCV or RMSECV statistic. The fminbnd-function requires a lower and upper bound on
the value of the regularization parameter. In the process of optimizing the nonnegative regularization parameter, we used
a relatively wide interval ranging from 0 to 1020 (the upper limit of this interval corresponds to choosing a model that
essentially predicts the average response value). For some models we experienced that the minimization process could
fail by proposing the right end point value. In this case, a lower maximum value of the regularization parameter was set,
and the model calculation redone. This was repeated, lowering the maximum value each time, until a reasonable model
was found. An alternative to using the fminbnd function which from our experience works equally well is to simply
sample a range of values for the 𝜆-parameter and calculate the GCV statistic or the RMSECV associated with these values.
One can then simply choose the 𝜆 corresponding to the minimum GCV or RMSECV statistic. The code for this approach
using GCV is integrated into the MATLAB function given in Appendix A.
Note that by following the above steps, we are, strictly speaking, not calculating the LOOCV estimates andGCV statistic

correctly, as we are not generating new EMSC models for each spectrum we remove from the model (which we should
clearly do for LOOCV, and for GCV as GCV is LOOCV in a particular coordinate system). This should not have any
significant impact as the only information we use from all the spectra in the training set is the mean of the spectra, but
our estimates will have a small bias.
The optimal model in a model family is defined as the model with the value of the regularization parameter with the

minimum RMSECV (or GCV) value.

5.1 Raman spectra of fish oil
First, we look at a data set of Raman spectra of oil samples from salmon.10,25,26 The response variable is the iodine value,
which is used as a measure of unsaturation in the fat. This data set was also analyzed in Liland et al,10 using various
baseline correction algorithms with PLSR. For comparison purposes, we use the same training/test set split and the same
wavelength truncations as in Liland et al.10 The data set consists of 45 spectra (30 samples used for training, 15 for testing)
with 2263 wavelengths between 790 and 3050cm−1 (after truncation).
There are unwanted additive andmultiplicative noise effects affecting the spectra, aswell as an instrument detector shift

at about 1800cm−1. Following the analysis in Afseth and Kohler,9 we use EMSC including corrections for polynomials
up to degree 6 to preprocess the spectra. The raw spectra and the EMSC(6) preprocessed spectra are shown in Figure 1.
There is still a clear baseline in the spectra, as can be seen in the corrected spectra in Figure 1, but most of the unwanted
variation between the spectra has been removed. As we are centering the data prior to modeling, this baseline will not
affect the predictions. The test spectra were corrected using the reference spectrum obtained from the training spectra,
ie, the mean of the training spectra.

FIGURE 1 Top: raw Raman spectra of salmon oil. Notice in particular the nonlinearities in the baseline. Bottom: EMSC(6) preprocessed
Raman spectra of salmon oil. EMSC, extended multiplicative signal correction
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Following the steps given at the beginning of Section 5,we generatedmodels for EMSCpreprocessed spectrawithL2 reg-
ularization, discrete first derivative and second derivative regularization (hereafter referred to asD1 andD2 regularization,
respectively).
For comparison, PLS models were created with up to 20 components, using EMSC(6) preprocessed data for the results

in Table 1, and usingMSC preprocessing for the results in Table 2. For each PLSmodel, the RMSECVwas calculated using
LOOCV. The optimal PLS model was selected as the model with the minimum RMSECV. This resulted in a PLS model
with 2 components for the EMSC(6) preprocessed spectra, and a model with 3 components for the MSC preprocessed
spectra.

TABLE 1 Fish oil data with EMSC(6) preprocessing

Orthogonalization Reg. Optimal 𝜆 (LOOCV) Min. RMSECV (LOOCV) RMSEP (LOOCV) RMSEP (GCV)

TR (No orth.) L2 1.45 · 107 3.02 2.03 2.00
TR (Degree 6) L2 1.45 · 107 3.02 2.03 2.00
TR (No orth.) D1 9.56 · 109 3.12 2.15 1.99
TR (Degree 6) D1 1.35 · 109 3.17 1.97 1.83
TR (No orth.) D2 1.55 · 1012 3.13 2.35 2.15
TR (Degree 6) D2 2.74 · 1013 3.36 1.74 1.83
PLS (2 components) NA NA 3.07 1.83 NA

Comparison of properties of the regression coefficients. The orthogonality column refers to which polynomials (if any) are added as an additional crite-
rion to the Tikhonov regularization (TR) problem. EMSC, extended multiplicative signal correction; GCV, generalized cross-validation; LOOCV, leave-one-out
cross-validation.

TABLE 2 Fish oil data with MSC preprocessing

Orthogonalization Reg. Optimal 𝜆 (LOOCV) Min. RMSECV (LOOCV) RMSEP (LOOCV) RMSEP (GCV)

TR (No orth.) L2 4.53 · 107 3.72 2.39 2.70
TR (Degree 6) L2 1.56 · 107 3.38 2.31 2.30
TR (No orth.) D1 5.92 · 109 3.85 2.98 2.91
TR (Degree 6) D1 3.52 · 1010 3.70 2.21 2.13
TR (No orth.) D2 6.81 · 1013 3.90 3.04 2.97
TR (Degree 6) D2 1.67 · 1012 3.97 2.03 1.95
PLS (3 components) NA NA 3.71 2.21 NA

Comparison of properties of the regression coefficients. The orthogonality column refers to which polynomials (if any) are added as an additional criterion to the
TR problem. GCV, generalized cross-validation; LOOCV, leave-one-out cross-validation; MSC, multiplicative signal correction; TR, Tikhonov regularization.

FIGURE 2 Plot of the rows in the matrix P appended to the Tikhonov regularization problem. There are 7 curves as we are correcting for
polynomial trends up to and including degree 6
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The results are summarized in Tables 1 and 2.
The GCV statistic reported in the tables is the square root of the GCV statistic as defined earlier in the paper. This is

done for easier comparison with the RMSEP values.
The rows of the matrix P with the polynomial trends used in this example are plotted in Figure 2.
Notice fromTable 1 that the performance increase on the test set by adding degree 6 orthogonalization to theTRproblem

using LOOCV formodel selection is roughly 26%. This should be considered an extreme case, but it illustrates how adding
an additional orthogonalization criterion to the TR problem can impact prediction even if “the same correction” has been
made in the preprocessing of the spectra. From Figure 3, we see that the model family generated by adding a degree
6 correction to the TR problem has better prediction in the region containing the 𝜆-values that are likely to be chosen
based on the RMSECV statistic. From the same figure, we also see that the curves for the training set do not give an
indication that the model created with a degree 6 orthogonalization will be significantly better than the model with only
D2-regularization. We note that the corresponding curves for GCV look very similar to the LOOCV curves. This shows
that using LOOCV and GCV for model validation can be problematic.
The optimal regression coefficients for themodels with an additional orthogonalization criterion are plotted in Figure 4.

As can be seen from Table 1, the regression coefficients obtained using derivative regularization and extra orthogonaliza-
tion perform better on the test set than the regression coefficients obtained from L2 regularization. This will clearly not
be the case in general, but often the loss in prediction will be relatively small. For smaller data sets such as the one dis-
cussed here, the computation of the regression coefficients for the PLS models and the 3 regularization types considered
does not take more than a minute on a personal computer. A possible strategy for modeling is thus to generate models
from all families and select the final model based on the performance on, eg, a validation set. If this is done, then clearly
a split into training, validation, and test set is preferable if an estimate of predictive power is also wanted.
One problemwith the regression coefficients obtained using derivative regularization is that the extra criterion can force

structure on the regression coefficients that is not supported by the data. FromFigure 1,we can, for example, see thatwe do
not expect nonzero regression coefficients in the area corresponding to roughly 1800 to 2600cm−1. Comparing this to the
coefficients in Figure 4, we see that the coefficients with derivative regularization have nonzero coefficients in this area.
There are several ways to remedy this problem if one wants smooth regression coefficients, and the easiest way is perhaps
to use some form of wavelength selection.4 One possibility is to add an additional criterion to the TR problem in the form
of a diagonal matrix with large entries in the columns corresponding to the wavelengths that we want to exclude. This
results in regression coefficients with local norm smoothing in this area. The regression coefficients are shown in Figure 5.
We see that this results in regression coefficients that are zero for wavenumbers 1800 to 2600cm−1 and continuous on
the border of this region. On the test set, the RMSEP of the model with a diagonal matrix added to the TR problem
with second derivative regularization is 1.73. For comparison, PLS coefficients with the same wavelength selection were
also calculated. The calculation for PLS was done by excluding the columns of the data matrix corresponding to the
wavenumbers that we want to exclude from the regression problem, and afterwards, inserting an appropriately sized zero

FIGURE 3 Fish oil data with EMSC(6) preprocessing. LOOCV and RMSEP plots for models with D2 regularization. EMSC, extended
multiplicative signal correction; LOOCV, leave-one-out cross-validation
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FIGURE 4 Fish oil data with EMSC(6) preprocessing. LOOCV-optimal regression coefficients for different regularizations and an
additional orthogonalization criterion in the TR problem (constant term omitted). See Table 1. EMSC, extended multiplicative signal
correction; LOOCV, leave-one-out cross-validation; TR, Tikhonov regularization

FIGURE 5 Fish oil data with EMSC(6) preprocessing. Plot of mean EMSC(6) preprocessed spectra and regression coefficients with second
derivative smoothing (with an extra orthogonalization criterion in the TR problem) with and without wavelength selection (constant term
omitted). We can make the regression coefficients zero in a region where we do not expect any chemical information by appending an extra
criterion to the TR problem. EMSC, extended multiplicative signal correction; TR, Tikhonov regularization

vector into the obtained regression coefficients. For this data set, the RMSECV curve is very flat so that choosing the PLS
model from themodel withminimumRMSECV value results in a suboptimal model with 4 components (with an RMSEP
of 2.55). Manual inspection of the RMSECV curve shows that a model with 2 components is much more reasonable (the
resulting model has an RMSEP of 1.32). In Figures 4 and 5, we see that we can generate regression coefficients that have
very different profiles but also have similar predictive power, showing that one should be very careful when interpreting
regression coefficients. The problem of interpreting regression coefficients and how very different regression coefficients
can have similar predictive power is a well-known problem.27

Finally, we consider usingMSC to preprocess the spectra and createmodels as before with L2 regularization. The results
are summarized in Table 2. We can see that including a degree 6 orthogonalization improves the prediction, but the
prediction is still different from the prediction from using EMSC preprocessing.
The difference can mostly be explained by the different estimates of the multiplicative scalars. If we use MSC to pre-

process the spectra and do TR with L2 regularization, but replace the estimates of the multiplicative scalars with the ones



SKOGHOLT ET AL. 13 of 18

FIGURE 6 Top: raw Raman spectra of adipose tissue. Bottom: EMSC(6) processed Raman spectra of adipose tissue

obtained from the EMSC preprocessed spectra the RMSEP of the models obtained using GCV falls from 2.70 to 2.01,
which is reasonably close to the estimate obtained using EMSC pre-processing. This example shows that the polynomials
chosen in the EMSC preprocessing not only affect the regression coefficients by what is subtracted from the spectra but
can also impact the prediction by affecting the estimates of the mulitplicative effects.

5.2 Adipose data
We will now investigate a data set of Raman spectra of fat from pork adipose tissue.28 This data set was also analyzed in
Liland et al.24 The data set consists of 77 samples, with 50 samples being used for training. From the data we made 500
random partitions into training and test sets. We will perform a similar analysis as for the previous data set, but we will
primarily report the mean results from these 500 different partitions. There are 4967 wavenumbers evenly distributed in
the range 120 to 3099.6cm−1 after trimming. The response variables are monounsaturated fatty acids (MUFA), polyun-
saturated fatty acids (PUFA), iodine values, and saturated fatty acids (SFA). Here, we only look at the responses MUFA
and iodine value as the results for PUFA and SFA are similar to the results for MUFA and iodine value. As with the
fish oil data, we use EMSC with a degree 6 polynomial correction to preprocess the data. The raw spectra and the cor-
rected spectra for one partition of the data set are plotted in Figure 6. After preprocessing the data, much of the variation
between the spectra is removed. We note, however, that there is still large variation in the spectra in particular in the
region 1310 to 1420cm−1. This variation could be removed from the spectra by adding a term representing this interferent
to the EMSC preprocessing (this is done in Liland et al24), or from only the model by adding an interferent term to the
TR problem.
As with the previous data set, we see that there is a large region (again corresponding roughly to the wavenumbers 1800

to 2600 cm−1) in Figure 6 where we do not expect nonzero regression coefficients, but we will have nonzero regression
coefficients forD1 andD2 regularization as a consequence of the smooth derivative criterion.Wewill therefore also create
regression models where we have excluded these wavelengths. We note that these are roughly the same wavelengths that
are excluded in Olsen et al.28
We will perform the same analysis as on the previous data set: We create TRmodels using L2,D1, andD2 regularization

and also create a PLS model for comparison (using EMSC(6) preprocessing for all methods). The number of components
in the PLS model was chosen using LOOCV. We begin by considering the MUFA response. The mean results from the
500 train/test set splits are summarized in Tables 3 and 4, and LOOCV optimal regression coefficients for one particular
train/test set split are plotted in Figures 7 and 8.
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TABLE 3 Predicting MUFA from Adipose data with EMSC(6) preprocessing

Orthogonalization Reg. Optimal 𝜆 (LOOCV) Min. RMSECV (LOOCV) RMSEP (LOOCV) RMSEP (GCV)

N
o
w
av
e.
se
l.

TR (No orth.) L2 7.87 · 106 0.98 1.04 1.07
TR (Degree 6) L2 7.87 · 106 0.98 1.04 1.07
TR (No orth.) D1 3.14 · 1013 1.38 1.42 1.21
TR (Degree 6) D1 1.45 · 1013 1.23 1.26 1.19
TR (No orth.) D2 1.02 · 1018 1.78 1.85 1.68
TR (Degree 6) D2 6.96 · 1017 1.62 1.70 1.45
PLS NA NA 0.97 1.06 NA

W
ith

w
av
e.
se
l.

TR (No orth.) L2 8.19 · 106 0.97 1.03 1.05
TR (Degree 6) L2 8.00 · 106 0.97 1.02 1.04
TR (No orth.) D1 3.50 · 1013 1.38 1.40 1.14
TR (Degree 6) D1 6.18 · 1011 1.00 1.03 1.02
TR (No orth.) D2 1.12 · 1013 1.18 1.26 1.24
TR (Degree 6) D2 6.83 · 1012 1.09 1.14 1.13
PLS NA NA 0.97 1.05 NA

Above thick line: without wavelength selection. Below thick line: with wavelength selection. All numbers are mean values for 500 randomized splits of the data
into training and test sets.

TABLE 4 Predicting iodine value from Adipose data with EMSC(6) preprocessing

Orthogonalization Reg. Optimal 𝜆 (LOOCV) Min. RMSECV (LOOCV) RMSEP (LOOCV) RMSEP (GCV)

N
o
w
av
e.
se
l.

TR (No orth.) L2 8.42 · 107 1.01 1.01 1.00
TR (Degree 6) L2 8.42 · 107 1.01 1.01 1.00
TR (No orth.) D1 2.10 · 1011 1.02 1.04 1.04
TR (Degree 6) D1 2.25 · 1011 1.02 1.04 1.04
TR (No orth.) D2 6.85 · 1014 1.06 1.10 1.12
TR (Degree 6) D2 1.10 · 1015 1.07 1.13 1.14
PLS NA NA 1.02 1.04 NA

W
ith

w
av
e.
se
l.

TR (No orth.) L2 7.18 · 107 1.00 1.00 0.99
TR (Degree 6) L2 7.08 · 107 1.00 0.99 0.98
TR (No orth.) D1 1.71 · 1011 1.02 1.03 1.02
TR (Degree 6) D1 1.50 · 1011 1.01 1.01 1.00
TR (No orth.) D2 3.26 · 1014 1.86 1.52 1.66
TR (Degree 6) D2 3.71 · 1014 2.04 1.40 1.62
PLS NA NA 1.02 1.05 NA

Above thick line: without wavelength selection. Below thick line: with wavelength selection. All numbers are mean values for 500 randomized splits of the data
into training and test sets.

For PLS, the mode number of components is 8 both with and without wavelength selection. From Table 3, we see
that the inclusion of an extra orthogonalization criterion in the TR problem generally improves prediction. Includ-
ing wavelength selection also improves prediction for all models. The effects of the extra orthogonalization criterion
in the TR problem and wavelength selection is most apparent for 2nd derivative regularization. Including both the
extra orthogonality criterion and wavelength selection for second derivative regularization results in a more than
30% improvement on RMSEP, making the models created using second derivative regularization comparable to the
other models.
Consider next the iodine response and the results given in Table 4. In this case, the mode number of PLS components is

5 without wavelength selection and 4 components with wavelength selection. For this response, the extra orthogonality
criterion has very little effect on both RMSECV andRMSEP. For the iodine response, we also see that wavelength selection
has a large negative effect on the models using second derivative regularization. The bad results here are partly explained
by roughly 5 of the training/test splits giving a very large RMSEP, but even removing these splits, the second derivative
models still perform worse than the other models. This shows that incorporating wavelength selection can also worsen
model performance.We also note that although the RMSECV is reasonably close to the RMSEP formost models, this only
holds because we are calculating average values over many different splits of the data set. On a single split of the data set,
the RMSECV is not necessarily a good indicator of model performance.
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FIGURE 7 Adipose data with EMSC(6) pre-processing. LOOCV-optimal regression coefficients for MUFA prediction with different
regularizations (constant term omitted). See Table 3

FIGURE 8 Plot of mean EMSC(6) preprocessed spectra and regression coefficients with 1st derivative smoothing with and without
wavelength selection (constant term omitted) for predicting MUFA. See Table 3

6 CONCLUSIONS

Using the SVD TR with GCV for model selection can be implemented very efficiently. The examples considered here
demonstrates that the GCV performs very similar to using LOOCV for selecting the regularization parameter in TR. As
the GCV statistic can be calculated very efficiently, we recommend using GCV for selecting the regularization parameter
in TR. For data where multiplicative effects are present, these effects should be corrected prior to model building as the
TR framework cannot correct for them directly. This can be done for example using EMSC or SNV. With TR, we can
also easily impose extra criteria on our regression coefficients. Here, domain knowledge is important, as, for example,
knowing which wavenumbers of spectra contain useful chemical information can be incorporated into the model to give
better predictions. Smooth regression coefficients can be obtained by using derivative regularization and can in some cases
improve the predictive power of the models. We have shown that using derivative regularization can impose structure on
the regression coefficients that are not supported by the data, so that some form of wavelength selection can be useful for
derivative regularization. The addition of polynomial corrections as an extra criterion to the TR problem is not necessary
for L2 regularization if the correction is made for the training set, but for derivative regularization, a polynomial criterion
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in the TR problem is in general necessary to obtain regression coefficients orthogonal to unwanted polynomial trends.
For the examples included in this paper, the models created using TR were comparable to the models created using PLS.
As the model generation in TR is done quickly, one can quickly generate optimal models from several model families and
afterwards make a decision about which model to use.
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Abstract

Extended multiplicative signal correction (EMSC) is a widely used framework
for preprocessing spectral data. In the EMSC framework, spectra are scaled
according to a given reference spectrum. Spectra that are far from collinear with
the selected reference spectrum may not be scaled appropriately. An extension
of the EMSC framework that allows for the incorporation of multiple reference
spectra in the EMSC model is proposed to remedy this issue. Useful candidate
reference spectra can be obtained from the dominant right singular vectors asso-
ciated with the matrix of spectra, but any desired reference spectra can be used.
As a part of this extension, we propose to change the basis used in the EMSC
preprocessing to an orthonormal basis. Using an orthonormal basis will remove
confounding issues between the basis vectors and make the obtained EMSC
model simpler to interpret. We discuss the proposed modification theoretically
and demonstrate its use with two data sets of Raman spectra andmodelling with
partial least quares regression and Tikhonov regularization. The data sets used
are Raman spectra of oil samples from salmon with iodine value as the response
andRaman spectra of an emulsion ofwater, whey protein, and different oils with
polyunsaturated fatty acids as response (both as percentage of total fat content
and total weight).

KEYWORDS
extended multiplicative signal correction (EMSC), modelling, preprocessing, Raman spectroscopy

1 INTRODUCTION

Because raw spectral data often contain unwanted arte-
facts and noise that make modelling and interpretation
difficult, some kind of preprocessing is often required.[1–4]

The goal of preprocessing spectral data is to transform the
raw data into a form that is more suitable for modelling
or interpretation. A vast amount of preprocessing meth-
ods for spectral data are available. The most widely used
preprocessing methods include the standard normal vari-
ate (SNV),[5] the Savitzky-Golay filter,[6] various baseline
correction algorithms,[7] and other methods.[8]

In the present work, we consider the extended mul-
tiplicative signal correction (EMSC),[3] which is a
model-based preprocessing framework that corrects for
both unwanted additive and multiplicative effects in
data.[1] The EMSC is flexible in the sense that it is pos-
sible to include a priori knowledge about chemical and
non-chemical patterns in the preprocessing model to
improve the data quality.[9]

The additive corrections are obtained by orthogonaliz-
ing the spectra with respect to the directions representing
irrelevant additive trends in the data. The multiplicative
corrections are based on a chosen reference spectrum, and

J Raman Spectrosc. 2019;50:407–417. wileyonlinelibrary.com/journal/jrs © 2018 John Wiley & Sons, Ltd. 407
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each original spectrum is appropriately scaled so that it
can be expressed as a sum of the reference spectrum and
a residual part representing the spectral information of
actual interest.[1] Such scaling usually works quite well for
most of the spectra in a data set, but particular spectra that
are far from collinear with the reference spectrummay not
be scaled appropriately.[10]

In the present work, we propose an extension of the
EMSC framework that allows for the inclusion of multi-
ple reference spectra to estimate scaling coefficients for the
spectra to be corrected. The proposed extension is particu-
larly useful when dealing with data sets containing one or
several outlier spectra. By including additional reference
spectra that better accounts for the chemical profiles of the
outlier spectra, the preprocessing step may obtain more
useful estimates of the EMSC scaling coefficients.
The structure of the present work is as follows: First,

we review the traditional EMSC framework for preprocess-
ing of spectral data. Then, we motivate and discuss how
multiple reference spectra can be incorporated in a useful
extension of the EMSC framework. Finally, we demon-
strate the suggested extension for two applications with
data sets of Raman spectra.

2 REVIEW OF EMSC
PREPROCESSING

When modelling by the traditional EMSC preprocessing
framework, the spectra are scaled according to a pre-
specified reference spectrum, and irrelevant polynomial
trends are subtracted from the data.[1] In the following, we
assume that X is an n × p data matrix with n samples
and p predictor variables, r is the chosen reference spec-
trum (typically the mean spectrum[1,2]) and d is the degree
of the polynomial trends to be corrected for. The vectors
spanning the subspace of the adverse polynomial trends
are denoted by v0, v1, v2, … , vd. In the traditional EMSC
framework, a spectrum x is projected onto the subspace
spanned by the vectors in the basis

BEMSC = {r, v0, v1, v2, … , vd}. (1)

Note that the exact choice of basis vectors in Equation (1) is
unfortunately not specified when the EMSC framework is
described; and in practice, it has beenmost common to use
a basis that is not orthogonal (the choice of basiswill be dis-
cussed in more detail later). The associated representation
of a spectrum x in BEMSC is as follows:

x = br +
d∑

i=0
(civi) + e, (2)

where the scalars are obtained by least squares regression
and e is the residual spectrum orthogonal to the subspace

spanned by BEMSC. The notation e will be used regardless
of which EMSC model is applied later in this article. The
EMSC corrected spectrum is defined as:

xcor =
x −

∑d
i=0(civi)
b

= r + 1
b
e. (3)

The purpose of the polynomial trends in BEMSC is to model
and subtract the expected effects of additive noise, whereas
the b-coefficient is used to obtain an appropriate scaling
of the residual e to obtain the corrected spectrum xcor. The
EMSC model can be justified from the Beer-Lambert law,
exploiting that chemical spectra are basically non-negative
linear combinations of pure component spectra (includ-
ing interferents) for vibrational spectroscopy techniques.[1]

The special case when the polynomial degree is zero, so
that only constant trends are corrected, is referred to as the
multiplicative scatter correction (MSC).[11] The EMSC is
thus a direct extension of the MSC.
Several extensions of the traditional EMSC model have

been proposed in the literature. If any known interferents
are also present, these can be included to extend the basis
BEMSC and handled in the same way as the polynomial
trends.[1,2] In applications including replicated measure-
ments of the spectra, it is sometimes useful to include
additional terms representing inter-replicate variance.[12]

The EMSCmodel has also been extended to correct for the
so-called Mie-scattering effects.[9]

Suppose we have nintf interferents, and let wi denote
the i-th interferent. To incorporate the interferents in the
model, we extend the basis given in Equation (1) to include
the vectors representing the interferents. This results in the
following extended set of basis vectors:

BEMSC ∪ {w1,w2, … ,wnint𝑓 }. (4)

The correction of a spectrum x is obtained by subtracting
its projection onto the subspace spanned by the interfer-
ents in Equation (4) and the following scaling:

xcor =
x −

∑d
i=0(civi) −

∑nint𝑓

i=1 (diwi)
b

= r + 1
b
e. (5)

In the following, we will use Equations (4) and (5) as our
starting point. Because the spectra corrected with EMSC
are written as deviations from the reference spectrum, the
corrected spectra will typically be quite similar to the ref-
erence spectrum. This means that any unwanted artefact
in the reference spectrum might also be present in the
corrected spectra. Some examples of such effects could be
fluorescence in Raman spectroscopy,[1] and Mie scattering
in Fourier-transform infrared spectroscopy.[9] These types
of artefacts are usually not a problem for the predictive
modelling because the corrected spectra will not vary in
the direction spanned by the reference spectrum.
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3 EMSC PREPROCESSING WITH
MULTIPLE REFERENCE SPECTRA

The purpose of the reference spectrum in the EMSC pre-
processing is to facilitate the estimation of multiplicative
effects for transforming themeasured spectra to a common
scale. It is known that the MSC can accentuate outliers
when the outliers and the selected reference spectrum
are poorly correlated.[10] Because the EMSC employs the
same scaling strategy as the MSC, it can be expected that
the EMSC can also accentuate outliers. The most extreme
case would be a spectrum that is orthogonal to the ref-
erence spectrum, in which case, the reference spectrum
would give no indication of how to scale the spectrum. This
scaling problem can be alleviated by introducing multiple
reference spectra for estimating the scaling coefficients.
The practical use of this idea requires (a) a strategy for

deriving more than one reference spectrum, and (b) a gen-
eralization of the EMSC-correction given in Equation (5)
to allow for multiple reference spectra. To obtain multiple
reference spectra, we propose considering the most dom-
inant right singular vectors from the (reduced) singular
value decomposition (SVD) of the matrix of the measured
spectra. The right singular vectors can be viewed as an
ordered list of orthogonal directions in the sample space
sorted by the magnitude of joint signal strength in each
direction. The ordering emphasizes the first few domi-
nant right singular vectors as natural candidate reference
spectra because they represent the part of the information
that is most common across the entire collection of mea-
sured spectra. If these vectors describe signals in the data
having a chemical origin, it can be expected that the mea-
sured spectra will appear similar in the subspace spanned
by these vectors. As the right singular vectors are only
uniquely defined up to sign, it may be required to change
the signs for visualization purposes. A practical method
for checking this is to calculate the correlation between
the mean spectrum and the first right singular vector and
change signs if the correlation is negative. Note that the
first right singular vector is often highly correlated to the
mean spectrum for spectral data. Therefore, using the first
right singular vector as a reference spectrum, will often
give a preprocessing result that is quite similar to the result
obtained by using the mean spectrum as the reference.
In the traditional EMSC preprocessing, a nonorthogo-

nal basis is typically used, and the correction of additive
trends in the scaling is done implicitly when projecting
a spectrum onto the subspace spanned by the basis in
Equation (4). This basis is not appropriate when employ-
ing multiple reference spectra because of the interac-
tions between the reference spectra and the polynomial
trends (and possibly the other interferents). However, the
problem is easily dealt with by employing an orthonormal

basis eliminating any ambiguities in the regression coef-
ficients (and the associated EMSC model interpretations)
resulting from some particular choice of nonorthogonal
basis.
A good and practical procedure for obtaining an

orthonormal basis is to collect the EMSC basis vectors as
columns in a matrix and calculate its QR-factorization.
We recommend the columns in this matrix to be ordered
as follows: Start with the polynomial trends followed by
the interferents (if any), and finally include the reference
spectra. The reason for suggesting this ordering is that it
makes more sense to first eliminate the irrelevant effects
of the polynomial trends and the interferents from the ref-
erence spectra, rather than the other way around, which
would result in using reference spectra being contami-
nated by both additive (polynomial) effects and the other
interferents that one wants to avoid. To obtain the ith poly-
nomial vector representing a polynomial trend of degree
i − 1, we sample the function xi− 1 uniformly over p
points (the number of features) in the interval ( − 1, 1). The
QR-factorization used to obtain an orthonormal basis will
then produce the associated Legendre polynomials.[13] To
distinguish between the traditional nonorthogonal EMSC
basis and the orthonormal basis introduced here, the
superscript o is used to denote spectra that are part of
an orthonormal basis that has been obtained using a
QR-factorization as described above. Let nref be the total
number of reference spectra (identified by the SVDor some
other insights), and denote the ith reference spectrum by
ri. For the orthonormal basis of the suggested modified
EMSC-framework, we use the notation:

Bo
EMSC =

{
vo
0, vo

1, vo
2, … , vo

d,w
o
1,wo

2, … ,wo
nint𝑓

, ro
1, ro

2, … ,

ro
nre𝑓

}
.

(6)
Because the basis is constructed to be orthonormal, the
coefficients (the 𝛼i's, the 𝛿i's, and the 𝛾 i's) for the projec-
tion of a particular spectrumonto the subspace spanned by
Bo

EMSC can be calculated directly by taking the inner prod-
ucts between each of the basis vectors and the spectrum,
that is, 𝛼i = (vo

i )
tx, 𝛿𝑗 = (wo

𝑗
)tx and 𝛾k = (ro

k)
tx. Express-

ing a spectrum x with respect to this basis therefore yields
as follows:

x =
d∑

i=0
𝛼ivo

i +
nintF∑
𝑗=1

𝛿𝑗wo
𝑗 +

nre𝑓∑
k=1

𝛾kro
k + e, (7)

where e is the resulting residual not accounted for by
Bo

EMSC.
The corrected version of x is obtained by subtracting its

projection onto the subspace spanned by the polynomial
trends (the vo

i 's) and the interferents (thew
o
𝑗
's), and scaling



410 SKOGHOLT ET AL.

by the inverse of the norm of its projection onto the sub-
space spanned by the reference spectra (the ro

k 's), that is

xcor =
1√∑nre𝑓

k=1 𝛾
2
i

·

(
x −

d∑
i=0

𝛼ivo
i −

nint𝑓∑
𝑗=1

𝛿iwo
i

)

= 1√∑nre𝑓

k=1 𝛾
2
i

·

(nre𝑓∑
i=1

𝛾iro
i + e

)

= rx + 1√∑nre𝑓

k=1 𝛾
2
i

· e

, (8)

where the reference combination rx = 1√∑nre𝑓
k=1 𝛾2i

·
∑nre𝑓

i=1 𝛾ir
o
i

depends on the original spectrum x. Note that in the spe-
cial case with nref = 1 (one reference spectrum ro), the
above correction simplifies to

xcor = ro + 1|𝛾1| · e, (9)

where the reference ro is common for all the spectra sub-
ject to correction. The residual term in Equation (9) will be
similar but not identical to the residual obtained from stan-
dard EMSC preprocessing, as the reference spectrum in
Equation (9) is initially corrected for the polynomial trends
and interferents.
Note that for the traditional EMSC preprocessing with

a single reference spectrum, there is no variation across
the samples in the subspace spanned by the reference
spectrum. The regression coefficients derived in the the
subsequent regression modelling can therefore be chosen
orthogonal to ro. When including multiple reference spec-
tra, Equation 8 implies that this is no longer the case,
and one should expect the regression coefficients to be
nonorthogonal to the rx's. More specifically, suppose we
have some regression coefficients 𝜷 (obtained by partial
least squares regression[14] regression or otherwise). The
prediction based on the corrected spectrum xcor is then
given by

xcor𝜷 =
⎛⎜⎜⎜⎝rx +

1√∑nre𝑓

k=1 𝛾
2
i

· e
⎞⎟⎟⎟⎠𝜷 = rx𝜷 + 1√∑nre𝑓

k=1 𝛾
2
i

· e𝜷.

(10)

The vectors rx can therefore be viewed as correctives
term for the spectra.
It should be noted that if a spectrum has a very high

correlation with one of the reference spectra provided in
Bo

EMSC, then it must necessarily be nearly orthogonal to the
others. Thus, the projection of the spectrum onto (nref − 1)
of the reference spectra will be close to zero, and just one
reference spectrum will have a noticeable impact on the

preprocessing. This property makes the use of multiple
reference spectra particularly attractive for data sets con-
taining a lownumber of spectra that are very different from
the primary desired reference spectrum, as only these spec-
trawill be noticeably affected by the inclusion of additional
reference spectra.
Any choice ofmultiple reference spectra requires certain

knowledge about their representation of particular chemi-
cal information in the data. If some unwanted artefact, not
picked up by the polynomial trends, is present in a can-
didate reference spectrum, it should either be included as
an interferent in Bo

EMSC or ignored completely. The prac-
tical estimation of interferents can be handled in several
ways. One possibility is to use a strategy based on differ-
ence spectra.[1,2] Alternatively, if there are no difference
spectra that appropriately model the unwanted trends,
then the interferent can be modelled from the data. This
can for example be done using the approach proposed by
Beattie,[15] which is mentioned below.
Preprocessing approaches based on the SVD are well

known from the literature. Beattie has used a particular
SVD loading for collagen and heme was used for scaling
spectra.[15] This approach is similar to our scaling using
a single reference spectrum obtained from the SVD. Beat-
tie also suggested using selected SVD loadings to estimate
non-Raman background effects.[15,16] This was done by
utilizing the fact that Raman peaks typically are quite nar-
row so that high bandwidth features in the right singular
vectors indicate non-Raman phenomena. The non-Raman
phenomena can then be estimated from the right singular
vectors.[15] To correct the spectra, these estimates can be
scaled and subtracted from the spectra, or the approxima-
tions can be added as interferents to an EMSCmodel. This
approach is general and can be very useful for obtaining
estimates of unwanted additive trends in candidate refer-
ence spectra not accounted for by the polynomial trends.
Because of the choice of an orthonormal basis in

Equation (6), the spectra preprocessed according to
Equation (8) are not directly suitable for visualization,
peak quantification, or peak ratio calculations without
some modifications. This is because an ideal reference
spectrum will not be orthogonal to all polynomial trends.
But for preprocessing, it is computationally advantageous
to use an orthogonal basis. For plotting, one should there-
fore consider adding back the projection of the first ref-
erence spectrum onto the polynomial trends, which will
have no effect on modelling.
From a mathematical point of view, the polynomial

terms in the EMSC basis will eliminate any baseline effect
for modelling purposes, but if a baseline is present in the
first reference spectrum, then it will, in general, also be
present in the corrected spectra. Such a baseline can be
removed by, for example, finding a baseline correction for
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the first reference spectrum and subtracting this baseline
from all the spectra.
Prototype MATLAB code implementing the suggested

modification of the EMSC preprocessing is included in the
Appendix.

4 EXAMPLES

In this section, we will compare using the traditional
EMSC preprocessing method using the mean spectrum as
reference to the proposedmodification of theEMSC frame-
work using the first 1− 3 right singular vectors as reference
spectra. Correction of polynomial trends up to the sixth
degree is included for all the preprocessing alternatives.
No interferents will be added to the preprocessing models.
The traditional EMSC framework using the mean spec-
trumas the reference spectrumwill be referred to as simply
(standard) EMSC preprocessing. For the modified EMSC
framework, we will use parentheses to denote the num-
ber of right singular vectors used as reference spectra, so
that, for example, EMSC(3) refers to the modified EMSC
framework using the first three right singular vectors as
reference spectra.We considermodelling with partial least
squares (PLS) regression[14] and Tikhonov regularization
(TR)[17]. The following two data sets will be considered:

1. Fish oil data.[18] This is a data set consisting of Raman
spectra measured on oil samples from salmon. There
are n = 45 measured samples, and the spectra are
truncated to the range 790cm−1 − 3052cm−1. This
truncation has been used before when the data set
has been analyzed.[7] After truncation, there are p =
2263 wave numbers. The response is the associated

measured iodine values. The raw spectra are shown
in Figure 1.

2. Emulsion data.[19] This data set consists of Raman
spectra measured on an emulsion of water, whey
protein, and different oils. The oil types used were
refined olive oil, refined coconut oil, soy oil, cod oil
with omega 3 fatty acids, and salmon oil. A mix-
ture design was used to create the samples.[19] The
responses are polyunsaturated fatty acids (PUFAs)
quantified as percentage of total weight, and PUFAas
percentage of total fat content. The spectra are trun-
cated to thewavenumbers 675cm−1 − 1770cm−1. This
truncation has been used before when the data set
has been analyzed.[19,20] There are a total of n = 69
measured samples in the data set, and after trunca-
tion there are p = 1096 wave numbers. The raw
truncated spectra are shown in Figure 2.

For modelling, the following procedure was used: A
nested cross-validation strategy was employed to separate
preprocessing and parameter optimization from model
validation. The outer validation loop was a repeated
two-fold (50:50) shuffle-split, whereas the inner optimiza-
tion loop was a leave-one-out cross-validation (LooCV).
For each outer split, the first half of the samples were
used to create preprocessingmodels and subsequently esti-
mate model parameters (using LooCV) for TR and PLS
on the preprocessed data. The second half of the outer
split was preprocessed correspondingly and its response
values predicted using optimal parameter values from the
first half. For PLS, up to 15 components were considered,
and the number of components minimising the root mean
squared error of cross-validation (RMSECV) was selected.
For TRL2 regularization aswell as discrete first and second

FIGURE 1 Fish oil data: Raw Raman spectra [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Emulsion data: Raw Raman spectra. The spectra have been truncated to the range 675cm−1 − 1770cm−1 [Colour figure can be
viewed at wileyonlinelibrary.com]

TABLE 1 Fish oil data: Average RMSEP over 500 random data splits

Raw spectra EMSC EMSC(1) EMSC(2) EMSC(3)

TR (L2) 3.63 2.88 2.87 2.87 2.87
TR (D1) 4.34 3.20 3.20 3.21 3.21
TR (D2) 4.55 3.41 3.41 3.40 3.40
PLS 3.91 2.95 2.95 2.95 2.95

Note. EMSC: extendedmultiplicative signal correction; PLS: partial least squares; RMSEP: root mean squared errors
of prediction; TR: Tikhonov regularization.

TABLE 2 Emulasion data: Average RMSEP over 500 random data splits for the response fatty
acids as % of total weight

Raw spectra EMSC EMSC(1) EMSC(2) EMSC(3)

TR (L2) 0.84 1.07 1.07 1.06 1.09
TR (D1) 1.03 1.09 1.09 1.10 1.13
TR (D2) 1.30 1.26 1.15 1.20 1.22
PLS 0.86 1.12 1.12 1.10 1.13

Note. EMSC: extended multiplicative signal correction; PLS: partial least squares; RMSEP: root mean squared
errors of prediction; TR: Tikhonov regularization.

derivative regularization were used.[21] 1,000 values of the
regularization parameter were selected uniformly on a log
scale, and the parameter value minimizing the RMSECV
was selected. Note that there is some data leakage for the
LooCV in the inner loop as the data was preprocessed
based on all the training samples. This may have caused a
small bias in the model selection, but not in the prediction
as an independent test set was used for model evalua-
tion. An outer shuffle-split was repeated 500 times, and in
every iteration, a new random split of the data was cre-
ated. The average root mean squared errors of prediction

(RMSEP) over these 500 iterations are reported in Table 1
for the fish oil data, and Table 2 and Table 3 for the
emulsion data.
From Figure 1, we see that most samples of the the fish

oil data appear to be very similar. Although the intensity
of the fluorescence background varies between samples,
the relative sizes of the different peaks appear similar for
all samples. The fluorescence background will be removed
when the spectra are corrected for polynomial trends, so
for this data set, we can expect one reference spectrum to
be sufficient to obtain an appropriate scaling. Inspecting
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TABLE 3 Emulsion data: Average RMSEP over 500 random data splits for the response PUFA as
% of total fat content

Raw spectra EMSC EMSC(1) EMSC(2) EMSC(3)

TR (L2) 8.33 3.42 3.38 3.10 2.56
TR (D1) 8.83 3.08 3.04 2.95 2.59
TR (D2) 11.3 3.39 3.20 3.14 2.82
PLS 8.59 3.45 3.42 3.14 2.59

Note. EMSC: extended multiplicative signal correction; PLS: partial least squares; PUFA: polyunsaturated fatty
acid; RMSEP: root mean squared errors of prediction; TR: Tikhonov regularization.

FIGURE 3 Fish oil data: The first three right singular vectors [Colour figure can be viewed at wileyonlinelibrary.com]

the first three right singular vectors of the fish oil data plot-
ted in Figure 3, we see that the differences between the
right singular vectors can be attributed mostly to the base-
line in the data. After removing the projection onto the
polynomial trends from the data and the first right singular
vector, it can be verified that the maximum angle between
a sample and the first right singular vector is 1.6◦ (alter-
natively, the lowest correlation between a sample and the
first right singular vector is 0.9996). If the first right singu-
lar vector is used as a reference spectrum, then the spectra
will necessarily be nearly orthogonal to any other refer-
ence spectrum. Thus, for the fish oil data, it is sufficient
to use a single reference spectrum. This is also supported
by Table 1, from which it is clear that all the different pre-
processing alternatives give roughly the same prediction
errors for the subsequent regression modelling.
For the emulsion data, the situation is different. In this

dataset, there is much more variation between the spec-
tra, and not all the spectra are that highly correlated with
the first right singular vector if we compare with the fish
oil data. After correcting for polynomial trends, the angle

between the first right singular vector and more than 50%
of the samples are larger than 10◦ (corresponding to a cor-
relation lower than 0.9848). For six of the samples, the
angle between the sample and the first right singular vec-
tor is between 20◦ − 35◦ (corresponding to correlations in
the range 0.8192 − 0.9393). In Figure 4, the first three right
singular vectors of the emulsion data are plotted. Unlike
the fish oil data, the differences between the right singular
vectors cannot be attributed to any baseline or unwanted
additive effect. The reference spectra do not appear to
contain any unwanted effect that is not accounted for by
the polynomial trends,making themappropriate reference
spectra candidates.
The preprocessed emulsion spectra are plotted in

Figure 5 and Figure S2 (Supporting Information). In
Figure 5, there is no apparent visual difference between
the two preprocessing alternatives, except for the scale
difference between the standard EMSC preprocessed spec-
tra and the modified EMSC preprocessed spectra. The
similarities between the standard EMSC and EMSC(1) is
supported by Figure S1 (Supporting Information), from
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FIGURE 4 Emulsion data: The first three right singular vectors [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Emulsion data: Preprocessed Raman spectra using different preprocessing methods. Top: standard EMSC. Bottom: EMSC(1)
[Colour figure can be viewed at wileyonlinelibrary.com]

which it is clear that the mean spectrum and the first right
singular vector are very similar. Because the two spectra
are that similar, we expect the standard EMSC and
EMSC(1) preprocessed spectra to be highly similar as well.
The scale difference is irrelevant for the subsequent regres-
sionmodelling as it will be accounted for by the regression
coefficients. When including 2 and 3 reference spectra, we
can see from Figure S2 (Supporting Information) that this
does not result in a huge visual impact on the spectra, with
the notable exception of one spectrum (see in particular
the peak at about 1445cm−1).
From Table 2, it follows that for the response of fatty

acids measured as the % of total weight, modelling based
on the raw data gives the best prediction results, and the

differences between the other preprocessing alternatives
are relatively small. In Table 3, the situation is changed,
and regression models based on the raw data are the
poorest by a huge margin. From both Tables, the RMSEP
obtained using standard EMSC preprocessing is approxi-
mately the same as theRMSEPobtained from theEMSC(1)
preprocessed data. In Table 3, the RMSEP decreases when
the number of reference spectra is increased. The best
prediction results are obtained when using the first three
right singular vectors as reference spectra. In Figure 6 and
Figure 7, we plot RMSECV and RMSEP as a function of
the model selection parameter for TR and PLS for the
response considered in Table 3 and one particular split of
the data into a training set and a test set. The RMSECV and
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FIGURE 6 Emulsion data: TR modelling (L2 regularization) for the response PUFA as % of total fat content for a particular split of the
data. Top: RMSECV. Bottom: RMSEP. In the top plot we see that the RMSECV curves for the modified EMSC preprocessing are overlapping.
In the bottom plot we see that the RMSEP curves for the modified EMSC using 1 and 2 reference spectra are overlapping [Colour figure can
be viewed at wileyonlinelibrary.com]

FIGURE 7 Emulsion data: PLS modelling for the response PUFA as % of total fat content for a particular split of the data. Top: RMSECV.
Bottom: RMSEP. In the top plot the RMSECV curves for all preprocessing alternatives are overlapping. In the bottom plot the RMSEP curves
are overlapping for all preprocessing alternatives except for EMSC(3) preprocessing [Colour figure can be viewed at wileyonlinelibrary.com]

RMSEP curves are very similar, and we see that increasing
the number of reference spectra seems to increase the pre-
diction performance independent of the choice of the TR
model parameter or number of PLS components.
The prediction errors for the response PUFA as per-

cent of total fatty acids were inspected for every sample
to study the differences in prediction between the differ-
ent pre-processing methods in more detail. Most samples
obtain a lower prediction error when using three reference
spectra compared with using one reference spectrum, but

just a few of the samples are responsible for the larger part
of the difference in prediction. The three samples most
poorly predicted when using only one reference spectrum
are plotted in Figure 8 together with the mean spectrum.
We observe that there are obvious differences between at
least two of these spectra and the mean spectrum, con-
firming that the mean spectrum does not work as a useful
reference spectrum for all the samples. By including addi-
tional reference spectra in the preprocessing, much better
scaling estimates are obtained for these spectra.
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FIGURE 8 Emulsion data: Mean spectrum together with the three spectra with worst cross-validated prediction errors when using
standard EMSC preprocessing [Colour figure can be viewed at wileyonlinelibrary.com]

5 CONCLUSIONS

The traditional EMSC framework is very flexible, and it
is simple to extend the basic correction model to account
for additional unwanted additive effects in the data. In
the present work, we have proposed how the framework
can be extended further when it is appropriate to uti-
lize multiple reference spectra to obtain proper scaling
coefficients. When using multiple reference spectra, it is
necessary to use an orthogonal basis (consisting of poly-
nomials, interferent spectra, and reference spectra) in the
preprocessing because of the interactions between the dif-
ferent basis vectors. The use of an orthogonal basis is also
advantageous because it eliminates any possible confound-
ing between the different basis vectors. For the fish oil data,
only one reference spectrum was required to obtain a sat-
isfactory preprocessing, but we observed that the inclusion
of additional reference spectra did not cause the subse-
quent regression models to be poorer. For the emulsion
data, therewere some spectra that were very different from
the first (traditional) reference spectrum, and preprocess-
ing the data with multiple reference spectra caused the
subsequent regressionmodel to predict considerably better
for one of the responses. Considering the first right singu-
lar vectors of the uncorrected spectra as candidate refer-
ence spectra is often a sensible alternative as these vectors
describe the most dominant directions in the data. The
candidate reference spectra should be inspected visually
to make sure they describe relevant chemical variation,
rather than interferents or physical phenomena. Candi-
dates with contaminations should be discarded, whereas
more or less pure interferent spectra should be exploited
as such in the EMSC.
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APPENDIX A: PROTOTYPE MATLAB CODE
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1− h̄λ − 1/n

)2

= (1− df(λ)/n)−2‖y −Xbλ‖2,
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ỹk − ˆ̃yλ,k

1− hλ,k −mk/n

)2

.

hλ,k X̃

m = T′1 �T′1 ∈ R
n 1/n

mk/n mk k m

PRESS(λ) GCV (λ) λ

PRESS(λ)

GCV (λ) λ



χ2

PRESSmin

PRESS(λ) n · PRESSmin/σ
2

σ2 χ2
n n

α

λ n ·PRESSmin/PRESS(λ) ≥ χ2
n,α χ2

n,α

α χ2
n PRESS(λ) σ2

PRESS(λ)

ε = 10−10



60 401 900nm−
1700nm

105 5567

200.1cm−1 − 1889.9cm−1 19

102 12600

2/3

1/3

PRESSmin PRESS(λ) GCVmin

GCV (λ) 1 PRESS(λ) χ2 PRESS(λ)

α = 0.2

1000



10−4 105 102 1025

10−1 108

n

0/1

91.2%

1 χ2

1 χ2

χ2

χ2



��������������������������

L2

χ2

MSE

��������������������������

L2

χ2

MSE

χ2

0− 1 L2



L2

1
χ2

L2

1
χ2



L2

1 χ2

L2

L2



X̃

��������������������

λ
0 1 10 100 1000 10000

L2

L2

L2

50



L2

42

3 126

2801 400cm−1 3200cm−1

232 6 12

2682 2981

120cm−1 3100cm−1

PRESSmin

PRESS(λ) GCVmin

GCV (λ) PRESSmin

PRESSmin

χ2 1





PRESS(λ)

L2



PRESS(λ)
L2

�����������������

MSE



L2

6



30%



�����������������

MSE

3 6 12



0.017 0.98 0.023 42

2.8 416 3.2

500
50

X X̃

λ

n p



X

PRESS(λ)

(X,y)

PRESS(λ)

PRESS(λ)

1/n

GCV (λ)

λ 1/n



L1 L2

λ � �

glmnet

TR

ratio

L1

L2

PRESS(λ)



function [press, bcoefs, b, lambda, H, U, s, V, GCV, L, idmin, rescv] = TregsLooCV(X, y, lambdas, type)

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% INPUTS:

% X − Data matrix

% y − Response vector

% lambdas − Vector of regularization parameter values

% type − Regularization type (−1 for standardization, 0 for L2, 1 for 1st derivative regularization, etc ...)

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% OUTPUTS:

% press − PRESS−statistic for input lambdas

% bcoefs − Regression coefficients for selected lambda (no constant term)

% b − Regression coefficients for PRESS−minimal lambda (with constant term)

% lambda − Value of lambda minimising the PRESS−statistic
% H − Vector of leverage values for all values of lambda

% U, s, V − SVD of matrix

% GCV − GCV−statistic for input lambdas

% L − Regularization matrix (empty for L2 regularizatoin)

% idmin − Index of lambda value minimising the PRESS−statistic
% rescv − LooCV−residuals
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[n,p] = size(X);

mX = mean(X); my = mean(y);

X = bsxfun(@minus,X,mX); y = y−my;

L = [];

if type > 0 % Create full rank discrete derivative matrix of order 'type'.

epsilon = 1e−14;
L = diff([speye(p);sparse(type,p)],type);

L(end−type+1:end,:) = sqrt(epsilon)*Plegendre(type−1,p);
elseif type < 0 % Create variable standardization matrix.

L = spdiags(std(X)',0,p,p);

end

if type ∼= 0, X = X/L; end

[U, S, V] = svd(X,'econ'); s = diag(S);

denom = bsxfun(@plus,s,bsxfun(@rdivide,lambdas,s));

bcoefs = V*bsxfun(@rdivide,(U'*y),denom);

H = (U.^2)*bsxfun(@rdivide,s,denom)+1/n;

resid = bsxfun(@minus,y,U*bsxfun(@rdivide,s.*(U'*y),denom));

rescv = bsxfun(@rdivide,resid,(1−H));
press = sum(rescv.^2)';

GCV = (sum(resid.^2)./mean(1−H).^2)';

% Finding press−minimal model and corresponding regression coefficients:

[∼,idmin] = min(press); lambda = lambdas(idmin); h = H(:,idmin);

if type ∼= 0, bcoefs = L\bcoefs; end

b = [my−mX*bcoefs(:,idmin); bcoefs(:,idmin)]; % Constant term

end



function Q = Plegendre(d,p)

P = ones(p,d+1);

x = (−1:2/(p−1):1)';
for k = 1:d

P(:,k+1) = x.^k;

end

[Q,∼] = qr(P,0);

Q = Q';

end



function [press, bcoefs, b, lambda, H, U, s, V, GCV, L, idmin, rescv, Usegments] = TregsSvCV(X, y, lambdas, type, ...

segments)

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% INPUTS:

% X − Data matrix

% y − Response vector

% lambdas − Vector of regularization parameter values

% type − Regularization type (−1 for standardization, 0 for L2, 1 for 1st derivative regularization, etc ...)

% segments − List of integers identifying cross−−validation segments

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% OUTPUTS:

% press − PRESS−statistic for input lambdas

% bcoefs − Regression coefficients for selected lambda (no constant term)

% b − Regression coefficients for PRESS−minimal lambda (with constant term)

% lambda − Value of lambda minimising the PRESS−statistic
% H − Vector of leverage values for all values of lambda

% U, s, V − SVD of matrix

% GCV − GCV−statistic for input lambdas

% L − Regularization matrix (empty for L2 regularizatoin)

% idmin − Index of lambda value minimising the PRESS−statistic
% rescv − LooCV−residuals
% Usegments − Sparse matrix representing the orthogonal transformations used in the SvCV

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Finding orthogonal transformation and the modification to the leverage correction:

Usegments = segmentORTH(X, segments);

bs = (sum(Usegments,1).^2)';

[n,p] = size(X);

mX = mean(X); my = mean(y);

X = bsxfun(@minus,X,mX); y = y−my;

% Transforming data:

X = Usegments'*X; y = Usegments'*y;

L = [];

if type > 0

epsilon = 1e−14;
L = diff([speye(p);sparse(type,p)],type);

P = Plegendre(type−1,p);
L(end−type+1:end,:) = sqrt(epsilon)*P;

elseif type < 0

L = spdiags(std(X)',0,p,p);

end

if type ∼= 0, X = X/L; end

[U, S, V] = svd(X,'econ'); s = diag(S);

s_plus_lambdas_over_s = bsxfun(@plus,s,bsxfun(@rdivide,lambdas,s));

H = bsxfun(@plus, (U.^2)*bsxfun(@ldivide,s_plus_lambdas_over_s, s), bs/n);



bcoefs = V*bsxfun(@ldivide,s_plus_lambdas_over_s,(U'*y));

res = bsxfun(@minus,y,X*bcoefs);

rescv = bsxfun(@rdivide,res,(1−H));
press = sum(rescv.^2)';

GCV = sum(bsxfun(@rdivide,res,mean(1−H)).^2)';

if type ∼= 0, bcoefs = L\bcoefs; end

% Finding press−minimal model and corresponding regression coefficients:

[∼,idmin] = min(press); lambda = lambdas(idmin); h = H(:,idmin);

if type ∼= 0, bcoefs = L\bcoefs; end

b = [my−mX*bcoefs(:,idmin); bcoefs(:,idmin)]; % Constant term

end

function U = segmentORTH(X, segments)

n = size(X,1);

nsegments = max(segments);

U = sparse(n,n);

for k = 1:nsegments

ind = find(segments==k);

[U(ind, ind),∼] = svd(X(ind,:),'econ');

end

end

function Q = Plegendre(d,p)

P = ones(p,d+1);

x = (−1:2/(p−1):1)';
for k = 1:d

P(:,k+1) = x.^k;

end

[Q,∼] = qr(P,0);

Q = Q';

end
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function [press,lambda,lambdaIndex,U,s,V] = TregPRESS(X,Y,lambdas,type) % 'type' is an integer. type > 0 indicate the desired ...

regularization. type < 0 to standardize the dataset (ordinary ridge regression).

%% Gives PRESS−statistic from dummy regression with minimal computations

[n,p] = size(X); mX = mean(X); mY = mean(Y); X = bsxfun(@minus,X,mX); Y = bsxfun(@minus,Y,mY); % Size and centering of data matrix X ...

and response vector y.

L = [];

if type > 0

L = diff([speye(p);sparse(type,p)],type); %L(end−type+1:end,:) = sqrt(eps)*L(end−type+1:end,:);
X = X/L; % For penalizing lack of smoothness wrt indicated derivative ...

(type).

elseif type < 0

L = spdiags(std(X)',0,p,p); X = X/L;

end % For standardization and ordinary ridge regression.

g = size(Y,2);

press = zeros(length(lambdas),g);

[U, S, V] = svd(X,'econ'); s = diag(S); % SVD (PCA) of centered (and scaled) X−data & extraction of the ...

singular values.

denom = bsxfun(@plus,s,bsxfun(@rdivide,lambdas,s)); % Denominator factors for both bcoefs and PRESS.

H = (U.^2)*bsxfun(@rdivide,s,denom)+1/n; % The leverages for all lambdas.

for i=1:g

resid = bsxfun(@minus,Y(:,i),U*bsxfun(@rdivide,s.*(U'*Y(:,i)),denom));

press(:,i) = sum(bsxfun(@rdivide,resid,(1−H)).^2)';
end

[lambda, lambdaIndex] = min(sum(press,2));



function [pccCV, pcc, SpCV, nG, muG0, s0, V, GhatCV, d2CV, Ghat, d2] = RLDA(X, G, lambdas)

%% Declare LDA−parameters & calculate basic stuff

nlambdas = length(lambdas); % Number of lambda−values to be investigated

n = size(X,1); g = max(G); % # samples, # X−variables and # groups

d2 = zeros(n,g); d2CV = zeros(n,g,nlambdas); % Squared Mahalanobis distances (Fitted values and LooCV)

pccCV = zeros(nlambdas,1); % The first function output (LooCV percent correct classification for each of the lambdas.)

pcc = zeros(nlambdas,1); % Percent correct classification by resubstitution

Yd = dummyvar(G); nG = sum(Yd)'; muG0 = (Yd'*Yd)\Yd'*X; % Dummy coding of the groups, % Groups sizes, % Group means

SpCV = zeros(nlambdas,1); % Summned CV−probabilities for the correct classifications

Ghat = zeros(n,nlambdas);

GhatCV = zeros(n,nlambdas);

[s0, V] = rsvd(X,G); % Ridge−adapted SVD according to groups in G

X = X*V; muG = muG0*V;

for i = 1:nlambdas

isr = 1./sqrt(s0.^2+lambdas(i))'; % Inverse of the singular values corresponding to ridge data: [Xs;sqrt(lambda(i))*eye(p)].

for j = 1:g % Calculation of regularized squared Mahalanobis distances to the various group means.

d2(:,j) = sum(bsxfun(@times,bsxfun(@minus,X,muG(j,:)),isr).^2,2);

end

[∼, Ghat(:,i)] = min(d2,[],2); pcc(i) = 100*sum(G == Ghat(:,i))/n;

%% Fast Calculation of LooCV Mahalanobis distances to the various group means:

for j = 1:n

c = G(j); % c is the true group−membership of sample j

nc = nG(c); % nc is the size of group c

Xc = X(j,:)−muG(c,:); % j−th sample (row) group centered wrt the correct group.

for k = 1:g % Compute the adjusted squared Mahalanobis distance from from xj to center of group k:

if k==c, d2CV(j,c,i) = d2(j,c) * (nc/(nc−1)).^2 / (1−(nc/(nc−1))*d2(j,c)); else

Xk = X(j,:)−muG(k,:); % j−th sample (row) group centered wrt uncorrect group.

d2CV(j,k,i) = d2(j,k) * (1 + [(Xc.*isr)*(Xk.*isr)']^2 / ([(nc−1)/nc− d2(j,c)]*d2(j,k)) );

end

end

end

[∼, GhatCV(:,i)] = min(d2CV(:,:,i),[],2); pccCV(i) = 100*sum(G == GhatCV(:,i))/n;

end

%% LDA ridge−adaption of SVD:

function [s, V] = rsvd(X,G)

[n, p] = size(X);

if nargin==1, Yd = ones(n,1); else Yd = dummyvar(G); end

g = size(Yd,2); muG = (Yd'*Yd)\Yd'*X;

[∼, S, V] = svd((X−muG(G,:)),'econ');
k = min(p,n−g); m = min(n,p); h = m−k;
s = [diag(S(1:k,1:k)); zeros(h,1)];

if h > 0, [V, ∼] = qr([V(:,1:k) muG'],0); end
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