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Summary 

This thesis aims to contribute knowledge to support fully automation in life-science 

applications, which includes design, development, control and integration of robotic systems 

for sample preparation and strawberry harvesting, and is divided into two parts.  

Part I shows the development of robotic systems for the preparation of fungal samples for 

Fourier transform infrared (FTIR) spectroscopy. The first step in this part developed a fully 

automated robot for homogenization of fungal samples using ultrasonication. The platform was 

constructed with a modified inexpensive 3D printer, equipped with a camera to distinguish 

sample wells and blank wells. Machine vision was also used to quantify the fungi 

homogenization process using model fitting, suggesting that homogeneity level to 

ultrasonication time can be well fitted with exponential decay equations. Moreover, a feedback 

control strategy was proposed that used the standard deviation of local homogeneity values to 

determine the ultrasonication termination time. The second step extended the first step to 

develop a fully automated robot for the whole process preparation of fungal samples for FTIR 

spectroscopy by adding a newly designed centrifuge and liquid-handling module for sample 

washing, concentration and spotting. The new system used machine vision with deep learning 

to identify the labware settings, which frees the users from inputting the labware information 

manually. 

Part II  of the thesis deals with robotic strawberry harvesting. This part can be further divided 

into three stages. i) The first stage designed a novel cable-driven gripper with sensing 

capabilities, which has high tolerance to positional errors and can reduce picking time with a 

storage container. The gripper uses fingers to form a closed space that can open to capture a 

fruit and close to push the stem to the cutting area. Equipped with internal sensors, the gripper 

is able to control a robotic arm to correct for positional errors introduced by the vision system, 

improving the robustness. The gripper and a detection method based on color thresholding were 

integrated into a complete system for strawberry harvesting. ii) The second stage introduced 

the improvements and updates to the first stage where the main focus was to address the 

challenges in unstructured environment by introducing a light-adaptive color thresholding 

method for vision and a novel obstacle-separation algorithm for manipulation. At this stage, the 

new fully integrated strawberry-harvesting system with dual-manipulator was capable of 

picking strawberries continuously in polytunnels. The main scientific contribution of this stage 
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is the novel obstacle-separation path-planning algorithm, which is fundamentally different from 

traditional path planning where obstacles are typically avoided. The algorithm uses the gripper 

to push aside surrounding obstacles from an entrance, thus clearing the way for it to swallow 

the target strawberry. Improvements were also made to the gripper, the arm, and the control. iii) 

The third stage improved the obstacle-separation method by introducing a zig-zag push for both 

horizontal and upward directions and a novel dragging operation to separate upper obstacles 

from the target. The zig-zag push can help the gripper capture a target since the generated 

shaking motion can break the static contact force between the target and obstacles. The dragging 

operation is able to address the issue of mis-capturing obstacles located above the target, in 

which the gripper drags the target to a place with fewer obstacles and then pushes back to move 

the obstacles aside for further detachment. The separation paths are determined by the number 

and distribution of obstacles based on the downsampled point cloud in the region of interest.  
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Sammendrag 

Denne avhandlingen tar sikte på å bidra med kunnskap om automatisering og robotisering av 

applikasjoner innen livsvitenskap. Avhandlingen er todelt, og tar for seg design, utvikling, 

styring og integrering av robotsystemer for prøvetaking og jordbærhøsting. 

Del I omhandler utvikling av robotsystemer til bruk under forberedelse av sopprøver for 

Fourier-transform infrarød (FTIR) spektroskopi. I første stadium av denne delen ble det utviklet 

en helautomatisert robot for homogenisering av sopprøver ved bruk av ultralyd-sonikering. 

Plattformen ble konstruert ved å modifisere en billig 3D-printer og utstyre den med et kamera 

for å kunne skille prøvebrønner fra kontrollbrønner. Maskinsyn ble også tatt i bruk for å 

estimere soppens homogeniseringsprosess ved hjelp av matematisk modellering, noe som viste 

at homogenitetsnivået faller eksponensielt med tiden. Videre ble det foreslått en strategi for 

regulering i lukker sløyfe som brukte standardavviket for lokale homogenitetsverdier til å 

bestemme avslutningstidspunkt for sonikeringen. I neste stadium ble den første plattformen 

videreutviklet til en helautomatisert robot for hele prosessen som forbereder prøver av 

sopprøver for FTIR-spektroskopi. Dette ble gjort ved å legge til en nyutviklet sentrifuge- og 

væskehåndteringsmodul for vasking, konsentrering og spotting av prøver. Det nye systemet 

brukte maskinsyn med dyp læring for å identifisere innstillingene for laboratorieutstyr, noe som 

gjør at brukerne slipper å registrere innstillingene manuelt. 

Del II av avhandlingen tar for seg robotisert høsting av jordbær. Denne delen kan videre deles 

inn i tre stadier. i) I det første stadiet ble det designet en ny kabeldrevet griper med sensorer 

som gir den høy toleranse for posisjonsfeil, og som kan redusere plukketiden ved å oppbevare 

bærene i en beholder. Griperens fingre danner et lukket rom som kan åpnes for å omslutte et 

bær og deretter lukkes for å kutte av stilken. Griperen er utstyrt med interne sensorer, og er i 

stand til å kontrollere en robotarm slik at den korrigerer for posisjonsfeil som skyldes 

unøyaktigheter i maskinsynet, noe som forbedrer robustheten. Sammen med den integrerte 

fargebaserte deteksjonsmetoden utgjør griperen et komplett system for jordbærhøsting. ii) I 

andre stadium ble det introdusert forbedringer og oppdateringer av det første stadiet, der 

hovedfokuset var å møte utfordringene i ustrukturerte omgivelser ved å introdusere en metode 

for maskinsyn som kunne tilpasse seg lysforholdene, og å innføre en ny algoritme for 

manipulasjon. På dette stadiet var det nye helintegrerte jordbærhøstingssystemet med 

dobbeltmanipulator i stand til å plukke jordbær kontinuerlig i polytunneler. Det viktigste 
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vitenskapelige bidraget her er den nye algoritmen for baneplanlegging som dytter vekk 

hindringer, som er grunnleggende forskjellig fra tradisjonell baneplanlegging der hindringer 

vanligvis unngås. Algoritmen bruker griperen til å skyve de omkringliggende hindringene til 

side, slik at griperen får fri tilgang til målet, altså jordbæret som skal plukkes. Det ble også gjort 

forbedringer av griperen, armen og kontrollsystemet. iii) I tredje stadium ble metoden forbedret 

ved å introdusere et horisontalt og vertikalt sikksakk-dytt samt en ny trekkebevegelse for å 

skille ovenforliggende hindringer fra målet. Sikksakk-dyttet kan hjelpe griperen med å nå fram 

til målet, siden vibrasjonene som genereres kan skille bæret fra hindringene. Trekkoperasjonen 

kan løse problemet med at griperen feilaktig treffer hindringer som er plassert over målet, ved 

at griperen trekker målet til et sted med færre hindringer og deretter skyver det tilbake for å 

flytte hindringene til side. Separasjonsveiene bestemmes av antall og posisjonen til hindringer 

basert på den nedskalerte punktskyen i det aktuelle området.
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Preface 

This thesis is submitted in partial fulfilment of the requirements for the degree of Philosophy 

Doctor (PhD) at the Norwegian University of Life Sciences. The research presented in this 

thesis is the result of my doctoral studies in the period August 2016 through September 2019.  

During these years I was fortunate enough to spend time at several different places. The first 

year I stayed 3 months at the RSN lab at University of Minnesota (USA) with Prof. Volkan 

Isler. I visited the L-CAS lab at University of Lincoln (UK) twice to attend the workshop in the 

last two years. I also participated two robotic conferences in my PhD study, the European 

robotics forum 2017 in Edinburg, UK and the ICRA 2018 in Brisbane, Australia. Moreover, I 

spent a few months in the strawberry farm to conduct my field tests. In 2017, I spent two weeks 

in the Myhrene farm, Norway, for the field test of the first version of strawberry harvester, 

where I started to learn about strawberries. In 2018, I stayed in the Boxford farm, UK, for more 

than a month to perform my tests on the second version robot, where I learned a lot about 

strawberry characteristics and growing method. I subsequently visited the Boxford farm in 2019 

to test the improved obstacle-separation method.  

My thesis consists of two parts as I have been working on two different research projects in my 

PhD study. They are different, but both relate to the robotics and automation for applications in 

life sciences. Most importantly, these works have all contributed to science.   
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1. Introduction 

1.1 Robotics in life sciences 

Life science or biological science is regarded as one of the two main branches of natural science, 

the other being physical science (Rosenberg, 2011). Life sciences involve the studies that are 

relevant to living beings, such as microorganisms, plants, animals and human beings. Research 

in life sciences is helpful in improving the quality and standard of life.  

Fundamental biological science includes many disciplines, such as microbiology, anatomy, 

physiology, botany, zoology, etc. Applied biology involves multiple disciplines, two of which 

- agriculture and biotechnology are tightly connected to technological sciences as for example 

robotics. Robotics in applied biology requires the collaboration between life sciences and 

physical sciences. For example, research of strawberry-harvesting robots (Yamamoto et al., 

2014) may need to understand the biological characteristics of strawberry plants. Development 

of a surgical robot (Tanaka et al., 2008) should know the basic surgical techniques and operation 

sequences. In addition to the above agricultural robots and medical robots, life-science robots 

also include laboratory robots (Liu et al., 2013) and even the bio-inspired robots (Peyer et al., 

2013). This thesis addresses some of the challenges in laboratory robotics and agricultural 

robotics, with special attention to the common challenges: non-uniform objects and diverse 

environment, presenting the design, development, integration and evaluation of sample 

preparation robots and strawberry-harvesting robots.  

1.2 Part I – Robotics in life-science laboratories 

Experimental work performed in life-science labs requires the operators to handle and monitor 

samples, where many of the tasks are repetitive, time-consuming and may be harmful to human 

beings. An automated system in life-science labs could greatly reduce the repetitive labor work 

and increase the throughput (Chapman, 2003), making it suitable for screening studies. The 

laboratory robots can further be divided into two main branches based on the experiment stages: 

experiment-assistant robots (Brown, 2011) and sample preparation robots (Reed et al., 2018), 

as the examples shown in Fig. 1.  

Experiment-assistant robots work with the human operators to help conduct the experiments 

and analyze the results, which are able to increase the efficiency, accuracy and reduce the 

contamination. For example, as shown in Fig. 1(a), a colony-picking robot uses digital-imaging 
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system with a robotic arm to select and pick individual colonies (Brown, 2011). A blood-typing 

robot is able to handle and analyze the blood samples using a robotic manipulator and imaging 

system (Chang et al., 2018). In addition, robotic systems for microinjection of cells were also 

developed, which use cameras to observe the process and robotic arms to hold the injection 

pipette (Ammi and Ferreira, 2005; Liu et al., 2011; Wang et al., 2007). Robotic technology 

overcomes the problems inherent in manual operation, such as unstable or low accuracy of 

operator hands and large variations in technical experiences.  

Sample preparation robots are used to prepare the samples before sample analysis. As the 

example shown in Fig. 1(b), a robotic arm is programmed to aspirate or dispense sample liquids 

between different well plates (Reed et al., 2018). A robot can also perform both the sample 

preparation and experiment-assistant (analysis) procedures, such as the one presented by Balter 

et al. capable of conducting blood sample collection, handling and analysis (Balter et al., 2018).  

  

Fig. 1. Robotics in life-science laboratories: (a) a colony-picking robot (Brown, 2011); (b) 

a sample preparation robot (Reed et al., 2018).  

1.2.1 Robotic systems for sample preparation 

A number of platforms have been developed to automate the sample preparation procedures for 

different analyses. Meier et al. presented an automatic sampling spotting method using a 

commercially available synthetic robot to prepare samples for Matrix-Assisted Laser 

Desorption/Ionization Time-off-Flight (MALDI-TOF) spectrometry (MS) (Meier et al., 2003). 

Nejatimoharrami et al. developed a liquid-handling robot based on a 3D printer for placing 

droplets (spotting) (Nejatimoharrami et al., 2017). The system used a camera to monitor the 

droplet size and position. Kwee et al. described a robotic platform that used a vision system to 

identify cells and control a robotic arm to pick and place the selected cells for cell-based assays 

(a) (b) 
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(Kwee et al., 2017). As shown in Fig. 2(a), Cherezov et al. showed a dual-arm system that used 

one arm for picking and placing of precipitant solutions while the other arm was equipped with 

a microsyringe for sample dispensing (Cherezov et al., 2004). Fig. 2(b) shows a robot to isolate 

lymphocytes for further blood analysis by using a centrifuge and a liquid-handling system, 

where a robotic arm is used to move the sample well plates (Chen et al., 2010).  

 

Fig. 2. Robotic system for sample preparation: (a) a liquid-handling robot (Cherezov et 

al., 2004); (b) a robot for isolating of cells (Chen et al., 2010).  

Generally, the tasks of the sample preparation robots involve sample washing, liquid handling 

(aspiration, dispensing or spotting), centrifuge or sample homogenization, depending on the 

specific objective. The sample preparation robots generally consist of existing laboratory 

devices, such as centrifuge, pipette, sonicator, and labware, and add-on robotic systems, such 

as a robotic arm with a gripper, sensors with signal processing system or other custom-designed 

modules. To complete these tasks, a robotic arm with a gripper is normally used to perform the 

physical movements that move the samples between different devices or handling liquids. A 

vision system or other sensors may be used to monitor or track the experimental procedures to 

guarantee the output quality, although quite a lot of the traditional laboratory robots did not 

incorporate it.  

1.2.2 Sample preparation systems for FTIR spectroscopy 

Part I of this thesis focuses on the development of sample preparation robots for 

homogenization of fungal samples and further integrating the homogenization module with 

other liquid-handling modules for the full process of sample preparation for the analysis by 

Fourier Transform Infrared (FTIR) spectroscopy.  

(a) (b) 
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1.2.2.1 Manual sample preparation: background, protocol and problems 

Characterization, identification and classification of microorganisms (bacteria, yeast, 

filamentous fungi and algae) has a high importance in the field of environmental, industrial, 

medical and agriculture microbiology, and microbial ecology (Fakruddin et al., 2013). There 

are two principle ways to characterize, identify and classify microorganisms - by using 

Genotyping and/or Phenotyping technologies. While genotyping technologies have been 

advancing rapidly and, through the integration of robotics, phenotyping technologies have been 

for a long time represented by the conventional microbiological techniques providing 

morphological, physiological and cultural characteristics. Commonly employed phenotypic 

methods are protein-based methods including serotyping, bacteriocin typing, phage typing, 

antimicrobial susceptibility patterns, etc. These phenotypic methods are associated with several 

problems related to reproducibility, discriminatory power, high variability, etc. Such 

shortcomings of phenotypically based methods have therefore led to the development of novel 

so called Next Generation Phenotyping (NGP) technologies, represented by two biophysical 

non-invasive techniques - Fourier Transform Infrared (FTIR) spectroscopy (Shapaval et al., 

2013) and Matrix-Assisted Laser Desorption/Ionization MALDI-TOF MS (Bryson et al., 2019). 

Both techniques provide, with a high level of precision, a cellular biochemical phenotype of 

microbial cells - MALDI-TOF MS provides protein profile while FTIR provides total 

biochemical profile (proteins, lipids, polysaccharides). In addition, it has to be noted that FTIR 

provides not only cellular phenotype in the form of intracellular metabolites, but also 

extracellular phenotype in the form of extracellular metabolites. Both techniques are based on 

the high-throughput platform with the potential for analyzing up to 159 - 384 samples in a single 

analytical run. 

Among different types of microorganisms, filamentous fungi are the most challenging to 

prepare for MALDI-TOF and FTIR analysis. The first step in the preparation of filamentous 

fungal samples for MALDI-TOF and FTIR analysis is the cultivation of fungi in multi-well 96-

well microtiter plates (MTP). After cultivation, manual preparation of multi-well fungal 

samples for FTIR includes sample washing to remove culture medium, sample homogenization, 

up concentration for FTIR and spotting on the multi-well infrared (IR) plates. In case of high-

throughput, set-up fungi are cultivated in 96-well MTP plates and the whole process for manual 

preparation of a 96 fungal samples may take more than 10 hours depending on the type of fungi 

and operator experiences. The whole process also requires highly skilled operator to perform 

and oversee the process, especially for sample homogenization and spotting on the IR plates. 
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In addition, manual operation may introduce variation to the samples due to the subjective 

nature of visual inspection (Kwee et al., 2017). In order to explore the high-throughput potential 

of the FTIR techniques, there is a strong need for the implementation of liquid-handling robotics 

for the sample preparation procedures. 

Cell homogenization is the most time-consuming and labor-intensive procedure in FTIR sample 

preparation. Generally, it is possible to achieve cell homogenization by using chemical or 

mechanical/physical methods (Burden, 2012) and recently the development of a variety of cell 

homogenization procedures facilitated the efficient, low-cost and effective release of 

intracellular products (Klimek-Ochab et al., 2011). The effectiveness of these different 

homogenization techniques depends on the properties of the microbial cells, such as the 

physical strength of the cell wall and the location of the desired intracellular product (Klimek-

Ochab et al., 2011). Ultrasound disintegration - ultrasonication - is a common mechanical cell 

homogenization method based on the high shear force created by a high-frequency ultrasound 

(above 16 kHz) (Klimek-Ochab et al., 2011), which can achieve complete disruption of the 

microbial cell (Borthwick et al., 2005; Gogate and Kabadi, 2009; Klimek-Ochab et al., 2011). 

The preparation of filamentous fungal samples for the FTIR analysis involves the application 

of ultrasonic homogenization (Shapaval et al., 2010). One of the benefits of ultrasonication is 

that it reduces cell disruption processing time and energy consumption (Tiwari et al., 2009). 

Unfortunately, however, the process also presents three main disadvantages. First is the manual 

use of the ultrasonication system requires highly skilled technicians to hold, mix, identify and 

monitor during processing (Li et al., 2016). Second, the process requires lengthy and repetitive 

operations, making it unsuitable for screening studies in which a large number of samples need 

to be sonicated within a short period of time. Finally, high sound intensity has negative effects 

on human health, causing headaches, discomfort and irritation (Smagowska and Pawlaczyk-

Łuszczyńska, 2013). It is, therefore, important that a platform be developed for the automation 

of manual ultrasonication operations. 

1.2.2.2 Existing systems and challenges for automated ultrasonication and 

FTIR sample preparation  

There are some existing robots developed for ultrasonication treatment. Mancia et al. presented 

a robotic ultrasound disintegrator with an electronically controlled sonicator probe mounted on 

a 5-axis industrial robotic arm (Mancia and Love, 2010). Similarly, Almo et al. developed an 

ultrasonication robot equipped with an EPSON robotic arm (Almo et al., 2013). In addition, 
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previous work by Li et al. used an ultrasonic module with a FESTO 3-axis arm to prepare 

samples for analysis by FTIR spectroscopy (Li et al., 2016). These systems simply used 

industrial robotic arms for ultrasonication manipulation without closed-loop control strategies 

for monitoring or automated control. The open-loop feature might, however, result in 

insufficient or excessive ultrasonication and, more importantly, might not always provide well-

homogenized samples. Previous studies have provided neither automatic measurement methods 

for determining the degree of fungi homogeneity nor any mathematical models to quantify the 

phenomena of filamentous fungi homogenization by ultrasonication. Without appropriate 

sensing abilities, these machines continue to rely on the manual input of sample locations and 

technicians to monitor the process, adjust ultrasonication time and so on.  

To the author's best knowledge, there are no other robotic systems for the whole process of 

sample preparation for FTIR spectroscopy, except for the first prototype developed by Li et al. 

(Li et al., 2016). This system consists of an industrial arm for pick-place of MTP plats, a linear 

axis with up and down motion for performing ultrasonication, an industrial centrifuge and a 

linear motion unit with a 96-pin dispensing head for sample washing and spotting. However, 

this system did not incorporate sensors for monitoring the experimental process (Li et al., 2016).  

The open-loop feature might not always provide well-homogenized samples. Also, due to the 

low accuracy of the dispensing unit, the spotting process did not provide reliable sample spots 

on the IR plates. In addition, the dispensing unit was often blocked by fungal mycelia during 

the sample washing procedure due to the straightway approach of liquid aspiration. Moreover, 

the washing and spotting used the same sample dispensing unit that may introduce cross-

contamination issues. Furthermore, the old system required the operator to record and perform 

manual input of the labware information, such as the number and locations MTP plates, IR 

plates and sample wells, which limits the full automation of the robot. As a result of these 

limitations, it is necessary to develop a fully automated robot for sample preparation of FTIR 

spectroscopy with high precision of liquid-handling capabilities and the ability to monitor and 

control the experiment processes in closed loop using sensors.  

1.3 Part II – Agricultural robotics  

Image we are in 2050, and a robot manager is organising other robots working on a farm, 

moving back and forth for weeding, seeding, planting, spraying and harvesting, while the 

farmer is monitoring them using a mobile phone. In addition to plants, robots are also working 

on meat production. On a ranch, robots are managing grazing animals, bringing them to some 
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fertile grasslands and taking them back home in the evening. On a pig farm, robots are caring 

for each pig, monitoring their health status and feeding them with the optimal amount of fodder 

at the most suitable time. Will these scenarios become reality? Why do we need robots for 

farming and what are the current status and challenges of agricultural robotics?  

According to a study conducted by the Food and Agriculture Organization of the United Nations, 

the world will need 70% to 100% more food to feed 9 billion people by 2050. This requires the 

farmers to use the same land to produce food more accurately and efficiently, and to reduce 

environmental impacts to achieve sustainability. For example, traditional agricultural 

machineries could not provide each plant with the best amount of fertilizer, water and pesticide 

at the best time, thus affecting the yield. Also, most of the resources are wasted on the outside 

area of plants. Another shortage is that traditional machines are usually very heavy and result 

in serious soil compaction problem, which makes it difficult for the plants to grow and also kill 

other beneficial organisms. Equipped with advanced sensing devices, agricultural robots are 

able to treat each plant with chemical and water precisely based on their needs or even replace 

chemical solutions with physical methods (Blackmore et al., 2005), such as laser weeding 

(Xiong et al., 2017). Agricultural robots are usually small in size and powered by electricity, so 

they are lightweight and therefor reduce soil compaction (Pedersen et al., 2008). Moreover, 

farming still highly relies on human labour, for example, selective fruit harvesting, weeding, 

machine operation and livestock caring. However, labour shortages and the high costs are 

increasingly serious in developed countries, such as Western Europe and the United States, 

which increases the demand for robotics and automation (Bechar and Vigneault, 2016).  

From pastures, crop farmland to modern greenhouses, agricultural robots will be capable to 

work in all kinds of farming activities. Generally, an agricultural robot consists of ‘eyes’ for 

perception, for example, a camera, a LiDAR or other sensors, a robotic ‘arm’ for manipulation 

and a ‘hand’ for grasping, for example, a gripper for picking fruit, and ‘feet’ for moving the 

robot. The ‘eyes’ are essential for all kinds of agriculture robots, which is a significant 

difference from the traditional agricultural machineries, while the ‘arm’ and ‘hand’ are 

important for robots that need complex physical operations, such as fruit picking. The ‘eyes’ 

together with advanced machine learning can tell the robot what the status of the plants is, 

where the ripe fruit is and whether the animals feel happy. Fig. 3 displays two robots for 

livestock farming, where (a) shows a robot rancher equipped with a camera to monitor animals 

(Klein, 2016) and (b) is a robot used for collecting eggs in poultry house using a vision system 
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together with a spring-like collector (Vroegindeweij et al., 2018). In this thesis, I will introduce 

more robotic systems related to crops.  

  

Fig. 3. Robotic system for sample preparation: (a) a robot rancher is monitoring animals 

on an Australian farm (Klein, 2016); (b) a robot for egg collection (Vroegindeweij et al., 

2018).  

1.3.1 Autonomous vehicles  

Autonomous vehicles for agriculture attract much attention in research and development and 

might be the closest one to the market among many other types of agricultural robots. 

Autonomous vehicles may include traditional tractors with add-on navigation system 

(Carballido et al., 2014) and modern electric mobile platforms (Grimstad and From, 2017; 

Kachenko, 2016). Traditional tractor-based autonomous or semi-autonomous vehicles are 

increasingly common among commercial farming operations (Carballido et al., 2014). As 

shown in Fig. 4(a), an autonomous tractor may have automatic steering system and localization 

sensors, such as Global Navigation Satellite System (GNSS) receivers or laser scanners, and 

obstacle avoidance sensors, such as cameras, ultrasonic sensors or laser scanners. Similar 

systems can also be added to traditional harvesters to achieve self driving. However, these 

systems still have serious environmental impacts, such as soil compaction and air pollution. 

Also, traditional tractors lack flexibility and are hard to use as a mobile platform for precision 

farming, such as weeding and selective harvesting, where in-situ steering operations are 

normally required. It is therefore, recently, many electric light-weight mobile platforms have 

been developed for precision farming, as shown in Fig. 4(b) and (c). Thorvald robotic platform 

developed in our group provides four-wheel driving and four-wheel steering, giving high 

flexibility in applications (Grimstad and From, 2017), which was used in my second project – 

strawberry-harvesting robots. Without manipulator for physical interactions, autonomous 

(a) (b) 
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vehicles with additional sensors can be used for plant phenotyping (Grimstad et al., 2017), 

animal herding and etc.  

   

Fig. 4. Robotic system for sample preparation: (a) autonomous tractor (Carballido et al., 

2014); (b) a mobile robot, named RIPPA, was developed by University of Sydney 

(Kachenko, 2016); (c) Thorvald robotic platform (Grimstad and From, 2017).  

1.3.2 Robots for seeding, planting, pruning and weeding 

Prior to harvesting, agricultural robots could be used for pruning, seeding, planting and weeding. 

The development of agricultural robotic systems has long appeared in Japan. In 2004, Nagasaka 

et al. developed an automated rice-transplanting robot (Fig. 5(a)), which employed a real-time 

kinematic global positioning system (RTK-GPS) for precise positioning, gyroscope sensors to 

determine direction and a computer to control the electric actuators, where their main challenge 

was the low accuracy of positioning (Nagasaka et al., 2004). They improved the system with 

more advanced communication devices and using an additional Inertial Measurement Unit 

(IMU) for better localization (Nagasaka et al., 2009). Also, researchers developed a desktop 

robotic system for vegetable transplanting (Kang et al., 2012).  A similar application is robotic 

seeding (Fig. 5(b)), where a promising result was achieved (Haibo et al., 2015). The relatively 

good performance of seeding and planting might be because the system does not need to detect 

or manipulate the plants. A more complex robotic system was presented for pruning grape vines 

(Fig. 5(c)), which used a stereo camera to sense and build the 3D model of the vines then 

controlled a robotic arm to cut the canes (Botterill et al., 2017). In this system, the main 

challenges were inaccurate 3D modelling, slow execution speed and low reliability (Botterill et 

al., 2017).  

My master’s study explored the feasibility of laser weeding robot that used a laser pointer to 

target detected weeds using color thresholding, where we found the main limitation was weed 

detection (Xiong et al., 2017). Researchers in University of Sydney also showed a robot for 

weeding that used a mechanical hoe for weed removal (Underwood et al., 2015). Recently, due 

(a) (b) (c) 
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to the emerging technology deep learning technique showing promising capabilities in weed 

detection, robotic weeding has received an increased attention. A popular weeding robot is the 

one developed by ecoRobotix (https://www.ecorobotix.com) that uses two fast delta arms to 

deliver herbicide, which in turn is mounted on an extra lightweight mobile platform, powered 

by solar. It is claimed that the robot is able to detect more than 85% of the weeds and reduce 

the use of herbicide by 90% (https://www.ecorobotix.com).  

    

Fig. 5. Robotic system for sample preparation: (a) a rice-transplanting robot (Nagasaka 

et al., 2004); (b) a wheat seeding robot (Haibo et al., 2015); (c) a robot for pruning grape 

vines (Botterill et al., 2017); (d) ecoRobotix weeding robot (https://www.ecorobotix.com).  

1.3.3 Selective fruit-harvesting robots 

1.3.3.1 Main challenges 

Fruit production that requires selective harvesting is heavily reliant on human labor. This is 

applicable to crops such as strawberries, sweet peppers, tomatoes, cucumbers, etc. Selective 

fruit harvesting involves the concept of only harvesting those fruits that meet certain quantity 

or quality thresholds in farm settings (Pedersen et al., 2008). Developing a robotic fruit 

harvester is considered to be particularly challenging (Bac et al., 2014; Lehnert et al., 2018a) 

and might be the most challenging one among many other agricultural robotic systems. The 

main reason is believed to be the cluttered and unstructured environment where both perception 

and manipulation struggles to cope with (Bac et al., 2014; Lehnert et al., 2018a; Silwal et al., 

2017; Xiong et al., 2019a). The unstructured environment includes 1) unconstrained outdoor 

environmental conditions, such as changing sunlight and wind, 2) natural and complex plant 

structures, such as, fruit clusters, crossed branches and occluded leaves, and 3) crop variations 

with a variety of features, such as fruit shape, size and ripeness (Silwal et al., 2017; Xiong et 

al., 2019b). A harvesting robot is generally a tightly integrated system, incorporating advanced 

features and functionalities from numerous fields, including navigation, perception, motion 

planning and manipulation (Lehnert et al., 2016, 2018a; Xiong et al., 2019a). These robots are 

(a) (b) (c) (d) 

https://www.ecorobotix.com/
https://www.ecorobotix.com/
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also required to operate at high speed, with high accuracy and robustness and at a low cost, all 

features that are especially challenging in unstructured environments, such as the strawberry 

farm utilized for testing in this thesis. 

1.3.3.2 Strawberry harvesting: motivations and related works 

  

   
Fig. 6. Robotic systems for selective fruit harvesting: (a) an apple robotic harvester (Silwal 

et al., 2017); (b) ‘Harvey’ sweet pepper harvesting robot (Lehnert et al., 2017); (c) a 

tomato-harvesting robot: 1 – platform, 2 – manipulator, 3 – laser scanner, 4 - camera 

(Wang et al., 2017); (d) old version “SWEEPER” sweet pepper harvesting (Bac et al., 

2017); (e) new version “SWEEPER” sweet pepper harvesting (http://www.sweeper-

robot.eu); (f) a cherry tomato harvesting robot (Feng et al., 2018).  

Strawberries (Fragaria × ananassa Duch.) are farmed extensively in most parts of the world, 

growing either outdoors in open fields or in controlled environments, like greenhouses or 

polytunnels. In 2016, according to market research company IndexBox, the global strawberry 

market amounted to 9.2 million tons, increasing by 5% against the previous year. Strawberry 

production is heavily reliant on human labor, especially for harvesting. It was reported that 25% 

of all working hours in Japan are consumed by harvesting operations (Yamamoto et al., 2014). 

Strawberry producers in the Western world, particularly the United Kingdom (UK) and United 

(a) (b) (c) 

(d) (e) (f) 

http://www.sweeper-robot.eu/
http://www.sweeper-robot.eu/
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States (US), are similarly concerned about the future availability of labor for picking, as well 

as about inflation in the cost of labor. In the UK, for example, the need is especially significant 

in the soft fruit sector, which uses 29,000 seasonal pickers to generate over 160,000 tons of fruit 

every year (British summer fruits seasonal labor report, 2017). In California, the cost of manual 

harvesting cost could be as much as 60% of production costs for fresh market strawberries 

(Anjom et al., 2017). These dual labor challenges of shortages and high costs are, therefore, 

advancing developments in the automation of fruit harvesting operations.  

Despite several attempts to develop a robotic solution for harvesting strawberries and many 

other crops, a fully viable commercial system has yet to be established (Silwal et al., 2017). 

Fruit harvesting offers significant opportunities for the field of agricultural robotics and has, 

thus, gained much attention in recent decades. Several robots have been developed for 

harvesting fruits and vegetables, including those for apples, sweet peppers, cucumbers, 

tomatoes, litchis and strawberries. As shown in Fig. 6(a), an apple robotic harvester was 

designed and evaluated with an overall success rate of 84% and an average picking time of 6.0 

s per fruit, however, they encountered challenges, such as obstacle detection and avoidance 

(Silwal et al., 2017). Fig. 6(d) shows a sweet pepper harvesting robot achieved success rates of 

between 26% to 33% in a modified environment and a cycle time of 94 s for a full harvesting 

operation (Bac et al., 2017). This team subsequently presented an improved version robot using 

a gripper that moves along the stem to detach the fruit (Fig. 6(d), http://www.sweeper-robot.eu). 

Similarly, another sweet pepper harvesting robot, named ‘Harvey’, as shown in Fig. 6(b), 

achieved a 46% success rate for unmodified crops and 58% for modified crops, with average 

picking times of 35-40 s (Lehnert et al., 2017). They reported that the most common detachment 

failure was that of the cutter missing either side of the peduncle. This team subsequently 

presented an improved version of ‘Harvey’, with a higher success rate of 76.5% in a modified 

scenario (Lehnert et al., 2018a). A harvesting robot was developed for greenhouse tomatoes 

(Fig. 6(c)), with a success rate of 86% and a picking speed of approximately 15 s per tomato 

(Wang et al., 2017), however, the literature provides no in-depth analysis of their failure cases. 

A study of cherry tomato harvesting robot reported a success rate of 83% (Fig. 6(f)), with an 

average 1.4 attempts for each successful picking and a time cost of 8 s for a single successful 

harvesting excluding the time cost of moving between targets (Feng et al., 2018). The main 

failure found in the tests was collisions between the end-effector and the plant stems (Feng et 

al., 2018).  

http://www.sweeper-robot.eu/
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An increasing number of robots for autonomous strawberry picking have also been developed 

in recent few years. Japanese researchers developed and evaluated a strawberry-harvesting 

robot with a scissor-like cutter, as shown in Fig. 7(a), which had a success rate of 34.9% and 

41.3% when picking with suction and without suction, respectively (Hayashi et al., 2010). Their 

harvesting time for single fruit was 11.5 s. They concluded that a suction end-effector did not 

greatly contribute to picking performance and further reported that their failures were incorrect 

peduncle detection (Hayashi et al., 2010). The group also presented another version of 

strawberry-harvesting robot that used a serial arm with a scissor-like cutter (Fig. 7(b)) 

(Yamamoto et al., 2014). Their tests showed the rail-based moving platform has a good 

performance, but the robot inevitably chose wrong peduncles for cutting. Another strawberry-

harvesting robot (Fig. 7(c)) using a 3D Cartesian type arm was tested by its detection of the 

peduncle before picking target strawberries laid out on a laboratory surface (Cui et al., 2013). 

The system achieved a successful detection rate of 70.8% with a successful picking cycle time 

of 16.6 s per fruit, and the authors reported the main challenge for their work as peduncle 

detection (Cui et al., 2013).  

   

   
Fig. 7. Strawberry-harvesting robots: (a) a robot moving on fixed rails (Hayashi et al., 

2010); (b) a robot picking from below (Yamamoto et al., 2014); (c) a robot for picking 

ground strawberries (Cui et al., 2013); (d) Agrobot robot (http://agrobot.com); (e) 

Dogtooth robot (https://dogtooth.tech); (f) Octinion robot (http://octinion.com).  

(a) (b) (c) 

(d) (e) (f) 

http://octinion.com/
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Aside from research in academia, a number of start-up companies have also recently developed 

several strawberry-harvesting robots, none of which have successfully commercialized. These 

include AGROBOT (Fig. 7(d), http://agrobot.com), who used 24 independent picking systems 

mounted on a mobile base to increase efficiency, Dogtooth (Fig. 7(e), https://dogtooth.tech), 

who used a serial arm with a hook to pick and cut the target peduncle, OCTINION (Fig. 7(f), 

http://octinion.com), who designed a force-limit soft gripper in an attempt to avoid damage 

while grasping, and Harvest CROO (https://harvestcroo.com) who designed a rotation 

apparatus that includes several grippers for picking strawberries on the ground. Unfortunately, 

due to the insufficient academic documents, it is hard to compare the performance data of these 

non-academic robots and to learn the challenges and lessons.  

Generally, strawberry harvesting in cropping environment is very challenging. First, ripe 

strawberries are easily damaged and bruised (Dimeas et al., 2015; Hayashi et al., 2014). This 

feature requires gentle handling during manipulation procedures. Non-contact picking might be 

an acceptable solution to avoid damage. Second, strawberries are small in size and tend to grow 

in clusters, which makes it difficult to identify and pick individual strawberries (Yamamoto et 

al., 2014). Picking in clusters with dense obstacles is one of the main challenges for strawberry 

harvesting (Yamamoto et al., 2014) as well as for many other crop harvesting systems, such as 

tomato harvesting (Yaguchi et al., 2016) and sweet pepper robot (Bac et al., 2016). In this thesis, 

we address some of the challenges of working in unstructured farming environment. The main 

focuses are the manipulator design and manipulation path planning, aiming at improving the 

robustness of the system for working in unstructured environment.  

Strawberry harvesters generally consist of four subsystems: (i) vision for detection of 

strawberries, (ii) a gripper for picking the strawberries, (iii) an arm for moving the gripper to 

the berries, and finally (iv) a platform to increase the work space of the robot and provide 

mobility. 

1.3.3.3 Machine vision 

Machine vision is an essential component for agricultural robots, enabling them to detect and 

localize the target crop. When the 3D position of a target is obtained, its coordinates can be 

further utilized to instruct the movements of the manipulation. For strawberry detection, image 

processing based on color thresholding is a frequently applied method in research papers 

(Hayashi et al., 2014; Yamamoto et al., 2014), primarily due to the significant differences of 

color among ripe strawberries, green strawberries and green plants. Peduncle detection is 

http://octinion.com/
https://harvestcroo.com/
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another widely researched harvesting step (Cui et al., 2013; Hayashi et al., 2010; Huang et al., 

2017; Shiigi et al., 2008). Color-based image processing methods were used to detect the 

strawberry first and then set a certain region above the strawberry for peduncle detection, with 

the accuracy influenced by the results of pre-processing and complexity of the environment. 

Other researchers have explored feature learning methods to analyze strawberry fruit shapes 

(Ishikawa et al., 2018). Recently, extensive work used deep learning as an approach for fruit 

detection. Deep learning, which can autonomously extract fruit features, has shown results in 

strawberry detection (Habaragamuwa et al., 2018). In addition to strawberries, deep learning, 

especially the Faster RCNN network, has been widely used for detection of many other fruits, 

including sweet pepper, mango, apple, almond and kiwifruit (Fu et al., 2018; Mai et al., 2018; 

Sa et al., 2016; Zhang et al., 2019). All these systems used detection networks to generate 

bounding boxes around the target fruits.  

Unstructured growing conditions, including variable clustering, occlusions and varying lighting 

conditions, have been considered as the common challenges for fruit detection in farm 

environments (Silwal et al., 2017). Consequently, the focus of much ongoing research is novel 

ways to resolve these situations. One study proposed a color-based adaptive thresholding 

method for sweet pepper detection that can deal with changing illumination conditions 

(Vitzrabin and Edan, 2016), for example, while another proposed a visual servoing-based 

method accurately localize sweet peppers in occlusion situations (Lehnert et al., 2018b). Deep 

learning is a promising method to deal with the lighting variations and the general idea is to 

capture and train images under different lighting conditions (Bargoti and Underwood, 2017; Fu 

et al., 2018). However, this method may require additional hardware (GPU) and a large dataset 

as well as intensive work on image annotations, thus increasing the cost and power consumption.  

1.3.3.4 Gripper design 

The end-effector or gripper is a critical component in robotic systems as it could simplify 

requirements from other subsystems (Eizicovits et al., 2016) as well as enhance operation 

stability and efficiency substantially (Chiu et al., 2013). Various end-effectors have been 

developed for strawberry-harvesting robots. The most widely used is the scissor-like end-

effector (Fig. 8(a)) for fruit detachment purpose only (Cui et al., 2013; Hayashi et al., 2014; 

Yamamoto et al., 2010). A similar one is clamp-like end-effector that combines cutting and 

clamping for holding peduncle after picking (AGROBOT, http://agrobot.com), as the one is 

shown in Fig. 8(f)). Also, with an additional suction device (Fig. 8(b)), the scissor-like end-
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effector might be able to aspirate fruit from the plant (Arima and Kondo, 2004; Feng et al., 

2012; Hayashi et al., 2010), but this may increase the damage. The scissor-like or clamp-like 

end-effectors are easy to make and inexpensive. However, as the individual strawberry 

peduncle (picking point) is difficult to detect (Huang et al., 2017), especially in a cluster where 

locating the correct stem is much harder than find a strawberry body, these end-effectors thus 

require a relatively advanced vision system to be developed. It is also easy to cut more than one 

stem at the time and unintentionally pick green strawberries.  

Another important type of end-effector is contact-grasping gripper, as shown in Fig. 8(c), (d) 

and (e). These grasping grippers are also common to see, such as the three-finger clamps with 

force-limit function (Dimeas et al., 2015) and two or more fingers with rotational motion to 

break peduncles (Yamamoto et al., 2014), (OCTINION, http://octinion.com; Harvest CROO, 

https://harvestcroo.com). Grasping and holding the fruit with additional motion to break the 

peduncle might easily bruise fragile strawberries (Hayashi et al., 2010), which might be a 

significant disadvantage of the grasping grippers.  

  

   
Fig. 8. Grippers for strawberry-harvesting robots: (a) a scissor-like cutter (Hayashi et al., 

2010); (b) a cutters with suction device (Hayashi et al., 2010); (c) a force-limit grasping 

gripper: hard fingers with sensors (Dimeas et al., 2015); (d) a force-limit grasping gripper: 

(a) (b) (c) 

(d) (e) (f) 

http://octinion.com/
https://harvestcroo.com/


17 

 

soft fingers (http://octinion.com); (e) two fingers grasp (http:// harvestcroo.com); (f) a 

clamp-like gripper (http:// agrobot.com). 

Fruit localization is much easier than stem recognition (Yaguchi et al., 2016), because ripe fruits 

have large size and red color (strawberry) that is clearly different from leaves. Therefore, in this 

thesis, the gripper is designed to target the fruit and not the stem, which means it just needs the 

fruit location for picking rather than stem location. Compared to other strawberry picking robots 

that use stem as picking point (Hayashi et al., 2010; Huang et al., 2017), this system becomes 

more robust to positional errors of localization and requires less vision localization capacities. 

1.3.3.5 Manipulation path planning 

Several harvesters that can cope with isolated fruits have been developed. However, as 

mentioned above, some fruits, such as strawberries and tomatoes, tend to grow in clusters. This 

makes it difficult to identify and pick individual ripe fruit without damaging or accidentally 

picking unripe fruit (Xiong et al., 2019a; Yamamoto et al., 2014). Harvesting fruits that grow 

in clusters or are surrounded by obstacles, such as branches and/or leaves, while leaving the 

other fruits to remain undamaged on the plant, is one of the primary challenges for fruit 

harvesting systems (Xiong et al., 2019a; Yaguchi et al., 2016). Due to the uncertain 

environment, manipulation is considered one of the main challenges in getting harvesting robots 

to become a reality (Silwal et al., 2017). Cluster picking is difficult since the surrounding fruits, 

leaves, stems and other obstacles are difficult to separate from the target, both in detection and 

in manipulation.  

Many picking systems used a point-to-point path planning method to move the arm from a start 

point to a point close the target (Cui et al., 2013; Hayashi et al., 2014). However, with this 

method, it was difficult for the gripper to avoid surrounding berries, leaves or stems along with 

its target berry. To avoid occlusions, a “3D-move-to-see” method was proposed to find the best 

view with less occlusions (Lehnert et al., 2018b). To avoid obstacles, a method for cucumber 

picking was developed that uses a search algorithm to explore the search space for a feasible 

trajectory, in which each step of the trajectory is checked by a collision detector (Van Henten 

et al., 2002). Another work used a randomized path planner to generate a random path tree and 

then tested each path with a local path planner to determine the collision-free one for pruning 

grape vines (Botterill et al., 2017). Furthermore, to avoid the arm’s self-collision or collision 

with obstacles, they incorporated a collision detector based on geometric primitives. Most of 

the methods found in the literature are passive obstacle avoidance methods, in which the aim is 

http://octinion.com/
http://octinion.com/
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to avoid existing obstacles without changing the environment. However, obstacles are not 

always avoidable, especially when picking small-size fruits in clusters, where the obstacles may 

be extremely close to the targets. 

Without moving the obstacles out of the way, obstacles may prevent the gripper from capturing 

the target and may also be captured or damaged if they are located close to the target. 

Furthermore, when the obstacles connect to the target, the gripper may not be able to separate 

the target due to the static contact force between the target and obstacles.  

In the field of robotic manipulation, most studies focus on obstacle avoidance. Nevertheless, 

we found some research working on obstacle separation for simple situations. For a warehouse 

picking application on desk environment, two linear pushing policies were proposed to separate 

rigid obstacles during the way of the gripper to reach a target bin (Danielczuk et al., 2018). 

Another work used Learning from Demonstration (LfD) algorithm for the same application that 

involves a pushing action (Laskey et al., 2016). For a similar situation, researchers proposed to 

use physical engine to calculate the dynamics to predict the object locations for motion planning, 

which also involves pushing motions (Dogar et al., 2013; Kitaev et al., 2015; Moll et al., 2017). 

Reinforcement learning was also used to train a robot to rearrange objects on a desk using 

pushing method to make them sparse for individual grasping (Zeng et al., 2018). However, all 

these methods were tested at simple environment where some rigid objects were placed on a 

2D desk surface. In the agricultural environment, for example strawberry plants, fruits are 

located in 3D within diverse and unconstrained environments. The flexible peduncles, 

deformable fruits and many other crop variations make the dynamics difficult to calculate and 

predict. Moreover, the operation speed of these methods seems very slow, which may not be 

suitable for fruit harvesting.  

This thesis provides a novel obstacle-separation method to enable the harvesting system to pick 

strawberries that are located in clusters. The algorithm uses the gripper to push aside 

surrounding leaves, strawberries, and other obstacles. It also controls the gripper to drag the 

target to a place with less obstacles and then push back to move the obstacles out of the way 

for further detachment. The proposed method might be also applicable to harvest other fruits, 

such as tomatoes and cucumbers.
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2. Contributions and thesis overview 

The main goal of this thesis is to contribute knowledge to support fully automation in life-

science applications, which includes design, development, control and integration of robotic 

systems for sample preparation and strawberry harvesting. In addition to the system 

development, some scientific problems have been proposed and studied. For sample preparation 

robots, model fitting based on the developed robot was used to quantify and reveal the process 

of fungi homogenization and a control method was proposed based on the model. For 

strawberry harvesting, a novel obstacle-separation method was proposed and implemented to 

address one of the two main challenges in robotic fruit harvesting, which is fundamentally 

different from traditional path planning where obstacles are typically avoided.  

The specific work and contributions are as follows: 

Part I – Sample preparation robots for FTIR spectroscopy 

 Paper I: (a) Developed a fully automated ultrasonication robot for the homogenization 

of fungal cells using machine vision to distinguish sample wells and blank wells; (b) 

quantified the fungi homogenization process using model fitting, suggesting that 

homogeneity level to ultrasonication time can be well fitted with exponential decay 

equations; (c) proposed a feedback control strategy that used the standard deviation of 

local homogeneity values to determine the ultrasonication termination time.  

 Paper II:  Developed a fully automated robot for the preparation of fungal samples for 

FTIR spectroscopy using deep learning to identify the labware settings. 

Part II – Strawberry-harvesting robots 

 Paper III and paper VI: (a) Designed a novel cable-driven gripper with sensing 

capabilities, which has high tolerance to positional errors and can reduce picking time 

with a storage container; (b) integrated all these subsystems into a complete and working 

system for strawberry harvesting, where the performance of the individual system was 

evaluated. 

 Paper IV: (a) Proposed and implemented a novel active obstacle-separation path-

planning algorithm for cluster picking; (b) improvements to the vision system, the 

gripper, the arm, and the control: an adaptive color thresholding for adaption of ambient 

changing light was proposed; (c) integrated a new version of the strawberry-harvesting 
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robot using dual-manipulator, which is able to pick strawberries continuously in 

polytunnels; (d) field evaluation reveals the failure reasons and provides directions for 

the improvements.  

 Paper V: Improvements to the obstacle-separation method: (a) added a zig-zag push for 

both horizontal and upward directions; (b) proposed a novel dragging operation to 

separate upper obstacles from the target; (c) developed an image processing protocol to 

implement the method in a harvesting robot. 

Fig. 9 shows a diagram that concludes the main work and contributions of this thesis, where 

rectangles represent the individual papers and hexagons indicate the highlights of contributions 

in the corresponding paper except for the system development.  

Robotic systems for 
life-science applications

Part I: Sample 
preparation robots

Part II: Strawberry-
harvesting robots

Paper I: Development of 
an ultrasonication robot

Paper II: Development of a fully 
automated robot for the whole 
process sample preparation of 

FTIR spectroscopy

Paper III and VI: Development of 
the first version robot, including 

strawberry detection and evaluation

Paper IV: Development of the 
second version robot: 

integration and evaluation

Paper V: Improvements 
of the obstacle-separation 

method

Deep learning 
for labware 

identification

A novel obstacle-
separation algorithm

Adaptive 
color 

thresholding

A dragging 
operation to separate 

upper obstacles

A zig-zag operation 
to push obstacles 

side to side

An image processing 
protocol to implement 

the method

A novel 
gripper design

Homogenization 
control

Modelling of 
homogenization 

process

Liquid-handling 
module design

Papers

Contributions in addition to 
system development

Fig. 9. Overview of the thesis: main work and contributions.
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3. Results and discussions 

3.1 Part I – Sample preparation robots for FTIR spectroscopy 

3.1.1 Paper I – Ultrasonication robot for filamentous fungi homogenization. 

 

Fig. 10. Results of paper I: (a) the newly developed ultrasonication robot; (b) quantify the 

ultrasonication process using model fitting based on the vision system of the robot. 

As shown in Fig. 10(a), paper I presents the design and development of a new hands-free 

ultrasonication robot for filamentous fungi homogenization. The platform was constructed with 

a modified inexpensive 3D printer, equipped with an upward-facing camera, a custom-designed 

wash station, and an add-on sonicator. While machine vision distinguished between “sample 

wells” and “blank wells” based on image subtraction and color thresholding, it also measured 

the level of fungi homogeneity using color variance. The utilization of model fitting indicated 

that all the tested fungal homogenization using ultrasonication caused significant exponential 

decay (Fig. 10(b)). This process allowed for the rapid homogenization of fungal samples during 

the initial stages of ultrasonication treatment followed by gradual homogenization. Additionally, 

one-way ANOVA analysis denoted that higher ultrasound sonicator power and temperature 

accelerated the homogenization process, while the cultivation time exhibited no effect on 

homogenization. Moreover, the model parameters varied between the wells, even when 

subjected to the same settings, meaning that the system cannot use the same asymptote of the 

homogeneity level to establish the termination time for different wells. Therefore, we used the 

standard deviation of the four closest homogeneity level values to determine the termination 
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time. This method allowed for feedback control, forming a fully automated robot that did not 

require manual intervention during the experiment. A validation test on filamentous fungi 

demonstrated that the system was efficient and able to provide target quality of samples. 

Since the homogeneity measurement method depended on an upward-facing camera, the 

bottom mycelia primarily determined the color variance calculation. Therefore, the system was 

not sensitive to the mycelia that remained suspended in the well. On some occasions, the 

mycelia did not fall to the bottom before the images were captured, which resulted in the 

acquisition of a smaller 𝑉𝑎𝑟𝑅𝐺𝐵. We tested the system with filamentous fungi and found that 

filamentous fungi homogenization by ultrasonication might be an exponential decay process. 

However, this theory has not been verified by testing various fungi. Further work should include 

testing of other types of fungi or even other microorganisms. 

3.1.2 Paper II – A robot for the full process preparation of fungal samples for 

FTIR spectroscopy  

 

Fig. 11. Results of paper II: (a) the developed sample preparation robot; (b) the machine 

vision module identifies labware settings using deep learning, including tips and well 

plates. 

Manual preparation of fungal samples for Fourier Transform Infrared (FTIR) spectroscopy 

involves sample washing, homogenization, concentration and spotting, which requires time-

consuming and repetitive operations, making it unsuitable for screening studies. Paper II 

shows the design and development of a laboratory robot that fully automates the preparation of 

fungal samples for FTIR spectroscopy (Fig. 11(a)). We extended the previously developed 
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ultrasonication robot (paper I) module to the new system by adding a newly designed 

centrifuge module, a newly developed liquid-handling module and additional electronics. The 

liquid-handling module uses a high accuracy electric pipette for spotting and a low accuracy 

syringe pump for sample washing and concentration. A dual robotic arm system with a gripper 

is able to pick and place the 96-well MTP plates, which connects all of the hardware 

components. Furthermore, as shown in Fig. 11(b), a camera on the liquid-handling module uses 

deep learning to identify the labware settings, which includes the number and positions of the 

well plates and pipette tips. The deep learning module has been integrated into the control 

system to avoid manual input of the labware information. Specifically, the labware 

identification node listens to the master node to capture images when Arm 2 arrives at the target 

position and outputs the bounding boxes together with class IDs of the detected objects. The 

master node determines the existing labware using IoU calculation. In addition, machine vision 

in the ultrasonication robot module can detect the sample wells and return the locations to the 

liquid-handling module, which makes the system hand-free for users.  

We also present the development of the software under ROS architecture in low level for 

controlling each components and in high level for integration of all modules. The software was 

modular designed, so the robot is capable of performing each procedure of the operation 

independently, such as sample washing and spotting. The robot is able to process up to two 96-

well MTP plates of samples simultaneously. Vision system evaluation indicates that the labware 

identification using deep learning can achieve high average precision due to the simple 

environment. Tests of all procedures show that the obtained sample spots have high positional 

accuracy (mean 0.36 mm) and can cover most of the desired region (mean 97%). The FTIR 

measurement indicates that all the obtained spots of one IR plate could be used for FTIR 

analysis, but future work is required to control the concentration of the spotted droplets to 

provide higher quality of spectra. 

The proposed system was validated by the preparation for filamentous fungi but might also be 

applicable to other types of microorganisms, such as yeasts, bacteria, and algae. 
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3.2 Part II – Strawberry-harvesting robots 

3.2.1 Paper III and VI – Gripper design, control and the first version of 

strawberry-harvesting robot 

  

Fig. 12. Results of paper III and VI: (a) the first version of strawberry-harvesting robot; 

(b) the cable-driven gripper; (c) inside bottom view of the gripper, showing the mechanism, 

sensors and cutter. 

This paper presents the development and evaluation of a robot for harvesting strawberries 

grown on table-tops in polytunnels. As shown in Fig. 12(a), the robot is comprised of a newly 

designed gripper (Fig. 12(b) and (c)) mounted on an industrial arm which in turn is mounted 

on a mobile base along with an RGB-D camera.  

The novel cable-driven gripper can open fingers to “swallow” a target. Since it is designed to 

target the fruit and not the stem, it just requires the fruit location for picking. The gripper 

consists of four functional parts for sensing, picking, transmission, and storing. The picking 

mechanism consists of three active fingers, three passive cover fingers and a cutter mechanism. 

The gripper opens the fingers to swallow a strawberry, then closes the fingers, and finally the 

cutter inside of the fingers rotates quickly to cut the stem. Thus, the cutter is hidden inside of 

the fingers to avoid damage to the target strawberry as well as the surrounding ones. While 

closing the fingers, the fingers can push the stem to the cutting area. If in a cluster, the fingers 

can open based on the strawberry size and push other surrounding strawberries away so that 

only one strawberry is swallowed into the container. Equipped with three IR sensors, the gripper 

controls a manipulator arm to correct for positional error, and can thus pick strawberries that 

are not exactly localized by the vision algorithm, improving the robustness. By including 

internal perception, we get high positional error tolerance, and avoid using slow, high-level 

(a) (b) (c) 
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closed-loop control. Another important feature of the gripper is the internal container that is 

used to collect berries during picking. Since the manipulator does not need to go back and forth 

between each berry and a separate punnet, picking time is reduced significantly.  

The vision system used color thresholding combined with screening of the object area and the 

depth range to select ripe and reachable strawberries, which is fast for processing. These 

components were integrated into a complete system whose performance was analyzed starting 

with the four main failure cases of the vision system: undetected, duplicate detections, 

inaccurate localization and segmentation failure. The integration enabled the robot to harvest 

continuously by moving the platform with a joystick. Field experiments showed the average 

cycle time of continuous single strawberry picking was 7.5 s and 10.6 s when including all 

procedures. Furthermore, the robot was able to pick isolated strawberries with a close-to-perfect 

success rate (96.8%). However, in the field, the success rate drops considerably due to the 

occlusion or other failure cases. In the natural situation, the average picking success rate for a 

single attempt is 53.6% without causing damage to the berries, and 59.0% when including 

“success with damage”, testing on the strawberry cultivar of “FAVORI”. The failure cases were 

analyzed and most failures were found when picking strawberries in clusters, in which both the 

detection algorithm and the gripper struggled to separate the berries. 

3.2.2 Paper IV – Adaptive color thresholding, obstacle separation and the 

second version of strawberry-harvesting robot 

Paper IV introduces the improvements and updates to paper III where the main focus is to 

address the challenges in unstructured environment by introducing a light-adaptive color 

thresholding method for vision and a novel obstacle-separation algorithm for manipulation.  

This paper presents a fully integrated strawberry-harvesting system capable of picking 

strawberries continuously in polytunnels, as shown in Fig. 13(a). While several harvesters that 

can cope with isolated strawberries have been developed, those growing in complex clusters 

remain a challenge. The main scientific contribution of this paper is the novel obstacle-

separation path-planning algorithm, which allows the successful harvest of strawberries that are 

surrounded by other strawberries, as well as by leaves and other obstacles. The algorithm uses 

the gripper to push surrounding obstacles from an entrance, thus clearing the way for it to 

swallow the target strawberry. We present the theoretical method to generate pushing paths 

based on the surrounding obstacles. Specifically, the separation actions consist of pushing aside 

the bottom obstacles before swallowing and pushing aside the top obstacles during swallowing. 
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The pushing vectors are derived based on the surrounding obstacles that are calculated using 

downsampled blocks of 3D point cloud (Fig. 13(b) and (c)). This technique might be applicable 

to other fruit harvesting systems.  

 

Fig. 13. Results of paper IV: (a) the second version of strawberry-harvesting robot in a 

greenhouse: dual-arm manipulators; active obstacle-separation algorithm: (b) schematic 

of ROI obstacle blocks, (c) top view of bottom obstacle blocks, showing the pushing vector. 

In addition to obstacle separation, improvements were made to the gripper, the vision system, 

and the control. For adaptation to the field environment, a vision system that could 

automatically change color thresholds was developed based modeling of color against sunlight 

intensity, making it robust to variations in lighting. Furthermore, a low-cost single-rail two 

Cartesian arm system was developed, which makes it suitable for agricultural robot application. 

The harvesting sequence for the dual-arm was studied to optimize harvesting efficiency and 

avoid collision. This study also presents an improved gripper design that enables the robot to 

pick a market punnet and harvest berries directly into the punnet, thus eliminating the cost and 

time for repacking. 

Finally, we show the full integration and control algorithm of the whole system, which enables 

the robot to harvest continuously along the polytunnels. The system was tested on the “Lusa” 

variety strawberries in a strawberry greenhouse. Results revealed that the robot was capable of 

picking partially surrounded strawberries, with success rates ranging from 50.0% to 97.1% on 

the first attempt, depending on the different type settings. This rate rose to between 75.0% and 

100.0% on the second attempt. However, the system was not able to pick a target that was fully 

surrounded by obstacles, recording a first-attempt success rate of just 5.0%. The picking speed 

(a) 
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in the one-arm mode increased to 6.1 s, including both picking and the arm’s travel time to the 

next target, while, for the dual-arm mode, the average picking time was recorded as 4.6 s per 

strawberry.  

However, it was still unable to pick targets that were fully surrounded by obstacles (leaving no 

entrance). It was also still not robust and revealed some limitations, especially from the vision 

side. The first limitation is the insufficient view and point cloud. In the current system, only a 

single view was used to get the 3D scenario. However, because of occlusions and the straight 

projection of the camera, the rear obstacles were not easily detected. Therefore, future work 

should make use of multi-view images and reconstruct more accurate scenes. The second vision 

problem is that of inaccurate localization. As the obstacle block size is dependent on the target 

bounding box, inaccurate localization of ripe strawberries might result in the gripper pushing 

the target when separating surrounding obstacles. In addition to the vision system limitations, 

closed-loop control between perception and manipulation may be able to improve the 

performance of obstacle separation. 

3.2.3 Paper V – Improvements to the novel obstacle separation method 

  

Fig. 14. Results of paper V: (a) diagram of the calculation of horizontal push: left is the 

single push and right is zig-zag push, where the red arrow shows the overall direction and 

the blue arrows are the zig-zag paths; (b) dragging operation to avoid capture the upper 

obstacles: an upward dragging step moves the target to an area that contains fewer 

obstacles and an upward push-back step pushes the upper obstacles aside. 

Paper V provides the improvements to the obstacle-separation method in paper IV. Selectively 

picking a target fruit surrounded by obstacles is one of the major challenges for fruit harvesting 

robots.  Paper III presented a gripper for strawberry-harvesting that can open fingers to enclose 

a target from below. Without moving the obstacles out of the way, obstacles may prevent the 

gripper from capturing the target and may also be swallowed with the target if they are located 

close to the target. Similar problems occur when approaching the fruit from other angles. To 

(a) (b) 
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solve this issue, paper IV proposed to use a single linear push operation to push aside the 

obstacles below the target based on the obstacle sensing from a 3D camera. We found that 

pushing obstacles aside, rather than simply avoiding them makes it possible to pick fruit that 

would otherwise be inaccessible to the robot. However, a single linear push may be insufficient 

for dense obstacles from multi-direction with respect to the target, since the linear push moves 

towards only one direction. Moreover, the obstacles may be adjacent together that cannot be 

separated during the push. Furthermore, when the obstacles connect to the target at the same 

height, the gripper may not be able to swallow the whole target but push it up due to the static 

contact force between the target and obstacles. In addition to that, one frequent failure is the 

gripper may capture obstacles above the target when it moves up to detach the fruit, which has 

not been addressed in the previous work. 

This paper presents a method for actively separating obstacles from the target by using a 

combination of push and drag motions. A linear push was used to clear the obstacles from the 

area below the target, while a zig-zag push was used to push aside more dense obstacles (Fig. 

14(a)). The zig-zag push can help the gripper capture a target since the generated shaking 

motion can break the static contact force between the target and obstacles. Furthermore, we 

proposed a novel dragging operation to address the issue of mis-capturing obstacles located 

above the target, in which the gripper drags the target to a place with fewer obstacles and then 

push back to move the obstacles aside for further detachment (Fig. 14(b)). We presented the 

theoretical calculation method of the pushing and dragging operations, which is determined by 

the number and distribution of obstacles based on the downsampled ROI point cloud. In 

addition, an image processing protocol was developed for the application in a harvesting robot.  

The image processing contains three steps: 1) 3D color filtering to remove noise points from 

the background, 2) object detection and localization using deep learning and 3) obstacle 

calculation.  

Field tests showed that the proposed method could improve the picking performance 

substantially. This method helps to enable complex clusters of fruits to be harvested with a 

higher success rate than conventional methods. Analyses of the failure cases suggested that a 

closed-loop vision guided manipulation system may improve the performance of the obstacle-

separation method considerably, in which the positions of the obstacles and the target are 

updated continuously. 
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4. Conclusions 

This thesis provides the design, development, control and integration of robotic systems for 

FTIR sample preparation and strawberry harvesting, and is divided into two parts.  

Part I presents the robotic systems for the preparation of fungal samples for FTIR spectroscopy. 

The first stage constructed an ultrasonication robot module for sample homogenization based 

on a modified inexpensive 3D printer, equipped with a camera to distinguish sample wells and 

blank wells. The main contribution in the first stage is that we proposed a vision-based method 

to quantify the fungi homogenization process and found that fungi homogenization using 

ultrasonication is an exponential decay process. Moreover, a feedback control strategy was 

proposed that used the standard deviation of local homogeneity values to determine the 

ultrasonication termination time. The second stage extended the ultrasonication robot to 

develop a fully automated robot for the whole process preparation of fungal samples for FTIR 

spectroscopy by adding a newly designed centrifuge and liquid-handling module for sample 

washing, concentration and spotting. The new system used machine vision with deep learning 

to identify the labware settings, which frees the users from inputting the labware information 

manually. The results indicated that all the obtained spots on the IR plate could be used for 

FTIR analysis, but for the future work the droplet concentration should be controlled more 

precisely to provide higher quality of spectra. 

Part II  of the thesis deals with robotic strawberry harvesting, where the main focus is gripper 

design and manipulation control. This part can be further divided into three stages. The first 

stage designed a novel cable-driven gripper with sensing capabilities for strawberry harvesting. 

The gripper uses fingers to form a closed space that can open to capture a fruit and close to push 

the stem to the cutting area. If in a cluster, the fingers can open based on the strawberry size 

and push other surrounding strawberries away so that only the target is swallowed into the 

container. The mechanical design and the internal sensors with control method make the gripper 

highly tolerant to positional errors and can reduce picking time with a storage container. The 

gripper and a detection method based on color thresholding were integrated into a complete and 

working system for strawberry harvesting. The second stage introduced the improvements and 

updates to the first stage where the main focus was to address the challenges in unstructured 

environment by introducing a light-adaptive color thresholding method for vision and a novel 

obstacle-separation algorithm for manipulation. At this stage, the new fully integrated 

strawberry-harvesting system with dual-manipulator was capable of picking strawberries 
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continuously in polytunnels. The main scientific contribution of this stage is the novel obstacle-

separation path-planning algorithm, which is fundamentally different from traditional path 

planning where obstacles are typically avoided. The algorithm allows the successful harvest of 

strawberries that are surrounded by other strawberries, as well as by leaves and other obstacles. 

The algorithm uses the gripper to push aside surrounding obstacles from an entrance, thus 

clearing the way for it to swallow the target strawberry. We presented the theoretical method to 

generate pushing paths based on the surrounding obstacles. The third stage improved the 

obstacle-separation method by introducing a zig-zag push for both horizontal and upward 

directions and a novel dragging operation to separate upper obstacles from the target. The zig-

zag push can help the gripper capture a target since the generated shaking motion can break the 

static contact force between the target and obstacles. The dragging operation is able to address 

the issue of mis-capturing obstacles located above the target, in which the gripper drags the 

target to a place with fewer obstacles and then push back to move the obstacles aside for further 

detachment. Analyses of the failure cases suggested that a closed-loop vision guided 

manipulation system may improve the performance of the obstacle-separation method 

considerably, in which the positions of the obstacles and the target are updated continuously.  



31 

 

References 

Almo, S.C., Garforth, S.J., Hillerich, B.S., Love, J.D., Seidel, R.D., Burley, S.K., 2013. Protein 

production from the structural genomics perspective: achievements and future needs. Curr. 

Opin. Struct. Biol. 23, 335–344. https://doi.org/10.1016/j.sbi.2013.02.014 

Ammi, M., Ferreira, A., 2005. Realistic visual and haptic rendering for biological-cell injection, 

in: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. 

pp. 918–923. 

Anjom, F.K., Vougioukas, S.G., Slaughter, D.C., 2017. ScienceDirect Development of a linear 

mixed model to predict the picking time in strawberry harvesting processes. Biosyst. Eng. 

166, 76–89. https://doi.org/10.1016/j.biosystemseng.2017.10.006 

Arima, S., Kondo, N., 2004. Strawberry Harvesting Robot on Table-top Culture Mitsuji Monta, 

Associate Professor 0300. 

Bac, C.W., Hemming, J., Barth, R., Wais, E., Henten, E.J. Van, 2017. Performance Evaluation 

of a Harvesting Robot for Sweet Pepper. J. F. Robot. 34, 1123–1139. 

https://doi.org/10.1002/rob.21709 

Bac, C.W., Roorda, T., Reshef, R., Berman, S., Hemming, J., van Henten, E.J., 2016. Analysis 

of a motion planning problem for sweet-pepper harvesting in a dense obstacle environment. 

Biosyst. Eng. 146, 85–97. 

Bac, C.W., van Henten, E.J., Hemming, J., Edan, Y., 2014. Harvesting robots for high-value 

crops: State-of-the-art review and challenges ahead. J. F. Robot. 31, 888–911. 

Balter, M.L., Leipheimer, J.M., Chen, A.I., Shrirao, A., Maguire, T.J., Yarmush, M.L., 2018. 

Automated end-to-end blood testing at the point-of-care: Integration of robotic 

phlebotomy with downstream sample processing. Technology 6, 59–66. 

Bargoti, S., Underwood, J.P., 2017. Image segmentation for fruit detection and yield estimation 

in apple orchards. J. F. Robot. 34, 1039–1060. 

Bechar, A., Vigneault, C., 2016. Agricultural robots for field operations: Concepts and 

components. Biosyst. Eng. 149, 94–111. 

Blackmore, S., Stout, B., Wang, M., Runov, B., 2005. Robotic agriculture--the future of 



32 

 

agricultural mechanisation, in: Proceedings of the 5th European Conference on Precision 

Agriculture. pp. 621–628. 

Borthwick, K.A.J., Coakley, W.T., McDonnell, M.B., Nowotny, H., Benes, E., Gröschl, M., 

2005. Development of a novel compact sonicator for cell disruption. J. Microbiol. Methods 

60, 207–216. https://doi.org/10.1016/j.mimet.2004.09.012 

Botterill, T., Paulin, S., Green, R., Williams, S., Lin, J., Saxton, V., Mills, S., Chen, X., Corbett-

Davies, S., 2017. A robot system for pruning grape vines. J. F. Robot. 34, 1100–1122. 

Brown, T., 2011. Gene Cloning and Colony Picking: Integration of Picker on Liquid-Handling 

Platform Increases Production of Clones. Genet. Eng. Biotechnol. News 31, 22–23. 

Bryson, A.L., Hill, E.M., Doern, C.D., 2019. Matrix-Assisted Laser Desorption/Ionization 

Time-of-Flight: The Revolution in Progress. Clin. Lab. Med. 39, 391–404. 

https://doi.org/https://doi.org/10.1016/j.cll.2019.05.010 

Burden, D., 2012. Guide to the Disruption of Biological Samples. Random Prim. 25, 1–25. 

https://doi.org/10.1111/j.1474-9726.2006.00237.x 

Carballido, J., Perez-Ruiz, M., Emmi, L., Ag’era, J., 2014. Comparison of Positional Accuracy 

between RTK and RTX GNSS Based on the Autonomous Agricultural Vehicles under 

Field Conditions. Appl. Eng. Agric. 

Chang, Y.-J., Fan, Y.-H., Chen, S.-C., Lee, K.-H., Lou, L.-Y., 2018. An Automatic Lab-on-

Disc System for Blood Typing. SLAS Technol. Transl. Life Sci. Innov. 23, 172–178. 

Chapman, T., 2003. Lab automation and robotics: Automation on the move. Nature 421, 661–

663. https://doi.org/10.1038/421661a 

Chen, Y., Zhang, J., Wang, H., Simaan, N., Yao, Y., Garty, G., Xu, Y., Lyulko, O., Turner, H., 

Randers-Pehrson, G., others, 2010. Development of a robotically-based automated 

biodosimetry tool for high-throughput radiological triage. Int. J. Biomechatronics Biomed. 

Robot. 1, 115–125. 

Cherezov, V., Peddi, A., Muthusubramaniam, L., Zheng, Y.F., Caffrey, M., 2004. A robotic 

system for crystallizing membrane and soluble proteins in lipidic mesophases. Acta 

Crystallogr. Sect. D Biol. Crystallogr. 60, 1795–1807. 

Chiu, Y.C., Yang, P.Y., Chen, S., 2013. Development of the end-effector of a picking robot for 



33 

 

greenhouse-grown tomatoes. Appl. Eng. Agric. 29, 1001–1009. 

https://doi.org/10.13031/aea.29.9913 

Cui, Y., Gejima, Y., Kobayashi, T., Hiyoshi, K., Nagata, M., 2013. Study on cartesian-type 

strawberry-harvesting robot. Sens. Lett. 11, 1223–1228. 

Danielczuk, M., Mahler, J., Correa, C., Goldberg, K., 2018. Linear push policies to increase 

grasp access for robot bin picking, in: 2018 IEEE 14th International Conference on 

Automation Science and Engineering (CASE). pp. 1249–1256. 

Dimeas, F., Sako, D. V., Moulianitis, V.C., Aspragathos, N.A., 2015. Design and fuzzy control 

of a robotic gripper for efficient strawberry harvesting. Robotica 33, 1085–1098. 

https://doi.org/10.1017/S0263574714001155 

Dogar, M.R., Hsiao, K., Ciocarlie, M., Srinivasa, S.S., 2013. Physics-Based Grasp Planning 

Through Clutter. Robot. Sci. Syst. VIII 57. 

Eizicovits, D., van Tuijl, B., Berman, S., Edan, Y., 2016. Integration of perception capabilities 

in gripper design using graspability maps. Biosyst. Eng. 146, 98–113. 

https://doi.org/10.1016/j.biosystemseng.2015.12.016 

Fakruddin, M., Mannan, B., Shahnewaj, K., Mazumdar, R.M., Chowdhury, A., Hossain, N., 

2013. Identification and characterization of microorganisms: DNA-fingerprinting methods. 

Songklanakarin J. Sci. Technol. 35. 

Feng, Q., Wang, X., Zheng, W., Qiu, Q., Jiang, K., 2012. New strawberry harvesting robot for 

elevated-trough culture. Int. J. Agric. Biol. Eng. 5, 1–8. 

Feng, Q., Zou, W., Fan, P., Zhang, C., Wang, X., 2018. Design and test of robotic harvesting 

system for cherry tomato. Int. J. Agric. Biol. Eng. 11, 96–100. 

https://doi.org/10.25165/j.ijabe.20181101.2853 

Fu, L., Feng, Y., Majeed, Y., Zhang, X., Zhang, J., Karkee, M., Zhang, Q., 2018. Kiwifruit 

detection in field images using Faster R-CNN with ZFNet. IFAC-PapersOnLine 51, 45–

50. 

Gogate, P.R., Kabadi, A.M., 2009. A review of applications of cavitation in biochemical 

engineering/biotechnology. Biochem. Eng. J. 44, 60–72. 

https://doi.org/10.1016/j.bej.2008.10.006 



34 

 

Grimstad, L., From, P., 2017. The Thorvald II Agricultural Robotic System. Robotics 6, 24. 

https://doi.org/10.3390/robotics6040024 

Grimstad, L., Skattum, K., Solberg, E., Loureiro, G., From, P.J., 2017. Thorvald II 

configuration for wheat phenotyping, in: Proceedings of the IROS Workshop on Agri-

Food Robotics: Learning from Industry. 

Habaragamuwa, H., Ogawa, Y., Suzuki, T., Shiigi, T., Ono, M., Kondo, N., 2018. Detecting 

greenhouse strawberries (mature and immature), using deep convolutional neural network. 

Eng. Agric. Environ. Food 11, 127–138. 

Haibo, L., Shuliang, D., Zunmin, L., Chuijie, Y., 2015. Study and experiment on a wheat 

precision seeding robot. J. Robot. 2015, 12. 

Hayashi, S., Shigematsu, K., Yamamoto, S., Kobayashi, K., Kohno, Y., Kamata, J., Kurita, M., 

2010. Evaluation of a strawberry-harvesting robot in a field test. Biosyst. Eng. 105, 160–

171. https://doi.org/10.1016/j.biosystemseng.2009.09.011 

Hayashi, S., Yamamoto, S., Saito, S., Ochiai, Y., Kamata, J., Kurita, M., Yamamoto, K., 2014. 

Field operation of a movable strawberry-harvesting robot using a travel platform. Japan 

Agric. Res. Q. 48, 307–316. https://doi.org/10.6090/jarq.48.307 

Huang, Z., Wane, S., Parsons, S., 2017. Towards automated strawberry harvesting: Identifying 

the picking point. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. 

Lect. Notes Bioinformatics) 10454 LNAI, 222–236. https://doi.org/10.1007/978-3-319-

64107-2_18 

Ishikawa, T., Hayashi, A., Nagamatsu, S., Kyutoku, Y., Dan, I., Wada, T., Oku, K., Saeki, Y., 

Uto, T., Tanabata, T., others, 2018. CLASSIFICATION OF STRAWBERRY FRUIT 

SHAPE BY MACHINE LEARNING. Int. Arch. Photogramm. Remote Sens. Spat. Inf. 

Sci. 42. 

Kachenko, A., 2016. Robot that Detects Weeds? What a RIPPA. 

Kang, D.-H., Kim, D.-E., Lee, G.-I., Kim, Y.-H., Lee, H.-J., Min, Y.-B., 2012. Development of 

a vegetable transplanting robot. J. Biosyst. Eng. 37, 201–208. 

Kitaev, N., Mordatch, I., Patil, S., Abbeel, P., 2015. Physics-based trajectory optimization for 

grasping in cluttered environments, in: 2015 IEEE International Conference on Robotics 

and Automation (ICRA). pp. 3102–3109. 



35 

 

Klein, A., 2016. Robot ranchers monitor animals on giant Australian farms. New Sci. May 20. 

Klimek-Ochab, M., Brzezińska-Rodak, M., Zymańczyk-Duda, E., Lejczak, B., Kafarski, P., 

2011. Comparative study of fungal cell disruption-scope and limitations of the methods. 

Folia Microbiol. (Praha). 56, 469–475. https://doi.org/10.1007/s12223-011-0069-2 

Kwee, E., Herderick, E.E., Adams, T., Dunn, J., Germanowski, R., Krakosh, F., Boehm, C., 

Monnich, J., Powell, K., Muschler, G., 2017. Integrated colony imaging, analysis, and 

selection device for regenerative medicine. SLAS Technol. Transl. Life Sci. Innov. 22, 

217–223. 

Laskey, M., Lee, J., Chuck, C., Gealy, D., Hsieh, W., Pokorny, F.T., Dragan, A.D., Goldberg, 

K., 2016. Robot grasping in clutter: Using a hierarchy of supervisors for learning from 

demonstrations, in: 2016 IEEE International Conference on Automation Science and 

Engineering (CASE). pp. 827–834. 

Lehnert, C., English, A., McCool, C., Tow, A.W., Perez, T., 2017. Autonomous Sweet Pepper 

Harvesting for Protected Cropping Systems. IEEE Robot. Autom. Lett. 2, 872–879. 

https://doi.org/10.1109/LRA.2017.2655622 

Lehnert, C., McCool, C., Sa, I., Perez, T., 2018a. A Sweet Pepper Harvesting Robot for 

Protected Cropping Environments. arXiv Prepr. arXiv1810.11920. 

Lehnert, C., Sa, I., McCool, C., Upcroft, B., Perez, T., 2016. Sweet pepper pose detection and 

grasping for automated crop harvesting. Proc. - IEEE Int. Conf. Robot. Autom. 2016-June, 

2428–2434. https://doi.org/10.1109/ICRA.2016.7487394 

Lehnert, C., Tsai, D., Eriksson, A., McCool, C., 2018b. 3D Move to See: Multi-perspective 

visual servoing for improving object views with semantic segmentation. arXiv Prepr. 

arXiv1809.07896. 

Li, J., Shapaval, V., Kohler, A., Talintyre, R., Schmitt, J., Stone, R., Gallant, A.J., Zeze, D.A., 

2016. A modular liquid sample handling robot for high-throughput Fourier transform 

infrared spectroscopy, in: Advances in Reconfigurable Mechanisms and Robots II. 

Springer, pp. 769–778. https://doi.org/10.1007/978-3-319-23327-7 

Liu, H., Stoll, N., Junginger, S., Thurow, K., 2013. A fast method for mobile robot 

transportation in life science automation, in: 2013 IEEE International Instrumentation and 

Measurement Technology Conference (I2MTC). pp. 238–242. 



36 

 

https://doi.org/10.1109/I2MTC.2013.6555416 

Liu, X., Fernandes, R., Gertsenstein, M., Perumalsamy, A., Lai, I., Chi, M., Moley, K.H., 

Greenblatt, E., Jurisica, I., Casper, R.F., others, 2011. Automated microinjection of 

recombinant BCL-X into mouse zygotes enhances embryo development. PLoS One 6, 

e21687. 

Mai, X., Zhang, H., Meng, M.Q.-H., 2018. Faster R-CNN with Classifier Fusion for Small Fruit 

Detection, in: 2018 IEEE International Conference on Robotics and Automation (ICRA). 

pp. 7166–7172. 

Mancia, F., Love, J., 2010. High-throughput expression and purification of membrane proteins. 

J. Struct. Biol. 172, 85–93. https://doi.org/10.1016/j.jsb.2010.03.021 

Meier, M.A.R., Hoogenboom, R., Fijten, M.W.M., Schneider, M., Schubert, U.S., 2003. 

Automated MALDI-TOF-MS sample preparation in combinatorial polymer research. J. 

Comb. Chem. 5, 369–374. 

Moll, M., Kavraki, L., Rosell, J., others, 2017. Randomized physics-based motion planning for 

grasping in cluttered and uncertain environments. IEEE Robot. Autom. Lett. 3, 712–719. 

Nagasaka, Y., Saito, H., Tamaki, K., Seki, M., Kobayashi, K., Taniwaki, K., 2009. An 

autonomous rice transplanter guided by global positioning system and inertial 

measurement unit. J. F. Robot. 26, 537–548. 

Nagasaka, Y., Umeda, N., Kanetai, Y., Taniwaki, K., Sasaki, Y., 2004. Autonomous guidance 

for rice transplanting using global positioning and gyroscopes. Comput. Electron. Agric. 

43, 223–234. 

Nejatimoharrami, F., Faina, A., Stoy, K., 2017. New Capabilities of EvoBot: A Modular, Open-

Source Liquid-Handling Robot. SLAS Technol. 22, 500–506. 

https://doi.org/10.1177/2472630316689285 

Pedersen, S.M., Fountas, S., Blackmore, S., 2008. Agricultural robots—Applications and 

economic perspectives, in: Service Robot Applications. IntechOpen. 

Peyer, K.E., Zhang, L., Nelson, B.J., 2013. Bio-inspired magnetic swimming microrobots for 

biomedical applications. Nanoscale 5, 1259–1272. 

Reed, C.E., Fournier, J., Vamvoukas, N., Koza, S.M., 2018. Automated Preparation of MS-



37 

 

Sensitive Fluorescently Labeled N-Glycans with a Commercial Pipetting Robot. SLAS 

Technol. Transl. Life Sci. Innov. 23, 550–559. 

Rosenberg, A., 2011. Philosophy of science: A contemporary introduction. Routledge. 

Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., McCool, C., 2016. Deepfruits: A fruit detection 

system using deep neural networks. Sensors 16, 1222. 

Shapaval, V., Møretrø, T., Suso, H.P., Wold Åsli, A., Schmitt, J., Lillehaug, D., Martens, H., 

Bocke,  r U., Kohler, A., 2010. A high-throughput microcultivation protocol for FTIR 

spectroscopic characterization and identification of filamentous fungi. J. Biophotonics 3, 

512–521. https://doi.org/10.1002/jbio.201000014 

Shapaval, V., Schmitt, J., Møretrø, T., Suso, H.P., Skaar, I., 2013. Characterization of food 

spoilage fungi by FTIR spectroscopy. J. Appl. Microbiol. 114, 778–796. 

https://doi.org/10.1111/jam.12092 

Shiigi, T., Kondo, N., Kurita, M., Ninomiya, K., Rajendra, P., Kamata, J., Hayashi, S., 

Kobayashi, K., Shigematsu, K., Kohno, Y., 2008. Strawberry harvesting robot for fruits 

grown on table top culture. Am. Soc. Agric. Biol. Eng. Annu. Int. Meet. 2008 5, 3139–

3148. https://doi.org/10.13031/2013.24754 

Silwal, A., Davidson, J.R., Karkee, M., Mo, C., Zhang, Q., Lewis, K., 2017. Design, integration, 

and field evaluation of a robotic apple harvester. J. F. Robot. 34, 1140–1159. 

https://doi.org/10.1002/rob.21715 

Smagowska, B., Pawlaczyk-Łuszczyńska, M., 2013. Effects of ultrasonic noise on the human 

body—a bibliographic review. Int. J. Occup. Saf. Ergon. 19, 195–202. 

https://doi.org/10.1080/10803548.2013.11076978 

Tanaka, H., Ohnishi, K., Nishi, H., Kawai, T., Morikawa, Y., Ozawa, S., Furukawa, T., 2008. 

Implementation of bilateral control system based on acceleration control using FPGA for 

multi-DOF haptic endoscopic surgery robot. IEEE Trans. Ind. Electron. 56, 618–627. 

Tiwari, B.K., O’Donnell, C.P., Cullen, P.J., 2009. Effect of sonication on retention of 

anthocyanins in blackberry juice. J. Food Eng. 93, 166–171. 

https://doi.org/10.1016/j.jfoodeng.2009.01.027 

Underwood, J.P., Calleija, M., Taylor, Z., Hung, C., Nieto, J., Fitch, R., Sukkarieh, S., 2015. 

Real-time target detection and steerable spray for vegetable crops, in: Proceedings of the 



38 

 

International Conference on Robotics and Automation: Robotics in Agriculture Workshop, 

Seattle, WA, USA. pp. 26–30. 

Van Henten, E.J., Hemming, J., Van Tuijl, B.A.J., Kornet, J.G., Meuleman, J., Bontsema, J., 

Van Os, E.A., 2002. An autonomous robot for harvesting cucumbers in greenhouses. 

Auton. Robots 13, 241–258. https://doi.org/10.1023/A:1020568125418 

Vitzrabin, E., Edan, Y., 2016. Changing task objectives for improved sweet pepper detection 

for robotic harvesting. IEEE Robot. Autom. Lett. 1, 578–584. 

Vroegindeweij, B.A., Blaauw, S.K., IJsselmuiden, J.M.M., van Henten, E.J., 2018. Evaluation 

of the performance of PoultryBot, an autonomous mobile robotic platform for poultry 

houses. Biosyst. Eng. 174, 295–315. 

Wang, L.L., Zhao, B., Fan, J.W., Hu, X.A., Wei, S., Li, Y.S., Zhou, Q.B., Wei, C.F., 2017. 

Development of a tomato harvesting robot used in greenhouse. Int. J. Agric. Biol. Eng. 10, 

140–149. https://doi.org/10.25165/j.ijabe.20171004.3204 

Wang, W., Liu, X., Gelinas, D., Ciruna, B., Sun, Y., 2007. A fully automated robotic system 

for microinjection of zebrafish embryos. PLoS One 2, e862. 

Xiong, Y., Ge, Y., Grimstad, L., From, P.J., 2019a. An autonomous strawberry‐harvesting robot: 

Design, development, integration, and field evaluation. J. F. Robot. rob.21889. 

https://doi.org/10.1002/rob.21889 

Xiong, Y., Ge, Y., Liang, Y., Blackmore, S., 2017. Development of a prototype robot and fast 

path-planning algorithm for static laser weeding. Comput. Electron. Agric. 142, 494–503. 

https://doi.org/10.1016/j.compag.2017.11.023 

Xiong, Y., Peng, C., Grimstad, L., From, P.J., Isler, V., 2019b. Development and field 

evaluation of a strawberry harvesting robot with a cable-driven gripper. Comput. Electron. 

Agric. 157, 392–402. https://doi.org/10.1016/j.compag.2019.01.009 

Yaguchi, H., Nagahama, K., Hasegawa, T., Inaba, M., 2016. Development of an autonomous 

tomato harvesting robot with rotational plucking gripper. IEEE Int. Conf. Intell. Robot. 

Syst. 2016-Novem, 652–657. https://doi.org/10.1109/IROS.2016.7759122 

Yamamoto, S., Hayashi, S., Saito, S., Ochiai, Y., Yamashita, T., Sugano, S., 2010. 

Development of robotic strawberry harvester to approach target fruit from hanging bench 

side. IFAC Proc. Vol. 3. https://doi.org/10.3182/20101206-3-JP-3009.00016 



39 

 

Yamamoto, S., Hayashi, S., Yoshida, H., Kobayashi, K., 2014. Development of a Stationary 

Robotic Strawberry Harvester with Picking Mechanism that Approaches Target Fruit from 

Below. Japan Agric. Res. Q. JARQ 48, 261–269. https://doi.org/10.6090/jarq.48.261 

Zeng, A., Song, S., Welker, S., Lee, J., Rodriguez, A., Funkhouser, T., 2018. Learning synergies 

between pushing and grasping with self-supervised deep reinforcement learning, in: 2018 

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 4238–

4245. 

Zhang, L., Gui, G., Khattak, A.M., Wang, M., Gao, W., Jia, J., 2019. Multi-Task Cascaded 

Convolutional Networks Based Intelligent Fruit Detection for Designing Automated 

Robot. IEEE Access 7, 56028–56038. 

 

 

  



40 

 

 

  



41 

 

 

 

 

 

 

 

 

 

 

Appended papers 

 

 

 

 

 

 

 

 

 

 

 

  



42 

 

 

 



 

 

 

 

 

Part I – Sample preparation robots for FTIR spectroscopy 

Paper I 

Xiong, Y., Shapaval, V., Kohler, A. and From, P.J., 2019. A Laboratory-Built Fully 

Automated Ultrasonication Robot for Filamentous Fungi Homogenization. SLAS 

TECHNOLOGY: Translating Life Sciences Innovation, 24, pp.1-13. DOI: 

https://doi.org/10.1177/2472630319861361 

 

 

 

 

 

 

 

 

 

  

https://doi.org/10.1177/2472630319861361


 

  



https://doi.org/10.1177/2472630319861361

SLAS Technology 
 1 –13
© 2019 Society for Laboratory
Automation and Screening
DOI: 10.1177/2472630319861361
journals.sagepub.com/home/jla

Original Research

Introduction

Microorganisms broadly serve as cell factories for the produc-
tion of a variety of important high- and low-value products, 
such as lipids, biosurfactants, antibiotics, enzymes, therapeu-
tic agents, exopolysaccharides, and bioplastics. It is possible 
to easily isolate some of these products following extracellu-
lar storage and excretion into the cultivation medium. 
However, others, such as lipids and polyhydroxyalkanoates, 
depend on intracellular production, necessitating their extrac-
tion for analysis via a process usually initialized by cell 
homogenization.1 In addition, biochemical fingerprinting of 
microorganisms by high-throughput Fourier transform infra-
red (FTIR) spectroscopy, particularly in the case of filamen-
tous fungi,2,3 uses homogeneous cell suspensions that require 
the application of ultrasonic homogenization.

Generally, it is possible to achieve cell homogenization 
by using chemical or mechanical/physical methods,4 and 
recently, the development of a variety of cell homogeniza-
tion procedures facilitated the efficient, low-cost, and effec-
tive release of intracellular products.5 The effectiveness of 

these different homogenization techniques depends on the 
properties of the microbial cell, such as the physical strength 
of the cell wall and the location of the desired intracellular 
product.5 Ultrasound disintegration—ultrasonication—is a 
common mechanical cell homogenization method based on 
the high shear force created by a high-frequency ultrasound 
(above 16 kHz),5 which can achieve complete disruption of 
the microbial cell.5–7 Additional benefits of ultrasonication 
are that it reduces cell disruption processing time and energy 
consumption.8 Unfortunately, however, the process also 
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Abstract

This article presents the design and development of a new hands-free ultrasonication robot for filamentous fungi 
homogenization. The platform was constructed with a modified inexpensive 3D printer, equipped with an upward-facing 
camera, a custom-designed wash station, and an add-on sonicator. While machine vision accomplished sample well 
screening based on image subtraction and color thresholding, it also determined the level of fungi homogeneity using color 
variance. Model fitting reveals that the process of filamentous fungi homogenization using ultrasonication included a period 
of significant exponential decay. Therefore, this procedure allowed for the rapid homogenization of the fungal samples 
during the initial stages of ultrasonication treatment followed by a deceleration in homogenization. Furthermore, a factorial 
experiment showed that higher sonicator power and temperature accelerated the homogenization process, while the 
cultivation time exhibited no effect on homogenization. In addition, the model parameters were varied between the wells, 
even when subjected to the same settings, meaning that the system cannot use the same asymptote of the homogeneity 
level to establish the termination time for different wells. Therefore, we used the standard deviation of the four most 
recent homogeneity level values to determine the termination time. This method was used for feedback control, forming 
a fully automated robot that did not require manual intervention during the experiment. A validation test on filamentous 
fungi demonstrated that the system was able to provide target quality of samples efficiently.
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presents three main disadvantages. First, manual use of the 
ultrasonication system requires highly skilled technicians to 
hold, mix, identify, and monitor during processing.9 Second, 
the process requires lengthy and repetitive operations, mak-
ing it unsuitable for screening studies in which a large num-
ber of samples need to be sonicated within a short period of 
time. Finally, high-sound intensity has negative effects on 
human health, causing headaches, discomfort, and irrita-
tion.10 It is, therefore, important that a platform be devel-
oped for the automation of manual ultrasonication 
operations.

Mancia and Love11 presented a robotic ultrasound disin-
tegrator with an electronically controlled sonicator probe 
mounted on a five-axis industrial robotic arm. Similarly, 
Almo et al.12 developed an ultrasonication robot equipped 
with an EPSON robotic arm. In addition, previous work by 
Li et al.9 used an ultrasonic module with a FESTO three-
axis arm to prepare samples for analysis by FTIR spectros-
copy. These systems simply used industrial robotic arms for 
ultrasonication manipulation without closed-loop control 
strategies for monitoring or automated control. The open-
loop feature might, however, result in insufficient or exces-
sive ultrasonication and, more important, might not always 
provide well-homogenized samples. Previous studies have 
provided neither automatic measurement methods for deter-
mining the degree of fungi homogeneity nor any mathemat-
ical models to quantify the phenomena of filamentous fungi 
homogenization by ultrasonication. Without appropriate 
sensing abilities, these machines continue to rely on the 
manual input of sample locations and technicians to moni-
tor the process, adjust ultrasonication time, and so on.

In the laboratory automation field, many platforms with 
sensing systems have been developed to automate experi-
ments and tests ranging from robotic sample preparation 
systems13 to a machine vision-based system for sorting 
zebrafish embryos14 and an automated system to test irriga-
tion sprinklers.15 Recently, the well-developed, open-source 
software for 3D printing technology allowed for rapid and 
low-cost prototyping. Based on a 3D printer, Nejatimoharrami 
et al.16 presented a liquid-handling robot named EvoBot 
while also developing a 3D printer-based platform together 
with an imaging system for screening microscopy.17

The main contributions presented in this article are the 
following:

1. We developed a novel, fully automated ultrasonica-
tion robot for the homogenization of fungal cells. 
The robot used machine vision to distinguish sam-
ple wells and blank wells.

2. We quantified the fungi homogenization process 
using model fitting, suggesting that homogeneity 
level to ultrasonication time of all the tested sample 
wells can be well fitted with exponential decay 
equations. A further factorial experiment showed 

temperature, sonicator power, fungal varieties, and 
well replicates have a significant influence on 
homogeneity level.

3. We developed a feedback control strategy that used 
the standard deviation of local homogeneity values 
to determine the ultrasonication termination time.

The proposed system was validated by the homogeniza-
tion of filamentous fungi but might also be applicable to 
other types of microorganisms, such as yeasts, bacteria, and 
algae. The developed ultrasonication robot could be of par-
ticular use in processes that prepare filamentous fungi sam-
ples for biochemical phenotyping by FTIR spectroscopy, 
extraction of intracellular metabolites, and DNA from 
microbial cells.

Materials and Methods

System Design and Hardware Description

Figure 1 shows the hardware assembly of the developed 
platform. It comprises five functional modules: (1) an XYZ 
motion stage; (2) a control and vision module, including a 
controller and an upward-facing camera; (3) a washing 
module consisting of a pump and a newly designed wash 
station; (4) a sonicator module; and (5) the power supply. 
The overall size of the ultrasonication platform, excluding 
the water bottles, is 59 × 45 × 80 cm (length × breadth × 
height).

XYZ motion stage. Figure 1a shows that the modification of 
a low-cost 3D printer formed the basis for the robot actua-
tion module (Anet A8, Anet, China). This provided three 
degrees of motion for the sonicator, with an original work-
ing space of 220 × 220 × 240 mm. A 3D-printed sonicator 
holder with which to mount the sonicator on the robot arm 
replaced the extruder module used for 3D printing (Suppl. 

Fig. S1). Furthermore, a custom-designed mixer with 96 
pins was mounted on the same slider next to the holder. 
Before taking pictures, the mixer decreases sediment for-
mation that might affect image processing. When removing 
mixer pins from the well, the robot moves the pins into con-
tact with the well wall to remove droplets. After processing 
a microtiter plate of samples, the mixer can be washed in 
either a well plate with fresh water or a general container.

A laser-cut wooden board attached to a 3D-printed plate 
holder replaced the hotbed of the printer. Modifications to 
the original 3D printer controller facilitated motion control 
while being flashed with open-source firmware (0.92.5; 
Repetier, Willich, Germany) with a robust motion control 
algorithm that promoted external control through the 
G-code protocol. One disadvantage of the firmware is that 
it does not provide feedback upon completion of motion. 
However, this feedback is important in minimizing cycle 
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time, since its utilization can trigger precisely sequential 
motions between the motion stage, pump, and sonicator. 
Therefore, we added a new function to the firmware to 
monitor when motions are complete and update the infor-
mation to the upper controller. Since the robot arm is open-
loop controlled, it requires calibration after each restart of 
the robot, as it is in 3D printing.

Control and vision module. The control board can be found 
on the left side of the platform. Selecting a Raspberry Pi 3 
(Model B, Raspberry Pi Foundation, Cambridge, UK) as 
the main controller was due to its suitability for both image 
processing and electronics control. As shown in Figure 1b, 
the Pi controller has a serial port to communicate with the 
original 3D printer controller using G-code protocol for 
motion control. A centrally mounted, upward-facing cam-
era (Raspberry Pi V2; Raspberry Pi Foundation) located 
underneath the plate holder provided a view of sample 
plates for image processing. The camera has a maximum 
resolution of 3280 × 2464 pixels; however, a lower resolu-
tion setting of 544 × 640 pixels facilitated fast processing. 
An LED panel consisting of several RGB LED units (5050; 
Golden Sun, Shenzhen, China), fixed on the center of the 
platform provided, a homogeneous light source for image 
processing. Customization of the LED panel shell allowed 
for easy attachment to the robot, and the lighting area (132 
× 125 mm) was, therefore, large enough to pass light 

through the 96-well microtiter plate (128 × 86 mm) 
(CR1496; EnzyScreen, Heemstede, Netherlands).

On the top-left corner of the platform is a user-friendly 
control panel with one power switch and two buttons (start 
and pause), which connected directly to the GPIO pins of 
the Pi controller. An intentionally positioned low-cost four-
channel relay module (SainSmart, Lenexa, KS) together 
with a transistor array (ULN2003A; Texas Instruments, 
Dallas, TX), segregated the Pi controller from the 3D printer 
main board. As shown in Figure 1b, the relay module is 
used to control the 3D printer controller, pump, LED panel, 
and sonicator controller for on/off operations. The Pi con-
troller commands the relay module with current amplifica-
tion through the transistor. 

Sonicator module, washing module, and power supply. A sonica-
tor (Q125; Qsonica, Newtown, CT) combined with a stan-
dard probe facilitated the sonication of fungal cells. The 
washing module consists of a peristaltic pump (WPL 810; 
Williamson, Southwick, UK), a newly designed wash station 
(middle right of Fig. 1a and Suppl. Fig. S2), a fresh water 
bottle, a waste water bottle, and several silicone tubes. To 
avoid contamination during washing, the design of the wash 
station allows for the rinsing of the sonicator probe tip rather 
than bathing it, as was the case in the previous platform.9 The 
input voltage is 5V DC for the Pi controller, 12V DC for the 
motion stage, and 24V DC for both the pump and the LED 

Figure 1. The ultrasonication robot: (a) robot setup and (b) schematic diagram of components and their connections.
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panel. Hence, in addition to the 12V DC power supply mod-
ule of the printer, a dual-output embedded power (RD-65B; 
Mouser, Shanghai, China) supplies all other voltages. 

Image Processing

Measurement of fungi homogeneity level. Accurate measure-
ment of the fungi homogeneity level is essential to close the 
loop of ultrasonication control. Since the level of fungi 
homogenization in a well plate varies from well to well, 
analysis transpired via single-well-based image processing. 
This necessitated the segmentation of the wells and the 
identification of their centroid locations in the image pixel 
coordinates. One simple method was first to calculate the 
real-world coordinates (X, Y, Z) of the well centroids using 
geometry, which were then transferred into pixel coordi-
nates (u, v) by means of camera calibration. Using the 
MATLAB camera calibrator toolbox and based on the clas-
sic Zhengyou Zhang calibration theory,18 the camera posi-
tion changed 15 times, capturing images of a standard 
calibration chessboard from each position to obtain the 
camera’s intrinsic parameters as well as its distortion  
coefficients. These results allowed for the identification of 
the relationship between the pixel coordinates and the cam-
era coordinates (xc, yc, zc). Attaching the calibration chess-
board to the plate holder with its rows or columns parallel to 
the holder edges for camera calibration permitted the acqui-
sition of the extrinsic coordinate transformation from the 
camera coordinates to the real-world coordinates. With 
additional geometry dimensions, the well centroids in the 
real world were translated to the pixel coordinate system. 
Supplemental Figure S3 shows the region of interest 
(ROI) pixels for image processing in a camera view. The 
enlarged figure (lower right) illustrates the location of the 
ROI pixels in the center of the well and that they are smaller 
than the well to avoid edge effects. To reduce computation 
resources in the Pi controller, the transformation was con-
ducted offline in MATLAB, and the pixel coordinates of 
the well centroids were imported directly into the Pi con-
troller for real-time processing. A few months of laboratory 
tests indicated that the continuous use of the calibration 
results was possible until the camera or the plate holder 
position changed.

Filamentous fungi have a multicellular structure, where 
hyphae cells form a complex structure called mycelium. 
When filamentous fungi were homogenized by ultrasound 
sonication, we observed disruption of mycelium structure, 
and fungal cells were homogenized. With time, the ultra-
sonication treatment reduced the size of single or several 
large pieces of fungal mycelia in each well. Hence, the first 
measurement method attempted to calculate the fungal area 
for each well based on color thresholding. However, because 
of differences in the fungal biomass quality, amount, and 
possible fungal varieties in each well, the thresholds varied 

from well to well. Furthermore, during the ultrasonication, 
in some cases, the whole pieces of fungal biomass split into 
several small pieces, making area calculation difficult. 
Homogenization of the filamentous fungal mycelia dis-
rupted the mycelia into smaller pieces, causing the sample 
suspension to become more homogeneous. Homogeneity 
level, on the opposite side, also means variance level. 
Therefore, this study proposed a robust method based on the 
color variance within each single well, which calculated and 
combined all of the three basic color channels, R (red), G 
(green), and B (blue), ranging from 0 to 255. The total vari-
ance VarRGB  in a well can be expressed as
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. Generally, within a 

well, the smaller the Var
RGB

, the more homogeneous the 
samples.

Sample screening. The purpose of sample screening was to 
extract the sample wells (filled with filamentous fungal 
mycelia) from the well plate so that the treatment could skip 
the blank wells (empty wells) without any preinput infor-
mation, a feature that is essential for hands-free operation. 
Figure 2a shows the original picture of a well plate where a 
few sample wells are randomly located. To identify the 
sample wells, hue, saturation, and value (HSV) color thresh-
olding was considered, since it is widely used for object 
segmentation.19 As mentioned above, due to the different 
angles at which the camera photographs the wells, the light 
saturation detected by the camera is uneven, and there are 
also shadows caused by the wells. This means that fixed 
global color thresholds cannot work well on different wells 
in the original picture, as verified by these tests. In addition, 
different fungal species of samples have different colors 
and thus require different color thresholds. To make the 
vision system robust to different wells and types of samples, 
we used a picture B i j,( )  that captured from a blank well 
plate to subtract the corresponding pixel values from the 
target original picture O i j,( )  (e.g., Fig. 2a), thereby 
obtaining a subtracted picture S i j,( ) :

 
S i j B i j O i j, , , ,( ) = ( )− ( )

 
(2)

where i and j represent the row and column pixel values, 
respectively. After this operation, as is shown in Figure 2b, 
the subtracted image S i j,( )  clearly shows the changes 
between the target picture O i j,( )  and the blank well plate 
picture B i j,( ) , thus indicating that the fungal mycelia in 
the sample wells already underwent segmentation. Figure 

2c shows that employing color thresholding to extract the 
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sample wells and converting the color image into a binary 
image successfully removed noise. During this process, 
pixels that were within the fine-tuned threshold range 
( )Thre

HSV
 were set as white pixels (value 1), while pixels 

out of Thre
HSV

 were set as black pixels (value 0). Since the 
white pixels could have been disconnected within a well, 
rather than an area calculation, the quantity of white pixels 
(Qwhite ) served as the indicator to quantify the likelihood 
that a well either contained a sample or was empty. This can 
be expressed as
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(3)

where Thre
HSV

 denotes whether or not the pixel color 
Thre

HSV
 is within the threshold range Thre

HSV
.  After 

thresholding, the blank wells were skipped, as illustrated in 
Figure 2d.

Furthermore, an experiment performed on fourteen 
96-well plates (1344 wells) with different sample well dis-
tribution and different types of filamentous fungi deter-
mined the extraction threshold of Qwhite  for regular plates. 
As shown in Figure 2e, the orange square points represent 
Q
white  of sample wells while the blue circular points repre-

sent Qwhite  of blank wells. Generally, the Qwhite  values of 
sample wells and blank wells were significantly different. 
As a result, a segmentation line of 183 pixels (centerline 

between the minimum point of sample well and the maxi-
mum point of blank well) separated blank wells and sample 
wells with a perfect classification result (100%).

Filamentous Fungi Samples for the 

Ultrasonication Experiment

The modeling and control tests involved two varieties of 
filamentous fungi—namely, Mucor circinelloides VI 04473 
(Norwegian School of Veterinary Science, Norway) and 
Mucor hiemalis UBOCC-A-101359 (Université de 
Bretagne Occidentale Culture Collection, France). The 
selection of these two varieties was due to the well-known 
fact that Mucor fungi have a thick cell wall containing dif-
ferent polymers (chitin/chitosan/polyphosphate) that make 
the homogenization process difficult.

Fungi were cultivated in 800-µL liquid medium malt 
extract broth (Oxoid, Basingstoke, UK) in 96-square polypro-
pylene deep-well plates using the Duetz-MTPS (EnzyScreen) 
microtiter plate system for 2 to 3 days at 25 °C. After cultiva-
tion, the filamentous fungal mycelia were washed with dis-
tilled water in three centrifugation steps. After each 
centrifugation step, the mycelia formed a pellet at the bottom 
of wells of the microtiter plate, and supernatant above the 
mycelia was removed. Thereafter, the mycelia were trans-
ferred into new 96-square polypropylene deep-well plates 
filled with 2 mL of deionized water to homogenize fungi. We 
used distilled water according to the microbiology protocol 

Figure 2. Sample screening 
approach: (a) original picture; (b) a 
subtracted image that was obtained 
by image subtraction operation 
between a blank well plate picture 
and the original picture (a), in which 
wells with samples were extracted; 
(c) a binary picture shows the 
samples in white pixels obtained by 
use of color thresholding; (d) as a 
result, the blank wells were skipped 
correctly; (e) experiment results 
for determining the extraction 
threshold of Q

white
:  generally, 

sample wells (orange) and blank 
wells (blue) show a significant 
difference of Qwhite .
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for washing mycelia from the growth medium. Cells of myce-
lia already appeared in swallowed form before washing, since 
the fungi grew in a liquid medium.

Modeling and Control

Modeling of the Filamentous Fungi 

Homogenization Process

The method used to measure the fungi homogeneity level was 
also the technique employed to investigate fungi homogeniza-
tion changes during ultrasonication treatment. Knowledge of 
the exact relationship between the fungi homogeneity level 
and the ultrasonication treatment time could reveal the charac-
teristics behind ultrasonication homogenization of filamen-
tous fungi, which denoted a possible approach to precisely 
control ultrasonication procedures.

The first experiment intended to observe the VarRGB  
changes against ultrasonication time by monitoring sample 
temperatures and liquid density. Four M. circinelloides 
wells with 2 days’ cultivation were processed at room tem-
perature (22.7 °C) with an ultrasonication duration of 15 s 
for each well in each interval. Each well was treated 40 
times for a total of 600 s. During the experiment, the homo-
geneity level was measured after each 15-s treatment. We 
used a rapid noncontact infrared thermometer (IRT260; 
Biltema, Drøbak, Norway) to measure the temperature of 
the well bottom before and after each ultrasonication treat-
ment. To track the sample density changes, this study used 
an optical density spectrophotometer (UV-T500PRO; 
GENESYS, Waltham, MA) to measure the sample liquid, 
excluding the undisrupted mycelium. 

Figure 3 displays the three parameter changes during 
ultrasonication of a M. circinelloides well, and 
Supplemental Figure S4 shows the corresponding visual 
variation of this well captured by the robot camera. As 
shown in Figure 3a, generally, except for the first point (big 
black point at 15 s), the VarRGB  decreased rapidly at the 

beginning of the treatment and then steadily approached an 
asymptotic value. The same trend is evident in Supplemental 

Figure S4, in which the size of the black mycelium in the 
well became smaller and smaller and the decreasing speed 
seemed faster at the beginning yet slower at the end. In 
Figure 3a, the Var

RGB
 value of the first point is lower than 

those of the second and third points, because the mycelium 
at 15 s occupies most of the ROI region (Suppl. Fig. S4), 
thus reducing the color variance of the ROI region. The 
same phenomenon can also be found in the original picture 
of the well (Suppl. Fig. S4). This means that the VarRGB  
may increase at the beginning of the ultrasonication due to 
the inherent properties of the measurement method. Without 
considering the original Var

RGB
 and also removing the first 

point, the remaining points in Figure 3a tend to be smooth. 
They can be modeled well by an exponential decay equa-
tion, as follows:

 
Var f x ae c

RGB

bx= ( ) = +−
,
 

(4)

where a, b, and c are the free model parameters. As can be 
seen in Figure 3a, the fitted model has a high R2 value. 
This model indicates that homogenization of the filamen-
tous fungal samples occurs rapidly using ultrasonication at 
the beginning of the treatment, after which the homogeni-
zation becomes slow. The decreased size of the mycelium 
might play an important role in this phenomenon as there 
was less material to be disrupted. Also, Figure 3b shows 
that the density of the sample liquid grew gradually. This 
might be a second reason for the exponential decay phe-
nomenon since the higher the density, the higher the vis-
cosity. Higher viscosity can reduce the mycelium movement 
during ultrasonication so that the mycelium has less chance 
to be moved to the high disruption effect area around the 
sonicator probe. The temperature of the sample rapidly 
increased at the beginning, fluctuating thereafter by  
around 27 °C (Fig. 3c). The well cools naturally while the 
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Figure 3. VarRGB ,  sample density, and temperature changes during ultrasonication of a Mucor circinelloides well: (a) VarRGB —
ultrasonication time curve; (b) absorbance—ultrasonication time curve, showing the density of the sample liquid increased gradually; 
(c) temperature—ultrasonication time curve.
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sonicator probe processes other wells or during the wash-
ing procedures.

To identify whether factors such as temperature, sonicator 
power, fungi varieties, cultivation time, or even the well posi-
tions affect changes in the Var

RGB
, a factorial experiment was 

performed to assess these influences. In the first subtest, the 
temperature was set to either 26 °C or 50 °C. The well plate 
was preheated to the target degree before each treatment 
using a heating circulator (TC120; Grant Instrument, 
Shepreth, UK). The ultrasonication was performed with 50% 
or 60% of the sonicator’s rating power (effective power 62.5 
or 75 watts [W]) in a pulse-regime (pause or power on, can be 
externally controlled) mode. For each setting, there were at 
least three replicates of wells. Supplemental Figure S5 
shows the results of some wells in different settings, and 
Supplemental Figure S6 displays the corresponding pic-
tures of these wells. Generally, all of them fit well with equa-
tion (4), but the model parameters (a, b, and c) vary in the 
different settings, as well as in the same setting with different 
well replicates. Two varieties of filamentous fungi (M. hie-

malis and M. circinelloides) were tested with different culti-
vation times—2 days and 3 days. As shown in Supplemental 

Figure S7, although the settings were different, the Var
RGB

 
changes in these wells still followed equation (4). This led us 
to conclude that filamentous fungi homogenization by ultra-
sonication might be an exponential decay process and is sim-
ilar to many other natural decay phenomena, such as 
radioactive decay and temperature decrease.

This study used a statistical software (JMP 13, SAS, 
Medmenham, UK) to perform factor effect analysis on all 
the data using one-way analysis of variance (ANOVA). In 
this analysis, the response was Var

RGB
,  while all other set-

tings were the factors. As shown in Supplemental Table 

S1, with the exception of the cultivation time, all the fac-
tors had a statistically significant influence on Var

RGB
,  

using α = 0.05. Particularly, the p-value of wells verified 
the view that even when all the settings are the same, the 
well replicates affect the response Var

RGB
.  It may be due to 

the variation, related to biomass quality and chemical 
composition obtained, in cultivation procedure. The 
ANOVA also provided a linear model using these factors, 
as shown in Supplemental Figure S8. In addition to ultra-
sonication time, both sonicator power and temperature are 
predicted to have negative influences on Var

RGB
,  indicat-

ing that the higher sonicator power and temperature would 
accelerate the homogenization process. Furthermore, the 
prediction indicates that M. circinelloides is more difficult 
to homogenize than M. hiemalis, which supports the point 
that it normally occurs in biology. The cell wall of M. cir-

cinelloides is richer in polymers chitin/chitosan than that 
of M. hiemalis, and because of that, theoretically it should 
be more difficult to homogenize it. Also, as shown in 
Supplemental Figure S7b, these curves were consoli-
dated to pass through the same point (52, 700) by using 

x-axis translation for better comparison. It is evident that 
the Var

RGB
 decreasing speed of M. hiemalis (solid and 

dashed lines) tends to be faster than for M. circinelloides 
(dash-dotted and dotted lines).

System Control

Termination time. Since the timeous termination of ultra-
sonication ensures efficiency, it is essential to be familiar 
with the target homogeneity level regardless of the control 
method employed. However, according to the results shown 
in Supplemental Table S1, the parameters of equation (4) 
vary for different well replicates even when the other fac-
tors remained the same. Therefore, it is challenging to sub-
ject all the wells to the same cutoff value (asymptote). 
Although the wells display different asymptotes for Var

RGB
,  

the derivative Var
RGB

’  has the same asymptote, 0. Therefore, 
Var

RGB

’  was considered to determine whether proper 
homogenization of the wells has occurred. Supplemental 

Figure S5 and Supplemental Figure S6 represent the four 
wells at 26 °C and 75 W. The four circled points/wells (ter-
mination points) in these images indicate the required 
homogeneity levels based on the manual estimation. There-
fore, it is evident that the Var

RGB
 changes were minimal 

when closing the target points. To calculate Var
RGB

’  at each 
point, four local points (three former closest points and the 
current point) were used to fit a linear model and obtain the 
slope, Slopelocal .  Supplemental Figure S9 shows the 
Slope

local
–ultrasonication time curves for the four wells in 

Supplemental Figure S5 (26°C and 75 W). In all the wells, 
the Slope

local
 increased rapidly during the initial stages, 

while decelerating when approaching 0. Similarly, the cir-
cled points represent the time that the wells reached full 
homogenization. Except for C4, employing a fixed value 
for the determination of proper homogenization points in 
the other three wells remained a challenge, since the slopes 
fluctuated around 0 before the termination points.

Then we used the standard deviation Std
local

 of the four 
local points (three former closest points and the current 
point) to determine the termination time, and it can be 
expressed as

 
Std Var Var

local RGBi RGBi
= −( )=∑

2

1

4

4/ .
 (5)

Figure 4 shows the Std
local

–ultrasonication time curves for 
the four wells in Supplemental Figure S5 (26°C and 75 
W), where the circled points indicate the termination time. 
Generally, the curves in Figure 4 appear smoother than 
those in Supplemental Figure S9. Most important, the 
Std

local
 values exhibited a gradual decrease before the ter-

mination points, and their Std
local

 values at termination time 
were 5.7, 4.9, 3.8, and 4.3, respectively. To eliminate fluc-
tuations, the Std

local
 value was reviewed three times before 
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reaching a final decision. Hence, the system only terminates 
the treatment when the three most recent Std

local
 values are 

smaller than the required value. The three points following 
the termination point for each curve in Figure 4 were all 
smaller than 3.3. Therefore, 3.3 represented the termination 
value during the automation process.

Sequential control. Equation (4) shows promise in model-
based control for the ultrasonication process. The idea is 
that, after an initial period of ultrasonication (e.g., 30 s), the 
system uses a model from equation (4) to estimate the 
remaining treatment time based on the difference between 
the target and current Var

RGB
 values. Theoretically, the 

model-based control method is the fastest way to achieve 
fungi homogenization as it processes wells continuously 
within the estimated remaining time. Moreover, the sonica-
tor tip requires only one washing per well. However, con-
tinuous ultrasonication will heat up the samples, thus 
damaging the sample proteins and other chemical struc-
tures. Thus, laboratory experiments usually use 15- to 30-s 
ultrasonication duration for 62.5-W sonicator power, with a 

cool-down period for the samples between each treatment. 
In addition, according to the manual, the sonicator cannot 
be powered continuously for more than 60 s. Therefore, 
model-based control is not suitable for filamentous fungi as 
used in this article, but it might be applicable for samples 
requiring only short periods of ultrasonication, such as 
bacteria.

Due to the limitations of ultrasonication, this system 
used a screening-based control method for the automation. 
Similar to the modeling process, the robot treated each well 
with 15 s of ultrasonication at each interval and monitored 
the termination time for all wells. When reaching the termi-
nation time, the well was passed. Figure 5 shows the entire 
control sequence of the robot. The codes in the Pi controller 
were written in Python 2.7, and the image processing was 
based on the Picamera and OpenCV libraries. Three main 
steps were evident in the ultrasonication sequence follow-
ing placement of the sample well plate on the robot:

1. Robot initialization: The Pi controller ran a server 
script automatically after booting. The server 
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program ran in a loop waiting for the activation of a 
key followed by the initialization of the XYZ motion 
stage. The main program initialized once the opera-
tor pressed the start button.

2. Sample screening: After calibration of the arm, the 
vision system distinguished between blank wells 
and sample wells. The locations of the sample wells 
were recorded for ultrasonication, while the blank 
wells were disregarded.

3. Feedback control: Once the sample wells had been 
screened out, the feedback control step was initi-
ated, starting with ultrasonication treatment for a 
duration of 15 s. During ultrasonication, the sonica-
tor tip in the well moved in a compound manner 
(circling and up-down) to encourage more homoge-
neous fungi homogenization, which resembled the 
way human operators would apply the device. 
Furthermore, between processing any two wells, the 
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‘Start’ key
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Arm calibration

Load samples

Robot
initialization

Take pictures and
image processing

Sample
wells? Disregarded

Wells
reach target
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screened wells
been treated?

Treat one well for
15s ultrasonication

Wash the sonicator probe

No

Yes

Figure 5. Workflow of the 
robot control sequence: the 
ultrasonication sequence can 
be divided into three main 
steps: robot initialization, 
sample screening, and 
feedback control. The 
system measured the fungi 
homogeneity levels of all 
sample wells after each 15-s 
ultrasonication and screened 
them again for a new cycle 
of ultrasonication until the 
termination requirements 
were satisfied or the wells 
had completed a 450-s 
processing cycle.
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sonicator tip was cleaned thoroughly in the wash 
station to avoid contamination. As shown in Figure 

6c, fresh water passes through the outer hollow 
space of the wash station to clean the sonicator tip 
and then flows through the hollow inner space into 
the waste bottle. To avoid droplets from contaminat-
ing other wells, the sonicator was powered on for  
1 s to remove the droplet from the tip of the sonica-
tor probe after withdrawing it from the well  
(Fig. 6b). In addition, when extracting the sonicator 
probe following the washing process, the robot 
touched the inner top of the wash station to remove 
the droplet (Fig. 6d). The top of the wash station has 
a conical surface for better scraping of the droplets. 
Subsequently, measurement of the fungi homogene-
ity levels of all sample wells occurred online using 
the image-processing system. After completion of 
the first four treatments, the system began to calcu-
late the Std

local
 value for determining the termina-

tion time. Wells that did not meet the termination 
requirements (reaching target homogeneity level 
three times continuously) were subjected to the 
ultrasonication process again. Once a well reached 
the proper termination time, no further treatment 
was required. Contrary to the open-loop control 
approach subjecting all wells to the same ultrasoni-
cation treatment time,9 the feedback control method 
reduced the ultrasonication time for an entire well 
plate since disregarding the homogenized wells. 
The maximum ultrasonication time was set to 450 s, 

which could be readily changed depending on fungi 
species and target homogeneity level.

This screening-based control is simple, is robust, and 
ensures high homogenization quality. Consequently, the 
vision-based feedback control system allowed for the full 
automation of the machine without requiring manual inter-
vention during the experiment.

Results and Discussion

Measurement Precision and Accuracy

To evaluate the precision of the fungi homogenization mea-
surement, 11 wells with different homogeneity levels were 
measured continuously without any treatment and repeated 
25 times. The results, illustrated in Supplemental Figure 

S10a, show horizontal lines of Var
RGB

 that were relatively 
stable, suggesting the acceptable repetition precision of the 
proposed measurement method. An average percentage 

deviation of 2.29%, obtained from 100 1
%* s s N

ii

N

/ ( * ),
=∑  

was evident, where s
i
 was the standard deviation of each 

line in Suppl. Fig. S10a.
To evaluate the measurement accuracy, this study uti-

lized fully homogenized samples to fill the well plate. As 
shown in Supplemental Figure S10b, wells located at the 
edges of the microtiter plate (low or high row number) pre-
sented higher Var

RGB
, while the wells in the middle row 

exhibited relatively low Var
RGB

. This could be attributed to 
the changes in the camera angle when observing each well. 

Sonicator probe

Well

Sample 

liquid

Fresh 

water

Wash station

Shower 

orifice

a b c d

Figure 6. Schematic of ultrasonication and washing steps: (a) ultrasonication of the fungal sample; (b) the sonicator is powered on 
for 1 s to remove the droplet when the probe is taken out from the well; (c) washing the sonicator probe in the wash station; (d) the 
sonicator probe is touching the inner top of the wash station to remove the droplet.
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Due to different angles, the camera detected the various 
light intensities and shadows that were present in the wells. 
The standard deviation of these points was 1.9, but the aver-
age percentage deviation was 26.3%. Furthermore, evalua-
tion of the accuracy occurred by randomly placing the six 
physically heterogeneous samples into different wells. 
Although not significant, various fluctuations were evident 
in Var

RGB
 of the different wells, with a standard deviation of 

10.2 and an average percentage deviation of 11.4%, as 
shown in Supplemental Figure S10c. The relative low 
accuracy indicated that it was advisable to control the wells 
independently when using Var

RGB
.

System Control Result

To validate the control method, an experiment was per-
formed with six M. circinelloides sample wells using the 
same setting as during the modeling process (2 days’ culti-
vation, 26 °C, and 75 W). The vision system successfully 
screened out the six wells. During the feedback control step, 
the wells underwent ultrasonic treatment until the system 

detected the termination time. Figure 7a shows images of 
the entire procedure, where the pictures circled in black 
indicate the final states. Figure 7b shows the corresponding 
Var

RGB
 and Std

local
 changes of all wells, clearly indicating 

that the ultrasonication duration of the six wells varied 
between 150 s and 435 s. Compared to the open-loop con-
trol approach that treated all wells with the same ultrasoni-
cation time,9 the screening-based control reduced the 
ultrasonication time by 870 s (33.3%) for the six wells if the 
open-loop control treatment time was set to 435 s.

Consequently, sufficient homogenization of all the fungi 
samples transpired and reached similar states comparable to 
the modeling process (refer to the circled wells in Suppl. 

Fig. S6). However, as shown in Figure 7a, wells C5, C6, 
C7, and D7 were entirely homogeneous in the final states, 
while D5 and D6 still exhibited a small black dot of myce-
lium that did not appear to display significant changes in 
size before termination. This result was especially evident 
in D5, where the size of the mycelium remained the same 
from the 225-s mark onward, which was also verified by the 
variance curve in Figure 7b. Unless higher sonicator power 
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was used during the manual tests, the black mycelium dots 
were extremely difficult to disrupt in some wells. The appli-
cation of this control method can prevent wasting time to 
homogenize these challenging mycelium dots if no change 
is evident in the homogeneity levels after three repetitions.

Limitations and Suggestions

Since the homogeneity measurement method depended on 
an upward-facing camera, the bottom mycelia primarily 
determined the color variance calculation. Therefore, the 
system was not sensitive to the mycelia that remained sus-
pended in the well. On some occasions, the mycelia did not 
fall to the bottom before the images were captured, which 
resulted in the acquisition of a smaller Var

RGB
. For exam-

ple, in Figure 7a, well C5 seems homogeneous at 120 s and 
135 s and the Var

RGB
 values are small in Figure 7b. Owing 

to the termination method by which Std
local

 was checked 
three times before terminating, the robot continued treating 
the sample and the mycelium returned at 150 s.

However, based on our tests, for some filamentous fungi, 
such as Penicillium expansum, it seems that the density of 
the mycelia was lower and close to water, so the mycelia 
were always suspended in the water. This made homogene-
ity levels challenging for the imaging system to measure due 
to the upward-facing camera. A possible improvement might 
be to use a camera that faces the sides of the wells. However, 
this requires placing the sample in a separate well for ultra-
sonication rather than a well plate. Another solution might 
be to aspirate the sample after each treatment and measure it 
from the side in a separate well. However, this process would 
unnecessarily complicate the system since the separate well 
requires thorough cleaning between samples.

In addition, the P. expansum samples were easily homog-
enized. The tests in this study indicated that the P. expansum 
samples could be fully homogenized within 15 s using the 
same setting as for M. circinelloides (2 days’ cultivation,  
26 °C, and 75 W). However, the control system only termi-
nated after obtaining three small, continuous Std

local
 values, 

suggesting that the treatment for each well was only termi-
nated after 105 s. This feature wasted the valuable process-
ing time due to overtreatment but did not affect the final 
results. To minimize the time required, sample wells that are 
easily homogenized could be preloaded into the system.

We tested the system with filamentous fungi and found 
that filamentous fungi homogenization by ultrasonication 
might be an exponential decay process. However, this the-
ory has not been verified by testing various fungi. Further 
work should include testing of other types of fungi or even 
other microorganisms.

In conclusion, this study developed a novel inexpensive 
platform to automate filamentous fungi homogenization 
using ultrasonication and constructed the platform hardware 
by modifying an inexpensive 3D printer with various 

custom-designed parts and additional electronics. While 
machine vision distinguished between sample wells and 
blank wells based on image subtraction and color threshold-
ing, it also measured the level of fungi homogeneity using 
color variance. The utilization of model fitting indicated that 
all the tested fungal homogenization using ultrasonication 
caused significant exponential decay. This process allowed 
for the rapid homogenization of fungal samples during the 
initial stages of ultrasonication treatment followed by grad-
ual homogenization. In addition, one-way ANOVA analysis 
denoted that higher sonicator power and temperature accel-
erated the homogenization process, while the cultivation 
time exhibited no effect on homogenization. Moreover, the 
model parameters varied between the wells, even when sub-
jected to the same settings, meaning that the system cannot 
use the same asymptote of the homogeneity level to estab-
lish the termination time for different wells. Therefore, we 
used the standard deviation of the four closest homogeneity 
level values to determine the termination time. This method 
allowed for feedback control, forming a fully automated 
robot that did not require manual intervention during the 
experiment. A validation test on filamentous fungi demon-
strated that the system was efficient and able to provide tar-
get quality of samples.
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Fig. S1. 3D model of the 3D-printed sonicator holder: (a) 3D model, this holder was printed using low-cost 
polylactic acid (PLA) filaments; (b) front view 2D drawing with key dimensions. The 3D model is available 
at this link. 

(a) (b) 

mailto:yaxio@nmbu.no
https://drive.google.com/file/d/1E1syD2fTPfUiM2-LwYee2bro8Q-PgFfM/view?usp=sharing


   
Fig. S2. 3D model of the wash station: (a) the wash station; (b) half-section view of the wash station: the 
fresh water passes through the outer hollow space of the wash station to clean the sonicator tip, and then 
flows through the hollow inner space into the waste bottle; to avoid contamination during washing, the wash 
station was designed to rinse the tip of the sonicator probe through the shower orifice; (c) half-section view 
2D drawing of the wash station with key dimensions. The 3D model is available at this link. 
 
 

 

Fig. S3. ROI pixels for image processing: camera view of a microtiter plate; the red circles show the ROI 

pixels for single-well based measurement; the enlarged figure in the lower right illustrates that the ROI 

(a) (b) (c) 

Inner hollow space 

Water out Water in 

Outer hollow space 

Shower orifice 

https://drive.google.com/file/d/1fsUclfK_xicnX72EkgMsmSa3ySYWJ8nI/view?usp=sharing


pixels are located in the center of the well and are smaller than the well edge to avoid edge effects. 

 

 

Fig. S4. Corresponding pictures of the well at various time points in Fig. 3, captured by the robot camera: 

the size of the black mycelium in the well becomes increasingly smaller, while the decreasing speed seems 

faster at the beginning yet slower at the end. 



 

Fig. S5. 𝑉𝑎𝑟𝑅𝐺𝐵 - ultrasonication time curves for wells with different temperatures and sonicator power: all 

the wells can be well modelled, however the parameters are different from well to well even when the 

temperature and sonicator power were the same.  

 

 

 



Fig. S6. Corresponding images of the four wells (26°C and 75W) at time points in Fig. S5; the four circled 
wells indicate the required homogeneity levels based manual estimation. 

 

 
Fig. S7. Modeling and comparison of homogenization M. hiemalis and M. circinelloides samples: (a) 𝑉𝑎𝑟𝑅𝐺𝐵 – 
ultraosnication curves for each setting (variety and cultivation time); (b) all fitted models were plotted in one 
figure and consolidated using x-axis translation for comparison. 
 

 

 

Fig. S8. Prediction trends of 𝑉𝑎𝑟𝑅𝐺𝐵 against ultrasonication time, sonicator power and temperature using 

one-way ANOVA: the shadow along the lines shows the confidence intervals; in addition to ultrasonication 

time, both sonicator power and temperature were predicted to have negative influences on 𝑉𝑎𝑟𝑅𝐺𝐵, which 

means that a higher sonicator power and temperature would speed up the homogenization process. 

 



 
Fig. S9. 𝑆𝑙𝑜𝑝𝑒𝑙𝑜𝑐𝑎𝑙 – ultrasonication time curves for the four wells in Fig. S5 (26°C and 75 W). 

 

 
Fig. S10. Measurement precision and accuracy of fungi homogenization levels: (a) repeatability test of the 

measurement method on 11 wells with different homogeneity levels; (b) with same filamentous fungi 

samples, wells located at the edges of the microtiter plate (low or high row number) row number) present 



higher 𝑉𝑎𝑟𝑅𝐺𝐵 , while the wells in the middle row exhibit relatively low 𝑉𝑎𝑟𝑅𝐺𝐵 ; (c) the accuracy test 

performed by putting six heterogeneous samples randomly into different wells.  

  

 

Table S1. Factor effect test using one-way ANOVA  
Effect 

indicators 
Ultrasonication 

time 
Sonicator 

power 
Temperature Cultivation 

time 
Varieties Wells 

F ratio 172.0 142.1 100.6 0.035 25.4 24.1 
p-value <0.0001 <0.0001 <0.0001 0.85 <0.0001 <0.0001 

p-value shows that all the factors, except for cultivation time, have significant influences on 𝑉𝑎𝑟𝑅𝐺𝐵 (using α=0.05) 
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ABSTRACT Manual preparation of fungal samples for Fourier Transform Infrared (FTIR) spectroscopy
involves sample washing, homogenization, concentration and spotting, which requires time-consuming
and repetitive operations, making it unsuitable for screening studies. This paper presents the design and
development of a fully automated robot for the preparation of fungal samples for FTIR spectroscopy. The
whole system was constructed based on a previously-developed ultrasonication robot module, by adding
a newly-designed centrifuge module and a newly-developed liquid handling module. The liquid handling
module consists of a high accuracy electric pipette for spotting and a low accuracy syringe pump for
sample washing and concentration. A dual robotic arm system with a gripper connects all of the hardware
components. Furthermore, a camera on the liquid handling module uses deep learning to identify the labware
settings, which includes the number and positions of well plates and pipette tips. Machine vision on the
ultrasonication robot module can detect the sample wells and return the locations to the liquid handling
module, which makes the system hand-free for users. Tight integration of all the modules enables the robot
to process up to two 96-well microtiter (MTP) plates of samples simultaneously. Performance evaluation
shows the deep learning based approach can detect four classes of labware with high average precision,
from 0.93 to 1.0. In addition, tests of all procedures show that the robot is able to provide homogeneous
sample spots for FTIR spectroscopy with high positional accuracy and spot coverage rate.

INDEX TERMS Laboratory automation, robotics, deep learning, ultrasonication, spotting, FTIR
spectroscopy.

I. INTRODUCTION

Characterization, identification and classification of microor-
ganisms (bacteria, yeast, filamentous fungi and algae) has
a high importance in the field of environmental, indus-
trial, medical and agriculture microbiology, and microbial
ecology [1]. There are two principle ways to characterize,
identify and classify microorganisms - by using Genotyp-
ing and/or Phenotyping technologies. Genotyping technolo-
gies are based on PCR/sequence typing and genome typing
approaches, have gone through tremendous developments
in the last decade. This has resulted in Next Generation
Sequencing (NGS) and CRISPR/Cas9 technologies allow-
ing highly precise and robust analysis of DNA and its

The associate editor coordinating the review of this manuscript and
approving it for publication was Omid Kavehei.

products [2]. As the application of genotyping technologies
reached into new levels of development, academic, biotech-
nological and clinical diagnostics laboratories had to address
the logistics of consistently running the high-throughput
operations - DNA extraction, shearing, cleanup, amplifi-
cation, and sequencing. Considerable progress has been
made on automating these individual elements. Automated,
high-throughput DNA extraction and sequencing was imple-
mented in multiple core sequencing laboratories soon
after NGS was established [3]. As an example, bacte-
rial genotyping was automated in some laboratories soon
thereafter [4]–[6].

While genotyping technologies have been advancing
rapidly and through the integration of robotics, phenotyp-
ing technologies have been for a long time represented
by the conventional microbiological techniques providing
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morphological, physiological and cultural characteristics.
Commonly employed phenotypic methods are protein-based
methods including biotyping, serotyping, bacteriocin typ-
ing, phage typing, antimicrobial susceptibility patterns etc.
These phenotypic methods are associated with several prob-
lems related to reproducibility, discriminatory power, high
variability etc. Such shortcomings of phenotypically based
methods have therefore led to the development of novel
so called Next Generation Phenotyping (NGP) technolo-
gies, represented by two biophysical non-invasive tech-
niques - Fourier Transform Infrared (FTIR) spectroscopy [7]
and Matrix-Assisted Laser Desorption/Ionization Time-off-
Flight (MALDI-TOF) spectrometry (MS) [8]. Both tech-
niques provide, with a high level of precision, a cellular
biochemical phenotype of microbial cells - MALDI-TOFMS
provides protein profile while FTIR provides total biochem-
ical profile (proteins, lipids, polysaccharides). In addition,
it has to be noted that FTIR provides not only cellular pheno-
type in the form of intracellular metabolites, but also extra-
cellular phenotype in the form of extracellular metabolites.
Both techniques are based on the high-throughput platform
with the potential for analyzing up to 159 - 384 samples in a
single analytical run.

Manual preparation of multi-well fungal samples for FTIR
involves sample washing to remove culture medium, homog-
enization by ultrasound, up concentration for FTIR and
spotting on the multi-well infrared (IR) plates. In case of
high-throughput set-up fungi are cultivated in 96-well MTP
plates and the whole process for manual preparation of a
96microbial samples may takemore than 10 hours depending
on the type of fungi and technician experiences. The whole
process also requires highly skilled technicians to oversee the
process [9], especially for sample homogenization and spot-
ting. In addition, manual operation may introduce variation
to the samples due to the subjective nature of visual inspec-
tion [10]. In order to explore the high-throughput potential of
the FTIR techniques, there is a strong need for the implemen-
tation of liquid-handling robotics for the sample preparation
procedures.

In the laboratory automation field, a number of plat-
forms have been developed to automate the sample prepa-
ration procedures. Meier et al. [11] presented an automatic
sampling spotting method using a commercially available
synthetic robot to prepare samples for MALDI-TOF MS.
Nejatimoharrami et al. [12] developed a liquid-handling robot
based on a 3D printer for placing droplets (spotting). The
system used a camera tomonitor the droplet size and position.
Kwee et al. [10] described a robotic platform that used a
vision system to identify cells and control a robotic arm
to pick and place the selected cells for cell-based assays.
Cherezov et al. [13] showed a dual-arm system that used
one arm for pick-up and placement of precipitant solutions
and the other arm equipped with a microsyringe for sample
dispensing.

Our previous work [14] attempted to build a robotic
platform for all the procedures of sample preparation for

FTIR spectroscopy. The system simply used a robotic arm
consisting of two linear motion units for manipulation of
sampling washing, homogenization and spotting without
closed-loop control strategies for monitoring or automated
control. The open-loop feature, however, resulted in insuffi-
cient or excessive ultrasonication and, more important, might
not always provide well-homogenized samples [9]. Also,
due to the low accuracy of the dispensing unit, the spotting
process did not provide reliable sample spots. Moreover,
the washing and spotting used the sample dispensing unit that
may introduce contamination. As a result of these limitations,
we developed a closed-loop control system based on a low-
cost 3D printer for sample homogenization using ultrason-
ication [9]. The robot used machine vision to distinguish
between samplewells and blankwells andmeasure the homo-
geneity level of cell suspension. The control system enabled
the robot to provide the desired homogeneity level of cell
suspension efficiently. In this paper, we present the design,
development and integration of a complete system to prepare
fungal samples for FTIR spectroscopy. The whole system
is an extension to the ultrasonication robot [9], by adding
a newly-designed centrifuge module and a newly-developed
liquid handling module.

While deep learning as an emerging technology has been
widely used for many applications ranging from vehicle clas-
sification [15] to fruit detection [16] or drug design [17], few
studies have reported the applications in laboratory automa-
tion, especially for the labware identification. In this paper,
we show the method and results of using deep learning based
vision system to identify the labware settings, including the
number and location of MTP plates, IR plates and pipette
tips. This technique has been successfully integrated into the
robotic system forming a fully automated robot.

The proposed system was validated by the preparation
of filamentous fungi but might also be applicable to other
types of microorganisms, such as yeasts, bacteria, and algae.
Also, the developed system was used for the preparation
of samples for FTIR spectroscopy, but might also be use-
ful for MALDI-TOF spectrometry with a different working
sequence.

II. SYSTEM DEVELOPMENT

A. SYSTEM OVERVIEW

To enable the robot to perform different tasks independently,
such as sample homogenization, sample spotting, washing
and concentration, we used the concept of modular design
for the system development. As shown in Fig. 1, the devel-
oped platform is an integration of three modules, namely
ultrasonication robot module, centrifuge module and liq-
uid handling module. Each module is able to be operated
independently and they can also form a complete system
for the full process preparation of fungal samples for FTIR
spectroscopy. The machine vision system enables the full
automation of the robot without anymanually pre-input infor-
mation. Specifically, the camera on the liquid handling mod-
ule uses deep learning to identify the labware information, for
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FIGURE 1. Hardware assembly of the FTIR sample preparation robot.

example detecting the number and positions ofwell plates and
pipette tips. Themachine vision system on the ultrasonication
robot module can distinguish between the sample wells and
black wells and also monitor the homogenization process
of each well, thus ensuring that the robot can provide the
desired homogeneous samples [9]. The left arm (Arm 1) of
the Cartesian-type dual robotic arm system (Cavro Omni
Robot; TECAN, Switzerland) connects all of the hardware
modules. The gripper attached to the Arm 1 picks and places
the 96-well MTP plates (CR1496; EnzyScreen, Netherlands)
between the three modules.

B. ULTRASONICATION ROBOT MODULE

Ultrasonication robot module is used to homogenize fila-
mentous fungal mycelia to get homogeneous cell suspension
for sample spotting on 384-well IR plates (Bruker Optik
GmbH, Germany). In the previous work, we introduced an
ultrasonication robot that can provide desired homogeneity
of filamentous fungal cell suspension [9]. The robot uses
machine vision to screen sample wells and measure the level
of fungi homogeneity. In this work, as shown in Fig. 1 and
Fig. 7, the ultrasonication robot module was integrated into
the sample preparation system for FTIR spectroscopywithout
hardware modifications. In order to integrate with the other
modules, the controller of the ultrasonication robot module
(Raspberry Pi 3) was installed with an open-source system
UbuntuMATE to run the software under the Robot Operating
System (ROS) architecture. A new ROS node in the Pi con-
troller communicates with the main controller via Ethernet
network to call the previously developed functions. In the
meanwhile, this node also listens to the buttons on the user
interface of the ultrasonication robot so that the robot module

can still work independently. The ultrasonication robot mod-
ule is able to detect the sample well locations [9], so after each
homogenization, the robot sends the sample well locations to
the main controller for sample spotting.

C. CENTRIFUGE MODULE

Fig. 2 shows the design of the centrifuge module. The module
is 400 mm long, 400 mm wide and 390 mm high. The
centrifuge was constructed from 6 aluminum panels to which
other components were mounted. The centrifuge mainly con-
sists of 6 panels, a servo motor to drive a rotor that was
mounted with 2 MTP plate holders and a sliding door mech-
anism. The centrifuge rotor is driven by an 800 W servo
motor (PR-802.8; Servotronix, Israel) with a maximum speed
of 5000 rpm. The servo motor is controlled by a servo drive
(CDHD; Servotronix, Israel), which communicates to the
main controller based on CANopen motion control protocol
via a CANbus to USB converter (PCAN-USB; Peak-system,
Germany). The sliding door mechanism comprises a sliding
door that was attached to a linear motion rail and driven
by a DC motor, a sliding door locker and 2 limit switches.
The sliding door was designed to open or close when the
robot manipulator picks and places the MTP plates. The
sliding door stops at fixed positions in ‘‘open’’ or ‘‘closed’’
configurations using the two limit switches. For safety and
health reasons, the sliding locker will automatically lock the
sliding door in the closed configuration when centrifugation
is in operation. The DC motor is controlled by an additional
microcontroller, which will be described in Section III. The
designed centrifuge module has a capacity for centrifugation
for twoMTP plates. It is specifically designed to be integrated
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FIGURE 2. The 3D model of the centrifuge module (a) and its exploded view which shows the internal components and structure (b).

into the robotic platform and uses a CANbus communication
interface to allow the robot control the rotor.

D. LIQUID HANDLING MODULE

As shown in Fig. 1, the liquid handling module comprises
the right arm (Arm 2) of the dual-arm system, an 8-channel
syringe pump (Cavro XMP 6000; TECAN, Switzerland),
an electronic pipette (P50; Opentrons, USA), an RGB camera
(See3CAM_CU135; e-co systems, USA), a custom-made
wash station and a well plate shaker (MicroPlate Genie;
Scientific Industries, USA). The main function of the liquid
handling module is to provide sample washing, concentration
and spotting, in which the sample washing and concentration
procedures involve centrifuge module.

Sample washing and concentration require aspiration and
dispensing of high volume liquid (we use 800 µL) with
relative low accuracy, whereas sample spotting on IR plates
needs to take a small volume (10 µL) on each spot with high
accuracy. Based on our test, the syringe pump did not meet
the requirements of sample spotting in terms of accuracy.
Therefore, we used the syringe pump (maximum volume
800 µL for each channel) for sample washing and concentra-
tion, and the electronic pipette (maximum volume 50 µL) for
sample spotting. Both the syringe tips and the pipette were
mounted on Arm 2. To enable them to work without colli-
sions, a servo (HS-5645MG; Hitec, South Korea) was used
to rotate the syringe tips to either vertical or horizontal to the
ground. When used for sample washing and concentration,
the syringe tips are vertical to the ground, while for spotting,
the syringe tips move to the horizontal position to give the
space for the pipette.

1) SAMPLE WASHING AND CONCENTRATION
Sample washing includes centrifugation, liquid aspiration
and dispensing. After centrifugation, the fungal mycelia

formed one or more pellets at the bottom of the wells of
the MTP plate, and the syringe tips aspirated the supernatant
above the mycelia (800 µL). Thereafter, the wells were filled
with the same amount of deionized water as the aspirated
supernatant. The wash station consists of two sinks, one for
wastewater and the other one for fresh water, connecting
to a peristaltic pump (WPL 810; Williamson, UK) and a
wastewater container, respectively. Sample concentrationwas
performed after ultrasonication to increase the concentration
of homogenized samples for spotting, which contains cen-
trifugation and liquid aspiration. In our case, ultrasonication
requires at least 800 µL of liquid for the selected well plate,
whereas the FTIR spectroscopy needs enough density of sam-
ples for measurement. Therefore, we used the centrifuge to
separate fungal mycelia (pellets) and supernatant at first and
then removed some above supernatant (600 µL) to increase
the sample concentration.

During the aspiration in the sample washing stage,
the syringe tips were easily blocked by the fungal mycelia in
the previous system [14]. To solve this problem, we designed
a filter attached to the end of the syringe tip, which can
prevent the fungal mycelia from entering the syringe tips.
As shown in Fig. 3, the filter has a 90-degree surface that can
be inserted into the square well. The smooth, spherical outer
surface pushes the fungal mycelia to the outer space. During
aspiration, the sample liquid passes through the grooves on
the edge of the filter to the sonicator probe. To avoid blockage
on the filter, the filtering grooves were placed on the edge
instead of having holes inside of the filter. The filter was
3D printed using polylactic acid (PLA) filaments (MP05780;
MakerBot, USA) and glued to the sonicator probe.

2) SAMPLE SPOTTING
Sample spotting was conducted after the sample concentra-
tion, which is the final step for FTIR sample preparation.
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FIGURE 3. Schematic of the new-designed filter.

As shown in Fig. 5e,f, we define the droplet on the IR plate as
spot. The main task of spotting is to dispense homogenized
cell suspension on the black wells of IR plates, in which the
system should guarantee that the sizes and locations of the
dispensed spots are close to the well limit circle on the IR
plates. Fig. 5a shows the labware and the liquid handling
module. As shown in Fig. 4, after concentration, the robot fist
picks up the MTP plate to the shaker to decrease sediments
(Fig. 5b). Thereafter, the system received the tip locations and
sample well locations from the vision system droplet and the
ultrasonication robot module, respectively. This procedure
is an integration of the vision system, ultrasonication robot
module and the liquid handling module, which can ensure
that the system only picks up or processes the locations
with tips or wells with samples and skips blank tip loca-
tion or wells. After that, Arm 2 changed to spotting mode,
which means the servo rotated the syringe tips to horizontal
place and gave the space for pipette to pick up the tips
(Fig. 5c).

Before spotting on the IR plate, the system first aspirated
10 µL sample liquid at the bottom of the well and dispensed
it to the wastewater sink of the wash station (Fig. 5d). This is
because that the bottom of the well may contain some undis-
rupted pieces of fungal mycelia that may result in blockage
and failure spotting. Next, the pipette aspirated 30 µL cell
suspension and dispensed 10 µL on each IR plate well in
the form of three spots - three technical replicates (Fig. 5e).
To avoid the droplets mixing together, the robot skipped a
well between every two droplets. To protect the IR plate,
non-contact dispensing method was utilized, so the pipette
dispensed liquid with a short distance above the IR plate.
Once the size of the droplet was big enough, the droplet
dropped on the IR plate. During spotting, the pipette had a
circular motion inside of the well limit circle (Fig. 5f). The
circular motion can provide homogeneous distribution of the
sample on the spot of the IR plate. In addition, the circular
motion increases the spot coverage rate on the target well.
Due to the positional error, the pipette tip is unable to position

FIGURE 4. Workflow of sample spotting.

at the center of the target well every time. There may be
some blank regions between the initial spot and the well limit
circle. While the well limit circle can prevent the droplet from
spreading outside of the well area to some extent, the circular
motion of the tip can increase the coverage area of the droplet
on the blank regions obtaining the final spot. For spotting of
every 10 wells, the robot picks up the MTP plate to the shaker
to decrease the sediments.

E. VISION SYSTEM - AUTOMATIC DETECTION OF

LABWARE USING DEEP LEARNING

Traditional laboratory robots highly rely on manual input for
labware information, for example, inputting the well plate
number and locations, tip number and locations. This limits
the full automation of laboratory robots. The main challenge
is that when using traditional image processing techniques,
it is hard to segment and identify the labware, especially
for the transparent and small objects, such as the pipette
tips. We introduce to use a convolutional neural network
(CNN) model namely YOLOv3 [18] for the identification of
labware based on the online images captured by the camera
on Arm 2. The labware in the robot system includes the
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FIGURE 5. The process of sample spotting on IR plates: (a) labware and the liquid handling module; (b) the gripper is picking up a MTP plate to the
shaker; (c) the pipette is picking up a new tip from the tip plate; (d) the pipette is removing the possible fungal mycelium chunk from the sample well to
the wash station; (e) the spotting action; (f) schematic of the spotting motion.

96-well MTP plates, 384-well IR plates and pipette tips.
Therefore, the first training attempt was to use these labware
as three object classes. We collected a 261 image dataset
using the camera on the robot with different angles of views.
The dataset contains 287 MTP plates, 255 IR plates and
672 tips. The images were annotated using Lableme soft-
ware [19]. The training took 43 hours using GTX 1070 GPU
and i7-8750 CPU.

The first model showed good performance on the detection
of MTP plates and IR plates. However, as shown in Fig. 6a,
many blank tip positions were recognized as tips. One pos-
sible reason is that the blanks have white circles under the
light that looks similar to the tips. Therefore, we trained
a second model that included the blank as the fourth class.
The new training dataset contains 177 blanks and 783 tips
whereas the dataset of MTP plates and IR plates remains the
same.

Fig. 6b,c and d show the detection results of the final
model. It can be seen that the blanks were successfully classi-
fied. The other three classes have very high confidence rate,
over 90% for most of the cases.

To apply the deep learning technique into the robotic
system, we used the Darknet ROS package [20] to run the
model in real time using the camera on the liquid handling

module. In the network, the confidence threshold was set
to 0.5 and the resolution of network’s input image was
416 times 416. The output of the package is the detected
object bounding boxes with class IDs whose confidences
exceed the threshold. During the identification procedure,
the Arm 2 moved the camera to four different positions that
cover IR plates, tip plates andMTP plates, respectively, as the
views are shown in Fig. 6. The object positions in the camera
view were fixed each time. To detect whether the object is
existing or not, we used Intersection over Union (IoU) to
compare the detected bounding boxes (Bde) to the ground
truth bounding boxes (Bgt ) under the condition that the class
ID is the same. The ground truth bounding boxes were
labelled manually. Only the object with an IoU higher than
0.5 was considered to be existing. In summary, three cri-
teria to determine an object existing can be expressed as
follow:















Confidence > 0.5

IDde = IDgt

IoU > 0.5, IoU = (Bde
⋂

Bgt )/(Bde
⋃

Bgt )

(1)

where, IDde represents the detected class ID of the object
whereas IDgt means the ground truth class ID.
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FIGURE 6. Detection results of labware using YOLOv3 CNN model: (a) tip detection results using the first model; (b) tip detection results using the final
model, in which the blank position is included as a class; (c) detection results of MTP plates; (d) detection results of IR plates.

III. SYSTEM INTEGRATION AND CONTROL

A. HARDWARE AND SOFTWARE INTEGRATION

Fig. 7 shows the hardware and software architecture of the
whole system, in which the outside hexagons represent the
hardware components while the inside rectangles are the soft-
ware functions. All of the hardware modules and components
are connected via ROS. The master node is used to coordi-
nate and control all the other sub-functions with a correct
sequence. Except for the communication node of the ultra-
sonication robot module, all other hardware control or servo
nodes run in the main controller (blue dashed box). The
communication node of the ultrasonication robot receives
commands from the master node to start ultrasonication and
returns the sample well locations once the homogenization is
finished.

The labware identification node listens to the master node
to capture images when Arm 2 arrives at the target position
and outputs the bounding boxes together with class IDs of
the detected objects. The master node determines the existing
labware using IoU calculation. The dual-arm system has a
controller to control the armmotion and gripper status, which
can be accessed via TCP/IP based on its built-in protocol.

We developed a dual-arm server node running in the main
controller that is able to decode and encode the position,
speed and gripper operation commands and communicate to
the dual-arm system. Furthermore, the server node also can
output the arm and gripper status as ROS topics in 30 Hz.
This includes the arm speed, position, gripper status and the
completion of commands. Once a failure happens, for exam-
ple, an object dropping from the gripper, the master node
stops any further operations immediately. Similar to the dual-
arm system, a syringe server node was developed to decode
and encode the commands of syringe zeroing, aspiration and
dispensing. The syringe pump controller communicates to the
main controller via RS-232 serial bus.

Most of the actuators in the liquid handling module
are controlled by an Arduino microcontroller (Mega 2560;
Arduino.cc, Italy) running with ROS. The Arduino uses the
serial bus to connect to a rosserial node for communica-
tion with other ROS nodes. A motor shield (v2.3; Adafruit,
USA), mounted to the Aruidno, is used to control the stepper
motor of the pipette and also the servo motor. Also, a 4-way
relay module (SainSmart, USA) connects to the Aruidno
controller to control the on/off or open/close operations of the
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FIGURE 7. Hardware and software architecture of the FTIR sample preparation robot: The hexagons
represent the hardware components, while the rectangles are the software functions.

shaker, pump and centrifuge sliding door, respectively. The
servo motor drive of the centrifuge rotor controls the motor
and communicates to the main controller according to the
CANopen protocol. To control it in the high level, we devel-
oped a centrifuge rotor server node to encode and decode
the commands and motor status, which is similar to dual-arm
system. The input commands to the server node are the target
position, speed, stop/run, block/unblock and zeroing whereas
the output feedback includes the motor position, speed and
completion of commands.

B. WORKING SEQUENCE

The working sequence was planned according to the manual
operation protocol of preparing fungal samples for FTIR
spectroscopy [7]. As the system has a modular design, users
can choose to run either the specific functions or the whole
process. As shown in Fig. 8, the whole process 4© implements
all the procedures starting from system initialization and
calibration. The labware identification loads labware settings
and determines to use one-MTP mode or two-MTP mode.
Two-MTPmode means the system processes twoMTP plates
of samples simultaneously, which can reduce the operation
time. If no pipette tips orMTP plates or IR plates are detected,
the system would not run any further procedures and display
a warning. Once the labware is sufficient for experiments,
the system washes the samples three times using the cen-
trifuge and the syringe pump. After washing, the MTP plate
is moved to the ultrasonication robot module for sample
homogenization. In this stage, if two-MTP mode is selected,
the system would use the liquid handling module to wash one
MTP plate of samples and the ultrasonication robot module
to homogenize the samples in the other MTP plate simul-
taneously. The ultrasonication takes more time compared

to other stages. Thereafter, we used a concentration step
to increase the density of the homogenized cell suspension
for the better quality of FTIR spectra. The concentration
stage includes centrifugation, aspiration of upper supernatant,
re-ultrasonication and shaking to reduce sediments appear-
ance. Thewhole process is endedwith sample spotting, where
the system would implement spotting for one MTP plate and
ultrasonication for the other MTP plate if it is in a two-MTP
mode.

When running specific functions, the system selects to
implement some procedures accordingly. For instance, when
spotting 2© is commanded, the systemwould skipMTPmode
selection, sample washing, ultrasonication and concentration.
While for sample washing and ultrasonication function 3©,
the system executes all the procedures excluding concentra-
tion and spotting.

C. A FEW PUSHING ACTIONS

In the development of the system, we used a few push-
ing actions to make the system more robust. For example,
in Fig. 5b, the gripper is taking a MTP plate to the plate
holder of the shaker. The plate might not fit to the plate due
to the positional error of the arm. This may result in a serious
failure especially for spotting where a fixed position of well
is used for aspiration. To solve this, we used the gripper
inner fingers to push the MTP plate from side to side during
placing. Based on our observations, this small technique can
significantly improve the placing performance. We also used
the gripper to push the MTP plate to the plate holder of the
ultrasonication robot module to make it fit well (Fig. 9a).
In this case, the gripper fingers are in closed status and push
the MTP plate down to the plate holder using the finger tips.
In addition, the pipette uses pushing actions to pick up a tip
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FIGURE 8. Whole system working sequence: The function is implemented
according to the input command.

FIGURE 9. A few pushing actions to make the system robust.

(Fig. 5c) and the syringe tips push to the wall of the wash
station to remove droplets when moving up (Fig. 9b).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. PERFORMANCE OF LABWARE IDENTIFICATION

We used a test image dataset that contains 70 MTP plates,
60 IR plates, 270 tips and 82 blanks to evaluate the per-
formance of the labware identification method. The objects

FIGURE 10. Precision-recall curves for the performance evaluation of the
labware identification.

TABLE 1. Average precision of the labware identification method.

in the images were manually labelled with bounding boxes
and class IDs. Similar to Xiong et al. [21], the correct and
incorrect detection were defined as True Positive (TP) and
False Positive (FP), respectively. Undetected objects were
marked as False Negative (FN). Then, precision is defined
as TP over the sum of TP and FP, while recall is TP over the
sum of TP and FN.

By varying confidence threshold, the precision-recall
curves of the four classes are obtained and shown in Fig. 10.
The IoU threshold for the evaluation is the same to the real
application (Eq. 1, 0.5). All the four classes show both high
precision and recall. High precision and recall represent that
most of the objects have been detected and most of the
detection results are correct. Further, the average precision
of the detection is shown in Table 1, where the average
precision is the area under the precision-recall curve. The
detection of MTP plates, IR plates and tips show close-to-
perfect results, while the average precision of blank is slightly
lower, which may be relevant to the relative smaller training
dataset. Overall, the labware identification system using deep
learning shows significant high performance and has been
successfully integrated into the robotic system. The reason of
the high performance might be due to the fact that the identi-
fication environment is relatively simple and unchanged.

B. SAMPLE SPOTTING ACCURACY

To evaluate the performance of the whole system, we con-
ducted a test of the entire process for both one MTP plate
and two MTP plates of fungal samples. The fungal sam-
ples are filamentous fungi - namely, Mucor circinelloides
VI 04473 (Norwegian School of Veterinary Science, Norway)
using the same cultivation method as it was described in the
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FIGURE 11. Spotting accuracy: (a) positional error distribution of spots; (b) spot coverage rates.

FIGURE 12. Final IR plates with sample spots and spotting accuracy
measurement method.

previous work [9]. There were 24 wells of samples for each
MTP plate, so it created 72 spots on the IR plates. After
spotting, the IR plates were dried and scanned to measure the
spotting accuracy. Fig. 12 shows the scanned picture of the
IR plates and the accuracy measurement method. Generally,
the dried samples of fungi on the spots are homogeneous
and the spots are located in the center of the well limit circles
on the IR plates. As it can be seen in the right enlarged picture,
we manually labelled the inner circle of the well limits as
red circles (ground truth) and the actual spot boundaries as
blue circles. The distance between the centroid of the blue
circle and the centroid of the nearest red circle relates to
the positional error of the pipette tip. To find the nearest
red circle, each blue circle was compared to all the red
circles and the minimum distance value returns the nearest
circle. The measurement results of two IR plates are shown
in Fig. 11a. It can be seen that the positional error test revealed
a near normal distribution, indicating that the results seem
reliable. Most of the positional errors are located between
0.3 to 0.5 mm, with a mean of 0.36 mm and a 0.15 mm
standard deviation. The positional error is mainly caused by
the picking up of the pipette tips, because the orientation of
the tips remains uncertainty when pushed into the pipette.

FIGURE 13. Processing time for both one-MTP and two-MTP modes (unit:
minute): The first letter in the blocks represents procedures: a - labware
identification, b - sample washing of two MTP plates for two MTP mode,
one MTP plate for one-MTP mode, c - ultrasonication of MTP 1,
d - concentration of MTP 1, e - spotting of MTP 1, f - ultrasonication of
MTP 2, g - concentration of MTP 2, h - spotting of MTP 2; the number is
the processing time.

Another important factor is the coverage rate of the spot.
The FTIR analysis requires that the sample spot covers the
well limit circle as much as possible. As mentioned above,
to avoid spots mixing together, the size of the droplets should
not be too large. The coverage rate can be defined as:

Coverage = Sred
⋂

Sblue/Sred (2)

where, the equation means that the coverage is the overlap
area between the blue circle (Sblue) the nearest red circle
(Sred ) over the red circle (Sred ). The coverage rates of two
IR plates are shown in Fig. 11b, which indicates that most
of the coverage rates are around 0.97 (mean ) with minimum
value at 0.81. Our practical experience on the coverage rate
suggests a minimum value of 0.8, which means that the
system can provide desired samples spots for FTIR analysis.

C. SYSTEM OPERATION TIME

We also recorded the execution time of each procedure for the
two tests (one MTP plate and two MTP plates). The work-
ing sequence together with the processing time is displayed
in Fig. 13. For two MTP plates (blue blocks), the whole
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FIGURE 14. Amide I (using wavenumber of 1650 cm−1) absorbance in
FTIR spectra with comparison of spot coverage rate.

processing time was 942 minutes, during which ultrasonica-
tion (c and f) took up most of the time (78.6%) followed by
washing of the two MTP plates (12%). In two-MTP mode,
the final stage of sample washing (b) and ultrasonication of
MTP plate 1 (c) have been processed simultaneously. The
overlap happened at aspiration and dispensing of MTP plate
2 of the samplewashing. Due to the vibration of the centrifuge
module, the robot cannot perform other operations during
centrifugation in the washing procedure. The other overlap
is spotting of MTP plate 1 (e) and ultrasonication of MTP
plate 2 (f), wherein the entire process of e can be operated
simultaneously with f. The robot saved a total of 32.5 minutes
in two-MTP mode. For one-MTP mode (green blocks), all
the five procedures were processed one after another with-
out overlapping. It must be mentioned that the ultrasocan-
ition time for each MTP plate is different. This is due to
the variation of fungal biomass in each well that results in
the difference of homogenization time. The ultrasonication
robot homogenizes the entire MTP plate of samples until the
desired homogeneity of samples are obtained [9].

D. ANALYSIS OF FTIR

We finally performed a FTIR measurement on one of the
IR plates of samples using a high-throughput screening
spectrometer (HTS-XT; Bruker Optik GmbH, Germany).
We extracted the Amide I (using wavenumber of 1650 cm−1)
absorbance data from the spectra. According to the OPUS
Quality Test (OPUS QT) - a standard quality test for FTIR
spectra, the absorbance at Amide I band should be in a range
0.3 - 1.2. As shown in Fig. 14, 46% of the absorbance in the
raw spectra (blue line) is below 0.3. By using the Extended
Multiplicative Signal Correction (EMSC) method [22],
we can correct the differences in absorbance and obtained the
red line. With comparison to the spot coverage rate (green
line), we did not find the spot coverage rate has significant
influence on the absorbance. The main reason for the dif-
ferences is that the absorbance at Amide I is highly related
to the concentration of the sample spotted on the IR plate.

The results indicate that all the obtained spots on the IR plate
could be used for FTIR analysis, but for the future work the
droplet concentration should be controlled more precisely to
provide higher quality of spectra.

V. CONCLUSION

In this paper, we show the design and development of a
laboratory robot that fully automates the preparation of fungal
samples for FTIR spectroscopy. We extended the previously-
developed ultrasonication robot module to the new system
by adding a newly-designed centrifuge module, a newly-
developed liquid handling module and additional electronics.
The liquid handling module uses a high accuracy electric
pipette for spotting and a low accuracy syringe pump for
sample washing and concentration. A camera on the liquid
handling module uses deep learning to identify the labware
settings, which includes the number and positions of the well
plates and pipette tips.We also present the development of the
software under ROS architecture in low level for controlling
each components and in high level for integration of all
modules. The software was modular designed, so the robot
is capable of performing each procedure of the operation
independently, such as sample washing and spotting. The
robot is able to process up to two 96-well MTP plates of
samples simultaneously. Vision system evaluation indicates
that labware identification using deep learning can achieve
high average precision due to the simple environment. Tests
of all procedures show that the obtained sample spots have
high positional accuracy (mean 0.36 mm) and can cover most
of the desired region (mean 97%). In addition, the FTIR
measurement indicates all the obtained spots of one IR plate
could be used for FTIR analysis, but future work is required
to control the concentration of the droplets to provide higher
quality of spectra.
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A B S T R A C T

This paper presents the development and evaluation of a robot for harvesting strawberries (Fragaria× ananassa)
grown on table-tops in polytunnels. The robot is comprised of a newly-designed gripper mounted on an in-
dustrial arm which in turn is mounted on a mobile base along with an RGB-D camera. The novel cable-driven
gripper can open fingers to “swallow” a target. Since it is designed to target the fruit not the stem, it just requires
the fruit location for picking. Moreover, equipped with internal sensors, the gripper can sense and correct for
positional errors, and is robust to the localisation errors introduced by the vision module. Another important
feature of the gripper is the internal container that is used to collect berries during picking. Since the manip-
ulator does not need to go back and forth between each berry and a separate punnet, picking time is reduced
significantly. The vision system uses colour thresholding combined with screening of the object area and the
depth range to select ripe and reachable strawberries, which is fast for processing. These components are in-
tegrated into a complete system whose performance is analysed starting with the four main failure cases of the
vision system: undetected, duplicate detections, inaccurate localisation and segmentation failure. The integra-
tion enables the robot to harvest continuously by moving the platform with a joystick. Field experiments show
the average cycle time of continuous single strawberry picking is 7.5 s and 10.6 s when including all procedures.
Furthermore, the robot is able to pick isolated strawberries with a close-to-perfect success rate (96.8%).
However, in farm settings, the average picking success rate is 53.6%, and 59.0% when including “success with
damage”, testing on the strawberry cultivar of “FAVORI”. The failure cases are analysed and most failures are
found when picking strawberries in clusters, in which both the detection algorithm and the gripper struggles to
separate the berries.

1. Introduction

Strawberry (Fragaria× ananassa) is a high-value crop with a sig-
nificant production cost, especially in labour. Labour represents the
largest cost and also a large operational uncertainty for strawberry
growers (Yamamoto et al., 2014). It was reported that the harvesting
operation takes up one quarter of all working hours in Japan
(Yamamoto et al., 2014). Harvest labour cost depends on the produc-
tion method, type of strawberries and yield. In Norway, the harvesting
portion of the cost could be as high as 60% of the entire labour cost.
Therefore, automated fruit picking is desirable. However robotic
picking at a commercial level is very challenging: First of all, straw-
berries are easily damaged and bruised (Dimeas et al., 2015). Second,
strawberry harvesting requires highly selective procedures (Hayashi

et al., 2010), since the strawberries tend to ripen unevenly. As a result,
at a given time, berries exhibit large variations in colour and size. Fi-
nally, strawberries tend to grow in clusters, which makes it hard to
identify and pick individual strawberries (Yamamoto et al., 2014).

Several systems for autonomous harvesting have been developed
over the last decades. Chiu et al. (2013) presented a picking robot to
harvest tomatoes, which took 74.6 s to pick a target. Another tomato
harvesting robot equipped with a rotational gripper can pick a tomato
in 23.0 s at a success rate of about 62.2% (Yaguchi et al., 2016). The
main challenge is picking in clusters where the gripper might grasp
multiple tomatoes (Yaguchi et al., 2016). Similarly, a harvesting robot
was developed to harvest sweet peppers, which could harvest a target in
94 s with success rates of 6% when using a Fin Ray end effector and 2%
when using a Lip-type end effector in natural environment (Bac et al.,
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2017). The success rate increased to 26% and 33%, respectively when
testing in simplified environment (Bac et al., 2017). Also for pepper, a
robot named “Harvey” equipped with a suction-blade end-effector can
achieve a 42% success rate for unmodified crop with multi attempts,
and 58% for modified crop (Lehnert et al., 2017). The picking time is
about 35–40 s for each fruit and the most common detachment failure
was the cutting tool missing either side of the peduncle (Lehnert et al.,
2017). In addition to fruits, robots are also used for harvesting flowers.
Rath and Kawollek (2009) presented a system for the automated har-
vest of Gerbera jamesonii pedicels with a success rate of about 80%. For
strawberry, a harvesting robot was developed targeting at peduncle
detection, with 41.3% success rate when using a suction gripper and
34.9% when using a scissor-like cutter (Hayashi et al., 2010). The ex-
ecution time for the successful harvest of a single fruit was 11.5 s
(Hayashi et al., 2010). Except for academia, start-up companies have
also developed some strawberry harvesting robots but none of these are
commercialized. This includes AGROBOT (Huelva, Spain) who uses 24
independent picking systems mounted on a mobile base to increase
efficiency, OCTINION (Leuven, Belgium) who designed a force-limit
soft gripper to avoid damage while grasping, and Harvest CROO
(Florida, USA) who designed a rotation apparatus that includes several
grippers for picking strawberries on the ground.

Strawberry harvesters generally consist of four subsystems: (i) vi-
sion for detection of strawberries, (ii) a gripper for picking the straw-
berries, (iii) an arm for moving the gripper to the berries, and finally
(iv) a platform to increase the work space of the robot and provide
mobility. In our previous work, a mobile robot platform was developed
that is capable of navigating autonomously in strawberry polytunnels
(Grimstad and From, 2017). We also presented an earlier version of a
novel cable-driven gripper with perception capabilities for strawberry
picking robots (Xiong et al., 2018). This paper presents the gripper and
vision system, as well as the integrated system for harvesting straw-
berries grown on table-tops in polytunnels. Table-top systems in poly-
tunnels will generally reduce disease pressure and increase yield. In the
same way as these systems facilitate the work for human pickers, ro-
botic strawberry harvesters can also benefit from this type of produc-
tion. The end effector is a critical component in robotic systems as it
could simplify requirements from other subsystems (Eizicovits et al.,
2016) as well as enhance operation stability and efficiency substantially
(Chiu et al., 2013). There are a few different designs of end effectors for
strawberry picking, such as scissor-like cutters (Hayashi et al., 2010),
cutters with suction device (Hayashi et al., 2010), as well as force-limit
grasping grippers (Dimeas et al., 2015). As the individual strawberry
peduncle (picking point) is difficult to detect (Huang et al., 2017),
especially in a cluster where locating the correct stem is much harder
than find a strawberry body, the scissor-like end effectors thus require a
relatively advanced vision system to be developed. It is also easy to cut
more than one stem at the time and unintentionally pick green straw-
berries. Force controlled grippers are also hard to use as one would very
easily bruise fragile strawberries (Hayashi et al., 2010).

The main contributions of this paper are as follows: (a) the design
and development of a novel cable driven non-touch picking gripper that
has a high tolerance for positional errors and can reduce picking time
with a storage container (Xiong et al., 2018); (b) the tight integration of
all these subsystems into a complete and working system for strawberry
picking, which enables the robot to harvest continuously by moving the
mobile platform manually; (c) the evaluation of the vision and gripper
performance and the whole system in the farm, for example whether
failure occurs as a result of a single subsystem or due to the integration,
which is useful for further improvement of the system. The system is not
at a commercial level in terms of reliability yet, but it is believed that
the speed of the system is reaching a level where it is becoming suitable
for a commercial product.

2. Materials and methods

2.1. System overview and experimental setting

The strawberry harvesting robot system is comprised of four sub-
systems: vision, arm, gripper and the mobile platform, as shown in
Fig. 1. An RGB-D camera (R200, Intel, USA) is mounted on the top
frame for front view strawberry detection. A serial arm with 5 degrees
of freedom (RV-2AJ, Mitsubishi, Japan) is mounted on our previously
developed Thorvald II platform (Grimstad and From, 2017). Finally, a
newly-designed cable-driven gripper with perception ability is used for
picking. The whole assembly of the robot is 145 cm long, 110 cm wide
and 170 cm high. Generally, if the horizontal distance (in y axis) from
the gripper to the centre of the platform ranges from 50 cm to 70 cm,
the height of the fruits (in z axis) that can be reached is around
120–150 cm with a width of about 35 cm (in x axis). All the field tests
reported in this paper were conducted at the Myhrene strawberry farm
(Drammen, Norway) on “FAVORI” cultivar at the end of the picking
season (early September). The farm is equipped with table-top straw-
berry growing system, with a table bed height of around 140 cm.

2.2. Robotic platform

Thorvald II is a modular robotic system designed to allow quick
assembly of custom robots for a wide range of agricultural environ-
ments (Grimstad and From, 2017). A small set of specialized modules
connect to simple frame members through standardized mechanical
and electrical interfaces, and robots can be assembled or re-configured
by into robots of different sizes and shapes. Different modules serve
different and specific purposes such as propulsion, steering, battery
placement, sensor placement, suspension, etc.

The mobile base used in the present work is a variation of the
Thorvald II agricultural robot. It is created almost solely of standard
Thorvald II modules and frame members, with the only exception being
one custom piece of sheet metal on which the robotic arm is mounted.
As polytunnels come in different designs and with ground surfaces
ranging from grass to rocks, the mobile robot is fitted with four-wheel

Fig. 1. Hardware assembly in a strawberry farm: the robot mainly consists of a
RGB-D camera, a 5-DOF arm, a gripper and a mobile platform.
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drive and four-wheel steering to ensure agility and traction in tough
conditions.

The mobile base is capable of navigating autonomously in straw-
berry polytunnels (Grimstad and From, 2017). However, in this work,
the platform has not been fully integrated as the scope here is more on
the picking system. It is controlled manually by a joystick along the
table-tops.

2.3. Cable-driven gripper

2.3.1. Design
The main objectives and challenges of the gripper design are (i) to

not damage the target and surrounding berries, (ii) to separate straw-
berries that are in clusters, (iii) to achieve a high tolerance for posi-
tional error, and (iv) to achieve high picking speeds.

The proposed gripper is shown in Fig. 2. The overall size of the
gripper is 110 × 130 × 178 mm. It has four parts each with a unique
function: picking, transmission, sensing, and storing. The gripper is
designed so that its workspace is strictly Cartesian with no rotations
needed, so a 3-DOF Cartesian arm is sufficient to generate this motion.
In this project, the orientation of the 5-DOF arm is locked to keep the
gripper horizontal.

Fruit localisation is much easier than stem recognition (Yaguchi
et al., 2016), because ripe fruits have large size and red colour
(strawberry) that is clearly different from leaves. Therefore, the gripper
is designed to target the fruit and not the stem, which means it just
needs the fruit location for picking rather than stem location. Compared
to other strawberry picking robots that use stem as picking point
(Hayashi et al., 2010; Huang et al., 2017), this system becomes more
robust to positional errors of localisation and requires less vision lo-
calisation capacities. Also, strawberries are positioned in the 3D space.
When targeting a strawberry in the back, it is unclear how existing
scissor-like grippers avoid cutting the front branches and possibly green
strawberries. Therefore, the gripper is designed to pick from below and
thus only “swallow” the targeted strawberry, as shown in Fig. 2(b).

The picking mechanism, as shown in Fig. 2(a), consists of three
active fingers, three passive cover fingers and a cutter mechanism. The
six fingers can open simultaneously to form a closed ring to swallow a
strawberry from below. The designed maximum diameter of the gripper
open size is 60 mm. To protect the parts and motors, the open diameter
is set to 45 mm, which is enough to “swallow” normal strawberries
(average size is 30–40 mm). The initial design idea is that the gripper
open size is controlled based on the strawberry size to avoid swallowing
surrounding obstacles. However, estimation of fruit size is still a

Fig. 2. The cable-driven gripper: (a) perspective view of the gripper; (b) schematic of picking in simple cluster where a target has been swallowed and two
surrounded objects have been separated; (c) inside bottom view of the prototype; (d) 3D model of the cutter mechanism.
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challenging vision problem especially for partially occluded strawber-
ries. After swallowing the berry, the gripper uses fingers to push the
stem to the cutting area. The fingers also enable the gripper to separate
surrounding strawberries away from the target, as indicated in
Fig. 2(b). To move the fingers simultaneously, this gripper has three
active fingers and three passive fingers (cover fingers). Four small
tension springs are used to keep the cover fingers adhering to the active
fingers regardless of their rotation. After closing the fingers, the cutter
that comprises of two curved blades (Ideal Tek, Switzerland) rotates
quickly to cut the stem. The cutter is hidden inside of the fingers to
avoid damage to the target strawberry as well as the surrounding ones.

Simultaneous motion of the fingers can be achieved by gear trans-
mission. However, this kind of transmission needs significant space
below the fingers which is undesirable. Furthermore, it would be too
complex to control the three fingers using only one motor. Therefore, a
cable-driven method is adopted for remote transmission which provides
more space under the fingers for picking and storing strawberries since
the motor can now be placed away from the joints. Extra flexible steel
cables (Ormiston, England) are selected so the direction can be changed
easily using normal bicycle cable housings and pulleys (Fig. 2(c)). To
reduce cost and complexity, only one servomechanism (MX-28T,
DYNAMIXEL, South Korea) with multiple rotation directions to control
both the fingers and cutter is used. The fingers open by driven cables
and close by torsion springs. As shown in Fig. 2(d), the cutter is
mounted on a pair of small gears. One active driving gear is pulled by a
cable so the cutter can close and the other passive driving gear, con-
nects to a return tension spring, is used to open the cutter. As a con-
sequence, at the central position, the servo turns clockwise to rotate the
cutter and counter-clockwise to open fingers.

Furthermore, the gripper employs three internal infrared (IR) sen-
sors (TCRT5000, Vishay, USA) to identify the target location with re-
spect to the gripper and then control the arm to move the gripper to the
optimal cutting position. This control is named gripper-level close-loop
control, since the gripper senses positional errors by itself without
passing through the vision system. Hence, different from high-level
closed-loop control system such as visual servoing, this control method
can increase processing speed. These distance sensors are also utilized
to avoid physical interaction with the berries during picking and verify
success or failure after picking.

Additionally, the gripper has an internal container, which enables it
to pick several strawberries continuously. Therefore, unlike most of the
previous fruit picking systems (Hayashi et al., 2010; Chiu et al., 2013;
Bac et al., 2017) that require a back-and-forth arm motion for every
single picking, the proposed gripper can potentially decrease execution
time significantly. The gripper approaches the plant and picks several
strawberries until the container is filled. Then, a trapdoor on the bottom
of the gripper is opened to dispense all the strawberries into a com-
mercial punnet or another storing unit. For the current version of the
gripper, the container can store 7–12 strawberries, depending on the
size of the berries. After the stem has been cut, the berries fall on an
inclined dropping board to reduce the fall and the impact on the
strawberries due to the dropping distance. To further reduce the impact
on the berries, pieces of soft sponge are mounted inside the gripper to
prevent damage on impact. Except for the servos, sensors and trans-
mission system, all the other parts of the gripper prototype were 3D
printed using polylactic acid (PLA) filaments (MP05780, MakerBot,
USA).

2.3.2. Optimal cutting position control
To achieve optimal cutting position control, it is essential to know

the position of strawberry with respect to the gripper. Fig. 3 shows
strawberry position inside the gripper for both front view and section
view. The IR sensors can measure the distances (defined as mdp) from
the strawberry to the sensor itself. With a given finger rotation angle
( ), the projection distance md can be described as:

=
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Also, the distance (l) between IR centre and gripper centre is:
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where S is the mounting position of IR centre to finger joint. Then, as
shown in Fig. 3(b), coordinates of detected points D1, D2, D3 in Oxy can
be expressed as:
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Based on the above three points, assuming strawberry section is a
strict circle, the centroid (Q) and diameter (Dsec) are obtained as:
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The distance data are collected every 50 ms, which is quick enough
for continuous measuring and closed-loop control. To set a desirable
constant position T (target

x
, target

y
) not only the origin O as the cutting

position, the errors (errorx , errory) can be defined as the distance from
the actual position Q to the target position T:

=

=
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error offset
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target

x x x

y y y (6)

Then two parallel PID control loops are used for minimising errorx

and errory, respectively. An example of the output of the control can be
seen in Fig. 4(a). With initial error of 6.3 mm and threshold error of
0.1 mm, the relative stable settling time of PID control is around 3 s. In
a real scenario, this level of accuracy is not necessary as the gripper
itself has a high mechanical tolerance. Hence, 1.5 mm is used as an
error threshold, which reduces the average settling time to around 1 s.
In the farm environment, we have shown that arm moves the gripper
gently to place the strawberry sufficiently close to the target cutting
position (gripper central position), as shown in Fig. 4(b).

2.4. Machine vision

The RGB-D camera is composed of an RGB colour sensor and two
infrared sensors for stereo sensing with the guidance of laser grid,

Fig. 3. Schematic of strawberry optimal cutting position control (see descrip-
tion of symbols in the text): a. front view sketch; b. section view sketch.
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which is capable of detecting depth in an outdoor environment. The
vision component of the proposed system has two primary capabilities:

Detection: where the goal is to identify individual strawberries in
each image.
Localisation: where the goal is to localize the detected strawberries
in the robot frame.

The camera module allows us to locate three-dimensional co-
ordinates of the fruit in the camera frame. A calibration procedure has
been performed to obtain the extrinsic camera parameters enabling 3D
transformation between the camera and the arm frame.

Similar to other fruit picking research (Hayashi et al., 2010; Bac
et al., 2017), a simple colour thresholding algorithm based on the Red,
Green and Blue (RGB) channels is utilized in this system for detecting
strawberries. The method is fast for processing, which is necessary for a
real-time system. To remove noise pixels and fill holes, a morphological
opening-closing operation is implemented on Fig. 5(a) getting Fig. 5(b),
which is based on erosion and dilation of binary images, similar to
Xiong et al. (2017). Next, the areas and centroids of all objects are
calculated and small objects are removed based on an empirical value.
Then a depth filtering based on the depth image (Fig. 5(c)) removes the

objects that are too far or too close to the robot. Finally, as shown in
Fig. 5(a), the ripe strawberries are detected with blue-white circles.
Some vision failure cases are:

1) Undetected: This is mainly caused by occlusions. For example, in
Fig. 5(a), three yellow-circled ripe strawberries are partially oc-
cluded by several green stems and green berries, so their areas in
Fig. 5(b) are small and not detected. Particularly, the yellow-circled
strawberry on the top of Fig. 5(a) has been segmented into three
parts after thresholding due to the two crossing green stems. Then
the first eroding operation makes the two smaller segmented parts
disappear resulting a small area in Fig. 5(b).

2) Duplicate Detections: Again, because of occlusions, as shown in
Fig. 5(d), a ripe strawberry is split into two objects by the front
green stem (yellow circled).

3) Inaccurate Localisation: Occlusions might also bring localisation
error, as can be seen in Fig. 5(f), in which a front green berry results
in the detected centroid of the red berry on the left side (bottom
yellow circled). Also, occlusions might disturb depth sensing.

4) Segmentation Failure: Another frequently occurring failure is
touching objects that cannot be segmented. As shown in Fig. 5(e),
the yellow circles show two connected strawberries that could not

Fig. 4. Optimal cutting position control results: (a). PID control test of strawberry position with respect to the gripper (using errorx as an example, errorx and errory are
controlled in parallel loops); (b). real environment test of optimal cutting position control: from i to iv, the arm moves gripper gently to place strawberry at a target
cutting position with respect to the gripper.

Fig. 5. Strawberry detection, blue-white circles are detected objects, yellow circles show failure cases: (a). detected strawberries (blue-white circles) and undetected
(yellow circles), (b). binary image after processing of (a), undetected targets in (a) are also circled in yellow, (c). depth image of (a), (d). duplicate detections (yellow
circle), (e). two segmentation failure cases (circled in yellow), (f). inaccurate localisation (bottom yellow circle) and segmentation failure (top-left yellow circle). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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be separated and thus are regarded as a single target.

As for localisation, given the intrinsic matrix K of the camera and
the depth dPi for the available pixels =P u v[ , ]i

T , the pixel 3D location
=P x y z[ , , ]C

i
T with respect to the camera coordinate frame C is cal-

culated by

= KP d PC
i P i

1
i (7)

For each detected strawberry, 10 pixels (N= 10) around the cen-
troid are used to estimate the location of the strawberry CS in the arm
frame, so CS is the mean over all PC i.

3. System integration and control

3.1. System architecture

The system architecture is illustrated in Fig. 6. The robot is fully
automated except for moving the mobile platform along the table-tops.
The platform was developed independently and moved by a joystick
according to the picking sequence. Hardware modules, camera, arm
and gripper controllers all communicate to the host PC via serial ports.
All of the software modules were written in either C++ or Python and
implemented in the Kinect distribution of the Robot Operating System
(ROS) installed on Ubuntu 16.04. Both gripper controller and IR sensor
controller were flashed with rosserial_arduino ROS package for robust
and convenient communication. In the software block, the five ROS
nodes below the ROS master are utilized for communication to the
hardware controllers, including data conversion, encoding and de-
coding. The upper four nodes are used for image processing, coordinate
conversion, task sequence planning and picking position closed-loop
controlling, respectively.

3.2. Control strategy of the complete system

Fig. 7 depicts the control algorithm of the entire system. The task
sequence starts with the vision system. First, the image acquisition node
grabs the RGB and depth images then passes them through the ROS
master to the strawberry detection and localisation node.

1) Strawberry Detection and Localisation: The strawberry centroids and
areas are calculated and only the targets that are located in the arm
reach region (workspace) and whose ripeness areas (obtained by red
colour thresholding) are large enough for picking are passed to the
next step. The locations of target strawberries are converted into the
arm frame afterwards by a coordinate conversion node.

2) Picking Sequence Planning: Once the motion sequence planning node
receives multi-berry locations, it sorts all of the strawberries from
low position to high. The reason why simple ascending order rather
than minimal-time order was used for picking multiple berries is
because the gripper is picking from below. If the robot picks a
higher-hanging strawberry first, then the lower strawberry location
might be affected by the arm during the first picking action.

3) Individual Picking: Next, the motion sequence planning node de-
termines the trajectories for the manipulator arm for individual
picking.

4) Strawberry Dispensing: After all the target berries are picked, the
gripper dispenses collected strawberries into a punnet.

5) Moving Platform: Meanwhile, the platform is moving to a new image
area for continuous picking.

3.3. Individual picking control

In Fig. 7, the right hand side blue-dash block shows the flowchart of

Fig. 6. System architecture: it shows system hardware modules, software nodes and their communication with true information.

Y. Xiong et al. Computers and Electronics in Agriculture 157 (2019) 392–402

397



controlling individual strawberry picking. It can be divided into three
key steps:

1) Swallowing and Searching: The gripper is moved quickly to just un-
derneath the target and then the arm raises the gripper vertically at
low speed to swallow the strawberry. The internal IR sensors then
verify the presence and position of the strawberry.

2) Correcting Positional Errors: Once the gripper detects the strawberry,
it calculates the target location with respect to the gripper. During
this procedure, if no strawberry is detected, the arm changes its
position around the target (15 mm offset to the vision localized
position) for a wider range search for up to 5 times. After that, the
gripper returns the target location to the system and it uses PID
control to move the arm until the target is at the optimal cutting
position. The closed-loop control at the gripper-level avoids pro-
cessing in the vision system, which is meaningful for high speed
control.

3) Detachment and Verification: Finally, the cutter is actuated to detach
the strawberry. The cutting result is verified by the IR sensors. If the
attempt is unsuccessful, the cutter will continue cutting for up to 5
times.

3.4. Harvesting sequence in action

Fig. 8 demonstrates the task sequence and control strategy in the
field test. First, two strawberries that are located in the arm reach re-
gion are detected and selected. Then, swallowing and searching: as
shown in Fig. 8(a), the arm moves quickly to the bottom of the first
strawberry and lifts the gripper up slowly to search the target and
swallows it when found. Correcting positional errors: next, as shown in

Fig. 8(b), the gripper uses internal sensors to detect positional errors
and correct for them by controlling the arm using a simple PID con-
troller. Detachment and verification: the strawberry is detached by the
cutter and the result is verified by gripper IR sensors (Fig. 8(c)). Then it
executes the same operations to pick the second target (Fig. 8(d)).
Moving platform: once the first image area finishes, the platform is
moved manually to the next image area for continuous picking
(Fig. 8(f)). Strawberry dispensing: finally, the picked strawberries that
have been collected in the container are released gently into a punnet
(Fig. 8(h)).

4. Results and discussions

To assess the performance of the robot, several sets of experiments
were designed to evaluate both the individual subsystems and the entire
system, including detection performance, gripper performance, system
localisation accuracy and repeatability, picking execution time, picking
success rate, and failure modes.

4.1. Detection performance

First, the detection performance of the vision system was evaluated
based on a 100 image dataset by using precision-recall curves. The ripe
strawberries were manually labelled with bounding boxes, which are
used as ground truth, as the blue box shown in Fig. 9(a). Similar to
Habaragamuwa et al. (2018), the correct and incorrect detection of ripe
strawberries are defined as True Positive (TP) and False Positive (FP),
respectively. Since the gripper manipulation is based on the object
centroids, the correct detection here means the detected centroid of a
target is within a pre-defined region. As shown in Fig. 9(a), the pre-

Fig. 7. System control: system control algorithm, left side is the whole system task sequence while the right side shows the individual picking steps.
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defined regions (blue, green and orange boxes) are located in the cen-
tral of the manually labelled bounding box. The area of the pre-defined
region over the ground truth area (blue box) is expressed as the pre-
cision level of TP. In this test, three precision levels of TP are used, 1.0
(blue box), 0.5 (green box) and 0.25 (orange box), respectively. If du-
plicate detections occur on one ripe strawberry, only one of them is
marked as TP and the others are regarded as FPs. For segmentation
failure case, at most one is recorded as TP if one of the detected cen-
troids is inside of the above mentioned pre-defined region, and the
others are regarded as normal undetected cases that are classified as
False Negative (FN). Then, precision is obtained by using TP dividing
the sum of TP and FP, while recall is defined as TP over the sum of TP
and FN. By varying RGB threshold range, the precision-recall curves of
the detection system are obtained and shown in Fig. 9(b). As can be
seen, if the precision level of TP is 0.25 (orange curve), the precision
and recall can reach about 0.72 at the same time with appropriate
thresholds. The performance of different varieties and environments
may vary, since detection of clusters are more difficult than isolated
strawberries.

4.2. Gripper performance

The second test was conducted in simplified environment in order to
identify the optimal blade cutting position. Also, the picking success
rate for isolated strawberries was obtained. During the test, the target
cutting position T was changed along the perpendicular bisector of the
cutter finger (the dashed line md3 in Fig. 3(b)). The stem diameters of
the strawberries in the test varied from 1.7 mm to 2.5 mm. The result is
illustrated in Table 1. The optimal cutting position is the central of the
gripper, which is the middle position of the cutter. In this case, the
success rate for picking isolated strawberries with a single attempt is
96.8% at the optimal position (previous strawberry picking research is
around 70% (Hayashi et al., 2010)).

4.3. Absolute accuracy and repeatability of system localisation

The third test is to determine the localisation accuracy of the whole
system, which indicates the positional error of the end effector central
point where the arm reaches with respect to the target's actual location.

Fig. 8. Harvesting procedures of continuous strawberry picking with manually controlled mobile platform in field test: (a) swallowing and searching; (b) correcting
positional errors; (c) detachment and verification; (d) picking the second one; (e) detachment and verification; (f) moving platform to the next image area; (g) picking
a target in the new image area; (h) strawberry dispensing.

Fig. 9. Detection performance evaluation: (a) diagram of precision level of TP, where the blue box (ground truth), green box and orange box represent precision of
1.0, 0.5 and 0.25 with respect to the ground truth; (b) the precision-recall curves of detection system with different precision levels of TP. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Y. Xiong et al. Computers and Electronics in Agriculture 157 (2019) 392–402

399



As a whole system, the localisation accuracy mainly consists of vision
detection and localisation accuracy, calibration accuracy and arm ac-
curacy. However, accurate measuring the positional error is difficult
and may need expensive equipment. In this system, the industrial arm
has high repetition precision of ± 0.02 mm, so the arm was used to
measure the target actual location in the arm frame. As shown in
Fig. 10(a), a pointer with a sharp tip was mounted on the arm and it
was moved manually to the target centre point. Then the tip position of
the pointer in the arm frame (Pref) was obtained from the arm controller
after geometry conversion. After finding the actual locations, these
targets were detected and localized by the vision system and converted
from their central locations into the arm frame obtaining (Pest). This
estimation procedure was repeated 18 times. Using this method, the
arm does not need to reach the targets after vision detection, and at the
same time the arm accuracy is excluded in the measurement.

In industry, evaluation of robot arm accuracy comprises two cri-
teria: absolute positioning accuracy (As) and positioning repeatability
(defined as precision Ps, which describes the deviation of all Pest points)
according to the ISO 9283 standard (Stephan et al., 2009). Similarly,
these two indicators are used for assessing the whole system accuracy
but excluding the arm in this paper. As is the Euclidean distance be-
tween the point P̄est and Pref, where P̄est is the centre point of all mea-
sured points Pest. Ps can be expressed as

= +P l̄ 3s li (8)

where l̄ denotes the mean of distance li from measured points Pest to P̄est,
while li

is the standard deviation of li. The 3D plot of all measured and
reference points is shown in Fig. 10(c). Fig. 10(b) illustrates the cal-
culation results for the 9 reference points. The mean of absolute accu-
racy Ās is 9.8 mm and the mean of repetition precision P̄s is 4.6 mm.
Since the frame transformation matrix is constant, the repetition error is
mainly caused by the vision system. Furthermore, the measured points
in Fig. 10(c) are almost in a line around the reference point. Based on
observation, the line direction is close to the camera projection direc-
tion, which means the uncertainty is mainly from the IR depth sensor of
the camera.

The absolute accuracy might be lower in the farm due to the com-
plex environment. In the farm, the actual positions of target strawber-
ries are hard to measure. Similar to sweet pepper harvesting robot re-
search (Bac et al., 2017), the distance between the fruit surface centre
and the pointer tip that attached to the gripper was measured as ab-
solute error, as shown in Fig. 11(a). The test result is presented in
Fig. 11(b). The big errors mainly occur on partially hidden strawberries,
since the front plants disturb the depth sensing. The average error is
13.3 mm, with a standard deviation of 7.0 mm, which is higher than in
indoor the environment.

4.4. Execution time

The execution time is illustrated in Table 2, which was found based
on the successful tests in the farm. The average cycle time of continuous
single strawberry picking is 7.5 s (excluding initial vision detection, first
and final arm travelling and placing strawberries), while including all
procedures, the average time is 10.6 s for picking one strawberry. As a
consequence, the perception and storage ability of the gripper enables
the robot to avoid slow control in the whole system level such as visual
servoing and also reduced travel time for each strawberry. As a result,
the picking execution is faster than the previous results reported on
strawberry picking of 11.5 s (Hayashi et al., 2010), cucumber har-
vesting of 37.8 s (Van Henten et al., 2003), sweet pepper picking of 94 s
(Bac et al., 2017) and 35.0–40.0 s (Lehnert et al., 2017), as well as
tomato picking of 23.0 s (Yaguchi et al., 2016) and 74.6 s (Chiu et al.,
2013). The average picking time for each strawberry will decrease
substantially if the number of strawberries collected in the container
increases. It is still much slower than a human picker (about 3.5–5.0 s
(Hayashi et al., 2010)}, but multiple manipulators can be employed to
increase efficiency.

4.5. Success rate, failure cases and lessons learned

The success rate is an essential indicator for evaluating a harvesting
machine and the failure reasons are useful for further improvements.
Generally, isolated strawberries are much easier for both localisation
and picking. Table 1 shows the success rate for picking isolated
strawberries with a single attempt is 96.8%. However, in a natural
environment, especially for dense clusters, the system still has sub-
stantial challenges. Table 3 shows picking test results. All results were
recorded with only a single attempt. “Success” means the picking was
successful without damage to the strawberry based on observation,
while “success with damage” indicates the detachment of the target was
successful but it also picked or damaged surrounding objects or slightly
bruised the target strawberry. “Failure attempts” describes all attempts
that are not included in the above two classes and also undetected ripe
berries. One “failure attempt” may have two or more failure reasons.
Overall, with 112 picking trials, the success rate with single attempt is

Table 1
Picking isolated strawberries success rate with single attempt at different cut-
ting position.

Cutting position T to
gripper origin O [mm]

Success Failure Success rate [%]

−2 17 2 89.5
0 30 1 96.8
2 28 2 93.3
5 13 1 92.9
8 15 1 93.8
10 9 2 81.8

Fig. 10. System localisation accuracy and precision test in the indoor environment: (a) a pointer was mounted on the arm to get the circles' positions in the arm
frame; (b) test results of absolute accuracy and repetition precision; (c) 3D plot of all measured and reference points.
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53.6%, and 59.0% when including “success with damage”. The success
rate is higher than the previous strawberry picking research of 41.3%
with suction picking gripper and 34.9% with no-suction picking
(Hayashi et al., 2010), and also sweet pepper picking of 6.0% with a Fin
Ray end-effector in natural environment (Bac et al., 2017), another
sweet pepper research of 42.0% with multi-attempt for unmodified
crops (Lehnert et al., 2017), but lower than tomato picking 62.2%
(Yaguchi et al., 2016) and apple picking 84.0% (Silwal et al., 2017).
Generally, harvest rate is incomparable for different crops or even for
the same crops but different varieties or environment, since picking
large-size, top and separated fruits are easier than small, soft and
clustered fruits.

The failure mainly happens in clusters where both detection and
picking struggles to separate strawberries, which is labelled case (a) in
Table 3. In clusters, segmentation of touching strawberries is extremely
hard for the vision system and could also result in duplicate detections
and undetected cases (e). Multi-view in the vision system might solve
this case (e). Most importantly, the gripper opening mouth is easily
covered or blocked by surrounding branches, leaves and strawberries in
clusters.

Another problem (case (b)) caused by the vision system occurs when
the localisation error is too big for the gripper to swallow the straw-
berry. This includes inaccurate localisation and segmentation failure
cases as described in the machine vision section. In the segmentation
failure case, the detected target might be in the centre of two or more
targets, so it might result in an unsuccessful swallowing attempt.
Problems (c) and (d) are also noticeable. The employed industrial arm
has a small workspace. For future work, it is possible to use a low-cost
3-axis Cartesian arm for this application. Case (d) happens when there
are some strawberries below the target or within the gripper searching
area, so the gripper detects the disturbing strawberries and regards
them as the targets, or when the arm touches the lower-hanging plants
and affects the target locations. Therefore, the vision system also needs
to detect green strawberries or even the whole plants to avoid occlu-
sions or confusions.

To address these problems, on the one hand, more advanced per-
ception system, manipulation algorithm and gripper hardware need to
be developed or improved. For example, 3D point-cloud image pro-
cessing and deep learning might get significant results for object seg-
mentation, localisation and fruit size estimation. Advanced path plan-
ning of gripper picking could control the gripper to avoid or even push
the surrounding obstacles for cluster picking. On the other hand, hor-
ticulture of strawberry growing method may also be adjusted to leave
the berries more isolated in the first place.

5. Conclusions

An autonomous strawberry-harvesting robot has been developed.
The robot hardware comprises an RGB-D camera, an industrial arm, a
gripper and a mobile platform. The gripper is robust to positional errors
due to its fruit-oriented design and internal sensing capacities and
abilities of picking several strawberries continuously using an internal
container. The vision subsystem employs a simple colour thresholding
method for fast-speed strawberry detection. System integration enables
the robot to harvest continuously by moving the mobile platform
manually. Performance test shows that the average cycle time of con-
tinuous single strawberry picking is 7.5 s for the picking operation only,
and 10.6 s when including all procedures, which is faster than other
reported picking research. Gripper-level control to correct positional
errors and collecting strawberries while picking are the main reasons

Fig. 11. System absolute localisation accuracy test in the farm: (a) the fruit surface centre to the pointer tip was regarded as absolute error; (b) test result of absolute
accuracy.

Table 2
Execution time test result.

Test No. Number of picked
strawberries

Single picking
execution time [s]

Single picking execution
time including all
procedures [s]

1 4 8.0 10.5
2 2 5.6 7.7
3 2 7.9 11.1
4 3 7.7 9.9
5 2 7.7 12.6
6 1 7.5 14.5
Average 2.3 7.5 10.6

Table 3
Performance test result of picking robot in unchanged natural environment.

Success Success
with
damage

Failure
attempts

Failure reasons

a b c d e f

No. 60 6 46 15 9 9 9 3 4
Rate [%] 53.6 5.4 41.1 30.6 18.4 18.4 18.4 6.1 8.2

Failure reasons list:
a. Gripper separation failure + duplicate detections + segmentation failure
(vision): in clusters, gripper “mouth” was covered or blocked by other branches,
leaves and strawberries, and/or duplicate detections and segmentation failure
in vision subsystem.
b. Inaccurate localisation + segmentation failure: localisation error is too big,
so the gripper could not “swallow” the target, mainly happened on partially
hidden targets and one of the unsegmented targets.
c. Arm reach region: arm working space is limited, so the gripper could not
reach targets.
d. Gripper was disturbed: gripper swallowed below or surrounded green
strawberries and regarded them as targets when lifting.
e. Undetected: did not detect ripe strawberries because of front occlusions.
f. Communication failure: arm or gripper communication failed.

Y. Xiong et al. Computers and Electronics in Agriculture 157 (2019) 392–402

401



for achieving high speed. In addition, experiments demonstrate that the
robot is able to pick isolated strawberries with a close-to-perfect success
rate (96.8%). However, in the field, the success rate drops considerably
due to the occlusion or other failure cases. In the natural situation, the
average picking success rate for a single attempt is 53.6% without
causing damage to the berries, and 59.0% when including “success with
damage”. The main challenge is picking clusters of strawberries, where
both the detection and the gripper struggles to separate the strawber-
ries.

For future work, the plan is to address clusters of strawberries, and
in particular look into how more advanced visual algorithms can be
implemented to merge the detection from multiple frames so that oc-
cluded strawberries can be visible from a different view. The work in
Roy et al. (2018) reports a viable approach for apples which may be
used as a starting point.
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Abstract

This paper presents an autonomous robot capable of picking strawberries

continuously in polytunnels. Robotic harvesting in cluttered and unstructured

environment remains a challenge. A novel obstacle‐separation algorithm was

proposed to enable the harvesting system to pick strawberries that are located in

clusters. The algorithm uses the gripper to push aside surrounding leaves,

strawberries, and other obstacles. We present the theoretical method to generate

pushing paths based on the surrounding obstacles. In addition to manipulation, an

improved vision system is more resilient to lighting variations, which was developed

based on the modeling of color against light intensity. Further, a low‐cost dual‐arm

system was developed with an optimized harvesting sequence that increases its

efficiency and minimizes the risk of collision. Improvements were also made to the

existing gripper to enable the robot to pick directly into a market punnet, thereby

eliminating the need for repacking. During tests on a strawberry farm, the robots

first‐attempt success rate for picking partially surrounded or isolated strawberries

ranged from 50% to 97.1%, depending on the growth situations. Upon an additional

attempt, the pick success rate increased to a range of 75–100%. In the field tests, the

system was not able to pick a target that was entirely surrounded by obstacles. This

failure was attributed to limitations in the vision system as well as insufficient

dexterity in the grippers. However, the picking speed improved upon previous

systems, taking just 6.1 s for manipulation operation in the one‐arm mode and 4.6 s in

the two‐arm mode.

K E YWORD S

active obstacle separation, agricultural robotics, cable‐driven gripper, field evaluation,

strawberry‐harvesting robot

1 | INTRODUCTION

Strawberries (Fragaria× ananassa Duch.) are farmed extensively in

most parts of the world, growing either outdoors in open fields or in

controlled environments, like greenhouses or polytunnels. In 2016,

according to market research company IndexBox, the global

strawberry market amounted to 9.2 million tons, increasing by 5%

against the previous year. Strawberry production is heavily reliant on

human labor, especially for harvesting (Xiong, Peng, Grimstad, From,

& Isler, 2019). It was reported that 25% of all working hours in Japan

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivatives License, which permits use and distribution in

any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.



are consumed by harvesting operations (Yamamoto, Hayashi,

Yoshida, & Kobayashi, 2014). Strawberry producers in the Western

world, particularly the United Kingdom and United States, are

similarly concerned about the future availability of labor for picking,

as well as about inflation in the cost of labor. In the United Kingdom,

for example, the need is especially significant in the soft fruit sector,

which uses 29,000 seasonal pickers to generate over 160,000 tons of

fruit every year (British summer fruits seasonal labor report, 2017).

In California, the cost of manual harvesting cost could be as much as

60% of production costs for fresh market strawberries (Anjom,

Vougioukas, & Slaughter, 2018), which concurs with research

conducted in Norway (Xiong et al., 2019). These dual labor challenges

of shortages and high costs are, therefore, advancing developments

in the automation of fruit harvesting operations.

Despite several attempts to develop a robotic solution for

harvesting strawberries and many other crops, a fully viable

commercial system has yet to be established (Silwal et al., 2017).

One of the major challenges is that the robots need to be able to

operate equally efficiently within diverse, unconstrained environ-

ments and crop variations with a variety of features (Bac, Hemming,

& Van Henten, 2013; Silwal et al., 2017). A harvesting robot is

generally a tightly integrated system, incorporating advanced

features and functionalities from numerous fields, including naviga-

tion, perception, motion planning, and manipulation (Lehnert,

McCool, Sa, & Perez, 2018). These robots are also required to

operate at high speed, with high accuracy and robustness and at a

low cost, all features that are especially challenging in unstructured

environments, such as the strawberry farm utilized for testing in this

paper.

Fruit harvesting offers significant opportunities for the field of

agricultural robotics and has, thus, gained much attention in recent

decades. Several robots have been developed for harvesting fruits

and vegetables, including those for apples, sweet peppers, cucum-

bers, tomatoes, litchis, and strawberries. An apple robotic harvester

was designed and evaluated with an overall success rate of 84% and

an average picking time of 6.0 s per fruit; however, they encountered

challenges, such as obstacle detection and avoidance (Silwal et al.,

2017). A sweet pepper‐harvesting robot achieved success rates of

between 26% and 33% in a modified environment and a cycle time of

94 s for a full harvesting operation (Bac et al., 2017). Similarly,

another sweet pepper‐harvesting robot, named Harvey, achieved a

46% success rate for unmodified crops and 58% for modified crops,

with average picking times of 35–40 s (Silwal et al., 2017). They

reported that the most common detachment failure was that of the

cutter missing either side of the peduncle. This team subsequently

presented an improved version of Harvey, with a higher success rate

of 76.5% in a modified scenario (Lehnert, McCool, et al., 2018). A

harvesting robot was developed for greenhouse tomatoes, with a

success rate of 86% and a picking speed of approximately 15 s per

tomato (Lili et al., 2017); however, the literature provides no in‐depth

analysis of their failure cases. A study of cherry tomato harvesting

robot reported a success rate of 83%, with an average 1.4 attempts

for each successful picking and a time cost of 8 s for a single

successful harvesting excluding the time cost of moving between

targets (Feng, Zou, Fan, Zhang, & Wang, 2018). The main failure

found in the tests was collisions between the end‐effector and the

plant stems (Feng et al., 2018).

An increasing number of robots for autonomous strawberry

picking have also been developed in recent few years. Japanese

researchers developed and evaluated a strawberry‐harvesting robot

with a scissor‐like cutter, which had a success rate of 34.9% and

41.3% when picking with suction and without suction, respectively

(Hayashi et al., 2010). Their harvesting time for single fruit was

11.5 s. They concluded that a suction end‐effector did not greatly

contribute to picking performance and further reported that their

failures were incorrect peduncle detection (Hayashi et al., 2010). The

groups subsequent version of this strawberry‐harvesting robot

achieved a success rate of 54.9%. Another strawberry‐harvesting

robot using a 3D Cartesian‐type arm was tested by its detection of

the peduncle before picking target strawberries laid out on a

laboratory surface (Cui, Gejima, Kobayashi, Hiyoshi, & Nagata,

2013). The system achieved a successful detection rate of 70.8%

with a successful picking cycle time of 16.6 s per fruit, and the

authors reported the main challenge for their work as peduncle

detection (Cui et al., 2013). Unlike the abovementioned selective

harvesting robots, researchers also proposed a strawberry harvester

that shook the plants to detach fruits (Vakilian, Jafari, & Zarafshan,

2015). The focus of this study was mainly on the dynamics modeling

and control. Aside from research in academia, a number of start‐up

companies have also recently developed several strawberry‐harvest-

ing robots, none of which have successfully commercialized. These

include AGROBOT (Huelva, Spain), who used 24 independent picking

systems mounted on a mobile base to increase efficiency, OCTINION

(Leuven, Belgium), who designed a force‐limit soft gripper in an

attempt to avoid damage while grasping, and Harvest CROO (Florida)

who designed a rotation apparatus that includes several grippers for

picking strawberries on the ground. Generally, strawberry harvesting

in cropping environment is very challenging. First, ripe strawberries

are easily damaged and bruised (Dimeas, Sako, Moulianitis, &

Aspragathos, 2015; Hayashi et al., 2014; Xiong et al., 2019). This

feature requires gentle handling during manipulation procedures.

Noncontact picking might be an acceptable solution to avoid damage.

Second, strawberries are small in size and tend to grow in clusters,

which makes it difficult to identify and pick individual strawberries

(Xiong et al., 2019; Yamamoto et al., 2014). Picking in clusters with

dense obstacles is one of the main challenges for strawberry

harvesting (Xiong et al., 2019; Yamamoto et al., 2014) as well as

for many other crop harvesting systems, such as tomato harvesting

(Yaguchi, Nagahama, Hasegawa, & Inaba, 2016) and sweet pepper

robot (Bac et al., 2016).

In this paper, we address some of the challenges of working in

unstructured farming environment. The main contributions of this

paper are as follows:

(1) A novel active obstacle‐separation path‐planning algorithm for

cluster picking: The griper can actively push aside the bottom
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obstacles before swallowing and separate the top obstacles

during swallowing. The pushing vectors are derived based on the

surrounding obstacles that are calculated using downsampled

blocks of 3D point cloud.

(2) Improvements to the vision system, the gripper, the arm, and the

control: An adaptive color thresholding for adaption of ambient

changing light, a new feature of the gripper that can pick a

market punnet and harvest berries straight into the container

and a low‐cost dual‐arm system with optimized harvesting order.

(3) A fully integrated harvesting system: The robot is able to pick

strawberries continuously in polytunnels. Field evaluation shows

the robot’s first‐attempt success rate for picking partially

surrounded or isolated strawberries ranged from 50% to

97.1%, depending on the growth situations.

2 | RELATED WORK

2.1 | Fruit identification

Machine vision is an essential component for agricultural robots,

enabling them to detect and localize the target crop. When the 3D

position of a target is obtained, its coordinates can be further utilized

to instruct the movements of the manipulation. For strawberry

detection, image processing based on color thresholding is a

frequently applied method in research papers (Hayashi et al., 2014;

Yamamoto et al., 2014), primarily due to the significant differences of

color among ripe strawberries, green strawberries, and green plants.

Peduncle detection is another widely researched harvesting step (Cui

et al., 2013; Hayashi et al., 2010; Huang, Wane, & Parsons, 2017;

Shiigi et al., 2008). Color‐based image processing methods were used

to detect the strawberry first and then set a certain region above the

strawberry for peduncle detection, with the accuracy influenced by

the results of preprocessing and complexity of the environment.

Other researchers have explored feature learning methods to

analyze strawberry fruit shapes (Ishikawa et al., 2018). Recently,

extensive work used deep learning as an approach for fruit detection.

Deep learning, which can autonomously extract fruit features, has

shown results in strawberry detection (Habaragamuwa et al., 2018).

In addition to strawberries, deep learning, especially the Faster

RCNN network, has been widely used for detection of many other

fruits, including sweet pepper, mango, apple, almond, and kiwifruit

(Fu et al., 2018; Mai, Zhang, & Meng, 2018; Sa et al., 2016; Zhang

et al., 2019). All these systems used detection networks to generate

bounding boxes around the target fruits.

Unstructured growing conditions, including variable clustering,

occlusions, and varying lighting conditions, have been considered as

the common challenges for fruit detection in farm environments

(Silwal et al., 2017). Consequently, the focus of much ongoing

research is novel ways to resolve these situations. One study

proposed a color‐based adaptive thresholding method for sweet

pepper detection that can deal with changing illumination conditions

(Vitzrabin & Edan, 2016), for example, while another proposed a

visual servoing‐based method accurately localizes sweet peppers in

occlusion situations (Lehnert, Tsai, Eriksson, & McCool, 2018). Deep

learning is a promising method to deal with the lighting variations

and the general idea is to capture and train images under different

lighting conditions (Bargoti & Underwood, 2017; Fu et al., 2018).

However, this method may require additional hardware (GPU) and a

large data set as well as intensive work on image annotations, thus

increasing the cost and power consumption.

2.2 | Mobile platform and navigation

Over the years, mobile platforms have been developed for a range

of agricultural applications, from weeding (McCool et al., 2018), to high

throughput phenotyping (Vijayarangan et al., 2017), to transportation

(Ye et al., 2017). Some mobile robots are task‐specific, meaning

that they are specially designed for one particular application. Several

task‐specific mobile bases can be found in literature including the

sweet pepper‐harvesting robot (Lehnert, English, McCool, Tow, &

Perez, 2017) and robots for phenotyping (Mueller‐Sim, Jenkins, Abel,

& Kantor, 2017). Task‐specific mobile bases can also be found in

various commercial projects, for example, the weeding robots created

by companies like ecoRobotix and Franklin Robotics, and harvesting

robots being developed by companies like AGROBOT or Harvest

CROO Robotics. Other mobile robots are generic, designed to work

with multiple, interchangeable implements, and can thus be used in

several different applications. Examples include Bonirob by Bangert

et al. (2013), and Robotti by commercial company Agrointelli.

Most agricultural robots rely on a mobile base, that is, specifically

designed for one type of environment. A mobile base designed for

driving in tractor‐sized tracks in open fields, for example, will

normally not fit in a greenhouse. There is a lot of variation found in

agriculture, and there may be large differences between farms, even

if they grow the same crop. The mobile platform used in the current

work is the Thorvald robot (Grimstad, Skattum, Solberg, Loureiro, &

From, 2017). It is created from modules that may easily be

reconfigured into robots of different sizes and shapes for different

environments. A slim robot configured for greenhouses and

polytunnels, such as the one used in this study, may quickly and

easily be resized wide enough to fit within tractor tracks. The robots

navigation system is different depending on project and application.

In previous work we used techniques based on light detection and

ranging (LIDAR) and cameras (Grimstad, Zakaria, Le, & From, 2018)

as well as RTK‐GPS (Grimstad et al., 2017). The navigation system

used in polytunnels in current work is based on well‐established

techniques of probabilistic localization (Thrun, Burgard, & Fox, 2005)

as well as the use of topological maps (Fentanes, Lacerda, Krajník,

Hawes, & Hanheide, 2015). The navigation setup is briefly described

in Section 4.

2.3 | End‐effector and manipulation

Various end‐effectors have been developed for strawberry‐harvest-

ing robots. The most widely used is the scissor‐like end‐effector for
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fruit detachment purpose only (Cui et al., 2013; Hayashi et al., 2014;

Yamamoto et al., 2010; AGROBOT Ltd.; Dogtooth Technologies Ltd.).

With an additional suction device, the scissor‐like end‐effector might

be able to hold fruit (Feng, Wang, Zheng, Qiu, & Jiang, 2012; Hayashi

et al., 2010). Contact grasping grippers are also common to see, such

as the three‐finger clamps with force‐limit function (Dimeas et al.,

2015) and two or more fingers with rotational motion to break

peduncles (Yamamoto et al., 2014; OCTINION Ltd.). The scissor‐like

gripper requires more advanced vision system to detect the peduncle

position and might unintentionally cut surrounding plants in clusters

(Hayashi et al., 2010; Xiong et al., 2019). The grasping contact type

grippers might easily bruise fragile strawberries (Hayashi et al.,

2010).

Due to the uncertain environment, such as the presence of

obstacles and clusters of fruits, manipulation is considered one of the

main challenges in getting harvesting robots to become a reality

(Lehnert, McCool, et al., 2018; Silwal et al., 2017). Cluster picking is

difficult since the surrounding fruits, leaves, stems and other

obstacles are difficult to separate from the target, both in detection

and in manipulation. Similar to many other picking systems (Cui et al.,

2013; Hayashi et al., 2014), our previous system used a point‐to‐

point path‐planning method to move the arm from a start point to a

point underneath the target. However, with this method, it was

difficult for the gripper to avoid swallowing below‐hanging or

surrounding berries, leaves, or stems along with its target berry. To

avoid occlusions, a “3D‐move‐to‐see” method was proposed to find

the best view with less occlusions (Lehnert, Tsai, et al., 2018). To

avoid obstacles, a method for cucumber picking was developed that

uses a search algorithm to explore the search space for a feasible

trajectory, in which each step of the trajectory is checked by a

collision detector (Van Henten et al., 2002). Another work used a

randomized path planner to generate a random path tree and then

tested each path with a local path planner to determine the collision‐

free one for pruning grape vines (Botterill et al., 2017). Furthermore,

to avoid the arms self‐collision or collision with obstacles, they

incorporated a collision detector based on geometric primitives.

Most of the methods found in the literature are passive obstacle

avoidance methods, in which the aim is to avoid existing obstacles

without changing the environment. However, obstacles are not

always avoidable, especially when picking small‐size fruits in clusters,

where the obstacles may be extremely close to the targets.

2.4 | Previous work and challenges

In 2017, we developed the first version of a strawberry‐harvesting

robot and implemented a set of field experiments for performance

evaluation (Xiong et al., 2019). As shown in Figure 1a, the robot

hardware comprised four modules: (a) a cable‐driven gripper

attached to (b) a Mitsubishi five‐degrees‐of‐freedom (5‐DOF) serial

arm, mounted on (c) the Thorvald platform (Grimstad et al., 2017)

and (d) a stationary RGB‐D camera facing one side of table‐top grown

strawberries. The fingers of the novel cable‐driven gripper (Figure

1b) were able to separate surrounding berries out of the way and

could open to form a closed space in which to swallow a target

strawberry (Xiong, From, & Isler, 2018). Equipped with three internal

infrared (IR) sensors, the gripper could sense and correct for

positional errors. An integrated container was used for collecting

picked strawberries, which reduced picking time significantly;

however, this system necessitated repacking the strawberries into

punnets for market. The vision system of this version used a color

thresholding‐based algorithm for object detection and localization;

however, the thresholds needed to be changed manually according to

the changing sunlight intensity. Furthermore, while the industrial arm

was robust and convenient, it was not suitable for use in small

working spaces, which limited its picking operation, and the systems

significantly low baud rate made it unsuitable for closed‐loop control.

The robot could pick strawberries continuously without being

integrated into the platform, which was moved with a joystick.

Active 

fingers

Passive 

fingers

Trapdoor

RGB-D camera

Gripper

Arm

Punnet

Arm controller

Gripper 

controller

(a) (b)

F IGURE 1 The previous version of our strawberry picking robot: (a) The first version robot in a strawberry tunnel and (b) the cable‐driven

gripper with perception capabilities. Source: Xiong et al., 2018 [Color figure can be viewed at wileyonlinelibrary.com]
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The evaluation results showed that the robot was capable of a 96.8%

success rate when picking isolated strawberries, but it struggled

when picking in clusters, resulting in a low success rate (53.6%

without damage) in farm setting.

3 | OVERVIEW OF THE NEW SYSTEM

The autonomous strawberry‐harvesting system described in this

paper incorporates the lessons and addresses the challenges of the

original robot, described above. The images and captions in Figure 2

provide an overview of the new robot, photographed during field

testing on an English strawberry farm. As with the previous system,

the hardware consists primarily of four modules, namely, an Intel

R200 RGB‐D depth camera, a newly developed single‐rail dual‐arm

manipulator, two improved patented grippers, and a previously

developed Thorvald platform. A Hokuyo LIDAR is mounted on the

front of the robot for navigation sensing. The arm module is mounted

horizontally on the platform for picking strawberries along one side

of the table‐top trays. The stationary RGB‐D camera faces the same

side for strawberry detection and localization. An additional one‐axis

punnet station, attached to the left side of the platform, lifts up to

enable the grippers to pick or release the punnets and returns to its

lower position once the operation is complete. The punnet station

uses the same motor and control system as the arm system.

Electronics are placed on the rear of the robot. These include a

gripper controller, a CAN to USB convertor for the arm, a DC

48 to 12 V power convertor, and a power switch. All power is

provided by the Thorvald battery, which supports approximately

48 hr of continuous picking. All of the components are connected to a

laptop (Intel i5‐6700 CPU and 16 GB RAM), including the robotic

platform, thus simplifying communication. The entire system is fully

integrated into the robot operating system (ROS).

4 | NAVIGATION IN TABLE ‐TOP FARMS

Table‐top systems are commonly used in polytunnels and green-

houses. Several different systems exist, and there is therefore a great

deal of variation between farms in terms of infrastructure. Some farms

have tables mounted on poles in the ground, while others suspend

their tables from the ceiling. The spacing between rows, as well as the

overall layout of the tunnels or greenhouses, also varies between

farms. As the navigation system for the mobile base used in this study

was tested in a polytunnel with table‐tops mounted on poles in the

ground, it is this type of environment that is discussed here.

The mobile robot was assembled using modules from the

previously developed Thorvald II modular system, described above.

The robot has four‐wheel drive and four‐wheel steering, which

enables it to move in any direction, and also turn in place, thus

substantially increasing its ability to navigate tight spaces. The

system is fitted with a Hokuyo UTM‐30LX‐EW 2D LIDAR and an

Xsens MTi‐30 IMU; however, the latter was not used for the

purposes of this paper.

In addition to tens, or even hundreds of polytunnels on a

strawberry farm, there are several other points of interest for a

robot, including charging stations and cold storage units for

harvested fruit. Therefore, to simplify the task of navigating this

F IGURE 2 Hardware assembly of the

new strawberry‐harvesting robot in a

strawberry greenhouse: The robot consists

mainly of a RGB‐D camera, a single‐rail

dual‐arm manipulator, two grippers, and a

mobile platform [Color figure can be

viewed at wileyonlinelibrary.com]
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type of complex environment, a topological navigation system is

employed (Fentanes et al., 2015). Here, a metric map is used together

with a graph. Nodes in the graph represent goals or gateways found

in the polytunnel, while edges represent navigable paths between

two nodes. The robot can only move between connected nodes.

When provided with a goal, the robot will find a connected set of

nodes to the goal node, and move through these nodes to reach its

target. Different actions for moving the mobile robot can be defined

for the different edges. For example, if the robot needs to dock at a

charging station, a special action for accurate docking may be

required. Moreover, different behavior may be required when the

robot is moving in an open space, compared to when it is driving

inside a tunnel row where movement is far more constrained. Edges

between two nodes can be defined as either unidirectional or

bidirectional, enabling operators to enforce one‐way traffic where

necessary, specifying that a robot may, for example, move from Node

A to Node B, but not from Node B to Node A.

Encoder‐based velocity estimates are used together with

data from the 2D LIDAR to create a map using the GMapping

simultaneous localization and mapping (SLAM) technique (Grisetti,

Stachniss, & Burgard, 2007). During this process the robot is

teleoperated. The resulting map is stored and used by the robot

during autonomous operation. The robot uses the map, LIDAR data,

and encoder‐based odometry to localize in the tunnel. A copy of the

map is altered to mark out areas where the robot is not allowed to

drive and the robots global costmap is generated from this no‐go

map. This prevents the robot from planning paths through certain

areas, such as underneath the table trays between rows.

The robots navigation system was tested in a polytunnel at a

research farm. As such, the size of the topological map presented

here (Figure 3) is somewhat limited; however, the principles are

equally applicable to larger polytunnel environments. First, we

defined the topological nodes on either sides of four rows in

the tunnel, as well as intermediate nodes inside these rows. A node

representing the robots charging station and a few gateway nodes

between the charging station and the tunnel rows were further

defined. Unidirectional edges (for one‐way driving) was defined for

inside two of the rows, and the remaining two rows were defined as

bidirectional edges. Possible actions for moving the robot along

the edges were specified as simple waypoint navigation, with

either forward drive, sideways drive, or reverse drive, as well

as a dynamic window approach for navigation around unforeseen

obstacles. For edges inside the rows, only simple waypoint navigation

was used, with no planning around unforeseen obstacles (if an obstacle

appears, the robot will simply stop and wait until the obstacle is

moved). A reverse action was specified for the edge going to the

charging station, while the robot would use forward drive along the

edge moving away from the charging station. Edges between rows

were specified as either forward drive or sideways drive.

Using this system, the mobile robot was able to successfully

navigate the somewhat cramped environment inside the polytunnel.

In the supplementary materials, the robot can be seen navigating the

tunnel, starting at the node representing the charging station and

then driving once through all four rows before returning to park at

the charging station.

5 | ENVIRONMENT ADAPTIVE MACHINE

VISION

5.1 | Motivation

As with many other field machines (Bac et al., 2017; Hayashi et al.,

2014), a color‐based algorithm was utilized in this system to take

advantage of color differences and retain a fast processing speed. Hue

saturation value (HSV) images are transformed from the RGB images

and used for image processing. The aim with this machine vision

subsystem is to detect and localize ripe strawberries and to pass the

detected strawberry bounding boxes to the other subsystems.

Changing ambient illumination in the field is a challenge for image

processing. During the experiments, it was found that changes in the

available sunlight significantly influenced the detection results. As

shown in Figure 4, Figure 4a displays situations with weak light

intensity, while Figure 4b shows much stronger light intensity in the

same place. As a result, four strawberries were detected in Figure 4a

(blue circles) but only one in Figure 4b, with the same thresholds.

This problem was also pointed out by Hayashi et al. (2014), who

subsequently adjusted the thresholds on their system manually on

the farm, as with our previous system. Raja et al. (1998) proposed a

statistical approach, in which light intensity was estimated over time,

while other researchers have investigated how robots can learn to

adapt to various lighting conditions (Sridharan & Stone, 2007). In this

paper, we propose a modeling‐based technique for automatic

updating thresholds by using the grippers IR sensor.

F IGURE 3 Topological map for driving

in a polytunnel. Here, the robot can be

seen parked in the lower right corner

[Color figure can be viewed at

wileyonlinelibrary.com]
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5.2 | Light intensity modeling and adaptive color

thresholding

The robots gripper has internal IR sensors that can sense pure

sunlight IR light intensity when the emitter light‐emitting diodes are

turned off in a mouth‐open configuration (Figure 1b). Therefore, the

HSV in the region of a ripe strawberry and the gripper IR value were

recorded for almost an entire day. A sufficient amount of data about

the range of sunlight intensities and corresponding HSV values is

essential to ascertain the relationship between them. In total,

243 sets of data were recorded with various sunlight intensities

and the corresponding HSV values of the ripe strawberry. To

determine the connection between the values, the HSV data were

analyzed independently, as can be seen in Figure 5. Here, hue range is

from 0 to 179 (circular) in OpenCV and the value for pure red is 0. To

clearly see the dependent relationship in the coordinate system, data

around 0 were added by 179 to obtain Figure 5a. As the variations in

the range of hue are relatively small, at around 5, the interaction is

not significant and, therefore, it can be concluded that light density

has a low influence on the hue for strawberry detection. However,

based on the data in Figure 5b,c, it is clear that saturation and value

change regularly with the variances in sunlight intensity. The

correlation equations of saturation‐sunlight intensity and value‐

sunlight intensity can thus be concluded as follows:

= − + + ( = )y x x R0.00069 0.13 157.03 0.86 ,s
2 2 (1)

= − + ( = )y x R0.049 137.07 0.86 .value
2 (2)

In application, the above models would be recorded in the codes. The

gripper would detect the real‐time sunlight intensity at the beginning

of each image frame for every picking circle. The image processing

algorithm would then set the saturation and value thresholds within

ranges based on the detected sunlight intensity according to the

correlation equations, thus forming an adaptive color threshold. After

the basic color‐thresholding process, the strawberry image would go

through a series of postprocessing based on erosion and dilation, as

previously described by the authors (Xiong, Ge, Liang, & Blackmore,

2017). During this processing, two commonly connected strawberries

can be segmented. Once all the strawberries have been detected,

their coordinates would be transferred to the gripper frame

according the calibrated extrinsic parameters.

6 | SINGLE ‐RAIL MULTIPLE CARTESIAN

ARMS

In the authors’ previous strawberry‐harvesting system, a Mitsubishi

serial arm (RV‐2AJ) with 5‐DOF was employed, which was robust in

terms of control and communication (Xiong et al., 2018). However,

the high cost of the industrial arm is not appropriate for application

in commercial farming robots, especially when multiple manipulators

are required to optimize the harvesting efficiency. Moreover, in the

previous system, the orientation of the 5‐DOF arm was locked to

keep the gripper horizontal, which also made its working space small,

F IGURE 4 Two set of images capturing

the same area with different light

intensities: (a) shows low sunlight intensity,

in which four strawberries were detected

(in blue circles) and (b) shows high sunlight

intensity, in which only one berry was

identified, despite having the same

threshold as (a) [Color figure can be viewed

at wileyonlinelibrary.com]

160

165

170

175

180

185

190

0 500 1000

H
u

e

sunlighy indensity

y = -0.000069x2 + 0.13x + 

157.03

R² = 0.86
150

160

170

180

190

200

210

220

230

0 500 1000

S
at

u
ra

ti
o
n

sunlight intensity

y = -0.049x + 137.07

R² = 0.86

70

80

90

100

110

120

130

140

0 500 1000

V
al

u
e

sunlight intensity

(a) (b) (c) 

F IGURE 5 Modeling of HSV and sunlight intensity: (a) Hue to sunlight intensity, no significant interactions; (b) saturation to sunlight

intensity, significant quadratic relationship; and (c) value to sunlight intensity, significant linear relationship. HSV, hue saturation value [Color

figure can be viewed at wileyonlinelibrary.com]

XIONG ET AL. | 7



however, in the system, the gripper is designed so that its workspace

is strictly Cartesian, with no rotations needed, and, therefore, a

3‐DOF Cartesian arm is sufficient to generate this motion. The

Cartesian arm is widely used due to its simplicity and low cost.

Moreover, unlike the serial arm, it has no singularity problem and it

has a wider working area if no rotations are required. In their

development of harvesting robotics, researchers have developed a

3‐DOF Cartesian‐type arm for strawberry picking (Cui et al., 2013) as

well as an algorithm to plan the movements of multiple (Zion et al.,

2014), independently functioning 3‐DOF Cartesian arms for crop

harvesting, mounted in backward–forward positions on the platform.

In this current system, to mitigate cost and complexity, a low‐cost

single‐rail‐based Cartesian‐type multiarm system was developed.

6.1 | Arm design and hardware

Figure 6 shows the concept design and the prototype of the proposed

arm. In Figure 6a, the three arms have independent y‐axis and z‐axis

rails, mounted on a common x‐axis rail. The vertical z‐axis rail uses

ball‐screw transmission for lifting heavy loads, while the y‐axis uses a

belt transmission for fast movement. The pinion‐rack helical gear

transmission between the x‐axis rail and the y/z‐axis rails enables the

arms to have independent movement on the x‐axis. Compared to a

system with several independent arms, the single‐rail multiarm

system has three key advantages for harvesting robots: (a) two

or more arms can be mounted on the same rail so that the

transformation between the arm frame and the camera frame need

only be calibrated once; (b) there is no unreachable space between

the arms; (c) the cost is reduced as fewer parts are required and the

time required for platform mounting is also reduced.

Figure 6b shows the assembly prototype of the proposed

arm, which has two arms mounted on the x‐axis rail. The arm rails

structure was manufactured by the GaoGong Intelligence Mechanical

Drive Co., Ltd., China. PL‐05N/2 inductive proximity sensors were

used as end stops for homing the arms and limiting their movement

range. A collision avoidance frame was mounted on Arm 2 that will

trigger the end‐stop sensor on Arm 1 when the arms are close, so as

to avoid any mechanical collision. Stepper servo motors (Shenzhen

Just Motion Co., Ltd., China) were selected as they are low in cost

and deliver precise position control. These motors have integrated

encoders and controllers and can be easily communicated via a

CANbus network. A CAN to USB converter was used to enable the

computer to access the CANbus network.

Table 1 describes the key specifications of the developed arms.

The axis strokes and dimensions were determined by estimating the

required picking space in the strawberry tunnels.

Gear rackPinion gear

x-axis rail

Motor

z-axis rail

y-axis rail From back view

Bottom view

Stepper servo

USB to CAN 
converter

Meshed gears
x

y

z

End-stop sensors

Gripper

Collision avoidance frame

Arm 1Arm 2

Home position 
trigger

(b)(a)

F IGURE 6 Single‐rail Cartesian‐type multiarm: (a) 3D model shows that the three Cartesian arms move on a single rail (x‐axis) using pinion‐

rack gear transmission; the single‐rail (x‐axis) could be mounted with two or more arms; (b) the prototype of a dual‐arm system; the single‐rail

multiarm only needs to be calibrated once to identify the transformation between the arm frame and the camera frame [Color figure can be

viewed at wileyonlinelibrary.com]

TABLE 1 Key specifications of the single‐rail dual Cartesian arms

Parameters Value

Dimensions (mm) 1,400 × 900 × (930–1,080)

x‐axis stroke (mm) 1,200

y‐axis stroke (mm) 500

z‐axis stroke (mm) 500

Max velocity (mm/s) 600

Approximate payload (kg) 10

Communication type CANbus

Operating system Linux

Control method ROS topics

Input voltage (V) 48

Rated power (W) 900

Approximate weight (kg) 120

Abbreviation: ROS: robot operating system.

8 | XIONG ET AL.



6.2 | Arm control

Figure 7 indicates the control architecture of the single‐rail dual

Cartesian arms. The stepper servo is written with CiA (CAN in

Automation) 402 motion control protocol. All motors are connected

to the host computer through a CAN to USB converter via the

CANbus network. To modularize the arm system, an arm server node

in ROS was built as a coordinator between user nodes and arms.

For input, user nodes can simply send an arm target mode together

with the status command to the server node via the ROS topics.

The server node will then decode and encode these commands to

control the individual motors. Six modes were established on the

basis of the harvesting robots requirements: home, pause, continue,

position control, unblock, and reset. The status command includes

the arm target positions and the moving speed. Acceleration and

deceleration can be automatically adjusted according to the required

speed in the server node. Furthermore, the server node can also

output the arms status as ROS topics in 40 Hz by reading the motor

status. The output data topics include the arms current position,

speed, and status, which can be used as feedback control information.

Arm server 

node in ROS

Arm current 

position

Arm current 

speed

Arm current 

status

Arm mode and 

target status

Input command

ROS topic

Update status

ROS topic

CAN bus

x-axis 

motor
y-axis/z-axis 

motor

CAN to USB 

convertor

End-stop

sensor

F IGURE 7 Control architecture of the single‐rail dual Cartesian arms: All the stepper servos are connected to the CANbus network; a ROS

servo node is built to receive target mode and status commands from the user nodes and then control the motors by using CiA 402 protocol;

the servo node can also get motor information and update the arm position, speed and status in 40 Hz, which can be used for feedback control.

ROS, robot operating system [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b)

F IGURE 8 Harvesting order planning: (a) Schematic of harvesting order planning, with the picking area divided into two sections, namely, for

Arm 1 and Arm 2; the picking area of each has been further separated into two subsections (left and right); if strawberries are uniformly

distributed, the two arms systematically pick strawberries from left to right; if they are not uniformly distributed, strategies must be specified to

increase picking efficiency and avoid collision; (b) the control algorithm for planning the harvesting order as well as for collision avoidance

[Color figure can be viewed at wileyonlinelibrary.com]
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The arm current status topic publishes information such as whether

the arm has reached the target position or not and its current

running status (normal or faulty).

6.3 | Collision avoidance and harvesting order

planning

One challenge that the single‐rail dual‐arm system presents is the

effective cooperation between the two arms to increase picking

efficiency and avoid collision with each other. In this harvester, as

illustrated in Figure 8a, the picking area in the cameras view is

divided equally into sections for Arm 1 (the primary arm) and Arm 2

(the secondary arm). Each section is then further separated into two

subsections: left and right. Within these, one requirement is that the

robot should pick berries from the bottom of the tray working

upwards to the top. This is because the gripper is designed to pick

from below. If the upper strawberry is picked first, the gripper and

arm might touch and move the lower ripe strawberries, which may

result in failure when picking the lower targets.

Figure 8b shows the control algorithm for planning the harvesting

order as well as for collision avoidance. In the process of inputting

the detected strawberries to the algorithm, the first aim is to

determine the picking sequence for the arms to maximize the

simultaneous picking period of both arms and avoid their possible

collisions. The default picking sequence for both arms is from the left

subsection to the right subsection. However, if the quantity of

strawberries in the right subsection of Arm 1 (Qa R1 ) is equal to or less

than that in the right subsection of Arm 2 (Qa R2 ), it is better that both

arms pick strawberries from right to left, since Arm 1 will finish

picking in its right subsection and move across to the left subsection

earlier than Arm 2 will complete its operation. Similarly, when the

quantity of strawberries in the Arm 1 left subsection (Qa L1 ) is equal to

or more than that in the Arm 2 left subsection (Qa L2 ), the distance

between the two arms is always larger than the safety distance if

they all pick from left to right. Theoretically, then, in this particular

case, the distance between the two arms will always be greater than

one subsection width (normally around 300mm, which is equal to the

safety distance between the two arms); however this has not been

tested in other situations and, therefore, the distance between the

two arms on this system cannot be guaranteed to be within the

safety range.

In Figure 8b, a primary‐secondary method is proposed to control

the arms within a closed loop to avoid collisions. Arm 1 is the primary

arm, and has picking priority, while Arm 2 acts as the secondary arm.

The distance between the two arms is compared in real‐time so that,

should they come within the safety distance, the secondary arm will

return to a safety position provided it is not in picking status and will

wait until the primary arm finishes and moves away. However, if the

secondary arm is in picking status and close to the primary arms

target, the primary arm will not interrupt current picking but will wait

Custom-designed 
punnet

Berry amount sensor

Pulley

Torsion 
spring

Steel 
cable

(b) (c)

Market punnet

Sponge tongue

(e) (f)

Sponge tongue

Clamps

Punnet verification

 sensor

(d)

(a)

F IGURE 9 Improved gripper design: (a) Sketch of the version 2.1 gripper; (b) bottom view of version 2.1 prototype; three additional IR

sensors are used to detect the punnet and estimate the amount of strawberries in it; (c) attaching 3D‐printed punnets during picking; (d) sketch

of version 2.2 gripper; (e) bottom view of version 2.2 prototype; a sponge tongue is used to reduce impact; (f) market punnets are attached for

picking. IR, infrared [Color figure can be viewed at wileyonlinelibrary.com]
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until the secondary arm completes its operation. Thereafter, the

picking priority of the primary arm will be restored, so the secondary

arm will return to a safety position if the next target is not within

safety range.

7 | IMPROVEMENTS ON GRIPPER DESIGN

7.1 | Punnet picking and releasing

The previous version of our gripper included an integrated container

for collecting picked strawberries, a feature that could reduce picking

time as the arm does not need to move to store each picked

strawberry. However, collecting with the container and repacking to

the punnets could increase the risk of damage and, therefore, to

avoid repacking, the gripper in the new system is designed to pick a

punnet and harvest directly into it, as shown in Figure 9. Figure 9a–c

shows the design, prototype, and field application of the version 2.1

gripper that was used in the field tests. In this version, instead of a

container, the gripper has a hollow space under its fingers to attach a

custom‐designed punnet, which it picks from the punnet station

(Figure 2). Four cable‐driven clamps, distributed on three sides of the

gripper, are used for picking and holding the punnet. These clamps

are opened simultaneously by a servo motor and closed by torsion

springs. In addition, an IR sensor placed under the front‐side clamps

is used to verify the attachment of the punnet. Another two IR

sensors, mounted on the bottom of the fingers, are used to estimate

the amount of strawberries in the punnet. The IR sensors detect the

distance between the obstacle (strawberries in the punnet) and the

sensor, which is changed during collection. Once the desired amount

of strawberries has filled the punnet, the gripper returns it to the

same location on the punnet station. A punnet transportation system

is required for stocking empty punnets and collecting full punnets.

A further improved version (2.2) of the gripper was also

subsequently developed, as shown in Figure 9d–f. This version of

the gripper can pick a market punnet directly, as shown in Figure 9f,

in which a new Norwegian standard strawberry punnet is attached.

Instead of having four clamps on three sides, this version only has

three clamps on the front side so that the gripper can successfully

pick various punnet shapes. Under the clamps, there is a groove for

fitting the convex edge of some market punnets. Moreover, a sponge

tongue is mounted on the top of the clamps, which can reduce impact

significantly. The clamp module is independent of the gripper body,

so it can be easily mounted and replaced.

7.2 | Scanning control

In the previous system, the gripper could control the arm using

internal IR sensors to correct any positional errors. When targeting a

strawberry, the gripper moved to the bottom of the target and used a

slow lifting speed in search of the strawberry. Once detected, the

arm stopped lifting and moved horizontally to place the gripper at the

optimal cutting position based on one located section of the

strawberry. This method works well when strawberries are growing

vertical to the ground, however, if a strawberry is inclined towards

the ground, as per the example shown in Figure 10a (enlarged red

berry), one section located on the lower part of the strawberry might

be different to another, upper section. This would affect the systems

estimation of the location of the peduncle, which it requires for

picking. To overcome this challenge, a scanning control method was

used in the current system, in which the arm lifts and simultaneously

moves the gripper in a horizontal plan to scan the shape of the

strawberry. The gripper uses IR sensors to estimate the diameter and

centroid of a circular section of an object. Without the gripper

moving horizontally, the scanner can even reconstruct the shape and

orientation of the strawberry, as is shown in the scan examples in

Figure 10a,b.

Figure 10c shows the scanning control path of the gripper for

picking the target enlarged in Figure 10a. First, the arm moves

quickly to the bottom of the target and lifts the gripper slowly to

search for the strawberry. Due to inertia, the arm is not able to come

to an abrupt stop once the target has been located, but it will return

to the first detection point, so there is an overshoot path. The gripper

then uses the scanning control method to control the arm path

according to the target strawberry’s shape. When the strawberry is
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F IGURE 10 Scanning control: (a) An example of detected strawberries, in which the left strawberry (enlarged in image) is inclined to the

ground; (b) reconstruction of the shape and orientation information from the grippers scan of the enlarged strawberry in Figure 8a; (c) scanning

control path of the gripper for picking the enlarged target in Figure 8a; number represents: 1—searching path, 2—overshoot path, 3—scanning

control path, 4—peduncle length adjustment, 5—return path, 6—forward path, and 7—trajectory projection [Color figure can be viewed at

wileyonlinelibrary.com]
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out of gripper sensing range, the arm moves up quickly with a desired

peduncle length compensation value to control the peduncle

length that remains on the strawberry after picking. Compared to

the previous system, which used properties in the strawberry shape

to estimate the peduncle length, this method is robust to the

differences in shape and variety, however it does require an

increased computation resource.

8 | A NOVEL ACTIVE OBSTACLE ‐

SEPARATION PATH ‐PLANNING STRATEGY

FOR CLUSTER PICKING

The previous system achieved a high success rate for picking isolated

strawberries, however, it struggled with cluster picking. In this

current work, inspired by human pickers who usually use their hands

to push and separate surrounding obstacles during picking, we

propose a novel active obstacle‐separation path‐planning strategy,

using the gripper to push obstacles in the clusters.

8.1 | Algorithm

8.1.1 | Scanning control

The first step for obstacle separation or avoidance is to obtain a 3D

image of the area. In the current system, a single‐view image is used

to create the 3D point clouds based on a combination of depth and

RGB images. To reduce computation costs, this system extracts and

focuses only on the obstacles closest to the target, or region of

interest (ROI) obstacles. As illustrated in Figure 11a, the ROI

obstacles are those that are located on the bottom or at the same

height as the target. The obstacles above the target are irrelevant

since the gripper picks from below and, when it is swallowing

the target strawberry, they will not affect fruit detachment.

Unlike Bac et al. (2013) who classified obstacles into hard and soft

types with more efforts from the vision side but did not get

significant results, we simply use the quantity of 3D points within the

ROI to determine obstacles without further classification. Our goal is

to gently separate all pushable obstacles, similar to human picking.

The only nonmovable obstacle is the table‐top system, which can be

avoided by screening of distance.

ROI obstacles are divided into two main sections: top obstacle

blocks and bottom obstacle blocks. Both top and bottom obstacle

sections have been further separated into six subsections, based on

their directions: left front, left rear, front, rear, right front, and right

rear, respectively. The bottom blocks are used to guide the gripper

when pushing obstacles aside before reaching its target while the top

blocks assist the gripper in avoiding neighboring obstacles. The block

size is mainly determined by the bounding box size of the detected

target in the vision system. Among the top blocks, the front and

rear have the same dimensions as the target block, while the length

of the four left and right blocks is 1.5 times that of the target block.

The length and width of the bottom blocks are the same as the

top left and right blocks, but their height is three times that of

the target block.

The two obstacle‐separation actions can be described as either

pushing aside the bottom obstacles before swallowing or pushing

aside the top obstacles during swallowing. The operations are as

follows: First, the gripper travels from a start point, S , to an

intermediate point, P , that is next to the bottom blocks with the same

height, as shown in Figure 11b. The gripper then uses the outside of

its fingers to push the bottom obstacles from P to the origin,O, of the

Oxy frame in the bottom blocks. This pushing path can be defined as

a vector, Gpush. Block vectors ( …B B, ,LF LR) are used to describe the

obstacles and calculate the pushing vector, Gpush. If obstacles are

founded within a block, the vector in the block is labeled a unit

vector; otherwise the empty block has a zero vector. Currently, the

threshold of 3D point quantity for being an obstacle or an empty

block is 50. The direction of the vector is determined by the block

location. They all face towards the origin of the coordinate system,

either vertical or at 45 degree to the x axis. Gpush can be expressed as

= + + + + +A B B B B B B ,LF LR F R RF RR (3)
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F IGURE 11 Active obstacle‐separation algorithm: (a) Schematic of ROI obstacle blocks; (b) top view of bottom obstacle blocks; and (c) top

view of top obstacle blocks. ROI, region of interest [Color figure can be viewed at wileyonlinelibrary.com]
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where …′ ′B B, ,LF LR represents the unit vector that has the same

direction as …B B, ,LF LR. r is the parameter used to scale the Gpush

norm, which is 50mm for the current system. Two opposite vectors,

for example BLF and BRR, will cancel each other out if they both

represent obstacles. If not all vectors are opposite and cancel each

other ( ≠A 0), the Gpush only needs to be obtained using A and r . j is

thus used to determine whether all of the vectors cancel each other

out. In the case of ≠j 0 and A = 0 (e.g., if only BF and BR have

obstacles), the direction of Gpush is then decided by the distance

between S and two possible points P (left or right of BF and BR). The

smaller distance point P is selected as it is the shorter traveling time

for the gripper. If no obstacles are detected, the gripper has no

pushing action at this stage. The intuition of Gpush is that the gripper

moves from the side of the empty blocks towards the origin O to

push the obstacle blocks. The empty blocks can be regarded as the

entrance for gripper pushing. Figure 11b demonstrates the obstacle‐

separation direction for Figure 11a where the left‐front, left‐rear,

and rear blocks (marked as green arrows in Figure 11b) do contain

obstacles, so the gripper would come from the bottom right corner to

push aside the obstacles.

After clearing aside the bottom obstacles, the gripper will

swallow the target and separate it from the top obstacles. As shown

in Figure 11a, if an obstacle (left) is next to the target, it is better for

the gripper to move an opposite offset (right) at pointM before lifting

up to swallow the target. In such a way, the gripper can avoid

swallowing the neighboring obstacles. Similarly, the offset vector is

calculated OM by using top block vectors …T T, ,LF LR:

= + + + + +K T T T T T T ,LF LR F R RF RR (7)

= ∣ ∣OM
K

K

R
, (8)

where R is the norm of OM , 3 mm in the system. In the situation in

11a, in which a red obstacle is situated to the left of the target, within

the left‐front and left‐rear blocks, the gripper will move 3mm from

the target origin O to the right point M (11b) before moving up to

swallow the target. If both bottom and top blocks contain obstacles,

the gripper moves directly from P to M without transferring at O.

8.1.2 | Application examples

Figure 12 shows an example of the robot actively separating

obstacles by using the proposed algorithm. In Figure 12a, a target

ripe strawberry has been detected. The right‐top corner figure

displays the obstacle blocks around the target. The vision system

detected obstacles (marked as green) in three bottom front blocks

(B B,LF F , and BRF) and the top fright‐front block (TRF). After path‐

planning, as shown in Figure 13a‐1, the gripper moves to the

intermediate point P which is behind the obstacles. Then it moves

outward to push the front obstacles arriving at point M. After

pushing, the gripper is going up to swallow the target. The path of the

gripper can be seen in Figure 12b, which is recorded from field test.

Without the obstacle‐separation algorithm, the below‐picking gripper

might swallow the surrounding obstacles during lifting.

Figure 13b,c demonstrates two more examples of the active

obstacle‐separation algorithm in different situations. In Figure 13b‐1,

a ripe strawberry is detected together with several green strawber-

ries surrounding on the right (TF and TR) and right‐bottom (BRF and

BRF) sides. Hence, the gripper first move to the left of the obstacles

(point P; Figure 13b‐2) and then it pushes the obstacles rightward to

point M (Figure 13b‐3) for better swallowing. Similarly, as shown in
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F IGURE 12 An example of active obstacle‐separation in the field test: (a) Detection of target strawberries and obstacles; (b) path of the

gripper for picking the target using the obstacle‐separation algorithm; number represents: 1—return path, 2—forward path, 3—peduncle length

adjustment, 4—scanning control path, 5—searching path, and 6—trajectory projection [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 13c‐1, a huge leave is on the bottom of a target. To avoid

getting stuck by the leave (the gripper mouth may be sheltered by

the leave), the gripper moves to the left of the leave (Figure 12c‐2)

and pushes the leave to the right side of the target (Figure 13c‐3)

before picking.

Figure 12 shows an example of the robot actively separating

obstacles by using the proposed algorithm. In Figure 12a, a target

ripe strawberry has been detected. The right‐top corner figure

displays the obstacle blocks around the target: the vision system

detected obstacles (marked as green) in three bottom front blocks

(B B,LF F , and BRF) and the top right‐front block (TRF). After path‐

planning, as shown in Figure 13a‐1, the gripper moves to the

intermediate point P , which is behind the obstacles. Then it moves

outward to push aside the front obstacles before arriving at pointM.

After pushing, the gripper moves up to swallow the target. The path

of the gripper can be seen in Figure 12b, recorded from field

test. Without this obstacle‐separation algorithm, the below‐picking

gripper is at risk of swallowing the surrounding obstacles during

lifting.

Figure 13b,c further demonstrates two more examples of

the active obstacle‐separation algorithm in different situations. In

Figure 13b‐1, a ripe strawberry has been detected together with

several green strawberries surrounding it on the right (TF and TR) and

right‐bottom (BRF and BRR) sides. Hence, the gripper first moves to the

left of the obstacles (point P; Figure 13b‐2) and then it pushes the

obstacles rightward to point M(Figure 13b‐3) for better swallowing.

Similarly, as shown in Figure 13c‐1, leaves has been detected on the

bottom of a target. To avoid getting stuck (as the grippers mouth

may be sheltered by the leaves), the gripper moves to the left of

the leaf (Figure 13c‐2) and pushes it to the right side of the target

(Figure 13c‐3) before picking.

9 | SYSTEM INTEGRATION AND CONTROL

9.1 | System architecture

The systems full integration enables the robot to harvest continu-

ously along the strawberry rows. The overall sequence is termed

static strawberry harvesting, because the platform will stop, carry

out picking operation and then move on when picking is finished,

which is similar to the sequences of other agricultural robots (Xiong

et al., 2017). The hardware and software architecture of the robot is

shown in Figure 14, in which the outside hexagons represent the

hardware modules while the inside rectangles are the software

functions. Compared to the previous system (Xiong et al., 2019), the

main software updates can be summarized as follows: new function

(a-1)

(b-1) (b-2) (b-3) (b-4)

(c-2)(c-1) (c-3) (c-4)

(a-2) (a-3) (a-4)

F IGURE 13 Action sequence of active obstacle separation in the field: (a‐1 to a‐4) picking sequence of the example in Figure 10 to separate

the front obstacles; (b‐1 to b‐4) example of pushing the right‐bottom green berries; and (c‐1 to c‐4) example of removing bottom leaves [Color

figure can be viewed at wileyonlinelibrary.com]
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of adaptive color thresholding, integration of the platform module,

handling with parallel manipulator harvesting, path‐planning of the

active obstacle separation, punnet picking and releasing, and full

autonomous integration.

A robot coordinator node was created to manage and synchro-

nize the information flow for all the modules. The gripper server

nodes comprise a servo control node and an IR sensor feedback node,

which are running ROS nodes on two Arduino controllers. The arm

F IGURE 14 Hardware and software

architecture of the robot: The hexagons

represent the hardware modules, while the

inside rectangles are the software

functions [Color figure can be viewed at

wileyonlinelibrary.com]
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F IGURE 15 Flowchart of the control system: The entire loop shows the top‐level sequential control while the four colored modules

represent mid‐level control loops, in which navigation, Arm 1 manipulation, and Arm 2 manipulation are continuous closed‐loop control systems

[Color figure can be viewed at wileyonlinelibrary.com]
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motion control nodes are used for manipulation. They communicate

with the gripper server nodes and the arm server nodes, receive IR

sensor feedback, arm positions status and publish the goal mode and

status of the arms, as well as the gripper actions. Each arm has an

independent motion control node to ensure that the two manip-

ulators pick in parallel. The platform server nodes are used to

navigate the mobile base, based on the feedback from the wheel

encoders and the LIDAR scanner. The navigation module can also be

manually operated with the joystick in case of emergency.

9.2 | Harvesting sequence and system control

The flowchart in Figure 15 illustrates the complete sequence and

control strategy for the harvesting robot. The whole system consists

of several control loops, which can be classified as three levels: top

level, mid‐level, and lowest level. The top level is an open‐loop

sequential control system, which is used to trigger a series of

operations in the correct sequence, from perception through

manipulation to navigation. In the top‐level loop, there is one mid‐

level open‐loop module (perception) and three mid‐level continuous

closed‐loop control systems (Arm 1 manipulation, Arm 2 manipula-

tion, and navigation). The two arm manipulation loops are the same,

using a multithread method for computing. The arm manipulation

module consists of an open‐loop obstacle‐separation action, a closed‐

loop collision avoidance function (see Section 6.3) and a closed‐loop

scanning control for picking (Section 7.2). The scanning control

function closes the loop between the arm and the gripper. The

gripper continuously senses each targets location with respect to

itself, while the arm uses the feedback from the gripper to control its

position and correct positional errors using proportional‐integral‐

derivative (PID) controllers. The detailed control method is intro-

duced in Section 7.2 and our previous work (Xiong et al., 2019). The

navigation module controls the mobile base steering by using a

proportional controller based on the feedback from the wheel

encoders and the LIDAR scanner. Further, among these mid‐level

loops, a single actuator makes up a lowest level loop, such as servo

stepper motors for the dual‐arm and servo motors for the grippers

and the mobile base. All of these actuators are continuous closed‐

loop control systems, using PID controllers.

As shown in Figure 15, with the exception of the four colored

rectangle modules, the uncolored processes are all executed by the

robot coordinator node. Figure 16 shows an example of the

harvesting sequence in the farm. After initialization, the robot first

picks punnets from the punnet station with verification from the

gripper sensors (Figure 16a). Meanwhile, the perception module

draws a light intensity value from the gripper server nodes to update

color thresholds. The perception module outputs the detected

strawberry bounding boxes to the coordinator, together with

obstacle block vectors. If no strawberries are detected at this stage,

the platform will move forward to the next image area using the

navigation control module. The coordinator node sorts all the input

targets and determines the harvesting order for both arms according

to the algorithm in Section 6.3. In addition, the coordinator creates a

path plan to separate obstacles based on the methods in Section 8

and, finally, sends a full path of arms and gripper actions to the arm

manipulation modules.

Once the target coordinates have been obtained, the two arms are

actuated to pick strawberries, here shown in the first image area

(Figure 16b,c). The arm moves the gripper to separate obstacles before

swallowing the target strawberry based on the method describes in

Section 8. When the gripper detects the presence of the target during

the swallowing searching procedure, the arm will return to the

detected point and then use the scanning control method (Section

7.2) to correct for positional errors while passing the target body. If the

(a) (b) (c)

(d) (e) (f)

F IGURE 16 Continuous harvesting in the strawberry farm: (a) Picking punnets and sensing light intensity; (b) two grippers are picking in

the first image area; (c) two grippers are picking in the first image area; (d) no berries detected in the second image area, continuous moving;

(e) picking in the third image area; and (f) picking in the fourth image area [Color figure can be viewed at wileyonlinelibrary.com]
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gripper is not able to detect the target in this procedure, the arm will

move to the next target directly. After that, the cutter is actuated to

detach the target strawberry with verification from the IR sensors.

After each picking, the gripper will estimate the amount of picked

strawberries in the punnet using berry amount sensors (Section 7.1). If

the punnet is full, the arm will move the gripper to pick a new punnet.

When the picking is finished, the arm returns a signal to the

coordinator node. As a manager, the coordinator node collects the

signal and commands the platform to move to a new image area

when both arms finish. As shown in Figure 16d, after it has finished

picking in the first image area, the robot moves to the second image

area, in which no ripe berries are detected so it continues to move

forward. Then the robot is continuously picking in the third and

fourth image areas (Figure 16e,f).

10 | FIELD EXPERIMENT SETUP

The experiments were conducted in the Boxford Suffolk Farms

(England), which utilizes a table‐top strawberry growing system in

the greenhouse. The tests were carried out on a variety of

strawberries called “Lusa” (Driscolls Ltd.), which is productive in

the greenhouse annually from March to July. This variety of

strawberries has long peduncles, making the fruit easy for both

humans and robots to pick. Unlike our previous work, which defined

all growth situations of strawberries as the natural environment, in

this paper the strawberry growing distributions are classified into

five types for better evaluation of the robots performance, as

illustrated in Figure 17. Based on our observations at the farm, not all

strawberry distributions can be classified as a specific type; however,

they can all be said to have derived from these five specific types,

each of which was evident on the farm and influenced the test

results. The five types are defined as follows:

(1) Type A: One isolated ripe strawberry with no other strawberries

around it. This is the simplest situation but also common in this

strawberry variety.

(2) Type B: Two ripe strawberries growing very close to each other

but with no other strawberries around. Their distribution may be

left–right, front–rear, or top–bottom and so on.

(3) Type C: One ripe strawberry partially surrounded by unripe

strawberries. There are spaces through which the gripper can

access the ripe berry. This situation is also common in this variety.

(4) Type D: Two ripe strawberries partially surrounded by unripe

strawberries. This situation is similar to type B and type C but

more complicated.

F IGURE 17 Definitions of five strawberry growing types for the picking experiments: Type A: isolated ripe strawberry; Type B: two

connected ripe strawberries; Type C: one ripe strawberry with surrounding (not fully) raw strawberries; Type D: two ripe strawberries with

surrounding (not fully) raw strawberries; and Type E: one ripe strawberry that is fully surrounded by raw strawberries. Five different types of

strawberry growth, as defined for the picking experiments. Type A: isolated ripe strawberry; Type B: two connected ripe strawberries; Type C:

one ripe strawberry partially surrounded by unripe strawberries; Type D: two ripe strawberries partially surrounded by unripe strawberries;

and Type E: one ripe strawberry fully surrounded by unripe strawberries [Color figure can be viewed at wileyonlinelibrary.com]
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(5) Type E: One ripe strawberry that is fully surrounded by unripe

strawberries. This is the most challenging growing situation but

was not commonly seen in our experiments with the variety

“Lusa.”

11 | RESULTS

11.1 | Arm repeatability test

To evaluate the arm performance, a repeatability test on the dual‐

arm system was conducted, which tested each axis independently. As

shown in Figure 18a, a dial indicator is attached to the arm z axis, and

the y axis will touch the indicator tip when z axis has an up‐down

movement. Two sets of experiments were performed: with homing

and without homing. With homing the arm during each trail, the

precision is also influenced by the end‐stop sensors. This is mean-

ingful to the nonabsolute motor encoder, as the arms need to be

homed every time after restarting and the main positional error is

due to robot zeroing (Conrad et al., 2000). With homing option,

Figure 18b illustrates the repeatability test results after zero‐mean

normalization of 50 trials at 200mm/s traveling speed. Following the

ISO 9283 standard on arm repeatability calculation, the repetition

precisions of x y, , and z axes are 0.209, 0.032, and 0.006 mm,

respectively. Similarly, without homing, as shown in Figure 18c, the

repetition precisions of x y, , and z axes are 0.109, 0.011, and

0.007mm, respectively. The variance of the precision among axes is

mainly due to the different transmission type and gear ratio, but all of

these precisions are high enough for our harvesting application. To

evaluate the performance of the arms in this new strawberry

harvester, a repeatability test was conducted on the dual‐arm

system, with each axis tested independently. As shown in Figure

18a, a dial indicator was attached to the arms z axis, the tip of which

was touched by the y axis during the up‐down movement of the z

axis. Two sets of experiments were performed, namely one with

homing and one without homing. When homing the arm during a trial,

the precision is also influenced by the end‐stop sensors. This is

meaningful to the nonabsolute motor encoder, as the arms require

homing after every restart and any positional error is mainly due to

robot zeroing (Conrad et al., 2000). Here, Figure 18b illustrates the

repeatability test results of the homing experiments after zero‐mean

normalization of 50 trials at 200mm/s traveling speed. Following the

ISO 9283 standard on arm repeatability calculation, the repetition

precisions of the x y, , and z axes were measured at 0.209, 0.032, and

0.006mm, respectively. Similarly, in the experiments without homing,

shown in Figure 18c, the repetition precisions of the x y, , and z axes

were 0.109, 0.011, and 0.007mm, respectively. The variance of the

precision among axes is considered to be mainly due to the different

transmission types and gear ratios; however, these precisions are all

of a sufficiently high standard for this harvesting application.

11.2 | Success rate, failure cases, and cycle times

for different types

The performance tests conducted on this new strawberry‐harvest-

ing robot provide valuable information on current state and

identify the limitations and challenges to the system, which are

important for future improvements. The evaluation tests were

implemented from April 8, 2018 to April 10, 2018, following the

completion of the system integration. Two main indicators were

used to evaluate the robots performance, namely success rate, and

picking cycle time, representing harvesting accuracy and speed,

respectively. The failure cases were recorded and analyzed to

identify the challenges, which may be attributed to a variety of

(a) (b) (c)

F IGURE 18 Arm repeatability test results: (a) Testing setup for z axis where a dial indicator was mounted on the z axis and the y axis was

used to touch the dial indicator tip during the up‐down movement of the z axis; (b) repeatability test results for each axis with homing; and (c)

repeatability test results for each axis without homing [Color figure can be viewed at wileyonlinelibrary.com]
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factors ranging from the subsystems of the robot to environmental

factors or even the strawberry itself. Table 2 shows the rates of

harvesting success for the five growing types, while the failure

rates are listed in Table 3. In each trial, the robot attempted to pick

a second time if the first attempt was a failure. More than two

attempts are considered unsuitable since multifailure attempts

might damage the fruit, especially fragile strawberries. Some of the

reasons for picking failure were found to be common for all

growing types; however, there were others in which the robot

encountered new problems when the growing environment

changed. The total number of failures listed in Table 3 includes

both attempts. Therefore, if a strawberry was unreachable, the

number of failures listed under common reasons (5) is 2.

Additionally, several failure cases can appear in one attempt. For

example, if two ripe strawberries were not segmented (Type B (2)),

their localization is listed as incorrect (common reasons (1)).

In general, picking success was seen to decrease gradually from

Type A to Type E, as the growing situations became increasingly

complex. For Type A, the robot was tested on 34 targets with only

one failure at the first attempt, which was because the size of the

target strawberry was almost at the maximum limit (diameter

45mm) that the gripper can swallow. After changing the swallowing

position, the second attempt was successful. For Type B, 22 pairs of

targets were tested for a total of 44 fruits. On the first attempt, 12 of

the 44 picks failed while another 8 were successful in the second

attempt, representing a first attempt success rate of 72.7% and

90.9% for the two attempts. For Type B, the most frequent failure

was caused by swinging (Type B (3) in Table 3). If two strawberries

TABLE 2 Harvesting success rate of the robot in different growing types on the “Lusa” variety of strawberries

Strawberry

distribution type

Quantity of

target fruit

Success on the

first attempt

Success with two

attempts

Unpicked two

attempts

Success rate on the

first attempt (%)

Success rate with

two attempts (%)

Type A 34 33 34 0 97.1 100.0

Type B 44 32 40 4 72.7 90.9

Type C 37 28 31 6 75.7 83.8

Type D 40 20 30 10 50.0 75.0

Type E 20 1 4 16 5.0 20.0

TABLE 3 Harvesting failures of the robot in different growing types on the “Lusa” variety of strawberries

Type Failure reasons

Failure

times

Happening rates among all

failures (%)

Common reasons 1. Localization error

2. Target strawberry not detected

3. Target strawberry diameter too big (diameter over 45mm) for gripper

swallowing

4. Failure to cut the peduncle of strawberry

5. Target locations unreachable, either too high, too low or too far

Type A Common reasons (3) 1 100.0

Type B 1. Common reasons (1), (2), (3), and (4) 4, 4, 2, 1 21.1, 21.1, 10.5, 5.3

2. Two connected ripe strawberries were not segmented during image

processing

3 15.7

3. The second strawberry was swinging after picking the first one, resulting in

large positional error

5 26.3

Type C 1. Common reasons (1), (2), (3), and (5) 2, 4, 2, 2 13.3, 26.7, 13.3, 13.3

2. One or more surrounding immature strawberries were picked together

with the ripe strawberry

3 20.0

3. Peduncle was connected to nearby immature strawberries, stems, or leaves,

thus pushing the ripe strawberry together with these obstacles

2 13.3

Type D 1. Common reasons (1), (2), (3), and (4) 7, 10, 2, 1 19.4, 27.8, 5.6, 2.8

2. Reasons as per Type B (2) and (3) 4, 3 11.1, 8.3

3. Reasons as per Type C (2) and (3) 5, 4 13.9, 11.1

Type E 1. Common reasons (1) and (2) 16, 22 28.1, 38.6

2. Reasons as per Type C (2) and (3) 10, 9 17.5, 15.8
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are connected with static force between them, picking of the first

strawberry could change the position of the second strawberry or

even make it swing dynamically. Thus, when the robot is picking the

second strawberry, the previously obtained position might be

incorrect. This problem can be overcome by incorporating visual

servoing or other real‐time detection techniques for closed‐loop

control. In the tests, most of the swinging strawberries were

successfully picked on the second attempt, after the image proces-

sing results were updated. Moreover, the vision algorithm was

sometimes not able to segment the connected strawberries, which

meant that the robot would go to the center of the two targets,

regarding them as one strawberry. If one of these strawberries was

picked in the first attempt, the second attempt was regarded as a

Type A situation.

In Type C, new problems appeared because of surrounding

immature strawberries. Without segmentation and swinging issues,

the first‐attempt success rate for Type C was slightly higher than that

of Type B (75.7%), but the success rate of the two attempts (83.8%)

was lower than in Type B. This is because the second attempt in Type

C was on the same target with fewer environment changes, which is

markedly different from the circumstances of Type B. If surrounding

small immature strawberries are growing too close to the target, they

are at risk of being swallowed together it, which would not only

decrease future yields but would also mix immature strawberries into

the punnets with the ripe fruit. Another issue (Type C (3)) is that the

peduncle of the target might be connected to nearby immature

berries, stems or leaves, so that the ripe strawberry is pushed up

together with these obstacles that should not be swallowed. Type D

can be regarded as a combination of Types B and C, so their failure

cases may also happen for Type D, making it a more challenging

growing situation than the others. In the tests, only half of the targets

were picked successfully on the first attempt and, with two attempts,

the rate increased to 75.0%. Many of the complex surrounding

berries, leaves or stems were not detected by the vision system.

Finally, Type E presented an almost impossibly complicated situation

for our system, resulting in a mere 5% first‐attempt success rate, in

which one pick was attributed to luck, and increasing to 20% on the

second attempt. Detecting a strawberry with many others in front of

it was a challenge and, in fact, 11 berries could not be detected at all.

Three of the successful picks during the second attempt were

achieved only because the first attempt had cut some of the

surrounding obstacles, making the second attempt easier.

To assess the picking speed of the robot, the picking times for

both the one‐arm and dual‐arm modes were calculated from video

recordings of the movement. Researchers proposed a definition for

cycle harvesting time, which includes perception operation, manip-

ulation of a fruit, placement of the detached fruit, and also the arm

traveling time to the next fruit (Bac et al., 2013, 2017). Due to the

variation in robots and crops, similar metrics have been used by other

works but with some differences, for example, without counting the

time for the arm traveling to the next fruit (Lehnert et al., 2017) or

without adding the perception time (Silwal et al., 2017). Never-

theless, platform moving time has not been taken into account by

most of the reports (Bac et al., 2017; Lehnert et al., 2017; Silwal et al.,

2017). In our system, most of the time taken is in the manipulation

process, since the top‐level control is open loop so the robot only

need to sense an image area once and then the two arms are

actuated to pick all the targets in this image without further

perception needed. Laboratory tests with fake strawberry plants

(6–12 ripe strawberries) indicated that the average time for our

perception system is 0.11 s (i5‐6200 CPU, 16 GB RAM), including

image acquisition, detection, obstacle calculation, and path‐planning.

The cycle time including perception is varied if the number of

strawberries in each image area is different. Also, the gripper can

collect strawberries during picking, so the time taken for the

manipulator to drop individual fruit does not exit. Therefore, similar

to apple harvesting (Silwal et al., 2017), we report the harvesting

time on manipulation time only, including the picking time and arm

traveling time, excluding the time taken to move platforms and pick

punnets. On average, the time in which one arm successfully picked

one target and traveled on to the next was 6.1 s, as shown in Table 4.

This picking speed is faster than that of our previous versions

average of 7.49 s, and is attributed to the increased speed of the

arms in both movement and communication, as well as the new

scanning control method. When using two arms, one berry was

picked in 4.6 s, which is more than half the time taken by the single

arm. This is because of delays while one arm waited for the other

during picking to avoid collision or while the platform was moved.

12 | DISCUSSION AND LESSONS LEARNED

Results show the new autonomous strawberry‐harvesting robot is

more accurate and faster than the previous version. These improve-

ments are the combined result of tight system integration, adaptive

machine vision, cooperative dual arms, an improved gripper, and

intelligent obstacle separation. However, along with these improve-

ments, the new system still faces numerous challenges.

First, the adaptive color‐thresholding method in the machine

vision subsystem shows the ability to adapt to the changing sunlight.

Color thresholding on 2D images is a simple and fast algorithm. It is

TABLE 4 Manipulation time on successful picking with one arm or

two arms configurations

Number

of arms Test no.

Number of

picked

strawberries

Manipulation

execution time

per strawberry Average(s)

One arm 1 2 6.8 6.1

2 3 6.1

3 3 6.0

4 5 5.4

Two arms 1 5 4.4 4.6

2 5 5.2

3 7 4.6

4 8 4.2
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effective and efficient when the environment is simple. However,

during the experiments on the farm, most of the localization errors

came from the image processing. For example, two connected

strawberries could not be segmented or one strawberry was

segmented into two parts because there was a stem in front of it.

This problem may be considered commonplace for traditional image

processing. The current alternative which is to use more advanced

technologies like 3D image processing and deep learning, is likely to

solve many of these problems, especially as processing speed is

unlikely to remain a problem as new hardware is developed. The

whole system was evaluated in the field as listed in Table 3, including

all aspects of failures, but lacked specific evaluation of individual

system. Our future work will consider to standardize the metrics and

data set to compare. the adaptive color thresholding with other

detection methods. In addition, the current gripper is unable to

distinguish between correct (true positive) and incorrect detection

(false positive) of mature strawberries, thus once receiving a target

location, the gripper will pick it anyway regardless of the actual

targets. However if nothing is detected by the gripper, the arm will

skip it immediately and move to the next target (Section 9.2).

Therefore, future improvements will be to use an additional hand‐eye

camera for final verification. Additional hand‐eye cameras can also be

used for closed‐loop vision‐based manipulation, because the current

stationary camera is easily occluded by the arms or grippers during

picking operations.

Second, the proposed active obstacle‐separation algorithm proved

to be effective in field applications, thus improving the harvesting ability

of the robot. As long as there was an entrance (empty blocks) within the

bottom blocks, the gripper was able to find a way to push aside the

surrounding obstacles. However, it was still unable to pick targets that

were fully surrounding by obstacles (leaving no entrance). It was also

still not robust and revealed some limitations, especially from the vision

side. The first limitation is the insufficient view and point cloud. In the

current system, only a single view was used to get the 3D scenario.

However, because of occlusions and the straight projection of the

camera, the rear obstacles were not easily detected, such as the case in

Figure 12a when the bottom left‐rear obstacle was not detected.

Therefore, future work should make use of multi‐view images and

reconstruct more accurate scenes. The second vision problem is that of

inaccurate localization. As the obstacle block size is dependent on the

target bounding box, inaccurate localization of ripe strawberries might

result in the gripper pushing the target when separating surrounding

obstacles. In addition to the vision system limitations, closed‐loop

control between perception and manipulation may be able to improve

the performance of obstacle separation. From a mechanical perspective,

an additional manipulator may also help to separate the obstacles,

like human manipulation in cluttered environment. Also, in some cases,

the gripper size was found to be too large to separate the obstacles

delicately, however, a small‐sized gripper may not be able to swallow

large fruits, so this gap remains to be solved.

Finally, strawberry variety is an important factor that can influence

how the robot, especially the gripper, is designed, as well as the picking

success rate. Based on field observation, varieties like “Lusa” are easier

for picking than others, such as “Rumba,” which has lots of clusters

with short peduncles growing on one stem. This feature makes it

difficult for robots to separate obstacles. This suggests that the

automation of the agriculture industry requires more efforts from

horticulture technology in breeding new varieties and developing new

growing systems to simplify the environment for robots.

13 | CONCLUSIONS

This paper presents a fully integrated strawberry‐harvesting system

capable of picking strawberries in clusters. While several harvesters

that can cope with isolated strawberries have been developed, those

growing in complex clusters remain a challenge. The main scientific

contribution of this paper is the novel obstacle‐separation path‐

planning algorithm, which allows the successful harvest of strawber-

ries that are surrounded by other strawberries, as well as by leaves

and other obstacles. The algorithm uses the gripper to push

surrounding obstacles from an entrance, thus clearing the way for

it to swallow the target strawberry. The separation actions consist of

pushing aside the bottom obstacles before swallowing and pushing

aside the top obstacles during swallowing. The pushing vectors are

derived based on the surrounding obstacles that are calculated using

downsampled blocks of 3D point cloud. This technique might be

applicable to other fruit harvesting systems.

In addition to obstacle separation, improvements were made to

the gripper, the vision system, and the control. For adaptation to the

field environment, a vision system that could automatically change

color thresholds was developed based modeling of color against

sunlight intensity, making it robust to variations in lighting.

Furthermore, a low‐cost single‐rail two Cartesian arm system was

developed, which makes it suitable for agricultural robot application.

The harvesting sequence for the dual‐arm was studied to optimize

harvesting efficiency and avoid collision. This study also presents an

improved gripper design that enables the robot to pick a market

punnet and harvest berries directly into the punnet, thus eliminating

the cost and time for repacking.

Finally, we show the full integration and control algorithm of the

whole system, which enables the robot to harvest continuously along

the polytunnels. The system was tested in the field on a strawberry

farm. Results revealed that the robot was capable of picking partially

surrounded strawberries, with success rates ranging from 50.0% to

97.1% on the first attempt, depending on the different type settings.

This rate rose to between 75.0% and 100.0% on the second attempt.

However, the system was not able to pick a target that was fully

surrounded by obstacles, recording a first‐attempt success rate of

just 5.0%. The picking speed in the one‐arm mode increased to 6.1 s,

including both picking and the arm’s travel time to the next target,

while, for the dual‐arm mode, the average picking time was recorded

as 4.6 s per strawberry. Failures in this new system were caused

mainly by the vision system and insufficient dexterity in the grippers,

which will be addressed in future developments of the harvester.
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APPENDIX: INDEX TO MULTIMEDIA

EXTENSIONS

The table shows some videos of the field experiments presented in

this paper.

Extension

Media

type Description

1 Video Gripper actions and field test of the robot

2 Video Obstacle separation actions in the field

3 Video Failure cases in the field

4 Video Lab demo of the robot (including the newest

version of the gripper)

5 Video Navigation in the farm
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An obstacle-separation method for robotic picking of fruits in clusters

Ya Xiong, Yuanyue Ge and Pål Johan From

Abstract— Selectively picking a target fruit surrounded by
obstacles is one of the major challenges for fruit harvesting
robots. This paper presents a method for actively separating
obstacles from the target by using a combination of push and
drag motions. A linear push is used to clear the obstacles from
the area below the target, while a zig-zag push is used to push
aside more dense obstacles. The zig-zag push can help the
gripper capture a target since the generated shaking motion can
break the static contact force between the target and obstacles.
Furthermore, we propose a novel dragging operation to address
the issue of mis-capturing obstacles located above the target,
in which the gripper drags the target to a place with fewer
obstacles and then push back to move the obstacles aside for
further detachment. Furthermore, an image processing protocol
is developed for the application in a harvesting robot. Field
tests show that the proposed method can improve the picking
performance substantially. This method helps to enable complex
clusters of fruits to be harvested with a higher success rate than
conventional methods.

I. INTRODUCTION

Fruit production that requires selective harvesting is heav-

ily reliant on human labour [1]. This is applicable to crops

such as strawberries, sweet peppers, tomatoes, cucumbers,

etc.. Labour represents the largest cost and also a large

operational uncertainty for fruit growers [2]. Therefore,

several attempts have been made to develop a robotic so-

lution for selective harvesting of fruits. Some fruits, such

as strawberries and tomatoes, tend to grow in clusters. This

makes it difficult to identify and pick individual ripe fruit

without damaging or accidentally picking unripe fruit [1],

[2]. Harvesting fruits that grow in clusters or are surrounded

by obstacles, such as branches and/or leaves, while leaving

the other fruits to remain undamaged on the plant, is one of

the primary challenges for fruit harvesting systems [1], [3].

The surrounding fruits, leaves, stems and other obstacles are

often difficult to separate from the target, both in terms of

detection and in manipulation.

In agricultural robotics field, many researchers try to

avoid obstacles in both vision and manipulation. To avoid

occlusions in sweet pepper picking, a 3Dmovetosee method

was proposed to find the best view with less occlusions

[4]. To avoid obstacles, a method for cucumber picking was

developed that uses a search algorithm to explore the search

space for a feasible trajectory, in which each step of the

trajectory is checked by a collision detector [5]. Most of the

methods found in the literature are passive obstacle avoid-

ance methods, in which the aim is to avoid existing obstacles

*This work was supported by Research council of Norway, FORNY2020,
project number 2962020.

Authors are with Noronn AS and Faculty of Science and Technol-
ogy, Norwegian University of Life Sciences, Ås, Norway {ya.xiong,
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without changing the environment. However, obstacles are

not always avoidable, especially when picking smallsize

fruits in clusters, where the obstacles may be extremely close

to the targets.

Our previous work presented a gripper for strawberry

harvesting that can open fingers to enclose a target from

below [6]. Without moving the obstacles out of the way,

obstacles may prevent the gripper from capturing the target

and may also be swallowed with the target if they are located

close to the target. Similar problems occur when approaching

the fruit from other angles. To solve this issue, in a later

work [1], we proposed to use a single linear push operation

to push aside the obstacles below the target based on the

obstacle sensing from a 3D camera. We found that pushing

obstacles aside, rather than simply avoiding them makes it

possible to pick fruit that would otherwise be inaccessible to

the robot. However, a single linear push may be insufficient

for dense obstacles from multi-direction with respect to

the target, since the linear push moves towards only one

direction. Moreover, the obstacles may be adjacent together

that can not be separated during the push. Furthermore, when

the obstacles connect to the target at the same height, the

gripper may not be able to swallow the whole target but

push it up due to the static contact force between the target

and obstacles. In addition to that, one frequent failure is the

gripper may capture obstacles above the target when it moves

up to detach the fruit, which has not been addressed in the

previous work.

In the field of robotic manipulation, most studies focus on

obstacle avoidance. Nevertheless, we found some research

working on obstacle separation for simple situations. For

a warehouse picking application on desk environment, two

linear pushing policies were proposed to separate rigid

obstacles during the way of the gripper to reach a target bin

[7]. Another work used Learning from Demonstration (LfD)

algorithm for the same application that involves a pushing

action [8]. For a similar situation, researchers proposed to

use physical engine to calculate the dynamics to predict the

object locations for motion planning, which also involves

pushing motions [9], [10], [11]. Reinforcement learning was

also used to train a robot to rearrange objects on a desk using

pushing method to make them sparse for individual grasping

[12]. However, all these methods were tested at simple

environment where some rigid objects were placed on a 2D

desk surface. In the agricultural environment, for example

strawberry plants, fruits are located in 3D within diverse

and unconstrained environments. The flexible peduncles,

deformable fruits and many other crop variations make the

dynamics difficult to calculate and predict. Moreover, the



operation speed of these methods seem very slow, which

may not be suitable for fruit harvesting.

This paper provides the improvements to our previously

proposed obstacle separation method [1]. We extend the

pushing policy by adding a zig-zag push for both horizontal

and upward directions. Most importantly, a novel dragging

operation is proposed to avoid upper obstacles. The proposed

method might be also applicable to harvest other fruits, such

as tomatoes and cucumbers.

II. METHODS

A. Region of Interest

Target

Layer 1
(Top)

Layer 2

(Upper-central)

Layer 4

(Bottom)

Layer 3

(Lower-central)

x

y

o

Target

position

LF

LC

LR

CR

CF

RF

RC

RR

CC

Front view and left side view

Top view

Fig. 1. Region of interest area around the target to determine the presence
of obstacles.

We select a region of interest (RoI) area around the

target to determine the presence of the obstacles. The RoI

comprises a volume of 3D point cloud that contains the target

fruit and potentially one or more obstacles. As shown in

Fig. 1, in this study we extend the height of the RoI to

include the area above the target, such that the target lies

(e.g. wholly) within the RoI. The RoI area can be divided

into four horizontal layers: a top layer 1, an upper-central

layer 2, a lower-central layer 3 and a bottom layer 4.

As the top view is shown in Fig. 1, each layer of the RoI

is further segmented into nine cuboid blocks. On each layer,

the blocks are arranged in a 3x3 grid that has its centre at

the horizontal midpoint of the target strawberry such that

the central block CC encompasses the position of the target

strawberry in the xy plane. In the horizontal view, the length

and width of the outside eight blocks are equal to the central

block. In the front view and left side view, the heights of

layer 1 and layer 4 are equal to one and two of the height of

the target block, respectively. The height of layer 2 and layer

3 are the half of the height of the target block. Particularly,

the central block of layer 1 is shorter than other blocks in the

same layer, 80% of other blocks. This is because the object

segmentation method does not include the green calyx. To

avoid the calyx being detected as an obstacle, we leave the

bottom of the central block in layer 1 blank. Each block is

assigned a horizontal vector representative of the direction

from the block to the central block CC. The direction of

the vector is determined by the position of the block so that

all vectors are directed from the centre of the corresponding

block towards the centre of the central block CC. We use the

number of points N in the block of point cloud to determine

whether there are obstacles present in the block or not. In

this paper, the threshold of N for layer 1, layer 2/3 and layer

4 are 200, 100 and 300, respectively, using the resolution of

1280 x 720 of the RGB-D camera.

The gripper is instructed to operate in three distinct stages.

As the gripper is picking from below, during the first stage,

the gripper moves obstacles horizontally within layer 4.

During the second stage, the device moves up to swallow the

target and separates the obstacles within layer 2 and layer

3. During the third stage, the gripper drags the target into a

picking position with less obstacles if the central block CC

in layer 1 is occupied. The detailed separation policies will

be elaborated in the below sections.

B. Horizontal Push

The first stage is to separate the obstacles horizontally

under the target in layer 4. Compared to our previous method

[1], we add a zig-zag pushing policy in addition to the single

push. A single push means that the gripper linearly pushes

the obstacles aside once, starting from the region with less

obstacles. A zig-zag push is a motion where the gripper uses

a zig-zag movement that contains several linear motions to

push the obstacles side to side. The pushing policy is selected

based on the number and distribution of the obstacles in layer

4. Also, to generate more accurate pushing directions or a

higher resolution, the grid in layer 4 is modified from 2x3

to 3x3.

Fig. 2. Singe push to move the obstacles under the target in layer 4

1) Single Push: As shown in Fig. 2(a), if an obstacle is

located below the target (layer 4), the gripper may capture

the obstacles if it were to move up to enclose the target.

In this case, the gripper can use a single-push operation to

push aside the obstacle (to the right in the figure) before

swallowing the target (Fig. 2(b) and (c)).

Since the gripper size is limited, a single-push operation

makes it easier to move a few number of adjacent obstacles
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Fig. 3. Diagram of the calculation of horizontal push: (a) single push,
where the red arrow is the pushing direction; (b) zig-zag push, where the
red arrow shows the overall direction and the blue arrows are the zig-zag
paths.

out of the way, but hard to separate sparsely distributed

obstacles. Therefore, ignoring the central block, we use the

number of blocks nh within the largest group of adjacent

unoccupied blocks (without obstacles) to determine whether

to use a single-push or zig-zag operation. As shown in Fig.

3(a), ignoring the central block, filled arrows in the blocks

mean the blocks are occupied with obstacles, while the blank

arrows represent unoccupied blocks. In this case, the nh

is 5 and greater than a predetermined threshold th (using

4 in this paper), so a single-push operation is appropriate

to push the obstacles aside. As the pushing operation is

moving towards the obstacles, the direction of the single-

push operation for the gripper is calculated based on the

positions of the occupied blocks according to the following

equation:

Dsingle = −rΣn
1Oi/|Σ

n
1Oi|, nh >= th (1)

where, O is the vector of the ith occupied block within

the largest group of adjacent occupied blocks and n is the

total number of blocks within the largest group of adjacent

occupied blocks. The parameter r is used to scale the Dsingle

norm, which should guarantee that the gripper pushes from

the outside of the blocks (50 mm is used for the current

system). The red arrow in Fig. 3(a) shows the calculated

pushing direction for the single-push operation. It can be seen

that the gripper moves from the center of the unoccupied

blocks to the center of the occupied blocks, such that the

gripper has the highest possibility to move all the obstacles

out of the way. If only the central block CC is occupied,

then Dsingle=0. In this situation, the direction in which the

gripper must move in order to push the obstacles is instead

determined by calculating the shortest path from the current

location of the gripper to the center of the central block CC.

If no obstacles are detected in the blocks, the gripper has

no pushing action at this stage and moves up straightly from

the below.

2) Zig-zag Push: Ignoring the central block, if the number

nh of the largest group of adjacent unoccupied blocks

comprises fewer than the threshold number th of blocks, the

method determines that a horizontal zig-zag push operation is

appropriate. Fig. 3(b) shows a case where a zig-zag operation

is selected to push the obstacles side to side. The red arrow is

the overall direction of the operation, while the blue arrows

are the zig-zag paths. Since the zig-zag operation involves

three directions of movement (forward, left and right), the

gripper can push the three directions of obstacles out of the

way. Therefore, it makes sense that the gripper moves from

the entrance which contains less obstacles. Hence, different

from the single push, the overall direction of the zig-zag

push operation is calculated based on the positions of the

unoccupied blocks according to the following equation:

Dzigzag = −rΣm
1 Uj/|Σ

m
1 Uj |, nh < th (2)

where, U is the vector of the jth unoccupied block within

the largest group of adjacent unoccupied blocks and m is the

total number of blocks within the largest group of adjacent

unoccupied blocks. The norm of Dzigzag is scaled using the

same parameter r as Eq. 1. During a horizontal zig-zag push

operation, the device moves in the xy plane, wherein the

resultant vector of the zig-zag motion is equal to Dzigzag

and the amplitude ah and number of pushes nhp of the zig-

zag motion are determined according to the specific picking

scenario. For example, the effectiveness of the values may be

affected by the peduncle length, fruit weight or the damping

ratio of the fruit, which are difficult to calculate. Based on

some tests in the farm, in the current system, we tune the

ah and nhp to fix values of 20 mm and 5, respectively.

C. Upward Zig-zag Push

Fig. 4. Upward zig-zag operation: when moving upward, the gripper moves
to the left and right to push aside the two sides of obstacles.

After finishing the separation in layer 4, the gripper moves

up to enclose the target in layer 3 and 2. In the previous

work, we introduced a method that moves the gripper with

an offset to the central position of the target for swallowing

a target with a connected berry [1]. This method can help

to avoid swallowing the other connected obstacle. However,

we observed that the target or the obstacles might not fall

down, but are moved up by the gripper when the gripper

moves up due to the static contact force. Inspired from our

daily experience that a shaking operation can help insert an

object into a target place surrounding with obstacles, we add

an upward zig-zag operation to help the gripper swallow the

target and also make it easier for the obstacles to fall on the
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outside of the fingers. Also, similar to the horizontal zig-

zag motion, the upward zig-zag operation can help separate

obstacles in more than one directions. As an example is

shown in Fig. 4, when moving upward, the gripper moves to

the left and right to push aside the two sides of obstacles.

The upward zig-zag push operation comprises the move-

ment of the gripper in a principally vertical direction to-

wards the target fruit and a side-to-side movement to clear

obstacles. The vertical direction passes through the center of

the target. Similar to the horizontal push, we calculate the

direction Du zigzag of the upward push in xy plane based on

the number of blocks nu within the largest group of adjacent

unoccupied blocks. If nu is greater than the threshold th, the

situation is same to the single push in layer 4, so the direction

Du zigzag can be calculated according to the occupied blocks.

Du zigzag = auΣ
n
1Oi/|Σ

n
1Oi|, nu >= th (3)

where, au is the parameter used to scale the Du zigzag norm

(5 mm is used for the current system). If the nu is fewer

than the threshold th, as shown in Fig. 5(a), the calculation

then uses the unoccupied blocks, which is similar to the

calculation of the zig-zag push in layer 4. The calculation

can be concluded as following equation:










M · Du zigzag = 0, nu < th

M = −Σm
1 Uj

|Du zigzag| = au

(4)

where, M is the intermediate vector to calculate Du zigzag.

Therefore, for the case in Fig. 5(a), the gripper moves along

with Du zigzag and −Du zigzag to push aside the two sides

of obstacles. The front view in Fig. 5(b) shows the gripper

moves gradually at left or right intermediate points to pass

over layer 3 and 2. We set the number of pushes nup in each

layer to 5 in the current system.

D. In-hand Drag Above The Target

If an obstacle is located above the target (layer 1), such as

the case shown in Fig. 6(a), the gripper may swallow or dam-

age the obstacles when moving upward to capture the target

strawberry. Furthermore, the obstacles may stop the fingers

closing thus result in cutting failure of the target peduncle.

To solve this problem, we propose an in-hand dragging

Fig. 6. Dragging operation to avoid capture the obstacles: an upward
dragging step moves the target to an area that contains fewer obstacles ((a)
and (b)); an upward push-back step pushes the upper obstacles aside (c)
before closing the fingers (d).

operation, which is opposite to the push operation as used

in other layers. The dragging operation allows the gripper to

pick the target fruit without capturing unwanted obstacles.

The operation comprises an upward dragging step to move

the target to an area that contains fewer obstacles (Fig. 6(b))

and an upward push-back step that pushes the upper obstacles

aside (Fig. 6(c)) before closing the fingers. The push-back

step is necessary because when at the dragging position (Fig.

6(b)), the peduncle is inclined such that the fruit is difficult

to fall due to the static force and easily damaged when the

gripper moves up further towards a cutting position.
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Fig. 7. Diagram of the calculation of the dragging operation: (a) a top
view shows the calculation of the dragging direction Ddrag in xy plane;
(b) a left side view shows the dragging and push-back paths (blue arrows).

The dragging operation is performed only when there are

obstacles in the central block CC of the top layer. If the CC is

unoccupied, the gripper moves directly upwards to pick the

target strawberry. Fig. 7 shows the diagram of the calculation

method of the dragging operation with corresponding to the

example in Fig. 6. As shown in Fig. 7(a), to avoid the

collision between the gripper and the table, the three blocks

LR, CR, RR that are close to the table are skipped for

the calculation of the dragging direction. Then the dragging

direction Ddrag in the xy plane can be determined according

to the following equation:

Ddrag = lΣm
1 Uj/|Σ

m
1 Uj | (5)

where, U is the vector of the jth unoccupied block within

the largest group of adjacent unoccupied blocks. The blocks



Fig. 8. The workflow of the fruit detection and obstacle determination: (a) original point cloud captured by an RGB-D camera; (b) 3D HSI color
thresholding to remove the adjacent noise points from the background; (c) using deep learning to detect the ripe strawberries in an RGB image; (d) fruit
localization and obstacle determination in 3D point cloud.

used for calculation are LC, LF, CF, RF, RC. The parameter

m is the total number of blocks within the largest group of

adjacent unoccupied blocks. The norm of Ddrag is scaled

to l (50 mm is used in the current system). If all blocks

are occupied by obstacles, the dragging direction is aligned

to CF, where there are fewer obstacles in general. Fig.

7(b) shows the dragging and push-back steps, wherein the

dragging and push-back operations moves up the same height

in the vertical direction.

III. EXPERIMENTS

A. Image Processing

The image processing includes the detection and local-

ization of ripe strawberries and also the determination of

obstacles within the RoI for each target. An RGB-D camera

(D435; Intel, USA) was used for image acquisition. The

image processing contains three steps: 1) 3D color threshold-

ing to remove noise points from the background, 2) object

detection and localization using deep learning based on our

previous work [13] and 3) obstacle calculation.

Fig. 8(a) shows the original point cloud, where we can see

some pieces of points from the table (silver) and irrigation

tubes (black) around the strawberries. The table and irrigation

tubes are behind the berries at a distance of about 150 mm.

The inaccurate depth sensing result in some of the points

connecting to the front berries, which may be regarded as

obstacles. To avoid this influence, the first step is to remove

the adjacent noise points (silver and black) by using hue,

saturation and intensity (HSI) color thresholding, as the

result is shown in Fig. 8(b). This step is performed in point

cloud using the jsk pcl ros ROS package. The second step

is the detection and localization of the ripe strawberries.

As shown in Fig. 8(c), we use an instance segmentation

convolutional neural network Mask R-CNN to segment the

objects in pixel level such that the 3D location of the ripe

strawberries can be obtained combining with depth images

[13]. The detection system outputs the 3D bounding boxes

of the target strawberries and the thresholded point cloud

for further obstacle calculation, as shown in Fig. 8(d). The

obstacles around the target is determined based on the

method described in Section II-A. To calculate the number

of points in each block, we crop the bounding box of each

RoI block in point cloud using the CropBox function in the

Point Cloud Library (PCL). Fig. 8(d) shows the obstacle

bounding boxes around a target, where only blocks occupied

with obstacles are displayed.

B. Field Test Setup

Fig. 9. The strawberry-harvesting robots in the farm: (a) robot version
2.0 using a previous developed Cartesian arm; (b) robot version 3.0 using
a newly-developed SCARA arm.

We conducted two sets of experiments in two places: a

greenhouse at the Boxford Suffolk Farms (England) and

a university experimental tunnel at Norwegian University

of Life Sciences (Norway). The tests were carried out on

strawberry cultivars of “Malling Centenary” in England and

“Murano” in Norway. Generally, “Malling Centenary” is eas-

ier for obstacle separation because most of the berries have

long and independent peduncles, while “Murano” berries has

more clusters with short peduncles growing on one stem.

The different biological characteristics may result in different

performance of the robot. The England experiments were

performed based on our previously developed strawberry-

harvesting robot (version 2.0) [1], as shown in Fig. 9(a).

The tests in Norway used our newly-developed robot with a

SCARA arm (version 3.0), as shown in Fig. 9(b).

C. Results

1) Application examples: Fig. 10 demonstrates three ex-

amples of the robot separating obstacles in different situa-

tions using the proposed algorithm. Each row of the images
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Fig. 10. Examples of the obstacle separation in the field test: each row of images represents a picking case, where the first (left) image shows the detection
and localization of target and obstacles and the last image (right) displays the 3D path of the gripper.

in Fig. 10 shows a picking case, in which the first image is

the detected target and obstacles in the point cloud and the

last image displays the 3D path of the gripper. Fig. 10(a)

and (b) show the cases using robot version 2.0 on “Malling

Centenary” and Fig. 10(c) illustrates an example using robot

version 3.0 on “Murano”.

In Fig. 10(a), a green obstacle is located above the target,

which may be swallowed when the gripper is open to capture

the target. Fig. 10(a-1) shows that there are no obstacles in

layer 2,3 and 4, but in layer 1, the central block CC and three

other blocks LC, LF and CF are occupied with obstacles, so

based on Eq. 5, a dragging operation is required and the

dragging direction Ddrag is front right side in the image.

As there are no obstacles in layer 2,3 and 4, the gripper

moves up directly to enclose the target, as shown in Fig. 10(a-

2) and (a-3). After holding the target, the gripper drags the

target to the front-right region while moving upward where it

contains less obstacles (Fig. 10(a-4)). At this position, if the

gripper continues to move up, it might be difficult for the

target to fall down towards a cutting position because the

peduncle is inclined and the target has a contact force with

the fingers. It may also damage the target with such a force.

Therefore, in Fig. 10(a-5), the gripper pushes back to the

central position while moving up for further fruit detachment

(Fig. 10(a-6)), in which the upper obstacles are pushed aside.

The blue line in Fig. 10(a-7) shows the recorded 3D path of

the gripper during the operation, while the red line is the

trajectory projection on the xy plane, from which we can

see that the gripper drags the target to −y and +x direction

and then moves back. In the last image of each case, path

1, 2 and 3 represents the three stages of operations in the

bottom layer, central layers and top layer, respectively.

Fig. 10(b) and (c) demonstrate two more examples of

the obstacle separation algorithm with more obstacles in the

central layers and bottom layer. Only two blocks (LR and

CR) in layer 4 are unoccupied with obstacles for the target

in Fig. 10(b-1). Therefore, the gripper uses the horizontal

zig-zag push from the left rear to right front (the red line in

Fig. 10(b-7) shows the direction) to push the obstacles side

to side, as can be seen in Fig. 10(b-2) to (b-4). Then, the

gripper continues to use the upward zig-zag push operation to

separate the obstacles in the central layers (Fig. 10(b-5) and

(b-6)). Without this operation, the target and the obstacles

may not be separated but pushed up together due to the

contact force between each other. The situation in Fig. 10(c)

is similar to Fig. 10(b). The system also determines to use the

horizontal zig-zag push to clear the obstacles in the bottom

layer and the upward zig-zag push to separate the obstacles

from the target in the central layers. Particularly, as shown

in Fig. 10(c-3), a red obstacle namely ob that is located in

the upper left corner of the target may be captured by the

gripper if it moves up directly. This may result in failure

cutting of the target and also damage to the obstacle ob. With

the upward zig-zag push, the gripper moves to the right side

where the obstacle is out of the fingers, as shown in Fig. 10(c-

4). Then it moves back to the left and successfully pushes

the obstacle ob aside (Fig. 10(c-5)).

2) Performance test and failure cases: We recorded the

tests data in England and Norway with different settings

to analyze the feasibility and performance of the obstacle-
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separation method. The tests in England only show the results

using the obstacle-separation method, while in Norway, we

conducted a comparison test, using and without using the

obstacle-separation method. For the tests in England, we did

not include the closed-loop positional error control during

picking (see details in [6]), so it may increase the damage.

While for the tests in Norway, the closed-loop control has

been added before starting the operation in central layers,

which may reduce the picking speed compared to the Eng-

land tests. For each setting, we implemented 100 attempts for

the detected targets. Also, as the focus in this study is the

obstacle-separation method, only the targets with obstacles

were used for the tests. This may result in a lower success

rate compared to our previous reports, because the robot has

a good performance for isolated strawberries [6].

Fig. 11 reports the success rates in each stage and also the

whole process under different settings. The whole process

means the manipulation in the whole three stages in the bot-

tom layer, central layers and top layer. In each independent

stage, we only considered the results with obstacles in the

corresponding layers, while a whole process may contain

zero obstacle in one or two stages but at least one obstacle

in all the layers. The success in the whole process means that

in all the stages the separation is successful. Generally, the

comparison tests in Norway show that the obstacle-separation

method is effective compared to the attempts without using

the obstacle-separation method. Also, the variety of “Malling

Centenary” tends to be easier for picking compared to

“Murano”. To be more precise, the comparison tests show

that the dragging operation in the top layer is most effective,

increasing the success rate from 42.3% to 75.5% in the

Norway tests. The bottom layer is the easiest layer in terms of

obstacle separation. This might be attributed to the gripper

design, since the opening action of the fingers under the

target can help to push the obstacles aside. The manipulation

in the central layers is difficult, showing a success rate of

70% and 52.8% with and without using the upward zig-zag

push method, respectively. The success rate of the whole

process is relatively low compared to the operation in the

individual layer. We included the failures caused by the

inaccurate localization of the targets before manipulation to

the success rate calculation of the whole process, which takes

up about 18% of all failures. It is also worth noting that

in the whole process test, one or two layers may have no

obstacles. Therefore, the success rate of the whole process

is not simply obtained by the product of the success rates of

the three stages. For the test on “Murano”, the success rate of

the whole process increases from 22.2% to 45.6% by using

the separation method. The same separation method shows

a better performance (65.1%) on the variety of “Malling

Centenary”.

TABLE I

THE AVERAGE NUMBER OF OBSTACLES AND MANIPULATION TIME.

Test settings

Average number of obstacles Average 
manipulation time (s)Bottom layer Central layers Top layer Whole process

Successful 
cases

Failure 
cases

Successful 
cases

Failure 
cases

Successful 
cases

Failure 
cases

Successful 
cases

Failure 
cases

Successful 
cases

Failure 
cases

England test 
with separation 2.4 3.0 2.0 2.7 1.8 2.0 5.4 8.0 5.0 4.7
Norway test 
with separation 4.2 4.4 3.1 4.0 2.7 2.6 7.6 8.8 7.6 6.9
Norway test 
without 
separation 2.8 3.3 2.4 2.5 2.4 2.4 4.8 5.9 5.3 4.8

We also recorded the average number of obstacles and

manipulation time for both successful and failure cases,

as shown in Table I. The manipulation time only includes

the picking time and arm traveling time [1]. Generally, the

average number of obstacles in the successful cases is fewer

than that in the failure cases. This means that more obstacles

will reduce the success rate. For the comparison tests in

Norway, it is clear that without using the separation method,

the average number of obstacles is fewer than using the

separation method, which means that the separation method

is able to work in the cases with more obstacles. In addition,

the England tests have fewer obstacles in all cases, which

indicates that “Malling Centenary” contains less clusters. As

for the manipulation time, it can be seen that the successful

cases took more time than failure cases. This is because that

in the failures cases, the gripper may return once no targets

are captured by the gripper. It is also evident that the tests

using the separation method take about 2.2 s more than those

without separation in the Norway tests.

As shown in Table II, the most common failure reason

before manipulation is the inaccurate depth sensing due to the

front obstacles. Also, since our vision system is open loop,

the pre-calculated target position might be changed after

picking other berries. This is more considerable for “Malling

Centenary” as the peduncles are longer and easier to swing

after shaking. For the bottom layer, the most frequent failure

is caused by the horizontal push because the target position

might be changed after pushing other obstacles. This is easier

to see when the target and obstacles grow on the same stem.

Moreover, if the tip of the target berry is not detected, the

top of the bottom layer is higher than the target. Then, the

gripper might pushed the target away while moving other

obstacles. On the other side, if the top of the bottom layer is

lower than the target, the gripper might not be able to push



TABLE II

FAILURE REASONS FOR THE TESTS USING THE SEPARATION METHOD.

Stages Failure reasons Murano
Malling
Centenary

Before 
manipulation

1. Target position was changed after picking others 18.7% 33.7%

2. Inaccurate localization due to front obstacles 81.3% 66.3%

Bottom layer

1. Changed the target position when pushing obstacles 50% 56.3%

2. Inaccurate estimation of the target bottom position, 
resulting in pushing the target away or swallowing obstacles

25% 31.2%

3. Pushed new obstacles to the below of the target, resulting 
in swallowing small obstacles or pushing the target up

16.7% 12.5%

4. Did not detect the small obstacles, so did not remove it 
before the operation in central layers

8.3% 0

Central layers

1. Swallowed small obstacles, due to failure detection or too 
small to separate

52.6% 38.9%

2. Swallowed the target, but the connecting obstacles stopped 
the separation due to the static contact force or short 
peduncles

26.4% 16.7%

3. One or more obstacles were captured together with the 
target, so the gripper is getting stuck

21% 44.4%

Top layer

1. Did not detect small obstacles, or swallowed obstacles in 
other blocks; did not drag when it is necessary

60.9% 21%

2. Obstacles moving with the target while dragging or 
dragging distance is too short

26.1% 63.2%

3. Dragged to a place that contains obstacles 13% 15.8%

the obstacles aside, resulting in swallowing obstacles. For

the central layers, the biggest issue for “Murano” is the mis-

capturing of small obstacles due to the unsuccessful detection

or too small size to separate. This issue is not very frequent

to “Malling Centenary”, since it does not have too many

small flowers or berries growing on the same stem of the

target. A noticeable failure issue for both varieties is gripper

getting stuck due to swallowing of other obstacles together

with the target. Then, both the target and obstacles may be

pushed up and could not be captured. One reason for this

issue is the upward zig-zag push capturing obstacles occa-

sionally. Also, the gripper may swallow obstacles and the

target from the beginning due to the inaccurate localization.

Another issue is that the gripper may not be able to separate

connected berries due to the static contact force between

them or short peduncles of the berries. In the top layer,

the most frequent failure for “Murano” is the case where a

dragging operation is not performed but required. This may

be due to the unsuccessful detection of small objects or mis-

capturing obstacles in other blocks when the central block

in the top layer has no obstacles. However, for “Malling

Centenary”, the common failure case is the obstacles moving

with the target during the dragging operation due to the

long peduncles or the insufficient separation due to short

dragging distance. Learned from the failure cases, we think

that a closed-loop vision guided manipulation system may

improve the performance of the obstacle-separation method

considerably, in which the positions of the obstacles and the

target are updated continuously.

IV. CONCLUSIONS

We present an obstacle-separation method for selectively

picking a target fruit surrounded by obstacles. In addition

to the old single push, a zig-zag push operation was used

for both bottom layer and central layers of the target, which

is able to separate more dense obstacles because of the

multi-direction pushes. Also, it helps the gripper capture

a target since the generated shaking motion can break

the static contact force between the target and obstacles.

Furthermore, we proposed a novel dragging operation to

address the issue of mis-capturing obstacles located above

the target, in which the gripper drags the target to a place

with fewer obstacles and then push back to move the

obstacles aside for further detachment. The separation paths

are calculated based on the number and distribution of the

obstacles. Also, an image processing protocol was developed

for the application of the method in a harvesting robot.

Field tests showed that the proposed method can improve

the picking performance substantially. The performance

may be further improved by incorporating a closed-loop

vision guided manipulation system. A video of the field

experiments can be found at https://drive.google.

com/file/d/15BO2_4aaR5KHxbgOJQ9fV76zf0_

i4GJs/view?usp=sharing.

REFERENCES

[1] Y. Xiong, G. Yuanyue, L. Grimstad, and P. J. From, “An autonomous
strawberryharvesting robot: Design, development, integration, and
field evaluation,” Journal of Field Robotics, pp. 1–23, 2019.

[2] S. Yamamoto, S. Hayashi, H. Yoshida, and K. Kobayashi, “Develop-
ment of a stationary robotic strawberry harvester with a picking mech-
anism that approaches the target fruit from below,” Japan Agricultural

Research Quarterly: JARQ, vol. 48, no. 3, pp. 261–269, 2014.
[3] H. Yaguchi, K. Nagahama, T. Hasegawa, and M. Inaba, “Development

of an autonomous tomato harvesting robot with rotational plucking
gripper,” in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ

International Conference on. IEEE, 2016, pp. 652–657.
[4] C. Lehnert, D. Tsai, A. Eriksson, and C. McCool, “3d move to see:

Multi-perspective visual servoing for improving object views with
semantic segmentation,” arXiv preprint arXiv:1809.07896, 2018.

[5] E. J. Van Henten, J. Hemming, B. Van Tuijl, J. Kornet, J. Meuleman,
J. Bontsema, and E. Van Os, “An autonomous robot for harvesting
cucumbers in greenhouses,” Autonomous Robots, vol. 13, no. 3, pp.
241–258, 2002.

[6] Y. Xiong, P. J. From, and V. Isler, “Design and evaluation of a
novel cable-driven gripper with perception capabilities for strawberry
picking robots,” in 2018 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2018, pp. 7384–7391.
[7] M. Danielczuk, J. Mahler, C. Correa, and K. Goldberg, “Linear push

policies to increase grasp access for robot bin picking,” in 2018 IEEE

14th International Conference on Automation Science and Engineering

(CASE). IEEE, 2018, pp. 1249–1256.
[8] M. Laskey, J. Lee, C. Chuck, D. Gealy, W. Hsieh, F. T. Pokorny,

A. D. Dragan, and K. Goldberg, “Robot grasping in clutter: Using
a hierarchy of supervisors for learning from demonstrations,” in
2016 IEEE International Conference on Automation Science and

Engineering (CASE). IEEE, 2016, pp. 827–834.
[9] N. Kitaev, I. Mordatch, S. Patil, and P. Abbeel, “Physics-based

trajectory optimization for grasping in cluttered environments,” in 2015

IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2015, pp. 3102–3109.

[10] M. Moll, L. Kavraki, J. Rosell, et al., “Randomized physics-based
motion planning for grasping in cluttered and uncertain environments,”
IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 712–719,
2017.

[11] M. R. Dogar, K. Hsiao, M. Ciocarlie, and S. S. Srinivasa, “Physics-
based grasp planning through clutter,” Robotics: Science and Systems

VIII, p. 57, 2013.
[12] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,

“Learning synergies between pushing and grasping with self-
supervised deep reinforcement learning,” in 2018 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2018, pp. 4238–4245.

[13] G. Yuanyue, Y. Xiong, and P. J. From, “Fruit localization and
environment perception for strawberry harvesting robots,” (Under

review: https://drive.google.com/file/d/1gS1QNcW6YVmTu8WUxSPz

zIOKZuI3-YY/view?usp=sharing), 2019.





Philosophiae D
octor (PhD

), Thesis 2019:90
Ya Xiong

105400 / A
N

D
VO

R
D

G
R

A
FISK

.N
O

ISBN: 978-82-575-1653-6  
ISSN: 1894-6402

Postboks 5003  
NO-1432 Ås, Norway
+47 67 23 00 00
www.nmbu.no


	Development and field evaluation of a strawberry harvesting robot with a cable-driven gripper
	Introduction
	Materials and methods
	System overview and experimental setting
	Robotic platform
	Cable-driven gripper
	Design
	Optimal cutting position control

	Machine vision

	System integration and control
	System architecture
	Control strategy of the complete system
	Individual picking control
	Harvesting sequence in action

	Results and discussions
	Detection performance
	Gripper performance
	Absolute accuracy and repeatability of system localisation
	Execution time
	Success rate, failure cases and lessons learned

	Conclusions
	Conflicts of interest
	Acknowledgements
	Supplementary material
	References

	INTRODUCTION
	Methods
	Region of Interest
	Horizontal Push
	Single Push
	Zig-zag Push

	Upward Zig-zag Push
	In-hand Drag Above The Target

	EXPERIMENTS
	Image Processing
	Field Test Setup
	Results
	Application examples
	Performance test and failure cases


	CONCLUSIONS
	References
	Blank Page
	Blank Page



