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Abstract

The present thesis is devoted to the comparative analysis of heterogeneous and ho-
mogeneous neural field models. The motivation for this work stems from the fact
that there is considerable interest in processes in neural tissue, which can underlie
both natural and pathological neurobiological phenomena (e.g., orientation tuning
in primary visual cortex, short term working memory, control of head direction,
motion perception, visual hallucinations and EEG rhythms). The main aim of
this thesis is to investigate the outcome of the analysis of a heterogeneous neural
field model and its homogeneous counterpart. Another goal is to get more realis-
tic dynamical models for the brain function which takes into account microscopic
effects. Mathematically, this approach is formulated in terms of (a system of) non-
linear integro-differential equations. These models describe nonlinear interactions
between neuron populations. They are used as a starting point to study traveling
wave fronts, localized stationary solutions (bumps) and pattern formation.

The first part of the thesis consists of the introduction. Here we first give
a short review of the neurophysical background. Secondly, we introduce the key
mathematical objects of the present thesis, namely a neural field model of the
Amari type and a 2-population homogenized neural field model. We also review
the basic ideas of homogenization theory and the two-scale convergence method.
Then we summarize the results and give ideas for future works. The second part
of the thesis consists of three papers. Paper I deals with the existence and linear
stability of stationary periodic bump solutions to a neural field model of the Amari
type. In Paper II and III we focus on 2-population homogenized neural field models
where the cortical microstructure is taken into account in the connectivity strength.
We study the existence and stability of localized stationary single bump solutions
(Paper II). In Paper III we investigate pattern forming processes in the same neural
field model. The key methods in the present study are a pinning function technique
for the existence of bumps, spectral methods and properties, block diagonalization
and the Fourier decomposition method in the stability assessment and numerical
simulations.

We believe that the present thesis contributes to the understanding of the brain
functions, both in normal and pathological cases.
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Sammendrag

I denne avhandlingen utføres en komparativ analyse av heterogene og homogene
nevrale nettverksmodeller. Motivasjonen for dette arbeidet er interessen for pros-
esser i hjernebarken, som kan være grunnlag for b̊ade naturlige og patologiske
nevrobiologiske fenomener (for eksempel i orienteringsinnstilling i den primære vi-
suelle hjernebarken, korttidsminne, kontroll av hoderetning, bevegelsesoppfattelse,
visuelle hallusinasjoner og EEG-rytmer). Hovedformålet med denne avhandlingen
er å analysere en heterogen nevral nettverksmodell og dens homogene motstykke.
Et annet mål er å f̊a mer realistiske dynamiske modeller for hjernefunksjonen, som
tar hensyn til mikroskopiske effekter. Disse modellene er gitt som (et system av)
ikke-lineære integro-differensiallikninger. Disse modellene beskriver ikke-lineære in-
teraksjoner mellom nevronpopulasjoner. De brukes som utgangspunkt for å studere
bølgeforplantning, lokaliserte stasjonære løsninger (bumps) og mønsterdannelse.

I introduksjonen presenterer vi en oversikt over den nevrofysiologiske bakgrun-
nen. Videre introduserer vi de matematiske modellene som er sentrale i denne
avhandlingen, det vil si en nevral nettverksmodell av Amari- typen og en ho-
mogenisert 2-populasjon nevral nettverksmodell. Vi gjennomg̊ar ogs̊a grunnbe-
grepene i homogeniseringsteori og toskala konvergensmetoden. Deretter oppsum-
merer vi resultatene og fremlegger ideer for videre arbeid. Den andre delen av
denne avhandlingen best̊ar av tre artikler. Artikkel I omhandler eksistensen og den
lineære stabiliteten til stasjonære periodiske bump-løsninger i en nettverksmodell
av Amari-typen. I artikkel II og III fokuserer vi p̊a en homogenisert 2-populasjons
nevral nettverksmodell, hvor mikrostrukturen i hjernebarken tas med i beregningen
av konnektivitetsstyrken. Vi undersøker eksistensen og stabiliteten til lokaliserte
stasjonære bump-løsninger (artikkel II). I artikkel III studerer vi mønsterdannende
prosesser i den samme nevrale nettverksmodellen. De sentrale metodene i denne
studien er en pinning-funksjonsteknikk for eksistens av bumps. Stabilitetsanalysen
er gjennomført ved hjelp av spektral metoder , blokk diagonalisering og Fourier-
transformasjon og numeriske simuleringer.

Vi mener at denne avhandlingen bidrar til forst̊aelsen av hjernens funksjoner,
b̊ade under normale og patologiske omstendigheter.
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1 Introduction

1.1 Background

The human brain is a large complex biological system. There has been a tremendous
interest in understanding the physiological basis of brain rhythm. The cerebral
cortex is the outer layer of neural tissue 1.3 − 4.5 mm thick. It consists of about
16 billion neurons and about 60× 1012 connections (synapses). The cerebral cortex
involved in higher functions such a memory, spatial reasoning, conscious thought
and language [1, 2].

A neuron (nerve cell) as a primary component of the brain cortex consists of a
cell body (soma), dendrites, and an axon, see Fig. 1. Dendrites receive electrical
and chemical signals from surrounding neurons via synapses to the cell body. Hence,
dendrites represent an input function. The cell body processes input data. If the
total sum of input signals exceeds a certain threshold value, then the neuron fires a
spike (action potential), i.e. produces an output signal. Further, a neuron transmits
information through an axon to other neurons. See Fig. 2.

Figure 1: Anatomy of a neuron,
https://en.wikipedia.org/wiki/Neuron

Input

Cell Body

Output

Threshold

Figure 2: A schematic interpretation of
the signal processing properties of a neu-
ron.

In the simplest sense, cortical neurons can be divided into two groups: exci-
tatory and inhibitory cells. An excitatory neuron increases the probability of an
action potential occurring in a postsynaptic cell while an inhibitory neuron makes
a postsynaptic neuron less likely to generate an action potential.

The first recording of the human electroencephalogram (EEG) was made by
Hans Berger in 1924 [3]. It was the stimulus to develop mathematical models
of cortical tissue often referred to as neural field model. In the 1950s Beurle [4]
developed a continuum description of the proportion of active neurons in a random
connected network. It was one of the earliest versions of such models. In the 1970s
Wilson and Cowan [5, 6], Nunez [7] and Amari [8] provided the formulations for
neural field models that are in common use today.

1.2 Continuous neural field model

Continuous neural field models e.g. introduced by Amari [9, 8] are used to investi-
gate large-scale activity of neuronal population. These types of models have been
used to study EEG rhythms [10], visual hallucinations [11, 12, 13], mechanisms for
short term working memory (the temporary storage of information within the brain)
[14, 15, 16], information processing [17, 18] and motion perception [19]. The dy-
namic behavior of neural field models contains of spatially and temporally periodic
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patterns found in visual hallucinations, traveling waves (fronts, pulses, target wave
and spirals) relevant for information processing and stationary localized structure,
commonly referred to as bumps and multi-bumps, related to short term memory.
In many continuum models for the propagation of electrical activity in neural tissue
it is assumed that the synaptic input current is a function of the pre-synaptic firing
rate function.

The simplest neural field models are expressed in terms of integro-differential
equations (or systems of such equations) defined on the real line or on the plane.
The corresponding nonlocal terms feature a synaptic kernel, i.e. a function that
models the neuron connectivity at a macroscopic scale. The synaptic kernel is often
assumed to be depended on the Euclidean distance between points on the domain
and homogeneous. Experimentally it is found that most cortical neurons switch
from a resting state to an active state. A resting state is characterized by a low
rate of spontaneous firing whereas an active state is characterized by either tonic
(regular, repetitive) firing or bursting [20]. Continuous neural field models focus on
tonic firing neurons since the majority of cells in cortical networks contains this type
of neurons. In this case the neural firing rates at a certain time are given by nonlinear
function of the neural activity at the same time. A natural choice for firing rate is
a smooth sigmoid-like function. However, neural field models can be conveniently
analyzed in the limit of Heaviside firing rates. Provided the Heaviside firing rate a
neuron fires maximally or not at all, depending on whether or not synaptic activity
is above or below some threshold. See Bressloff [21] and the references therein.

Notice that in the present thesis one of the works is devoted to the study of
stationary periodic solutions (bumps) in a continuous neural field model of the
Amari type with the Heaviside function as a firing rate function. In particular, we
investigate the existence of 1-bump periodic solutions of the model by applying the
well-known Amari approach, see [8]. Then we analyze their linear stability by using
spectral methods.

1.3 2-population neural field model of the Amari type

Let E be an excitatory population of neurons with activity level ue and I be an
inhibitory population of neurons with activity level ui. Then the dynamics of exci-
tatory and inhibitory interactions are modelled in a symmetric way: the population
I receives impulses from all neurons of population E and vice versa. Besides, each
neuron of each population receive impulses from neighbor neurons within the same
population, see Fig. 3.
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Figure 3: A schematic illustration of interactions between excitatory (E) and in-
hibitory (I) populations in neural field model with corresponding activity levels ue

and ui.

In the classical 2-population models introduced by Wilson and Cowan [6], ex-
citatory and inhibitory cells are treated the same with a single scalar number (the
firing rate) associated with each neuron. Pinto and Ermentrout [22] have taken into
account the activity of synaptically coupled networks of excitatory and inhibitory
neurons in a single domain assuming an arrangement of synaptic connections de-
scribed by ”lateral inhibition” (LI) as in [8]. However their model neglects a term
describing recurrent inhibition (i → i) and assumes a linear firing rate function for
the inhibitory population. The analysis in [22] does not support the hypothesis that
sustained activity in prefrontal cortex is a result of the dynamics in a LI network.
Later Blomquist et al. [23] generalized the model studied by Pinto and Ermentrout
[22] by including a recurrent inhibitory term in the inhibitory equation as well as
assuming the coupling from inhibitory to excitatory neurons to be nonlinear. Thus,
the extended neural field model of excitatory and inhibitory neurons distributed in
a line along of the x-axis reads:

∂

∂t
ue = −ue + ωee ⊗ Pe(ue − θe)− ωie ⊗ Pi(ui − θi)

(1)

τ
∂

∂t
ui = −ui + ωei ⊗ Pe(ue − θe)− ωii ⊗ Pi(ui − θi)

where ωmn ⊗ Pm is the convolution of ωmn and Pm (m,n = e, i) defined by

(
ωmn ⊗ Pm(um − θm)

)
(x, t) ≡

∫
Ω

ωmn(x− x′, t)Pm(um(x′, t)− θm)dy′dx′ (2)

Here Ω is a subset of RN . The neurons are assumed to occupy Ω. ue(x, t) and
ui(x, t) denote the synaptic input to an excitatory and inhibitory neurons, respec-
tively, at the spatial point x and time t > 0. The functions ωmn(x−x′) (m,n = e, i)
describe the coupling strengths (referred to as the connectivity functions) between
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neurons at positions x and x′, whereas Pm (m = e, i) are the firing rate functions
with corresponding threshold values θe and θi of the excitatory and inhibitory neu-
rons, respectively. The parameter τ is the relative inhibition time i.e. τ = τi/τe
where τe (τi) is the excitatory (inhibitory) time constant.

The model (1) is often referred to as a 2-population neural field model of the
Amari type.

The existence and stability of stationary localized solutions (a pair of single
bumps Ue and Ui) in the 2-population model (1) with the Heaviside firing rate
functions have been studied in [23]. Wyller et al. [24] have investigated the Turing
instability and pattern forming processes within the framework (1) in one spatial
dimension as a function of the steepness of the firing rate function. In particular,
the stationary periodic patterns and spatiotemporal oscillations of (1) have been
detected in the pattern forming process.

1.4 Homogenization and two-scale convergence

Here we give an elementary presentation of the basic ideas in the homogenization
theory. Since the homogenization theory has important applications in the mathe-
matical analysis of different physical and mechanical phenomena, we use methods
of this theory to study inhomogeneous impact in the neural fields.

Homogenization is a method for modeling processes in micro inhomogeneous
media, which are encountered in mechanics, physics and engineering. These pro-
cesses are described by PDEs with rapidly oscillating coefficients or boundary value
problems in domains with complex microstructure. Given the complexity of these
processes, the best techniques to solve a wide variety of problems involve construct-
ing appropriate macroscopic (homogenized) models.

The theory of homogenization has a long history. It has rapidly developed during
the last three decades. This theory has important applications in the mathematical
analysis of different physical and mechanical phenomena, see e.g. [25, 26, 27, 28].
The systematic mathematical theory of homogenization was built in [29, 30, 31, 32,
33] and so on.

Let the open bounded set Ω ⊆ R
N be occupied by the heterogeneous medium

and let ∂Ω be its boundary. Assume that the heterogeneities are evenly periodically
distributed. Then because of the periodicity we can divide Ω into periodic cells
Y = [0, 1]N with the side length ε, see Fig. 4.

Figure 4: The sample of periodic medium with the representative Y -cell.
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Mathematically we have a family of partial differentiable operators Aε(x) =
A(xε ) with A(y) being periodic with respect to y ∈ Y and a family of solutions uε.
For simplicity, we choose Y to be the unit cube. For a given source term f we
obtain the following boundary value problem:{

−∇ · (Aε(x)∇uε(x)
)
= f(x), in Ω

uε(x)) = 0, on ∂Ω.
(3)

The homogenization procedure is not restricted to periodically oscillating oper-
ators. Here, however, we focus on the periodically oscillating case. This allows us to
use the well-known two-scale asymptotic expansion method [29, 34, 35] in order to
find the precise form of the homogenized operator. With this approach we assume
that the solutions uε can be expanded in a power series in ε of the form

uε(x) = u0

(
x,

x

ε

)
+ εu1

(
x,

x

ε

)
+ ε2u2

(
x,

x

ε

)
+ ... , (4)

where each term ui(x, y) is periodic in y. Then if ε → 0 the sequence of uε

converges, in some sense, to u0, where u0 is the unique solution of the so-called
homogenized problem {

−∇ · (A0∇u0(x)
)
= f, in Ω

u0 = 0, on ∂Ω.
(5)

The two-scale asymptotic expansion method is very simple and powerful. How-
ever it is formal since, a priori, the ansatz (4) does not hold true. This method is
used only to guess the form of the homogenized operator A0. To prove the conver-
gence of the sequence uε to u0 we need other arguments. Next we provide a more
efficient homogenization method that is called the two-scale convergence method
[32]. Note that there are other convergence methods such as Γ-convergence (intro-
duced by De Giorgi, [36, 37] and also [38, 39, 40, 41]), G-convergence for monotone
operators (introduced by Spagnolo [42] in 1967), see e.g. [43, 29, 44, 33, 45], and H-
convergence (introduced by Tartar in 1977, see [46]), where H-convergence initially
is an extension of G-convergence to a wider class of problems.

Two-scale convergence method was invented by Nguetseng in 1989, see [30]. The
method relies on the following theorem:

Theorem 1. Let uε be a bounded sequence in L2(Ω). There exists a subsequence,
still denoted by uε, and a function u0(x, y) ∈ L2(Ω× Y ) such that

lim
ε→0

∫
Ω

uε(x)ψ(x,
x

ε
)dx =

∫
Ω

∫
Y

u0(x, y)ψ(x, y)dydx (6)

for any smooth function ψ(x, y), which is Y -periodic in y. Such a sequence uε is
said to two-scale converge to u0(x, y).

In 1992 Allaire [32] developed the theory further by studying some general prop-
erties of two-scale convergence. Allaire provided a simple proof of theorem 1 along
with a new corrector result.
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Definition: A sequence of functions uε in L2(Ω) is said two-scale converge to
a limit u0(x, y) ∈ L2(Ω × Y ) is for any function ψ(x, y) ∈ L2(Ω;C∞(Y )), where
C∞(Y ) is the space of infinitely differentiable functions in R

N that are periodic of
period Y , we have

lim
ε→0

∫
Ω

uε(x)ψ(x,
x

ε
)dx =

∫
Ω

∫
Y

u0(x, y)ψ(x, y)dydx. (7)

Theorem 2. From each bounded sequence uε in L2(Ω), we can extract a subse-
quence, and there exists a limit u0(x, y) ∈ L2(Ω × Y ) such that this subsequence
two-scale converges to u0.

Moreover Allaire used two-scale convergence to analyze several homogenization
problems, both linear and nonlinear.

Two-scale convergence has also been generalized to n-scale convergence (or multi
scale convergence) in the obvious way. In [47, 48, 49] n-scale convergence were used
to study so-called reiterated homogenization.

1.5 2-population homogenized neural field model

Most studies of a 1- and 2-populations neural field models of the Amari type as-
sume that cortical medium is homogeneous and isotropic, i.e. ω(x, y) = ω(|x− y|).
However, the best known cortical area, primary visual cortex has a periodic-like
microstructure on the millimeter length-scale, reflecting the existence of various
stimulus feature maps. This has motivated a number of studies to consider the ef-
fect of a periodically modulated weight distribution on wave propagation in neural
field, see e.g. [50, 51, 52, 18, 53, 54, 55, 56]. It have been shown that the mi-
crostructure has an impact on the pattern forming mechanisms as well as existence
and stability of traveling fronts and pulses, moreover it can give rise to a multitude
of stable stationary bumps. Thus, the homogeneous isotropic modeling approach
represents simplifications of the actual situation. One way to take into account
the microstructure of the brain media is by using the homogenization techniques
described in the previous section, see also [57, 58].

Svanstedt et al. [59] have provided some important results which are relevant
to the theory of homogenization in connection with two-scale convergence method,
for the nonlocal 1-population neural field models in one-dimensional space. A key
point here is Visintin’s theorem for two-scale convergence of convolution integrals
[60]:

Theorem 3. Let p ∈ [1,+∞), {uε} be a sequence of Lp(Ω) and {ωε} be a sequence
of L1(RN ) such that

uε ⇀ u (two-scale weak convergence) in Lp(Ω× Y ),

ωε → ω (two-scale strong convergence) in L1(Ω× Y ).

Then

(uε ⊗ ωε)(x) =

∫
RN

uε(x′)ωε(x− x′)dx′ ⇀
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(u⊗⊗ω)(x, y) =

∫
RN

∫
Y

u(x′, y′)ω(x− x′, y − y′)dx′dy′ in Lp(Ω× Y ).

If moreover uε → u in L2(Ω× Y ), then uε ⊗ ωε → u⊗⊗ω in L2(Ω× Y ).

Malyutina, Burlakov, Wyller and their collaborators contributed to the devel-
opment of investigations on 1-population homogenized neural field models of the
Amari type in one- and two-dimensional spaces, see [61, 62, 63, 64, 65, 66, 67].

Let us assume that the connectivity functions are represented as ωε
mn(x) =

ωmn(x, x/ε) and have periodicity in the second variable y = x/ε, where the mi-
crostructure of heterogeneity is parameterized by ε > 0, see e.g. [68, 59, 62]. Then
a 2-population heterogeneous neural field model of (1) can be expressed as the
following parameterized model:

∂

∂t
uε
e = −uε

e + ωε
ee ⊗ Pe(u

ε
e − θe)− ωε

ie ⊗ Pi(u
ε
i − θi)

(8)

τ
∂

∂t
uε
i = −uε

i + ωε
ei ⊗ Pe(u

ε
e − θe)− ωε

ii ⊗ Pi(u
ε
i − θi)

Applying the theory of homogenization and Theorem 3 to (8) we obtain a 2-
population homogenized neural field model:

∂

∂t
ue = −ue + ωee ⊗⊗Pe(ue − θe)− ωie ⊗⊗Pi(ui − θi)

(9)

τ
∂

∂t
ui = −ui + ωei ⊗⊗Pe(ue − θe)− ωii ⊗⊗Pi(ui − θi)

where the double convolution of ωmn and Pm (m,n = e, i) is defined by

(
ωmn ⊗⊗Pm(um − θm)

)
(x, y, t) ≡

(10)∫
Ω

∫
Y

ωmn(x− x′, y − y′, t)Pm(um(x′, y′, t)− θm)dy′dx′

and x ∈ Ω, y ∈ Y and t > 0.
As part of this thesis, we focus on the 2-population homogenized neural field

model (9) for Ω = R
N in one spatial dimension, i.e. N = 1. Assuming that the firing

rate functions are given by the Heaviside function we study existence and linear
stability of single bumps solutions in (9). The construction of bump solutions is
based on a pinning function technique. The linear stability is analyzed by means of
the spectral properties, block diagonalization and the Fourier decomposition method
(Paper II). Then assuming that the firing rate functions are smooth functions of
sigmoidal shape we investigate pattern formation in (9) (Paper III).
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2 Summaries of papers

2.1 Paper I

In the first paper we focus on continuous neural field model of the Hammerstein
type often referred to as the Amari model

∂

∂t
u(x, t) = −u(x, t) +

∫
R

ω(x− y)f(u(y, t)− h)dy (11)

To the best of our knowledge the periodic solutions of (11) have not been studied
earlier except for the work by Krisner, see [69]. However, in [69] the existence of
periodic solutions have been explored for a particular type of connectivity function
by the ODE’s method. This work motivated us, firstly, to investigate the existence
of stationary 1-bump periodic solutions for general types of connectivity functions
and, secondly, to develop the linear stability analysis for these solutions.

For the model (11) we assume that f is given by the Heaviside function and
ω(x) → 0 as x → ∞ sufficiently fast. The construction of 1-bump periodic solutions
is similar to the process of construction 1-bump solutions by means Amari approach,
see e.g. [8, 70]), and simpler than the ODE’s method.

By analysing the spectrum of the Fréchet derivative of the corresponding Ham-
merstein operator we deduce that the solutions of (11) can be both linearly stable
and unstable. We show that the spectrum agrees with the spectrum of an infinite
block Laurent operator that can be represented as a bi-infinite matrix with constant
diagonal elements. We also find analytical expression for the spectrum by means
the Laurent operator’s symbol defined on the unit circle. In addition we prove
that the spectrum is pointwise and obtain formulas for calculating eigenvectors and
eigenfunctions of the Fréchet derivative of the Hammerstein operator.

2.2 Paper II

Based on experiments there is growing evidence that there exist inhomogeneities in
the primary visual cortex. Therefore, the brain cortical medium is neither homoge-
neous nor isotropic. According to Bressloff [50, 51] it has periodic-like microstruc-
ture. Thus, our goal is to investigate a 2-population homogenized neural field model
and compare results with simpler 2-population neural field model.

In the second paper we study the existence and linear stability of single bump
solutions of (9). In this work the periodic microstructure variation is modulated in
both the synaptic footprint and the spatial scale of the connectivity strength:

ωmn(x, y) =
1

σmn(y)
Φ

(
x

σmn(y)

)
with σmn(y) = smn(1 + αmn cos(2πy)), smn > 0, 0 ≤ αmn < 1.

The parameters αmn, m,n = e, i are referred to as the degrees of heterogeneity.
Under the assumption that the activation functions are modelled by the Heav-

iside function, we construct these solutions by means of a pinning function tech-
nique. The generic picture of solutions consists of two bumps (one narrow and one
broad bump). Depending on the degrees of heterogeneity, we obtain one, two or
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three single bump solutions. Next we investigate the linear stability by using the
spectral properties of a Fredholm integral operator, block diagonalization and the
Fourier decomposition method. For the weakly modulated case of heterogeneity
(0 < αmn << 1) one of the bumps is unstable for all relative inhibition time τ in
(1) whereas the second one is stable for small and moderate values of τ , consistent
with the findings in the translational invariant case. In the scenario with three
bumps we have at least one stable bump (maximum two stable bumps). Notice
that this situation takes place only beyond the weakly modulated case.

2.3 Paper III

In the third paper we continue the investigation of 2-population homogenized neu-
ral field model (9). Here we study pattern formation (9) with smooth firing rate
functions of sigmoidal shape depending on the steepness parameter. The existence
theory for the constant solutions is the same as in Wyller et al. [24]. Then we
investigate the stability of these solutions by means of a sequence of wave-number
dependent invariants of 2 × 2-matrices representing the sequence of Fourier trans-
formed linearized evolution equations for the perturbation imposed on the homo-
geneous background. The generic instability structure consists of a finite set of
well-separated gain bands. The results are illustrated by examples for symmetrical
exponentially decaying connectivity functions in two typical situations depending
on the thresholds and inclinations of the firing rate functions (the steep and the shal-
low firing rate regime). We follow the linear instability into the nonlinear regime.
For the weakly modulated case we typically obtain the following scenarios: In the
steep firing rate regime the instability develops into a stationary periodic pattern
whereas in the shallow regime we get a spatiotemporally oscillating pattern. Beyond
the weakly modulated case we have a rich plethora of phenomena.

3 Discussion

3.1 Contribution

The main goal of the present thesis was to analyse a 2-population homogenized
neural field model and compare the results with simpler translational invariant limit
of this model. The periodic microstructure of the cortical tissue has been taken into
account by means of the homogenization technique. The effect of this structure has
been studied in details in Papers II and III with respect to existence and stability
of bumps and pattern formation. As far as we know the homogenization technique
is not widely used in neuroscience community. Nevertheless we believe that this
method might be beneficial to investigate inhomogeneous structures of the cerebral
cortex.

As we mentioned earlier, Papers II and III represent extensions of the works
by Blomquist et al. [23] and Wyller et al. [24], respectively. All methods used in
both papers for the homogenized neural field model are generalization of methods
developed in cited above papers. The results obtained in the weakly modulated case
of the heterogeneity parameters appear as a continuous deformation of the results
in the translation invariant case. However, by increasing the degree of heterogeneity
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the number of bumps and their stability as well as pattern forming process need to
be analysed in some more detail.

We have also studied 1-bump periodic solutions of a continuous homogeneous
neural field model of the Amari type in Paper I. Here we have worked with a
more general class of the connectivity functions than in [69]. This has allowed
us to address the issue of the uniqueness of the solutions to this model. Under
the assumption that the firing rate function is given by the Heaviside function, we
have developed the stability analysis of 1-bump periodic solutions by means of the
spectral theory.

3.2 Future perspectives

In future works it is natural to extend the present 2-population homogenized neural
field model into 2−D, i.e. the connectivity kernels are defined on a two-dimensional
domain (Papers II and III). That can be viewed as a step towards a more realistic
description of the actual situation in the cortical tissue. Moreover, this extension
can be used as a start point to study the existence and stability of multi-bump and
ring solutions as well as traveling waves and fronts. Another future contribution to
the present homogenized model and its generalisations to Volterra type of models
is finite axonal and dendritic delays effect. After all, the framework of the corre-
sponding homogenized problems in Papers II and III can be modeled by other types
of microstructure effects and then investigated existence and stability of coherent
structures as well as pattern formation.

In Papers I and II we have assumed that the firing rate functions are given by the
Heaviside function. However, the result obtained in these papers can be generalized
to the case of smooth sigmoid-like firing rate functions depending on steepness
parameters. In particular, for the situation studied in Paper I we conjecture that
1-bump periodic solutions are robust with respect to the parameter changes in the
model.

In Paper I another extension that might be interesting is to consider weight
(connectivity) functions with lateral inhibition (LI), and look at the transition from
unstable to stable bump and periodic solutions as the level of LI is increased. Finally,
the analysis represented in Paper I can be generalized to the case of multi-bump
periodic solutions and 2−D.
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PAPER I





EXISTENCE AND STABILITY OF PERIODIC SOLUTIONS IN A NEURAL FIELD
EQUATION

KARINA KOLODINA, VADIM KOSTRYKIN, AND ANNA OLEYNIK

ABSTRACT. We study the existence and linear stability of stationary periodic solutions to a neu-
ral field model, an intergo-differential equation of the Hammerstein type. Under the assumption
that the activation function is a discontinuous step function and the kernel is decaying sufficiently
fast, we formulate necessary and sufficient conditions for the existence of a special class of solu-
tions that we call 1-bump periodic solutions. We then analyze the stability of these solutions by
studying the spectrum of the Frechet derivative of the corresponding Hammerstein operator. We
prove that the spectrum of this operator agrees up to zero with the spectrum of a block Laurent
operator. We show that the non-zero spectrum consists of only eigenvalues and obtain an analyt-
ical expression for the eigenvalues and the eigenfunctions. The results are illustrated by multiple
examples.

1. INTRODUCTION

The behavior of a single layer of neurons can be modeled by a nonlinear integro-differential
equation of the Hammerstein type,

(1.1)
∂

∂t
u(x, t) = −u(x, t) +

∫
R

ω(x− y)f(u(y, t)− h)dy.

Here u(x, t) and f(u(x, t)−h) represent the averaged local activity and the firing rate of neurons
at the position x ∈ R and time t > 0, respectively. The parameter h ∈ R denotes the threshold
of firing and ω(x− y) describes a coupling between neurons at positions x and y.

The model (1.1) belongs to a special class of models, so called neural field models, where the
neural tissue is treated as a continuous structure, and is often referred to as the Amari model.
Since the original paper by Amari [1], this model has been studied in numerous mathematical
papers, for a review see, e.g., [2, 3] and [4]. In particular, the global existence and uniqueness
of solutions to the initial value problem for (1.1) under rather mild assumptions on f and ω has
been proven in [5].

In [1] Amari studied pattern formation in (1.1) for a model under the simplifying assumption
that f is the unit step function H , and ω is of the ”lateral-inhibitory type”, i.e., continuous, inte-
grable and even, with ω(0) > 0 and having exactly one positive zero. In particular, he analyzed
the existence and stability of stationary localized solutions, or so called 1-bump solutions, of the
fixed point problem

(1.2) u(x) = (Hu)(x), (Hu)(x) =

∫ +∞

−∞
ω(x− y)f(u(y)− h)dy.

The equations (1.1) and (1.2) have been studied with respect to various combinations of
firing rate functions and connectivity functions, see [2, 6, 4]. Common examples of ω are the
exponentially decaying function,

(1.3) ω(x) = Se−s|x|, S, s > 0,
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the so-called wizard-hat function,

(1.4) ω(x) = S1e
−s1|x| − S2e

−s2|x|, S1 > S2 > 0, s1 > s2 > 0,

and the periodically modulated function

(1.5) ω(x) = e−b|x|(b sin(|x|)) + cos(x)), b > 0,

see Fig.1. In the paper we impose the following assumptions on ω.

Assumption A. The connectivity function ω satisfies the following conditions.

(i) ω(x) = ω(−x)

(ii) ω(x) → 0 as |x| → ∞ and |ω(x)| ≤ C(1 + |x|)−1−δ, C, δ = const > 0.

(iii) ω ∈ C0,1
b (R) ∩ L1(R).

(iv)
∫
R
ω(x)dx =: h0 > 0.

One can easily check that the functions in (1.3) - (1.5) satisfy Assumption A and decrease
exponentially fast as |x| → 0.
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FIG. 1. Connectivity functions ω(x) given by (1.3) with S = 0.5, s = 1 (blue
curve), (1.4) with S1 = 4, s1 = 2, S2 = 1.5, s2 = 1 (red curve), and (1.5) with
b = 0.5 (green curve).

The firing rate function f : R → [0, 1] is usually given as a smooth function of sigmoid
shape. It is often represented by a parameterized function f(u) = S(βu), see e.g. [7, 8, 9, 10]
where S(βu) approaches (in some specific way) the unit step function H(u) as β → ∞. One
example of f(u) is

(1.6) f(u) = S(βu), S(u) =
up

up + 1
H(u), p > 1,

see Fig. 2.
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FIG. 2. Functions f(u) = S(βu), S is as in (1.6), p = 2, with β = 100 (red
curve) and β = 20 (blue curve) and the unit step function H(u)(black dashed
line).

Already in his seminal paper Amari conjectured that there must exist periodic stationary
solutions in the absence of bump solutions and constant solutions. He however did not pursue a
further study of periodic solutions. Of course the absence of other types of stationary solutions
is not necessary for periodic solutions to exist. In fact, as in some cases bump solutions can
be viewed as a homoclinic orbits of an ordinary differential equation (ODE) with ω being the
Green’s function of its linear part, see e.g. [11], periodic solutions are very likely to co-exist
with the bump solution, see [12, 13] (in Russian) and [14], and [15]. In [16, 17, 3] it has been
shown numerically that stable periodic solutions of the two population version of the Amari
model exist and emerge from homogeneous solutions via Turing-Hopf bifurcation. To the best
of our knowledge there are no theoretical studies that address the existence of periodic solutions
to (1.1) except [8], and no studies on the stability of these solutions.

Krisner in [8] studied the existence of periodic solutions to (1.1) with ω given by (1.5). In
this case, any bounded solution of (1.2) is a solution of a forth order ODE, see [18] and can
be studied by methods developed for ODEs. Given f as a smooth steep sigmoid function it
has been shown that (1.1) has at least two periodic solution under some assumptions on the
parameters. The analysis is however rather cumbersome and is not applicable for general types
of ω as, e.g., (1.3) and (1.4). Thus, we would like to proceed in a different way and address the
existence of periodic solutions without reformulating (1.2) as ODEs.

When f is approximated by a step function H it is possible to obtain analytical expressions
for some types of stationary solutions and travelling waves, see e.g. chapter 3 in [4] and [19].
However, the operator H in this case is discontinuous in any classical functional space and
thus, classical functional analysis tools such as e.g. generalized Picard-Lindelof theorem or
Hartman-Grobman theorem, usually fail. However, many papers still conveniently assume that
the model is well-posed on the considered spaces and study the stability of solutions by first
approximation, see [1, 19, 20] and [21] just to name a few.

The natural way to overcome this problem is to study the model (1.1) with f(u) = S(βu)
and only use the limiting case f = H to gain the knowledge about the existence and stability
of solutions for large values of β. The approximation of f = H with f = S(βu) then must be
properly justified. This has been successfully done for bumps solutions in [10, 22] and [23].

Our overall aim is to generalize the analysis in the mentioned papers for the periodic 1-bump
solutions. In this paper we take the first crucial step towards this direction and study the limiting
case f = H .

The paper organized as follows: Section 2 contains the notation we use. In Section 3 we give
the definition of 1-bump periodic solutions and study their existence by means of the Amari ap-
proach. We formulate necessary and sufficient conditions for the existence of 1-bump periodic
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solutions and show that for ω ≥ 0 there is a unique solution for each period T > 0. Section
4 is dedicated to the linear stability of 1-bump periodic solutions. We show that the spectrum
of the corresponding linearized operator H can be obtained as the spectrum of an infinite block
Laurent (or bi-infinite block Toeplitz) operator. We give an analytical expression for the spec-
trum in terms of the symbol of the Laurent operator and discuss ways how it can be calculated
numerically. We prove that the spectrum consists only of eigenvalues and give a formula for
calculating eigenfunctions. The results in Section 3 and Section 4 are illustrated for the case of
ω given by (1.3) and (1.4). Section 5 contains conclusions and remarks.

2. NOTATIONS

For the convenience of the readers we give a list of functional spaces and specify other nota-
tions we use.

• S1 is the unit circle.
• i is the imaginary unit.
• z is the complex conjugate of z ∈ C.
• cl(Ω) is the closure of a set Ω.
• ‖ · ‖op denotes the operator norm.
• C0,1

b (R) is the space of all Lipschitz continuous bounded functions on R equipped with the
norm

‖f‖
C0,1

b (R)
= sup

x,y∈R
|f(x)− f(y)|

|x− y| , x = y.

• �mp (Z) is the Banach space of sequences with entries from R
m where 1 ≤ p ≤ ∞ and

m ∈ N equipped with the norm

‖x‖�mp (Z) =

(∑
k∈Z

‖xk‖p
)1/p

, 1 ≤ p < ∞

and
‖x‖�m∞(Z) = sup

k∈Z
‖xk‖, p = ∞,

where ‖ · ‖ is any norm in R
m.

• �m×mp (Z) is the space of sequences where components are matrices m by m on R, equipped
with the norm

‖A‖�m×m
p (Z) =

(∑
k∈Z

‖Ak‖pop
)1/p

, 1 ≤ p < ∞

and
‖A‖�m×m∞ (Z) = sup

k∈Z
‖Ak‖op, p = ∞.

•W(S1) is the Wiener space of functions defined on S1 (continuous functions whose Fourier
coefficients is an �1(Z) sequence) equipped with the norm

‖f‖W =
∑
k∈Z

|ak|,

where ak are the Fourier coefficients of f .
• Wm×m(S1) is the Wiener space of m by m matrix functions defined on S1 equipped with

the norm

‖ϕ‖op = max
1≤i≤m

m∑
j=1

‖ϕij‖W .

• σ(L) is the spectrum of the linear operator L.
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• ρ(L) is the resolvent of the linear operator L.

3. EXISTENCE OF 1-BUMP PERIODIC SOLUTIONS

We consider a particular type of periodic solution that we call a 1-bump periodic solution, due
to its shape on one considered period, that is, u(x) ≥ h on a (connected) interval and u(x) < h
otherwise. Krisner in [8] proved the existence of the same type of periodic solutions for ω given
in (1.5). Below we define the class of periodic functions that we intent to consider.

Definition 3.1. Let h ∈ R, and u(x) be a continuous periodic function defined on R with a
period T > 0. We say that u(x) is a 1-bump periodic function with period T , or simply 1-bump
periodic, if there is a translation of u(x), say p(x) = u(x− c), with the following properties:

(i) It has two symmetric intersection, say at x = ±a with the straight line y = h, i.e.,
p(±a) = h.

(ii) It lies above y = h for all x ∈ (−a, a) and below for x ∈ [−T/2, T/2] \ [−a, a], i.e.,
p(x) > h for x ∈ (−a, a) and p(x) < h for x ∈ [−T/2, T/2] \ [−a, a].

If in addition u ∈ C1
b (R) with p′(±a) = 0 then we say that u(x) is regular.

We illustrate the definition above in Fig.3

0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

2

FIG. 3. The function corresponding to the blue curve is the regular 1-bump
periodic if h = 0.5 and is not a 1-bump periodic if h = 1. The red curve
corresponds to the 1-bump periodic function for both h = 0.5 and h = 1. Here
we assume that the functions given by blue and red curves both have period
T = 1.

A small perturbation of a regular 1-bump periodic function in C0,1
b (R) does not destroy the

1-bump structure of the function. We formulate it as the lemma below.

Lemma 3.2. Let h ∈ R and T > 0 be fixed and p(x) be a regular 1-bump periodic function
with p(±a) = h, 0 < a < T/2. Then there exists ε > 0 such that any v ∈ Bε(up) := {v| :
‖v − up‖C0,1 < ε} has exactly two intersection with the straight line y = h on each of the
intervals (−T/2 + kT, T/2 + kT ), k ∈ Z, i.e., there are a±(ε, k) ∈ (−T/2 + kT, T/2 + kT )
such that v(a±(ε, k)) = h. Moreover a±(ε, k) → ±a + kT as ε → 0 and v(x) > h for
x ∈ (a−(ε, k), a+(ε, k)) and v(x) < h for x ∈ [−T/2+ kT, T/2+ kT ] \ (a−(ε, k), a+(ε, k)).
Proof. The proof goes in line with the proof of Lemma 3.6 in [24]. �

Definition 3.3. A (regular) 1-bump periodic function which is a solution to (1.2) we call a
(regular) 1-bump periodic solution to (1.1).
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We notice that any solution to (1.2) is translation invariant, i.e., if u(x) is a solution to (1.2)
then so is u(x − c) for any c ∈ R. Thus, without loss of generality we can simply consider
p(x) = u(x) in (ii) of Definition 3.1.

Given that f is a unit step function, a 1-bump periodic solution can be expressed as

(3.1) up(x) =
∑
k∈Z

∫ a+kT

−a+kT
ω(x− y)dy =

∑
k∈Z

∫ a

−a
ω(x− y + Tk)dy

where a ∈ (0, T/2) is the root of up(a) = h.
We notice here that the critical cases a = 0 and a = T/2 correspond to the constant solutions

up(x) = 0 and up(x) = h0 where h0 =
∫
R
ω(y)dy > 0. This serves as a motivation to consider

h ∈ (0, h0). Further we will show that for some connectivity functions the condition h ∈ (0, h0)
is sufficient for the existence of a 1-bump periodic solution.

It is easy to see that the function in (3.1) is periodic. Indeed,

up(x+ T ) =
∑
k∈Z

∫ a

−a
ω(x− y + T (k + 1))dy = up(x).

Moreover, due to Assumption A (i), it is even

up(−x) =
∑
k∈Z

∫ a

−a
ω(−x− y + Tk)dy =

∑
k∈Z

∫ a

−a
ω(−x+ y + Tk)dy

=
∑
k∈Z

∫ a

−a
ω(x− y − Tk)dy = up(x).

From Assumption A(ii) we obtain the following estimate

max
x ∈ [−T/2, T/2]

y ∈ [−a, a]

|ω(x− y + Tk)| ≤ Cαk, k ∈ Z,

where

αk =

{
1, k = 0,

(1 + T |k| − a− T )−1−δ, |k| ≥ 1.

Since
∑
k∈Z

αk converges, the series
∑
k∈N

ω(x + Tk) converges absolutely and uniformly on

[−a − T/2, a + T/2]. Due to periodicity of this series, it converges absolutely and uniformly
on any bounded interval to an even periodic function

(3.2) ωp(x;T ) :=
∑
k∈Z

ω(x− Tk)

that has the antiderivative

(3.3) Wp(x;T ) :=

∫ x

0
ωp(y;T )dy =

∑
k∈Z

∫ x

0
ω(y − kT )dy.

Using the notations above we obtain

(3.4) up(x) =

a∫
−a

ωp(x− y;T )dy

or, equivalently,

(3.5) up(x) = Wp(x+ a;T )−Wp(x− a;T )

where a is then given as

(3.6) Wp(2a;T ) = h.
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Thus, the procedure of finding 1-bump periodic solutions becomes analogous to the one of
finding 1-bump solutions proposed by Amari in [1] where instead of ω and W we use ωp and
Wp, respectively. Namely, first we find a from (3.6). Then we verify that the function in (3.5)
is indeed a 1-bump periodic function. As the function up is even and periodic, it is enough to
consider the interval [0, T/2]. We summarize this in a theorem.

Theorem 3.4. The function up(x) given by (3.5) is a periodic solution to (1.1) if and only if the
following three conditions hold

(1) up(a) = h, or equivalently, Wp(2a;T ) = h, for some 0 < a < T/2,
(2) up(x) > h for all x ∈ (0, a),
(3) up(x) < h for all x ∈ (a, T/2].

Similarly as for the bump solutions, it is not generally possible to verify the conditions of the
theorem above without additional information about ω. However, for a particular choice of ω
the verification procedure is rather simple.

Observe that from (3.5) up ∈ C1
b (R). Then we calculate

(3.7) u′p(x) = ωp(x+ a;T )− ωp(x− a;T )

and

(3.8) |u′p(a)| = ωp(0;T )− ωp(2a;T ).

Hence, if up is a 1-bump periodic solution, ωp(0;T ) ≥ ωp(2a;T ) must be satisfied. Then for
ω ≥ 0 we can simplify conditions of Theorem (3.4).

Lemma 3.5. Let T > 0 be arbitrary and ω satisfies Assumption A. Then for any 0 < h < h0
the equation up(a) = h possesses at least one solution a ∈ (0, T/2). If ω ≥ 0 and can have
only isolated zeros then such a = a(T ) is unique and the corresponding up is a 1-bump regular
periodic solution provided that ωp(2a(T );T ) < ωp(0;T ).

Proof. Since the function Wp(x;T ) is continuous and Wp(0;T ) = 0 and Wp(T ;T ) = h0 > 0,
there is at least one solution to the equation Wp(2a;T ) = h with 0 < a < T/2.

Assume now that ω ≥ 0 and does not have non isolated zeros. Then Wp(x;T ) is strictly
monotone increasing on [0, T/2]. Indeed,

d

dx
Wp(x;T ) = ωp(x;T ) =

∑
k∈Z

ω(x+ Tk) ≥ 0

and may have only isolated zeros. This implies the uniqueness of a as a function of T. The final
statement follows from (3.8) and uniqueness of a. �

For more general function ω number of 1-bump periodic solution may vary with the period.
In the next section we give several examples of ω, T and h for which the solutions do not exist,
exist and are unique or non-unique.

3.1. Examples. We consider two examples of the connectivity functions given in (1.3) and
(1.4) where most of the calculations can be done analytically.

Indeed, for ω given by (1.3) we get h0 = 2S/s,

ωp(x;T ) = Sψ(x mod T ; s), and Wp(x) =
2S

s

⌊ x
T

⌋
+ SΨ(x mod T ; s)

where

(3.9) ψ(x; s) =
exp(−sx) + exp(−s(T − x))

1− exp(−sT )

(3.10) Ψ(x; s) =
exp(s(x− T ))− exp(−sx)− exp(−sT ) + 1

s(1− exp(−sT ))
,
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see Fig.4(a).
From Lemma 3.5 the equation Wp(2a;T ) = h, h ∈ (0, h0) possesses a unique solution

0 < a(T ) < T/2. Moreover, ωp(0;T ) = 2S/(1− exp(−sT )) and ωp(2a;T ) = (exp(−2sa)+
exp(−s(T − 2a)))/(1 − exp(−sT )) and thus, ωp(2a;T ) < ωp(0;T ) for any T > 0 which
implies that up(x) is a 1-bump regular periodic solution, see Fig.3.

-4 -2 0 2 4

-0.5

0

0.5

1

p
Wp
h

(a)

-4 -2 0 2 4
x

0.1

0.2

0.3

0.4

0.5

0.6
up
h

(b)

FIG. 4. (a)The function ω given in (1.3) with S = 0.5, s = 1 and the cor-
responding ωp and Wp with T = 4. The intersection point corresponds to
a = 0.6633 (rounded up to 4 decimals) and h = 0.4. (b) 1-periodic bump
solution (3.5) with Wp as in (a).

For ω given by (1.4) we find h0 = 2(S1/s1 − S2/s2),

(3.11) ωp(x;T ) = S1ψ(x mod T ; s1)− S2ψ(x mod T ; s2)

and

(3.12) Wp(x;T ) =

(
2S1

s1
− 2S2

s2

)⌊ x
T

⌋
+ S1Ψ(x mod T ; s1)− S2Ψ(x mod T ; s2)

with ψ and Ψ given as in (3.9)-(3.10), see Fig. 5.

-2 0 2
x

-0.5

0

0.5

1

1.5

2

2.5

3

p

FIG. 5. The function ω given by (1.4) with parameters S1 = 4, s1 = 2, S2 =
1.5, s2 = 1 and the corresponding ωp and Wp , see (3.11)-(3.12) with T = 3.5.

The equation Wp(2a;T ) = h, h ∈ (0, h0) has one, two, or three solutions depending on T .
That is for the parameter values S1 = 4, s1 = 2, S2 = 1.5, s2 = 1 and h = 0.4, it has one
solution for T < T1 := 2.4997, two solutions for T = T1 and three solutions for T > T1, see
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Fig.6. The value T1 = 2.4997 is obtained numerically and is rounded up to four decimals. It
turns out that all of up correspond to 1-periodic bump solutions, see Fig.7 -Fig.8 .

0 2 4 6 8 10
x

0

2

4

6

8
Wp(x, 1.5)
Wp(x, 2.4997)
Wp(x, 3.5)
h

FIG. 6. The function Wp in (3.12) with parameters S1 = 4, s1 = 2, S2 = 1.5,
s2 = 1 for different periods T and the fixed threshold value h = 0.4.

-1.5 -1 -0.5 0 0.5 1 1.5
x

0
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(a)
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x
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0.6
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1

(b)

FIG. 7. (a) 1-bump periodic solutions (3.5) with T = 1.5. The intersection
point corresponds to a = 0.1619 and h = 0.4. (b) 1-bump periodic solutions
(3.5) with T = 2.4997. The intersection points correspond to a1 = 0.1243,
a2 = 0.8919 and h = 0.4. (All the approximated values are rounded up to 4
decimals.)
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-2 0 2
x
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1
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(a)
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-0.5
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0.5

1

1.5

(b)

FIG. 8. (a) 1-bump periodic solutions (3.5) with T = 3.5. The intersection
points correspond to a1 = 0.1113, a2 = 1.0494 and a3 = 1.5281, and h =
0.4. (b) 1-bump periodic solutions (3.5) with T = 7. The intersection points
correspond to a1 = 0.1046, a2 = 2.2792 and a3 = 3.3036 and h = 0.4. (All
the approximated values are rounded up to 4 decimals.)

There are parameters S1, S2, and s1, s2 that Wp(2a;T ) = h have two solutions for h > h0
and some T > 0. For example, for S1 = 3, s1 = 2, S2 = 1.4, s2 = 1, and h = 0.25
this situation occurs when T > 2.116, see Fig. 9. These solutions correspond to the 1-bump
periodic solutions, see Fig. 10. We however do not aim to study this particular case of the
connectivity function in detail. Thus, we will further restrict our attention to the case h < h0,
see Fig. 6.

0 1 2 3
x

-0.1

0

0.1

0.2

0.3

W
p(x

)

Wp(x, 1.5)
Wp(x, 2.116)
Wp(x, 3)
h

FIG. 9. The function Wp(x;T ) in (3.12) with parameters S1 = 3, s1 = 2,
S2 = 1.4, s2 = 1, for different periods T and the fixed threshold value h =
0.25.
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FIG. 10. (a) 1−bump periodic solution (3.5) with T = 2.116. The point of
tangency corresponds to a = 0.2352 and h = 0.25. (b) 1−bump periodic
solutions (3.5) with T = 3. The intersection points correspond to a1 = 0.1272,
a2 = 0.5288 and h = 0.25. (All the approximated values are rounded up to 4
decimals.)

4. STABILITY OF 1-BUMP PERIODIC SOLUTIONS

In this section we study linear stability of regular 1-bump periodic solutions. We first obtain
the Fréchet derivative of the Hammerstein operator defined in (1.2) and then study its spectrum.

Lemma 4.1. Let h, T > 0 be fixed and up be a 1-bump periodic solution of (1.1). The Fréchet
derivative of the operator H : C0,1

b (R) → C0,1
b (R) at up exists and is given as

(H′(up)v)(x) = 1

|u′p(a)|
∑
k∈Z

(ω(x+ a− kT )v(−a+ kT ) + ω(x− a− kT )v(a+ kT )).

Proof. Due to Lemma 3.2 and periodicity of up the proof in [10] for bumps can be easily adopted
here. �

We would like to emphasize that the regularity condition on up, that is |u′p(a)| > 0, is neces-
sary in order for the Fréchet derivative to exists.

Next we show how the spectrum of the operator H′(up) relates to the spectrum of a Laurent
block operator, or in some literature, bi-infinite block Toeplitz operator, see e.g. [25] and [26,
27].

Let �mp (Z) be a Banach space of sequences with entries from R
m, see Section 2.

The block Laurent operator L : �mp (Z) → �mp (Z) can be represented as an bi-infinite matrix
with constant diagonal elements, that is, L = (Ai−j)i,j∈Z giving

(4.1) L =

⎛⎜⎜⎜⎜⎜⎝
. . .

A0 A−1 A−2
A1 A0 A−1
A2 A1 A0

. . .

⎞⎟⎟⎟⎟⎟⎠ , Ak ∈ R
m×m.

The representation (4.1) means that the action of L is given by(
L (xn)n∈Z

)
= (yn)n∈Z , yj =

∑
i

Ai−jxj .
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For p = 1,∞ we have

(4.2) ‖L‖op =
∑
k∈Z

‖Ak‖op.

Theorem 4.2. The nonzero spectrum of the operator H′(up) : C0,1
b (R) → C0,1

b (R) (see Lemma
4.1) agrees with that of the Laurent block operator L : �2∞(Z) → �2∞(Z) defined by

(4.3) Ak =
1

|u′p(a)|
(

ω(kT ) ω(−2a+ kT )
ω(2a+ kT ) ω(kT )

)
.

Moreover, any eigenfunction v(x) of H′(up) (if exists) corresponds to the eigenfunction v =
(vk)k∈Z of L where

vk = (v(−a+ kT ), v(a+ kT ))T , k ∈ Z,

and for a given eigenfunction v of L that corresponds to a non-zero eigenvalue, we can calculate
the eigenfunction of H′(up) as

v(x) =
1

λ

1

|u′p(a)|
∑
k∈Z

(ω(x+ a− kT )v
(1)
k + ω(x− a− kT )v

(2)
k .

Proof. First of all we observe that L is a bounded operator on �2∞(Z) since

‖L‖op = 1

|u′p(a)|
∑
k∈Z

(|ω(kT )|+max{|ω(±2a+ kT )|}) < ∞

due to Assumption A.
A number λ ∈ C is in the resolvent set of the operator H′(up) if and only if the equation

H′(up)ξ − λξ = w

has a solution ξ for any w, where ξ and w belong to the complexified C0,1
b (R).

Thus, if λ ∈ C is in the resolvent set of the operator H′(up), then for any k ∈ Z the system
of equations

(H′(up)ξ)(a+ kT )− λξ(a+ kT )ξ = w(a+ kT ),

(H′(up)ξ)(−a+ kT )− λξ(−a+ kT )ξ = w(−a+ kT )

possesses a solution. Hence, λ is in the resolvent set of the operator L.
Conversely, assume that λ = 0 is in the resolvent set of the operator L. Then for any arbitrary

w the values ξ(a+ kT ) and ξ(−a+ kT ) of the solution to H′(up)ξ − λξ = w are determined.
For arbitrary x ∈ R we set

ξ(x) =
1

λ
((H′(up)ξ)(x)− w(x)).

It is straightforward to verify that ξ ∈ C0,1
b and solves H′(up)ξ − λξ = w. We have shown that

the resolvent sets of H′(up) and L agree up to the point λ = 0. Thus, their spectra agree up to
the point λ = 0 as well. The second part of the statement follows from above. �

The reader can find more information about Laurent operators and their properties in [25]
and more recent studies [27, 26]. The results concerning in particular the spectrum of Laurent
operators can be found in [28]. Finally, as the spectrum of Laurent operator on �m2 (Z) is given
by the spectrum of the corresponding matrix valued multiplication operator we refer to [29]
where the spectrum of the latter operator is studied. For the original paper on the Toeplitz and
Laurent operators see [30]. Since the eigenvalue 0 does not have any impact on the stability of
up, we now turn to the study of the Laurent operator in (4.1) with elements as in (4.3).

As (Ak)k∈Z ∈ �2×21 (Z) we can define a matrix function Φ : S1 → R
2×2 as

(4.4) Φ(z) =
∑
k∈Z

Akz
k, z ∈ S1,
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where S1 is the unit circle. The power series is uniformly convergent and thus the function
Φ is continuous on S1. The function Φ is called a symbol or a defining function of L. It is
easily observed that Φ belongs to the Weiner algebra of all periodic functions with absolutely
summable sequence of Fourier coefficients, that is Φ ∈ W2×2(S1). Via the Fourier transform
the Banach algebra of all block Laurent operators on �2∞(Z) is isomorphic to W2×2(S1).

We prove the following important result.

Theorem 4.3. (i) The spectrum of the block Laurent operator L : �m∞(Z) → �m∞(Z) is
given as

(4.5) σ(L) =
⋃
z∈S1

σ(Φ(z))

where Φ(z) is the symbol (4.4) of L.
(ii) The spectrum σ(L) is pointwise, and the eigenvectors vλ = (vk(λ))k∈Z of L can be

calculated as

(4.6) v
(k)
λ = z̄kw(zλ)

where zλ ∈ S1 is such that λ ∈ σ(Φ(zλ)), and w(zλ) is the corresponding eigenvalue
of the matrix Φ(zλ).

Proof. To prove the first statement we recall that invertibility (and Fredholmness) of operators
on the Wiener algebra is independent on underlying space, see [31, 32] and references therein.
That is, the spectrum of L : �mp (Z) → �mp (Z), does not depend on 1 ≤ p ≤ ∞, and is given by
all the values λ ∈ C such that det(Φ(z)− λI) = 0 for some z ∈ S1, see [25, 28] and [29].

To prove the second statement let λ ∈ σ(L). From (4.5) there exists zλ = exp(iθλ), θλ ∈
[0, 2π) such that

det(Φ(zλ)− λI) = 0.

Thus, there exists an eigenvector w(zλ) ∈ C
m such that

Φ(zλ)w(zλ) = λw(zλ).

Let us define v ∈ �m∞(Z) as follows

v = {vk}k∈Z, vk = e−ikθλw(zλ).

It is easy to check that v ∈ �m∞(Z) and is the eigenfunction of the Laurent operator L corre-
sponding to λ. Indeed, for the nth row we have

(Lv)n =
∑
k∈Z

Ak−neikθλw(zλ) =
∑
l∈Z

Ale
i(n+l)θλw(zλ) =

= einθλ
∑
l∈Z

Ale
ilθλw(zλ) = einθλΦ(zλ) = einθλλw(zλ) =

= λvn.

�

Next, we describe some properties of the symbol Φ that corresponds to the Laurent operator
(4.3).

Lemma 4.4. The matrix Φ(z) in (4.4) with Ak given by (4.3) is self-adjoint and Φ(z) = Φ(z),
z ∈ S1.
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Proof. The second property follows directly from (4.4) and ω(x) being real. To show that Φ(z)
is self-adjoint let θ ∈ [0, 2π). Then we have

Φ(z)T =
∑
k∈Z

(
ω(kT ) ω(2a+ kT )

ω(−2a+ kT ) ω(2kT )

)
e−ikθ =

∑
m∈Z

(
ω(−mT ) ω(2a−mT )

ω(−2a−mT ) ω(−mT )

)
eimθ = Φ(z)

as ω(x) is symmetric, see Assumption A(i). �

From Lemma 4.4 and Theorem 4.3(i) the spectrum of L, and consequently of H′(up), is real
and

(4.7) σ(L) =
⋃
z∈S1

(λ1,2(z))

where

(4.8) λ1(z) = Φ11(z)− |Φ12(z)| and λ2(z) = Φ11(z) + |Φ12(z)|
and Φij(z) are the entries of the symbol matrix Φ(z). Moreover, it is enough to consider only
half of the circle, that is, z = eiθ with θ ∈ [0, π].

Let now zλ = eiθ in Theorem 4.3(ii) with θ/(2π) being a rational number from [0, 0.5],
i.e. θ/(2π) = p/q, p ∪ {0}, q ∈ N where p and q are in the lowest terms. Then from (4.6)
the corresponding eigenvector v is (1 + q)-periodic. If λ = 0 then from Theorem 4.2, the
eigenfunction v of H′(up) is (1 + q)T -periodic. Thus, we can calculate the spectrum even
without calculating the symbol Φ. We summarize it as a theorem.

Theorem 4.5. The spectrum of the operator L is given as

σ(L) = cl
(⋃

σ (L(1 + q))
)

where L(1 + q), q = 1, 2, ..., are 2(1 + q)× 2(1 + q) matrices given as

L(1 + q) =

⎛⎜⎜⎜⎝
B0 B1 B2 ... Bq

Bq B0 B1 ... Bq−1
...

...
...

...
...

B1 B2 B3 ... B0

⎞⎟⎟⎟⎠
where

Bn =
1

|u′p(a)|

⎛⎝ ωp(nT ; (1 + q)T ) ωp(−2a+ nT ; (1 + q)T )

ωp(2a+ nT ; (1 + q)T ) ωp(nT ; (1 + q)T )

⎞⎠ , n = 0, ..., q.

We illustrate Theorem 4.5 in Fig.12(b) for ω as in (1.3).
When q = 0 we readily calculate L(1) = B0 where

B0 =
1

u′p(a)

⎛⎝ ωp(0;T ) ωp(2a;T )

ωp(2a;T ) ωp(0;T )

⎞⎠ ,

has the eigenvalues

(4.9) λ1,2 =
ωp(0;T )± ωp(2a;T )

ωp(0;T )− ωp(2a;T )

or, equivalently, λ1 = 1 and λ2 = 1 + 2ωp(2a;T )/|ωp(0;T )− ωp(2a;T )|.
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These eigenvalues are similar to the ones obtained for bump solutions. Indeed, for a bump
solution one can compute the corresponding eigenvalues of the Fréchet operator (at a bump so-
lution) as μ1 = 1 and μ2 = 1 + 2ω(2a)/|ω(0) − ω(2a)|, see e.g.[33]. The first eigenvalue
λ1 = 1 (μ1 = 1) corresponds to the translation of the solution, see [33]. Thus, for the bump
solutions, the sign of ω(2a) will define the linear stability. In the case of 1-bump periodic solu-
tions, ωp(2a;T ) > 0 implies instability. Thereby, we immediately conclude that for excitatory
connectivity functions ω 1-bump periodic solutions are always unstable.

If ωp(2a;T ) < 0 the eigenvalues of L(2), then L(3) and etc., must be calculated. The
structure of L(1 + q) could be useful in exploring spectrum if the analytic expression for Φ is
not available.

As we aim at studying Lyapunov stability of 1-bump periodic solutions for (1.1) with smooth
sigmoid like function f by deriving spectral asymptotic, the eigenvalue 1 ideally must be iso-
lated and have multiplicity one. We believe that the second condition could be satisfied under
some additional assumptions on ωp, including ωp(2a;T ) = 0. The first condition, however, is
never satisfied. Thus one must employ more detailed analysis of spectral convergence than in
the case of bump solutions [23]. However, this is out of the scope of this paper.

In the next section we apply the theory above to study linear stability of the 1-bump periodic
solutions from Section 3.1.

4.1. Examples. Define the auxiliary functions

(4.10) α(θ; s, T ) =
sinh(sT )

cosh(sT )− cos(θ)

and

(4.11) β(θ; s, T ) =
sinh(2as)e−iθ + sinh(s(T − 2a))

cosh(sT )− cos(θ)
.

Then, for ω as in (1.3) we obtain

Φ(eiθ) =
S

|u′p(a)|
(
α(θ; s) β(θ; s)
β(θ; s) α(θ; s)

)
.

In Fig. 12(a) we plot λ1(e
iθ) and λ2(e

iθ) as functions of θ, θ ∈ [0, 2π) for T = 4 and the
parameters as in Fig.4. As λi(z) − 1 < 0 the 1-bump periodic solution is linearly unstable. It
can be shown that this is always the case for all admissible parameters and any T > 0. Indeed,
for S = 0.5 and s = 1, we obtain a → −0.5 log(|2h − 1|) as T → ∞ and λ1 → 1 while
λ2 → 1/h− 1 > 1. We notice that these values could be obtained by passing the limit in (4.9).
In Fig.11 we plot the minimum and maximum of λ2(e

iθ) (red curves) and λ1(e
iθ) (blue curves)

for different T. As T → 0, maxθ λ2(e
iθ) → ∞.
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2 4 6 8 10
T

1

2

3

4

5

6
min  2
max 2
min 1
max 1

FIG. 11. Bounds for σ(L) in (4.7) depending on T when ω is given by (1.3)
with S = 0.5, s = 1, and h = 0.4.

In order to illustrate Theorem 4.5, we plot the eigenvalues of the matrices L(n) for n = 6,
n = 10 and n = 50 in Fig. 12(b).

0 2 4 6
1

1.2

1.4

1.6

1.8

2
fix x and y ticks

1(ei )

2(ei )

(a)

1 1.2 1.4 1.6 1.8 2
0.5

1

1.5

2

2.5

3

3.5
fix yticks with MatLab2017

(b)

FIG. 12. (a) The eigenvalues λ1,2(e
iθ) as functions of θ when ω is given by

(1.3) with parameters S = 0.5, s = 1, h = 0.4 and T = 4. (b) The eigenvalues
of the matrices L(n) for n = 6, n = 20 and n = 50 (black dots) with the same
parameters as in (a).

Let us consider ω in (1.4). We readily find

Φ(eiθ) =
1

|u′p(a)|
(
S1α(θ, s1, T )− S2α(θ, s2, T ) S1β(θ, s1, T )− S2β(θ, s2, T ))
S1β(θ, s1, T )− S2β(θ, s2, T ) S1α(θ, s1, T )− S2α(θ, s2, T )

)

with u′p(a) given by (3.8).
For this case we have different cases depending on T, see Table 1.
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Parameters Number of solutions Stability
0 < T < T1 One solution up,1 Unstable
T = T1 Two solutions up,1 and up,cr Unstable

T ∈ (T1, T2) Tree solutions up,i Unstable
T ≥ T2 Tree solutions up,i up,1, up,3 are unstable,

up,2 is stable
TABLE 1. up,k = up(x; ai), i = 1, 2, 3 are 1-bump periodic solutions for a1 ≤
a2 ≤ a3. For parameters S1 = 4, s1 = 2, S2 = 1.5, s2 = 1 and h = 0.4 we
have T1 = 2.4997, T2 = 3.3320 and examples of up,· given in Fig. 7-Fig. 8.

The solution up,1 is always unstable, see Table 1. Similarly to the previous examples, we plot
spectral bounds in Fig. 13. In Fig. 13(b) we plot the boundaries of λ1(z) to illustrate that at
T = T1 the eigenvalue becomes less than 1, which in this case does not effect the stability of
the solution.

1 2 3 4
T

1

2

3

4

5

min  2
max 2
min 1
max 1

(a)

1.5 2 2.5 3 3.5
T

0.99

1

1.01

1.02

1.03

1.04
min 1
max 1

(b)

FIG. 13. Bounds for σ(L) when up = up,1, depending on T . Here ω is given
by (1.4) with S1 = 4, s1 = 2, S2 = 1.5, s2 = 1 and h = 0.4, see Table 1.

The period T = T1 corresponds to the critical situation where the new linearly unstable
solution up,cr appears, and splits into two unstable solutions up,2 and up,3 for T = T1 + ε,
ε > 0. The spectrum of L in this case has no spectral gap, see Fig. 14.
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0 2 
0.9

1

1.1

1.2

1.3

1.4

1(ei ), T= 2.4997

2(ei ), T= 2.4997

FIG. 14. The eigenvalues λ1(e
iθ) and λ1(e

iθ) when up = up,cr. Here ω is
given as in (1.4) with S1 = 4, s1 = 2, S2 = 1.5, s2 = 1, h = 0.4, the
critical period value T = T1 = 2.4997 giving σ(L) = [9.8460, 1.3403] (all the
approximated values are rounded up to 4 decimals).

For the solution up,2 we plot the bifurcation diagram in Fig. 15. The red curves corresponds
to the minimum and maximum of λ2 and blue to the minimum and maximum values of λ1 for
different T. From (4.8) the spectrum of H′(up,2) lies in between of red and blue curves.

3 4 5 6 7
T

0.8

0.9

1

1.1

1.2

1.3
min  2
max 2
min 1
max 1

FIG. 15. Bounds for σ(L), when up = up,2, depending on T . The marked
values corresponds to T = 3.1849 (yellow), T = 3.3320 (black) and T =
3.5243 (green) (all the values are rounded up to 4 decimals). Here ω is given as
in (1.4) with S1 = 4, s1 = 2, S2 = 1.5, s2 = 1, h = 0.4, see Table 1.

The point T = 3.1849 in Fig.15 seemingly appears as a bifurcation point. This is however not
the case and T = 3.1849 only corresponds to the situation when minimum of λ2(e

iθ) becomes
negative. In order to clarify this point we plot λ2(e

iθ) for T = 3.18, T = 3.1849 in Fig. 16(a).
We also plot λ2(e

iθ) for T = 3.25 and the bifurcation point T = T2 = 3.3320 in Fig. 16(a).
For T = 3.5243 the spectrum is again a connected set σ(L) = [0.8007, 1], see Fig.16(b).
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2(ei ), T=3.18
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2(ei ), T=3.3320
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2(ei ), T=3.5243
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FIG. 16. The eigenvalue λ2(e
iθ) in (a) and λ1,2(e

iθ) in (b) when up = up,2,
see Table 1 for different T . Here ω is given as in (1.4) with S1 = 4, s1 = 2,
S2 = 1.5, s2 = 1, h = 0.4.

Similarly, we plot the spectral bounds for up,3 in Fig.17.
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FIG. 17. Bounds for σ(L) when up = up,3, depending on T , see Table 1. Here
ω is given as in (1.4) with S1 = 4, s1 = 2, S2 = 1.5, s2 = 1, h = 0.4.

As T → ∞ the limiting values could be calculated from (4.9) once the limiting expression
for a(T ) is obtained. The calculations however are cumbersome and we omit them here. The
numerical calculations however indicate, as illustrated in Fig.13, 15 and 17, that there are no
stability changes for larger period T.

We plot examples of λ1(e
iθ) and λ2(e

iθ) as functions of θ for T = 1.5,T = 3.2 and T = 3.5
for every solution up,i, i = 1, 2, 3, in Fig. 18-20.
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FIG. 18. The eigenvalues λ1,2(e
iθ) when up = up,1. Here ω is given as in (1.4)

with S1 = 4, s1 = 2, S2 = 1.5, s2 = 1, h = 0.4, and T = 1.5. The resulting
spectrum σ(L) = [1, 1.0684] ∪ [1.8449, 2.6479]
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FIG. 19. The eigenvalues λ1,2(e
iθ) for up = up,1 in (a), up = up,2 in (b) and

up = up,3 in (c). Here ω is given as in (1.4) with S1 = 4, s1 = 2, S2 =
1.5, s2 = 1, h = 0.4, and T = 3.2. The corresponding spectra are σ(L) =
[0.9969, 1] ∪ [3.1147, 3.4945] , σ(L) = [0.8020, 0.9692] ∪ [0.9978, 1.0022]
and σ(L) = [0.9921, 1]∪ [1.5419, 1.7825], respectively. (All the approximated
values are rounded up to 4 decimals).
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FIG. 20. The eigenvalues λ1,2(e
iθ) for up = up,1 in (a), up = up,2 in (b)

and up = up,3 in (c). Here ω is given as in (1.4) with S1 = 4, s1 = 2,
S2 = 1.5, s2 = 1, h = 0.4, and T = 3.5. The corresponding spectra are
σ(L) = [0.9973, 1] ∪ [3.2365, 3.5318], σ(L) = [0.8005, 0.9616] ∪ [0.9633, 1]
and σ(L) = [0.9934, 1]∪ [1.6494, 1.8390], respectively. (All the approximated
values are rounded up to 4 decimals).
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5. CONCLUSIONS AND OUTLOOK

In the present paper we have studied the existence of stationary periodic solutions, the so-
called 1-bump periodic solutions, of the Amari model, and their linear stability. We have re-
stricted the choice of the firing rate function to the Heaviside function. This allowed us to obtain
an almost explicit description of the solutions when the connectivity functions ω are sufficiently
localized symmetric interactions with positive total mass. We have shown that the analysis of
the existence then boils down to analysing the behaviour of the T -periodic function ωp(x;T ),
obtained as the infinite sum of ω(x + kT ), on the half period interval. Once ωp is given, this
analysis is in fact even simpler than the analysis of the existence for 1-bump solutions as in [?].
The main difficulty here is that, in most cases, ωp has no analytic expression and has to be ap-
proximated. Despite that, the considered approach of constructing solutions is still simpler than
the ODE-method proposed in [8]. In addition, it allows us to address the uniqueness of solu-
tions and is not restricted to a particular type of ω. To illustrate the method we have constructed
1-bump periodic solutions for different types of ω.

The choice of the Heaviside function also enabled us to analyse the spectral stability of the
solutions, which is the main contribution of this paper. This was done by analysing the spectrum
of a Laurent block operator which, we have proved, possesses almost the same eigenvalues as
the Fréchet derivative of the operator in consideration. We have shown that the model (1.1) can
have both linearly stable and unstable periodic solutions for some connectivity functions. When
ω is of the excitatory type, the periodic solutions are always unstable.

In order to draw the conclusions about Lyapunov stability of the solutions based on their
linear stability, the firing rate function f must be smooth enough, which is not the case here. We
conjecture that the existence and stability results would hold for steep sigmoid like functions
f , see (1.6). To prove this conjecture one can proceed in the way similar to [10] and [23].
It is not possible to apply the results from the mentioned papers directly since the eigenvalue
λ = 1 of the Fréchet derivative of the operator defined by (1.2) is not isolated. However, the
stability analysis in Section 4 shows that the spectrum is pointwise and the eigenfunctions can be
calculated, which gives a possibility of studying the dynamics of solutions on a central manifold.
We plan to address this problem in our future work.

Another topic that we have not properly addressed in this paper, is the coexistence of the
localized and periodic solutions with different stability properties. The combination of the ODE-
methods [11, 18, 15] with the results obtained here could be used to investigate this interesting
problem.

Finally, we would like to mention that the analysis presented here could be generalized to the
case of N -bump periodic solutions and several dimensions.While the stability analysis could
be extended without much changes, the major difficulty is to obtain the necessary and sufficient
conditions for the existence of regular solutions and to find their intersections with the threshold.
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Abstract

We investigate existence and stability of single bumps in a homogenized
2-population neural field model, when the firing rate functions are given by
the Heaviside function. The model is derived by means of the two-scale con-
vergence technique of Nguetseng in the case of periodic microvariation in
the connectivity functions. The connectivity functions are periodically mod-
ulated in both the synaptic footprint and in the spatial scale. The bump
solutions are constructed by using a pinning function technique for the case
where the solutions are independent of the local variable. In the weakly mod-
ulated case the generic picture consists of two bumps (one narrow and one
broad bump) for each admissible set of threshold values for firing. In addi-
tion, a new threshold value regime for existence of bumps is detected. Beyond
the weakly modulated regime the number of bumps depends sensitively on
the degree of heterogeneity. For the latter case we present a configuration
consisting of three coexisting bumps. The linear stability of the bumps is
studied by means of the spectral properties of a Fredholm integral operator,
block diagonalization of this operator and the Fourier decomposition method.
In the weakly modulated regime, one of the bumps is unstable for all rela-
tive inhibition times, while the other one is stable for small and moderate
values of this parameter. The latter bump becomes unstable as the relative
inhibition time exceeds a certain threshold. In the case of the three coexist-
ing bumps detected in the regime of finite degree of heterogeneity, we have
at least one stable bump (and maximum two stable bumps) for small and
moderate values of the relative inhibition time.

Keywords: Neural field models, homogenization theory, existence and
stability of bumps.
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1. Introduction

The coupled system of nonlocal field equations

∂

∂t
ue = −ue + ωee ⊗ Pe(ue − θe)− ωie ⊗ Pi(ui − θi)

(1)

τ
∂

∂t
ui = −ui + ωei ⊗ Pe(ue − θe)− ωii ⊗ Pi(ui − θi)

has been proposed by Blomquist et al. [1] as a generic model for interaction
between populations of excitatory and inhibitory neurons. Here f ⊗ g is the
spatial convolution of f and g defined as

[f ⊗ g](x) =

∫
Ω

f(x− x′)g(x′)dx′, Ω ⊆ R
N

ue and ui denote the membrane potentials of excitatory and inhibitory ele-
ments, respectively, at the spatial point x and time t. The region Ω is the
spatial region occupied by the neurons. The functions ωmn (m,n = e, i)
model the coupling strengths (referred to as the connectivity functions) in
the network, while Pm (m = e, i) are the firing rate functions. The parameter
τ is the relative inhibition time i.e. τ = τi/τe where τe (τi) is the excitatory
(inhibitory) time constant, while θe and θi are the threshold values for fir-
ing of the excitatory and the inhibitory neurons, respectively. The model
(1) presupposes that the cortical medium is homogeneous and isotropic. It
is one of the simplest models for the spatiotemporal variation of the neural
activity in cortical networks. These networks are modelled as a continuous
sheet of neurons where the typical spatial and temporal scales of the activity
are assumed to be much larger than the corresponding neuronal scales.

Since the seminal works of Amari [2, 3, 4], 1- and 2-population neural field
models have been subject to a vast number of studies. See also Bressloff [5]
and the references therein. They are expected to capture the brain activity
on the macroscale level. However, as most of these models presuppose that
the cortical structure is homogeneous and isotropic, they do not take into
account the microscopic fine structure of the cortex. This means that mod-
elling frameworks like (1) represent simplifications of the actual situation. It
is therefore necessary to develop a mathematical machinery which makes it
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possible to investigate waves and stationary activity patterns in neural media
with microscopic fine structure. One way of doing this is by using so-called
homogenization techniques [6, 7, 8, 9]. In Bressloff [10] fronts propagating
through a cortical medium with a periodically modulated microstructure are
studied. The coupling between periodic micro level structure of the cortex
and nonlocal mean field description has also been investigated in the works
[11, 12, 13, 14, 15, 16]. It turns out that the detailed microstructure has
an impact on pattern forming mechanisms as well as existence and stabil-
ity of traveling fronts and pulses. A typical feature observed in the works
[10, 11, 12, 13, 14, 15, 16] is that the fronts slow down when the degree
of heterogeneity increases. The fronts cannot propagate if the heterogene-
ity exceeds a certain threshold. In the papers [17, 18, 19, 20, 21] the focus
is existence and stability of single- and 2-bumps within the framework of
a homogenized 1-population neural field model, where one allows for peri-
odic microstructure variation in both the synaptic footprint and the spa-
tial scale of the connectivity strength. We notice here that most studies of
bumps/traveling fronts in inhomogeneous media use 1-population models as
modelling frameworks. As far as we know, it is rare in between studies of
2-population nonlocal neural field models with inhomogeneities.

This serves as a background and motivation for the present study. The
starting point is the 2-population neuronal network model

∂

∂t
u
(ε)
e = −u

(ε)
e + ω

(ε)
ee ⊗ Pe(u

(ε)
e − θe)− ω

(ε)
ie ⊗ Pi(u

(ε)
i − θi)

(2)

τ
∂

∂t
u
(ε)
i = −u

(ε)
i + ω

(ε)
ei ⊗ Pe(u

(ε)
e − θe)− ω

(ε)
ii ⊗ Pi(u

(ε)
i − θi)

which generalizes the 2-population neuronal network model (1). Here Ω is

a subset of RN , u
(ε)
e and u

(ε)
i describe the membrane potentials of an ex-

citatory and an inhibitory neural element, respectively, at position x and
time t. Pe and Pi are non-negative firing rate functions and ωε given as
ω
(ε)
mn(x) = ωmn

(
x, x

ε

)
the connectivity kernel which by assumption is periodic

in the second variable y = x/ε. We refer to the model (2) as the heteroge-
neous 2-population neural field model.

By employing the same arguments as in Coombes et al. [17] and Svanst-

edt et al. [18], we conclude that u
(ε)
e and u

(ε)
i of the Cauchy problem of
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this model converge to the solution ue and ui of the Cauchy problem of the
nonlocal nonlinear diffusion model

∂

∂t
ue = −ue + ωee ⊗⊗Pe(ue − θe)− ωie ⊗⊗Pi(ui − θi)

(3)

τ
∂

∂t
ui = −ui + ωei ⊗⊗Pe(ue − θe)− ωii ⊗⊗Pi(ui − θi)

as ε → 0 in the two-scale sense. Here f ⊗⊗g is the double convolution of f
and g defined by

[f ⊗⊗g](x, y) ≡
∫
Ω

∫
Y

f(x− x′, y − y′)g(x′, y′)dy′dx′ (4)

where x ∈ Ω, y ∈ R
N , t > 0 in the two-scale sense. Here Y = [0, 1]N is the

period cell in R
N . We refer to this model as the homogenized 2-population

neural field model. The key tools for proving this result is the multiscale
convergence technique of Nguetseng [8, 9] together with Visintins theorem
for two-scale convergence of convolution integrals [22].

Notice that it is possible to design the firing rate functions and the con-
nectivity kernels in the nonlocal models (1)-(3) in such a way that the corre-
sponding Cauchy problem is globally well-posed. In order to prove this fact
one proceeds in a way analogous to Potthast et al. [23] for well-posedness
in the Banach space of bounded continuous functions and Faye et al. [24] in
the case of well-posedness in L2-spaces on bounded spatial domains.

A characteristic feature of the homogenized neural field model (3) (as well
as in the works [17, 18, 19, 20, 21]) is the appearance of the double convo-
lution integrals of the type (4) describing the nonlocal effects. We notice
here that there is a notable structural difference between the homogenized
neural field models in these works (as well as the model (3)) and in the pa-
pers [10, 11, 12, 13, 14, 15, 16]). Here the following should be noted: First
of all, we have not seen a derivation of the modelling frameworks like (3)
and the homogenized 1-population models investigated in [17, 18, 19, 20, 21]
by using standard perturbation techniques. Secondly, we are not aware of
any attempts to justify rigorously the usage of standard homogenization
techniques to nonlocal neural field models by means of functional analyti-
cal based convergence arguments. Multi-scale convergence techniques and
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standard perturbation expansions yield in some cases the same leading order
approximations of PDE problems with strong heterogeneities, thus showing
that standard perturbation techniques are rigorously justified for these lo-
cal problems. They seem not capable, however, of giving the correct leading
order approximations when handling nonlocal neural field models. The prob-
lem consists of dealing with convergence of convolution integrals containing
microscale variation in a rigorous manner. Homogenization theory based on
functional analytic based multi-scale convergence technique offers a rigorous
approach to this problem.

Our main goal is to investigate existence and stability of y-independent,
single bumps within the framework of the homogenized 2-population model
(3) in the Heaviside limit H of the firing rate functions Pm, m = e, i in one
spatial dimension i.e. N = 1 in (3). This means that the period cell Y is
given by Y = [0, 1].

The connectivity kernels ωmn are expressed in terms of the scaling function
Φ and the footprint functions σmn, m,n = e, i as

ωmn(x, y;αmn) =
1

σmn(y;αmn)
Φ

(
x

σmn(y;αmn)

)
. (5)

Here

σmn(y;αmn) = smn(1 + αmn cos(2πy)), smn > 0, 0 ≤ αmn < 1 (6)

This means that the connectivity kernels are assumed to be periodically mod-
ulated in both the spatial scale and the synaptic footprints. The parameters
αmn, m,n = e, i are referred to as the heterogeneity parameters. Notice
that we recover the translational invariant case when αmn = 0. The scaling
function Φ is assumed to be even, positive, normalized and with a bounded
continuous derivative i.e.

Φ(ξ) = Φ(−ξ), Φ(ξ) ≥ 0,

∫
R

Φ(ξ)dξ = 1, Φ ∈ BC1(R) (7)

Notice that the normalization condition implies that the connectivity
functions are normalized i.e.∫

R

∫
Y

ωmn(x, y;αmn)dydx =

∫
R

Φ(ξ)dξ = 1 (8)
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In all the numerical computations, we will let the scaling function Φ be given
as the Gaussian function

Φ(ξ) =
1√
π
exp(−ξ2) (9)

Just as in Blomquist et al. [1], we allow for the situation where θe = θi.

The existence of bumps is determined by means of the mapping technique in
exactly the same way in Blomquist et al. [1]. The uniqueness issue is resolved
by interpreting the solutions of pinning equations as intersection points be-
tween level curves with the threshold values as the level curve constants.
Contrary to the translation invariant case we show that the model (3) can
produce more than two bumps given the heterogeneity parameters αmn are
large enough. We then derive a framework for analyzing the stability of the
bumps in a way analogous to [25, 26, 27] for single bumps in 2 spatial di-
mension, Kollár et al. [28] for the spectral stability of vortex solutions to the
Gross-Pitaevski equation in a 2-dimensional spatial configuration, Svanstedt
et al. [20] for the stability of single bump solutions in a homogenized 1-
population neural field model and Malyutina et al. [19] for the stability of
the 2-bump solutions of a homogenized 1-population neural field equation.
This framework is based on the spectral properties of a Fredholm integral
operator, block diagonalization of this operator and the Fourier decomposi-
tion method. This approach produces an infinite sequence of Evans functions
corresponding to the modes in the Fourier-expansion for the perturbations.
Each Evans function can be written as a product of quadratic polynomials
in the growth/decay rates with a structure identical to the translational in-
variant case treated in Blomquist et al [1]. In Theorem 4 the estimate on the
eigenvalue number for the matrices is derived. We justify the linearization
approach using the notion of Frechét derivatives.

The present study complements the works [18], [19], [21] and [17].

The paper is organized as follows:

In Section 2 we construct single bumps of the homogenized 2-population
model which are independent of the microvariable y. In Section 3 we develop
the framework for analyzing the stability of these bumps. Both in Section 2
and Section 3 we demonstrate the numerical results by assuming the scaling
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function of the connectivity kernels to be the Gaussian function (9). Section
4 contains of conclusions and outlook.

2. Single bumps of the homogenized 2-population model.

We observe that stationary, y-independent solutions Um (m = e, i) of the
homogenized 2-population model (3) must satisfy the fixed point problem

Ue = 〈ωee〉 ⊗H(Ue − θe)− 〈ωie〉 ⊗H(Ui − θi)

(10)

Ui = 〈ωei〉 ⊗H(Ue − θe)− 〈ωii〉 ⊗H(Ui − θi)

if they exist. Here f ⊗ g is the spatial convolution of f and g defined as

[f ⊗ g](x) =

∫
R

f(x− x′)g(x′)dx′

and 〈ωmn〉 is the mean value of the connectivity kernel ωmn over the period
of the second variable y i.e.

〈ωmn〉(x;αmn) ≡
∫
Y

ωmn(x, y;αmn)dy (11)

Here we will focus on localized stationary solutions of (10), referred to as
bumps. As the bumps are independent of the local scale y, the fixed point
problem (10) appears from the translational invariant case simply by mak-
ing the replacement ωmn → 〈ωmn〉. Therefore the theory for positioning the
bumps in our case is identical with what we get for the translational invariant
case. Thus we can assume that positioned about the origin, without loss of
generality. Notice that the translational invariance is reflected in the prop-
erty that the spectrum of the operator in Section 3 for the stability problem
always contains zero.

Hence, in accordance with this, we define a single bump U = (Ue, Ui) in
the present modelling framework in the following way:

1. Spatial symmetry: Um(x) = Um(−x) for m = e, i.
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2. There are a unique positive numbers ae and ai such that

Ue(±ae) = θe, Ui(±ai) = θi

and

Ue(x) > θe for |x| < ae

Ue(x) < θe for |x| > ae

Ui(x) > θi for |x| < ai

Ui(x) < θi for |x| > ai

3. lim
|x|→∞

Um(x) = 0 for m = e, i.

The numbers ae and ai are referred to as the excitatory and the inhibitory
pulse widths, respectively.

In order to construct the bumps, we proceed in a way analogous to Amari [4],
Blomquist et al. [1] and Folias et al. [29]. We introduce the anti-derivatives
Wmn of 〈ωmn〉 defined by

Wmn(x;αmn) =

x∫
0

〈ωmn〉(z;αmn)dz, m, n = e, i (12)

The components Ue and Ui of the bumps can now formally be written as

Ue(x;αe) = Wee(ae − x;αee) +Wee(ae + x;αee)

(13)

−Wie(ai − x;αie)−Wie(ai + x;αie)

Ui(x;αi) = Wei(ae − x;αei) +Wei(ae + x;αei)

(14)

−Wii(ai − x;αii)−Wii(ai + x;αii)

where αe and αi are the heterogeneity vectors
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αe =

[
αee

αie

]
, αi =

[
αei

αii

]

Since 0 ≤ αmn < 1 by assumption, αm ∈ [0, 1)2, m = e, i.

Necessary conditions for the existence of single bumps hence read

fe(a;αe) = θe

(15)

fi(a;αi) = θi

where the functions fe and fi are given as

fe(a;αe) ≡ Wee(2ae;αee)−Wie(ae + ai;αie) +Wie(ae − ai;αie)

(16)

fi(a;αi) ≡ Wei(ae + ai;αei)−Wei(ai − ae;αei)−Wii(2ai;αii)

Here we have introduced the pulse width vector

a =

[
ae
ai

]

We refer to the system (15) as the system of pinning equations. Notice that
the set of pinning equations gives a necessary (but not sufficient) condition
for the existence of bumps. This means that it is necessary to emphasize
the non-existence result: If the pinning equation system (15)-(16) has no
solution for which both components ae and ai are positive, then bumps do
not exist. Just as in Blomquist et al. [1], the investigation of this system is
conveniently divided into the following two problems:

1. (Existence issue.) In Subsection 2.1 we derive necessary conditions ex-
istence of bumps. This problem is resolved by means of an extension
of the mapping technique introduced in Blomquist et al. [1]

2. (Uniqueness issue.) In Subsection 2.2 we study the uniqueness of bump
solutions. In contrast to the existence issue (which a global problem)
this question is local issue which is solved by means of the inverse
function theorem.
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2.1. Existence of single bumps.

Our aim is to determine the set of threshold values θe, θi for which the
system (15) has at least one solution. In order to do that we make use of the
mapping technique developed in Blomquist et al. [1].

We proceed as follows: Introduce the 4-vector

α =

[
αe

αi

]
where αe and αi are the heterogeneity vectors for the excitatory and the
inhibitory population, respectively. We notice that

α ∈ A ≡ [0, 1)4

Let Σ denote the first quadrant in the ae, ai - plane i.e.

Σ = {(ae, ai) ∈ R
2; ae, ai > 0}

We then introduce the 4-parameter family of vector fields {Fα}α∈A acting on
Σ defined by

Fα(a) =

[
fe(a;αe)
fi(a;αi)

]
Let θ be the threshold vector

θ =

[
θe
θi

]
and let I be the set

I = {(θe, θi) ∈ R
2; 0 < θe ≤ 1, 0 < θi ≤ 1} (17)

The system of pinning equations (15) now reads

Fα(a) = θ, θ ∈ I (18)

The subset of threshold values in I for which (18) has at least one solution
is referred to as the set of admissible threshold values.
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From Blomquist et al. [1] we know that there always is a subset J of admis-
sible threshold values in I i.e. that (18) has at least one solution a = a0 for
α = 0, provided the connectivity functions ωmn are continuous:

F0(a0) = θ, θ ∈ J (19)

For the weakly modulated case (0 < αmn � 1,m, n = e, i), we end up with
the same result, as the following theorem shows:

Theorem 1. Assume that the scaling function Φ of the connectivity kernels
ωmn, m,n = e, i, satisfies (7) and that the synaptic footprint functions σmn

are given by (6). Then the following holds true:

1. The set Fα(Σ) is bounded for all α ∈ A.

2. The vectorfield Fα : Σ → R
2 is smooth for all α ∈ A.

3. If the Jacobian DaF0(a0) is non-singular where a0 is a solution of (19),
then the intersection between Fα(Σ) and I is non-empty i.e. there is a
k ∈ [0, 1) such that

Fα(Σ) ∩ I = ∅
for α ∈ Ak where

Ak ≡ {α ∈ A; 0 ≤ αmn < k}
Proof. The proof is divided into three parts:

1. (Boundedness.) From the conditions imposed on the connectivity ker-
nels ωmn we have that the anti-derivatives Wmn are monotonically in-
creasing and odd. This property together with the normalization con-
dition (8) imply that

|Wmn(x;αmn)| ≤ 1

2

The triangle inequality hence yields the uniform bounds

fe(a;αe) = Wee(2ae;αee) +Wie(ae − ai;αie)−Wie(ae + ai;αie)

≤ Wee(2ae;αee) ≤ 1

2

fi(a;αi) = Wei(ae + ai;αei)−Wei(ai − ae;αei)−Wii(2ai;αii)
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≤ Wei(ae + ai;αei) +Wei(ae − ai;αei)

≤ 2 max
x±=ae±ai

Wei(x±;αei) ≤ 1

for the pinning functions fe and fi from which it follows that Fα(Σ) is
bounded for all α ∈ A.

2. (Smoothness.) Continuity of the scaling functions Φ implies that the
anti-derivatives Wmn defined by (12) are smooth functions, from which
it follows that the pinning functions fe and fi are smooth on Σ. This
argument holds true for all α ∈ A. Thus the vectorfield Fα : Σ → R

2

is smooth for all α ∈ A.

3. (Non-empty intersection and continuous dependence on α) The vector
fields Fα : Σ → R

2 induces a mapping F : Σ×A → R
2 defined by

F (a, α) = Fα(a) (20)

Since by Fubinis theorem, the anti-derivative Wmn of the mean value
〈ωmn〉 can be expressed as

Wmn(ξ;αmn) =

∫
Y

ξ/σmn(y;αmn)∫
0

Φ(z)dzdy

we conclude that the pinning functions fe and fi defined by (16) are
smooth functions of the heterogeneity parameters αmn. Hence the map-
ping F : Σ×A → R

2 is smooth. The pinning condition (18) reads

F (a, α) = θ (21)

From (19)
F (a0, 0) = θ, θ ∈ J

for at least one solution a = a0. Since by assumption the Jacobian
DaF (a0, 0) is non-singular, the implicit function theorem implies that
(21) has a unique solution which is a smooth function of α for some
α-subset Ak of A.
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The implicit function theorem also implies that the solution of (21) sat-
isfies the continuity property (m = e, i)

am(α) → am(0) as α → 0

The conditions (5) imposed on the connectivity functions ωmn imply that
the mean value of these functions, 〈ωmn〉(x, α) are uniformly continuous with
respect to α. Hence we arrive at the following corollary:

Corollary 1. The bump solutions depend continuously on α i.e.

||U(α)− U0||BC1(R) → 0 as α → 0 (22)

Here Uα ≡ (Ue(α), Ui(α)), U0 ≡ (Ue(0), Ui(0)) and BC1(R) the Banach space
of bounded, smooth functions on R.

The results summarized in Theorem 1 and Corollary 1 imply that there
is a set of threshold values for which the pinning equations (15)-(16) have at
least one solution in the weakly modulated case (0 < αmn � 1), and hence
that excitatory and inhibitory single bumps exist since the corresponding so-
lution of (18) yields a function that crosses threshold only at the appropriate
crossings. Just as in Blomquist et al. [1], we can show that there exist admis-
sible threshold values which produce narrow inhibitory bumps (0 ← ai � ae)
and finite width excitatory bumps. Moreover, we will find that narrow ex-
citatory bumps (0 ← ae � ai) cannot coexist with inhibitory bumps in this
parameter regime. Thus we can conclude that the results obtained in the
translational invariant case (αmn = 0) carry over to the weakly modulated
case (0 < αmn � 1) at least with respect to the existence of bumps.

We observe from the proof of the boundedness of the pinning functions fe
and fi that fe approaches 1/2 and fi approaches 1 for large ae and small ai.
This means that the set of admissible threshold values is located in the set
0 < θe ≤ 1/2 and 0 < θi ≤ 1.

In order to study the effect of heterogeneity on the bumps in some detail, we
make use the same connectivity kernel and the same set of input parameters
as in Blomquist et al. [1]. These parameters are listed in Table 1 as Set 1.
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Parameters see sei sie sii θe θi
Set 1 0.35 0.48 0.60 0.69 0.12 0.08
Set 2 0.35 0.48 0.60 0.69 0.12 0.16

Table 1: Sets of parameters used in the numerical runs underlying Fig. 1 and Fig. 13,
where smn for (m,n = e, i) represent mean synaptic footprints, see (6), and θm (m = e, i)
threshold values. The scaling function Φ of the connectivity kernels ωmn is given as
Gaussian function (9).

Let us consider an example of the weakly modulated case where we use
the parameters in Set 1 in Table 1.

P

Q

ae

0 0.05 0.1 0.15 0.2 0.25

a i

0

0.05

0.1

0.15

0.2

0.25

Figure 1: The intersection of level curves (15)-(16) in the weakly modulated case. fe = θe
(red curve) and fi = θi (green curve) with the parameters in Set 1 in Table 1, αee = 0.01,
αie = 0.01, αei = 0.025 and αii = 0.025 as input parameters. The points P and Q
correspond to the narrow and broad bump, respectively.
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Figure 2: Excitatory components (a) and inhibitory components (b) of the bumps cor-
responding to the intersections P and Q of level curves in Fig. 1. The pulse width
coordinates are given as P : (ae, ai) = (0.1794, 0.1827) and Q : (ae, ai) = (0.0660, 0.0448).

The results summarized in Fig. 1 and Fig. 2 are consistent with our
theoretical predictions in the weakly modulated case: The generic picture
which emerges consists of two bumps per admissible threshold value, just as
in the translational invariant case [1].

Let us consider the translational invariant limit (α = 0) of our model in
some detail. Just as in Blomquist et al. [1], we plot the image set Fα(Σ) in
the threshold value plane for α = 0. The result is summarized in Fig. 3. In
addition to the region producing bumps identified in Blomquist et al. [1], we
also find a new region for existence of bumps. The former one is referred to
as Region A whereas the new region for bumps is called Region B. It turns
out that for threshold values (θe, θi) selected from Region A or Region B the
number of solutions of the corresponding pinning equations fe = θe, fi = θi
is equal to 2. The number of bumps produced is also equal to 2.

Fig. 3 displays the boundaries of Region A and Region B. The curves
H1 and H6 correspond to tangency of the level curves fe = θe and fi = θi.
These curves are constructed in the following way: We construct positive
solutions of the system of equations

det[DaF ](a, α) = 0

(23)

fe(a;αe) = θe

for θe ∈ (0, 1/2]. We then compute the corresponding θi-value for θi ∈ (0, 1]
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using the component equation θi = fi(a;αi) of the pinning system (15). The
curve H2 corresponds to the situation where ai → 0 for the narrow bump.
The curve H3 corresponds to the situation where ae → ∞. In the region
with boundaries given by H2 and H3 we have detected only one intersection
point between level curves which corresponds to one single bump. However,
for threshold values close to H2 in that region, the level curves have 2 in-
tersection points but one of the intersection point does not produce a bump
due to the fact that Ui(0) < θi. Notice that if θe > Ue(0) and θi > Ui(0),
the system of pinning equations (15) has either no solution or not a unique
positive solution. Thus the curves H5 and H4 defined by Ue(0) = θe and
Ui(0) = θi, respectively, give the boundary between the region of existence
and non-existence of bumps in Region B.

Next we study the change of the image set Fα(Σ) with the degree of het-
erogeneity. Let us first consider the weakly modulated case. Fig. 4 shows
that the image set Fα(Σ) in this case appears as a continuous deformation
of the set Fα=0(Σ) depicted in Fig. 3, in agreement with the predictions of
Theorem 1. Fig. 5 displays an example of intersection between the level
curves fe = θe and fi = θi in the weakly modulated case. In Fig. 6 the
corresponding bumps are depicted. As expected, the Region A and Region
B possess the same property with respect to the number of solutions of the
pinning equations fe = θe, fi = θi and the number of bumps, as in the trans-
lational invariant regime.

Due to the fact that the four heterogeneity parameters αmn (m,n = e, i)
can be changed independently of each other, we expect a rich plethora of
phenomena to take place beyond the weakly modulated regime. Fig. 7
demonstrates possible outcomes for the image set Fα(Σ) beyond the weakly
modulated regime. In the computations underlying the plot in this figure we
have assumed the heterogeneity parameters αmn to have moderate values,
except for αei. In Fig. 7 we have the same two regions, Region A and Region
B, in the threshold value plane just as in the translational invariant and the
weakly modulated case. We notice that Region B has become slimmer as
compared with what we observed in the regime 0 ≤ αmn � 1. By increasing
αei the positions of the curves H3, H4 and H5 can be swapped. In Fig. 7 the
curve H5 is located below the curve H3 for some threshold values. In this case
this takes place for θe less than 0.084. The curves H2, H3 and H5 together
form the boundary of a new region termed Region C. Region C produces at
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least 1 and maximum 3 solutions of the pinning equations (15)-(16). Here
each solution corresponds to a bump. We now give a numerical example on
bumps in the regime with a mix of moderate and large values of the hetero-
geneity parameters, i.e. in the situation corresponding to the ∗ marked point
in Fig. 7. Interestingly, we detect 3 intersection points between the level
curves fe = θe and fi = θi in this case. The outcome of this computation
is displayed in Fig. 8. These intersections produce 3 bumps (Fig. 9). For
heterogeneity parameters α beyond the weakly modulated regime the shapes
of the level curves change.

Figure 3: The image set Fα(Σ) in the translational invariant case (α = 0). The synaptic
footprints given as in Table 1 and the heterogeneity parameters α = 0. Green shaded
regions (Region A and Region B) produce two bumps (narrow and broad bump). The
curves H1 and H6 correspond to only one bump produced by the non-transversal inter-
section between the level curves fe = θe and fi = θi. The curve H2 corresponds to the
situation where ai → 0 for the narrow bump. The curve H3 corresponds to the asymp-
totic state ae → ∞. The curves H5 and H4 correspond to Ue(0) = θe and Ui(0) = θi,
respectively.
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Figure 4: The image set Fα(Σ) in the weakly modulated case. Input data: αee = 0.01,
αie = 0.01, αei = 0.025 and αii = 0.025. The threshold value point (θe, θi) of Set 1 in
Table 1 belongs to Region A and the threshold value point (θe, θi) of Set 2 belongs to
Region B. These two points are marked with ∗. The curves H1-H6 are defined in the
same way as in Fig. 3.
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Figure 5: The intersection of level curves (15) - (16) in the weakly modulated case. fe = θe
(red curve) and fi = θi (blue curve). Input data: αee = 0.01, αie = 0.01, αei = 0.025 and
αii = 0.025, parameter Set 2 in Table 1.
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Figure 6: Excitatory components (a) and inhibitory components (b) of the bumps corre-
sponding to intersection points P and Q in Fig. 5. The pulse width coordinates are given
as P : (ae, ai) = (0.3548, 0.2924) and Q : (ae, ai) = (0.6599, 0.5330).
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Figure 7: The image set Fα(Σ) beyond the weakly modulated case. Input data: The
synaptic footprints in Table 1. Input data: αee = 0.25, αie = 0.25, αei = 0.83 and
αii = 0.25. The curves H1-H6 are defined in the same way as in Fig. 3. The threshold
value point (θe, θi) of Set 2 in Table 1 is marked with ∗. This point corresponds to Fig. 8.
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Figure 8: Intersections of the level curves fe = θe and fi = θi corresponding to ∗ point
in Fig. 7. Input parameters: Set 2 of Table 1, αee = 0.25, αie = 0.25, αei = 0.83 and
αii = 0.25.
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Figure 9: Excitatory components (a) and inhibitory components (b) of bumps corre-
sponding to intersections of level curves in Fig. 8. The pulse width coordinates are
given as P : (ae, ai) = (0.0491, 0.0200), Q : (ae, ai) = (0.0620, 0.0402) and R : (ae, ai) =
(0.3198, 0.2724).

2.2. Uniqueness of single bumps.

Since the scaling function Φ by (7) has a bounded and continuous deriva-
tive, Theorem 1 implies that the vectorfields {Fα}α∈A constitute a 4 - pa-
rameter family of smooth vector fields.
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We choose a pair of admissible threshold values θe and θi for which the
pinning equation system

F0(a) = θ

has at least one solution a = a0. Let us assume that the Jacobian of the vec-
torfield F0 evaluated at this solution is non-singular. According to Blomquist
et al. [1] the latter property can be translated into a transversal intersection
between the level curves fe(a, αe = 0) = θe and fi(a, αi = 0) = θi defining the
pinning system. The generic picture consists of two such intersection points
per admissible threshold vector θ, corresponding to two bumps. It is impor-
tant to stress that this is a local result. Following the line of arguments in
Blomquist et al. [1] we conclude that the total number of intersection points
per admissible threshold value is an even number.

Now, let us take into account the heterogeneity in the model. Assuming
that we start out locally with two transversal intersection points per admis-
sible threshold vector in the translational invariant case (α = 0), we conclude
by appealing to Theorem 1, that the pinning equation system

Fα(a) = θ

in the weakly modulated case (0 < αmn � 1) also will have two solu-
tions which are smooth functions of the heterogeneity parameters. Hence
the generic picture with two bumps for a given set of threshold values will be
retained in the weakly modulated regime. This is exactly what we observe
in Fig.1.

Next, let us consider the regime beyond the weakly modulated regime. We
assume that there are two transversal intersections of the level curves (15)-
(16) in the weakly modulated regime, corresponding to the generic situation
with two bumps. By continuously changing the heterogeneity parameters
beyond this regime, the shape of the level curves will go through a homo-
topic deformation. Since we have four scalar heterogeneity parameters which
can be adjusted independently of each other, the level curves can go from
a transversal intersection to no intersection. The transition phase between
intersecting and non-intersecting level curves is described by means of non-
transversal intersection. For the existence problem for bumps it means that
two bumps merge together before vanishing. This also means that if the
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bumps (corresponding to transversal crossings) do not violate the threshold
condition, the limiting bump solution (corresponding to a non-transversal
intersection) will by continuous dependence on the degree of heterogeneity
also do the same. It may also happen that two non-intersecting level curves
in the weakly modulated regime can be brought into a state of a transversal
intersection by continuously adjusting the heterogeneity parameters. This
can be interpreted as generation of bumps. Within the framework of the
present description a non-transversal intersection point between the level
curves (15)-(16) satisfies the system

F (a, α) = θ, det[DaF ](a, α) = 0 (24)

with θ ∈ I. Here we for the sake of convenience have expressed the non-
transversality condition by means of the smooth mapping F : Σ × A → R

2

defined by (20).

For practical purposes, we can proceed as follows when determining the bi-
furcation point (a, α) = (ac, αc) (i.e a solution of the system (24)): We fix one
of the threshold values for firing, say θe, and all the heterogeneity parameters
in α except one, say αei. The solution of the system of two equations

fe(a;αe) = θe, det[DaF ](a;α) = 0 (25)

with 0 < θe ≤ 1
2
determines a parameterised curve C in the a-plane, param-

eterised by means of αei where αei ∈ [0, 1) i.e

C : fe(a;αee, αie) = θe, det[DaF ](a;αee, αie, αei, αii) = 0 (26)

The next step consists of computing the corresponding value of the compo-
nent function fi on C. Provided

0 < fi(a ∈ C, αei, αii) ≤ 1, αei ∈ [0, 1) (27)

we find the bifurcation threshold value curves θi = θ
(c)
i (αei) producing a

critical point (ac, αc) simply by letting

θ
(c)
i (αei) = fi(a ∈ C, αei, αii), αei ∈ [0, 1) (28)
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In this process we have ruled out the possibility that points on the curve C
become accumulation points, by imposing the finite change of rate condition

d

dαei

{det[DaF ]}(a ∈ C, αei, αii) = 0 (29)

for the determinant of the Jacobian DaF evaluated at the bifurcation point
(ac, αc). Notice that the outcome of this procedure is the curve C in Σ, rep-
resenting non-transversal intersection points between the level curves fe = θe
and fi = θi. This curve is parameterized by means of the heterogeneity pa-
rameter αei.

The solutions of the system (25) can be viewed as intersections of the level
curves of the functions fe and det[DaF ] in the a-plane with level curve con-
stants θe and 0, respectively. For a given θe and αe, the level curve fe = θe
is fixed in the a-plane, whereas the level curve det[DaF ] = 0 goes through
a homotopic deformation where the heterogeneity parameter αei plays the
role as homotopy parameter. This homotopic deformation process can result
in a transversal intersection between the level curves. Now, by appealing
to the similar type of reasoning as earlier, we conclude that the transversal
intersection case consists of two solutions of the system (25) in the generic
case. The condition for this transversal intersection can indeed be expressed
as det[DaG](a;α) = 0 where G is the vector field

G(a, α) =

[
fe(a;αe)

det[DaF ](a;α)

]
By plugging the two solutions of the system (25) into the remaining pinning

function fi, we hence obtain two critical threshold values θ
(c)
i,1 and θ

(c)
i,2 for

each αei. Notice that these two curves correspond to the curves H1 and H6

in Fig. 3, Fig. 4 and Fig. 7.

In Fig. 10 the graphs of the critical threshold value θ
(c)
i,1 and θ

(c)
i,2 as func-

tions of the heterogeneity parameter αei are displayed. For θi < θ
(c)
i,1 (αei)

and θi > θ
(c)
i,2 (αei), we have no intersection points between the level curves

fe = θe and f = θi, which means non-existence of bumps, whereas the set
0 ≤ αei < 1, θ

(c)
i,1 (αee) ≤ θi ≤ θ

(c)
i,2 (αee) produces at least one intersection

point locally. The green shaded set is the interior of this region. In that
set we typically have two transversal intersection points of the level curves
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fe = θe and f = θi, giving rise to two bumps. Let us fix αei = 0.5. The
point L belongs to green shaded region, whereas the point M is located at
the curve θi = θ

(c)
i2
(αei). The point N represents a state of non-existence of

bumps.

For fixed θi = 0.085, there are two disjoint αei-intervals producing points
in the green shaded region (corresponding to at least two bumps). A and
B are points representing transition state to the non-existence regime for
θi = 0.085. This means that we study the existence of bumps as function of
the line segment in the parameter space A. The directional vector for this
line segment is the unit vector along the αei-axis.

Notice that we can equally well develop a procedure for determining non-
transversal intersection points where the outcome is critical threshold value
curves parameterized by one of the other heterogeneity parameters. Here we
show how to construct such curves in the θe, αie-plane. We fix the threshold
value θi and the heterogeneity parameters αee, αei and αii. Then the solution
of the system (24) defines a curve

C̃ : fi(a;αei, αii) = θi, det[DaF ](a;αee, αie, αei, αii) = 0

in the a-plane (parameterized by αie), for which the finite change of rate
condition

d

dαie

{det[DaF ]}(a ∈ C̃, αee, αie) = 0 (30)

is satisfied. Also in this case we get two solutions of the system fi = θi,
det[DaF ] = 0 for each αie, corresponding to the transversal crossing situa-
tion for the system (30). Then by plugging these solutions into the pinning
function fe, we find as expected the two bifurcation threshold value curves,
denoted by θ

(c)
e,1 and θ

(c)
e,2. The result of this study is summarized in Fig. 11.

Just as in the case depicted in Fig. 10 we get a band in the threshold value-
heterogeneity parameter plane producing at least one bump per admissible
threshold value. Moreover, we identify two disjoint non-existence regions for
bumps in this plane, separated from this existence band.

Finally, but not least, we can determine bifurcation curves in the θi, αii- and
θe, αee-plane by using the same procedure as the one leading to Fig. 10 and
Fig. 11. The outcome of this construction is similar to the band structure
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observed in Fig. 10 and Fig. 11. We do not pursue any details here, however.

To sum up, the complexity of the bifurcation process leading to the for-
mation of bumps is increased, due to the presence of finite heterogeneity
in the model. A typical feature, which is not present in the translational
invariant case (α = 0), is the existence of one-parameter families of criti-
cal bumps (corresponding to (ac, αc)) parameterized by means of one of the
heterogeneity parameters. These bump families represent transition states
between existence and non-existence of bumps. We finally notice that our
results with respect to coexistence of bump states together with the weak-to-
strong heterogeneity transition is similar with those ones found by Avitabile
et al. [30] for a 1-population version of (2) without resorting to two-scale
convergence.

Figure 10: The graph of the critical threshold values θ
(c)
i,1 (red bold curve) and θ

(c)
i,2 (blue

bold curve) as functions of the heterogeneity parameter αei. Input parameters: αee =
αie = αii = 0, θe = 0.12 and the synaptic footprints of Table 1. Green shaded region
corresponds to existence of at least one bump per admissible threshold value, white regions
non-existence of bumps. In the case of αei = 0.5, the point L produces two bumps (the
generic situation), M one bump (the bifurcation point) and N no bumps. For fixed
θi = 0.085, there are two disjoint αei-intervals producing points in the green shaded
region. A and B are points representing transition state to the non-existence regime for
θi = 0.085.
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Figure 11: The graph of the critical threshold values θ
(c)
e,1 (red curve) and θ

(c)
e,2 (blue curve)

as functions of the heterogeneity parameter αie. Input parameters: αee = αei = αii = 0,
θi = 0.16 and the synaptic footprints of Table 1. Green shaded region corresponds to
existence of at least one bump per admissible threshold value, white regions non-existence
of bumps.

3. Stability analysis

The starting point for the stability analysis is the homogenized system
(3). Given U = (ue, ui)

T we conveniently write the system on the compact
form

T−1
∂U

∂t
= −U + FU, (31)

with

T =

(
1 0
0 1/τ

)
and FU =

⎛⎝Feeue −Fieui

Feeue −Fieui

⎞⎠ (32)

where Fmn, m,n ∈ {e, i} are the Hammerstein operators defined as

(Fmnu)(x, y) =

∫
R

∫
Y

ωmn(x
′ − x, y′ − y)H(u(x′, y′)− θn)dy

′dx′. (33)

Faugeras et al. [31] has investigated the stability of stationary solutions to
(31) on a bounded spatial domain and with a smooth sigmoid like firing rate
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function using functional analytical methods. For these settings the model
is well-posed and standard methods of functional analysis are applicable.
Dealing with the discontinuous firing rate function H, restricts the choice of
functional spaces [32, 23]. It also requires a justification of the linearization
technique for studying the stability of the bumps. In Oleynik et al. [33] the
Hammerstein operators (33) in one variable have been studied in connection
with neural field models. Several results in [33] can be easily extended to the
present case. Here we will formulate them without proofs.

Introduce the Banach space B = BC1(R× Y ) of functions U that are 1-
periodic in y variables and where U and its partial derivatives are continuous
functions. B is equipped with the norm

‖U‖B = sup
(x,y)∈R×Y

(
|U(x, y)|+

∣∣∣∣∂U∂x (x, y)

∣∣∣∣) .

Let U0 = (Ue, Ui)
T be a bump solution to (31)-(33). Then from (14) we

see that U0 ∈ B × B. Define the ball with center at U0 and radius ρ as

Bρ(U0) = {U ∈ B × B | ‖U − U0‖B×B < ρ}.

According to Lemma 4.1 in Oleynik et al. [33], there exits an ρ > 0 such
that F : Bρ(U0) → B × B. Moreover, F is Frechét differentiable at U0, (see
Lemma 5.6 in [32]), with the Frechét derivative given by

F ′
U0
V =

⎛⎝LeeVe − LieVi

LeiVe − LiiVi

⎞⎠ . (34)

Here the linear operators Lmn, m, n = e, i, are defined as

(LmnVm)(x, y) =
1

|U ′m(am)|
∫
Y

(ωmn(am − x, y′ − y)Vm(am, y
′) +

ωmn(am + x, y′ − y)Vm(−am, y
′)) dy′.

(35)

Notice that for connectivity kernels ωmn and perturbations Vm which are
independent of the local variable y, the Frechét derivative (35)-(35) simplifies
as expected to what one gets when applying the Evans function technique to
the translational invariant case [1]. This result is also analogous to what was
found in Svanstedt et al. [20] for single bumps in a homogenized 1-population
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neural field model and Malyutina et al. [19] for 2-bumps in a homogenized
1-population neural field model.

The first step of the stability analysis for U0 consists of linearizing the
system (31)-(32) around the state U0. Doing this, we get

T−1
∂V

∂t
= −V + F ′

U0
V (36)

or, equivalently,

∂V

∂t
= GV, GV = T

(−V + F ′
U0
V
)

(37)

The next step consists of determining the spectrum of the operator G. The
spatial structure of F ′

U0
enables us to simplify this task.

Let us define two matrix value matrices

A(1)(y) =

⎛⎝A(y) + B(y) −C(y)−D(y)

E(y) + F (y) −G(y)−H(y)

⎞⎠ (38)

and

A(2)(y) =

⎛⎝A(y)− B(y) −C(y) +D(y)

E(y)− F (y) −G(y) +H(y)

⎞⎠ (39)

where

A(y) = ωee(0,y)
|U ′

e(ae)| , B(y) = ωee(2ae,y)
|U ′

e(ae)|

C(y) = ωie(ai−ae,y)
|U ′

i(ai)| , D(y) = ωie(ai+ae,y)
|U ′

i(ai)|
(40)

E(y) = ωei(ae−ai,y)
|U ′

e(ae)| , F (y) = ωei(ae+ai,y)
|U ′

e(ae)|

G(y) = ωii(0,y)
|U ′

i(ai)| , H(y) = ωii(2ai,y)
|U ′

i(ai)|

Then the integral operator H(k), k = 1, 2,

(H(k)vk)(y) =

∫
Y

TA(k)(y′ − y)vk(y
′)dy′, (41)

30



maps the Banach space BC1(Y )× BC1(Y ) onto itself.
Moreover, the spectrum of G can differ from the joint spectrum of H(k),

k = 1, 2 only by two values. Let Sp(L) and Res(L) = C \ Sp(L) denote the
spectrum and resolvent of an operator L, respectively. We have the following
lemma:

Lemma 1. The spectrum Sp(G) of the operator G on the right hand side of
(37) can differ from

⋃
k=1,2

Sp
(−T+H(k)

)
only by two values, −1 and −1/τ.

Proof. We prove these results in two steps: Firstly, we show that λ ∈ Res(G)
implies λ ∈ ⋂

k=1,2

Res
(−T+H(k)

)
. Secondly, we show that the converse is

also valid if λ ∈ {−1,−1/τ}.
Step 1: Let λ ∈ C be in the resolvent set of the operator G. Thus, the

equation
(−TV + F ′

U0
V )− λV = Ψ (42)

has a solution V for any Ψ, where V and Ψ belong to the complexified Banach
space B × B. Consequently, we have

(−TV +TF ′
U0
V )(±ae, y)− λV (±ae, y) = Ψ(±ae, y),

(−TV +TF ′
U0
V )(±ai, y)− λV (±ai, y) = Ψ(±ai, y).

(43)

Thus, by rewriting (43) for v(y) = (Ve(ae, y), Ve(−ae, y), Vi(ai, y), Vi(−ai, y))
we obtain the system

−
⎛⎝ I O

O I/τ

⎞⎠ v(y) +

∫
Y

S(y − y′)v(y′)dy′ − λv(y) = ψ(y), (44)

with

S(y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(y) B(y) −C(y) −D(y)

B(y) A(y) −D(y) −C(y)

E(y) F (y) −G(y) −H(y)

F (y) E(y) −H(y) −G(y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
that has a unique solution for any φ(y) in the complexified BC1(Y )4.
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Next, we exploit the similarity transformation of S

PS(y)PT =

(
A(1)(y) O

O A(2)(y)

)
, P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2

0 0

0 0 1
2

1
2

1
2

−1
2

0 0

0 0 1
2

−1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(45)

that conveniently block-diagonalizes it. Here A(k), k = 1, 2, are given as in
(38) and (39).

We apply this transformation to (44) and obtain the system

−Tvk +H(k)vk − λv(y) = ψk(y), k = 1, 2. (46)

concluding that λ ∈ ⋂
k=1,2

Res
(−T+H(k)

)
. This implies that ∪kSp(−T +

H(k)) ⊂ Sp(G).
Step 2: Let us now assume that λ ∈ ⋂

k=1,2

Res
(−T+H(k)

)
. This implies

that (44) has a unique solution v(y) for any φ ∈ (BC1(Y ))4, or equivalently
(43) has the solution (Ve(ae, y), Ve(−ae, y), Vi(ai, y), Ve(−ai, y)) = v(y) for
any Φ(x, y). From (42) we can express V (x, y) as

−(T+ λI)V (x, y) = Φ(x, y)−TF ′
U0
V. (47)

Since F ′
U0
V given by (34)-(35) can be calculated only by using v(y) , we can

obtain V (x, y) if T+ λI is invertible, i.e., if λ = −1 and λ = −1/τ, see (44).
This yields that Sp(G) \ {−1,−1/τ} ⊂ ∪kSp(−T +H(k)). This observation
concludes our proof.

We notice here that from the previous analysis, Sp(G) may contain the
values −1,−1/τ even if they do belong to Sp(−T + H(k)). These values,
however, do not influence the stability results for the bumps. Therefore, we
will focus on determining the spectrum of −T +H(k), k = 1, 2. We observe
that the 2 × 2-matrix functions A(k) k = 1, 2 and the eigenfunctions vk
are continuous differentiable 1-periodic functions, from which it follows that
the Fourier decomposition method is applicable. The Fourier coefficients of
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−T+H(k) (k = 1, 2) are given by the matrices F
(k)
n , n ∈ Z, where

F(1)
n =

⎛⎜⎜⎝
Ãn + B̃n − 1 −C̃n − D̃n

Ẽn + F̃n

τ
−G̃n + H̃n + 1

τ

⎞⎟⎟⎠ (48)

and

F(2)
n =

⎛⎜⎜⎝
Ãn − B̃n − 1 −C̃n + D̃n

Ẽn − F̃n

τ
−G̃n − H̃n + 1

τ

⎞⎟⎟⎠ (49)

Here Ãn, . . . , F̃n, n ∈ Z denote the Fourier coefficients of A, . . . , F in (40).
The eigenvalues of the operators H(k) − T (k = 1, 2) the are given as the

eigenvalues of the matrices F
(k)
n , n ∈ Z.

We summarize the results above in the following theorem:

Theorem 2. Let Λ be the set

Λ = {λ : λ = λ
(k)
±,n, n ∈ Z, k = 1, 2} (50)

where λ
(k)
±,n, are the eigenvalues of the matrix F

(k)
n . Then

Λ ⊂ σ(G) ⊂ Λ ∪ {−1,−1

τ
}.

Notice that the eigenvalues of matrices F
(k)
n are complex, i.e.

λ
(k)
±,n = μ(k)

n ± iν(k)
n , μ(k)

n , ν(k)
n ∈ R (51)

Moreover, they can also be expressed in terms of the invariants tr(F
(k)
n ) and

det(F
(k)
n ) of the matrices F

(k)
n :

λ
(k)
±,n =

1

2
{tr(F(k)

n )±
√

(tr(F
(k)
n ))2 − 4 det(F

(k)
n )} (52)

We readily find that

tr(F
(k)
n ) = Ãn − (−1)kB̃n − 1− 1

τ
(G̃n − (−1)kH̃n + 1

(53)

τ det(F
(k)
n ) = (C̃n − (−1)kD̃n)(Ẽn − (−1)kF̃n)

−(Ãn − (−1)kB̃n − 1)(G̃n − (−1)kH̃n + 1)
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A simple computation reveals that

det(F
(2)
0 ) = 0 (54)

from which it follows that
λ
(2)
−,0 ≡ 0 (55)

The derivation of this result proceeds in exactly the same way as in Blomquist
et al. [1]. We therefore omit the details in the proof of this fact. This result
is indeed expected. It reflects the translational invariance of the bump solu-
tions within the framework of the model (3).

For real and spatial symmetric synaptic footprint functions σmn such as (6),

the Fourier coefficients Ãn, . . . , F̃n, n ∈ Z will be real, from which it follows
that the invariants tr(F

(k)
n ) and det(F

(k)
n ) also are real. Moreover, in that

case we only need to consider these invariants for n = 0, 1, 2, ..... In what
follows we will restrict the stability analysis to the case with real and spatial
symmetric synaptic footprint functions σmn.

First, let us assume that

det(F
(2)
n ) < 0 for at least one n = 0

or (56)

det(F
(1)
n ) < 0 for at least one n

In this case we have λ
(k)
−,n < 0 < λ

(k)
+,n for the corresponding eigenvalues λ

(k)
±,n

for all τ > 0. Hence (56) is a sufficient condition for instability.

Now, let us consider the complementary regime

det(F(k)
n ) > 0 for all k and n (57)

Here we conveniently distinguish between the following cases:

1. For the regime

G̃n − (−1)kH̃n + 1 < 0 ≤ Ãn − (−1)kB̃n − 1 (58)

for at least one n, we have tr(F
(k)
n ) > 0 for that particular choice of n,

which means that the actual bump is unstable for all τ .
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2. In the regime

Ãn − (−1)kB̃n − 1 ≤ 0 < G̃n − (−1)kH̃n + 1 (59)

for all n, we have tr(F
(k)
n ) < 0 (for all n), from which it follows that

the bumps are stable for all τ > 0.

3. The scenario

sgn(Ãn − (−1)kB̃n − 1) = sgn(G̃n − (−1)kH̃n + 1) (60)

for n produces two sequences of positive solutions {τ (k)cr,n}∞n=0 given by

τ (k)cr,n =
G̃n − (−1)kH̃n + 1

Ãn − (−1)kB̃n − 1
, k = 1, 2 (61)

of the equation tr(F
(k)
n ) = 0. Let τcr be defined as

τcr = min
k,n

{τ (k)cr,n} (62)

Then the corresponding bumps are stable for τ < τcr and unstable for
τ > τcr provided (60) holds true.

The next theorem shows that it suffices to know the eigenvalues λ
(k)
±,0 in

order to carry out the stability assessment if the norm of the heterogeneity
vector α is sufficiently small:

Theorem 3. Let the connectivity functions ωmn given by (5) with σmn ∈
BC1(Y ) and Φ ∈ BC1(R) satisfying the properties (7). Then there exists
ε > 0 such that for any α ∈ [0, ε]4 the bumps have the same stability properties
as in the translational invariant case (α = 0).

Proof. The stability of Uα(x) is assessed by means of the eigenvalues of F
(1)
n

and F
(2)
n , n ∈ N ∪ {0}. Now, according to Theorem 1, we have ‖Uα −

U0‖BC1(R) → 0 as α goes to 0 (cf. equation (13)). The norm convergence of
matrices implies convergence of eigenvalues of those matrices, in accordance
with Theorem 5.12 in Section II in Kato [34]. Given Xα ∈ BC(Y ) for any
α ∈ [0, 1) and ‖Xα−X0‖∞ → 0 as α → 0, Riemann-Lebesques lemma implies
that

sup
n∈N∪{0}

|X̃n,α − X̃n,0| ≤ ‖Xα −X0‖∞ → 0,
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where X̃n,α and X̃n,0 denote the Fourier series coefficients of Xα and X0,
respectively. For X0 = const we have |X̃n,α| → 0 as α → 0 uniformly in
n ∈ N. We readily find that∥∥∥∥F(k)

n,α −
(−1 0

0 −1/τ

)∥∥∥∥
∞

→ 0

uniformly in n ∈ N as α → 0. In addition, we get∥∥∥F(k)
0,α − F

(k)
0,0

∥∥∥
∞

→ 0, α → 0.

Hence, there is ε > 0 such for all |α| ∈ (0, ε)4, the stability properties of
the bumps are the same as in the translational invariant case.

Let us study the stability properties of the bumps depicted in Fig. 2.
The input parameters for this computation are αee = 0.01, αie = 0.01, αei =
0.025, αii = 0.025, Set 1 in Table 1 and τ = 0.5. We plot the real parts of
the eigenvalues of matrices (48) and (49) as a function of n.

The results are summarized in Fig. 12. We conclude that the narrow
bumps (corresponding to the dotted curves in Fig. 2) are unstable, whereas
the bold curves (representing the broad bumps) are stable for τ = 0.5.

The present formalism also enables us to determine the stability properties
of the two bumps depicted in Fig. 2 as a function of the relative inhibition
time τ . We readily find that when τ exceeds the threshold value τcr given by

τcr = min
k

{τ (k)cr,0} (63)

the broad bumps become unstable. Here τcr,0 is given by the expression (62)
for n = 0. With the actual input parameters we have τcr = 3.0292. The
narrow bumps are characterized by the negative determinant condition (56)
for n = 0, k = 1, which means that they are unstable for all τ . The actual
stability results are indeed consistent with Theorem 3 and the stability results
in Blomquist et al. [1].
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Figure 12: The real parts μ
(k)
n of the eigenvalues λ

(k)
±,n of matrices (48) and (49) in the

weakly modulated case as a function of n. Input data: Set 1 in Table 1, αee = 0.01, αie =

0.01, αei = 0.025 and αii = 0.025 and τ = 0.5. λ
(1)
±,n and λ

(2)
±,n are the eigenvalues of the

matrix (48) and the matrix (49), respectively. Eigenvalues of the matrices (48) and (49) in

the case α = 0 are equal to (λ
(1)
−,0, λ

(1)
+,0) = (1.9405,−60.6462), (λ

(2)
−,0, λ

(2)
+,0) = (0,−2.4414)

for the narrow bumps and (λ
(1)
−,0, λ

(1)
+,0) = (−0.4392,−8.9648), (λ

(2)
−,0, λ

(2)
+,0) = (0,−2.9130)

for the broad bumps. The translational invariance property (55) is confirmed. (a) and
(b) show that real parts of the eigenvalues for the narrow and for the broad bumps,
respectively.

Let us finally develop the framework for stability assessment applicable
beyond the weakly modulated regime 0 < αmn � 1. We tacitly presuppose
that the bump exists in this regime. The following theorem serves as a
guideline for the investigation of the stability of these bumps:

Theorem 4. Let α ∈ (0, 1)4 be fixed and let ωmn satisfy the uniform bound∫
Y

|∂ωmn(x, y)

∂y
|dy ≤ r

for all m,n ∈ {e, i}. Then the stability property of the bump Uα(x) is deter-
mined by the eigenvalues λn, |n| ≤ n∗ where n∗ = �2r/π�.
Proof. Riemann-Lebesques lemma implies that the Fourier coefficients |X̃n| →
0 as n → ∞ for any X ∈ L1([0, 1]). Moreover, we have the estimate

|X̃n| ≤ 1

2πn

∫ 1

0

X ′(y)dy. (64)

For the functions X = A,B, . . . , F given by (40), we have the estimate

|X̃n| ≤ r

2πn
(65)

37



We observe that ∥∥F(k)
n − F∞

∥∥
∞ ≤ rmax{1, 1/τ}

πn
→ 0. (66)

as n → ∞. This implies that the eigenvalues λ
(k)
±,n (n ∈ N) of the matrices

F
(k)
n tend to the eigenvalues of the limiting diagonal matrix, that is, λ1 = −1

and λ2 = −1/τ as n → ∞, in accordance with Theorem 5.12 in Section II in

Kato [34]. In the rest of the proof we skip the superscript notations for F
(k)
n

and its eigenvalues as it is valid for both k = 1, 2. For each fixed n ∈ N, it
follows from the Gershgorin circle theorem that the eigenvalues λ±,n belong
to the union of two sets

Di(n) = {z : |z − λi| ≤ |(Fn)ij|+ |(Fn)ii − λi|} , i = j,

where (Fn)ij, i, j = 1, 2 denote the entries of Fn.
Using the expressions for Fn and the estimate (65), we obtain the upper

bounds for the radii ofDi(n), i = 1, 2. Thus, the eigenvalues λ
(k)
±,n are confined

in the union of the two disks

D̃1(n) =

{
z : |z − (−1)| ≤ 2r

πn

}
,

D̃2(n) =

{
z : |z − (−1/τ)| ≤ 2r

τπn

}
.

It is straightforward to see that the eigenvalues λ
(k)
±,n have negative real parts

if 2r
πn

< 1, or equivalently n ≥ n∗ ≡ �2r/π�.
To illustrate Theorem 4 let us consider three bumps situation depicted

in Fig. 8 - Fig. 9. The bounding constant r of this theorem is estimated to
be r = 12.5436, from which we find that n∗ = 8. Fig. 13 displays the real
parts of the eigenvalues of matrices (48) and (49) as a function of n when
τ = 0.2. Also here it suffices to consider the situation with n ≥ 0, due to
the symmetry of the synaptic footprint functions σmn. We observe that for
the intersection points R and Q in Fig. 8 the real parts of all the eigenval-
ues are negative, whereas for the intersection point P for n = 0, k = 1 the
corresponding eigenvalue has positive real part. This means that the bumps
corresponding to R and Q are stable whereas the bump corresponding to P
is unstable for τ = 0.2.
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We can also study the stability properties of the three bumps depicted in
Fig. 8 - Fig. 9 as a function of the relative inhibition time τ . We proceed
as follows: For the input parameters producing the intersection point R in
Fig. 8 we find that the value of τcr defined as (63) is given as τcr = 0.2435,
which means that the bump corresponding to R is stable for τ < 0.2435.
We then proceed to the intersection point P . In this case (56) is fulfilled
for n = 0, k = 1 from which it follows that the corresponding bump is un-
stable for all τ -values. For the point Q in Fig. 8 we obtain τcr = 2.0690,
which means that the bump corresponding to Q is stable for τ < 2.0690.
When selecting τ in our numerical computations to a value in the range
0.2435 < τ < 2.0690, we thus find that only the bump corresponding to the
intersection point Q in Fig. 8 is stable, the two other intersection points R
and P produce unstable bumps.
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Figure 13: The real parts μ
(k)
n of the eigenvalues λ

(k)
±,n of matrices (48) and (49) beyond

the weakly modulated case as a function of n in the three bumps situation depicted in Fig.
8 - Fig. 9. Input data: αee = 0.25, αie = 0.25, αei = 0.83, αii = 0.25, the parameter Set

2 in Table 1 and τ = 0.2. λ
(1)
±,n and λ

(2)
±,n are the eigenvalues of the matrix (48) and the

matrix (49), respectively. The translational invariance property (55) is confirmed. (a), (b)
and (c) show the real parts of eigenvalues for the bumps corresponding to the intersection
points R, P and Q in Fig. 8, respectively.

4. Conclusions and outlook

We have shown that the homogenized model supports the same type
of solutions as the translation-invariant version. Moreover, the conclusion
about the number of bumps and their linear stability can be drawn from
the study of the translation-invariant model when dealing with low level of
heterogeneity. However, when increasing the degree of heterogeneity beyond
this regime, the number of bumps and their stability is not directly related
to the translation invariant case and the homogenized model needs to be
analyzed in some more detail. We have shown that the methods developed
for the translation invariant case could be generalized and used for the ho-
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mogenized model.

In the present work we have assumed that the firing rate functions are given
by the Heaviside function. It is an open question whether the results ob-
tained in this paper can be extended to the case of smooth but steep firing
rate functions. The recent study for the existence and continuous dependence
of multibumps on the steepness of firing rate function in Oleynik et al. [33]
could serve as a starting point for this type of investigation.

An extension of the analysis of the present results (as well as the multibump
configuration) to 2D spatial geometry is both interesting and intriguing. The
problem of existence and stability of travelling fronts within the framework
of the 2-population homogenized neural field model (3) should also be ad-
dressed. The results obtained should then be compared with a recent paper
by Folias [35] where the connectivity kernels are assumed to be homogeneous
and isotropic, and external inputs are included. We also conjecture that a
rigorous stability analysis could benefit from the techniques used in Folias et
al. [36]. It would also be of interest to investigate the relationship between
the present spectral stability analysis and the nonlinear stability of bump
pairs, in a way analogous to Sanstede [37] for travelling waves.

Finally, but not least the impact of the periodic microstructure on pattern
forming processes within the framework of the model (3) should be investi-
gated. The outcome of this investigation will be compared with the pattern
formation study carried out, using the model (1) as a starting point. In addi-
tion, it is likely that such analysis will reveal the role of bumps and traveling
fronts in the pattern forming process.
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Abstract

We study pattern formation in a 2-population homogenized neural field
model in one spatial dimension with periodic microstructure, in particular
with respect to the formation of stationary periodic patterns and spatio tem-
poral oscillations. The connectivity functions are periodically modulated in
both the synaptic footprint and in the spatial scale. It is shown that the
nonlocal synaptic interactions promote a finite band width instability, just
as in the translational invariant case. The stability method which is a gener-
alization of the method developed for the translational invariant case, relies
on a sequence of wave-number dependent invariants of 2 × 2-matrices rep-
resenting the sequence of Fourier-transformed linearized evolution equations
for the perturbation imposed on the homogeneous background. The generic
picture of the instability structure consists of a finite set of well-separated
gain bands. We follow the instability numerically into the nonlinear regime
for both steep and shallow firing rate functions for the case when the con-
nectivity kernels are modelled by means of exponentially decaying functions,
periodically modulated both in the synaptic footprints and in the spatial
scale. In the weakly modulated regime the following picture emerges: For
the steep firing rate functions stable oscillations are formed whereas we get
spatio-temporal oscillations in the shallow regime of the firing rate functions,
consistent with the findings in the translational invariant case. In the regime
beyond the weakly modulated case a rich plethora of phenomena takes place.
The numerical computations show that the growth rate of the linearly most
unstable mode typically decreases with the degree of heterogeneity. This
leads to a slowdown of the pattern forming process when increasing the de-
grees of heterogeneity, which is also confirmed by the numerical simulations.

Keywords: Neural field models, homogenization theory, Turing type of
instability, pattern formation.
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1. Introduction

It is common to investigate large-scale activity of neural tissue by means
of nonlocal models. Since the seminal works of Amari [1, 2] and Wilson and
Cowan [3, 4] such models have been subject to a vast number of investiga-
tions, e.g. [5] and the references therein. 1- and 2-population neural field
models have been used to understand spatiotemporal dynamics of the cortex
of the brain. Stationary spatially-extended patterns are related to visual hal-
lucinations [6, 7, 8], while stationary localized structures (bumps) are related
to short term memory [9, 10, 11]. Traveling waves (fronts, pulses, target
waves and spirals) are connected to information processing [12, 13].

The nonlocal field model is defined by means of the coupled system of the
two nonlinear integro-differential equations

∂

∂t
ue = −ue + ωee ⊗ Pe(ue − θe)− ωie ⊗ Pi(ui − θi)

(1)

τ
∂

∂t
ui = −ui + ωei ⊗ Pe(ue − θe)− ωii ⊗ Pi(ui − θi)

where ωmn ⊗⊗Pm is the convolution of ωmn and Pm (m,n = e, i) defined
by

(
ωmn⊗⊗Pm(um−θm)

)
(x, t) ≡

∫
RN

ωmn(x−x′, t)Pm(um(x
′, t)−θm)dy

′dx′, (2)

This model describes the interaction between populations of excitatory
and inhibitory neurons. ue and ui denote the membrane potentials of exci-
tatory and inhibitory neurons, respectively, at the spatial point x and time
t > 0. The functions ωmn (m,n = e, i) evaluated at the difference x − x′

measure the connectivity strengths between neurons at located at position
x and x′, whereas Pm (m = e, i) are the firing rate functions. θe and θi
are threshold values for firing of the excitatory and the inhibitory neurons,
respectively. Notice here that we allow for the situation where θe = θi. The
parameter τ is the relative inhibition time i.e. τ = τi/τe where τe (τi) is the
excitatory (inhibitory) time constant.
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The neural field model (1) which is often referred to as a 2-population model
of the Amari type was proposed by Blomquist et al. [14]. In [14] the exis-
tence and stability of single bumps with the Heaviside firing rate functions
have been studied. In Wyller et al. [15] pattern formation of the Turing
type within the framework of (1) in one spatial dimension as a function of
the steepness of the firing rate function was investigated. In particular there
were considered stationary periodic patterns and spatiotemporal oscillations.
The present work is mostly based on the paper [15].

However, the modeling framework (1) assumes that the cortical medium is
homogeneous and isotropic. Thus, the heterogeneity in the cortical struc-
ture is not taken into account. Therefore, this modeling approach represents
a simplification of the actual situation. One way to take into account the
microstructure of the brain media is by using the so-called homogenization
techniques [16, 17]. The connection between periodic microstructure of the
cortex and nonlocal mean field description has been explored in the works
[18, 19, 13, 20, 21, 22]. It turns out that the microstructure has an im-
pact on the pattern forming mechanisms as well as existence and stability
of traveling fronts and pulses. In homogenization techniques for neural field
models it is usually assumed that the connectivity functions are represented
as ωε

mn(x) = ωmn(x, x/ε) and have periodicity in the second variable y = x/ε,
where the microstructure of heterogeneity is parameterized by ε > 0, see e.g.
[23, 24, 25]. Thus, a possible extension of (1) taking this type of heterogeneity
into account reads

∂

∂t
uε
e = −uε

e + ωε
ee ⊗ Pe(u

ε
e − θe)− ωε

ie ⊗ Pi(u
ε
i − θi)

(3)

τ
∂

∂t
uε
i = −uε

i + ωε
ei ⊗ Pe(u

ε
e − θe)− ωε

ii ⊗ Pi(u
ε
i − θi)

The two-scale convergent method described in [26, 27, 28] has been ap-
plied by Svanstedt et al. [24] to a one-population neural field model with
spatial microstructure. Then, by employing the same arguments as in [24],
one can show that (3) two-scale weakly converges as ε → 0 to the system
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∂

∂t
ue = −ue + ωee ⊗⊗Pe(ue − θe)− ωie ⊗⊗Pi(ui − θi)

(4)

τ
∂

∂t
ui = −ui + ωei ⊗⊗Pe(ue − θe)− ωii ⊗⊗Pi(ui − θi)

of coupled nonlinear integro-differential equations. Here ωmn ⊗ ⊗Pm is
the double convolution of ωmn and Pm (m,n = e, i) defined by

(
ωmn ⊗⊗Pm(um − θm)

)
(x, y, t) ≡

(5)∫
RN

∫
Y

ωmn(x− x′, y − y′, t)Pm(um(x
′, y′, t)− θm)dy

′dx′

where x ∈ R
N , y ∈ R

N and t > 0. Here Y = [0, 1]N is a period cell in R
N .

In the papers [23, 24, 29, 25, 30, 31] the existence and stability of single-
and two-bumps within the framework of a homogenized 1-population neural
field model have been studied. Here one considers the periodic microstruc-
ture variation in both the synaptic footprint and the spatial scale of the
connectivity strength. We notice, however, that most investigations in inho-
mogeneous media use 1-population models as modelling frameworks while it
is rare in between studies of 2-population nonlocal neural field models with
inhomogeneities. We are not aware of any studies of the microstructure ef-
fects on the pattern formation mechanism within such modelling frameworks
either. In Kolodina et al. [32] the existence and stability of y-independent
single bumps in the homogenized 2-population model (4) in one spatial di-
mension (N = 1) were investigated, with the firing rate functions modelled
by means of the Heaviside function.

This serves as a background for the present paper. Our goal is to explore
pattern formation within the framework of the homogenized 2-population
model (4) in the 1-dimensional spatial setting. Thus, we study the effect of
the periodic microstructure on the pattern forming process in this modelling
framework. We proceed in a way analogous to Wyller et al. [15] for the
pattern formation for the translational invariant model (1). The nonlinear

5



development of the instability is detailed by means of numerical simulations,
based on MATLAB R2018a program, demonstrating spatially and spatiotem-
porally periodic patterns as final outcomes of the instability.

This investigation complements the papers [14], [15] and [32] as well as the
works [24], [29], [30] and [23].

The paper is organized as follows: In Section 2 we specify the properties
of the input functions of the model (4). Section 3 is devoted to the existence
theory for constant solutions of the homogenized 2-population model. We
also develop the framework for analyzing the linear stability of these constant
solutions. Section 4 is devoted to a numerical study of the nonlinear stage of
the instability, whereas Section 5 contains the conclusions and an outlook.

2. Model

Let us design the input data for the model (3) and (4):

The firing rate functions Pm, m = e, i which are expressed in terms of a
scaling function S and parameterised by means of the steepness parameter
βm satisfy the following properties:

Pm(u) = S(βmu)

Pm(u) → H(u) as βm → ∞
(6)

S : R → [0, 1]

S ′ ∈ BC(R), S ′(u) ≥ 0

Here H is the Heaviside function.

The connectivity kernels ωmn are expressed in terms of the scaling function
Φ and the footprint functions σmn, m,n = e, i as
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ωmn(x, y;αmn) =
1

σmn(y;αmn)
Φ

(
x

σmn(y;αmn)

)
, (7)

where

σmn(y;αmn) = smn(1 + αmn cos(2πy)), smn > 0, 0 ≤ αmn < 1 (8)

The parameters αmn, m,n = e, i are referred to as the heterogeneity pa-
rameters. (7) and (8) mean that the connectivity kernels are assumed to
be periodically modulated in both the spatial scales and the synaptic foot-
prints. Notice that we recover the translational invariant case when αmn = 0.

The scaling function Φ is assumed to satisfy the following conditions

Φ(ξ) = Φ(−ξ), Φ(ξ) ≥ 0,

∫
R

Φ(ξ)dξ = 1 (9)

Moreover, we also impose the extra localization condition∫
R

ξ2Φ(ξ)dξ < ∞ (10)

for the scaling function Φ. This condition will ensure that the growth
and decay rate curves detected in Section 3 are two times continuously dif-
ferentiable functions of the wave number.

Notice that the normalization condition imposed on the scaling function Φ
implies that the connectivity functions are normalized i.e.∫

R

∫
Y

ωmn(x, y;αmn)dydx =

∫
R

Φ(ξ)dξ = 1 (11)

Introduce the Banach space B = BC(R × Y ) of bounded continuous
functions on R× Y equipped with the norm

‖f‖B ≡ sup
(x,y)∈R×Y

|f(x, y)|.

Now, by proceeding in a way analogous to Potthast et al. [33] one can
prove that the initial value problem of (4) with the connectivity kernels ωmn
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and the firing rate functions Pm designed as (6) and (8)-(9), respectively, is
globally well-posed in B and bounded.

Let us investigate the consequences of this property in some detail. Introduce
τm defined by

τm ≡
{

1, m = e
τ, m = i

and let u
(0)
m ,m = e, i denote the components of the solution of (4) with

all the nonlocal terms omitted. We readily find that

u(0)
m (x, y, t) = Um(x, y) exp[−t/τm], m = e, i

where Um ∈ B,m = e, i are the components of the initial condition of (4).
Now, by using (6)-(11) we find the uniform bounds

0 ≤ [ωmn ⊗⊗Pm(um − θm)](x, y, t) ≤ 1, (x, y, t) ∈ R× Y × R
+
0

for m,n = e, i, from which it follows that each component of the solution of
(4) satisfies the comparison property

‖um − u(0)
m ‖∞(t) ≤ 1− exp[−t/τm], m = e, i (12)

Hence we arrive at the following result: If |Um(x, y)| ≤ 1 for all (x, y) ∈
R × Y , then |um(x, y, t)| ≤ 1 for all (x, y, t) ∈ R × Y × R

+
0 . This means

that the subset A = {um; |um| ≤ 1} of the phase space is a global attractor
for the evolution prescribed by the model (4). By appealing to the property
(12) we also conclude that the nonlinear stage of any instabilities leading to
pattern formation will eventually be saturated within the present modelling
framework. This property is indeed important to bear in mind in the forth-
coming sections of the present paper. Notice that these results are exactly
the same as the attractor- and boundedness results deduced in the transla-
tional invariant case [15]. Finally, but not least, these results also hold true
in the multidimensional situation i.e. when N > 1.

3. Linear stability analysis

In this section we review the existence theory for constant solutions and
develop the linear stability theory for the constant solutions . The stabil-
ity technique is a generalization of the method presented in Wyller et al. [15].
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Introduce U = (ue, ui)
T . We conveniently rewrite the homogenized system

(4) on the compact form

T−1
∂U

∂t
= −U + FU, (13)

with

T =

(
1 0
0 1/τ

)
and FU =

⎛⎝Feeue −Fieui

Feiue −Fiiui

⎞⎠ (14)

where Fmn, m,n ∈ {e, i} are the Hammerstein operators defined as

(Fmnum)(x, y) =

∫
R

∫
Y

ωmn(x
′ − x, y′ − y)Pm(um(x

′, y′)− θm)dy
′dx′. (15)

Let V0 = (v0, v0)
T denote a constant solution to (13)-(15). We readily

find that v0 satisfies the fixed point problem

F (v0) = 0, −1 < v0 < 1

(16)

F (v0) ≡ v0 + Pi(v0 − θi)− Pe(v0 − θe)

.
In Wyller et al. [15] it is shown that the 2-population model possesses

at least one constant solution. Moreover, the maximal number of constant
solutions is five.

We impose a perturbation on the constant background V0 i.e.

U(x, y, t) = V0 + V (x, y, t), V = (Ve, Vi)
T (17)

where we assume that component functions Vm,m = e, i belong to the
subset of B for which the elements are absolute integrable functions with
respect to x and piecewise smooth, continuous and 1-periodic in the second
variable y. We linearize the evolution equation for V and get
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T−1∂tV = −V + F ′
V0
V (18)

Here F ′
V0

is the Frechét derivative

F ′
U0
V =

⎛⎝LeeVe − LieVi

LeiVe − LiiVi

⎞⎠ . (19)

where

(LmnVm)(x, y, t) = P ′m(v0 − θm)(ωmn ⊗⊗Vm)(x, y, t)

≡ P ′m(v0 − θm)
∫
R

dx′
∫
Y

dy′ωmn(x
′ − x, y′ − y)Vm(x

′, y′, t)dx′

In order to analyze the system of linearized evolution equations (18) we
proceed as follows: First, let us introduce the Fourier transformations with
respect to the macroscale variable x and their respective inversion formulas

Ṽm(k, y, t) =
∫
R

Vm(x, y, t) exp(−i2πxk)dx

Vm(x, y, t) =
∫
R

Ṽm(k, y, t) exp(i2πxk)dk

ω̃mn(k, y) =
∫
R

ωmn(x, y) exp(−i2πxk)dx

ωmn(x, y) =
∫
R

ω̃mn(k, y) exp(i2πxk)dk

The assumptions imposed on both ωmn and Vm guarantee that the Fourier-
transforms ω̃mn and Ṽm exist for all y and t.. From (7) it follows that

ω̃mn(k, y) = Φ̃(kσmn(y)), Φ̃(k) =

∫
R

Φ(ξ) exp(−i2πξk)dξ (20)

Since the connectivity kernels ωmn for each y ∈ Y are even and real
functions of x, the Fourier transforms ω̃mn are even and real functions of k.
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By the convolution theorem we obtain the system of linear nonlocal evolution
equations

T−1∂tṼ = −Ṽ + F̃ ′
V0Ṽ (21)

from (18). Here

Ṽ = (Ṽe, Ṽi)
T

F̃ ′
U0Ṽ =

⎛⎝L̃eeṼe − L̃ieṼi

L̃eiṼe − L̃iiṼi

⎞⎠
with

(L̃mnṼm)(k, y, t) = P ′m(v0 − θm)

∫
Y

ω̃mn(k, y
′ − y)Ṽm(k, y

′, t)dy′

The next step consists of inserting Fourier series in the local variable y
i.e.

Ṽm(k, y, t) =
μ=∞∑
μ=−∞

V̂
(μ)
m (k, t) exp(i2πμy)

V̂
(μ)
m (k, t) =

∫
Y

Ṽm(k, y, t) exp(−i2πμy)dy

ω̃m(k, y) =
μ=∞∑
μ=−∞

ω̂
(μ)
mn(k) exp(i2πμy)

ω̂
(μ)
mn(k) =

∫
Y

ω̃mn(k, y) exp(−i2πμy)dy

into (21). We notice that these Fourier-decompositions also exist due to
the assumptions imposed on ωmn and Vm.

Notice that since ω̃mn is a real, even in k and 1-periodic function of y, the
Fourier-coefficients ω̂

(μ)
mn(k) are real. Moreover, since ω̃mn(k, y) = ω̃mn(−k, y)
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for all y, we have ω̂
(μ)
mn(k) = ω̂

(μ)
mn(−k). Hence ω̂

(μ)
mn is a well-defined, realval-

ued function of η = k2. Finally, but not least, we have ω̂
(μ)
mn(k) = ω̂

(−μ)
mn (k)

from which it follows that we can let μ ∈ N0 = {0, 1, 2, 3, ...} without loss of
generality.

We readily find a sequence of linear 2× 2 ODE systems

∂tV̂μ = AμV̂μ, μ ∈ N0, η = k2

(22)

Aμ ≡ T(−I+Cμ)

for the Fourier coefficients V̂μ = (V̂
(μ)
e , V̂

(μ)
i )T . Here {Cμ}μ∈N0 is the

sequence of 2× 2-matrices defined by

Cμ =

⎛⎝P ′eω̂
(μ)
ee −P ′i ω̂

(μ)
ie

P ′eω̂
(μ)
ei −P ′i ω̂

(μ)
ii

⎞⎠
where the parameters P ′m (m = e, i) are defined as

P ′m ≡ dPm

du
(v0 − θm), m = e, i (23)

Simple computation reveals that

Aμ =

⎛⎝−1 + P ′eω̂
(μ)
ee −P ′i ω̂

(μ)
ie

1
τ
P ′eω̂

(μ)
ei − 1

τ
(1 + P ′i ω̂

(μ)
ii )

⎞⎠
Notice that the structure of the sequence of stability matrices {Aμ}∞μ=0

resembles the stability matrix of the translational invariant case.

The linear stability problem thus boils down to a study of the linear ODE
system (22) in a way analogous to Wyller et al. [15] for the translation in-
variant case. The eigenvalues λ±μ of the coefficient matrix Aμ are expressed
in terms of the determinant and trace of the matrix Aμ i.e.

λ(±)
μ (η) =

1

2

(
ϕμ(η)±

√
(ϕμ(η))2 − 4ψμ(η)

)
(24)

12



where the sequences of functions {ϕμ}∞μ=0 and {ψμ}∞μ=0 are defined as

ϕμ(η) ≡
(
tr(Aμ)

)
(η) = P ′eω̂

(μ)
ee (k)− 1− 1

τ
(1 + P ′i ω̂

(μ)
ii (k))

ψμ(η) ≡
(
det(Aμ)

)
(η) (25)

= 1
τ

(
(1− P ′eω̂

(μ)
ee (k)

)(
1 + P ′i ω̂

(μ)
ii (k)) + P ′eP

′
i ω̂

(μ)
ie (k)ω̂

(μ)
ei (k)

)
We introduce the sequence of parameterized curves Γμ : R+

0 → R
2, μ ∈ N0

defined as

Γμ(η) =
(
ϕμ(η), ψμ(η)

)
, η = k2 ≥ 0 (26)

in the invariant plane. Each point on this curve represents a Fourier
component in the perturbation imposed on the constant background. Thus,
the stability problem boils down to the study of the sequence of composite
maps

η
Γμ�−→ (

ϕμ(η), ψμ(η)
) λ

(±)
μ�−→ λ(±)

μ (η), μ ∈ N0 (27)

Notice the difference between the present case and the one treated in
Wyller et al. [15]: The effect of the microstructure on the linear stability
properties is taken care of by a sequence of parameterized curves in the in-
variant plane and not a single curve as in the translational invariant case.
Based on the sequence of composite maps (27), we thus arrive at the follow-
ing conclusion: V0 is stable if all the parameterized curves {Γμ}μ∈N0 remain
in the second quadrant of the invariant plane for all η, whereas we get insta-
bility if at least one curve Γμ visits at least one of the other quadrants for
some η-interval.

Therefore, let us investigate the properties of the sequence of parameterized
curves Γμ : R+

0 → R
2, μ ∈ N0:

1. (The initial points of the curves {Γμ}μ∈N0 .)

We readily find that

ω̃m(0, y) =

∫
R

ωmn(x, y)dx =

∫
R

1

σmn(y)
Φ(

x

σmn(y)
)dx =

∫
R

Φ(ξ)dξ = 1
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Hence the Fourier coefficients ω̂
(μ)
mn at k = 0 are given as

ω̂(μ)
mn(0) =

{
1, μ = 0
0, μ > 0

from which it follows that the sequence of matrices {Cμ}μ∈N0 evaluated
at k = 0 is given by

Cμ =

⎛⎝0 0

0 0

⎞⎠
for μ = 0 and

C0 =

⎛⎝P ′e −P ′i

P ′e −P ′i

⎞⎠
The corresponding sequence of matrices {Aμ}μ∈N0 evaluated at k = 0
is given as

Aμ =

⎛⎝−1 0

0 − 1
τ

⎞⎠
for μ = 0 and

A0 =

⎛⎝−1 + P ′e −P ′i

1
τ
P ′e − 1

τ
(1 + P ′i )

⎞⎠
for μ = 0. Notice that the role of the matrix A0: The local dynamical
counterpart of (13)-(14) is given by

∂U

∂t
= −TU +TF0U, (28)

with
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T =

(
1 0
0 1/τ

)
and F0U =

⎛⎝Pe(ue − θe)− Pi(ui − θi)

Pe(ue − θe)− Pi(ui − θi)

⎞⎠ (29)

A0 is the Jacobian of the vector field defining this 2D autonomous dy-
namical system evaluated at the equilibrium point V0 = (v0, v0).

We readily find that the initial points of {Γμ}μ∈N0 have the following
properties:

Γμ(0) =
(− 1− 1

τ
, 1
τ

)
for μ > 0

Γ0(0) =
(− 1 + P ′e − 1

τ
(1 + P ′i ),

1
τ
(1 + P ′i − P ′e)

)
Hence all the parameterized curves {Γμ}μ>0 start in the second quad-
rant in the invariant plane. The initial point of the curve Γ0 is in the
second quadrant if

−1 + P ′e − 1
τ
(1 + P ′i ) < 0

F ′(v0) = 1 + P ′i − P ′e > 0

Let assume that 1 + P ′i − P ′e > 0. For P ′e ≤ 1, the condition −1 + P ′e −
1
τ
(1 + P ′i ) < 0 is fulfilled for all τ > 0, whereas in the complementary

regime P ′e > 1, we must have 1 < P ′e and 0 < τ < τH where

τH ≡ P ′i + 1

P ′e − 1
(30)

The threshold value τH for the relative inhibition time τ with the con-
straint 1 < P ′e < 1 + P ′i yields
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ϕ0(η = 0) = 0, dϕ0

dτ
(η = 0, τ = τH) =

1
τ2H
(1 + P ′i ) > 0

ψ0(η = 0, τ = τH) =
1
τH
(1 + P ′i − P ′e)

In the corresponding local dynamics this point corresponds to a Hopf-
bifurcation. Therefore τH is referred to as the Hopf-point in this local
description. For τ < τH with P ′e > 1, the equilibrium point V0 is
asymptotically stable. Assume that F ′(v0) > 0 and introduce

τ± ≡ (
√
F ′(v0)±

√
P ′iP ′e)

2

(P ′e − 1)2
(31)

In accordance with [15] V0 will in this case be a node if 0 ≤ τ ≤ τ− or
τ ≥ τ+ (P ′e = 1), while in the complementary regime it will be a focus
within the same dynamical framework.

2. (Translational invariant case.)

Assume that the connectivity kernels ωmn are independent of the local
variable y. This is equivalent with the requirement that all the degrees
of heterogeneity are equal to zero: αmn = 0. In that case

Cμ =

⎛⎝0 0

0 0

⎞⎠
for μ = 0 and

C0 =

⎛⎝P ′eω̃ee −P ′i ω̃ie

P ′eω̃ei −P ′i ω̃ii

⎞⎠
In this case the matrices Aμ for μ = 0 are diagonal matrices with −1
and −1/τ on the diagonal whereas the matrix A0 is given as

A0 =

⎛⎝−1 + P ′eω̃ee −P ′i ω̃ie

1
τ
P ′eω̃ei − 1

τ
(1 + P ′i ω̃ii)

⎞⎠
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We notice that A0 is the stability matrix in the translational invariant
case [15].

3. (Finite band width instability.)

Let us explore the property of the sequence of parameterized curves
{Γμ}μ∈N0 in some detail. First of all, we find the uniform bound

|ω̂(μ)
mn(k)| ≤

1∫
0

|Φ̃(kσmn(y))|dy ≤
1∫

0

∫
R

Φ(ξ)dξdy = 1, k ∈ R

for the Fourier coefficients ω̂
(μ)
mn, μ = 0,±1, · · · . Secondly, since the

scaling function Φ of the connectivity kernels ωmn is absolute integrable,
the Fourier transform Φ̃ of Φ is a uniformly continuous function of k.
Hence by (20), the composite mapping Φ̃ ◦ S(k)

mn : Y → R defined by

y
S
(k)
mn�−→ kσmn(y)

Φ̃�−→ Φ̃
(
kσmn(y)

)
= ω̃mn(k, y)

is a continuous function on Y for all k ∈ R. Here S
(k)
mn(y) ≡ kσmn(y).

Therefore, in accordance with Riemann-Lebesque’s lemma, the Fourier
coefficients ω̂

(μ)
mn will satisfy the property

ω̂(μ)
mn(k) → 0 as μ → ∞ for all k ∈ R

Moreover, we find also according to Riemann-Lebesque’s lemma Φ̃(k) →
0 as |k| → ∞. By (20), we find that ω̃mn(k, y) → 0 as |k| → ∞ uni-
formly in y ∈ Y . Hence we also have

ω̂(μ)
mn(k) → 0 as |k| → ∞ for all μ ∈ N0

Interestingly, this result implies that all the curves {Γμ}μ>0 are closed
curves: They start and terminate at the same point

( − 1 − 1
τ
, 1
τ

)
in

the second quadrant in the invariant plane. This result also enables
us to detail the instability structure. First of all, we find that when
μ exceeds a certain threshold μ0, the corresponding curves {Γμ}μ≥μ0

remain in the second quadrant for all η ≥ 0. Secondly, the remaining
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curves {Γμ}0≤μ<μ0 will terminate in the second quadrant in the invari-
ant plane. The latter result simply means that the instability structure
is of a finite band width type. Notice that the translational invariant
case corresponds to μ0 = 1 within the present stability methodology.

The assumption (10) implies that the derivative Φ̃′ = dΦ̃
dk

and the sec-

ond derivative Φ̃′′ = d2Φ̃
dk2

are uniformly continuous functions of k with
the property

Φ̃′(k), Φ̃′′(k) → 0 as |k| → ∞ (32)

Hence, since

∂kωmn(k, y) = σmn(y)Φ̃
′(kσmn(y)

)
(33)

∂2
kωmn(k, y) = σ2

mn(y)Φ̃
′′(kσmn(y)

)
we conclude that the partial derivatives ∂kωmn and ∂2

kωmn are uniformly
continuous functions of k for all y ∈ Y . From (32) and (33) it then
follows that

∂kωmn, ∂
2
kωmn → 0 as |k| → ∞ (34)

uniformly for y ∈ Y . Finally, but not least, we have from (33) that the
1-parameters families of mappings ϕk : Y → R and ϑk : Y → R defined
by

ϕk(y) = ∂kωmn(k, y), ϑk(y) = ∂2
kωmn(k, y)

are continuous functions on Y for all k ∈ R. From this we find that
the derivatives d

dk
ω̂
(μ)
mn and d2

dk2
ω̂
(μ)
mn of the Fourier-coefficients ω̂

(μ)
mn are

continuous functions of k ∈ R and that

d
dk
ω̂
(μ)
mn(k) =

∫
Y

∂kωmn(k, y) exp(−i2πμy)dy

d2

dk2
ω̂
(μ)
mn(k) =

∫
Y

∂2
kωmn(k, y) exp(−i2πμy)dy
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By making use of these expressions and the uniform limit (34), we find
that

d

dk
ω̂(μ)
mn(k),

d2

dk2
ω̂(μ)
mn(k) → 0 as |k| → ∞ for all μ ∈ N0

We conclude that {Γμ}μ∈N0 forms a sequence of smooth curves in the
invariant plane. In the unstable situation, these curves exhibit a finite
number of transversal crossings with the positive determinant axis and
the negative trace axis in this plane. Thus the generic picture of the
instability structure consists of a finite set of well-separated gain bands,
just as in the translational invariant case investigated in Wyller et al.
[15].

4. (Weakly modulated case.)

Let us consider the situation where the degrees of heterogeneity αmn

satisfy 0 < αmn � 1. This case is referred to as the weakly modulated
case. The stability properties depend continuously on the degrees of
heterogeneity. From the previous analysis of the translational invariant
case and the behavior of the matrices Aμ, μ ∈ N0 for large |k|, it fol-
lows that the linear stability of the equilibrium V0 depends solely on the
matrix A0. Hence, the gain band structure in the weakly modulated
case emerges as a homotopic deformation of the instability structure
detected in the translational invariant case. This result means that we
have to search beyond the weakly modulated regime to find significant
qualitative changes in the gain band structure as compared with the
translational invariant case. We will demonstrate this in Section 4.

Notice that this result can be shown rigorously to hold true by appeal-
ing to the following continuous dependence on parameter result, which
holds true under a more restrictive condition on the scaling function Φ
than imposed in Section 2:

Theorem 1. Let the connectivity kernel ωmn be given by (7) with σmn ∈
BC1(Y ), σmn(y) > 0 for all y and assume that Φ ∈ BC1(R) in addition
to (9). Then there is an ε > 0 such that for any α ∈ [0, ε]4 the solutions
Uα have the same stability properties as the solution in the translation
invariant case (α = 0).
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The proof of Theorem 1 proceeds in the way as the proof of Theorem
3 in Kolodina et al. [32]. We omit the details here.

5. (Generation and coalescence of gain bands.)

We detect the generation and coalescence of gain bands by viewing
such phenomena as bifurcation processes with one of the degrees of
heterogeneity αmn as control parameter. Just as in Wyller et al. [15]
we get two types of bifurcations, a continuous version of the static
codimension-one bifurcation and a continuous version of the Hopf type
of bifurcation. The former one is referred to as the Turing bifurcation,
whereas the latter one is called the Turing-Hopf bifurcation. We de-
termine these two bifurcations in the following way: Fix μ ∈ N0 and
assemble three of the heterogeneity parameters into a single parameter
vector which we denote by a ∈ [0, 1)3. The remaining degree of het-
erogeneity is denoted by αmn. We fixate a. By assumption both ϕμ

and ψμ are smooth functions of αmn. Moreover, due to (10) the same
functions are two times continuously differentiable with respect to η.
We will make use of these properties when describing the Turing- and
the Turing-Hopf bifurcation.
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(a) (Turing type bifurcation) In this case the bifurcation point is de-
termined by means of the non-transversality condition

ψμ(ηc, αmn,c) = 0, dψμ

dη
(ηc, αmn,c) = 0

(35)

ϕμ(ηc, αmn,c) < 0

Here (ηc, αmn,c) (where ηc = k2
c ) is the bifurcation point. This

means that the corresponding eigenvalue λ
(+)
μ changes sign as we

pass the bifurcation point. Here we have tacitly imposed the finite
velocity condition

∂ψμ

∂αmn

(ηc, αmn,c) = 0

in order to ensure that the bifurcation point (ηc, αmn,c) is not an
accumulation point. Since

d2λ
(+)
μ

dη2
(ηc, αmn,c) =

d2ψμ

dη2
(ηc, αmn,c)/ϕμ(ηc, αmn,c)

we get generation of gain bands if

d2ψμ

dη2
(ηc, αmn,c) > 0

and coalescence of gain bands if

d2ψμ

dη2
(ηc, αmn,c) < 0

(b) (Turing-Hopf type bifurcation) In this case the bifurcation is de-
scribed by means of the non-transversality condition

ϕμ(ηc, αmn,c) = 0, dϕμ

dη
(ηc, αmn,c) = 0

(36)

ψμ(ηc, αmn,c) > 0

Here (ηc, αmn,c) (where ηc = k2
c ) is the bifurcation point. This

means that the real part of the corresponding eigenvalues λ
(±)
μ
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changes sign at the bifurcation point. Also here we have assumed
the finite velocity condition

∂ϕμ

∂αmn

(ηc, αmn,c) = 0

in order to avoid the bifurcation point to become an accumulation
point. Since

Re{λ(±)
μ }(η) = 1

2
ϕμ(η)

we get generation of gain bands if

d2ϕμ

dη2
(ηc, αmn,c) < 0

and coalescence of gain bands if

d2ϕμ

dη2
(ηc, αmn,c) > 0

Notice that this analysis implies that even though we have no bifur-
cation point for μ = 0 of the type (a) and (b), it might happen that
some μ = μ∗ for which 0 < μ∗ ≤ μ0 we will have such a point. This is
caused by the presence of the periodic microstructure in the modelling
framework.

4. Numerical simulations

The present section is devoted to a numerical study of the linear stage of
the instability discussed in the previous section and the nonlinear stage of
this instability.

We assume that the scaling function S of the firing rate functions Pm (m =
e, i) is given as

S(u) =
1

2
(1 + tanh(u)) (37)

Then by (6) and (37) we obtain

P ′m =
1

2
βm cosh−2(βm(v0 − θm)), m = e, i (38)
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Parameters βe βi θe θi v0 P ′e P ′i τH τ− τ+
Set A 20 30 0.10 0.12 0.129 7.26 13.94 2.39 1.36 4.20
Set B 5 10 0.05 0.10 0.106 2.31 4.98 4.56 1.27 16.35

Table 1: The single equilibrium points V0 = (v0, v0) are determined by (16) for the listed
parameters βm and θm (m = e, i), P ′

e and P ′
i are defined by (38) and τH and τ± are defined

by (30) and (31), respectively.

Set A represents a scenario with steep firing-rate functions, whereas Set
B gives an example of shallow firing-rate functions. This choice of input pa-
rameters yields a single equilibrium point V0 = (v0, v0). The values of v0 are
also listed in Table 1. Next, we compute the corresponding steepness param-
eters P ′m,m = e, i by means of the formula (38) and thereafter the Hopf-time
τH and the relative inhibition times τ± by means of the expressions (30) and
(31), respectively. The input parameters P ′m, P

′
m, τH and τ± are also listed

in Table 1.

Let the scaling function Φ of the connectivity kernels ωmn be given as an
exponentially decaying function, i.e.

Φ(ξ) =
1

2
exp(−|ξ|) (39)

with

Φ̃(k) =
1

(2πk)2 + 1

as the corresponding Fourier- transform. Thus, we readily get

ω̃mn(k, y) = Φ̃(σmn(y)k) =
1

(2πkσmn(y))2+1
,

(40)

where σmn(y) is defined by (8). The corresponding Fourier coefficients

ω̂
(μ)
mn are given by means of the integrals

ω̂(μ)
mn(k) =

∫
Y

1

(2πkσmn(y))2 + 1
exp(−i2πμy)dy (41)
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In all numerical simulations the averaged synaptic footprints smn are fix-
ated as

see = 0.35, sei = 0.48, sie = 0.60 and sii = 0.69. (42)

We aim at examining the effect of the heterogeneity on the gain band
structure in four different cases. These cases are listed in Table 2.

Parameters αee αie αei αii

Set 1 0.01 0.025 0.01 0.025
Set 2 0.35 0.4 0.4 0.35
Set 3 0.6 0.55 0.5 0.65
Set 4 0.9 0.85 0.85 0.9

Table 2: Sets of heterogeneity parameters αmn. Set 1 represents the weakly modulated case
0 < αmn � 1, Set 2 and Set 3 represent scenarios of the medium degree of heterogeneity
whereas Set 4 is an example on the strong heterogeneity.

Fig. 1 shows the curves Γ0 in the invariant plane together with the
corresponding growth rate curves for the parameter sets in Table 1 and Table
2. For the weakly modulated case (0 < αmn � 1), represented by Set 1 in
Table 2, we observe as expected that the curve Γ0 and the corresponding
growth rate curve, appear as slight deformation of the corresponding curves
produced in the translational invariant case. By adjusting the degree of
heterogeneity beyond the weakly modulated case, the following features are
notable in the case of steep firing-rate functions: Except for Set 2 in Table
2, the maximal growth rate of the instability decreases with the degree of
heterogeneity. This property is accompanied by a broadening of the single
gain band. In the shallow firing-rate regime, we readily observe that the gain
band structure is suppressed by the degree of heterogeneity.
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Figure 1: Examples of single gain-band structure as a function of the heterogeneity for
the Fourier component corresponding to μ = 0. The connectivity functions are given by
(7) with (39), the averaged synaptic footprints are fixed as (42). In (a) the parameterized
curves Γ0 in the invariant plane defined by means of (25) and (26) are shown for τ = 2

and parameter set A (cf. Table 1). In (c) the corresponding growth rates (Re{λ(±)
0 } in

(24)) are shown as a function of the wave number k. In (b) the curves Γ0 is shown for
τ = 4.4 and parameter Set B (cf. Table 1). The corresponding growth rates are shown in
(d). The black stars in (a) and (b) denote the initial point of the curves Γ0, η = k2 = 0.
The heterogeneity parameters producing the black-, red-, green- and blue curves are Set
1, Set 2, Set 3 and Set 4 in Table 2, respectively.

In Fig. 2 the curves Γ1 in the invariant plane are displayed together
with the corresponding growth- and decay rate curves for the parameter sets
in Table 1 and Table 2. We first notice that the curves Γ1 are closed, in
agreement with the general theory elaborated in Section 3. For the weakly
modulated case, represented by Set 1 in Table 2, we show a zoomed version
of the parameterized curve in a separate figure (Fig. 5). This figure clearly
demonstrates the closed orbit structure of the curve Γ1 in the vicinity of the
point (−1 − 1/τ, 1/τ) in the invariant plane, consistent with the analysis
presented in Section 3: The closed curve Γ1 deforms continuously to the
single point (−1 − 1/τ, 1/τ) as the degrees of heterogeneity tend to zero.
Next, for the shallow firing-rate regime, the curves are for all the sets of
heterogeneity located in total in the second quadrant of the invariant plane,
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thus showing that the corresponding Fourier component does not contribute
to the instability and the subsequent nonlinear stage of the evolution in this
case. Interestingly, the curves Γ1 visit the third quadrant in the invariant
plane before returning to the second quadrant in the case of medium-to-
strong degree of heterogeneity (represented by the Sets 3 and Set 4 in Table
2 for the steep firing-rate function regime represented by Set A in Table
1. In this case the heterogeneity contributes to the linear instability. It is
indeed of interest to explore the impact of this instability on the pattern
formation process. Here one should notice that it must compete with the
μ = 0-mode, and as we will see it will only have an impact on the initial
phase of the pattern forming process, and not the final stage of the pattern
forming process.
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Figure 2: Examples of single gain-band structure as a function of the heterogeneity for
the Fourier component corresponding to μ = 1. The connectivity functions are given by
(7) with (39), the averaged synaptic footprints are fixed as (42). In (a) the parameterized
curves Γ1 in the invariant plane defined by means of (25) and (26) are shown for τ = 2

and Set A (cf. Table 1). In (c) the corresponding growth rates (Re{λ(±)
1 } in (24)) are

shown as a function of the wave number k. In (b) the curves Γ1 is shown for τ = 4.4 and
Set B (cf. Table 1). The corresponding growth rates are shown in (d). The black stars
in (a) and (b) denote the initial point of the curves Γ1, η = k2 = 0. The heterogeneity
parameters producing the red-, green- and blue curves are Set 2, Set 3 and Set 4 in Table
2, respectively. Zoomed black curves corresponding to Set 1 presented in the separate
figure, see (a) and (b) of fig. 5.

Fig. 2 clearly indicates that a gain band is generated in the steep firing-
rate function regime when the degree of heterogeneity exceeds a certain
threshold. We can analyze the generation mechanism as a Turing type of
bifurcation phenomenon i.e. by means of the non-transversality condition
(35). In Fig. 3 we have demonstrated this phenomenon by plotting the closed
parameterized curve Γ1 for three different sets of heterogeneity parameters.
We have fixed all the heterogeneity parameters except αii.
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Figure 3: Example on a Turing type of bifurcation as a function of the heterogeneity for
the Fourier component corresponding to μ = 1. The connectivity functions are given by
(7) with (39), the averaged synaptic footprints are fixed as (42). The parameterized curves
Γ1 defined by means of (25) and (26) are shown for τ = 2 for Set A (cf. Table 1). Black
star denote the initial point of Γ1. Input parameters for red curve are (αee, αie, αei, αii) =
(0.1, 0.1, 0.1, 0.29), black curve (bifurcation) (αee, αie, αei, αii) = (0.1, 0.1, 0.1, 0.3009) and
blue curve (αee, αie, αei, αii) = (0.1, 0.1, 0.1, 0.31).

We have also investigated the parameterised curves Γ2 given by (25)-(26),
see Fig. 4. The outcome of this investigation is summarized in Fig. 4. We
find that all these curves are located in the second quadrant of the invariant
plane, thus supporting numerically the conclusion of the stability analysis
of Section 3 that only the lowest order Fourier components have an impact
on the gain band structure. We have depicted separately the parameterized
curves Γ2 for the weakly modulated case, represented by Set 1 in Table 2
in Fig. 5. This figure clearly demonstrates the closed orbit structure of the
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curve Γ2 in the vicinity of the point (−1 − 1/τ, 1/τ) in the invariant plane,
consistent with the findings of the previous section: Just as the curve Γ1, the
closed curve Γ2 deforms continuously to the single point (−1 − 1/τ, 1/τ) as
the degrees of heterogeneity tend to zero.

Figure 4: The parameterized curves Γ2 defined by means of (25) and (26). The connectivity
functions are given by (7) with (39), the averaged synaptic footprints are fixed as (42).
In (a) τ = 2 for the firing-rate function corresponding to Set A (cf. Table 1). In (b)
the curve Γ2 is shown for τ = 4.4 and Set B (cf. Table 1). The black stars in (a) and
(b) denote the initial point of the curves Γ2, η = k2 = 0. The heterogeneity parameters
producing the black-, red-, green- and blue curves are Set 1, Set 2, Set 3 and Set 4 in
Table 2, respectively. The decay rates corresponding to (a) and (b) are plotted in (c) and
(d), respectively. Zoomed black curves corresponding to Set 1 are presented in (c) and (d)
of Fig. 5.
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Figure 5: Zoomed versions of the curves Γ1 and Γ2 in Fig.2 and Fig.4 representing the
weakly modulated case, i.e. Set 1 in Table 2, show the closed orbit structure. The
connectivity functions are given by (7) with (39), the averaged synaptic footprints are
fixed as (42). In (a) and (c) the parameterized curves Γ1 and Γ2 in the invariant plane
defined by means of (25) and (26) is shown for τ = 2 and Set A (cf. Table 1). In (b) and
(d) the curves Γ1 and Γ2 are shown for τ = 4.4 and Set B (cf. Table 1). The black stars
in (a) and (b) denote the initial point of the curves Γ1, η = k2 = 0.

Finally, we carry out numerical simulations in order to illustrate the ef-
fect of the periodic microstructure on the pattern forming process. We do
this by exploring the nonlinear stage of the instability as a function of the
degree of heterogeneity αmn. The present simulations are based on build-in
function ode45 in MATLAB, where the initial condition consists of a homo-
geneous solution v0 with small perturbation on the form of a narrow centered
rectangular box superimposed on −0.5 ≤ x ≤ 0.5, ue = ui = 0.2. Besides,
we use the build-in function conv2 in MATLAB to calculate the double con-
volutions (5) in (4). Here the function conv2 defines the discrete double
convolution of functions ωmn and Pm(um − θm), that uses a finite spatial do-
main, −L < x < L. To avoid an accumulation of errors at the end points of
the interval (−L,L), we assume that the initial condition for (13) is periodic
in x variable with a period T = 2L.

We present the outcome of these simulations as snap shots of the projec-
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tion of the numerical solutions onto the x, y-plane for 4 different sets of the
heterogeneity parameters αmn given in Table 2. Here we divide investigations
into two subsections corresponding to steep firing rate regime, i.e. Set A in
Table 1 (Subsection 4.2), and shallow firing rate regime, i.e. Set B in Table
1 (Subsection 4.3).

4.1. Translation invariant case

For the sake of convenience we first recall the pattern formation results
of the translation invariant case explored in Wyller et al. [15]. We visualize
the numerical solution by projecting it onto the (x, t)-plane. The results of
this investigation is depicted in Fig. 6. For Set A, representing the steep
firing rate function case, we see that gain band instability develops into
a purely, spatial periodic pattern after a relatively short transient phase,
whereas for Set B, which represents the shallow firing rate function case, the
instability develops into spatiotemporal oscillations after a relatively slow
transient phase.

Figure 6: The pattern formation results for the translational invariant case (αmn =
0, m, n = e, i) obtained in Wyller et al. [15]. The connectivity functions ωmn are
given by (7) with (39) and fixed synaptic footprints as (42). The firing rate functions are
given by (6) with (37). (a) and (b) correspond to Set A in Table 1. (c) and (d) correspond
to Set B in Table 1.
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4.2. Steep firing rate regime (Set A)
In the weakly modulated case represented by Set 1 in Table 2 we observe

as expected that the solution emerging from the instability consists of x-
dependent spatial oscillations, see Fig.7. This can indeed be viewed as a
continuous deformation of the translational invariant case.

Figure 7: Dynamical evolution for parameter Set A in Table 1 and Set 1 in Table 2 (weakly
modulated case) at different fixed times. Excitatory activity levels ue and inhibitory
activity levels ui corresponds to left plots and right plots, respectively. The initial condition
consists of a homogeneous solution v0 with small perturbation in the form of a narrow
centred rectangular box superimposed −0.5 ≤ x ≤ 0.5, ue = ui = 0.2
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We observe the following features in Fig. 7: The first row in this figure
shows the snapshot of the numerical solution in the initial, transient phase.
The snapshot in the second row is repeated in the third row, thus indicating
that the pattern has stabilized on spatial oscillations i.e. on periodically
distributed bumps. The wavelength in x-direction is approximately equal
to the wavelength of the linearly most unstable mode. Each bump in this
oscillatory structure resembles the y-independent stable single bump of the
Heaviside limit of the firing rate functions obtained by means of the pinning
function technique developed in Kolodina et al. [32]. This is confirmed by
means of the plots in Fig. 8: In (a) and (b) we show the excitatory and
the inhibitory component of the single stationary bump in the Heaviside
limit of the firing rate functions, whereas in (c) and (d) we illustrate the
corresponding components of the spatially oscillating pattern restricted to
one period for the heterogeneity parameter Set 1 in Table 2. This result
suggests that stable bumps can be the final outcome of a pattern forming
process in the steep firing rate regime.
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Figure 8: Comparison between stationary broad bump with the Heaviside firing rate
function, where (a) and (b) correspond to the excitatory and the inhibitory components,
respectively, with the stationary oscillations (c) and (d) restricted to one period for Set 1
in Table 2. Input data: θe = 0.10, θi = 0.12.

When increasing the degrees of heterogeneity, the patterns exhibit as ex-
pected a dependence of the local coordinate y. A rich plethora of phenomena
then takes place. This is depicted in Fig. 9, Fig. 10 and Fig. 11. Here the
impact of the heterogeneity is measured by means of the y-dependence in
the emerging patterns. A common and prominent feature in these patterns
consists of stable spatial oscillatory behavior both in the x- and y-direction,
the y-dependence being as expected most pronounced in the strongly het-
erogeneous case depicted in Fig. 11. Again the wavelength in x-direction is
approximately equal to the wavelength of the linearly most unstable mode
whereas the 1-periodicity in the y-direction is retained. The numerical results
also indicate that the transient phase of the dynamical evolution increases
with the degree of heterogeneity, except for the notable case of the strong
heterogeneity, e.g. Set 4 in Table 2. This is indeed consistent with the fact
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that the maximal growth rate of the linear instability decreases with the de-
gree of heterogeneity. See Fig. 1. The linearly most unstable μ = 0-mode
will grow on the expense of all the remaining modes in the unstable band
in the nonlinear stage of the dynamical evolution. Due to the fact that the
maximal growth rate of the unstable μ = 1-modes is much less than the
maximal growth rate of the unstable μ = 0-modes, the linearly most unsta-
ble μ = 0-mode will extract energy from all the unstable μ = 1-modes as
well. Fig. 1 and Fig. 2 show that there is a magnitude of order difference
between the maximal growth of the μ = 0-gain band and the growth rates
represented in the μ = 1-gain band. Thus we expect the unstable μ = 1-
modes to be hardly visible, even in the transient linear phase of the evolution.

Interestingly, we also detect two characteristic times, t1 and t2 (with t2 > t1)
in the pattern forming process as demonstrated in Fig. 9 and Fig. 10: The
stable patterns which emerge at the time t1 consists of a two band structure.
The latter structure remains unchanged for the intermediate time interval
(t1, t2). At the time t2 each of these two bands divides into two new bands.
The final stage of the pattern forming process thus consists of four stable
bands.
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Figure 9: Dynamical evolution for parameter Set A in Table 1 and Set 2 in Table 2 at
different fixed times. Excitatory activity levels ue and inhibitory activity levels ui cor-
responds to left plots and right plots, respectively. The initial condition consists of a
homogeneous solution v0 with small perturbation in the form of a narrow centred rectan-
gular box superimposed −0.5 ≤ x ≤ 0.5, ue = ui = 0.2.
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Figure 10: Dynamical evolution for parameter Set A in Table 1 and Set 3 in Table 2 at
different fixed times. Excitatory activity levels ue and inhibitory activity levels ui cor-
responds to left plots and right plots, respectively. The initial condition consists of a
homogeneous solution v0 with small perturbation in the form of a narrow centred rectan-
gular box superimposed −0.5 ≤ x ≤ 0.5, ue = ui = 0.2.
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Figure 11: Dynamical evolution for parameter Set A in Table 1 and Set 4 in Table 2 at
different fixed times. Excitatory activity levels ue and inhibitory activity levels ui cor-
responds to left plots and right plots, respectively. The initial condition consists of a
homogeneous solution v0 with small perturbation in the form of a narrow centred rectan-
gular box superimposed −0.5 ≤ x ≤ 0.5, ue = ui = 0.2.

4.3. Shallow firing rate regime (Set B)

For the shallow firing rate functions case (Set B in Table 1) the outcome
of the dynamical evolution is shown in Fig. 12-15 in terms of snapshots
of the numerical solutions projected onto (x, y)-plane. We observe that the
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instability develops into a spatiotemporal oscillations. This is consistent
with the transient phase described by two complex conjugate eigenvalues of
the matrix A0, where the imaginary part determines the frequency of the
oscillations. The wave length of the emerging spatiotemporal oscillations is
approximately given by the wave length corresponding to the maximal growth
rate, whereas the frequency is given by the imaginary part of the eigenvalues
producing the maximal growth rate. This is also consistent with findings in
the translational invariant case. Thus, the numerical runs suggest that the
nonlinear stage of the instability in the weakly modulated regime appears as
continuous deformation of the nonlinear stage in the translational invariant
case. A notable feature is, however, that the stabilization on spatiotemporal
oscillations is slow compared with the emergence of stable spatial oscillations
for the steep firing rate case i.e. for Set A. This is indeed a consequence of
the magnitude of order difference between the maximal growth rate in the
steep firing rate regime and the maximal growth in the shallow firing rate
regime, as shown in Fig. 1. We proceed as follows in order to detect the
times for the emergence the stable patterns for each heterogeneity parameter
set: Numerical solution is projected onto the x, y-plane for a fixed time in
the transient, initial stage of the temporal development. This is shown in
the first row of each of the snapshots in Fig. 12-15. We notice that the
second row in these plots repeats itself in the third row, thus indicating that
the patterns have stabilized as spatio-temporal oscillations. In addition, we
observe the effect of the 1-periodicity in the y-variable in Fig. 13-15.
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Figure 12: Dynamical evolution for parameter Set B in Table 1 and Set 1 in Table 2 (weakly
modulated case) at different fixed times. Excitatory activity levels ue and inhibitory
activity levels ui corresponds to left plots and right plots, respectively. The initial condition
consists of a homogeneous solution v0 with small perturbation in the form of a narrow
centred rectangular box superimposed −0.5 ≤ x ≤ 0.5, ue = ui = 0.2.
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Figure 13: Dynamical evolution for parameter Set B in Table 1 and Set 2 in Table 2 at
different fixed times. Excitatory activity levels ue and inhibitory activity levels ui cor-
responds to left plots and right plots, respectively. The initial condition consists of a
homogeneous solution v0 with small perturbation in the form of a narrow centred rectan-
gular box superimposed −0.5 ≤ x ≤ 0.5, ue = ui = 0.2.
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Figure 14: Dynamical evolution for parameter Set B in Table 1 and Set 3 in Table 2 at
different fixed times. Excitatory activity levels ue and inhibitory activity levels ui cor-
responds to left plots and right plots, respectively. The initial condition consists of a
homogeneous solution v0 with small perturbation in the form of a narrow centred rectan-
gular box superimposed −0.5 ≤ x ≤ 0.5, ue = ui = 0.2.
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Figure 15: Dynamical evolution for parameter Set B in Table 1 and Set 4 in Table 2 at
different fixed times. Excitatory activity levels ue and inhibitory activity levels ui cor-
responds to left plots and right plots, respectively. The initial condition consists of a
homogeneous solution v0 with small perturbation in the form of a narrow centred rectan-
gular box superimposed −0.5 ≤ x ≤ 0.5, ue = ui = 0.2.
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5. Conclusions and outlook

In the present paper we have investigated the effect of periodic microstruc-
ture on the pattern formation mechanism in a 2-population neural field
model. This work presents an extension of the previous paper by Wyller et
al. [15] on Turing type of instability and pattern formation within the frame-
work of a 2-population neural field model with homogeneous and isotropic
connectivity strengths.

The structure of the linear instability consists of a finite set of well-separated
gain bands. In the weakly modulated case the gain band structure emerges
as a homotopic deformation of gain band structure in the translational invari-
ant case, due to the continuous dependence of the heterogeneity parameters.
We have also examples for which gain bands are generated. We have also
demonstrated coalescence of gain bands. The process of generation and coa-
lescence of such bands typically takes place in the regime beyond the weakly
modulated regime and is as such a microstructure effect. It is revealed as
a bifurcation process. Notice that the instability structure which we have
detected for the model (4) resembles the gain band structure obtained for
modulational instability (MI) in the nonlocal, nonlinear Schrödinger equa-
tion [34] and for modulational instability in the nonlocal χ(2)-model [35]. The
existence of several coexisting gain bands thus seems to be a generic feature
of nonlocal models.

We have also detailed numerically the development of the linear instabil-
ity into the nonlinear regime. We have considered examples with steep and
shallow firing rate functions. In order to compare with previously obtained re-
sults for the 2-population neural translational invariant model, we have used
the same parameter sets for the steep and shallow regimes as in Wyller et
al. [15]. We have presented the result of the pattern forming process as snap
shots of the projection of the numerical solutions onto the x, y-plane for the
4 specific sets of the heterogeneity parameters αmn listed in Table 2. These
sets represent scenarios with weak- , intermediate- and strong heterogeneity.
We have divided the investigation into two subsections corresponding to the
outcomes in the steep firing rate regime and in the shallow regime. Here
we will emphasize that the actual choices of steepness parameters and the
heterogeneity parameters will of course not cover all possible outcomes, since
all these parameters can be varied independently of each other.
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The results of these simulations can be summarized as follow:

In the steep firing rate regime (Set A)) we get as expected spatial oscil-
lations. In the weakly modulated case (Set 1) the oscillations consist of
periodically distributed bump like structures where the solution restricted to
one period is quite similar to the bumps detected in Kolodina et al. [32].
The wavelength of these oscillations is as expected approximately equal to
the wave length of the linearly most unstable mode. We also observe that it
takes relatively longer time to form the stable stationary patterns than in the
translational invariant case. This was indeed expected since the growth rate
of the linearly most unstable mode in this case is less than the corresponding
growth rate in the translational invariant case. When increasing the degrees
of heterogeneity beyond the weakly modulated case, our numerical examples
indicate a further slowdown of the pattern forming process. When the pat-
terns are formed in the regime of strong heterogeneity, we readily observe
that the impact of the periodic heterogeneity manifests itself in 1-periodicity
in y-variable, in addition to the spatial oscillatory behavior in the x-direction.

In the shallow firing rate regime (Set B) we obtain spatiotemporal oscil-
lations. In the weakly modulated case (Set 1) spatiotemporal oscillations
appear as homotopic deformation of the spatiotemporal oscillations of the
translational invariant case. This follows from the linear stability analysis,
namely, we have got complex conjugate eigenvalues of the stability matrix
for the linearly most unstable mode. Even in this case the increase in the
degree of heterogeneity will decrease the growth rate of the fastest growing
mode, thus explaining the slowdown of the pattern forming process when in-
creasing the degree of heterogeneity. We have also observed that the pattern
forming process in the shallow firing rate regime takes much longer time than
in the steep regime. This result can easily be understood as a consequence
of the magnitude of order difference between the maximal growth rate in the
steep firing rate regime versus the shallow firing rate regime. We also ob-
serve that the strong heterogeneity results in 1-periodicity in the y-direction
of the emerging patterns in addition to the spatiotemporal oscillations in the
x, t-direction.

A natural extension of the present work consists of studying pattern for-
mation within the modelling framework (4) when N = 2. This means that
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a 2-population model with a periodic microstructure built into the connec-
tivity kernels is defined on a two-dimensional domain. This extension can
be viewed as a step towards a more realistic description of the actual situ-
ation in the cortical tissue. Other realistic effects which could be included
in the present homogenized modelling framework (and its generalisations to
Volterra type of models) is finite axonal and dendritic delays effect. Here we
will follow the line of thought as in Venkov et al. [36] and Faye et al. [37].
Finally, but not least, possible modifications of the present model consist of
assuming other types of microstructure effects and then investigate existence
and stability of coherent structures as well as pattern formation within the
framework of the corresponding homogenized problems.
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