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Characterizing the role of different mutational effect sizes in the evolution of fitness-related traits has been a major goal in
evolutionary biology for a century. Such characterization in a diversity of systems, both model and non-model, will help to
understand the genetic processes underlying fitness variation. However, well-characterized genetic architectures of such traits in
wild populations remain uncommon. In this study, we used haplotype-based and multi-SNP Bayesian association methods with
sequencing data for 313 individuals from wild populations to test the mutational composition of known candidate regions for sea
age at maturation in Atlantic salmon (Salmo salar). We detected an association at five loci out of 116 candidates previously
identified in an aquaculture strain with maturation timing in wild Atlantic salmon. We found that at four of these five loci, variation
explained by the locus was predominantly driven by a single SNP suggesting the genetic architecture of this trait includes multiple
loci with simple, non-clustered alleles and a locus with potentially more complex alleles. This highlights the diversity of genetic
architectures that can exist for fitness-related traits. Furthermore, this study provides a useful multi-SNP framework for future work
using sequencing data to characterize genetic variation underlying phenotypes in wild populations.
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INTRODUCTION
The debate over the role of different mutational effect sizes in the
evolution of fitness has been ongoing for a century (Orr 1998; Orr
1999; Fisher 1930; Rockman 2012; Remington 2015; Kimura 1983).
Our ability to now sequence large numbers of individuals has
greatly informed this debate. Additionally, an explosion in the
number of association studies has revealed the architecture of
important traits. These have revealed examples of large effect loci
(Hoekstra 2006; Linnen et al. 2013; Tishkoff et al. 2007; Daborn
et al. 2002), but also many cases of polygenicity (Purcell et al. 2009;
Loh et al. 2015; Pritchard and Di Rienzo 2010). However, even
where large effect alleles are known, these can have been
generated over time via sequential mutations of smaller effect
that allow a slow walk to the optimum as predicted by Orr (1998),
or a single mutation of large effect. The difference between these
scenarios is important for our understanding of the process of
adaptation, the adaptability of organisms and their resilience to
rapid environmental change (Oomen et al. 2020; Kardos and
Luikart 2021; Yeaman et al. 2018).
Among genome-wide association studies published to date,

many complex traits appear to be polygenic (Visscher et al. 2017;
Fisher 1918; Pritchard and Di Rienzo 2010) or omnigenic (i.e.

affected by a large proportion of genes through a network of
core genes and many peripheral genes that modify the effects of
core genes, whereby a large proportion of all genes expressed in
trait-related tissues has some effect on the trait) (Boyle et al. 2017;
Liu et al. 2019). Although polygenicity is widespread, an
increasing number of examples of major effect loci exist, whereby
one locus explains a large proportion of the phenotypic variation
(Barson et al. 2015; Linnen et al. 2013). In some cases, major effect
loci can contain multiple tightly linked genes, coined “super-
genes”, where localized reduction in recombination is often
caused by larger chromosomal rearrangements. For example, this
phenomenon is known to underlie phenotypic variation
observed among ruff (Philomachus pugnax) mating morphs
(Lamichhaney et al. 2015; Küpper et al. 2015), Atlantic cod
(Gadus morhua) (Kirubakaran et al. 2016; Sinclair-Waters et al.
2018) and rainbow trout (Oncorhynchus mykiss) migratory
ecotypes (Pearse et al. 2018), and Heliconius butterfly wing-
pattern morphs (Joron et al. 2011). More recent work has found
that major effect loci can exist alongside a polygenic background
where loci with a variety of effect sizes underlie trait variation
(Sinnott-Armstrong et al. 2020; Sinclair-Waters et al. 2020). Such
mixed genetic architectures may be pervasive, but currently
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remain undetected due to the large sample sizes required for
detecting loci with smaller effects (Sinclair-Waters et al. 2020) and
it is possible that additional examples are to be found with future
higher-powered studies. Although studies aimed at resolving
genotype-phenotype links are mounting, well-characterized
genetic architectures of fitness-related traits, particularly in
natural populations, are still uncommon.
While some trait-associated loci have been identified, such

findings lead to other crucial questions: How have trait-locus
associations arisen? Has the locus arisen through a single or
multiple new mutation(s)? Or alternatively, did the locus emerge
via recombination that gave rise to new combinations of existing
variants? Numerous studies from the past decade have shown
that major effect loci involve the cumulative effects of multiple
mutations, rather than a single mutation, thus highlighting the
relevance of considering the latter scenarios. For example, Bickel
et al. (2011) found that ~60% of variation in female abdominal
pigmentation in Drosophila melanogaster can be explained by
sequence variation at the bab locus, but a GWAS (genome-wide
association study) analyzing the same trait did not identify a single
SNP in bab that passed the genome-wide significance threshold.
Alleles consisting of multiple SNPs were associated with high
proportions of the variation, whereas single SNPs had only small
effects and were therefore missed in the single-SNP GWAS.
Additionally, Linnen at al. (2013) and Kerdaffrec et al. (2016) also
identify multiple mutations within a confined region that have
cumulative effects on colour traits in deer mice and seed
dormancy in Arabidopsis thaliana, respectively. In natural popula-
tions with gene flow such as in Linnen et al. (2013) and Kerdaffrec
et al. (2016), this is perhaps not unexpected as theory predicts that
clustered and major effect loci will evolve under such scenarios
(Yeaman and Whitlock 2011; Yeaman 2013). Given these findings,
examining extended sequence haplotypes containing multiple
SNPs, rather than each SNP independently, is important (Reming-
ton 2015). This can be achieved by using alternative strategies that
look at combined effects of variants, rather than single-SNP
methods typically used in GWAS.
Here we investigate the genetic basis of Atlantic salmon (Salmo

salar) sea age at maturity—the number of years spent in the
marine environment before reaching maturity and returning to
the natal river (freshwater) to reproduce. Atlantic salmon
individuals can spend anywhere from one to five years in the
marine environment before maturation occurs. Prior to this marine
phase, individuals spend one to seven years in their natal river
before migrating to the sea. Moreover, some individuals will reach
maturity in freshwater without ever having migrated to the sea,
known as mature parr (Fleming 1996; Mobley et al. 2021). This
variation in maturation timing contributes substantially to the
diversity of life history strategies among Atlantic salmon (Erkinaro
et al. 2019). Age at maturity varies both within and among Atlantic
salmon populations, with multiple maturation age classes
commonly occurring within single populations (Barson et al.
2015; Jonsson et al. 1991; Hutchings and Jones 1998). Further-
more, age at maturity is an important life history trait affecting
fitness traits such as survival, size at maturity and reproductive
success (Stearns 2000; Mobley et al. 2021). Substantial variation in
Atlantic salmon sea age at maturity is maintained due to a trade-
off between mating success at spawning grounds and survival,
whereby individuals that mature later are larger and have higher
reproductive success on the spawning grounds, but have a lower
chance of surviving until reproductive age due to a high mortality
in the marine environment (Chaput 2012). In contrast individuals
that mature early are smaller and have lower reproductive success,
but higher survival and thus higher chance of reaching
reproductive age (Fleming and Einum 2011; Mobley et al. 2020).
Variation in maturation timing in Atlantic salmon is highly

heritable (Gjerde 1984; Sinclair-Waters et al. 2020; Reed et al. 2018)
and consequently there is substantial interest in understanding

the underlying genetic architecture. A large-effect locus on
chromosome 25 explaining up to 39% of the variation in sea
age at maturity was found in wild European populations (Barson
et al. 2015) and domesticated salmon (Ayllon et al. 2015). The
primary candidate gene underlying the association of this locus is
vgll3 due to its close proximity to the associated SNP variation
(Sinclair-Waters et al. 2022; Ayllon et al. 2015; Barson et al. 2015)
and its known function in other species. The vgll3 gene encodes a
transcription cofactor that, amongst other things, regulates
adipogenesis (Halperin et al. 2013) and is associated with variation
in puberty timing in humans (Day et al. 2017; Perry et al. 2014). In
addition to vgll3, Sinclair-Waters et al. (2020) identified 119 other
candidate genes for male maturation in a GWAS using SNP-array
data and including >11,000 males from an Atlantic salmon
aquaculture strain originating since the 1970s and derived of
founder individuals from 41 wild Norwegian rivers (Gjedrem et al.
1991). Two particularly strong associations between maturation
timing were found on chromosome 9 in close proximity to six6
and chromosome 25, vgll3. The association of six6 was also found
by Barson et al. (2015) in wild Atlantic salmon, but the signal
disappeared after correction for the confounding effects of
population structure that can increase the false positive rate of
association tests (Price et al. 2010). Barson et al. (2015), however,
focused solely on single-SNP associations via GWAS without
considering the possible influence of combined variant effects.
Interestingly, the six6 gene is also associated with age at maturity
in two Pacific salmon species (Waters et al. 2021; Willis et al. 2020),
humans (Perry et al. 2014) and cattle (Cánovas et al. 2014).
Characterization of genetic architecture for fitness-related traits

in a number of organisms, including both model and non-model
systems, and for a variety of traits, will help gain a clearer
understanding of the processes underlying fitness variation
(Stinchcombe and Hoekstra 2008). However, studies using
sequencing data to examine variation associated with important
fitness-related traits in wild populations are limited. Fortunately,
due to developments in sequencing technologies and bioinfor-
matics, studies using this approach are likely to rise in number. We
therefore aim to provide a useful and timely framework for
characterizing genetic variation underlying phenotypes in wild
populations in the future. Here, we focus on characterizing the
mutational composition of known candidate regions for sea age at
maturity in wild Atlantic salmon found in the previous large
sample GWAS, Sinclair-Waters et al. (2020), by testing for
combined effects of variants to determine number and location
of associated variants. We integrate re-sequencing data and
phenotype information for 313 individuals from 53 wild popula-
tion of Atlantic salmon with alternative GWAS strategies that
consider the combined effects of variants, rather than single-SNP
effects. This approach can provide better resolution of the variants
underlying fitness-related traits when combined effects are
involved, while also effective for detecting single SNP effects.

MATERIALS AND METHODS
Study material
Whole genome sequencing data were obtained for 313 wild individuals
collected from 53 Norwegian and Finnish populations spanning the
Norwegian coast and to the Barents sea in the north (59°N–71°N)
(Supplementary Table S1, S2, Fig. S1) previously reported in Bertolotti et al.
(2020). The 313-individual dataset includes individuals for which the sea
age at maturity phenotype has been recorded, and spans populations
belonging to both the Atlantic and Barents/White sea phylogeographic
groups. Additionally, sampling locations were chosen to represent
populations exhibiting both within and among population variation in
sea-age at maturity (Barson et al. 2015). These geographic regions were
studied in Barson et al. (2015) using a single SNP approach based on SNP-
array data. Whole genome sequencing data allows variants not present on
the SNP-array and combined SNP effects to be tested. Scales were
collected from individuals and sea age was determined by examining scale
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growth rings as described in Mobley et al. (2021) and ICES (2011).
Individuals were categorized into three maturation categories based on
the number of years spent at sea prior to their first return migration to
rivers for spawning: 1 (one year spent at sea), 2 (two years spent at sea), or
3 (three or more years spent at sea). Only five individuals had spent four
years and were therefore combined with three-year fish for all analyses.

SNP calling and filtering
Variant calling and the first round of filtering was done in a larger set of
individuals described in Bertolotti et al. (2020). Raw Illumina reads were
mapped to the Atlantic salmon genome (ICSASG_v2) (Lien et al. 2016) using
bcbio-nextgen v.1.1 (Chapman et al. 2020) with the bwa-mem aligner v.0.7.17
(Heng Li 2013). Genomic variation was identified using the Genome Analysis
Toolkit (GATK) v4.0.3.0., following GATK’s best practice recommendations.
Picard v2.18.7 (Picard Toolkit 2019) was used to mark duplicates and GATK
was used for joint calling (Depristo et al. 2011). Variants were annotated
using SNPeff v. 4.3 (Cingolani et al. 2012). Variant call were further filtered
with GATK’s variant filtration according to the following –filterExpression:
“MQRankSum<−12.5 || ReadPosRankSum<−8.0 || QD < 2.0 || FS > 60.0 || (Q-
D < 10.0 && AD[0:1] / (AD[0:1] + AD[0:0]) < 0.25 && ReadPosRankSum < 0.0)
|| MQ< 30.0”. SNPs were then filtered using SNPable procedure (Li 2009),
where 100 bp kmers are mapped to reference genome (ICSASG_v2) using
Burrows-Wheeler Aligner (bwa aln) (Li and Durbin 2009), and only SNPs
within regions with reads that uniquely map are retained. We then removed
additional SNPs with vcftools using the following criteria: –min-alleles 2,
–max-alleles 2, –maf 0.0000000001, –max-missing 0.7, –remove-indels,
–minGQ 10, and –minDP 4. A subset 313 individuals from wild populations
was then extracted from this larger dataset using vcftools (Danecek et al.
2011). This reduced dataset was used for all subsequent analyses.

Analysis of principal components used for population
structure correction and genetic differentiation
We produced a reduced SNP dataset by pruning one SNP from each SNP
pair with a correlation coefficient (r2) greater than 0.2 within a 50 kb block
using the –indep-pairwise 50 10 0.2 function implemented in PLINK v1.9
(Purcell et al. 2007). This yielded 403,540 SNPs to examine population
structure using a principal component analysis, smartpca, implemented in
the EIGENSOFT v5 software (Patterson et al. 2006). Principal components
were then used to correct for the confounding effects of population
structure during association testing (see below). Additionally, this reduced
dataset was used to estimate FST (following Weir and Cockerham (1984))
between the Atlantic and Barents/White sea phylogeographic groups with
SNPRelate (Zheng et al. 2012).

Data preparation
In this study, we focus on genomic regions containing the 116 candidate
loci for age at maturity identified in Sinclair-Waters et al. (2020) using an
Atlantic salmon aquaculture strain. This strain is derived from founder
individuals originating from 41 wild Norwegian rivers, some of which were
the same rivers sampled for this study, and all belonging to the same
phylogeographic lineage as the sequenced individuals used in this study
(Gjedrem et al. 1991). We extracted SNP genotype data from 500 kb
regions surrounding the 116 trait-associated SNPs identified in Sinclair-
Waters et al. (2020) using vcftools (Danecek et al. 2011) position filtering
functions –from-bp and –to-bp, as well as allele filtering function –mac 1 to
keep only polymorphic sites. Trait-associated SNPs that were within 250 kb
of another trait-associated SNP were combined into a single candidate
region that extends 250 kb upstream of the more upstream SNP to 250 kb
downstream of the more downstream SNP.
The current Atlantic salmon genome (ICSASG_v2) contains a known

assembly error within the 500 kb region surrounding the known candidate
loci vgll3 (Ayllon et al. 2015). A misplaced and misoriented scaffold
currently placed downstream of vgll3 belongs within a gap in the assembly
just upstream of vgll3 on ssa25. For this reason, we constructed a revised
assembly for this chromosome. SNP calling was performed as described
above. We then retained SNPs that had met the filtering criteria. A total of
8 candidate SNPs are located within regions of the genome that were
moved. To find the position of these SNPs in the revised chromosome
25 sequence, we extracted 200 bp surrounding each of these SNPs from
the current genome assembly (ICSASG_v2) using the getfasta function in
BEDTools (Quinlan and Hall 2010). The 200 bp sequence was then blasted
to the fixed assembly to determine the new position of each SNP using
Blast’s blastn function (Camacho et al. 2009). Using the new SNP positions,

SNP genotypes within a 500 kb region surrounding the moved candidate
SNPs were extracted from the fixed dataset using vcftools.

Association testing at candidate regions
We applied three association mapping methods to describe the genetic
architecture underlying sea age at maturity at each of the candidate
regions identified in Sinclair-Waters et al. (2020). First, a multi-SNP
approach examining associations between phenotype and haplotypes
was conducted using Bayesian linear regression implemented in
hapQTLv1.00 (Xu and Guan 2014). In this approach, a hidden Markov
model is used to characterize haplotype structure and ancestry (Guan
2014). Haplotype sharing at each marker is then used to quantify genetic
similarity among individuals. Haplotype associations are identified by
testing for an association between genetic similarity at each marker and
the phenotype (Xu and Guan 2014). Each of the extracted vcf files was
converted to bimbam format using PLINK 1.9 (Chang et al. 2015). The
resulting bimbam files were used as input for hapQTL. Second, single SNP
associations were also identified using a Bayesian linear regression
method implemented in hapQTL (Guan and Stephens 2011). For all
hapQTL association tests, sex and the six most significant principal
components (see above) were included as covariates in the models. Each
hapQTL run consisted of 2 EM runs (-e 2) with 40 steps (-w 40), 2 upper
clusters (-C 2), 10 lower clusters (-c 10). Three replicate hapQTL runs were
performed for each of the 116 selected regions. Based on recommenda-
tions from Jeffreys (1961), Bayes factors greater than three were
considered evidence for an association of either SNPs or haplotype with
sea age at maturity phenotype.
Third, a multi-SNP approach aimed to estimate the number and

identity of SNPs underlying trait variation at each candidate region using
Bayesian Variable Selection regression implemented in PiMASS (Guan
and Stephens 2011). Due to computational restrictions, the PiMASS
analysis was performed for only candidate regions that had a SNP or
haplotype association with Bayes factor greater than 3. Prior to the
PiMASS analysis, all missing genotypes were imputed in BIMBAM (Guan
and Stephens 2011) as mean genotypes (-wmg) using default settings.
Additionally, our phenotype values for sea age at maturity were adjusted
to correct for confounding effects of sex and population structure by
regressing the phenotype on sex and the six most significant principal
components (see above) using the lm function in R. PiMASS was run with
the residual phenotype values. We placed priors on the proportion of
variance explained by SNP(s) (hmin= 0.001 and hmax= 0.999) and the
number of SNPs in the model (pmin= log1

N and pmax= log300N , where N
is the total number of SNPs). Each run consisted of a burn-in of
1000000 steps, followed by 2500000 steps where parameter values were
recorded every 1000 steps. For each analysis, we examined the posterior
inclusion probability for each SNP, the distribution of the number of
included SNPs and the distribution of the proportions of variance
explained per model. We also examined the path of estimated Bayes
factors and parameter values (h, p, s) across all recorded iterations to
check for convergence of runs.
To further assess whether more than one SNP in a candidate region was

significantly associated with sea age at maturity, we regressed out the top-
associated SNP from the residual phenotype values described above and
reran PiMASS using the previously-used priors and settings. We then
examined the posterior inclusion probability for each SNP, the distribution
of the number of included SNPs, and the distribution of proportion of
variance explained to determine whether there was evidence for multiple
SNP associations within a given candidate region.

RESULTS
Analysis of principal components and genetic differentiation
The first six principal components (PCs) calculated with the
pruned SNP dataset explained 1.96%, 0.68%, 0.63%, 0.59%,
0.56% and 0.51% of the genetic variance, respectively (Supple-
mentary Fig. S2). These six PCs were included in subsequent
association analyses to reflect population structure among
samples including structure between phylogeographic groups,
structuring occurring along a north-south gradient and other
finer scale structuring (Supplementary Fig. S2). We do not
include any PCs explaining 0.5% or less of the genetic variance.
FST between the Atlantic and Barents/White sea phylogeo-
graphic groups was 0.02.
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Associations identified with hapQTL
Single-SNP and haplotype association analyses with hapQTL
revealed strong (Bayes factor > 3) association signals at 5 of the
116 candidate regions (Fig. 1, Supplementary Fig. S3). The strongest
association observed within each region was with a single SNP,
rather than an extended haplotype, suggesting a single mutation

underlies the effect of each of these regions on maturation timing.
However, exceptions occurred in the ssa09:24636574-25136574
and ssa25:28389273-28889273 regions, where second association
signals were found upstream of the primary association signal and
were most strongly linked to an extended haplotype. For instance,
strong haplotype association scores (Bayes factor > 3) spanned a

Fig. 1 Plots displaying single SNP associations (black points) and haplotype associations (red line) scores from hapQTL for the five
candidate regions with Bayes factors greater than 3. Y-axis shows the Bayes factor indicating the association strength. X-axis shows the
position on the respective chromosomes.

M. Sinclair-Waters et al.

4

Heredity



26971 bp region (ssa09:24781742-24808713) containing an unchar-
acterized gene (LOC106610978) and pcnx4. In the ssa25:28389273-
28889273 region, a strong haplotype signal was found within edar
(Fig. 1).
We find differences in the location of the top-associated SNPs

found here and those identified in Sinclair-Waters et al. (2020). For
regions ssa06:27541960-28218141, ssa09:10915066-11415066 and
ssa25:28389273-28889273, the top-associated SNP was located
further upstream than in Sinclair-Waters et al. (2020). Contrastingly,
the strongest associated SNPs within the regions ssa09:24636574-
25136574 and ssa21:49390687-49890687 differed only slightly
(<5000 bp) between studies (Table 1).

Multi-SNP associations identified using PiMASS
Multi-SNP association analysis with PiMASS showed that at four of
five candidate regions, a single-SNP model was most commonly
used to explain variation in sea age at maturity. At one candidate
region, ssa09:24636574-25136574, a multi-SNP model including
two SNPs was most commonly used to explain variation in sea age
at maturity. Median proportion of variance explained by each
candidate region ranged between 4% and 19% (Fig. 2, Table 2).
Additionally, mean sea age at maturity differed substantially
among genotypes at all six SNPs selected by the multi-SNP models
(Supplementary Fig. S4). However, when the top-associated SNP
was regressed out from the phenotype values, no SNPs were
selected to explain sea age at maturity for all five candidate
regions. Additionally, post-regression median proportion of
variance was substantially lower—ranging between 0% and 1%
(Supplementary Fig. S5, Table 2). This would suggest that sea age
variation explained by each of these regions is largely explained
by a single mutation. Pairwise LD among SNPs (R2) in these
regions are reported in Supplementary Fig. S6. We observe no
obvious trends in parameter values or Bayes factors, suggesting
models converged and burn-in period was adequate (Supple-
mentary Figs. S7 and S8).

DISCUSSION
Despite that combined effects of multiple variants at trait-
associated loci are playing an important role in controlling fitness
traits across a variety of species (Linnen et al. 2013; Bickel et al.
2011; Kerdaffrec et al. 2016), our results indicate that sea age at
maturation in Atlantic salmon is predominantly associated with
single SNP variation at candidate regions. Using resequencing
data to analyse 116 candidate loci and an analytical framework
aimed at detecting multi-SNP associations, we find that single
SNPs explain the variation in sea age at maturity in almost all
cases. This work targeting candidate genes identified in aqua-
culture salmon strains suggests a mixed genetic architecture
where a combination large-effect loci and smaller-effect loci also
underlies age at maturity in wild Atlantic salmon populations. Two
core loci, vgll3 and six6, likely play a key role in determining age at
maturity and additional smaller effect loci may be important for
fine-tuning the trait across heterogeneous environments.
Theoretical modelling predicts that clustering of tightly linked

adaptive mutations will occur under gene flow and selection in
populations inhabiting spatially and/or temporally heterogeneous
environments (Yeaman and Whitlock 2011; Yeaman 2013). In
Atlantic salmon, mean sea age at maturity varies among
populations. Furthermore, spatially varying selection at the vgll3
locus displays homozygosity patterns consistent with selection
towards local optima for sea age at maturity (Barson et al. 2015).
Although these theoretical predictions seem to be a plausible
scenario under which the genetic architecture of age at maturity
has evolved in Atlantic salmon, our work suggests that the
association at four of the five candidate regions is driven by a
single mutation. We cannot rule out, however, the possibility that
the examined regions have pleiotropic effects and contain SNPsTa
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Fig. 2 PiMASS results for each of the tested candidate regions. A ssa06:27541960-28218141, B ssa09:10915066-11415066, C ssa09:24636574-
25136574, D ssa21:49390687-49890687, and E ssa25:28389273-28889273. Plots display the following results for each candidate region: (i)
posterior inclusion probability (PIP) indicating the probability of a SNP being included in a model explaining sea age at maturity variation, (ii)
truncated distribution of the number of SNPs included in a model explaining sea age at maturity variation, and (iii) distribution of proportion
of variance explained per recorded iteration (2500). Red line indicates the median proportion of variance explained.
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controlling other adaptive traits that have weak or no correlation
with maturation timing. It is also possible that we did not have
sufficient power to detect additional SNPs in these regions with
small effects or with rare alleles. However, previous empirical
studies have found few, but complex, loci with clusters of adaptive
mutations (Kerdaffrec et al. 2016; Linnen et al. 2013; Bickel et al.
2011), thus motivating our investigation of multi-SNP and
haplotypic effects. Remington (2015) also highlights the impor-
tance of distinguishing between allelic effects and single
mutational effects when examining the genetic architecture of
adaptive variation and its evolution. Our findings, however,
suggest that alternative genetic architectures are feasible. One
possible explanation could relate to the multiple whole genome
duplication events that have occurred in Atlantic salmon and
other salmonids (Allendorf and Thorgaard 1984). The presence of
multiple gene copies may impact the evolution of genetic
architecture for traits such as age at maturity in Atlantic salmon.
It is also possible that gene flow among Atlantic salmon
populations is too restricted to neighbouring populations and/or
strength of selection is insufficient for the establishment of linked
mutations, as there is a rather specific balance of gene flow and
selection required for clustered loci to arise (Yeaman et al. 2016).
Both an extension of models predicting genetic architecture and
additional empirical studies—on a wider variety organisms and
traits—are needed to evaluate the generality of particular
architectures and to further understand the conditions under
which they evolve.
We find additional evidence that a large-effect locus on ssa25,

vgll3, largely underlies age at maturity in Atlantic salmon
corroborating findings from a number of association studies on
Atlantic salmon maturation (Barson et al. 2015; Ayllon et al. 2015;
Ayllon et al. 2019; Sinclair-Waters et al. 2020; Sinclair-Waters et al.
2022). The second strongest associated locus in this study is
located in close proximity to six6 on ssa09. This locus was
previously found to be associated with early maturation in male
farmed Atlantic salmon (Sinclair-Waters et al. 2020), with sea age
at maturity in wild Atlantic salmon prior to population structure
correction (Barson et al. 2015) and two species of Pacific salmon
(Sockeye salmon and Steelhead trout). Although six6 is associated
with maturation in both Atlantic and several Pacific salmon
species, an association between vgll3 and maturation timing has
not been found in Pacific salmon species (Waters et al. 2021; Willis
et al. 2020). Additionally, we found another three loci associated
with sea age at maturity: pecam1, asap2aa and taar13c. The
handful of loci found here suggests that wild Atlantic salmon
have a mixed genetic architecture where multiple loci, with a
variety of effect sizes, control maturation timing—similar to what
has been found in male farmed Atlantic salmon (Sinclair-Waters
et al. 2020). Knowledge of this mixed genetic architecture is
highly relevant for how we predict the evolution of maturation
timing in wild Atlantic salmon populations. A large body of work
has shown the relevance of genetic architecture in determining
evolutionary responses (Barton and Turelli 1991; Turelli 1984;
Turelli and Barton 2004; Turelli and Barton 1990; Lande 1975;

Bulmer 1972; Débarre et al. 2015; Fisher 1930; Yeaman 2015).
Recent works highlight the relevance of the genetic architecture
underlying fitness traits when predicting a population’s response
to environmental changes (Kardos and Luikart 2021) and selective
pressures such a fishing (Oomen et al. 2020). Future work
elucidating how such mixed genetic architectures affect pre-
dicted evolution of traits, compared to that of omnigenic or
polygenic architectures, will be valuable.
We find differences in locations of top-associated SNPs

identified here and in Sinclair-Waters et al. (2020). This is not
surprising given that we are examining sequence data that
captures additional SNP variation in regions surrounding SNPs
included in the SNP-array used in Sinclair-Waters et al. (2020).
Furthermore, we failed to find associations between sea age at
maturity and many of the candidate regions identified in
Sinclair-Waters et al. (2020). For example, several candidate
regions on ssa03 and ssa04 displayed particularly strong
association signals in aquaculture salmon, however, no signals
at these regions were found here. Additionally, only one
association peak at ssa06:27541960-28218141 was found here,
whereas two independent associations within this region were
found in aquaculture salmon (Sinclair-Waters et al. 2020). Such
differences may reflect changes in the genetic architecture of
the trait evolving since the domestication of Atlantic salmon.
Although, we would not expect large changes to occur given the
domestication is relatively recent, just 10 to 15 generations ago
(Gjerde and Gjedrem 1984). Furthermore, this study is likely
under-powered to detect all previously identified loci, particu-
larly those with smaller effect sizes or rare alleles, due to the
smaller sample size of 313 individuals. Additionally, there could
be differences in genetic architecture among environments (Yan
et al. 2021) and/or genotype by environment interactions giving
rise to distinct genetic architectures in wild populations versus
aquaculture strains.
We do not find strong evidence of multi-SNP associations at

candidate loci examined in this study, however, we cannot yet
disregard the utility of multi-SNP association methods for further
resolving the genetic architecture of Atlantic salmon maturation.
First, we do not examine the entire genome due to computational
restrictions, rather, we focussed on 116 previously identified
candidate regions. Second, the Atlantic salmon genome is highly
complex (Lien et al. 2016) and therefore errors in the assembly
that may be disruptive for haplotype-based analysis could exist. As
new and improved versions of the Atlantic salmon genome are
published, our ability to test for haplotypic associations will
improve. Furthermore, in a few cases (ssa09:10915066-11415066,
ssa09:24636574-25136574, ssa25:28389273-28889273) the PiMASS
analyses post-regression of the top SNP selected no SNPs for a
model explaining sea age at maturity variation, however, the
median proportion of variance explained across all iterations was
greater than zero. This may suggest that a weak signal was
present, but was being missed due to insufficient power. Although
this is largely speculative, it suggests that ruling out the possibility
of multi-SNP associations at these particular candidate regions

Table 2. PiMASS results prior to and after regression of top-associated SNP identified in the initial PiMASS analysis.

Candidate region Mode # of SNPs Median PVE Mode # of SNPs (post-regression) Median PVE (post-regression)

ssa06:27541960-28218141 1 0.05 0 0

ssa09:10915066-11415066 1 0.07 0 0.01

ssa09:24636574-25136574 2 0.09 0 0.01

ssa21:49390687-49890687 1 0.04 0 0

ssa25:28389273-28889273 1 0.19 0 0.01

These include the mode of the distribution of the number of SNPs and the median of the distribution of proportion of variance explained (PVE) for a model
explaining sea age at maturity.
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may be premature. Higher-powered studies (i.e. more individuals
per population) may help to resolve this in the future. Additionally,
if an additional SNP is in high LD with the top-associated SNP,
disentangling its effects from the top-associated SNP is challen-
ging and its association signal could be undetectable post-
regression of the top SNP. In such cases, study designs that take
advantage of recombination events between highly linked SNPs
are useful for characterizing genetic architectures at finer-scales
(Sinclair-Waters et al. 2022).
Our analytical framework, combining both single and multi-SNP

association methods, reveals that single SNP variation is sufficient
for explaining the association at multiple previously identified
candidate loci for Atlantic salmon maturation timing. Previous
empirical and theoretical work have described trait-associated loci
that have complex alleles with multiple variants, our findings
therefore demonstrate the diversity of genetic architectures for
fitness-related traits. Additional data, and a greater diversity of
species and traits, will serve to better understand why this
diversity of genetic architectures exists and how these particular
genetic architectures evolve. The analytical framework used here
will be a valuable resource for accomplishing this as individual-
level resequencing data for wild species with phenotyped
individuals becomes increasingly available.
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Genome re-sequencing data for individuals used in this study are available in the
European Nucleotide Archive (ENA) or NCBI with the project accession code
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