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1  |  INTRODUCTION

Genomic prediction (GP) (Meuwissen et al.,  2001) is a 
method to predict breeding values (GEBVs) in animal and 
plant breeding. GP predicts the GEBVs by using a refer-
ence population of animals with both phenotype and 
marker information to estimate marker effects. Meuwissen 
et al. proposed three methods for genomic prediction: two 
Bayesian variable selection methods (BayesA and B) and 
a linear marker effects model estimating marker effects 
from single- nucleotide polymorphisms (SNPs) using best 

linear unbiased prediction (BLUP), referred to as SNP- 
BLUP. An alternative method of SNP- BLUP is to use a 
marker- derived genomic relationship matrix (often called 
a G- matrix) as a covariance matrix when solving mixed- 
model equations (MME) (VanRaden, 2008) referred to as 
genomic best linear unbiased predictions (GBLUP). The 
two methods, SNP- BLUP and GBLUP, are mathematically 
equivalent (Strandén & Garrick, 2009; VanRaden, 2008).

All markers are assumed to have equal weight in the 
prediction for the linear models, while Bayesian meth-
ods try to differentiate SNPs relative to their importance. 
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Abstract
The aim of this study was to compare three methods of genomic prediction: 
GBLUP, BayesC and BayesGC for genomic prediction of six maternal traits in 
Landrace sows using a panel of 660 K SNPs. The effects of different priors for 
the Bayesian methods were also investigated. GBLUP does not take the genetic 
architecture into account as all SNPs are assumed to have equally sized effects 
and relies heavily on the relationships between the animals for accurate predic-
tions. Bayesian approaches rely on both fitting SNPs that describe relationships 
between animals in addition to fitting single SNP effects directly. Both the rela-
tionship between the animals and single SNP effects are important for accurate 
predictions. Maternal traits in sows are often more difficult to record and have 
lower heritabilities. BayesGC was generally the method with the higher accuracy, 
although its accuracy was for some traits matched by that of GBLUP and for oth-
ers by that of BayesC. For piglet mortality within 3 weeks, BayesGC achieved up 
to 9.2% higher accuracy. For many of the traits, however, the methods did not 
show significant differences in accuracies.
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Markers associated with causal mutations get a higher 
relative weight, and markers not linked to causal loci are 
down- weighted, thus only giving weights to the most im-
portant SNPs (Meuwissen et al., 2001; Verbyla et al., 2010). 
Several alternative Bayesian variable selection methods 
are proposed, often referred to as the “Bayesian Alphabet” 
(Gianola et al.,  2009). Differences between the methods 
are the prior distributions used for the estimation of SNP 
effects. For example, BayesA uses one t- distribution for 
SNP effects, while BayesB has a mixture of a t- distribution 
with probability π, and a null effect with probability 1- π. 
BayesC (Habier et al., 2011) is similar to BayesB, as both 
have a mixture distribution prior, where one has a null ef-
fect. However, BayesC uses a normal distribution instead 
of a t- distribution and assumes a common variance for 
all SNPs, while BayesB assumes SNP- specific variances. 
BayesR uses four normal distributions, where one of them 
has a null effect (Erbe et al., 2012). The recently proposed 
BayesGC method (Meuwissen et al.,  2021), fits a poly-
genic effect through a G- matrix in addition to a BayesC 
term. Hence, BayesGC fits many SNPs with a small effect 
through the G- matrix and a group of SNPs selected by the 
model with more significant effects through the BayesC 
term.

In this paper, we look at the genomic prediction of ma-
ternal traits in landrace pigs, which are considered com-
plex traits with a low to moderate heritability and explore 
the effect of the genetic architecture on the prediction ac-
curacy. Specifically, we look at the traits; the total number 
of born piglets (TNB), number of stillborn piglets (STB), 
piglet mortality within 3 weeks, i.e. number of piglets dead 
after birth and until 3 weeks (M3W), total litter weight at 
3 weeks (LW3W), sow shoulder lesions (SHL) and the 
sow's body condition score (BCS). These maternal traits 
were included in the breeding goal for Topigs Norsvin at 
the time of recording (Eriksen, 2018).

Maternal traits in pigs are related to the sow's ability 
to produce and raise offspring. Maternal traits are essen-
tial for efficiency in pig production, the economy and an-
imal welfare (Ocepek & Andersen,  2017). An ideal sow 
produces a litter of piglets corresponding to the number 
of functional teats available, and all the piglets born sur-
vive until weaning. Furthermore, the piglets should grow 
evenly, and the sow should not spend all her resources on 
the litter, implying that she maintains a good body condi-
tion score and does not develop shoulder lesions.

Simulation studies have shown great potential for using 
genomic prediction methods to predict maternal traits in 
pigs (Lillehammer et al., 2011, 2013). Although few stud-
ies have reported genomic prediction accuracies for mater-
nal traits in pigs (Tan et al., 2017), there are very few that 
have reported prediction accuracies for Bayesian genomic 
prediction methods for maternal traits. Some have looked 

at Bayesian methods in growth and reproduction traits 
(Song et al.,  2017) and slaughter traits (Salek Ardestani 
et al., 2021). Although the basis of inheritance and breed-
ing is the same across livestock species, their differences 
in breeding structure, genetic architecture and trait biol-
ogy make it important to study the different prediction 
methods across the species (Samorè & Fontanesi, 2016).

This study aimed to determine the prediction ac-
curacy of six maternal traits in Landrace sows using a 
panel of 660 k SNP markers and a large reference popu-
lation (9– 15 thousand reference animals). The study also 
compares three methods of genomic prediction: GBLUP 
(VanRaden,  2008), BayesC (Habier et al.,  2011) and 
BayesGC (Meuwissen et al., 2021).

2  |  MATERIALS AND METHODS

2.1 | Phenotypic data

The phenotypic data consisted of records from 15,703 
unique individual Landrace sows with at least one record 
for one of the six traits; the total number of born piglets 
(TNB), number of stillborn piglets (STB), piglet mortal-
ity within 3 weeks, i.e. number of piglets dead after birth 
and until 3 weeks (M3W), total litter weight at 3 weeks 
(LW3W), sow shoulder lesions (SHL) and the sow's body 
condition score (BCS). Of the 15,703 sows, 10,306 had re-
cords for all six traits. The traits were recorded between 
2008 and 2019. Each of the different traits had between 
10,611– 15,690 phenotypic records (see Table 1).

Yield Deviations (VanRaden & Wiggans,  1991) for 
the six traits were derived from the commercial breeding 
value evaluations from Topigs Norsvin. There were multi-
ple records for each trait, as we had one YD for each par-
ity. The maximum number of parities recorded for each 

T A B L E  1  Number (n) of animals with records for each trait 
and partition into the reference and validation population, and 
mean (m) number of parity records in each trait

Traita
Total, 
n

Reference, 
n

Validation, 
n

Parity, 
m

TNB 15,690 14,513 1177 2.5

STB 15,690 14,513 1177 2.5

M3W 10,611 9466 1145 1.7

LW3W 10,804 9656 1148 1.7

SHL 15,084 13,934 1150 2.2

BCS 15,084 13,933 1151 2.2
aTotal number born (TNB), number of stillborn piglets (STB), piglet 
mortality within 3 weeks, i.e. number of piglets dead after birth and until 
3 weeks (M3W), total litter weight at 3 weeks (LW3W), sow shoulder lesions 
(SHL) and the sow's body condition score (BCS).
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trait was 6, and the mean number of parities recorded for 
each trait is shown in Table 1. Because the software used 
for the Bayesian variable selection models (Meuwissen 
et al., 2021) could not handle multiple records per animal, 
we used the average YD for each sow, with a weighting of 
each record corresponding to the effective number of re-
cords calculated by the formula n ⋅ (1+λ)

(n+λ)
 where λ is �2e ∕�

2
pe 

and n is the number of records for each individual, �2e is 
the residual variance and �2pe is the permanent environ-
mental variance (λ was obtained from Topigs Norsvin's 
breeding value evaluation).

2.2 | Genotype data

The sows were genotyped with varying SNP densities 
and imputed to a 660 K- genotype density. Of the 15,703 
sows, 526 were genotyped on a 10 K chip (GGP Porcine 
LD), and the rest were genotyped on medium density 
chips: Illumina PorcineSNP60 (60 K) and two Illumina 
GeneSeek custom chips (80 K and 50 K). All genotypes 
were imputed using Fimpute v2.2 (Sargolzaei et al., 2014), 
first to the 50 K chip, and then to the 660 K Axiom Porcine 
Genotyping Array with reference genotypes from 467 
Landrace animals. After quality control, the 660 K High- 
Density genotype data had a total of 429,403 SNPs with 
MAF >0.01.

2.3 | Validation and reference data

The ~1000 youngest sows were used for validation of the 
predictions, in order to imitate a typical genomic breeding 
program where one wishes to predict the breeding values 
of young animals before they have their own recorded 
traits. This was done by masking their phenotypic records 
in the analysis and using them for validation. The number 
of validation sows was between 1145 and 1177 (Table 1). 
The rest of the animals was used as the reference data 
with both phenotypic and genotype records. Our smallest 
reference dataset consisted of 9466 animals for the trait 
M3W and the largest of 14,513 animals for traits TNB and 
STB (Table 1).

2.4 | Prediction accuracy and regression 
coefficients

The accuracy of prediction for all methods was estimated 
as:

and the bias (coefficient of regression) was the calculated 
slope (b) of the linear regression Y = a + bX, where a is the 
intercept, Y is the yield deviation (YD) and X is the genomic 
estimated breeding value (GEBV) of the sows in the valida-
tion datasets, estimated with only marker information and 
not phenotypic records. h2 is the heritability of the trait and 
was estimated on the full dataset.

2.5 | Variance components and GBLUP

We estimated variance components for each trait using 
the pedigree relationship matrix and the DMUAI package 
from the DMU software (Madsen & Jensen,  2013). The 
variance components were estimated on the full dataset 
(i.e. both the reference and validation animals). The model 
for the variance component estimations was as follows:

where y is a vector of the average YD of a sow, 1 is a vector 
of ones corresponding to the size of y, μ is the mean, Z is 
a design matrix linking individuals to the phenotype, u is 
the random effect of the individual animal (u ~ N(0, Aσu

2), 
where A is the pedigree relationship matrix and e is the re-
sidual effect (e ~ N[0, Dσe

2]), where D is a diagonal matrix 
where the diagonals are the inverses of the effective number 
of records. The same model was used for the GBLUP analy-
ses except that the individual animal effect was modelled as 
(u ~ N[0, Gσu

2]). The variance components used were from 
the above pedigree- based estimates. The G- matrix was cal-
culated using the VanRaden method 1 (VanRaden, 2007).

2.6 | BayesC

The model for BayesC (Habier et al., 2011) was:

where y is a vector of Yield Deviations, 1 is a vector of ones, 
μ is the overall mean, xi is a vector of genotypes for SNP i 
containing - 2pi for homozygote individuals, 1- 2pi for hetero-
zygotes and 2- 2pi for the alternative homozygote genotype 
with pi being the allele frequency of SNP i, and Ii is an in-
dicator of whether the SNP i is in the model in a particu-
lar MCMC cycle or not (0/1), where the prior probability of 
Ii being equal to 1 is denoted by π (values in Table 2), si is 
the SNP effect, where if the SNP i is in the model: si ~ N(0, 
�
2
m ), e is the residual with variance e ~ N(0 Dσe

2), where D 
is a diagonal matrix where the diagonals are the inverses 
of the effective number of records and σe

2 is the residual 
rpred =

cor(GEBV,YD)
√

h2
,

y = 1 � + Zu + e ,

y = 1 � +
∑

i

Iixisi + e .
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variance estimated from the variance component estima-
tions (Table 5). The Markov Chain Monte Carlo (MCMC) 
chain was run for 20,000 Gibbs cycles using 4000 burn- in 
cycles, in two distinct chains.

We used the same variance components as for the 
GBLUP analyses; however, the total genetic variance �2u 
was partitioned. In the following, we describe how the 
total genetic variance �2u (see Table 4) is partitioned over 
the fitted SNPs for the Bayes C method:

where �2m is the genetic variance explained by a single SNP,
Fr is the fraction of the total genetic variance explained 

by a single fitted SNP, i.e. 1/1000 when we assume each 
SNP explains 1/1000th of the genetic variance. We test dif-
ferent values of Fr, namely 1/100, 1/500, 1/1000, 1/5000 
and 1/10,000, respectively.

where pi is the allele frequency of locus i and Nloci is the total 
number of loci.

For a Bayes C model, this would mean using a prior 
probability of fitting an SNP of:

Such that the total genetic variance is 
�
2
u = �c ⋅Nloci ⋅HET ⋅ �

2
m .

2.7 | BayesGC

The BayesGC model is as follows:

where y is a vector of the Yield Deviations, 1 is a vector of 
ones, μ is the overall mean, Z is a design matrix that links 
individuals to the y, u is a vector of random polygenic effects 
with variance V(u) = G�

2
pol

, xi is the vector of genotypes for 
SNP i coded as for BayesC. Ii is an indicator of whether SNP 
i is in the model in an MCMC cycle or not (0/1) and the prior 
probability of Ii being equal to 1 is π (listed in Table 2), si is 
the SNP effect, where if the SNP i is in the model: si ~ N(0, 
�
2
m), e is the residual with variance e ~ N(0, Dσe

2) where D 
is a diagonal matrix where the diagonals are the inverses of 
the effective number of records and σe

2 is the residual vari-
ance estimated from the variance component estimations 
(Table 5). The MCMC chain was run for 4000 burn- in cy-
cles and a total of 20,000 Gibbs cycles for two independent 
chains. The EBVs from the two Gibbs chains for both BayesC 
and BayesGC had a correlation of >0.9999, and thus, the 
EBVs were assumed to be converged, and the results pre-
sented for both BayesC and BayesGC are the average of two 
Gibbs chains.

The BayesGC model basically fits the previous two 
models (GBLUP and BayesC) simultaneously, i.e. it fits a 
polygenic and a BayesC term. The polygenic effect is fit-
ted using the genomic relationship matrix (G) as in the 
GBLUP model. The BayesC term assumes SNPs to have 
normally distributed effects with probability (π) or an ef-
fect of 0 with probability (1 − π).

In the following, we describe how the total genetic 
variance �2u is partitioned over the fitted SNPs and the 
polygenic effect, following the method described in Kjetså 
et al. (2020). For BayesGC, we need an assumption on the 
fraction of the variance that is explained by the individu-
ally fitted SNPs in the BayesC term of the model. In addi-
tion, the total genetic variance �2ushould not be affected by 
the partitioning of the variance across the SNPs and the 
polygenic effect. Let q be the fraction of �2u explained by 
the BayesC term, then the variance explained by the poly-
genic effect is �2

pol
 = (1 − q) �2u. Hence,

It follows that

�
2
m =

Fr ⋅ �2u

HET
,

HET = average heterozygosity =
2
∑

pi
�

1 − pi
�

Nloci
,

�c =
1∕Fr

Nloci
.

y = 1 � + Zu +
∑

i

Iixisi + e,

�
2
u = �

2
pol

+ q ⋅ � ⋅ loci ⋅HET ⋅ �
2
m,

�gc = q ⋅ �c,

Fr BayesGC_10a BayesGC_50b BayesGC_90c BayesC

1/100 0.00002 0.00012 0.00021 0.0002

1/500 0.00012 0.00058 0.00105 0.0012

1/1000 0.00023 0.00116 0.00210 0.0023

1/5000 0.00116 0.00582 0.01048 0.0116

1/10,000 0.00233 0.01164 0.02096 0.0233
aBayesGC_10 is Bayes_GC with 10% marker variance and 90% polygenic variance.
bBayesGC_50 has 50% marker variance and 50% polygenic variance.
cBayesGC_90 has 90% marker variance and 10% polygenic variance.

T A B L E  2  π values used for BayesC 
and BayesGC methods at different 
fractions of total genetic variance 
explained by a single- fitted SNP (Fr)
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where �gc is the � value used for the BayesGC method. Four 
different values of q were tested for BayesGC, q = 0.1, 0.5 
and 0.9 corresponding to the BayesC term with fitted marker 
effects explaining 10%, 50% or 90% of the total genetic vari-
ance (denoted BayesGC_10, BayesGC_50, BayesGC_90, re-
spectively), with the rest of the variance 1 − q explained by 
the polygenic effect through the G- matrix. The values of �2m 
used are shown in Table 3 and the values of �2

pol
 are shown 

in Table 4.

3  |  RESULTS

The heritabilities of the traits ranged from 0.09 (M3W) 
to 0.34 (SHL) (Table 5). M3W had the lowest heritability 
of 0.09, followed by STB and TNB with moderate herit-
abilities of 0.13 and 0.19. LW3W, BCS and SHL had the 
highest heritabilities with 0.31, 0.31 and 0.34, respectively 
(Table 5). For the trait total number born (TNB), the high-
est accuracy was achieved at 0.610– 0.611 for GBLUP and 
BayesGC_10 (Table 6) and the method giving the lowest 
prediction accuracy is BayesC (Fr 1/100) (Figure 1), which 
achieved an accuracy of 0.515 for TNB. For all the Bayesian 
methods (BayesGC_10, BayesGC_50, BayesGC_90 and 
BayesC), fitting more SNPs (Fr = 1/10000) gave the high-
est accuracy of prediction for the trait TNB. The accuracy 
of prediction for Stillborn (STB; Figure 2), is lower than 
the other traits.

For STB, there were also minor, but no significant differ-
ences in accuracy between the methods, with the highest 
accuracy achieved by BayesGC_10 (Fr 1/5000) and GBLUP 
at 0.318 and the lowest accuracy for STB was BayesC (Fr 
1/100) at 0.272 (see Figure 2). M3W (Figure 3) is the trait 
with the largest differences between the methods. GBLUP 
and BayesC (Fr 1/500) had an accuracy of 0.441 and 0.464, 
respectively, while the highest accuracy from the BayesGC 
methods was achieved by BayesGC_50 (Fr 1/100) with an 
accuracy of 0.484 (Table 6), making a difference of 9.8% 
between GBLUP and BayesGC. However, the difference 
was not significant. For the trait LW3W (Figure 4) all the 

methods had high accuracies of 0.717, 0.722 and 0.718 
for the methods GBLUP, BayesGC_90 (Fr 1/10,000) and 
BayesC (Fr 1/10,000), respectively.

Shoulder Lesions (SHL) (Figure  5) showed a predic-
tion accuracy of 0.406 and 0.409 for GBLUP and BayesC 
while the highest accuracy for BayesGC was 0.418 for 
BayesGC_50 (Fr1/100). Trait BCS (Figure  6) also had 
minor differences between the methods and obtained 
the highest accuracy from the BayesC and BayesGC_90 
(Fr 1/10,000) methods with an accuracy of 0.518 for both 
methods, while GBLUP obtained an accuracy of 0.511.

The regression coefficients for the method yielding 
the highest accuracy were also the regression coefficient 
closest to 1 for all the traits except L3W3. L3W3 was the 
only trait with a regression coefficient above 1, indicating 
the variance of the GEBV being slightly lower compared 
to the yield deviations. TNB was the trait with a regres-
sion coefficient closest to 1 with a regression coefficient of 
0.966 while SHL was the trait with a regression coefficient 
furthest from 1 at 0.436 (see Table  6), implying that the 
variance of the GEBV for SHL was inflated.

4  |  DISCUSSION

4.1 | Genomic prediction methods

We have compared GBLUP, BayesGC and BayesC for 
six maternal traits with different priors for BayesC and 
BayesGC. In general, for all traits, one of the BayesGC 
methods yielded the highest prediction accuracy 
(Table 6), although its accuracy was often, but not always, 
matched by GBLUP and for one trait (BCS) by BayesC. 
This implies that fitting a combination of individual SNPs 
with large effects and a polygenic effect often yielded the 
highest prediction accuracy; however, the differences 
were not significant. The traits M3W and SHL yielded a 
9.8% and 3.0% increase in accuracy when moving from 
GBLUP to BayesGC_50 (Fr1/100) (Table  6). The trait 
BCS had a somewhat increased accuracy of prediction 

Fr

�
2
m

TNBa STBa M3Wa LW3Wa SHLa BCSa

1/100 0.03196 0.00509 0.00518 0.53802 0.00259 0.00274

1/500 0.00639 0.00102 0.00104 0.10760 0.00052 0.00055

1/1000 0.00320 0.00051 0.00052 0.05380 0.00026 0.00027

1/5000 0.00064 0.00010 0.00010 0.01076 0.00005 0.00005

1/10,000 0.00032 0.00005 0.00005 0.00538 0.00003 0.00003
aTotal number born (TNB), number of stillborn piglets (STB), piglet mortality within 3 weeks, i.e. number 
of piglets dead after birth and until 3 weeks (M3W), total litter weight at 3 weeks (LW3W), sow shoulder 
lesions (SHL) and the sow's body condition score (BCS).

T A B L E  3  Priors of variance of a 
single marker (�2

m
) used in the BayesC 

and BayesGC methods under the different 
priors for the fraction of total genetic 
variance explained by a single- fitted SNP 
(Fr) where �2

m
 = Fr ⋅ �

2
u

HET
 for each trait
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(1.4% higher than GBLUP) when fitting either BayesC 
(Fr 1/5000) or BayesGC_50 (Fr 1/5000). The trait LW3W 
had a 0.7% higher accuracy for BayesGC_90 (Fr 1/10,000) 
than GBLUP. The traits TNB and STB showed no benefit 
of fitting Bayesian variable selection methods compared 
with GBLUP.

A limited increase in accuracy when going from GBLUP 
to BayesGC could be because the accuracy of prediction 
for the trait using GBLUP already is quite high. Our ref-
erence population was quite large (9– 15,000 animals). A 
reference population of 7– 11,000 animals was sufficient 
to obtain GEBV prediction accuracies comparable to the 
EBVs obtained with progeny testing for Japanese Black 
cattle (Takeda et al., 2021). TNB and LW3W with an accu-
racy of ~0.6 and ~0.7 for GBLUP, respectively, might not 
have as much potential for increasing their accuracy as 
M3W, with a much lower general accuracy of prediction 
(~0.44 for GBLUP). However, the trait STB showing the 
least benefit of fitting a Bayesian model also has the lowest 
general prediction accuracy of ~0.3. This could mean that 
there are other factors impacting the possible prediction 
accuracy of STB. For example, there could be fewer or no 
major QTL for the trait STB, lower linkage disequilibrium 
between markers and QTL, or low minor allele frequency 
of QTL for STB.

4.2 | Genetic architecture

The accuracy of GP depends on the proportion of genetic 
variance captured by the markers, the size of the reference 
population, the additive genetic relationship between the 
animals in the reference and the validation population, 
the heritability of the trait, the number of independent 
QTL and the effective number of chromosome segments 
(Daetwyler et al.,  2010, 2013; Habier et al.,  2007, 2010; 
Wientjes et al., 2013). Most individuals have records for all 
traits in our current data, which implies that the genetic 
relationships between the reference and validation 
populations are approximately the same over the six traits. 
However, some individuals have missing records for some 
traits, resulting in reduced reference population size. 
M3W and LW3W have ~10  K reference animals, while 
the other traits have ~15 K reference populations. LW3W, 
SHL and BCS have the highest heritability, implying 
more informative reference data (Table 1). Thus, it seems 
that the main differences between the traits in our study 
are the genetic architectures of the traits, i.e. how much 
genetic variance is captured by the markers and the size 
and number of major QTLs present for each trait.

While the traits are all considered to be complex and 
polygenic, some of the traits might have major genes and 
SNPs in close linkage disequilibrium that explain a sub-
stantial part of the genetic variance. However, if there 
happen to be many SNPs with substantial LD to a major 
gene, e.g. due to high genetic drift in the region, the 
GBLUP method may still perform well, since it can use 
many SNPs to explain the major gene effect. Also, for some 
traits, genomic predictions may have been over larger ge-
netic distances, i.e. reduced relationships between ref-
erence and validation animals, which favours variable 
selection genomic prediction methods since they focus on 
SNPs that are in close LD with the QTL (Meuwissen & 
Goddard,  2010; Solberg et al., 2009).

The QTL database (Pig QTLDdb; Hu et al.,  2022) for 
each trait shows that there were 228 detected QTL for 
“Total number born alive” (TNB) and 138 QTL for “Number 

Trait BayesGC_10a BayesGC_50b BayesGC_90c

�
2
pol

TNB 0.944 0.525 0.105

STB 0.150 0.084 0.017

M3W 0.153 0.085 0.017

LW3W 15.89 8.830 1.766

SHL 0.077 0.043 0.009

BCS 0.081 0.045 0.009
aBayesGC_10 is BayesGC with 10% marker variance and 90% polygenic variance.
bBayesGC_50 has 50% marker variance and 50% polygenic variance.
cBayesGC_90 has 90% marker variance and 10% polygenic variance.

T A B L E  4  Priors for variance 
attributed to the polygenic effect for the 
different traits for the different BayesGC 
methods

T A B L E  5  The estimated total genetic variance (�2
u
), residual 

variance (�2
e
) and heritabilities (h2) for the six maternal traits

Traita
�
2
u

�
2
e

h2

TNB 1.049 4.490 0.189

STB 0.167 1.125 0.130

M3W 0.170 1.791 0.087

LW3W 17.66 39.99 0.306

SHL 0.085 0.163 0.343

BCS 0.090 0.203 0.307
atotal number born (TNB), number of stillborn piglets (STB), piglet mortality 
within 3 weeks, i.e. number of piglets dead after birth and until 3 weeks 
(M3W), total litter weight at 3 weeks (LW3W), sow shoulder lesions (SHL) 
and the sow's body condition score (BCS).
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of stillborn” (STB). The trait “Piglet mortality within 
3 weeks” (M3W) did not exist in the database. However, 10 
QTL were found for the trait “Piglet Mortality”. There was 
also no trait in the database defined as “Total litter weight 
within 3 weeks” (LW3W), but 1 QTL was listed for “Total 
litter weight at weaning” (He et al., 2021). There was also 
no QTL listed for Body Condition Score (BCS) or Shoulder 
Lesions (SHL). However, the published QTL listed in the 
database does not only reflect the genetic architecture of 
the traits but serve also as indicators for which traits that 
are more or less investigated.

QTL markers identified by GWAS on sequence data 
may be included in 50 k marker panels for genomic pre-
diction. In Holstein cattle (Brøndum et al.,  2015), this 
method showed increased reliability of genomic predic-
tion, especially when the QTL is included as a separate 
variance component, as it allows for extra emphasis on the 
QTL.

If large QTL included in the prediction model can help 
increase the prediction accuracy, why not just include the 
QTL directly in the linear model? This, however, requires 
a two- step approach, where one first finds the QTL associ-
ated with the trait and then includes them in the genomic 
prediction model. The BayesGC method fits both the poly-
genic trait and the important SNPs in one analysis. Both 

approaches do, however, show that there is room for im-
provement in prediction accuracy by including import-
ant SNPs with higher emphasis in a genomic prediction 
model. Bayesian variable selection methods also have the 
potential to find the functional SNPs to include in a linear 
model (Meuwissen et al., 2021; van den Berg et al., 2013).

4.3 | Prior distributions

Bayesian variable selection methods use priors, which 
need to be carefully chosen or hyper- parameters of 
the priors estimated as part of the prediction method. 
The latter would extend the number of MCMC cycles 
substantially, as these hyper- parameters converge 
much slower to their equilibrium distribution than 
GEBVs. In our study we tried a range of different priors, 
varying both the number of SNPs to be included in the 
model through Fr, the emphasis of each SNP through 
the variance explained by markers (�2m) and the ratio 
between variance explained by markers and variance 
explained by the polygenic effect (�2

pol
), where with 

BayesGC_10, 10% of the total genetic variance is fitted 
with markers (�2m) and 90% with the polygenic effect 
(�2
pol

), BayesGC_50 the variance is split 50/50 and with 

Traita Method Fr Accuracy SE b

TNB BayesGC_10b 1/10,000 0.610 0.07 0.97

BayesC 1/10,000 0.607 0.07 0.95

GBLUP — 0.611 0.07 0.98

STB BayesGC_10b 1/5000 0.318 0.08 0.50

BayesC 1/5000 0.311 0.08 0.49

GBLUP — 0.318 0.08 0.50

M3W BayesGC_50c 1/100 0.484 0.10 0.79

BayesC 1/500 0.464 0.10 0.74

GBLUP — 0.441 0.10 0.74

LW3W BayesGC_90d 1/10,000 0.722 0.05 1.17

BayesC 1/10,000 0.718 0.05 1.04

GBLUP — 0.717 0.05 1.04

SHL BayesGC_50c 1/100 0.418 0.05 0.44

BayesC 1/5000 0.409 0.05 0.41

GBLUP — 0.406 0.05 0.41

BCS BayesGC_50c 1/5000 0.518 0.05 0.70

BayesC 1/5000 0.518 0.05 0.70

GBLUP — 0.511 0.05 0.70
aTotal number born (TNB), number of stillborn piglets (STB), piglet mortality within 3 weeks, i.e. number 
of piglets dead after birth and until 3 weeks (M3W), total litter weight at 3 weeks (LW3W), sow shoulder 
lesions (SHL) and the sow's body condition score (BCS).
bBayesGC_10 is BayesGC with 10% marker variance and 90% polygenic variance.
cBayesGC_50 has 50% marker variance and 50% polygenic variance.
dBayesGC_90 has 90% marker variance and 10% polygenic variance.

T A B L E  6  Accuracy, standard error 
(SE) and regression coefficients (b) for 
each trait from the method and fraction of 
the total genetic variance explained by a 
single- fitted SNP (Fr) yielding the highest 
accuracy for each trait
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F I G U R E  1  The accuracy of 
prediction for the trait total number born 
(TNB), from the different prediction 
methods at the different priors for fraction 
of variance explained by a single SNP 
(bars denote standard errors) [Colour 
figure can be viewed at wileyonlinelibrary.
com]

F I G U R E  2  The accuracy of 
prediction for the trait number of stillborn 
(STB), from the different prediction 
methods at the different priors for fraction 
of variance explained by a single SNP 
(bars denote standard errors) [Colour 
figure can be viewed at wileyonlinelibrary.
com]

F I G U R E  3  The accuracy of 
prediction for the trait mortality within 
3 weeks (M3W), from the different 
prediction methods at the different 
priors for fraction of variance explained 
by a single SNP (bars denote standard 
errors) [Colour figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  4  The accuracy of 
prediction for the trait total litter weight 
at 3 weeks (LW3W), from the different 
prediction methods at the different 
priors for fraction of variance explained 
by a single SNP (bars denote standard 
errors) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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BayesGC_90, 90% of the total genetic variance is fitted 
with markers and 10% with the polygenic effect. For the 
Bayesian methods, the priors on the fraction of variance 
explained by a single SNP (Fr) seem more important 
than how much genetic variance is explained by either 
polygenic effect (�2

pol
) or the marker effects (�2m), i.e. there 

are more differences within the methods BayesGC_10, 
BayesGC_50 or BayesGC_90 than between them.

M3W (Figure 3) showed the largest differences in ac-
curacy between GBLUP and BayesGC and it seems the 
accuracy increases gradually as Fr becomes larger (fewer 
SNPs fitted) but only when the ratio between �2m and �2

pol
 

is favouring �2
pol

 in such a way that the model fits 50%– 
90% of the genetic variance as �2

pol
 and the remaining 

variance is fitted with very few SNPs that in turn get fit-
ted with a relatively high emphasis through Fr. The traits 
SHL and BCS (Figures 5 and 6) show a similar pattern, 
i.e. fitting a few SNPs is not improving the overall pre-
diction accuracy unless it is also accompanied by a high 
emphasis on �2

pol
. This could indicate that finding QTL 

and fitting them on their own is not sufficient to obtain 
high prediction accuracy. One also needs the support of 
a polygenic effect through, e.g. a genomic relationship 
matrix. However, when fitting many SNPs through the 
BayesC term, the Bayesian variable selection method 
would also fit many SNPs with a small effect— similar 

to GBLUP. The benefit of a Bayesian variable selection 
method compared with GBLUP is thus expected to be 
lower for the methods with a higher π- value, like the Fr 
1/5000 and 1/10,000.

4.4 | Further developments

Further development of the BayesGC would be to expand 
the model to include nongenotyped animals in the 
estimation of breeding values through, e.g. single- step 
genomic prediction (Christensen & Lund, 2010; Fernando 
et al.,  2014; Legarra et al.,  2009). The challenge of 
including nongenotyped animals with genomic prediction 
is the need to impute genotypes. With linear methods, 
there are methods such as ssGBLUP (Aguilar et al., 2010; 
Christensen & Lund,  2010; Legarra et al.,  2009; Misztal 
et al.,  2009) where an additive relationship matrix H is 
combining information from both pedigree and SNP 
data. Bayesian methods for combining genotyped and 
nongenotyped animals have been developed that could 
be adapted to this model by imputing genotypes for 
nongenotyped animals using MCMC methods that could 
be used with whole- genome data (Fernando et al., 2014). 
BayesGC includes a polygenic effect in the form of a G- 
matrix, which could also be exchanged with an H- matrix 

F I G U R E  5  The accuracy of 
prediction for the trait shoulder lesions 
(SHL), from the different prediction 
methods at the different priors for fraction 
of variance explained by a single SNP 
(bars denote standard errors) [Colour 
figure can be viewed at wileyonlinelibrary.
com]

F I G U R E  6  The accuracy of 
prediction for the trait body condition 
score (BCS), from the different prediction 
methods at the different priors for fraction 
of variance explained by a single SNP 
(bars denote standard errors) [Colour 
figure can be viewed at wileyonlinelibrary.
com]
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to include nongenotyped animals, and the marker- model- 
based single- step approach of Fernando et al. (2014) could 
be used for the additional SNPs fitted by the BayesGC 
model. Other options for using BayesGC results in routine 
genomic evaluations would be to use the analysis of 
genotyped animals to find SNPs that need extra weight. 
In a regular GBLUP/ssGBLUP analysis, these SNPs 
would thus attain extra weights when constructing G and 
implicitly the H- matrix. The information on SNP variance 
from a Bayesian analysis could thus be used to improve 
the genomic relationship matrix for GBLUP or ssGBLUP 
analyses.

Another way to improve BayesGC could be to expand 
the software towards multi- trait analyses as many rou-
tine breeding evaluations today are based on multi- trait 
models. Expanding the BayesGC model towards multi- 
trait analyses is relatively straightforward if one assumes 
that an SNP with a large effect, is affecting all the (re-
lated) traits (Karaman et al., 2019; Kemper et al., 2018). 
In situations where one cannot assume this, multi- trait 
variable selection modelling requires to sample which 
combination of traits is affected by each of the SNPs. If 
there are many traits, there are many such combinations. 
Applying the BayesGC results to multi- trait routine eval-
uations may be by giving extra weight to some SNP gen-
otypes, resulting in a different G- matrix for each of the 
traits, and consequently also for different pairs of traits 
(since the G- matrix modelling covariances between traits 
i and j is constructed as the cross- product of the SNP 
genotypes weighted for trait i and those weighted for 
trait j). Modifications of routine software packages may 
be needed to accommodate these per trait alternative 
G- matrices.

Bayesian variable selection methods have a lot of poten-
tial for further development to be used in routine breeding 
value estimations. One of the biggest drawbacks today 
is the high computational costs of running the MCMC 
chains. However, computational power has historically 
increased and will most likely continue to increase, in ad-
dition to further research developing into more efficient 
algorithms using parallel computations.

5  |  CONCLUSIONS

The accuracy of genomic prediction on six maternal 
traits in landrace pigs varied greatly ranging from 0.31 
to 0.61. The prediction accuracies did not vary much 
between the different genomic prediction methods. The 
two traits M3W and BCS could benefit from using a 
BayesGC approach with a 9.8 and 3.0% increase in ac-
curacy, respectively, while TNB, STB, LW3W and SHL 
showed only minor improvements. Although GBLUP, 

BayesC and BayesGC all yielded similar genomic pre-
diction accuracies, the accuracy of BayesGC was always 
as high as or higher than that of GBLUP. Within the 
BayesGC method, the accuracies could vary depending 
on the prior distributions. The models were more sensi-
tive to how many markers were fitted in the model by var-
ying the fraction of the total genetic variance explained 
by a single marker (Fr) compared with the amount of 
total genetic variance explained by marker effects as a 
whole (BayesGC_10, BayesGC_50 or BayesGC_90), but 
overall, most traits were robust against varying the prior 
distributions.
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