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Abstract 

Colorectal cancer remains a problem in medicine, costing countless lives each year. The 

growing amount of data available about these patients have piqued the interest of researchers, 

as they try to use machine learning to aid diagnosis, decision making, and treatment for these 

patients. Unfortunately, as the data sets grow, the risk of creating unstable and non-

generalizable models increase.  

The research in this thesis has aimed at investigating how to implement a novel technique called 

RENT (Repeated Elastic Net Technique) for feature selection. The predictive problem was a 

binary classification problem on colorectal cancer patients to predict overall survival. The 

analysis applied repeated stratified k-fold cross-validation with four folds and five repeats to 

reduce the risk of random subsets causing non-generalizable results. Further, the analysis 

created 25 000 different RENT models to search through the hyperparameters to find high 

performance parameter combinations. Each of the 25 000 models were trained with six different 

Random Forest [RF] hyperparameter combinations and twelve logistic regression 

hyperparameter combinations, resulting in 450 000 different models.  

A high performing group of models was collected for one unique combination of 

hyperparameters. These models had the highest average test performance: accuracy 0.76 ± 0.07, 

MCC 0.47 ± 0.16, F1 positive class 0.57 ± 0.13, F1 negative class 0.83 ± 0.05, and AUC 0.69 

± 0.08. The results have also shown that the generalization error is lower for a RENT based RF 

model than non-RENT based RF model. The RENT analysis revealed that patients that died 

was overrepresented in a group of patients that were the most frequently predicted incorrectly. 

Finally, the RENT analysis has resulted in a distribution of features that were most frequently 

selected for high predictive ability. Most of the clinical features in this group has previously 

been reported as relevant by medical literature. 

The research and the corresponding framework show promising results to implement a brute-

force approach to the RENT analysis, to ensure low generalization error and predictive 

interpretability. Further research with this framework can support medicine in validating feature 

importance for patient outcome. The framework could also prove useful in other research fields 

than medicine, given predictive problems with similar challenges. 
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Sammendrag 

Tykktarmskreft er fortsatt et problem innen medisin, og koster utallige liv hvert år. Den økende 

mengden data som er tilgjengelig om disse pasientene har vekket interessen til forskerne, der 

flere prøver å bruke maskinlæring for å hjelpe diagnostisering, beslutningstaking og behandling 

for disse pasientene. Dessverre, ettersom datasettene vokser, øker også risikoen for å lage 

ustabile og ikke-generaliserbare modeller.  

Forskningen i denne oppgaven har tatt sikte på å undersøke hvordan man implementerer en ny 

teknikk kalt RENT (Repeated Elastic Net Technique) for variabel seleksjon. Det prediktive 

problemet var et binært klassifiseringsproblem på pasienter med tykk- og endetarmskreft for å 

forutsi samlet overlevelse. Analysen brukte gjentatt stratifisert k-foldet kryssvalidering med fire 

folder og fem repetisjoner for å redusere risikoen for at tilfeldige undergrupper av data fører til 

ikke-generaliserbare resultater. Videre beregnet analysen 25 000 forskjellige RENT-modeller 

for å søke gjennom hyperparametrene for å finne høyytelsesparameterkombinasjoner. Hver av 

de 25 000 modellene ble trent med seks forskjellige hyperparameterkombinasjoner for Random 

Forest [RF] og tolv hyperparameterkombinasjoner for logistisk regresjons, noe som resulterte 

i totalt 450 000 forskjellige modeller.  

En høytytende gruppe modeller ble samlet inn for én unik kombinasjon av hyperparametre. 

Disse modellene hadde den høyeste gjennomsnittlige testytelsen: «accuracy» 0,76 ± 0,07, MCC 

0,47 ± 0,16, F1 positiv klasse 0,57 ± 0,13, F1 negativ klasse 0,83 ± 0,05 og AUC 0,69 ± 0,08. 

Resultatene har også vist at generaliseringsfeilen er lavere for en RENT-basert RF-modell enn 

ikke-RENT-basert RF-modell. RENT-analysen avdekket at pasienter som døde var 

overrepresentert i en pasientgruppe som oftest ble predikert feil. Til slutt har RENT-analysen 

resultert i en fordeling av variabler som oftest ble valgt for høy prediksjonsevne. De fleste av 

de kliniske trekkene i denne gruppen er tidligere rapportert som relevante av medisinsk 

litteratur.  

Forskningen og det tilhørende rammeverket viser lovende resultater for å implementere en 

brute-force-tilnærming til RENT-analysen, for å sikre lav generaliseringsfeil og prediktiv 

tolkbarhet. Ytterligere forskning med dette rammeverket kan bistå medisin i å validere 

variablers betydning for pasienters prognose. Rammeverket kan også vise seg nyttig innenfor 

andre forskningsfelt enn medisin, gitt prediktive problemer med lignende utfordringer. 

  



iv 
 

 
 

 



 
 

Acknowledgements 

This thesis marks the end of my 2-year study in Data Science at Norwegian University of Life 

Sciences. The research in this thesis has been extremely useful to develop my skills as an 

independent analyst, as well as a programmer. The final script was just shy of 4000 lines before 

it was compressed for better readability and usefulness to others.  

The work the reader will find here would not be possible without my excellent supervisors, 

Professor Oliver Tomic and Professor Cecilia Marie Futsæther. Oliver has contributed as the 

main supervisor, and his genuine interest and enthusiasm to my research and my personal 

development is inspiring in its own. He has allowed me to learn independently while 

simultaneously helping me build 8-dimensional data structures on Friday afternoons. Cecilia 

helped me specify the research and her cunning wit has been invaluable for the quality of the 

thesis. 

Furthermore, I would like to personally thank Professor Kathrine Røe Redalen for assisting me 

with the technical aspects of medicine outside of my speciality, as well as answering all my 

questions regarding the research that has served as the source of the data.  

I would also like to thank my parents for their undying support, despite my continued refusal 

to follow a standard path through life. A heartfelt thanks is also directed to my friends and peers 

at NMBU, that have made my years at this university joyful and unforgettable, both in the study 

halls and during extracurricular activities. 

 

 

Kanskje verden er litt stri,  

men når det gråner skal du si, 

at «du har hatt en bra studentertid!» 

- «Studentenes Kall», 1933 

 

 

Ås, 14.06.2022 

 

____________________________ 

Lars Jetmund Svartis Engesæth 



2 
 

 
 

Table of contents 

Abstract ................................................................................................................................................... ii 

Sammendrag ........................................................................................................................................... iii 

Acknowledgements ................................................................................................................................. 1 

Table of contents ..................................................................................................................................... 2 

Chapter 1 Introduction ............................................................................................................................. 6 

1.1 Background and motivation .......................................................................................................... 6 

1.2 Previous work ................................................................................................................................ 8 

1.3 Goal and research questions .......................................................................................................... 8 

1.4 Outline ........................................................................................................................................... 9 

Chapter 2 Theory ................................................................................................................................... 10 

2.1 Feature selection .......................................................................................................................... 10 

2.2 Imaging in medicine .................................................................................................................... 12 

2.2.1 Medical image types in this thesis ........................................................................................ 12 

2.3 Radiomics .................................................................................................................................... 13 

2.4 Overfitting and underfitting ......................................................................................................... 14 

2.4.1 Regularization ...................................................................................................................... 16 

2.4.2 Elastic Net ............................................................................................................................ 17 

2.5 RENT introduction ...................................................................................................................... 18 

2.6 Stability and generalization ......................................................................................................... 19 

2.7 Performance metrics .................................................................................................................... 19 

2.8 Machine learning algorithms ....................................................................................................... 22 

2.8.1 Logistic regression................................................................................................................ 23 

2.8.2 Random forest ...................................................................................................................... 25 

Chapter 3 Methodology ......................................................................................................................... 28 

3.1 Overall structure of methodology and CRISP-DM ..................................................................... 28 

3.1.1 Programming language and extensions ................................................................................ 30 

3.2 Part A: Data Collection and examination .................................................................................... 30 

3.2.1 Clinical data .......................................................................................................................... 31 

3.2.2 Medical images ..................................................................................................................... 32 

3.3 Part B: Data pre-processing ......................................................................................................... 32 

3.3.1 Feature selected through pre-processing .............................................................................. 32 

3.3.2 Missing data ......................................................................................................................... 33 

3.3.3 Encoding categorical values ................................................................................................. 35 

3.4 Part C: Making first models ........................................................................................................ 35 

3.4.1 Test set and train set, cross validation and RSKF ................................................................ 36 



3 
 

 
 

3.4.2 Implementation of RENT ..................................................................................................... 38 

3.5 Part D: Evaluation of models and repeating analysis .................................................................. 41 

3.5.1 Making second models ......................................................................................................... 42 

Chapter 4 Results................................................................................................................................... 43 

4.1 Feature selection frequency from RENT ..................................................................................... 43 

4.2 Model performance ..................................................................................................................... 46 

4.2.1 Average performance for RF and LR ................................................................................... 46 

4.2.2 High performing parameters ................................................................................................. 48 

4.2.3 Best RF performance ............................................................................................................ 49 

4.3 Modelling on full dataset without RENT .................................................................................... 51 

4.4 Visual representation of features selected ................................................................................... 51 

4.5 Hard-to-predict patients ............................................................................................................... 53 

Chapter 5 Discussion ............................................................................................................................. 54 

5.1 Discussions on performance of models ....................................................................................... 54 

5.2 Possible explanations for overfitting ........................................................................................... 55 

5.3 Imputation and missing data ........................................................................................................ 57 

5.4 Selected features .......................................................................................................................... 57 

5.4.1 Comparing selected clinical features to published literature ................................................ 57 

5.4.2 Frequently selected radiomics features................................................................................. 59 

5.5 Importance of cross-validation and search techniques ................................................................ 60 

Chapter 6 Conclusion ............................................................................................................................ 61 

6.1 Summary of thesis ....................................................................................................................... 61 

6.2 Suggestions for future work ........................................................................................................ 62 

6.2.1 PCA and unsupervised learning on difficult patients ........................................................... 62 

6.2.2 Expansion of the framework introduced in breadth/depth ................................................... 62 

6.2.3 Improve interpretability by removing features describing treatment ................................... 63 

Chapter 7 Appendix ............................................................................................................................... 64 

7.1 LR test performance for different Tau-values ............................................................................. 64 

References ............................................................................................................................................. 65 

 

  



4 
 

 
 

List of figures 

 

Figure 1: Illustration of Hughes phenomenon ....................................................................................... 11 

Figure 2: An underfit model, an overfit model, and better fit model .................................................... 15 

Figure 3: Illustration of bias-variance-trade-off .................................................................................... 16 

Figure 4: (Jenul, Schrunner et al. 2021). RENT feature selection pipeline ........................................... 18 

Figure 5: A confusion matrix help visualize the relationship between TP, FN, FP, and TN ................ 20 

Figure 6: Illustration of an Receiver Operating Curve (ROC) .............................................................. 22 

Figure 7: Plot of the logistic function, often called a Sigmoid curve .................................................... 24 

Figure 8: Simplified version of a decision tree ..................................................................................... 25 

Figure 9: Rough outline of the method used in the analysis ................................................................. 28 

Figure 10: How the feature space is reduced for each step on the research process ............................. 33 

Figure 11: Visualization of a 4-fold CV approach ................................................................................ 37 

Figure 12: Frequency plots from the RENT analysis [C=0.1, L1-ratio=0.1] ........................................ 51 

Figure 13: Frequency plots from the RENT analysis [C=0.5, L1-ratio=0.9] ........................................ 52 

 

  



5 
 

 
 

List of tables 

 

Table 1: Table with relative survival rates for patients with colon cancer and rectal cancer with .......... 6 

Table 2: Table of the 15 most frequently selected features for all RENT models ................................ 43 

Table 3: The three least frequently selected features. ........................................................................... 44 

Table 4: Feature selection frequency for τ1 and τ2 set to 0.75 ............................................................... 45 

Table 5: Average test set performance for random forest and logistic regression. ............................... 46 

Table 6: Average train set performance for random forest and logistic regression. .............................. 46 

Table 7: Table with average performance for different τ1 -values ........................................................ 47 

Table 8: Table with average performance for different τ2 -values ........................................................ 47 

Table 9: Table most prevalent parameter value in models with test accuracy higher than 73%. .......... 48 

Table 10: Best train and test performance for RF ................................................................................. 49 

Table 11: The 31 selected features from the 20 models that created the best performing model ......... 50 

Table 12: Performance for a RF model without feature selection from RENT ..................................... 51 

Table 13: Table highlighting which patients were most often incorrectly predicted ............................ 53 

 

  



6 
 

 
 

Chapter 1 Introduction 

 

1.1 Background and motivation 

Cancer is non-specific term for a collection of diseases where cells grow uncontrollably in the 

body. It can affect any part of the body, and malignant cancers can spread to nearby tissue and 

metastasize (WHO 2021). In 2020, almost 20 million new cases of cancer was reported 

worldwide, while almost 10 million new deaths were reported (WHO 2020). The number of 

new deaths reported makes cancer the second leading cause of death worldwide (Our World in 

Data 2018).  

Cancer can be classified by the type of cells they affect or from which organ they originate 

from. The third leading type of cancer is colorectal cancer (CRC), which includes cancer in the 

bowel, colon, and the rectum. These types of cancers are sometimes grouped together due to 

their similarities (American Cancer Society 2020). Almost 2 million cases of CRC and more 

than 900 000 deaths from CRC was reported in 2020 (WHO 2021). Higher age, obesity, 

cigarette smoking, drinking, and family history of CRC is correlated with the risk of developing 

CRC (National Cancer Institute 2021). The relative survival rate of colon cancer and rectal 

cancer is presented in table 1 below: 

Table 1: Table with relative survival rates for patients with colon cancer and rectal cancer with differentiation 

based on SEER (Surveillance, Epidemiology, and End Results) status. The numbers in table 1 were gathered 

from the American Cancer Society-webpage, with clarifications about the definitions regarding SEER stage 

(American Cancer Society 2022). 

 5-year relative survival rate 

SEER stage Colon cancer Rectal cancer 

Localized 91 % 90 % 

Regional 72 % 73 % 

Distant 14 % 17 % 

All SEER stages combined 64 % 67 % 

 

Table 1 highlights how survival rate decreases significantly as the cancer spreads to other parts 

of the body, which supports the importance of diagnosing and treating CRC as soon as possible. 
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Treatment of cancer depends on the tumour, but patients must usually undergo tomographic 

photography using either CT, PET, or MRI, or all of these imaging types (Gillies, Kinahan et 

al. 2016). These images are based on different technologies which in turn yield different tissue 

characteristics (Höhne, Fuchs et al. 1990). Due to the abundance of data available in these 

images, research into radiomics and data-supported decision making has exploded in the past 

decades. As the tomographic imaging has increased, so has the need for radiologists to interpret 

these images. Thus, machine learning (ML) has become increasingly used since processing 

power has become cheaper and more available.  

Lately, ML has moved into deep learning  to overcome the massive amounts of data available 

(Kleppe, Skrede et al. 2021). However, as deep learning tends to lead to black box models, 

where the internal logic of the model is unknown, research is still investigating the use of more 

transparent and interpretable models (LeCun, Bengio et al. 2015, Wiemken and Kelley 2020). 

Unfortunately, as the data sets increase in width with added feature columns and the number of 

patients is often small, ML algorithms are prone to overfitting to the training data and resulting 

in poor generalization to new data. Therefore, feature selection has been investigated as a 

method to rectify overfitting by limiting the number of features that are available for the models.  

Furthermore, great progress has been accomplished in the research into radiomics as an aid in 

medical practice. Radiomics has been used increasingly in predictive modelling in medicine, 

especially for cancer research (Aerts, Velazquez et al. 2014, Parekh and Jacobs 2017, Parekh 

and Jacobs 2019, Li, Zhu et al. 2020). Some studies find that the radiomics features improve 

predictive ability. However, most research must perform some sort of feature selection to 

reduce the features space to improve model generalization. In this thesis, the feature selection 

will be performed by using RENT (Repeated Elastic Net Technique), that has been introduced 

by researchers from Norwegian University of Life Sciences (Jenul, Schrunner et al. 2021, Jenul, 

Schrunner et al. 2021).   
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1.2 Previous work 

RENT has previously been applied by master students from NMBU to investigate its 

application and performance. Sana used RENT for feature selection and then investigated the 

explained variance of the target with the selected features (Sana 2021). Mohammadi 

implemented RENT for feature selection and then predicted medication class for patients 

treated for ADHD and found improved predictive performance using RENT (Mohammadi 

2021). Olofsson used RENT for feature selection and repeated stratified k-fold cross validation 

to identify biomarkers in Alzheimer’s patients (Olofsson 2021). Søvdsnes implemented RENT 

for feature selection on clinical and radiomic features to improve predictive ability of radiomic 

features applied to patients with colorectal cancer (Søvdsnes 2021).  

 

 

1.3 Goal and research questions  

Given the background presented in the previous sections, there are several reasons to further 

explore the possibilities related to medical data, cancer research, and machine learning.  

This thesis aims to explore the following questions: 

1. How accurately can machine learning models predict OS in colorectal cancer patients 

when RENT performs feature selection? 

2. Which features are the most important in this data set to predict OS in patients with 

colorectal cancer? 

Considering previous theses has used RENT as normal, this thesis was motivated to instead try 

a thorough brute-force approach to search through the parameters that RENT normally chooses 

for the user.  
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1.4 Outline 

Chapter 2 will present relevant theoretical background to introduce relevant topics in order to 

understand the thesis. The reader is expected to have some background information in statistics, 

programming, and machine learning. 

Chapter 3 will introduce the methods applied in the analysis. CRISP-DM will be introduced, 

and then data preparation, treatment, and modelling will be discussed. A thorough explanation 

of the implementation of RENT will help the reader understand the novel feature selection 

technique. 

Chapter 4 will present the results, both in terms of average model performance as well as the 

performance for the best models. Additionally, there will be presented results for a baseline 

model without the assistance from RENT. Lastly, this chapter will present findings from the 

RENT analysis.  

Chapter 5 will discuss the results, the implication of the results, and give some interpretation of 

the results. The chapter will relate the selected features to published literature to validate the 

findings. 

Chapter 6 will present the concluding remarks for the thesis. This chapter will also give 

suggestions for further work that have sprung forward as a result from working on the thesis. 
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Chapter 2 Theory 

This chapter will present the theoretical background needed to understand the research carried 

out in this thesis, the models created and how to evaluate these models. Certain topics are not 

presented in-depth, as this master thesis is rooted in data science. Therefore, certain details are 

outside the scope of the thesis. However, whenever applicable, there will be presented sources 

if the reader wishes to pursue these topics.  

 

2.1 Feature selection 

As data collection techniques continuously improve, there is a greater access to data for 

predictive modelling. As data collection increases in breadth by logging more features, there is 

a rising number of situations where the number of features in the data set is greater than the 

number of samples. This imbalance between the features and the number of samples is 

sometimes referred to as “The Curse of Dimensionality” as coined by Richard Bellman in 1957 

in his book “Dynamic Programming” (Bellman, Bellman et al. 1957). The term refers to the 

problem that the feature space increases so fast that the volume of data becomes sparse, which 

negatively affects predictive performance. Feature selection methods allow a researcher to 

identify a subset of features to that may be used for further analysis, which may lead to a number 

of benefits as elaborated by Guyon and Elisseeff (Guyon and Elisseeff 2003): 

• Improve data visualization and data understanding, 

• Reducing measurement and data storage requirements, 

• Reduced training time, 

• Ease the curse of dimensionality to improve predictive performance. 

 

The optimal number of features for a data set is debated, but various sources claim that the 

feature volume should be 10 times the sample volume. In 1993, Hush and Horne found that a 

Multi-layer Perceptron classifier should have 10 times as many samples as weights (Hush and 

Horne 1993). Gillies et al. and Sollini et al. echo that their personal preference is having at least 

10 samples per one feature (Gillies, Kinahan et al. 2016, Sollini, Antunovic et al. 2019). Others 

have suggested that there should be a 10 to 1 ratio between positive outcomes/events and 

features (Harrell, Lee et al. 1996, Peduzzi, Concato et al. 1996).  
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Provided that the training data contains relevant information, as the features space increases, 

the test performance of a classifier will usually first increase, and then as the feature space 

increases further the test performance will usually decrease (Sima and Dougherty 2008). This 

effect is illustrated below in Figure 1. This predictive performance peak was originally 

demonstrated by G. Hughes in 1968 (therefore referred to as “Hughes Phenomenon” in 

literature) on discrete classifiers, but it can affect all classifiers (Hughes 1968).  

 

Figure 1: Illustration of Hughes phenomenon. Drawn with inspiration from: (Decourselle, Simon et al. 2012) 

In contrast to Hush and Horne, it has been shown that the optimal feature size relative to sample 

size depend strongly on the classifier in question, and that generalizing a rule-of-thumb should 

be done warily (Hua, Xiong et al. 2004). Furthermore, the results from Hua et al. indicate that 

the correlation between the features changes the optimal ratio between sample size and feature 

size (Hua, Xiong et al. 2004). van Smeden et al. directly opposed that positive events per feature 

held any rationale for logistic regression (van Smeden, de Groot et al. 2016). Theodoridis and 

Koutroumbas support the findings of Hau and Xiong et al. that the effect of ratio between 

features and samples cannot be generalized to all classifiers (Theodoridis and Koutroumbas 

2008). 

In essence, these findings indicate that there is some sort of global maximum for the model 

performance as a function of the number of features included. This motivates the research and 

analysis performed on features selection in this thesis. A model consisting of too few features 

result in poor performance (underfitting), since crucial information is missing. Contrastingly, 

models consisting of too many features also result in poor performance (overfitting) since the 

there is a mismatch between the number of samples and features (Theodoridis and Koutroumbas 

2008).  
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2.2 Imaging in medicine 

Medicine has, since the discovery of the X-ray in 1895 by W.C. Röntgen, implemented more 

and more imaging techniques to aid decision making (Smithsonian Institution 1946, Tubiana 

1996, Udupa and Herman 1999). Udupa and Herman define the purpose of 3D imaging as: 

“The purpose of 3D imaging is: given a set of multidimensional images pertaining to 

an object/object system, to output qualitative/quantitative information about the 

object/object system under study.” (Udupa and Herman 1999) 

There are numerous image types, and they are usually 2D slices of certain body parts. They can 

be represented in 3D as a number of 2D slices to create a volume of tomographic images (Udupa 

and Herman 1999). When these images are evaluated over time, the time dimension adds 

another dimensionality to the images, which means some image types are 4-dimensional. These 

4th dimension is an approximation, since it is always possible to sample an image at a shorter 

time interval (Udupa and Herman 1999). The precision of this dimension is improved by having 

shorter time between each sample.  

 

2.2.1 Medical image types in this thesis 

The most commonly used images aside from the mentioned X-rays are Computed Tomography 

(CT), Magnetic Resonance Imaging (MRI), and Position Emission Tomography (PET) (COCIR 

s.a.). This thesis analysed Diffusion Weighted Images (DWI), Fast Field Echo (FFE) Images, 

and T1- and T2-weighted MRI (referred to in this thesis as T1T2Sense).  

DWI was introduced in 1986 as a variation of MRI, where diffusion of water molecules created 

the contrast in the images (Merboldt, Hanicke et al. 1985, Le Bihan, Breton et al. 1986, Posse, 

Cuenod et al. 1993). 

FFE is an imaging technique that is based on gradient echo sequences with reduced flip angle 

excitation pulses, and has been used as an image variant in medicine to examine body tissue 

(van der Meulen, Groen et al. 1988, Preziosi, Orlacchio et al. 2003, Lee, Shin et al. 2017). 

T1T2Sense are MRI images that use both T1-weighting and T2-weighting. T1- and T2-

weighting refers to different relaxation times in tissue (Rinck 2021). T1- and T2-weighting are 

sensitive to different types of bodily tissue.  
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However, the medical details regarding these imaging techniques are left outside the scope of 

this thesis. Discussions surrounding the features extracted from these images will be based on 

a data science perspective, and not in a medical science perspective. As described in chapter 

3.2.2 Medical Images, the descriptive features of these images will be extracted by an algorithm, 

which results in feature names that are based in image analysis instead of medicine.  

 

2.3 Radiomics 

Radiomics is a study emerging from the combination of radiology and oncology (Parekh and 

Jacobs 2017). The goal is to extract the numerical values from an image and feed these datasets 

into algorithms to gain insights beyond the perception of human eyes. Thus, personalized 

diagnosis can be given to each patient (Parekh and Jacobs 2019). Furthermore, large imaging 

data sets of body parts may be swiftly triaged to identify which cases requires attention first 

(Parekh and Jacobs 2019). Research has been motivated to focus on cancer, since almost every 

cancer patient undergoes tomographic imaging (e.g.: CT, PET, MRI) at least once during their 

diagnosis and treatment (Gillies, Kinahan et al. 2016).  

Radiomic images contain different types of information that can be divided into first order-, 

second order-, and higher order statistics (Gillies, Kinahan et al. 2016). These three subtypes 

refer to different feature types. The combination of these distinctions lead to a high number of 

features, up to 440 (Aerts, Velazquez et al. 2014) and 636 (Grossmann, Stringfield et al. 2017) 

features. As the number of available features grow, there is a greater risk of overfitting a model 

to the training data. Therefore, there is a need to reduce the dimensionality of the feature space. 

Gillies et al. suggests the following methods to reduce the feature space (Gillies, Kinahan et al. 

2016): 

• Remove highly redundant features, such as highly correlated features, 

• Test-retest data can be applied to investigate if the results are reproducible, 

• Build models with the highest-priority features with features representing each agnostic 

and semantic class (shape, size, and first-, second-, and higher-order textures).  

Balagurunathan et al. found that most CT features are highly reproducible in a test-retest 

analysis, and suggest that these features can be combined with clinical features to improve 

predictability (Balagurunathan, Kumar et al. 2014). A test-retest analysis measures the same 

characteristic twice to evaluate if the measures are unchanged (Vilagut 2014). 
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Radiomics has been used to enable diagnosis of prostate cancer (Wibmer, Hricak et al. 2015), 

prognosis for head- and neck-cancer (Aerts, Velazquez et al. 2014), and predict outcome for 

lung cancer patients (Kadir and Gleeson 2018). Research has also shown promising results for 

selecting individualize treatment based on radiomics features (Teruel, Heldahl et al. 2014, Lv, 

Xin et al. 2022). Parekh and Jacobs have presented a novel multiparametric radiomics 

(mpRAD) approach to improve predictive performance (Parekh and Jacobs 2017, Parekh and 

Jacobs 2019, Parekh and Jacobs 2020). Alternatively, several researchers have published 

articles on multiparametric MRI which indicate promising predictive results (Barentsz, 

Richenberg et al. 2012, Yoo, Kim et al. 2015, Demirel and Davis 2018).  

All in all, radiomics is an emerging field with possibilities and challenges. Gillies et al. highlight 

the following challenges for radiomics: 

• Reproducibility: As a young discipline, radiomics might suffer the same slow progress 

that molecular biology diagnostics underwent, 

• Big Data: There are such vast amounts of medical data available that radiomics might 

lead to further complications and bottlenecks in research, 

• Data sharing: Data sharing can be a challenge due to its sensitive nature and overcoming 

these challenges can lead to more robust research (Gillies, Kinahan et al. 2016). 

In the context of this thesis, the data sharing could be enabled due to the data set being 

anonymized. Data could only be shared if it the patients agreed to it. The big data aspect is also 

relevant in this thesis, considering there were in total 191 images and only 3 of these were 

extracted. Details regarding this process in discussed in 3.2.2 Medical images. As discussed in 

chapter 1.1 Background and motivation, radiomics and medicine is prone to having too many 

features, so extracting more features from the other image echoes would introduce even more 

potentially redundant features. 

 

2.4 Overfitting and underfitting 

Overfitting is a problem that occurs in ML when a model performs well on the training data, 

but it does not generalize to the unseen test data (Raschka and Mirjalili 2019). Figure 2 below 

shows an example of how underfit, well fit, and overfit models could separate binary training 

samples.  
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Figure 2: This figure illustrates an underfit model (purple), an overfit model (green), and better fit model (black) 

to the data. Drawn with inspiration from (Raschka and Mirjalili 2019). 

Figure 2 illustrates an example of three different models attempting to classify blue and red 

samples, with one feature on the x-axis and one features on the y-axis. The true relationship in 

the data is nonlinear. The model drawing the green line is thus overfitted, since it classifies all 

training samples correctly, but it would likely perform poorly on test data. Likewise, the purple 

model is underfitted and would perform poorly on both test data and train data. The black line 

is probably the most appropriate curve, despite the performance not being 100% accurate.  

Overfitting and underfitting is often explained using the following two terms: bias and variance. 

Bias refers to the component of error resulting from a too simple learning algorithm (James, 

Witten et al. 2013). In Figure 2 above, the purple model has high bias, since it tries to fit a linear 

model to a non-linear relationship. Variance refers to the degree which a learning algorithm 

would change if the samples in the training subset was replaced with another subset of the data 

set (James, Witten et al. 2013). The green squiggly line in Figure 2 above follows each point 

precisely. If any of the red points it circles would have been replaced, the model would probably 

change significantly. Thus, this model has high variance. Generally, high bias is related to 

underfit models, while high variance is related to overfit models (Raschka and Mirjalili 2019). 

A technique to attempt to minimize both bias and variance is explained in the next chapter. 
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2.4.1 Regularization 

Since both high variance and high bias is unwanted, data scientists often attempt to find a 

compromise called the bias-variance trade-off. When bias is reduced, variance grows, and vice 

versa. This effect is illustrated in Figure 3 below. The total error due to bias and variance has a 

minimum point that is a balance between minimized variance and minimized bias.  

 

Figure 3: Illustration of bias-variance-trade-off. As the model complexity increases, the bias increases, and the 

variance decreases. The thin and vertical line marks the optimal balance between bias and variance. Drawn with 

inspiration from (Huilgol 2020). 

One technique to find this optimal point is using regularization (Raschka and Mirjalili 2019). 

Regularization introduces additional information to penalize extreme parameter values. It is an 

effective tool to take care of collinearity and filtering out noise, both of which ultimately lead 

to less risk of overfitting. Furthermore, Bousquet and Elisseeff have found that regularization 

implies stability in the models (Bousquet and Elisseeff 2002).  

There are two main ways of performing regularization: L1 regularization (also called LASSO) 

and L2 regularization (also called Ridge). The L1 or L2 penalty are added to the cost function 
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of the given learning algorithm (see chapter 2.8.1 Logistic regression for information about the 

cost function for logistic regression). The formula for L1 penalty and L2 penalty is as follows: 

𝐿1: 𝛿‖𝑤‖1 = δ ∑|𝑤𝑗|

𝑚

𝑗=1

 

𝐿2: 𝛿‖𝑤‖2
2 = δ ∑ 𝑤𝑗

2

𝑚

𝑗=1

 

where w is the weight vector, 𝛿 is the penalty term, j takes the values from 1 to m, and m is the 

dimensionality of the number of samples. Both regularization methods shrink weights, which 

reduces overfitting. However, only L1 has the ability of creating sparse vectors, where the 

weights are set to 0, which leads to feature selection through feature exclusion. Both L1 and L2 

can be more suitable depending on the data set and situation. RENT uses Elastic Net, a 

combination of L1 and L2 regularization, and elastic net is therefore introduced in the next 

chapter. 

 

2.4.2 Elastic Net 

Elastic Net is a compromise between LASSO (L1) regression and Ridge (L2) regression 

(Raschka and Mirjalili 2019). Elastic net was introduced by Zou and Hastie in 2005, because it 

could outperform LASSO, while still shrinking some features to 0 (Zou and Hastie 2005). 

LASSO regression is preferred for the ability to remove features by selecting the most important 

ones. As described in chapter 2.1 Feature selection, this will lead to faster and more stable 

models. This advantage is combined with Ridge regression, which is able to shrink weights and 

group similar features. Ridge regression is used when the dataset includes highly correlated 

features (Hilt and Seegrist 1977).  

Elastic Net is tailored to the data set by adjusting the L1-ratio between L1 and L2 regularization.  

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑁𝑒𝑡 = 𝐽(𝑤) + δ [(𝛼 ∗ 𝐿1) + ((1 − 𝛼) ∗ 𝐿2)] 

Where J(w) is the cost function of the classifier, 𝛿 is the penalty term, and 𝛼 is the L1-ratio. 

When the L1-ratio is set to 0, there is only L2-regularization and no L1-regularization, and vice 

versa for when the L1-ratio is set to 1 (Nogueira, Sechidis et al. 2018).  
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Furthermore, Nogueira et al. showed experimentally that by using Elastic Net they could 

achieve high stability despite similar loss as LASSO regression alone, which in turn recovers 

the “true” set of relevant features (Nogueira, Sechidis et al. 2018). In the research for this thesis, 

it was implemented a novel method called RENT (Repeated Elastic Net Technique), which is 

essentially Elastic Net with repeats to further improve stability and generalization (Jenul, 

Schrunner et al. 2021, Jenul, Schrunner et al. 2021). RENT is introduced in chapter Feil! Fant i

kke referansekilden. Feil! Fant ikke referansekilden., and its implementation is described in 

chapter 3.4.2 Implementation of RENT.  

 

2.5 RENT introduction 

In this thesis, the data set includes several sets of highly correlated features. For example: The 

type of cancer stage is highly correlated with the treatment the patient receives. Thus, the idea 

is to include both L2 and L1 regularization, as discussed in chapter 2.4.2 Elastic Net, to 

simultaneously remove redundant features and find appropriate weights for the remaining 

correlated features. Bøvelstad et al. found that learning should be repeated on subsets, and that 

feature selection methods implementing feature shrinkage or linear combinations outperform 

univariate and stepwise feature selection, further supporting the motivation to use RENT 

(Bøvelstad, Nygård et al. 2007). The idea behind RENT is to use an ensemble of generalized 

linear models on subsets of the data with elastic net regularization for feature selection (Jenul, 

Schrunner et al. 2021, Jenul, Schrunner et al. 2021). Figure 4 below shows an overview of the 

RENT pipeline. A detailed description of the implementation of RENT is presented in chapter 

3.4.2 Implementation of RENT. 

 

Figure 4: (Jenul, Schrunner et al. 2021). RENT feature selection pipeline. RENT models with different subsets are 

trained k times on the data set to create an ensemble of feature selections. 
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The developers of RENT has found that implementation of RENT can achieve stable and 

reproducible results that also keep predictive performance at a high level (Jenul, Schrunner et 

al. 2021). When RENT is compared to other feature selectors, RENT is almost always 

competitive. Whenever RENT scores slightly worse than other feature selectors, it has 

significantly reduced the dimensionality of the problem and thus reduced runtime and 

computational complexity and strain (Jenul, Schrunner et al. 2021).  

 

2.6 Stability and generalization 

An important measure in machine learning is the performance of a model. Performance metrics 

are explained in the next chapter. However, performance is generally calculated on the basis of 

a stable performance, which is affected by randomness. Two sources lead to randomness in the 

model: The sampling between the training set and the test set, and the noise in the data points 

(Bousquet and Elisseeff 2002). RENT and this thesis will use the measure of stability for a 

feature selector introduced by Nogueira et al.: 

 “An algorithm is ‘unstable’ if a small change in data leads to large changes in the 

chosen feature subset.” (Nogueira, Sechidis et al. 2018) 

Previous work by Guyon and Elisseeff, and Brown et al. has been performed to attempt to 

define techniques to find meaningful subsets of features (Guyon and Elisseeff 2003) (Brown, 

Pocock et al. 2012). Nogueira et al. showed that Elastic Net was able to find the “true set” of 

relevant features from a synthetic data set (Nogueira, Sechidis et al. 2018).  

 

2.7 Performance metrics 

There are numerous methods for evaluating ML models and their performance. A “confusion 

matrix” is commonly used to explain and visualize the different methods for binary 

classification. This thesis predicts a binary classification problem, so the confusion matrix is 

appropriate. Other methods exist to evaluate multiclass problems, but they will not be covered 

here. The following Figure 5 show a confusion matrix: 
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 Predicted class: 

 

Positive Negative 

 

 

 

True class: 

Positive True Positive 

(TP) 

False Negative 

(FN) 

Negative False Positive 

(FP) 

True Negative 

(TN) 

Figure 5: A confusion matrix help visualize the relationship between TP, FN, FP, and TN. The correct 

predictions, TP and TN, are color coded green, while the incorrect predictions are coloured pink. With 

inspiration from inspired by (James, Witten et al. 2013) and (Raschka and Mirjalili 2019). 

TP and TN are predictions that are correctly predicted positive or negative. FP and FN are 

incorrect predictions. The naming of a positive event is arbitrary and does not necessarily reflect 

a desired outcome. For this thesis, a positive outcome (1) is a patient that has died, while a 

negative outcome (0) is a patient that survived. The simplest method to evaluate a model to is 

to calculate “accuracy”. Accuracy is calculated by computing the amount of correct predictions 

(TP and TN) against the number of total predictions (James, Witten et al. 2013): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + TN + FP + FN
=

Correct predictions

All predictions
  

However, accuracy is rarely reported alone, and sometimes disregarded in comparison to more 

robust performance metrics. For data sets with where the class distribution is far from 50/50, 

accuracy can give misleading results. For example, if a data set has 90% positive samples, the 

model can achieve a 90% accuracy by predicting all samples as positive. A model like this has 

likely not learned anything, but the accuracy parameter falsely gives that impression. For this 

reason, several performance metrics is usually used to give higher scientific weight to results.  

Two other commonly used performance metrics are “precision” and “recall”. Precision and 

recall are more sensitive to false positives and false negatives, respectively. The formula for 

precision is: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
 

which calculates how many of the positive predictions are correctly predicted (Raschka and 

Mirjalili 2019).  
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Recall uses the following formula: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
 

which takes the fraction of true positive predictions against the total number of positive samples 

(Raschka and Mirjalili 2019). 

 

Precision and recall both have weaknesses and strengths for different data sets. To optimize for 

this difference, it is possible to use the F1-score (sometimes called F-score), which uses both 

recall and precision in its formula (Raschka and Mirjalili 2019): 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

 

Additionally, Matthews Correlation Coefficient (MCC) is another performance metric that is 

especially relevant for unbalanced data sets. The formula below is based on the confusion 

matrix and was introduced in 1975 by B.W. Matthews (Matthews 1975): 

𝑀𝐶𝐶 =
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

Finally, the Receiver Operating Characteristic (ROC) and its related Area Under Curve 

(AUC) is often computed to benchmark a model (Hanley and McNeil 1983). The ROC is a 

graphical plot that visualizes how the predictive precision of a model changes as the false 

positive rate is changed (Fawcett 2006). The integral of the area under this curve is the AUC, 

and this integral should be higher than 0.5 to beat a model that is guessing randomly. Figure 6 

below shows an artificial ROC-plot.  
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Figure 6: Illustration of an artificially drawn ROC. The definition of a "moderate" test performance is dependent 

on the data set it is tested on. The figure was drawn with inspiration from: (Juliani and Ellefmo 2019) 

 

All these performance metrics can be automatically calculated by sklearn (Pedregosa, 

Varoquaux et al. 2011). 

Accuracy and F1-score take values between 0 and 1. MCC takes values from -1 to 1, where -1 

equals 100% incorrect predictions, 0 equals true random guessing, and 1 means 100% correct 

predictions. AUC technically takes values from 0 to 1, although an AUC-value of 0.5 implies 

that the model is equally accurate as randomly guessing. AUC lower than 0.5 implies worse 

than random guessing, and AUC equal 1 is 100% accurate predictions for any true positive and 

false positive rates. 

 

2.8 Machine learning algorithms 

Machine learning has been around since the 1950s when Alan Turing discussed learning 

machines in his paper on “The imitation game” (TURING 1950). Since then, several machine 

learning algorithms have been developed to learning problems. Machine learning algorithms 

are usually divided into supervised and unsupervised algorithms, as well as reinforced learning 
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(Raschka and Mirjalili 2019). Supervised learning algorithms have a label for each sample, 

which means that the algorithm predicts an outcome for that sample. Unsupervised learning 

algorithms do not have this label, which means that these algorithms try to find hidden patterns 

or structures in the data without the guidance of sample labels.  

In the following chapters, Logistic Regression and Random Forest will be introduced, as these 

algorithms were used in this thesis. There are, however, numerous alternative machine learning 

algorithms available. 

 

2.8.1 Logistic regression 

Logistic regression was introduced by Pierre-Francois Verhulst in three papers between 1838 

and 1847 after inspiration from Thomas Robert Malthus’ book “An Essay on the Principle of 

Population” from 1798 (Cramer 2002). Verhulst’s works were only discovered in 1920, and the 

logistic function has since then been applied in biology, biomathematics, chemistry, statistics, 

and data science, to only name a few of the scientific areas. The logistic expression is as follows 

(James, Witten et al. 2013): 

𝑝(𝑋) =
𝑒𝛽0+𝛽1𝑋

1 + 𝑒𝛽0+𝛽1𝑋
 

where p is the probability of the sample belonging to class 1, e is the base of the natural 

logarithm, β0 and β1 are the parameters of the model. β0 is also referred to as the intercept of the 

model, while β1 is the slope of the model.  

The activation function for logistic regression defined as the following expression which is 

based on the logit function (Raschka and Mirjalili 2019):  

𝑙𝑜𝑔𝑖𝑡(𝑝) = log
𝑝

(1 − 𝑝)
 

where log is the natural logarithm, and p is the probability of the positive event.  

The inverse of the logit function, also called logistic sigmoid function, is defined as follows: 

φ(𝑧) =
1

(1 + 𝑒−𝑧)
 

where z is a combination of the net input, the linear combinations, and the inputs. 

https://en.wikipedia.org/wiki/Thomas_Robert_Malthus
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Figure 7 below is an example of how the s-curve from logistic function plots. The graph never 

outputs a value lower than 0, or a value higher than 1 for any x-value. Thus, any class prediction 

of a sample is always contained inside the [0,1]-interval.  

 

Figure 7: The plot of the logistic function is often called a Sigmoid curve due to the shape. The curve is constrained 

in the [0,1]-interval, and increasing the x-parameters to higher or lower than +/-10 will not change this constraint. 

The figure is plotted using the logistic function included in the Python library “scipy.special”. 

Furthermore, the logistic regression presented above had only one explanatory variable, β1. This 

model can be generalized to include any number of β up to βm. The model remains linear 

regardless of the number of β (Hosmer Jr., Lemeshow et al. 2013, James, Witten et al. 2013). 

The optimal βm are found such that they maximize the log-likelihood, l, presented below 

(Raschka and Mirjalili 2019):  

𝑙(w) = log𝐿(w) = ∑ [𝑦(𝑖)log (𝜑(𝑧(𝑖))) + (1 − 𝑦(𝑖))log (1 − 𝜑(𝑧(𝑖)))]

𝑛

𝑖=1

  

where log is the natural logarithm, y is the sample label, and 𝜑(𝑧) is the activation function for 

logistic regression. 

By rewriting this expression as a cost function, gradient descent can be applied to minimize the 

new expression: 

J(w) = ∑ [−𝑦(𝑖)log (φ(z(𝑖))) − (1 − 𝑦(𝑖))log (1 − 𝜑(𝑧(𝑖)))]

𝑛

𝑖=1
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where 𝜑(z) is the activation for LR. The activation function for LR is the sigmoid function 

defined previously in this chapter. The y is the label for the ith sample. If the first term has y=0, 

that term will be reduced to zero. Likewise, the second term will be reduced to zero if the y=1. 

 

2.8.2 Random forest 

Random Forest is an extension to decision trees that was introduced by Tin Kam Ho in 1995, 

where a collection of decision trees based on pseudo-randomly generated subspaces are 

combined to make a combined classification model (Ho 1995). Decision trees are prone to 

overfitting to the training data if they are allowed to be deep enough (Ho 1995). Ho later showed 

that random forests could improve generalization performance, without reducing training 

performance (Ho 1998).  

Decision trees were first introduced by Morgan and Sonquist in 1963 (Loh 2015) or Hunt in 

1966 (Stefanowski 2008), depending on which source is to be believed. However, decision trees 

would be improved upon since then to be included in classification problems (Stefanowski 

2008, Loh 2015). The algorithm tries to mimic human decision making, as visualized in Figure 

8 below: 

 

Figure 8: Simplified version of a decision tree to decide which animal a person sees. There are obivously more 

options than the four presented animals. 
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Decision trees incrementally split the data points into smaller divisions by analysing the data 

values, similar to how Figure 8 above exemplifies the decision process. At any node, the 

algorithm tries to divide the remaining samples into two groups with as little error (also called 

impurity) as possible. This is called Information Gain (IG), and the IG expression is presented 

here: 

𝐼𝐺(𝐷𝑝, 𝑓) = 𝐼(𝐷𝑝) − ∑
𝑁𝑗

𝑁𝑝
 𝐼(𝐷𝑗)

𝑚

𝑗=1

 

where f is the feature used to split the data set, Dp is the dataset of the parent node, Dj is the 

dataset of the jth child node, I is the impurity measure, Np is the total number of training samples 

in the parent node, and Nj is the total number of samples in the jth child node (Raschka and 

Mirjalili 2019). The IG is the difference between the impurity of the parent node and the child 

nodes. By minimizing the impurity of the child nodes, the IG of that split is maximized. Since 

most decision tree implementations use binary splitting, the summation above can be simplified 

to a left and right node: 

𝐼𝐺(𝐷𝑝, 𝑓) = 𝐼(𝐷𝑝) −
𝑁𝑙𝑒𝑓𝑡

𝑁𝑝
 𝐼(𝐷𝑙𝑒𝑓𝑡) −

𝑁𝑟𝑖𝑔ℎ𝑡

𝑁𝑝
 𝐼(𝐷𝑟𝑖𝑔ℎ𝑡) 

The impurity measure, I, can be either “Gini impurity”, “entropy”, or “classification error”. 

The impurity measures to which degree each sample in a node belong to the same class. In this 

thesis Gini impurity and entropy will be used, and thus presented below.  

Gini impurity is used to minimize the probability of misclassification (Raschka and Mirjalili 

2019): 

𝐼𝑔(𝑡) = ∑ 𝑝(𝑖|𝑡)(1 − 𝑝(𝑖|𝑡)) = 1 − ∑ 𝑝(𝑖|𝑡) 2
𝑐

𝑖=1

 

𝑐

𝑖=1

 

where 𝑝(𝑖|𝑡) is the proportion of samples from class i in a node, t. The maximum 𝐼𝑔 in a binary 

classification problem will be 0.5. 

Entropy is used to maximize the mutual information in the decision tree and can be calculated 

with this expression (Raschka and Mirjalili 2019): 

𝐼𝐻(𝑡) = − ∑ 𝑝(𝑖|𝑡)

𝑐

𝑖=1

log2𝑝(𝑖|𝑡)  
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where  𝑝(𝑖|𝑡) is the proportion of samples from class i in a node, t. The maximum 𝐼𝑔 in a binary 

classification problem will be 1.0. 

 

Random Forests also utilize “Bootstrap Aggregation”, a method for making multiple versions 

of a decision tree predictor and combining these decision trees to make an aggregated prediction 

(Breiman 1994). Breiman coined the term “Bagging” from bootstrap aggregation, and 

suggested that bagging can improve unstable models at the cost of interpretability (Breiman 

1996). By using subsamples of the entire dataset, different models can be created from the same 

dataset. Random Forest takes this approach one step further by only considering a subsample 

of features when creating a decision tree. Therefore, random forests are less likely to overfit to 

the training data since the individual trees only see parts of the training set (Breiman 1996). 

While random forest can overcome many of the challenges related to overfitting in decisions 

trees, they are less interpretable. Recent studies have presented heuristics and methods to 

improve the interpretability of random forest by creating a decision tree based on a decision 

forest (Sagi and Rokach 2020, Vidal and Schiffer 2020).  
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Chapter 3 Methodology 

This chapter will cover the method used to produce the results found in the research and 

simulation performed in this thesis. There methodology will first be presented generally, and 

then each of the points in the general methodology will be explained more in-depth. Thus, the 

reader should be able to see the point of the different chapters. 

 

3.1 Overall structure of methodology and CRISP-DM 

Initially, the overall structure of the methods used in this thesis will be presented. Thereafter, 

the finer details of each element will be explained. The following Figure 9 shows a rough outline 

of the method: 

 

Figure 9: Rough outline of the method used in the analysis. 

As the work progresses from step A through D, the insight into the models and analysis 

increases. Thus, this insight allows for making changes in the previous steps to improve the 

previous steps. As such, the methods is somewhat circular. 
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The methodology is partly inspired by CRISP-DM (Cross-industry standard process for data 

mining), which is an open standard for data mining (Chapman, Clinton et al. 2000). CRISP-DM 

is recognized as the most widely used model for data mining projects, although CRISP-DM has 

been critiqued for only describing “what to do” and not “how to do” (Mariscal, Marbán et al. 

2010). While the bullet list above is divided into 4 parts, CRISP-DM uses the following 6 parts 

(Chapman, Clinton et al. 2000): 

1. Business understanding 

2. Data understanding 

3. Data preparation 

4. Modelling 

5. Evaluation 

6. Deployment 

CRISP-DM’s highlighted steps 2-5 are especially similar to steps A-D in the figure above. The 

following description is based on the following sources if the reader wants deeper explanation 

(Chapman, Clinton et al. 2000, Shearer 2000). 

Business understanding refers to the preliminary work of getting into the project objectives and 

planning how to achieve the objectives. While this step is omitted from the methodology, it is 

a normal step in any thesis or similar long projects. 

Data understanding includes examination of the data set, discovering data problems and 

identifying necessary steps towards preparing the data. The data understanding details relevant 

for this thesis is presented in chapter 3.2 Part A: Data Collection and examination. 

Data preparation refers to all actions to prepare the data for modelling. The actions performed 

in this step is highly specific to the data set and the models created in the next step. The data 

preparation details performed in this analysis is covered in chapter 3.3 Part B: Data pre-

processing. 

Modelling includes creating the appropriate models, as well as tweaking model parameters to 

optimize them. Since the models sometimes require very specific data types or data structures, 

it is common to go back to “data preparation” to adjust these tasks. The ML models used in this 

thesis are largely detailed in theory chapter 2.8 Machine learning algorithms. However, RENT 

models are detailed in chapter 3.4.2 Implementation of RENT. 
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Evaluation of the models and their output, and therefore indirectly the data preparation and data 

understanding, may lead to changes in any of the previous steps. This means that CRISP-DM 

will often lead to a circular approach where the user will improve and tailor their process after 

achieving new insights into the data.  

Deployment is the final step of CRISP-DM, and this step is also not covered in the methodology 

in this thesis. However, this thesis, in itself, is a deployment of the analysis and research that 

has been performed. 

 

3.1.1 Programming language and extensions 

Python 3.7 was used for the programming part of the research, with notable extensions: NumPy 

(Harris, Millman et al. 2020), pandas (The pandas development team 2022), scikit-learn 

(Buitinck, Louppe et al. 2011) are essential tools to assist ML in Python. Moreover, NMBU-

created packages like RENT1, Hoggorm2, and Imskaper3 were used for feature selection, 

plotting, and feature extraction, respectively. The code was mostly tested in Jupyter Lab, a 

browser-based interactive computational environment (Kluyver 2016). The reader may, for 

inspiration or any other reason, look up the code used in the analysis, following this GitHub 

link 4. 

 

3.2 Part A: Data Collection and examination 

The data was collected by the OxyTarget study (NCT number: NCT01816607). The study was 

started in October 2013, and was ended in December 2017 (Redalen 2018). Information about 

the patients’ outcome have been collected through follow-up by general doctors, up to 5 years 

after the patients’ ended treatment. A total of 192 patients were included and 7 of these patients 

had withdrawn their consent by the time the research in this thesis began. Considering the final 

admitted patients were recruited in 2017, most patients had either died or had their final 5-year 

follow-up by the start of 2022 and this thesis. Some patients ended their final follow-up on 

 
1 https://github.com/NMBU-Data-Science/RENT  
2 https://github.com/olivertomic/hoggorm  
3 https://github.com/NMBU-Data-Science/imskaper   
4 https://github.com/LarsEngeseth/Master-thesis  

https://github.com/NMBU-Data-Science/RENT
https://github.com/olivertomic/hoggorm
https://github.com/NMBU-Data-Science/imskaper
https://github.com/LarsEngeseth/Master-thesis
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palliative care, and a few patients had not completed their 5-year follow-up but was registered 

alive in January of 2022.  

 

3.2.1 Clinical data 

This thesis has done research on clinical data and tumour images. In total, 185 patients did not 

retract their consent to be a part of the study. The inclusion data consists of 103 features. The 

features consisted of 7 different datatypes (excluding the NaN-type): 

1. Integer 

2. String 

3. Floats 

4. Python ‘datetime.datetime’-objects 

5. NumPy ‘numpy.int64’-objects 

6. NumPy ‘numpy.float64’-objects 

7. Pandas ‘pandas._libs.tslibs.timestamps.Timestamp’-objects 

 

Python’s datetime-objects can either be “aware” or “naïve”. Naïve objects do not contain 

information about their time zone, whereas aware objects contain that information. It is 

therefore recommended to use aware objects for comparing different datetimes, since their time 

difference is unambiguous (Python Software Foundation 2022). Dates in OxyTarget were all 

performed in Norway, and it is thus assumed that the dates are all from the same time zone. 

The patients are measured on terms of progression-free survival (PFS). PFS is defined as, in the 

context of OxyTarget, the moment until the disease of a patient progressed as a local cancer 

recurrence, metastasis, or leads to death, although the definition of PFS may vary in other 

studies. The PFS event is registered as a binary event, i.e., there was no progression (0) or there 

was some progression (1). Time to the PFS event is measured for every patient that has an event 

before their year-5 check-up after their treatment. PFS is sometimes used as an alternative to 

Overall Survival (OS). A positive OS event is a patient that has died within a certain time, in 

this thesis 5 years, after treatment or diagnosis (National Cancer Institute s.a.). Some patients 

that are OS-positive may have died independently of their initial disease. 

 



32 
 

 
 

3.2.2 Medical images 

Three sets of medical image modalities were used in this thesis: DWI, FFE, and T1T2Sense. 

These image modalities have been introduced in chapter 2.2.1 Medical image types in this 

thesis. The image files were stored as a Nifti (Neuroimaging Informatics Technology Initiative) 

images, a technology introduced in the beginning of the 2000s as an improvement to the 

“Analyze format” (Larobina and Murino 2014). The features of the images were extracted using 

“Imskaper”, a tool created by previous master students from NMBU to extract features from 

images. Imskaper is based on the Python package “pyradiomics” (van Griethuysen, Fedorov et 

al. 2017). A patient cohort of 81 had image files for the three modalities. Each image modality 

yielded 104 features, which resulted in three datasets with 81 patients and 104 features.  

 

3.3 Part B: Data pre-processing  

Pre-processing is almost always needed in predictive analyses, and there are far more 

techniques available than mentioned in these chapters. These chapters will instead cover 

techniques applied in the thesis analysis. 

 

3.3.1 Feature selected through pre-processing 

As discussed in chapter 2.1 Feature selection, feature selection has several benefits. Yet, 

manually removing features would be suboptimal in this thesis. Medical professionals possess 

greater knowledge about informative medical measurements and could thus make a more 

qualified feature selection. The motivation to feature selection in this analysis is to approach 

the problem from a data science perspective, instead of a medical perspective. Thus, RENT was 

tuned to select the most optimal features without the need for using medical domain knowledge.  

It should be noted that some feature selection has already been performed by the medical 

professionals, since they select the parameters to register for the research project. Any other 

measurement that could be relevant in outcome prediction will not be present in the analysis in 

this thesis. Furthermore, some feature exclusion was performed as part of the pre-processing of 

the dataset. For example, several features were too sparse to be included. Methods to treat 

missing data are covered in chapter 3.3.2.2 Imputing missing data. Figure 10 below shows a 
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graphical representation of how the available feature space shrinks for each step in the research 

process as some features are excluded. 

 

Figure 10: Graphical representation of how the feature space is reduced for each step on the research process. 

The rectangles are not to scale and should only serve as a tool to highlight that the bottom red rectangle 

contains potentially important information that are unavailable for the modelling algorithms. 

 

3.3.2 Missing data 

3.3.2.1 Types of missingness 

When a patient lacks information about a certain feature, this is referred to as missing data. 

Missing data is problematic for ML because most models cannot be run on datasets with 

missing data. Missing data is divided into three subgroups:  

1. Missing completely at random (MCAR) 

2. Missing at random (MAR) 

3. Missing not at random (MNAR; sometimes called ‘NMAR’ in literature) 

MCAR means that there is no discernible pattern in the missing data, and MNAR suggests that 

there is a noticeable trend in the way the data is missing (Buuren 2021). Furthermore, MCAR 

imply that the data set is unbiased and that the reason for the missing values have nothing to do 

with the data. Although MCAR is convenient, data sets are rarely MCAR (Buuren 2021).  

MAR implies that there is randomness in the missing values, but that the missingness is 

explained by the information available (Carpenter, Bartlett et al. s.a.). An example from the 

OxyTarget study would be missing surgery locations. The missingness comes from those 

patients did not have any surgery.  



34 
 

 
 

MNAR implies that there is some hidden and definite explanation for the missing values that is 

unrelated to any feature of the remaining data. The missing values would have explained why 

the values are missing, but they are not available to give context. MNAR is the most complex 

case of missing data, and strategies to handle data sets with MNAR is to investigate the cause 

of the missingness (Buuren 2021). 

 

3.3.2.2 Imputing missing data 

Dealing with missing data is generally split into two categories:  

1. Removing samples with missing data OR removing features with too many missing 

samples  

2. Imputing the missing data based on the gathered data 

Removing missing data is the most basic approach to rectifying missing data. However, the 

research project this thesis is based on only contains 185 patients. Each removed sample 

(patient) substantially reduces the size of the data set. Additionally, each patient had at least 

one missing value, which means that the entire sample size would have been deleted if this 

method had been implemented. The reason for this is that several features contain information 

about the individualized treatment of each patient. Some of these treatments or examinations 

were only performed on a few patients, and the remaining patients have no information about 

this treatment in their journal. This may indicate that the patients did not receive this treatment, 

but the information may also be incorrectly not registered. 

Yet it is still possible to remove columns from the data set. Columns with most of their values 

missing or values set to NaN will not be useful, since they cannot be imputed or otherwise kept 

without removing the patients with missing data. Therefore, columns with more than 25% of 

their values were removed. 

Imputing the data is possible in some cases. This requires that the remaining values in those 

columns have high quality and are not too sparse. Missing data was imputed by the mean or the 

median of that column for numerical data or replaced with “MISSING” for categorical data. To 

use these features, they had to be one-hot-encoded into new columns.  

Mean imputation is the most commonly technique used, but it may be inaccurate when the 

distribution of data in these features are skewed (Raschka and Mirjalili 2019). Thus, in each 

column where imputation was relevant it was investigated if the feature was skewed or not. If 

it was skewed, median imputation was chosen. Categorical columns, where the values are 
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binary, used mean imputation since median imputation would introduce skewness in these 

cases. 

 

3.3.3 Encoding categorical values 

Categorial nominal values, for example gender or tumour type, cannot be given to learning 

algorithms without mapping the values to dummy variables (from hereon: features). In this 

thesis, the ML standard of using dummy features was implemented (Garavaglia and Asha 

1998). Since high dimensionality is a challenge in this thesis, one of the dummy features were 

in certain cases removed. This does not reduce the information from that feature, since any 

information in the removed dummy feature is contained in the combination of all the other 

dummy features (Raschka and Mirjalili 2019). Dropping this redundant information will also 

reduce multicollinearity in the model. However, the redundant feature was only removed if the 

category was binary. RENT selects the features it finds most important, but interpretation of 

the results is challenging when certain feature columns are removed. This challenge can be 

illustrated with an example: The feature “mucinous” in the dataset takes three values: “Yes”, 

“No”, “NA”. One-hot-encoding creates 3 columns from this feature. If “No” was dropped and 

“NA” was selected as important, it would be difficult to interpret the implication of this finding. 

It could imply that missing information about “mucinous” was good indicator of patient 

survival. It could also mean that “not-mucinous” was the important information.  

 

3.4 Part C: Making first models 

The patients with DWI, T1T2Sense, and FFE images were grouped into a sub cohort of 81 

patients. For these patients every image modality was available and could therefore be 

compared to each other, as well as to the clinical data. Each modality consists of several images 

taken at different echo times. Echo Time, also called Time to Echo, measures the time between 

the delivery of a pulse and the receival of the signal (Preston 2006). The images will either be 

T1 or T2 weighted, depending on the echo time. T1 and T2 weighting is sensitive to different 

tissue types (Preston 2006). For DWI, images from echo time 6 were selected. For 

T1T2SENSE, images from image time 30 and echo time 2 were used, and for FFE images echo 

time 5 was used. These echo times were suggested by the owners of the research project. 
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The cohort has a 36%/64% split between positive and negative outcomes after the patients had 

competed their 5-year check-up. Thereafter, the image features from all modalities were 

concatenated to form one combined data set. A predictive RF model for baselining was created 

for this dataset. 

After these analyses had been performed, the dataset was analysed by RENT. As described in 

chapter 2.5 RENT introduction, RENT performs a feature selection. The reduced data set with 

the features chosen by RENT was given as training data for RF and LR and the performance 

was compared between all models to investigate the results. Further descriptions regarding the 

analysis after RENT has selected features can be found in chapter 3.4.2 Implementation of 

RENT.  

 

3.4.1 Test set and train set, cross validation and RSKF 

Data sets used to train ML algorithms are usually divided into subsets so that the algorithm can 

be trained on one subset and the algorithm’s predictive performance can be tested on an unseen 

subset. The goal is to have low generalization error when the model is tested on unseen data. 

By training and testing on separate data sets, it is ensured that the model has no information 

about the test set, and the model can therefore give an estimate of the generalization error. 

However, the data set in this thesis was wide-short, which means that there are far more features 

than there are samples. Wide-short data sets often lead to unstable models, where the 

distribution of samples between the training set and the test set substantially influences the 

model’s performance when predicting on the unseen data. A way to overcome the imbalance 

between train performance and test performance is to use “k-fold cross-validation”. K-fold 

cross-validation” (CV) was introduced and formulated sometime during the 1900s, as explained 

in-depth by Stone (Stone 1974). K-fold CV has since then become a standard way to validate 

model performance and has been extensively covered in textbooks for machine learning and 

statistical learning (Smola and Vishwanathan 2008, James, Witten et al. 2013, Raschka and 

Mirjalili 2019).  

When a model uses k-fold CV, it splits the dataset into k folds, and trains a model on k-1 parts 

of the dataset and validates the model’s performance against the remaining unseen fold. 

Specifically, for the analyses performed in this thesis, the dataset was split into 4 folds, which 

means that the model is trained on three folds and tested against the fourth fold, as visualized 

below in Figure 11. Additionally, using a 4-fold approach also means that the training and 
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validation happens 4 times with different test set for each split. The average performance across 

these 4 splits will give a more representative indication of the generalization performance. 

 

Figure 11: Example visualization of a 4-fold CV approach. Each fold is three times part of the training set and 

one time the test set. Note that the test-sets are sometimes referred to as validation-sets. Drawn with inspiration 

from (James, Witten et al. 2013, Raschka and Mirjalili 2019).  

K-fold is slightly improved by ensuring that the folds are stratified, meaning that each fold has 

equal number of positive and negative samples (Raschka and Mirjalili 2019). Stratified 

sampling works by sampling each class to the same sub-cohort, so that the ratio between the 

samples remain intact after sampling (Särndal, Swensson et al. 1992). Stratifying the folds leads 

to lower bias and variance (Kohavi 1995). Interestingly, Kohavi also suggested that “repeated 

stratified k-fold”, explained in the next paragraph, was a slightly stronger alternative to 

stratified k-fold (Kohavi 1995). 

The k-fold approach can be repeated to ensure that the splitting is not an unrepresentative 

division of the data set. This approach is commonly referred to as a “repeated stratified k-fold 

(RSKF). RSKF repeats the stratified k-fold CV with different k-folds in each repetition 

(Raschka and Mirjalili 2019). These repeats may seem redundant, but graphs produced and 



38 
 

 
 

shown in result chapter 4.4 Visual representation of features selected shows the degree to which 

separate folds lead to dissimilar models. By performing a RSKF the model performance is 

further robust, since it is less likely that the k-fold split was unrepresentative of the actual 

generalization performance. 

 

3.4.2 Implementation of RENT 

The ordinary workflow of RENT can be represented as the following steps:

  

In addition to choosing C and L1-ratio, RENT also outputs other results if desired, e.g.: 

selection frequency plots, overview over rate of incorrect predictions for each patient, and 

overview for each feature’s selection frequency. Selection frequency plots display the rate of 

which each feature is chosen among the k models in each RENT analysis, as presented in 

chapter 4.4 Visual representation of features selected. The overview of frequency of incorrect 

predictions per patient will also be presented chapter 4.5 Hard-to-predict patients. 

To further provide confidence in the results, the RENT is evaluated with repeated stratified k-

fold CV. Previous research involving RENT has applied RSKF CV with 4-folds and 2 repeats, 

meaning that the CV is computed twice with 4 folds. This thesis uses 4-fold CV with 5 repeats 

for the RENT analysis. As seen in Figure 11 in the previous chapter, there are 4 folds in each 

CV. The next repetition would have equal format for train and test, but the data samples in each 

of the four folds would be different. These repeats with different train-test splits ensures 

randomness is less likely to lead to extremely fortunate or unfortunate splits between train and 

test. 

 

Define lists of C-values and L1-ratios to 
search through

Run RENT to find optimal C and L1ratio, 
and selection frequency for features

Select Tau-values to choose selection 
strictness

(Optional) Use chosen features in predictive 
modelling
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3.4.2.1 RENT input parameters 

RENT has five model parameters that the user can adjust: γ, α, τ1, τ2, and τ3. γ and α adjust the 

regularization strength and L1-ratio, while the tau-parameters are cut-offs for strictness of 

features selection (Jenul, Schrunner et al. 2021). The next paragraphs will explain each of these 

parameters. 

The parameter γ refers to the regularization parameter C the learning model. C is the inverse of 

δ that was introduced in theory chapter 2.4.1 Regularization. In other words, γ = 1/ δ, and a low 

C-value will correspond to a strong regularization. RENT expects a list of C-values to find the 

optimal C, but it is possible to give a singular list-value. The analysis in this thesis forced RENT 

to evaluate only one C-value for each analysis. 

The parameter α refers to the parameter L1-ratio in elastic net. The ratio determines the ratio 

between the L1 penalty and the L2 penalty (Raschka and Mirjalili 2019). RENT also expects a 

list of L1-ratios, but it is possible to give a singular list-value. The analysis in this thesis forced 

RENT to evaluate only one L1-ratio for each analysis. 

τ1 takes a value between 0 to 1 and serves as a cut-off value to the strictness of the feature 

selection. After elastic net regularization, the features are either 0 (i.e.: not selected) or non-

zero. τ1 dictates that only features that are non-zero more than the selected percentages of times 

will be included. With τ1 set to 0.9, RENT will only output the features that were non-zero in 

more than in 90% of the k models trained on different subsets of the training data. 

τ2 takes a value between 0 and 1 and dictates the minimum proportion of feature weights that 

must be of the same sign. If a feature has weights that are non-zero and is selected frequently, 

but the sign of the weights vary within the k models, it could mean that this feature is less 

important than the features whose weights are always either positive or negative (Jenul, Tomic 

et al. 2021). The τ2 value decides the ratio of the non-zero feature weights that must be of the 

same sign for the feature to be eligible for selection. If τ2 is set equal to τ1, then every feature 

weight must be of the same sign. This requirement is relaxed by setting τ2 smaller than τ1. 

τ3 is a standard students T-test to set the cut-off point where the null hypothesis is rejected, 

meaning that the average of the weight is significantly different from zero.  

The three τ are adjusted to optimize the strictness of the model, i.e., the number of selected 

features. If the user wants more features, the τ should be reduced to an appropriate level.  
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3.4.2.2 Search through C and L1 

In previous master theses, RENT has been tasked to find the optimal C and L1-ratio 

(Mohammadi 2021, Olofsson 2021). This thesis takes a different approach to RENT. There is 

a risk that RENT selects C and L1-ratio corresponding to a local optimum instead of the global 

optimum. The resulting analyses can lead to generalization errors that reduce the test 

performance of the results. Instead, this thesis aims to make a manual grid search across 

different C and L1-ratios to ensure that results from all combinations of these parameters are 

calculated fully. Five C-values [0.1, 0.5, 1, 5, 10] and five L1-ratios [0.1, 0.25, 0.5, 0.75, 0.9] 

were chosen, meaning each RENT analysis would be performed 25 times.  

Additionally, the analysis in this thesis searched all possible combinations of the different τ1, 

τ2, and τ3 values to find the most optimal combination of these parameters. Since the different 

tau values lead to a different selection of features, the resulting ML models will have different 

information available for training. Thus, the model’s performance can be compared based on 

the selected hyperparameters. The workflow presented in chapter 3.4.2 Implementation of 

RENT has been updated and specified to the following workflow: 

 

 

There were in total 450.000 different ML models computed in this brute-force analysis, where 

300.000 are LR models and 150.000 are RF models. The combinations of 5 C-values, 5 L1-

ratios, 5 repeats of 4 RENT models, 5 τ1, 5 τ2, and 2 τ3 gives 25.000 combinations.  These 

25.000 combinations are each trained on 6 RF parameter combinations and 12 LR parameter 

combinations. In the first iteration of this analysis, only the average scores from the 6 RF 

combinations and the average scores for the 12 LR combinations were recorded, meaning that 

Search through all combinations of C and L1-ratio

Run RENT to find selection frequency for features

Search through all combinations of τ1, τ2, and τ3

Use chosen features in predictive modelling

Search through C, L1-ratio, Tau-values, and ML model hyperparamter 
combinations to find best generalization performance on test sets
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the resulting dictionary to store all the results had 25.000 keys for storing all the results. This 

dictionary took 330 MB disk space. The complexity of this computation can also be multiplied 

with the k number of models in RENT, which was set to the default of k = 100. Additionally, 

each RF model contains 100 decision trees by default, which means that there are 100 decision 

trees for each of the 150.000 RF models. This results in a total of 25.000*100*(6*100 RF 

models) + 25.000*100*(12 LR models) = 1.530.000.000 models. 

All of these combinations were computed in one go on a 7 year-old laptop with 16GB RAM 

and an “Intel(R) Core(TM) i7-4710HQ CPU @ 2.50GHz” processor. In total, the modelling 

finished after 14 hours computation time. Initially, the number of ML models were higher, but 

the parameter combinations were reduced as much as possible to make the computation finish 

within a reasonable time.  

Heuristics could be used to lower the search space by investigating if any of the combinations 

of C and L1-ratio did not remove any of the features. In these cases, RENT has not performed 

any feature selection so computing RENT models for that combination is less likely to produce 

a desirable result. However, no C and L1-ratio combinations in this thesis resulted in such a 

situation, and the entire C and L1-ratio space was searched. 

 

3.5 Part D: Evaluation of models and repeating analysis 

Several steps went into evaluating the models. Firstly, the performance metrics for both training 

and testing was registered and compared to investigate indications of overfitting and 

underfitting, as well as general performance. Secondly, the average performance across 

different parameters was investigated to determine if any parameters had higher predictive 

accuracy. Thirdly, the selected features were analysed to both verify that clinical features 

proven relevant in literature were chosen, in addition to evaluating the selected image features. 

Fourthly, records were kept on the patients that were frequently predicted incorrectly. Quick 

evaluations of class distribution were performed to determine if any patterns were discernible 

for these patients. It was also briefly analysed if any of the features stood out among these 

patients that were frequently predicted incorrectly by the algorithms. 
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3.5.1 Making second models 

Initially, the performance of both RF and LR was calculated as an average across the different 

hyperparameters for these classifiers. For the second iteration of this analysis, it was deemed 

appropriate to investigate the difference between RF models based on the hyperparameters. 

Registering every combination of parameters for RF meant that the already large dictionary of 

25.000 values was increased 6-fold in size to 150.000 values. Thus, the second and more in-

depth iteration was only done for RF, and not for LR. However, the computational burden was 

only reduced from 1530 million models to 1500 million models. 
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Chapter 4 Results 

This chapter will present relevant results from the analysis. Firstly, the features selected from 

by the RENT analysis will be presented. Secondly, there will be presented results for the 

performing models. This chapter will also present the results regarding the best performing 

models. Finally, there will be presented a short analysis of the patients that were the most 

frequently predicted incorrectly.  

 

4.1 Feature selection frequency from RENT 

One of the outputs from the RENT analysis are the most often selected features. The features 

for each RENT model were counted across all 25 000 RENT parameter combinations. These 

features have been summarized below in Table 2.  

Table 2: Table of the 15 most frequently selected features for all RENT models. The features are color coded: 

green for clinical, yellow for FFE, and blue for DWI. 

Feature name Times selected 

(max: 25 000) 

Rel. frequency   

(n= 21 878) 

Abs. frequency

(n= 25 000) 

Susp. metastatic lesions at diagnosis: Yes  20 294 95.6 % 81.2 % 

Type of surgery: Hartmann  16 322 74.6 % 65.3 % 

Adjuvant treatment: Yes  16 024 73.2 % 64.1 % 

CEA (ug/L)  13 488 61.7 % 54.0 % 

FFE: LBP_012  13 426 61.2 % 53.7 % 

MR distance from anus to tumour  12 255 56.0 % 49.0 % 

R classification_0.0  12 074 55.2 % 48.3 % 

FFE: glcm_ClusterProminence_d_1  11 654 53.3 % 46.6 % 

DWI: glcm_MCC_d_1  11 632 53.2 % 46.5 % 

DWI: first_order_InterquartileRange  11 599 53.0 % 46.4 % 

FFE: first_order_Median  11 285 51.6 % 45.1 % 

p/ypN (TNM ed. 7): 0.0  11 021 50.4 % 44.1 % 

Lymphocytes (10ˆ9/L)  10 893 49.8 % 43.6 % 

FFE: LBP_102  10 802 49.4 % 43.2 % 

p/ypT (TNM ed.7): 4.0  10 581 48.4 % 42.3 % 
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Feature selection frequency can be considered in two ways: frequency to all RENT models 

(n=25 000) or frequency to all RENT models that resulted in any features (n=21 878). For 

certain τ1 and τ2  inputs, the RENT model returned zero features, and thus no machine learning 

was possible. Higher τ1 and τ2 input corresponds to stricter feature selection, and higher τ1 and 

τ2 had the highest frequency of “empty” ML models. 

Among the 100 most frequently selected features there were 58 clinical features, 25 FFE 

features, 13 DWI features, and 5 T1T2Sense features. T1T2Sense images were not among the 

15 most frequently selected features. The highest ranked T1T2Sense feature was the 68th most 

selected feature, and it was selected by 5665 of the 25 000 RENT parameter combinations. 

The three least frequently chosen features reveal an interesting detail: The two least selected 

features were never selected in any of the models. The third least selected features were chosen 

350 times. Thus, every feature except two in Table 3 below were at least chosen more than 349 

times even though these features might not contain any predictive information. The two features 

that were never chosen contains zeros in each sample.  

Table 3: The three least frequently selected features. 

Feature name Times selected  

(max: 25 000) 

Rel. frequency   

(n = 21 878) 

Abs. frequency 

(n = 25 000) 

FFE: gldm_SmallDependenceEmphasis_d_1  350 1.6 % 1.4 % 

DWI: first_order_Minimum  0 0.0 % 0.0 % 

FFE: first_order_Minimum  0 0.0 % 0.0 % 
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Similarly, counting the selected features from the RENT analyses if τ1 and τ2 is set to 0.75 gives 

the following feature selection frequency: 

Table 4: Feature selection frequency for τ1 and τ2 set to 0.75. There are 1000 possible combinations, although 

only 970 of these models contained at least one feature. The features are color coded: green for clinical, yellow 

for FFE, and blue for DWI.  

Feature name Times selected  

(max: 1000) 

Rel. frequency   

(n = 970) 

Abs. frequency 

(n = 1000) 

Susp. metastatic lesions at diagnosis: Yes  956 99 % 96 % 

Adjuvant treatment: Yes  806 83 % 81 % 

Type of surgery: Hartmann  806 83 % 81 % 

FFE: LBP_012  604 62 % 60 % 

MR distance from anus to tumor  602 62 % 60 % 

FFE: glcm_ClusterProminence_d_1  582 60 % 58 % 

R classification: 0.0  574 59 % 57 % 

CEA (ug/L)  572 59 % 57 % 

DWI: first_order_InterquartileRange  550 57 % 55 % 

DWI: glcm_MCC_d_1  534 55 % 53 % 

FFE_ first_order_Median  530 55 % 53 % 

FFE_ glcm_ClusterShade_d_1  508 52 % 51 % 

Lymphocytes (10ˆ9/L)  506 52 % 51 % 

Blood type: B+  504 52 % 50 % 

p/ypT (TNM ed.7): 0.0  504 52 % 50 % 

 

Table 4 is one example of five possible τ12 -values. The other tables did not reveal any further 

insights. They are similar to the presented table, although the frequency of feature selection is 

lower overall due to stricter feature selection. These tables could also be created for each τ1 or 

τ2 individually, but these 25 tables have not been included. 
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4.2 Model performance  

4.2.1 Average performance for RF and LR 

The combined mean test performance scores for each RF and LR models are presented in Table 

5 below. There total averages are computed from 150.000 RF models and 300.000 LR models. 

The RF model averages are computed from 6 hyperparameter combinations, and the LR model 

averages are computed from 12 hyperparameter combinations. 

Table 5: Average test set performance for random forest and logistic regression. Each value is presented as the 

mean performance plus or minus 1 standard deviation.  

Test set performance 

 Accuracy MCC F1 positive F1 negative ROC AUC 

Random Forest 0.69 ± 0.08 0.28 ± 0.23 0.44 ± 0.17 0.78 ± 0.07 0.62 ± 0.10 

Logistic Regression 0.67 ± 0.08 0.25 ± 0.19 0.45 ± 0.15 0.76 ± 0.07 0.61 ± 0.09 

MCC includes the highest absolute and relative SD. “F1 negative” is the F1-score for the 

scenario where the target label has been flipped, such that a patient being alive after 5 years of 

treatment is the positive class. The algorithms are more accurate at predicting these patients 

correctly. 

The combined average train set performance scores for all RF and LR models are presented in 

Table 6 below: 

Table 6: Average train set performance for random forest and logistic regression. Each value is presented as the 

mean performance plus or minus 1 standard deviation.  

Train set performance 

 Accuracy MCC F1 positive F1 negative ROC AUC 

Random Forest 0.93 ± 0.08 0.84 ± 0.19 0.88 ± 0.16 0.95 ± 0.06 0.91 ± 0.11 

Logistic Regression 0.89 ± 0.08 0.74 ± 0.19 0.79 ± 0.16 0.92 ± 0.06 0.85 ± 0.11 

 

The standard deviation reveals that these averages are a result of varied models. Further 

investigation found that the best performing RSKF model had test accuracy of 76.0% ± 7.0%. 
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Individual RF models without CV can have test accuracy of 0.9 or when zooming in on these 

RSFK models.  

Averaging performance for each τ1 -value reveals that the difference between different τ1 values 

are small, as shown in Table 7 below: 

Table 7: Table with average performance for different τ1 -values. There are between 4638 and 3420 models in 

each of these average scores. Each performance metric has extra digits so it is possible to notice any difference 

between the scores. 

RF test performance for different τ1 -values 

 Accuracy MCC F1 positive F1 negative ROC AUC 

τ1 = 0.1 0.680 0.265 0.443 0.771 0.614 

τ1 = 0.3 0.682 0.268 0.445 0.772 0.615 

τ1 = 0.5 0.681 0.267 0.447 0.771 0.616 

τ1 = 0.75 0.680 0.269 0.457 0.768 0.619 

τ1 = 1.0 0.674 0.263 0.463 0.759 0.617 

 

A similar pattern is found for LR models with the same τ1 -values. This table can be found in 

the Appendix in chapter 7.1.  

The table above can be recreated by averaging across different τ2 -values. Table 8 below 

presents this overview: 

Table 8: Table with average performance for different τ2 -values. There are between 4638 and 3420 models in 

each of these average scores. 

RF test performance for different τ2 -values 

 Accuracy MCC F1 positive F1 negative ROC AUC 

τ2 = 0.1 0.680  0.264  0.440  0.771  0.613 

τ2 = 0.3 0.681  0.266  0.444  0.772  0.615 

τ2 = 0.5 0.681  0.267  0.446  0.771  0.615 

τ2 = 0.75 0.682  0.275  0.463  0.770  0.621 

τ2 = 1.0 0.673  0.260  0.462  0.758  0.616 
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The table highlights that the average performance for different τ2 values does not alone define 

the model performance. A similar table for LR performance instead of RF performance can be 

found in the Appendix in chapter 7.1.  

 

4.2.2 High performing parameters 

Averaging performance across fewer models yields more variation within the performance 

metrics. There is a subset of 284 RSKFs that have RF test accuracy higher than 73.0%. Among 

these models, certain C-values, L1-ratios, τ1 - and τ2 -values can result in a higher number of 

high performing models on the test set. Table 9 below shows this distribution. 

Table 9: This table shows which parameters are most prevalent in models with test accuracy higher than 73%. 

There are 20 repeated stratified k-folds in each of these averages. The table is split into 4 tables, each detailing 

the distribution of models for each parameter.  

C-value # of models 

0.1 170 

0.5 6 

1.0 4 

5.0 62 

10.0 42 

 

L1-ratio # of models 

0.10 68 

0.25 146 

0.50 56 

0.75 12 

0.90 2 

. 

τ1 # of models 

0.1 36 

0.3 34 

0.5 28 

0.75 52 

1.0 133 

  

 

τ2 # of models 

0.1 45 

0.3 42 

0.5 38 

0.75 60 

1.0 106 
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4.2.3 Best RF performance 

The best performing RSKF has the following combination of parameters:  

C:5, L1-ratio: 0.1, τ1:1, τ2 :0.5, Tau3:0.995, RF_Max_depth:2, RF_criterion:‘gini’.  

L1-ratio at 0.1 means that the model used almost entirely L2-regularization (ridge regression). 

However, τ1 =1 means that the features selected for these models were chosen in 100% of the 

RENT models.  

There are 20 RENT models that use this combination of parameters, so the average performance 

is a result of different test/train-splits and selected features. The best performance can be seen 

in Table 10 below: 

Table 10: Best train and test performance for RF. Each of the computed averages contain 20 different models, all 

of which have unique train-test-splits. Each value is presented with the average score with the corresponding 

standard deviation of that value. 

Best performing RF model 

 Accuracy MCC F1 positive F1 negative ROC AUC 

Test 0.76 ± 0.07 0.47 ± 0.16 0.57 ± 0.13 0.83 ± 0.05 0.69 ± 0.08 

Train 0.88 ± 0.03 0.74 ± 0.06 0.80 ± 0.05 0.91 ± 0.02 0.84 ± 0.04 

 

Interestingly, the train performance is lower for the best RF performance than the train 

performance is for the average RF performance. The results also show that the standard 

deviation is lower in the train performance than in the test performance.  

 

4.2.3.1 Feature selection frequency for best models 

The most frequently selected features for the best performing models are presented in Table 11 

below. The leading prefix (either “FFE” or “DWI”) indicates which image set the feature is 

derived from. Only 3 of the 31 features are from DWI images, 11 are from FFE images, while 

the remaining 17 are from the clinical dataset. No features from T1T2Sense images were 

selected by this subset of models.  
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Table 11: Overview over the 31 selected features from the 20 models that created the best performing RF RSFK 

model. Missing place of surgery and missing type of surgery indicate that the patients did not have surgery. This 

often happened due to their health rapidly deterioration and their subsequent passing. There are 80 more features 

that were chosen at least 1 time but fewer than 5 times. 

Feature name Number of selections (max: 20) 

CEA (ug/L) 20 

Suspected metastatic lesions at diagnosis: Yes 19 

Adjuvant treatment: Yes 18 

FFE: LBP_012 16 

DWI: glcm_MCC_d_1 13 

FFE: first_order_90Percentile 13 

Type of surgery: Hartmann 13 

FFE: LBP_102 11 

Place Surgery: MISSING 11 

Type of surgery: MISSING 11 

p/ypT (TNM ed.7): MISSING 11 

p/ypN (TNM ed. 7): MISSING 11 

R classification: MISSING 11 

Lymphocytes (10ˆ9/L) 9 

p/ypN (TNM ed. 7): 0.0 9 

p/ypT (TNM ed.7): 4.0 8 

FFE: glrlm_ShortRunHighGrayLevelEmphasis 7 

Blood type: B+ 7 

FFE: first_order_Median 6 

FFE: glrlm_GrayLevelVariance 6 

FFE: glcm_ClusterProminence_d_1 6 

mrT (TNM ed.7) 6 

GT (U/L) 6 

DWI: first_order_InterquartileRange 5 

DWI: first_order_RobustMeanAbsoluteDeviation 5 

FFE: glrlm_HighGrayLevelRunEmphasis 5 

FFE: gldm_HighGrayLevelEmphasis_d_1 5 

FFE: glcm_Autocorrelation_d_1 5 

FFE: glcm_ClusterShade_d_1 5 

Type of surgery: Lower anterior resection (LAR) 5 

p/ypT (TNM ed.7): 3.0 5 
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4.3 Modelling on full dataset without RENT 

ML models were also trained without RENT to benchmark any performance improvement or 

performance reduction from utilizing RENT. RF alone performed worse than RF with RENT, 

but not significantly worse. The performance is summarized in Table 12 below: 

Table 12: Performance for a RF model without feature selection from RENT. The average performances are 

computed from 120 models. 

RF model without RENT 

 Accuracy MCC F1 positive F1 negative ROC AUC 

Test 0.66 ± 0.08  0.21 ± 0.21  0.36 ± 0.17  0.77 ± 0.06  0.58 ± 0.08 

Train 0.97 ± 0.04  0.94 ± 0.09  0.95 ± 0.07  0.98 ± 0.03  0.96 ± 0.06 

The models are less stable than the models created using feature selection from RENT. The 

standard deviations are also always equal or greater for the performance of the models without 

RENT. The models computed for this comparison all used the same RF hyperparameters as the 

models computed with RF and RENT. 

 

4.4 Visual representation of features selected 

The following frequency plot in Figure 12 shows a graphical representation of how often a 

certain feature was chosen. As seen in the figure, RENT most frequently choose the rightmost 

features, which are the clinical features.  

  

Figure 12: Frequency plots from the RENT analysis. The y-axis represents a percentage from 0% to 100%. 

Features that are always selected in every split will have a frequency of 100%. This RENT analysis used C=0.1 



52 
 

 
 

and L1-ratio=0.1, and the 2 plots have different train-test splits. Features are sorted left to right: DWI, FFE, 

T1T2Sense, Clinical. 

Figure 12 above is created on the basis of the same C and L1-ratio, but the feature selection 

frequency differs due to different train-test splits. Thus, as τ1 is changed for each of these 

selection frequencies, the features selected might differ for identical C and L1-ratio. 

However, the feature selection frequency plot is altered by using different C and L1-ratios. By 

comparing the plots from Figure 12 and Figure 13, there are fewer features selected as the 

degree of regularization is changed, both in terms of C and L1-ratio. 

 
 

Figure 13: Frequency plots from the RENT analysis. The y-axis represents a percentage from 0% to 100%. 

Features that are always selected in every split will have a frequency of 100%. This RENT analysis used C=0.5 

and L1-ratio=0.9, and the 4 plots have different train-test splits. Features are sorted left to right: DWI, FFE, 

T1T2Sense, Clinical. 
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4.5 Hard-to-predict patients 

The outcome of certain patients was predicted incorrectly more often than other patients. The 

following table is sorted by the ratio of incorrect prediction. Patients who died (class 1) are in 

the majority in the group of patients that are frequently predicted incorrectly. Only 36% of the 

samples in the data set are class 1, while 73.3% of the 15 most frequently incorrectly predicted 

patients are class 1.  

Table 13: Table highlighting which patients were most often incorrectly predicted after RENT analysis. Patients 

are randomly assigned to test set and train set, and there is therefore variance in the number of total incorrect 

predictions for any given patient. 

Patient ID Total incorrect predictions Incorrect ratio (%) Patient outcome  

24 389 666 99.79 Dead 

16 330 288 96.80 Dead 

21 354 606 94.54 Dead 

51 436 380 94.20 Dead 

32 395 712 93.99 Dead 

72 437 638 88.86 Dead 

64 384 148 87.17 Dead 

10 326 944 87.11 Dead 

60 325 094 86.29 Alive 

77 349 072 82.40 Alive 

63 356 222 81.47 Dead 

37 375 400 79.86 Dead 

33 345 258 78.65 Dead 

19 358 402 77.32 Alive 

14 361 538 77.18 Alive 
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Chapter 5 Discussion 

This section will provide a discussion surrounding the results and their implications. Firstly, the 

performance of the models will be benchmarked against similar work in literature. Secondly, 

there will be discussions about the potential overfitting by the average models. Thirdly, there 

will be a discussion regarding certain limitations of the results and the study. Finally, the 

features chosen by RENT will be compared to similar literature, to both validate the findings, 

as well as introducing radiomic features. Since the selected features have not been introduced 

in the theoretical background of this study, there will be provided several citations to literature 

during this discussion that the reader may use for further reading into the medical biomarkers.  

 

5.1 Discussions on performance of models 

The average RF and LR predictive performances are evaluated using accuracy, MCC, F1-score, 

and ROC-AUC. RF average test performance is slightly higher than LR average test 

performance (0.01 to 0.02 points). However, each of the performance metrics are presented 

with a corresponding standard deviation. Using only one standard deviation means that the RF 

and LR test performances are indistinguishable. The average F1-positive and F1-negative 

scores reveal that prediction of deceased patients is substantially harder for the algorithms than 

to predict the living patients.  

The performance can be compared to similar studies to benchmark the performance as well as 

the methods. Recent studies have examined the relationship between CRC and the predictive 

ability of radiomic features, and they are in accordance with the findings in this thesis. The 

methods and data sets vary to some degree between these studies, but all the studies use feature 

selection before training their models so that the feature space is reduced. Badic et al. found 

that some positive correlations could be found between second order third order radiomic 

features and overall survival of CRC patients (Badic, Desseroit et al. 2019). Dai et al. computed 

the OS for CRC patients based on radiomic features with a test AUC of 0.768 (95% CI, 0.745-

0.791, 10-fold CV) after using LASSO Cox to select the relevant features (Dai, Mo et al. 2020). 

Their results indicated that their selected radiomic features performed better than their 

clinicopathological features. Li et al. predicted the OS for patients with rectal cancer with 

clinical, radiomic, and clinicoradiologic features, and found that clinicoradiologic features had 

the highest test AUC of 0.802 (Li, Zhu et al. 2020). However, they applied only one split using 
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a 7:3 ratio between the train set and test set, instead of the more stable RSKF cross-validation 

performed in this thesis.  

Nonetheless, the interest of exhaustive array modelling is not necessarily to find the average 

performance across all models, but to find the best performing model. The best performing 

model had test accuracy of 76.0 % ± 7 % and train accuracy of 88.0 % ± 3 %. Thus, the average 

model performance had test accuracy 7 percentage points lower than the best performing 

models. This result substantiates the importance of searching for a maximum in ML and AI. 

Since the best performing models is based on a 20 RSKF, the results were less likely to end up 

having high performance through a randomly advantageous split. Individual models have had 

test accuracy higher than 90%, but these numbers are not cross-validated, and cannot be 

reported as an individual result.  

The benchmarking of a RF model without RENT provides further confidence in the results. The 

average RF model without feature selection performed worse than the RF model with RENT. 

Furthermore, its gap between test and train performance was larger, and multiple test-train splits 

had training accuracy of 100%. Overfitting like this is a well-known problem for high 

dimensional datasets, and this problem is confirmed in the analysis. On the other hand, 

performing the analysis without RENT could be computationally less demanding. The RF 

parameters would have 400 features to predict with, which could result in more complex 

computation if the number of decision trees was very large. An analysis without RENT would 

also not result in the feature analysis that can be done to examine feature importance.   

 

5.2 Possible explanations for overfitting 

The difference between the train and test performance of the models indicates that the models 

are on average overfit to the training samples. The difference between the RF models average 

test accuracy and train accuracy is 0.69 and 0.93, which is 24 percentage points (Table 5 and 

Table 6). While this was a surprising discovery, it has been reported in literature that RF can 

overfit (Segal 2003, Gashler, Giraud-Carrier et al. 2008), despite Breiman’s claims when he 

introduced the RF technique (Breiman 1996). This difference in train accuracy and test accuracy 

is lower for the best RF models, 0.76 vs 0.88, which is 12 percentage points (Table 10). The 

models with the highest test accuracy are more generalizable, and these models also have lower 

train accuracy.  
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One explanation for this overfitting might be that the features provided by the RENT analysis 

are not optimal to explain the train set available to RF. If this assumption is true, it would mean 

that RF is limited to create a suboptimal model for the data samples. Naturally, RF can create a 

model designed to explain the train set, since the features provided are designed to explain the 

train set in particular. Thus, when the model is given new and unseen data, it will not be able 

to generalize well. One of RF’s strength is its ability to decorrelate the features in the decisions 

trees by bagging. This ability is limited by limiting the available features. However, the results 

show that an RF model without RENT performs worse, so the feature selection might not be 

the issue. 

Another explanation could be that the data set is difficult to predict, both due to its short-wide 

size and complexity. Therefore, each split in the CV is prone to overfitting due to the limited 

data available. Each train set consists of 60 samples, and by analysing the performance across 

different τ1-values and τ2-values, it seems that the strictness of feature selection is not alone an 

indicator of average model performance. Some evidence suggests that high τ1 and τ2 values 

(meaning stricter feature selection) lead to higher number of models with high test accuracy, 

but this effect may be due to a higher variance in performance within models with fewer 

features.  

The analysis has also introduced some uncertainty in the modelling by using OS instead of PFS. 

This leads to some of the deceased patients being extremely hard to predict, since they may 

have died from something that is unrelated to their cancer. Results from the RENT analysis 

indicates that the class for the dead patients are predominant prevalent in list of the hardest-to-

predict patients. This issue may introduce uncertainty in the models since each difficult sample 

substantially contributes to the data in each train set when the train set is only 60 samples long. 

There may be missing information explaining the outcome of these patients that is not available 

to the models. 
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5.3 Imputation and missing data 

There are more complex and sophisticated ways (multiple imputation) to impute missing data, 

which may have yielded higher performance in the models (Raghunathan, Lepkowski et al. 

2000, Rodgers, Jacobucci et al. 2021). Other methods, like MICE (van Buuren  and Oudshoorn 

2000, van Buuren 2007) and PPCA (Hegde, Shimpi et al. 2019) could also be considered. 

Recursive partitioning might also have yielded an improved performance (Doove, Van Buuren 

et al. 2014).  

On the other hand, Morvan et al. argue that these imputation techniques have no theoretical 

grounding, and that their impute-then-regress methodology with powerful learners discover the 

true nature (Morvan, Josse et al. 2021). Perez-Lebel et al. argue that MICE is computationally 

intractable for large datasets (Perez-Lebel, Varoquaux et al. 2022). Furthermore, they argue that 

missingness is informative and that although the information is imputed, the imputation should 

be remembered in an “indicator column”.  

 

5.4 Selected features 

There are two tables of selected features presented in the results (Table 2 and Table 11). 

Interestingly, several of the features chosen frequently across all models are not present in the 

best models. This finding indicates that these frequently selected features may not be the ideal 

features to achieve high test set predictive ability. Since the best performing models contain 20 

different test/train-splits as a part of RSKF, there is indication that the best performing features 

are generalizable to the entire dataset. This section will present published research as validation 

of the findings from Table 11, since these features predict the most accurately on test data. 

Certain details of these biomarkers and features are medical. Discussion surrounding the 

medical details should be performed by medical professionals. Citations in the text will lead the 

reader to sources for further reading. 

 

5.4.1 Comparing selected clinical features to published literature 

The feature named ‘CEA’ refers to carcinoembryonic antigen, a protein usually found in 

developing baby tissue, that is also a CRC biomarker (Hall, Clarke et al. 2019). While the 

systematic review from Hall et al. found that CEA is associated with advanced disease, they 
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also found that CEA was not sufficient alone to predict OS. The findings that CEA is an 

important feature remains in agreement with other published literature (Chu, Erickson et al. 

1991, Thirunavukarasu, Talati et al. 2015). CEA levels has also been used as an indicator to 

predict patient response to ramucirumab treatment (Yoshino, Obermannová et al. 2017). 

Metastasis is a well-known indicator of poor prognosis for CRC patients (Kennecke, Yu et al. 

2014). Additionally, Wang et al. found that the location of metastasis significantly influenced 

patient OS (Wang, Li et al. 2020). The location of metastasis was recording for this study, but 

the feature was so sparse that it was excluded from the analysis. 

Adjuvant treatment is given to patients after their operation to decrease the probability of cancer 

recurrence (Carrato 2008). Adjuvant treatment was given to 4 patients in the cohort from this 

analysis, and they were alive 5 years after treatment. Since there are only 4 patients that 

underwent this treatment, they all had the same outcome after treatment, this feature is an 

excellent predictor for this dataset. However, this feature may not be generalized to perform 

equally well on other data sets, since it may be a spurious correlation. 

Several of the selected clinical features are related to the patients’ treatment, e.g.: place of 

surgery, type of surgery, p/ypT staging, and p/ypN staging. Whenever these features were 

“missing”, it usually meant that the patient died before surgery was performed (p/ypN and 

p/ypT staging is performed after surgery). Therefore, the features serve as an indicator for the 

algorithm to predict patient outcome. As such, the results do not mean that patients have a better 

prognosis if the doctors do not to operate. It could be argued that the selection of features related 

to treatment may lead to over-optimistic models, since the treatment is specific and 

individualized for each patient based on the clinical factors of the patient. Regardless, these 

findings build confidence in the results of the feature selection. The appropriate treatment will 

obviously decide how likely it is that a patient survives the treatment.  

GT (Gamma Glutamyl transferase) was selected in 6 out of 20 models, and this biomarker has 

previously been reported as relevant to predict OS for CRC patients (He, Guo et al. 2013). 

Among the 5 patients with GT > 100, 4 died before their 5-year check-up, which could explain 

the predictive ability of the feature in this data set. GT has also been used as a predictor of 

patient outcome in CRC with liver metastasis (Xiao, Peng et al. 2020). GT is the feature selected 

in the analysis that has the least documentation in literature as a biomarker for CRC, although 

GT has been used as an indicator of liver disease and other cancer metastases.  
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Lymphocytes are a type of white blood cells that determine the immune response to foreign 

substances (Britannica 2020). In the best performing models, lymphocytes were selected 9 out 

of 20 times (Table 11). Lymphocyte count has shown some association with chemotherapy 

response (Cézé, Thibault et al. 2011, Liang, Zhu et al. 2016) and cancer recurrence and death 

(Chu-Yuan, Jing et al. 2013).  

The RENT analysis indicates that B+ is an important factor to predict OS in CRC patients. This 

correlation could not be confirmed by published literature. Some studies have investigated the 

relationship between blood groups and risk of CRC (Huang, Wang et al. 2017, Kashfi, 

Bazrafshan et al. 2018). One plausible explanation for the finding in this thesis is that the feature 

is spuriously correlated to survival. There are only six B+ patients in the cohort, and they were 

all alive 5 years after their treatment. Thus, blood type B+ is an accurate predictor for this data 

set in particular, but the feature could underperform in other data sets.  

 

5.4.2 Frequently selected radiomics features 

Considering the clinical findings are supported by literature, there is more trust in the results 

regarding the radiomic features. Interestingly, T1T2Sense-features were not chosen frequently 

by the best performing model or the average performing model. The images chosen for 

T1T2Sense may be from a low-information echo, or maybe these images are less informative 

overall to predict OS in CRC patients. The ratio between DWI and FFE features reveal that the 

FFE features have a higher predictive ability for these patients. Again, since there are unused 

echo times for DWI and FFE, the results may be different if other echo times had been used as 

data input.  

Interpretation of these features could be done by analysing the images in conjunction with the 

features extracted. Insight may be difficult to extract from this analysis, because the meaning 

of feature descriptions like “Cluster Prominence” may be challenging to understand as a human. 

One of the strengths of radiomics is that the algorithms find patterns hidden from the human 

perception. Therefore, it may be unprofitable to try to interpret and translate these features to 

human understanding. Descriptions and further reading regarding the different types of features 

extracted by PyRadiomics can be found in the documentation for PyRadiomics if the reader is 

interested 5 (van Griethuysen, Fedorov et al. 2017).  

 
5 https://pyradiomics.readthedocs.io/en/latest/  

https://pyradiomics.readthedocs.io/en/latest/
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5.5 Importance of cross-validation and search techniques  

The difference between the best models and the average models are substantial. This puts 

emphasis on the importance of using heuristics and search techniques to find the optimal models 

for any situation. The average model is barely better than a “dumb classifier”, and several 

individual models have AUC < 0.5, which is worse than guesswork. The results also revealed 

that the best performing models had lower train performance, further indicating that these 

models are less overfit, in addition to having higher test performance. Overfitting and 

underfitting remains relevant, even after performing a features selection.  

The overall spread of performance across different parameter combinations also supports the 

importance of using careful and thorough cross-validation to reduce the influence from 

randomness on the model performance. The local maximum test accuracy is higher than 90%, 

but it would not be realistic to expect this model to perform equally well on new data, since the 

high performance is likely due to an advantageous train-test-split. Other research should be 

equally careful to confirm that their findings are valid. 

Likewise, the resulting average feature selection and the best performing feature selection 

differs. The feature selection should be evaluated with the models that has the smallest 

difference between train and test performance. In this thesis, that difference is the smallest for 

the models with the highest accuracy.  
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Chapter 6 Conclusion 

 

6.1 Summary of thesis  

The goal of this thesis was to test a new brute-force approach to feature selection with RENT 

to achieve more stable and generalizable machine learning models for cancer patients. The 

results indicate that RF models with RENT have higher predictive ability and lower degree of 

overfitting compared to RF models without RENT. The best models by test performance had 

average accuracy 0.76 ± 0.07, MCC 0.47 ± 0.16, F1 positive class 0.57 ± 0.13, F1 negative 

class 0.83 ± 0.05, and AUC 0.69 ± 0.08, which is comparable to similar studies reported in 

literature. The corresponding train performance was accuracy 0.88 ± 0.03, MCC 0.74 ± 0.06, 

F1 positive class 0.80 ± 0.05, F1 negative class 0.91 ± 0.02, and 0.84 ± 0.04, which indicates 

that there is some degree off overfitting and challenges to generalize the models, despite 

implementation of feature selection with RENT. This error is larger for a similar RF model in 

which no feature selection by RENT was performed. 

The analysis in this thesis used a brute-force approach to search through 450.000 model 

combinations. The average models have considerably worse performance than the performance 

of the best models. This highlights the importance of using search techniques to improve model 

performance. Additionally, this thesis used extensive validation of the results to build stable 

models with high confidence in the results. The variance in the model performances has proved 

to be so high that it suggests that other research must be equally vigilant and careful to not 

report fortunate local maxima. Furthermore, this brute-force framework has been tested in 

small-scale with low processing power, which means that the framework has proven it’s 

usefulness to scale up. This framework could also be applicable for machine learning in other 

similar medical situations, and potentially in other research topics. 

All the frequently selected clinical features can be supported by published literature. The 

radiomic features with the highest predictive ability have also been reported in the results, but 

these features have not been confirmed in other literature yet. These features provide a basis to 

perform further research and may aid prognosis for CRC patients in the future. Considering the 

sample size is small in this analysis (n=81), one should be careful to generalize the findings in 

regarding important features without conducting further research on a larger sample size. 
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6.2 Suggestions for future work 

6.2.1 PCA and unsupervised learning on difficult patients 

There may be clusters of different patients that could be revealed from using unsupervised 

learning methods like clustering or PCA. This analysis might reveal that certain dead patients 

are different from other dead patients. Could this confirm our suspicion that “dead” is too 

coarse/rough? The results indicated that patients that are the most frequently incorrectly 

predicted also have an unusual high rate of dead patients. Future work should investigate if 

there is a pattern to these patients, for example by using PCA with a union of the features that 

RENT have selected. Thus, the analysis could reveal if there is a pattern to these patients that 

is not detected through the analysis in this thesis. The PCA could also reveal that there is not a 

pattern to these patients, and that the relevant information is not available. Determining this 

information is crucial for the medical community, so that they may more accurately take the 

relevant history of cancer patients. 

 

6.2.2 Expansion of the framework introduced in breadth/depth 

This framework can be expanded upon in both breadth and depth, and it should be! It serves as 

a proof of concept that has a potential to dig thoroughly through a small dataset to find an 

optimal combination of parameters, given a powerful enough processor. This research 

compressed the result to 450.000 model entries. This resulting dictionary was built so that 

accessing the results and slicing them was convenient with for-loops. Thus, expanding the 

analysis in breadth or depth is a matter of expanding the search space and devoting more 

computational resources to the analysis.  

The three image modalities used in this thesis holds six, five, and 180 echo times. The other 

echo times may include other predictive information. Since only one echo time was used for 

each of the image modalities, other features may be selected by RENT if other echo times are 

analysed. Alternatively, such an analysis could strengthen our results by reselecting the same 

image features. Potentially, these finding may be compared to other radiomic research to 

investigate if any features are generalizable to all CRC patients. Especially T1T2Sense 

performed poorly overall, and the image modality might perform better by changing the echo 

time. 
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6.2.3 Improve interpretability by removing features describing treatment 

Both Table 2 and Table 11 describes the rate of which features were selected. Some of these 

features describe the treatment (or the lack of treatment) a patient received. These features are 

useful to predict the outcome of the patient because they are derived from the state of the patient. 

However, knowing that these features have high predictive ability is not information that 

doctors can act upon in their treatment and prognosis for patients, since the patients have already 

received treatment at this point. These features are also correlated since they explain the same 

treatment information. If a study aimed to give doctors further confidence in their or find new 

biomarkers, it could be more useful to exclude the features derived from the given treatment. 

An analysis as such could potentially result in higher interpretability of the resulting features.  
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Chapter 7 Appendix 

7.1 LR test performance for different Tau-values 

 

LR test performance for different τ1 -values 

 Accuracy MCC F1 positive F1 negative ROC AUC 

τ1 = 0.1 0.669  0.252  0.452  0.755  0.613 

τ1 = 0.3 0.670  0.253  0.452  0.755  0.613 

τ1 = 0.5 0.671  0.255  0.453  0.757  0.614 

τ1 = 0.75 0.673  0.260  0.454  0.759  0.616 

T τ1 au1 = 1.0 0.68  0.256  0.417  0.773  0.610 

 

 

LR test performance for different τ2 -values 

 Accuracy MCC F1 positive F1 negative ROC AUC 

τ2 = 0.1 0.669  0.252  0.452  0.755  0.613 

τ2 = 0.3  0.669  0.252  0.452  0.755  0.613 

τ2 = 0.5  0.671  0.255  0.452  0.757  0.614 

τ2 = 0.75  0.673  0.259  0.454  0.759  0.615 

τ2 = 1.0 0.682  0.257  0.418  0.774  0.610 
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